Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control
The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and activator of transcription (STAT)-3 and STAT6. Here, we generated a ROP16 deletion mutant on a Type I parasite strain background, as well as a control complementation mutant with res...
Saved in:
Published in | PLoS pathogens Vol. 7; no. 9; p. e1002236 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.09.2011
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and activator of transcription (STAT)-3 and STAT6. Here, we generated a ROP16 deletion mutant on a Type I parasite strain background, as well as a control complementation mutant with restored ROP16 expression. We investigated the biological role of the ROP16 molecule during T. gondii infection. Infection of mouse bone marrow-derived macrophages with rop16-deleted (ΔROP16) parasites resulted in increased amounts of IL-12p40 production relative to the ROP16-positive RH parental strain. High level IL-12p40 production in ΔROP16 infection was dependent on the host cell adaptor molecule MyD88, but surprisingly was independent of any previously recognized T. gondii triggered pathway linking to MyD88 (TLR2, TLR4, TLR9, TLR11, IL-1ß and IL-18). In addition, ROP16 was found to mediate the suppressive effects of Toxoplasma on LPS-induced cytokine synthesis in macrophages and on IFN-γ-induced nitric oxide production by astrocytes and microglial cells. Furthermore, ROP16 triggered synthesis of host cell arginase-1 in a STAT6-dependent manner. In fibroblasts and macrophages, failure to induce arginase-1 by ΔROP16 tachyzoites resulted in resistance to starvation conditions of limiting arginine, an essential amino acid for replication and virulence of this parasite. ΔROP16 tachyzoites that failed to induce host cell arginase-1 displayed increased replication and dissemination during in vivo infection. We conclude that encounter between Toxoplasma ROP16 and the host cell STAT signaling cascade has pleiotropic downstream effects that act in multiple and complex ways to direct the course of infection. |
---|---|
AbstractList | The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and activator of transcription (STAT)-3 and STAT6. Here, we generated a ROP16 deletion mutant on a Type I parasite strain background, as well as a control complementation mutant with restored ROP16 expression. We investigated the biological role of the ROP16 molecule during T. gondii infection. Infection of mouse bone marrow-derived macrophages with rop16-deleted (ΔROP16) parasites resulted in increased amounts of IL-12p40 production relative to the ROP16-positive RH parental strain. High level IL-12p40 production in ΔROP16 infection was dependent on the host cell adaptor molecule MyD88, but surprisingly was independent of any previously recognized T. gondii triggered pathway linking to MyD88 (TLR2, TLR4, TLR9, TLR11, IL-1ß and IL-18). In addition, ROP16 was found to mediate the suppressive effects of Toxoplasma on LPS-induced cytokine synthesis in macrophages and on IFN-γ-induced nitric oxide production by astrocytes and microglial cells. Furthermore, ROP16 triggered synthesis of host cell arginase-1 in a STAT6-dependent manner. In fibroblasts and macrophages, failure to induce arginase-1 by ΔROP16 tachyzoites resulted in resistance to starvation conditions of limiting arginine, an essential amino acid for replication and virulence of this parasite. ΔROP16 tachyzoites that failed to induce host cell arginase-1 displayed increased replication and dissemination during in vivo infection. We conclude that encounter between Toxoplasma ROP16 and the host cell STAT signaling cascade has pleiotropic downstream effects that act in multiple and complex ways to direct the course of infection. The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and activator of transcription (STAT)-3 and STAT6. Here, we generated a ROP16 deletion mutant on a Type I parasite strain background, as well as a control complementation mutant with restored ROP16 expression. We investigated the biological role of the ROP16 molecule during T. gondii infection. Infection of mouse bone marrow-derived macrophages with rop16-deleted (Δ ROP16) parasites resulted in increased amounts of IL-12p40 production relative to the ROP16-positive RH parental strain. High level IL-12p40 production in ΔROP16 infection was dependent on the host cell adaptor molecule MyD88, but surprisingly was independent of any previously recognized T. gondii triggered pathway linking to MyD88 (TLR2, TLR4, TLR9, TLR11, IL-1β and IL-18). In addition, ROP16 was found to mediate the suppressive effects of Toxoplasma on LPS- induced cytokine synthesis in macrophages and on IFN-γ-induced nitric oxide production by astrocytes and microglial cells. Furthermore, ROP16 triggered synthesis of host cell arginase-1 in a STAT6-dependent manner. In fibroblasts and macrophages, failure to induce arginase-1 by ΔROP16 tachyzoites resulted in resistance to starvation conditions of limiting arginine, an essential amino acid for replication and virulence of this parasite. ΔROP16 tachyzoites that failed to induce host cell arginase-1 displayed increased replication and dissemination during in vivo infection. We conclude that encounter between Toxoplasma ROP16 and the host cell STAT signaling cascade has pleiotropic downstream effects that act in multiple and complex ways to direct the course of infection. The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and activator of transcription (STAT)-3 and STAT6. Here, we generated a ROP16 deletion mutant on a Type I parasite strain background, as well as a control complementation mutant with restored ROP16 expression. We investigated the biological role of the ROP16 molecule during T. gondii infection. Infection of mouse bone marrow-derived macrophages with rop16-deleted (δROP16) parasites resulted in increased amounts of IL-12p40 production relative to the ROP16-positive RH parental strain. High level IL-12p40 production in δROP16 infection was dependent on the host cell adaptor molecule MyD88, but surprisingly was independent of any previously recognized T. gondii triggered pathway linking to MyD88 (TLR2, TLR4, TLR9, TLR11, IL-1ß and IL-18). In addition, ROP16 was found to mediate the suppressive effects of Toxoplasma on LPS-induced cytokine synthesis in macrophages and on IFN-γ-induced nitric oxide production by astrocytes and microglial cells. Furthermore, ROP16 triggered synthesis of host cell arginase-1 in a STAT6-dependent manner. In fibroblasts and macrophages, failure to induce arginase-1 by δROP16 tachyzoites resulted in resistance to starvation conditions of limiting arginine, an essential amino acid for replication and virulence of this parasite. δROP16 tachyzoites that failed to induce host cell arginase-1 displayed increased replication and dissemination during in vivo infection. We conclude that encounter between Toxoplasma ROP16 and the host cell STAT signaling cascade has pleiotropic downstream effects that act in multiple and complex ways to direct the course of infection. The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and activator of transcription (STAT)-3 and STAT6. Here, we generated a ROP16 deletion mutant on a Type I parasite strain background, as well as a control complementation mutant with restored ROP16 expression. We investigated the biological role of the ROP16 molecule during T. gondii infection. Infection of mouse bone marrow-derived macrophages with rop16 -deleted (ΔROP16) parasites resulted in increased amounts of IL-12p40 production relative to the ROP16-positive RH parental strain. High level IL-12p40 production in ΔROP16 infection was dependent on the host cell adaptor molecule MyD88, but surprisingly was independent of any previously recognized T. gondii triggered pathway linking to MyD88 (TLR2, TLR4, TLR9, TLR11, IL-1ß and IL-18). In addition, ROP16 was found to mediate the suppressive effects of Toxoplasma on LPS-induced cytokine synthesis in macrophages and on IFN-γ-induced nitric oxide production by astrocytes and microglial cells. Furthermore, ROP16 triggered synthesis of host cell arginase-1 in a STAT6-dependent manner. In fibroblasts and macrophages, failure to induce arginase-1 by ΔROP16 tachyzoites resulted in resistance to starvation conditions of limiting arginine, an essential amino acid for replication and virulence of this parasite. ΔROP16 tachyzoites that failed to induce host cell arginase-1 displayed increased replication and dissemination during in vivo infection. We conclude that encounter between Toxoplasma ROP16 and the host cell STAT signaling cascade has pleiotropic downstream effects that act in multiple and complex ways to direct the course of infection. Toxoplasma gondii is an extremely widespread intracellular protozoan parasite that establishes long-lasting infection in humans and animals. Because Toxoplasma infection is most often asymptomatic, it is evident that this parasite has developed sophisticated ways to manipulate host immunity. Recently, the parasite ROP16 kinase was identified as an important determinant of host cell signaling. During cell invasion, ROP16 is injected into the host cell cytoplasm and subsequently localizes to the nucleus. Here, we report the generation of ROP16 knockout parasites (ΔROP16) as well as ΔROP16 complementation mutants (ΔROP16:1) and we describe the biological effects of deleting and re-inserting this molecule. We find that ROP16 controls the ability to activate multiple host cell signaling pathways and simultaneously suppress macrophage proinflammatory responses. Deletion of ROP16 increases parasite ability to replicate and disseminate during in vivo infection. This increased growth response may arise from ROP16-dependent activation of host arginase-1. Induction of arginase-1 limits availability of arginine, an amino acid that is required for parasite growth and host-inducible nitric oxide production. Our results provide new insight into the complex interactions between an intracellular eukaryotic pathogen and its host cell. |
Audience | Academic |
Author | Butcher, Barbara A Fox, Barbara A Rommereim, Leah M Bzik, David J Maurer, Kirk J Yarovinsky, Felix Kim, Sung Guk Herbert, De'Broski R Denkers, Eric Y |
AuthorAffiliation | 1 Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America 5 Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America University of Pennsylvania, United States of America 2 Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America 4 Center for Animal Resources and Education, College of Veterinary Medicine and Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America 3 Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America 6 Division of Immunobiology, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States of America |
AuthorAffiliation_xml | – name: 4 Center for Animal Resources and Education, College of Veterinary Medicine and Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America – name: 5 Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America – name: 1 Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America – name: 2 Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America – name: 3 Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America – name: 6 Division of Immunobiology, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States of America – name: University of Pennsylvania, United States of America |
Author_xml | – sequence: 1 givenname: Barbara A surname: Butcher fullname: Butcher, Barbara A email: bab26@cornell.edu organization: Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA. bab26@cornell.edu – sequence: 2 givenname: Barbara A surname: Fox fullname: Fox, Barbara A – sequence: 3 givenname: Leah M surname: Rommereim fullname: Rommereim, Leah M – sequence: 4 givenname: Sung Guk surname: Kim fullname: Kim, Sung Guk – sequence: 5 givenname: Kirk J surname: Maurer fullname: Maurer, Kirk J – sequence: 6 givenname: Felix surname: Yarovinsky fullname: Yarovinsky, Felix – sequence: 7 givenname: De'Broski R surname: Herbert fullname: Herbert, De'Broski R – sequence: 8 givenname: David J surname: Bzik fullname: Bzik, David J – sequence: 9 givenname: Eric Y surname: Denkers fullname: Denkers, Eric Y |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21931552$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkl1v2yAUhq2p0_qx_YNpQ9pVL5yBsbG5mRRV-4hUrVObXSNsjh0yB1wgXfMT-q9HErdqpO1i4oIjeN6XwznnNDky1kCSvCV4QmhJPi7t2hnZT4ZBhgnBOMsoe5GckKKgaUnL_OhZfJycer_EOCeUsFfJcUY4jZfZSfIwt_d26KVfSdRZo7RGbmGH4DbolzbSA7q--kEYkk3QdzKARzfz6ZwiadQuYsiBX_dBmw5pg5pNsFEHMV7oWgdtzQ6Vrtu5pSRVMIBRYALqnP0dFqixJjjbv05etrL38Gbcz5KfXz7PL76ll1dfZxfTy7QpMxZSoCWjBctwIykwAJUzpjit8iKDApOsYarGZVG3EooKKsxUwUtgednSklKu6Fnyfu879NaLsYpekKziuOI0p5GY7Qll5VIMTq-k2wgrtdgdWNcJ6YJuehCFKrZpKFVLluek5lgyThkHiP2o2Pa1T-Nr63oFqon_drI_MD28MXohOnsnYqN4kZfR4MNo4OztGnz4R8oj1cmYlTatjWbNSvtGTDPGGce4rCI1-QsVl4KVjm2AVsfzA8H5gWDbKrgPnVx7L2Y31__Bfj9k8z3bOOu9g_apIASL7XQ_flJsp1uM0x1l754X80n0OM70D1K0-AE |
CitedBy_id | crossref_primary_10_1016_j_pt_2019_01_005 crossref_primary_10_1128_IAI_00415_15 crossref_primary_10_1158_0008_5472_CAN_12_1974 crossref_primary_10_7774_cevr_2019_8_1_4 crossref_primary_10_3389_fcimb_2019_00132 crossref_primary_10_1016_j_parint_2022_102593 crossref_primary_10_1371_journal_ppat_1007856 crossref_primary_10_3389_fcimb_2021_587150 crossref_primary_10_1371_journal_ppat_1002567 crossref_primary_10_4049_immunohorizons_2400029 crossref_primary_10_1016_j_ijpara_2011_11_007 crossref_primary_10_1371_journal_pgen_1006189 crossref_primary_10_1186_1471_2164_15_806 crossref_primary_10_1371_journal_ppat_1003535 crossref_primary_10_4161_jkst_19918 crossref_primary_10_1186_1757_4749_6_19 crossref_primary_10_3390_pathogens12020253 crossref_primary_10_3389_fcimb_2023_1130965 crossref_primary_10_4049_jimmunol_1101425 crossref_primary_10_1128_mBio_02401_17 crossref_primary_10_1016_j_immuni_2012_03_014 crossref_primary_10_1111_pim_12712 crossref_primary_10_2217_fmb_11_147 crossref_primary_10_1111_apm_12420 crossref_primary_10_1371_journal_pone_0105120 crossref_primary_10_1186_1756_3305_6_308 crossref_primary_10_15252_embj_2022113155 crossref_primary_10_1080_17469899_2023_2279178 crossref_primary_10_1146_annurev_immunol_032712_095906 crossref_primary_10_1084_jem_20192145 crossref_primary_10_3389_fimmu_2014_00603 crossref_primary_10_1128_mBio_03305_20 crossref_primary_10_3389_fimmu_2017_01261 crossref_primary_10_1038_nri3598 crossref_primary_10_32604_biocell_2023_026629 crossref_primary_10_3389_fimmu_2018_01572 crossref_primary_10_1111_jeu_12639 crossref_primary_10_1155_2019_6152489 crossref_primary_10_1007_s11686_024_00851_w crossref_primary_10_1186_s12974_022_02639_z crossref_primary_10_3389_fcimb_2019_00413 crossref_primary_10_1016_j_ijpara_2015_01_003 crossref_primary_10_1016_j_micpath_2023_106340 crossref_primary_10_1007_s00436_022_07499_3 crossref_primary_10_3390_metabo11020061 crossref_primary_10_1111_pim_12166 crossref_primary_10_3389_fcimb_2021_670548 crossref_primary_10_1111_pim_12164 crossref_primary_10_4049_jimmunol_1701045 crossref_primary_10_1371_journal_ppat_1009970 crossref_primary_10_1128_MMBR_00027_15 crossref_primary_10_1016_j_pt_2013_07_001 crossref_primary_10_1128_IAI_01643_14 crossref_primary_10_1128_EC_00215_14 crossref_primary_10_1371_journal_pone_0063650 crossref_primary_10_1038_cmi_2016_21 crossref_primary_10_1016_j_molbiopara_2024_111633 crossref_primary_10_1007_s00436_022_07541_4 crossref_primary_10_1186_s13071_022_05263_1 crossref_primary_10_3389_fimmu_2024_1428232 crossref_primary_10_1111_pim_12410 crossref_primary_10_1038_s41590_018_0250_8 crossref_primary_10_1084_jem_20181757 crossref_primary_10_1016_j_celrep_2023_113601 crossref_primary_10_2139_ssrn_3316792 crossref_primary_10_3390_vaccines12010101 crossref_primary_10_1016_j_exppara_2017_02_011 crossref_primary_10_1038_nrmicro2858 crossref_primary_10_1038_s41579_021_00518_7 crossref_primary_10_1371_journal_pone_0108377 crossref_primary_10_1021_acschemneuro_9b00245 crossref_primary_10_3389_fcimb_2024_1414067 crossref_primary_10_1128_IAI_00511_16 crossref_primary_10_1128_IAI_01615_14 crossref_primary_10_1016_j_ijpara_2012_10_024 crossref_primary_10_1371_journal_ppat_1002410 crossref_primary_10_1111_cmi_13084 crossref_primary_10_3390_ijms21082711 crossref_primary_10_3389_fcimb_2023_1102551 crossref_primary_10_1007_s00436_013_3451_y crossref_primary_10_1016_j_exppara_2015_03_006 crossref_primary_10_1515_ap_2017_0061 crossref_primary_10_3347_kjp_2020_58_4_461 crossref_primary_10_3389_fpara_2023_1103772 crossref_primary_10_1371_journal_ppat_1008586 crossref_primary_10_1016_j_ejop_2016_07_006 crossref_primary_10_1074_jbc_M113_544718 crossref_primary_10_1007_s12639_022_01518_x crossref_primary_10_1371_journal_pone_0214310 crossref_primary_10_1186_s12974_021_02370_1 crossref_primary_10_1186_s13071_016_1716_x crossref_primary_10_3389_fimmu_2022_824695 crossref_primary_10_1155_2013_480231 crossref_primary_10_1016_j_cellsig_2014_02_013 crossref_primary_10_1371_journal_ppat_1003296 crossref_primary_10_3389_fcimb_2022_825458 crossref_primary_10_1186_s13071_022_05502_5 crossref_primary_10_1189_jlb_0412214 crossref_primary_10_1645_14_696_1 crossref_primary_10_1016_j_celrep_2022_110564 crossref_primary_10_1371_journal_pgen_1005619 crossref_primary_10_3390_ani13243817 crossref_primary_10_1371_journal_ppat_1008572 crossref_primary_10_1080_21505594_2021_2012346 crossref_primary_10_1128_mBio_00462_15 crossref_primary_10_1371_journal_ppat_1011347 crossref_primary_10_1016_j_chom_2022_10_001 crossref_primary_10_1128_mBio_00193_16 crossref_primary_10_4161_onci_26296 crossref_primary_10_3390_microorganisms9112340 crossref_primary_10_1016_j_ijpara_2021_10_004 crossref_primary_10_1016_j_exppara_2014_02_015 crossref_primary_10_1038_s41467_021_24083_y crossref_primary_10_3389_fmicb_2018_00909 crossref_primary_10_1016_j_vetpar_2017_04_020 crossref_primary_10_1016_j_ejcb_2023_151364 crossref_primary_10_1096_fj_201700008R crossref_primary_10_1084_jem_20201314 crossref_primary_10_1172_JCI136226 crossref_primary_10_1371_journal_ppat_1002990 crossref_primary_10_1016_j_rvsc_2012_07_020 crossref_primary_10_1371_journal_ppat_1006671 crossref_primary_10_3389_fcimb_2020_580425 crossref_primary_10_1186_1756_3305_6_356 crossref_primary_10_1016_j_ijpara_2013_08_003 crossref_primary_10_1007_s00436_017_5579_7 crossref_primary_10_3389_fimmu_2023_1224591 crossref_primary_10_58395_pipd_v49i1_51 crossref_primary_10_1128_IAI_01185_12 crossref_primary_10_1007_s00436_020_06923_w crossref_primary_10_1371_journal_pone_0060215 crossref_primary_10_1371_journal_ppat_1008327 crossref_primary_10_3389_fcimb_2019_00154 crossref_primary_10_3389_fmicb_2017_00084 crossref_primary_10_1371_journal_ppat_1009816 crossref_primary_10_1056_NEJMc1302895 crossref_primary_10_1371_journal_ppat_1003706 crossref_primary_10_1016_j_meegid_2016_06_053 crossref_primary_10_1038_s41598_017_03978_1 crossref_primary_10_1186_s13071_023_06080_w crossref_primary_10_1128_IAI_01339_13 crossref_primary_10_1128_CMR_00005_17 crossref_primary_10_1016_j_micpath_2014_03_006 crossref_primary_10_1017_S0031182021000937 crossref_primary_10_1371_journal_pbio_3002690 crossref_primary_10_1371_journal_ppat_1006027 crossref_primary_10_1038_s41598_023_34502_3 crossref_primary_10_1186_1756_3305_6_163 crossref_primary_10_3389_fcimb_2019_00309 crossref_primary_10_3390_ani12243453 crossref_primary_10_3390_microorganisms9122531 crossref_primary_10_1186_s13071_015_0670_3 crossref_primary_10_3389_fmicb_2018_01936 crossref_primary_10_1128_EC_00081_14 crossref_primary_10_4049_jimmunol_1103374 crossref_primary_10_1186_1756_0500_7_696 crossref_primary_10_1038_s12276_024_01165_7 crossref_primary_10_1128_IAI_05974_11 crossref_primary_10_1084_jem_20130103 crossref_primary_10_1111_1574_6976_12013 crossref_primary_10_1128_mbio_02361_22 crossref_primary_10_1038_s41598_018_33274_5 crossref_primary_10_1186_s12864_021_07437_0 crossref_primary_10_1007_s00436_015_4792_5 crossref_primary_10_3390_cells11101630 crossref_primary_10_1242_jcs_177386 crossref_primary_10_3389_fimmu_2018_02403 crossref_primary_10_1038_s41598_023_40147_z crossref_primary_10_3389_fmicb_2017_02408 crossref_primary_10_1016_j_copbio_2020_09_015 crossref_primary_10_1128_mSphere_00045_16 crossref_primary_10_3389_fmicb_2019_03151 crossref_primary_10_1016_j_meegid_2015_11_005 crossref_primary_10_1111_mmi_13867 |
Cites_doi | 10.1038/ni1528 10.4049/jimmunol.168.12.5997 10.1128/CMR.11.4.569 10.1128/EC.00357-08 10.4049/jimmunol.167.4.2193 10.4049/jimmunol.178.8.5154 10.1111/j.1462-5822.2005.00517.x 10.1038/sj.cdd.4401850 10.1016/j.immuni.2008.07.012 10.1093/intimm/8.6.887 10.1128/IAI.62.7.2908-2916.1994 10.1128/JCM.44.3.720-724.2006 10.1186/1742-2094-7-30 10.4049/jimmunol.177.12.8785 10.4049/jimmunol.179.2.1129 10.4049/jimmunol.167.2.902 10.1093/emboj/20.12.3132 10.4049/jimmunol.166.4.2173 10.1038/nri1885 10.1111/j.1365-3024.2009.01122.x 10.1038/ni.1671 10.1038/nature05395 10.1002/eji.1830250436 10.4049/jimmunol.174.6.3148 10.4049/jimmunol.172.11.6954 10.1002/jnr.21968 10.1371/journal.ppat.1000371 10.1074/jbc.M110.112359 10.1242/jcs.02934 10.4049/jimmunol.173.4.2632 10.1242/jcs.02428 10.1126/science.1133690 10.4049/jimmunol.172.5.3003 10.1016/S1369-5274(02)00349-1 10.1016/S0020-7519(03)00092-4 10.4049/jimmunol.162.6.3512 10.1126/science.1109893 10.1084/jem.20091703 10.1038/ni1102-1041 10.1371/journal.pntd.0000480 10.4049/jimmunol.182.1.489 10.1146/annurev.micro.62.081307.162925 10.1016/S0002-9440(10)65408-9 10.1128/MCB.24.1.407-419.2004 10.4049/jimmunol.181.12.8485 10.1182/blood-2005-02-0666 10.1002/glia.20952 10.4049/jimmunol.181.5.3464 10.1128/IAI.62.5.1995-2001.1994 10.1016/j.semcdb.2008.07.003 10.1016/S0006-291X(88)80015-9 10.4049/jimmunol.0901642 10.4049/jimmunol.172.6.3686 10.1016/j.ijpara.2003.12.001 10.1038/nature06247 10.4049/jimmunol.177.4.2584 10.1136/gut.2006.104497 10.4049/jimmunol.178.5.2623 10.1084/jem.185.7.1261 10.4049/jimmunol.176.3.1840 10.1016/j.micinf.2006.02.031 10.1128/JCM.27.8.1787-1792.1989 10.1093/nar/25.2.451 10.4049/jimmunol.171.11.6052 10.4049/jimmunol.167.8.4574 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2011 Public Library of Science 2011 Butcher et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Butcher BA, Fox BA, Rommereim LM, Kim SG, Maurer KJ, et al. (2011) Toxoplasma gondii Rhoptry Kinase ROP16 Activates STAT3 and STAT6 Resulting in Cytokine Inhibition and Arginase-1-Dependent Growth Control. PLoS Pathog 7(9): e1002236. doi:10.1371/journal.ppat.1002236 Butcher et al. 2011 |
Copyright_xml | – notice: COPYRIGHT 2011 Public Library of Science – notice: 2011 Butcher et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Butcher BA, Fox BA, Rommereim LM, Kim SG, Maurer KJ, et al. (2011) Toxoplasma gondii Rhoptry Kinase ROP16 Activates STAT3 and STAT6 Resulting in Cytokine Inhibition and Arginase-1-Dependent Growth Control. PLoS Pathog 7(9): e1002236. doi:10.1371/journal.ppat.1002236 – notice: Butcher et al. 2011 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION ISN ISR 3V. 7QL 7U9 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PIMPY PQEST PQQKQ PQUKI PRINS 5PM DOA |
DOI | 10.1371/journal.ppat.1002236 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Gale In Context: Canada Science in Context ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Biology of Toxoplasma gondii Rhoptry Kinase ROP16 |
EISSN | 1553-7374 |
Editor | Hunter, Christopher A. |
Editor_xml | – sequence: 1 givenname: Christopher A. surname: Hunter fullname: Hunter, Christopher A. |
ExternalDocumentID | 1289089343 oai_doaj_org_article_5d5a3e6ddba6441b90a69369ee02286d 2896603561 A269690078 10_1371_journal_ppat_1002236 21931552 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI050617 – fundername: NIAID NIH HHS grantid: R21 AI084570 – fundername: NIAID NIH HHS grantid: R21 AI097018 – fundername: NIAID NIH HHS grantid: R01 AI041930 – fundername: NIAID NIH HHS grantid: R21 AI091461 – fundername: NIAID NIH HHS grantid: R21 AI073142 – fundername: NIAID NIH HHS grantid: AI073142 – fundername: NIAID NIH HHS grantid: AI50617 – fundername: NIAID NIH HHS grantid: R01 AI095289 – fundername: NIAID NIH HHS grantid: T32 AI007519 |
GroupedDBID | --- 123 29O 2WC 3V. 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ ABDBF ABUWG ACGFO ACIHN ACPRK ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CGR CS3 CUY CVF DIK DU5 E3Z EAP EAS EBD ECM EIF EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IHR INH INR IPNFZ ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. M~E NPM O5R O5S OK1 P2P PGMZT PIMPY PQQKQ PROAC PSQYO PV9 QF4 QN7 RIG RNS RPM RZL SV3 TR2 TUS UKHRP WOQ WOW ~8M AAYXX CITATION 7QL 7U9 7XB 8FK AZQEC C1K DWQXO GNUQQ H94 K9. PQEST PQUKI PRINS 5PM AAPBV ABPTK |
ID | FETCH-LOGICAL-c726t-e37635620ca3e6eed466d938452e5012c6db075bfae58e806d597e647f37339d3 |
IEDL.DBID | RPM |
ISSN | 1553-7374 1553-7366 |
IngestDate | Sun Oct 01 00:11:20 EDT 2023 Tue Oct 22 15:15:14 EDT 2024 Tue Sep 17 21:08:39 EDT 2024 Thu Oct 10 18:46:22 EDT 2024 Thu Feb 22 23:48:46 EST 2024 Fri Feb 02 03:57:29 EST 2024 Thu Aug 01 19:54:53 EDT 2024 Thu Aug 01 20:08:30 EDT 2024 Fri Aug 23 00:45:08 EDT 2024 Sat Sep 28 08:01:44 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Phosphorylation Cytokines Signal Transduction Mice, Inbred C57BL Cells, Cultured Arginase Myeloid Differentiation Factor 88 Protozoan Proteins Gene Knockout Techniques Macrophages STAT6 Transcription Factor Janus Kinase 2 Toxoplasma Animals Plasmids Gene Deletion Female Mice STAT3 Transcription Factor Protein-Tyrosine Kinases Interleukin-12 Subunit p40 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c726t-e37635620ca3e6eed466d938452e5012c6db075bfae58e806d597e647f37339d3 |
Notes | Conceived and designed the experiments: BAB BAF DJB EYD. Performed the experiments: BAB BAF LMR SGK KJM DJB EYD. Analyzed the data: BAB BAF DJB EYD. Contributed reagents/materials/analysis tools: FY DRH. Wrote the paper: BAB BAF DJB EYD. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169547/ |
PMID | 21931552 |
PQID | 1289089343 |
PQPubID | 1436335 |
ParticipantIDs | plos_journals_1289089343 doaj_primary_oai_doaj_org_article_5d5a3e6ddba6441b90a69369ee02286d pubmedcentral_primary_oai_pubmedcentral_nih_gov_3169547 proquest_journals_1289089343 gale_infotracmisc_A269690078 gale_infotracacademiconefile_A269690078 gale_incontextgauss_ISR_A269690078 gale_incontextgauss_ISN_A269690078 crossref_primary_10_1371_journal_ppat_1002236 pubmed_primary_21931552 |
PublicationCentury | 2000 |
PublicationDate | 2011-09-01 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PLoS pathogens |
PublicationTitleAlternate | PLoS Pathog |
PublicationYear | 2011 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | 17312100 - J Immunol. 2007 Mar 1;178(5):2623-9 15860593 - Science. 2005 Jun 10;308(5728):1626-9 16868551 - Nat Rev Immunol. 2006 Aug;6(8):602-12 8671678 - Int Immunol. 1996 Jun;8(6):887-96 16051744 - Blood. 2006 Jan 1;107(1):309-16 11441097 - J Immunol. 2001 Jul 15;167(2):902-9 17943119 - Nature. 2007 Oct 18;449(7164):827-34 19998480 - Glia. 2010 Apr 15;58(6):650-64 3196352 - Biochem Biophys Res Commun. 1988 Nov 30;157(1):87-94 17952043 - Nat Immunol. 2007 Nov;8(11):1179-87 18718768 - Immunity. 2008 Sep 19;29(3):487-96 16824778 - Microbes Infect. 2006 Jul;8(8):1994-2005 19911079 - J Biomed Biotechnol. 2010;2010:737125 19109180 - J Immunol. 2009 Jan 1;182(1):489-97 11160269 - J Immunol. 2001 Feb 15;166(4):2173-7 15294980 - J Immunol. 2004 Aug 15;173(4):2632-40 17404298 - J Immunol. 2007 Apr 15;178(8):5154-65 18978793 - Nat Immunol. 2008 Dec;9(12):1399-406 19115402 - J Neurosci Res. 2009 May 15;87(7):1565-72 19597544 - PLoS Negl Trop Dis. 2009;3(7):e480 12865083 - Int J Parasitol. 2003 Jul 30;33(8):833-44 16424215 - J Immunol. 2006 Feb 1;176(3):1840-7 18691663 - Semin Cell Dev Biol. 2008 Aug;19(4):329-40 11591786 - J Immunol. 2001 Oct 15;167(8):4574-84 16517845 - J Clin Microbiol. 2006 Mar;44(3):720-4 16888020 - J Immunol. 2006 Aug 15;177(4):2584-91 14673173 - Mol Cell Biol. 2004 Jan;24(1):407-19 9767056 - Clin Microbiol Rev. 1998 Oct;11(4):569-88 19050266 - J Immunol. 2008 Dec 15;181(12):8485-91 9104813 - J Exp Med. 1997 Apr 7;185(7):1261-73 12160866 - Curr Opin Microbiol. 2002 Aug;5(4):438-42 19891610 - Parasite Immunol. 2009 Dec;31(12):717-28 17183270 - Nature. 2007 Jan 18;445(7125):324-7 16638808 - J Cell Sci. 2006 May 15;119(Pt 10):2119-26 20624917 - J Biol Chem. 2010 Sep 10;285(37):28731-40 20488791 - J Immunol. 2010 Jun 15;184(12):7022-9 12055206 - J Immunol. 2002 Jun 15;168(12):5997-6001 10329607 - Am J Pathol. 1999 May;154(5):1549-61 15888086 - Cell Microbiol. 2005 Jun;7(6):837-48 15749841 - J Immunol. 2005 Mar 15;174(6):3148-52 12407413 - Nat Immunol. 2002 Nov;3(11):1041-7 19901082 - J Exp Med. 2009 Nov 23;206(12):2747-60 17255219 - Gut. 2007 Jul;56(7):941-8 19360123 - PLoS Pathog. 2009 Apr;5(4):e1000371 10092808 - J Immunol. 1999 Mar 15;162(6):3512-8 15003493 - Int J Parasitol. 2004 Mar 9;34(3):323-31 18714019 - J Immunol. 2008 Sep 1;181(5):3464-73 8168967 - Infect Immun. 1994 May;62(5):1995-2001 19218423 - Eukaryot Cell. 2009 Apr;8(4):520-9 14634118 - J Immunol. 2003 Dec 1;171(11):6052-8 11406590 - EMBO J. 2001 Jun 15;20(12):3132-44 7537672 - Eur J Immunol. 1995 Apr;25(4):1101-4 18544039 - Annu Rev Microbiol. 2008;62:329-51 20482831 - J Neuroinflammation. 2010;7:30 9016579 - Nucleic Acids Res. 1997 Jan 15;25(2):451-2 17617606 - J Immunol. 2007 Jul 15;179(2):1129-37 14978104 - J Immunol. 2004 Mar 1;172(5):3003-10 16079291 - J Cell Sci. 2005 Aug 1;118(Pt 15):3501-8 8005679 - Infect Immun. 1994 Jul;62(7):2908-16 17170306 - Science. 2006 Dec 15;314(5806):1780-3 15004172 - J Immunol. 2004 Mar 15;172(6):3686-94 16410796 - Cell Death Differ. 2006 May;13(5):816-25 2768467 - J Clin Microbiol. 1989 Aug;27(8):1787-92 15153515 - J Immunol. 2004 Jun 1;172(11):6954-60 17142781 - J Immunol. 2006 Dec 15;177(12):8785-95 11490005 - J Immunol. 2001 Aug 15;167(4):2193-201 JP Saeij (ref18) 2006; 314 EY Denkers (ref48) 2010 J Leng (ref49) 2009; 182 JB Hibbs (ref70) 1988; 157 BA Butcher (ref17) 2005; 174 L Del Rio (ref33) 2004; 172 T Kawai (ref47) 2006; 13 E Borysiewicz (ref54) 2009; 87 CGK Luder (ref37) 2003; 33 Y Shen (ref25) 2004; 24 M Modolell (ref59) 2009; 3 S Cassaing (ref69) 2006; 44 J Leng (ref13) 2009; 182 PJ Murray (ref23) 2007; 178 T Chtanova (ref6) 2008; 29 KR Oldenburg (ref64) 1997; 25 CR Roy (ref2) 2007; 8 JT Pesce (ref60) 2009; 5 DM Foureau (ref34) 2010; 184 AP Bhavsar (ref1) 2007; 449 KC El Kasmi (ref40) 2008; 9 LC Gavrilescu (ref45) 2001; 167 AW Pfaff (ref9) 2007 JC Boothroyd (ref44) 2002; 5 NC Reich (ref26) 2006; 6 L Kim (ref65) 2004; 172 F Debierre-Grockiego (ref32) 2007; 179 MM Heimesaat (ref51) 2007; 56 N Courret (ref7) 2006; 107 AS McKee (ref36) 2004; 173 S Bennouna (ref66) 2003; 171 D Sacks (ref3) 2002; 3 W Sukhumavasi (ref31) 2008; 181 PM Robben (ref28) 2004; 172 DG Mordue (ref46) 2001; 167 BA Fox (ref24) 2009; 8 M Modolell (ref38) 1995; 25 E Candolfi (ref61) 1994; 62 YC Ong (ref21) 2010; 285 F Yarovinsky (ref35) 2005; 308 J Leng (ref11) 2009; 31 MM Heimesaat (ref50) 2006; 177 IA Khan (ref63) 1996; 8 L Kim (ref12) 2006; 119 N Hitziger (ref29) 2005; 6 T Scharton-Kersten (ref57) 1997; 185 BA Fox (ref42) 2004; 34 E Peterson (ref8) 2007 S Hakansson (ref20) 2001; 20 PB Sehgal (ref41) 2008; 19 R Rutschman (ref39) 2001; 166 EY Denkers (ref10) 1998; 11 JL Burg (ref68) 1989; 27 CA Scanga (ref30) 2002; 168 S Zimmermann (ref14) 2006; 176 L Kim (ref27) 2006; 177 SK Kim (ref52) 2007; 178 M Deckert-Schluter (ref56) 1999; 154 S Haque (ref62) 1994; 62 BA Butcher (ref15) 2001; 167 LD Sibley (ref43) 2008; 62 C Lang (ref53) 2006; 8 NB Butchi (ref67) 2010; 58 AL Bierly (ref5) 2008; 181 JP Saeij (ref19) 2007; 445 M Yamamoto (ref22) 2009; 206 JP Dubey (ref4) 2007 H Wilms (ref55) 2010; 7 D Schluter (ref58) 1999; 162 S Shapira (ref16) 2005; 118 |
References_xml | – volume: 8 start-page: 1179 year: 2007 ident: ref2 article-title: Pathogen subversion of cell-intrinsic innate immunity. publication-title: Nat Immunol doi: 10.1038/ni1528 contributor: fullname: CR Roy – volume: 168 start-page: 5997 year: 2002 ident: ref30 article-title: Cutting edge: MyD88 is required for resistance to Toxoplasma gondii infection and regulates parasite-induced IL-12 production by dendritic cells. publication-title: J Immunol doi: 10.4049/jimmunol.168.12.5997 contributor: fullname: CA Scanga – volume: 11 start-page: 569 year: 1998 ident: ref10 article-title: Regulation and function of T cell-mediated immunity during Toxoplasma gondii infection. publication-title: Clin Microbiol Rev doi: 10.1128/CMR.11.4.569 contributor: fullname: EY Denkers – volume: 8 start-page: 520 year: 2009 ident: ref24 article-title: Efficient gene replacements in Toxoplasma gondii strains deficient for nonhomologous end joining. publication-title: Eukaryot Cell doi: 10.1128/EC.00357-08 contributor: fullname: BA Fox – volume: 167 start-page: 2193 year: 2001 ident: ref15 article-title: Toxoplasma gondii tachyzoites inhibit proinflammatory cytokine induction in infected macrophages by preventing nuclear translocation of the transcription factor NFkB. publication-title: J Immunol doi: 10.4049/jimmunol.167.4.2193 contributor: fullname: BA Butcher – volume: 178 start-page: 5154 year: 2007 ident: ref52 article-title: Toxoplasma gondii dysregulates IFN-gamma-inducible gene expression in human fibroblasts: insights from a genome-wide transcriptional profiling. publication-title: J Immunol doi: 10.4049/jimmunol.178.8.5154 contributor: fullname: SK Kim – volume: 6 start-page: 837 year: 2005 ident: ref29 article-title: Dissemination of Toxoplasma gondii to immunoprivileged organs and role of Toll/interleukin-1 receptor signalling for host resistance assessed by in vivo bioluminescence imaging. publication-title: Cell Micro doi: 10.1111/j.1462-5822.2005.00517.x contributor: fullname: N Hitziger – volume: 13 start-page: 816 year: 2006 ident: ref47 article-title: TLR signaling. publication-title: Cell Death Differentiat doi: 10.1038/sj.cdd.4401850 contributor: fullname: T Kawai – volume: 29 start-page: 487 year: 2008 ident: ref6 article-title: Dynamics of Neutrophil Migration in Lymph Nodes during Infection. publication-title: Immunity doi: 10.1016/j.immuni.2008.07.012 contributor: fullname: T Chtanova – volume: 8 start-page: 887 year: 1996 ident: ref63 article-title: Activation-mediated CD4+ T cell unresponsiveness during acute Toxoplasma gondii infection in mice. publication-title: International Immunol doi: 10.1093/intimm/8.6.887 contributor: fullname: IA Khan – volume: 62 start-page: 2908 year: 1994 ident: ref62 article-title: Impairment of the cellular immune response in acute murine toxoplasmosis: Regulation of IL-2 production and macrophage-mediated inhibitory effects. publication-title: Infect Immun doi: 10.1128/IAI.62.7.2908-2916.1994 contributor: fullname: S Haque – volume: 44 start-page: 720 year: 2006 ident: ref69 article-title: Comparison between two amplification sets for molecular diagnosis of toxoplasmosis by real-time PCR. publication-title: J Clin Microbiol doi: 10.1128/JCM.44.3.720-724.2006 contributor: fullname: S Cassaing – volume: 7 start-page: 30 year: 2010 ident: ref55 article-title: Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1beta, TNF-alpha and IL-6 in an in-vitro model of brain inflammation. publication-title: J Neuroinflammation doi: 10.1186/1742-2094-7-30 contributor: fullname: H Wilms – start-page: 81 year: 2007 ident: ref8 article-title: Clinical disease and diagnostics. contributor: fullname: E Peterson – volume: 177 start-page: 8785 year: 2006 ident: ref50 article-title: Gram-Negative Bacteria Aggravate Murine Small Intestinal Th1-Type Immunopathology following Oral Infection with Toxoplasma gondii. publication-title: J Immunol doi: 10.4049/jimmunol.177.12.8785 contributor: fullname: MM Heimesaat – volume: 179 start-page: 1129 year: 2007 ident: ref32 article-title: Activation of TLR2 and TLR4 by glycosylphosphatidylinositols derived from Toxoplasma gondii. publication-title: J Immunol doi: 10.4049/jimmunol.179.2.1129 contributor: fullname: F Debierre-Grockiego – volume: 167 start-page: 902 year: 2001 ident: ref45 article-title: IFN-g overproduction and high level apoptosis are associated with high but not low virulence Toxoplasma gondii infection. publication-title: J Immunol doi: 10.4049/jimmunol.167.2.902 contributor: fullname: LC Gavrilescu – volume: 20 start-page: 3132 year: 2001 ident: ref20 article-title: Toxoplasma evacuoles: a two-step process of secretion and fusion forms the parasitophorous vacuole. publication-title: EMBO J doi: 10.1093/emboj/20.12.3132 contributor: fullname: S Hakansson – volume: 166 start-page: 2173 year: 2001 ident: ref39 article-title: Stat6-dependent substrate depletion regulates nitric oxide production. publication-title: J Immunol doi: 10.4049/jimmunol.166.4.2173 contributor: fullname: R Rutschman – volume: 6 start-page: 602 year: 2006 ident: ref26 article-title: Tracking STAT nuclear traffic. publication-title: Nat Rev Immunol doi: 10.1038/nri1885 contributor: fullname: NC Reich – volume: 31 start-page: 717 year: 2009 ident: ref11 article-title: Dysregulation of macrophage signal transduction by Toxoplasma gondii: Past progress and recent advances. publication-title: Parasite Immunol doi: 10.1111/j.1365-3024.2009.01122.x contributor: fullname: J Leng – volume: 9 start-page: 1399 year: 2008 ident: ref40 article-title: Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. publication-title: Nat Immunol doi: 10.1038/ni.1671 contributor: fullname: KC El Kasmi – volume: 445 start-page: 324 year: 2007 ident: ref19 article-title: Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue. publication-title: Nature doi: 10.1038/nature05395 contributor: fullname: JP Saeij – volume: 25 start-page: 1101 year: 1995 ident: ref38 article-title: Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines. publication-title: Eur J Immunol doi: 10.1002/eji.1830250436 contributor: fullname: M Modolell – volume: 174 start-page: 3148 year: 2005 ident: ref17 article-title: Cutting Edge: IL-10-independent STAT3 activation by Toxoplasma gondii mediates suppression of IL-12 and TNF-a in host macrophages. publication-title: J Immunol doi: 10.4049/jimmunol.174.6.3148 contributor: fullname: BA Butcher – volume: 172 start-page: 6954 year: 2004 ident: ref33 article-title: Toxoplasma gondii triggers MyD88-dependent and CCL2(MCP-1) responses using distinct parasite molecules and host receptors. publication-title: J Immunol doi: 10.4049/jimmunol.172.11.6954 contributor: fullname: L Del Rio – volume: 87 start-page: 1565 year: 2009 ident: ref54 article-title: Rho proteins are negative regulators of TLR2, TLR3, and TLR4 signaling in astrocytes. publication-title: J Neurosci Res doi: 10.1002/jnr.21968 contributor: fullname: E Borysiewicz – volume: 5 start-page: e1000371 year: 2009 ident: ref60 article-title: Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000371 contributor: fullname: JT Pesce – volume: 285 start-page: 28731 year: 2010 ident: ref21 article-title: Toxoplasma rhoptry protein 16 (ROP16) subverts host function by direct tyrosine phosphorylation of STAT6. publication-title: J Biol Chem doi: 10.1074/jbc.M110.112359 contributor: fullname: YC Ong – volume: 119 start-page: 2119 year: 2006 ident: ref12 article-title: Toxoplasma gondii triggers Gi-dependent phosphatidylinositol 3-kinase signaling required for inhibition of host cell apoptosis. publication-title: J Cell Sci doi: 10.1242/jcs.02934 contributor: fullname: L Kim – volume: 173 start-page: 2632 year: 2004 ident: ref36 article-title: Functional inactivation of immature dendritic cells by the intracellular parasite Toxoplasma gondii. publication-title: J immunol doi: 10.4049/jimmunol.173.4.2632 contributor: fullname: AS McKee – volume: 118 start-page: 3501 year: 2005 ident: ref16 article-title: Initiation and termination of NFkB signaling by the intracellular protozoan parasite Toxoplasma gondii. publication-title: J Cell Sci doi: 10.1242/jcs.02428 contributor: fullname: S Shapira – volume: 314 start-page: 1780 year: 2006 ident: ref18 article-title: Polymorphic secreted kinases are key virulence factors in toxoplasmosis. publication-title: Science doi: 10.1126/science.1133690 contributor: fullname: JP Saeij – volume: 172 start-page: 3003 year: 2004 ident: ref65 article-title: Toxoplasma gondii interferes with lipopolysaccharide-induced mitogen-activated protein kinase activation by mechanisms distinct from endotoxin tolerance. publication-title: J Immunol doi: 10.4049/jimmunol.172.5.3003 contributor: fullname: L Kim – volume: 5 start-page: 438 year: 2002 ident: ref44 article-title: Population biology of Toxoplasma gondii and its relevance to human infection: do different strains cause different disease? publication-title: Curr Opin Micro doi: 10.1016/S1369-5274(02)00349-1 contributor: fullname: JC Boothroyd – volume: 33 start-page: 833 year: 2003 ident: ref37 article-title: Reduced expression of the inducible nitric oxide synthase after infection with Toxoplasma gondii facilitates parasite replication in activated murine macrophages. publication-title: Internat J Parasitol doi: 10.1016/S0020-7519(03)00092-4 contributor: fullname: CGK Luder – volume: 162 start-page: 3512 year: 1999 ident: ref58 article-title: Inhibition of inducible nitric oxide synthase exacerbates chronic cerebral toxoplasmosis in Toxoplasma gondii-susceptible C57BL/6 mice but does not reactivate the latent disease in T. gondii-resistant BALB/c mice. publication-title: J Immunol doi: 10.4049/jimmunol.162.6.3512 contributor: fullname: D Schluter – volume: 308 start-page: 1626 year: 2005 ident: ref35 article-title: TLR11 activation of dendritic cells by a protozoan profilin-like protein. publication-title: Science doi: 10.1126/science.1109893 contributor: fullname: F Yarovinsky – volume: 206 start-page: 2747 year: 2009 ident: ref22 article-title: A single polymorphic amino acid on Toxoplasma gondii kinase ROP16 determines the direct and strain-specific activation of Stat3. publication-title: J Exp Med doi: 10.1084/jem.20091703 contributor: fullname: M Yamamoto – volume: 3 start-page: 1041 year: 2002 ident: ref3 article-title: Evasion of innate immunity by parasitic protozoa. publication-title: Nature Immunol doi: 10.1038/ni1102-1041 contributor: fullname: D Sacks – volume: 3 start-page: e480 year: 2009 ident: ref59 article-title: Local suppression of T cell responses by arginase-induced L-arginine depletion in nonhealing leishmaniasis. publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0000480 contributor: fullname: M Modolell – volume: 182 start-page: 489 year: 2009 ident: ref13 article-title: Toxoplasma gondii prevents chromatin remodeling initiated by TLR-triggered macrophage activation. publication-title: J Immunol doi: 10.4049/jimmunol.182.1.489 contributor: fullname: J Leng – volume: 62 start-page: 329 year: 2008 ident: ref43 article-title: Population structure of Toxoplasma gondii: clonal expansion driven by infrequent recombination and selective sweeps. publication-title: Annu Rev Microbiol doi: 10.1146/annurev.micro.62.081307.162925 contributor: fullname: LD Sibley – volume: 154 start-page: 1549 year: 1999 ident: ref56 article-title: Interferon-gamma receptor-mediated but not tumor necrosis factor receptor type 1- or type 2-mediated signaling is crucial for the activation of cerebral blood vessel endothelial cells and microglia in murine Toxoplasma encephalitis. publication-title: Am J Pathol doi: 10.1016/S0002-9440(10)65408-9 contributor: fullname: M Deckert-Schluter – volume: 24 start-page: 407 year: 2004 ident: ref25 article-title: Essential role of STAT3 in postnatal survival and growth revealed by mice lacking STAT3 serine 727 phosphorylation. publication-title: Mol Cell Biol doi: 10.1128/MCB.24.1.407-419.2004 contributor: fullname: Y Shen – volume: 181 start-page: 8445 year: 2008 ident: ref5 article-title: Dendritic cells expressing plasmacytoid marker PDCA-1 are Trojan horses during Toxoplasma gondii infection. publication-title: J Immunol doi: 10.4049/jimmunol.181.12.8485 contributor: fullname: AL Bierly – volume: 107 start-page: 309 year: 2006 ident: ref7 article-title: CD11c and CD11b expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to the brain. publication-title: Blood doi: 10.1182/blood-2005-02-0666 contributor: fullname: N Courret – volume: 58 start-page: 650 year: 2010 ident: ref67 article-title: Interactions between TLR7 and TLR9 agonists and receptors regulate innate immune responses by astrocytes and microglia. publication-title: Glia doi: 10.1002/glia.20952 contributor: fullname: NB Butchi – volume: 181 start-page: 3464 year: 2008 ident: ref31 article-title: TLR adaptor MyD88 is essential for pathogen control during oral toxoplasma gondii infection but not adaptive immunity induced by a vaccine strain of the parasite. publication-title: J Immunol doi: 10.4049/jimmunol.181.5.3464 contributor: fullname: W Sukhumavasi – volume: 62 start-page: 1995 year: 1994 ident: ref61 article-title: Mitogen- and antigen-specific proliferation of T cells in murine toxoplasmosis is inhibited by reactive nitrogen intermediates. publication-title: Infect Immun doi: 10.1128/IAI.62.5.1995-2001.1994 contributor: fullname: E Candolfi – volume: 19 start-page: 329 year: 2008 ident: ref41 article-title: Paradigm shifts in the cell biology of STAT signaling. publication-title: Semin Cell Dev Biol doi: 10.1016/j.semcdb.2008.07.003 contributor: fullname: PB Sehgal – volume: 157 start-page: 87 year: 1988 ident: ref70 article-title: Nitric oxide: a cytotoxic activated macrophage effector molecule. publication-title: Biochem Biophys Res Com doi: 10.1016/S0006-291X(88)80015-9 contributor: fullname: JB Hibbs – volume: 184 start-page: 7022 year: 2010 ident: ref34 article-title: TLR9-dependent induction of intestinal alpha-defensins by Toxoplasma gondii. publication-title: J Immunol doi: 10.4049/jimmunol.0901642 contributor: fullname: DM Foureau – year: 2010 ident: ref48 article-title: Toll-like receptor initiated host defense against Toxoplasma gondii. contributor: fullname: EY Denkers – volume: 172 start-page: 3686 year: 2004 ident: ref28 article-title: Production of IL-12 by macrophages infected with Toxoplasma gondii depends on the parasite genotype. publication-title: J Immunol doi: 10.4049/jimmunol.172.6.3686 contributor: fullname: PM Robben – volume: 34 start-page: 323 year: 2004 ident: ref42 article-title: Toxoplasma gondii lacks the enzymes required for de novo arginine biosynthesis and arginine starvation triggers cyst formation. publication-title: Int J Parasitol doi: 10.1016/j.ijpara.2003.12.001 contributor: fullname: BA Fox – volume: 449 start-page: 827 year: 2007 ident: ref1 article-title: Manipulation of host-cell pathways by bacterial pathogens. publication-title: Nature doi: 10.1038/nature06247 contributor: fullname: AP Bhavsar – volume: 177 start-page: 2584 year: 2006 ident: ref27 article-title: Toxoplasma gondii genotype determines MyD88-dependent signaling in infected macrophages. publication-title: J Immunol doi: 10.4049/jimmunol.177.4.2584 contributor: fullname: L Kim – volume: 182 start-page: 489 year: 2009 ident: ref49 article-title: Toxoplasma gondii prevents chromatin remodeling initiated by Toll-like receptor-triggered macrophages activation. publication-title: J Immunol doi: 10.4049/jimmunol.182.1.489 contributor: fullname: J Leng – volume: 56 start-page: 941 year: 2007 ident: ref51 article-title: Exacerbation of Murine Ileitis By Toll-Like Receptor 4 Meditated Sensing of Lipopolysaccharide From Commensal Escherichia coli. publication-title: Gut doi: 10.1136/gut.2006.104497 contributor: fullname: MM Heimesaat – volume: 178 start-page: 2623 year: 2007 ident: ref23 article-title: The JAK-STAT signaling pathway: input and output integration. publication-title: J Immunol doi: 10.4049/jimmunol.178.5.2623 contributor: fullname: PJ Murray – volume: 185 start-page: 1 year: 1997 ident: ref57 article-title: Inducible nitric oxide is essential for host control of persistent but not acute infection with the intracellular pathogen Toxoplasma gondii. publication-title: J Exp Med doi: 10.1084/jem.185.7.1261 contributor: fullname: T Scharton-Kersten – volume: 176 start-page: 1840 year: 2006 ident: ref14 article-title: Induction of Suppressor of Cytokine Signaling-1 by Toxoplasma gondii Contributes to Immune Evasion in Macrophages by Blocking IFN-{gamma} Signaling. publication-title: J Immunol doi: 10.4049/jimmunol.176.3.1840 contributor: fullname: S Zimmermann – start-page: 1 year: 2007 ident: ref4 article-title: The history and life-cycle of Toxoplasma gondii. contributor: fullname: JP Dubey – volume: 8 start-page: 1994 year: 2006 ident: ref53 article-title: Diverse mechanisms employed by Toxoplasma gondii to inhibit IFN-gamma-induced major histocompatibility complex class II gene expression. publication-title: Microbes Infect doi: 10.1016/j.micinf.2006.02.031 contributor: fullname: C Lang – volume: 27 start-page: 1787 year: 1989 ident: ref68 article-title: Direct and sensitive detection of a pathogenic protozoan, Toxoplasma gondii, by polymerase chain reaction. publication-title: J Clin Microbiol doi: 10.1128/JCM.27.8.1787-1792.1989 contributor: fullname: JL Burg – start-page: 93 year: 2007 ident: ref9 article-title: Congenital toxoplasmosis. contributor: fullname: AW Pfaff – volume: 25 start-page: 451 year: 1997 ident: ref64 article-title: Recombination-mediated PCR-directed plasmid construction in vivo in yeast. publication-title: Nucleic Acids Res doi: 10.1093/nar/25.2.451 contributor: fullname: KR Oldenburg – volume: 171 start-page: 6052 year: 2003 ident: ref66 article-title: Cross-talk in the innate immune system: neutrophils instruct early recruitment and activation of dendritic cells during microbial infection. publication-title: J Immunol doi: 10.4049/jimmunol.171.11.6052 contributor: fullname: S Bennouna – volume: 167 start-page: 4574 year: 2001 ident: ref46 article-title: Acute toxoplasmosis leads to lethal overproduction of Th1 cytokines. publication-title: J Immunol doi: 10.4049/jimmunol.167.8.4574 contributor: fullname: DG Mordue |
SSID | ssj0041316 |
Score | 2.5008955 |
Snippet | The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and activator of transcription (STAT)-3 and... The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and activator of transcription (STAT)-3 and... The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and activator of transcription (STAT)-3 and... |
SourceID | plos doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e1002236 |
SubjectTerms | Animals Arginase - antagonists & inhibitors Arginase - genetics Arginase - metabolism Biology Bone marrow Cells, Cultured Cloning Cytokines Cytokines - immunology Experiments Female Gene Deletion Gene Knockout Techniques Health aspects Immune system Interleukin-12 Subunit p40 - immunology Janus Kinase 2 - genetics Janus Kinase 2 - metabolism Kinases Macrophages - immunology Mice Mice, Inbred C57BL Myeloid Differentiation Factor 88 - metabolism Nitric oxide Parasites Phosphorylation Phosphotransferases Physiological aspects Plasmids Protein-Tyrosine Kinases - genetics Protein-Tyrosine Kinases - metabolism Protozoan Proteins - genetics Protozoan Proteins - metabolism Rodents Signal Transduction STAT proteins STAT3 Transcription Factor - genetics STAT3 Transcription Factor - metabolism STAT6 Transcription Factor - genetics STAT6 Transcription Factor - metabolism Toxoplasma Toxoplasma - enzymology Toxoplasma - genetics Toxoplasma - pathogenicity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA6yIPginr9u9ZQggk_12qZN2sdVPE7BU-724N5C0qTdcpqW3d7h_gn-186k7XqVE198K820kJlJ5pt28g0hr8tQWwBtSRBltoAEhRWBLhT2eskzrUyYak_X9PmEH58nny7SixutvrAmrKcH7hV3mJpUMcuN0QpDt85DxbEJnbXI3MKN333DfEym-j0Ydmbf9BSb4gSCcT4cmmMiOhxs9LZtVecJSGNPz_w7KHnu_t0OPWu_NZvb4OefVZQ3wtLRA3J_wJN00c9jj9yx7iG523eY3D4iP5fNj6YFhPxd0apxpq7petW03XpLL2sHEYyefvkacYrHG64RdtKz5WLJqHLGX3EK6TjWHLqK1o4W266B5yxcr2rtq728qFpX_m2QKY5ddTtaQYbfrehQDP-YnB99WL4_DobuC0EhYt4FlnnuujgsUP8QShPOTc6yJI1tCmGt4EYD3tClsmlms5AbyE0sT0TJBGO5YU_IzDXO7hMqDAMgB4pWpkxUFCqwj0jzsAQ7miQO5yQY1S_bnmRD-j9tApKTXo8SzSUHc83JO7TRThYpsv0NcBw5OI78l-PMySu0sEQSDIdVNpW62mzkx7MTuYh5znNET38VOp0IvRmEygY8oVDDyQaYPJJrTSQPJpKwlIvJ8D562zjnjYzwNzAgyoTBk6MH3j78tHfGnU4gEjGk15sTMXHTidKmI65eeX5xWDt5mohn_0PLz8m9_is8VuUdkFm3vrIvAMZ1-qVfsb8AZkNDpQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELagCIkXxO91DGQhJJ7CkjixmycUCmMDMVDXSX2LnNhpI8DJmkyifwL_NXeO2xE0eKvia9rcnX3f2ZfvCHlZ-rkG0BZ5wUQXkKCwwssLib1ekkkulR_nlq7p8yk_Po8-LuKF23BrXVnldk20C7WqC9wjPwzwRAyCa8TeNBcedo3C01XXQuMmuRWE4Lzgz2KxS7hgfbatT7E1jicY5-7VOSaCQ2ep100jO0tDGlqS5qvQZBn8d-v0qPlet9eB0L9rKf8ITkf3yF2HKmnau8F9ckObB-R232dy85D8mtc_6wZw8g9Jl7VRVUVnq7rp1hv6qTIQx-jsy9eA07Swzc50S8_m6ZxRaZT9xOlMt1h5aJa0MnS66epvgE7piVlVua35sqLpemnvBvniO9dbt6MfIM_vVnTal8Q_IudH7-fTY8_1YPAKEfLO08wy2IV-IZnmEFAjzlXCJlEc6hiCW8FVDqgjL6WOJ3ricwUZiuaRKJlgLFHsMRmZ2ug9QoViAOdA0VKVkQx8CfYRceKXjCcqCv0x8bbqz5qeaiOz520CUpRejxmaK3PmGpO3aKOdLBJl2wv1epm5eZfFKsY_rlQuEfnliS859jDUGol_uBqTF2jhDKkwDNbaLOVl22YnZ6dZGvKEJ4ih_ik0Gwi9ckJlDZ5QSPd-Azw8UmwNJA8GkjChi8HwHnrb9pnb7Mr14ZtbD7x--EnvjDudQDxiSLI3JmLgpgOlDUdMtbIs4zB3kjgS-___yafkTr_LjlV3B2TUrS_1M4BpXf7czsXfPq45yA priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fj5QwEG7ONSa-GM9ft3pnGmPiExegpYUHY1bj5TTxNHe7yb2RQgtLPAGBM7d_gv-1MwU2YvYS3widEjqdMt_Q6TeEvM7cxABo444XmhQCFJY6Saqw1ksUJkq7QWLpmr6cidMV_3wZXO6RsWbroMB2Z2iH9aRWzdXxzc_NO1jwb23VBumNnY7rWnWWUtRn4g656yM1Fybz8e2-AnyxbTFULJbjSCbEcJjutqdMnJXl9N9-uWf1VdXugqX_Zlf-5a5OHpIHA86ki94w9smeKR-Re33lyc1j8ntZ3VQ1IOcfiuZVqYuCNuuq7poN_V6U4Nno-ddvnqB47OEXwlF6sVwsGVWltleCQpiOuYhlTouSppuugn4GrtdFYrPArKhqcvs0iCDHarsdzSHy79Z0SJJ_QlYnH5cfTp2hKoOTSl90jmGW0853U8WMABfLhdARC3ngmwDcXSp0AjgkyZQJQhO6QkPMYgSXGZOMRZo9JbOyKs0BoVIzAHigaKUzrjxXwfzIIHIzJiLNfXdOnFH9cd2Tb8R2B05C0NLrMcbpiofpmpP3OEdbWaTOtjeqJo-HlRgHOsAX1zpRiAWTyFUCqxoag1RAQs_JK5zhGMkxSsy-ydV128afLs7ihS8iESGqulXofCL0ZhDKKrCEVA0nHmDwSLo1kTycSMISTyfNB2ht45jb2MPtYUCanEHP0QJ3Nz_rjXGrE_BQDGn35kROzHSitGlLWawt7zisnSjg8vl_D-sFud__gseUvEMy65prcwQYrkte2mX5B6_jRPs priority: 102 providerName: Scholars Portal |
Title | Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21931552 https://www.proquest.com/docview/1289089343 https://pubmed.ncbi.nlm.nih.gov/PMC3169547 https://doaj.org/article/5d5a3e6ddba6441b90a69369ee02286d http://dx.doi.org/10.1371/journal.ppat.1002236 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb5swFLbaTJP2MnXXZusia5q0JxLAYOAxzdq1m5JFaSrlDdnYJGiNQYFKzU_Yv96xgWhM3cteUIQPEZyL_R04_g5Cn1KbSwBtnuWEMoEEhSQWT5ju9RKFnAnb54auaTqjV7fet5W_OkJ-uxfGFO0nPBuqu-1QZRtTW1lsk1FbJzaaTyfEoZHvBaNjdAwO2qbo9fQLk7Lpd6r74VgBobTZL0cCZ9SYZ1gUrDLcoy6hhg04IpqJrLM0GQb_wzzdK-7y8jEQ-nct5R-L0-UJet6gSjyu7_4FOpLqJXpa95ncv0K_lvlDXgBO3jK8zpXIMrzY5EW12-PvmYJ1DC9-zB2Kx4lpdiZLfLMcLwlmSphfFC9kqSsP1RpnCk_2Vf4T0Cm-VpuMm5ovIzrerc2_Qb74pemtW-GvkOdXGzypS-Jfo9vLi-Xkymp6MFhJ4NLKksQw2Ll2woiksKB6lIqIhJ7vSh8Wt4QKDqiDp0z6oQxtKiBDkdQLUhIQEgnyBvVUruQpwoEgAOdA50ykHnNsBqYK_MhOCY2E59p9ZLXqj4uaaiM239sCSFFqPcbacnFjuT461zY6yGqibHMi363jxl1iX_j6xoXgTCM_HtmM6h6GUmriHyr66KO2cKypMJSutVmz-7KMr29m8dilEY00hvqn0KIj9LkRSnPwhIQ1-xvg4TXFVkfyrCMJAZ10hk-1t7XPXMaO_hgMuNIjcGXrgY8Pv62d8aCT1rX7KOi4aUdp3REIOsMy3gTZu_--8j16Vr-A1wV5Z6hX7e7lB0BwFR9A3K6CAXpyfjGbLwbmPQgcp144MLH8G5B0Rww |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,12070,21402,24332,27938,27939,31733,33758,43324,43819,53806,53808,74081,74638 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELagCMEL4vcKAyyExFNYGidO84RKYbRsK6jrpL1ZTuy0EeCEJpPon8B_zZ3jdgQN3qr4mjZ3Z9939uU7Ql7lfqoBtIXeYKgzSFBY5qWZxF4vyTCVyo9SS9d0MuOTs_DTeXTuNtxqV1a5XRPtQq3KDPfIDwZ4IgbBNWRvqx8edo3C01XXQuM6uYE8XMidH5_vEi5Yn23rU2yN48WMc_fqHIsHB85Sb6pKNpaGNLAkzZehyTL479bpXvWtrK8CoX_XUv4RnA7vkjsOVdJR6wb3yDVt7pObbZ_JzQPya1H-LCvAyd8lXZZGFQWdr8qqWW_oUWEgjtH55y8DTkeZbXama3q6GC0YlUbZT5zOdY2Vh2ZJC0PHm6b8CuiUTs2qSG3NlxUdrZf2bpAvvne9dRv6EfL8ZkXHbUn8Q3J2-GExnniuB4OXxQFvPM0sg13gZ5JpDgE15FwlbBhGgY4guGVcpYA60lzqaKiHPleQoWgexjmLGUsUe0R6pjR6j9BYMYBzoGip8lAOfAn2iaPEzxlPVBj4feJt1S-qlmpD2PO2GFKUVo8CzSWcufrkHdpoJ4tE2fZCuV4KN-9EpCL840qlEpFfmviSYw9DrZH4h6s-eYkWFkiFYbDWZikv6lpMT2diFPCEJ4ih_ik07wi9dkJ5CZ6QSfd-Azw8Umx1JPc7kjChs87wHnrb9plrcen68M2tB149_Lh1xp1OIB4xJNnrk7jjph2ldUdMsbIs4zB3kiiMn_z_J1-QW5PFybE4ns6OnpLb7Y47VuDtk16zvtDPALI16XM7L38DK_c8uA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELagCMQF8d7CAhZC4hSaxIndnFDpUrYslFW3K_VmObHTRoATmqxEfwL_mrHjdglauFX19JF5eGbiyfch9Cr3UwVFW-QFQ5VBg0IyL82E4XpJhqmQfpxauKbPM3p8Hn1cxks3_1S7scrdnmg3allm5h75IDAnYpBcIzLI3VjE6dHkbfXDMwxS5qTV0WlcRzdYBIkOfJst980X7NWWBtXQ5HiMUOoeoyMsGDirvakq0VhI0tACNl-mKYvmv9-ze9W3sr6qIP17rvKPRDW5i-64ChOPWpe4h64pfR_dbDkntw_Qr0X5s6ygZv4u8KrUsijwfF1WzWaLTwoNOQ3Pv5wGFI8yS3ymany2GC0IFlraVxTPVW2mEPUKFxqPt035FSpVPNXrIrXzX1Z0tFnZb4Pe8cjx7Db4A_T8zRqP2_H4h-h88n4xPvYcH4OXsZA2niIWzS70M0EUheQaUSoTMoziUMWQ6DIqU6hA0lyoeKiGPpXQrSgasZwwQhJJHqGeLrU6QJhJAqUdKFrIPBKBL8A-LE78nNBERqHfR95O_bxqYTe4PXtj0K60euTGXNyZq4_eGRvtZQ1otn2j3Ky4i0Eey9j8cSlTYarANPEFNXyGShkQICr76KWxMDewGNo42Epc1DWfns34KKQJTUw99U-heUfotRPKS_CETLhnHeDiDdxWR_KwIwnBnXWWD4y37a655pdhAJ_ceeDVy49bZ9zrBHITMYB7fcQ6btpRWndFF2uLOA6xk8QRe_L_n3yBbkFI8k_T2clTdLu9-W6G8Q5Rr9lcqGdQvTXpcxuWvwFR6UDt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toxoplasma+gondii+rhoptry+kinase+ROP16+activates+STAT3+and+STAT6+resulting+in+cytokine+inhibition+and+arginase-1-dependent+growth+control&rft.jtitle=PLoS+pathogens&rft.au=Butcher%2C+Barbara+A&rft.au=Fox%2C+Barbara+A&rft.au=Rommereim%2C+Leah+M&rft.au=Kim%2C+Sung+Guk&rft.date=2011-09-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft.eissn=1553-7374&rft.volume=7&rft.issue=9&rft_id=info:doi/10.1371%2Fjournal.ppat.1002236&rft.externalDocID=A269690078 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |