Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control

The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and activator of transcription (STAT)-3 and STAT6. Here, we generated a ROP16 deletion mutant on a Type I parasite strain background, as well as a control complementation mutant with res...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 7; no. 9; p. e1002236
Main Authors Butcher, Barbara A, Fox, Barbara A, Rommereim, Leah M, Kim, Sung Guk, Maurer, Kirk J, Yarovinsky, Felix, Herbert, De'Broski R, Bzik, David J, Denkers, Eric Y
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.09.2011
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and activator of transcription (STAT)-3 and STAT6. Here, we generated a ROP16 deletion mutant on a Type I parasite strain background, as well as a control complementation mutant with restored ROP16 expression. We investigated the biological role of the ROP16 molecule during T. gondii infection. Infection of mouse bone marrow-derived macrophages with rop16-deleted (ΔROP16) parasites resulted in increased amounts of IL-12p40 production relative to the ROP16-positive RH parental strain. High level IL-12p40 production in ΔROP16 infection was dependent on the host cell adaptor molecule MyD88, but surprisingly was independent of any previously recognized T. gondii triggered pathway linking to MyD88 (TLR2, TLR4, TLR9, TLR11, IL-1ß and IL-18). In addition, ROP16 was found to mediate the suppressive effects of Toxoplasma on LPS-induced cytokine synthesis in macrophages and on IFN-γ-induced nitric oxide production by astrocytes and microglial cells. Furthermore, ROP16 triggered synthesis of host cell arginase-1 in a STAT6-dependent manner. In fibroblasts and macrophages, failure to induce arginase-1 by ΔROP16 tachyzoites resulted in resistance to starvation conditions of limiting arginine, an essential amino acid for replication and virulence of this parasite. ΔROP16 tachyzoites that failed to induce host cell arginase-1 displayed increased replication and dissemination during in vivo infection. We conclude that encounter between Toxoplasma ROP16 and the host cell STAT signaling cascade has pleiotropic downstream effects that act in multiple and complex ways to direct the course of infection.
AbstractList The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and activator of transcription (STAT)-3 and STAT6. Here, we generated a ROP16 deletion mutant on a Type I parasite strain background, as well as a control complementation mutant with restored ROP16 expression. We investigated the biological role of the ROP16 molecule during T. gondii infection. Infection of mouse bone marrow-derived macrophages with rop16-deleted (ΔROP16) parasites resulted in increased amounts of IL-12p40 production relative to the ROP16-positive RH parental strain. High level IL-12p40 production in ΔROP16 infection was dependent on the host cell adaptor molecule MyD88, but surprisingly was independent of any previously recognized T. gondii triggered pathway linking to MyD88 (TLR2, TLR4, TLR9, TLR11, IL-1ß and IL-18). In addition, ROP16 was found to mediate the suppressive effects of Toxoplasma on LPS-induced cytokine synthesis in macrophages and on IFN-γ-induced nitric oxide production by astrocytes and microglial cells. Furthermore, ROP16 triggered synthesis of host cell arginase-1 in a STAT6-dependent manner. In fibroblasts and macrophages, failure to induce arginase-1 by ΔROP16 tachyzoites resulted in resistance to starvation conditions of limiting arginine, an essential amino acid for replication and virulence of this parasite. ΔROP16 tachyzoites that failed to induce host cell arginase-1 displayed increased replication and dissemination during in vivo infection. We conclude that encounter between Toxoplasma ROP16 and the host cell STAT signaling cascade has pleiotropic downstream effects that act in multiple and complex ways to direct the course of infection.
The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and activator of transcription (STAT)-3 and STAT6. Here, we generated a ROP16 deletion mutant on a Type I parasite strain background, as well as a control complementation mutant with restored ROP16 expression. We investigated the biological role of the ROP16 molecule during T. gondii infection. Infection of mouse bone marrow-derived macrophages with rop16-deleted (Δ ROP16) parasites resulted in increased amounts of IL-12p40 production relative to the ROP16-positive RH parental strain. High level IL-12p40 production in ΔROP16 infection was dependent on the host cell adaptor molecule MyD88, but surprisingly was independent of any previously recognized T. gondii triggered pathway linking to MyD88 (TLR2, TLR4, TLR9, TLR11, IL-1β and IL-18). In addition, ROP16 was found to mediate the suppressive effects of Toxoplasma on LPS- induced cytokine synthesis in macrophages and on IFN-γ-induced nitric oxide production by astrocytes and microglial cells. Furthermore, ROP16 triggered synthesis of host cell arginase-1 in a STAT6-dependent manner. In fibroblasts and macrophages, failure to induce arginase-1 by ΔROP16 tachyzoites resulted in resistance to starvation conditions of limiting arginine, an essential amino acid for replication and virulence of this parasite. ΔROP16 tachyzoites that failed to induce host cell arginase-1 displayed increased replication and dissemination during in vivo infection. We conclude that encounter between Toxoplasma ROP16 and the host cell STAT signaling cascade has pleiotropic downstream effects that act in multiple and complex ways to direct the course of infection.
  The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and activator of transcription (STAT)-3 and STAT6. Here, we generated a ROP16 deletion mutant on a Type I parasite strain background, as well as a control complementation mutant with restored ROP16 expression. We investigated the biological role of the ROP16 molecule during T. gondii infection. Infection of mouse bone marrow-derived macrophages with rop16-deleted (δROP16) parasites resulted in increased amounts of IL-12p40 production relative to the ROP16-positive RH parental strain. High level IL-12p40 production in δROP16 infection was dependent on the host cell adaptor molecule MyD88, but surprisingly was independent of any previously recognized T. gondii triggered pathway linking to MyD88 (TLR2, TLR4, TLR9, TLR11, IL-1ß and IL-18). In addition, ROP16 was found to mediate the suppressive effects of Toxoplasma on LPS-induced cytokine synthesis in macrophages and on IFN-γ-induced nitric oxide production by astrocytes and microglial cells. Furthermore, ROP16 triggered synthesis of host cell arginase-1 in a STAT6-dependent manner. In fibroblasts and macrophages, failure to induce arginase-1 by δROP16 tachyzoites resulted in resistance to starvation conditions of limiting arginine, an essential amino acid for replication and virulence of this parasite. δROP16 tachyzoites that failed to induce host cell arginase-1 displayed increased replication and dissemination during in vivo infection. We conclude that encounter between Toxoplasma ROP16 and the host cell STAT signaling cascade has pleiotropic downstream effects that act in multiple and complex ways to direct the course of infection.
The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and activator of transcription (STAT)-3 and STAT6. Here, we generated a ROP16 deletion mutant on a Type I parasite strain background, as well as a control complementation mutant with restored ROP16 expression. We investigated the biological role of the ROP16 molecule during T. gondii infection. Infection of mouse bone marrow-derived macrophages with rop16 -deleted (ΔROP16) parasites resulted in increased amounts of IL-12p40 production relative to the ROP16-positive RH parental strain. High level IL-12p40 production in ΔROP16 infection was dependent on the host cell adaptor molecule MyD88, but surprisingly was independent of any previously recognized T. gondii triggered pathway linking to MyD88 (TLR2, TLR4, TLR9, TLR11, IL-1ß and IL-18). In addition, ROP16 was found to mediate the suppressive effects of Toxoplasma on LPS-induced cytokine synthesis in macrophages and on IFN-γ-induced nitric oxide production by astrocytes and microglial cells. Furthermore, ROP16 triggered synthesis of host cell arginase-1 in a STAT6-dependent manner. In fibroblasts and macrophages, failure to induce arginase-1 by ΔROP16 tachyzoites resulted in resistance to starvation conditions of limiting arginine, an essential amino acid for replication and virulence of this parasite. ΔROP16 tachyzoites that failed to induce host cell arginase-1 displayed increased replication and dissemination during in vivo infection. We conclude that encounter between Toxoplasma ROP16 and the host cell STAT signaling cascade has pleiotropic downstream effects that act in multiple and complex ways to direct the course of infection. Toxoplasma gondii is an extremely widespread intracellular protozoan parasite that establishes long-lasting infection in humans and animals. Because Toxoplasma infection is most often asymptomatic, it is evident that this parasite has developed sophisticated ways to manipulate host immunity. Recently, the parasite ROP16 kinase was identified as an important determinant of host cell signaling. During cell invasion, ROP16 is injected into the host cell cytoplasm and subsequently localizes to the nucleus. Here, we report the generation of ROP16 knockout parasites (ΔROP16) as well as ΔROP16 complementation mutants (ΔROP16:1) and we describe the biological effects of deleting and re-inserting this molecule. We find that ROP16 controls the ability to activate multiple host cell signaling pathways and simultaneously suppress macrophage proinflammatory responses. Deletion of ROP16 increases parasite ability to replicate and disseminate during in vivo infection. This increased growth response may arise from ROP16-dependent activation of host arginase-1. Induction of arginase-1 limits availability of arginine, an amino acid that is required for parasite growth and host-inducible nitric oxide production. Our results provide new insight into the complex interactions between an intracellular eukaryotic pathogen and its host cell.
Audience Academic
Author Butcher, Barbara A
Fox, Barbara A
Rommereim, Leah M
Bzik, David J
Maurer, Kirk J
Yarovinsky, Felix
Kim, Sung Guk
Herbert, De'Broski R
Denkers, Eric Y
AuthorAffiliation 1 Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
5 Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
University of Pennsylvania, United States of America
2 Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
4 Center for Animal Resources and Education, College of Veterinary Medicine and Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
3 Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
6 Division of Immunobiology, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States of America
AuthorAffiliation_xml – name: 4 Center for Animal Resources and Education, College of Veterinary Medicine and Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
– name: 5 Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
– name: 1 Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
– name: 2 Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
– name: 3 Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
– name: 6 Division of Immunobiology, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States of America
– name: University of Pennsylvania, United States of America
Author_xml – sequence: 1
  givenname: Barbara A
  surname: Butcher
  fullname: Butcher, Barbara A
  email: bab26@cornell.edu
  organization: Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA. bab26@cornell.edu
– sequence: 2
  givenname: Barbara A
  surname: Fox
  fullname: Fox, Barbara A
– sequence: 3
  givenname: Leah M
  surname: Rommereim
  fullname: Rommereim, Leah M
– sequence: 4
  givenname: Sung Guk
  surname: Kim
  fullname: Kim, Sung Guk
– sequence: 5
  givenname: Kirk J
  surname: Maurer
  fullname: Maurer, Kirk J
– sequence: 6
  givenname: Felix
  surname: Yarovinsky
  fullname: Yarovinsky, Felix
– sequence: 7
  givenname: De'Broski R
  surname: Herbert
  fullname: Herbert, De'Broski R
– sequence: 8
  givenname: David J
  surname: Bzik
  fullname: Bzik, David J
– sequence: 9
  givenname: Eric Y
  surname: Denkers
  fullname: Denkers, Eric Y
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21931552$$D View this record in MEDLINE/PubMed
BookMark eNqVkl1v2yAUhq2p0_qx_YNpQ9pVL5yBsbG5mRRV-4hUrVObXSNsjh0yB1wgXfMT-q9HErdqpO1i4oIjeN6XwznnNDky1kCSvCV4QmhJPi7t2hnZT4ZBhgnBOMsoe5GckKKgaUnL_OhZfJycer_EOCeUsFfJcUY4jZfZSfIwt_d26KVfSdRZo7RGbmGH4DbolzbSA7q--kEYkk3QdzKARzfz6ZwiadQuYsiBX_dBmw5pg5pNsFEHMV7oWgdtzQ6Vrtu5pSRVMIBRYALqnP0dFqixJjjbv05etrL38Gbcz5KfXz7PL76ll1dfZxfTy7QpMxZSoCWjBctwIykwAJUzpjit8iKDApOsYarGZVG3EooKKsxUwUtgednSklKu6Fnyfu879NaLsYpekKziuOI0p5GY7Qll5VIMTq-k2wgrtdgdWNcJ6YJuehCFKrZpKFVLluek5lgyThkHiP2o2Pa1T-Nr63oFqon_drI_MD28MXohOnsnYqN4kZfR4MNo4OztGnz4R8oj1cmYlTatjWbNSvtGTDPGGce4rCI1-QsVl4KVjm2AVsfzA8H5gWDbKrgPnVx7L2Y31__Bfj9k8z3bOOu9g_apIASL7XQ_flJsp1uM0x1l754X80n0OM70D1K0-AE
CitedBy_id crossref_primary_10_1016_j_pt_2019_01_005
crossref_primary_10_1128_IAI_00415_15
crossref_primary_10_1158_0008_5472_CAN_12_1974
crossref_primary_10_7774_cevr_2019_8_1_4
crossref_primary_10_3389_fcimb_2019_00132
crossref_primary_10_1016_j_parint_2022_102593
crossref_primary_10_1371_journal_ppat_1007856
crossref_primary_10_3389_fcimb_2021_587150
crossref_primary_10_1371_journal_ppat_1002567
crossref_primary_10_4049_immunohorizons_2400029
crossref_primary_10_1016_j_ijpara_2011_11_007
crossref_primary_10_1371_journal_pgen_1006189
crossref_primary_10_1186_1471_2164_15_806
crossref_primary_10_1371_journal_ppat_1003535
crossref_primary_10_4161_jkst_19918
crossref_primary_10_1186_1757_4749_6_19
crossref_primary_10_3390_pathogens12020253
crossref_primary_10_3389_fcimb_2023_1130965
crossref_primary_10_4049_jimmunol_1101425
crossref_primary_10_1128_mBio_02401_17
crossref_primary_10_1016_j_immuni_2012_03_014
crossref_primary_10_1111_pim_12712
crossref_primary_10_2217_fmb_11_147
crossref_primary_10_1111_apm_12420
crossref_primary_10_1371_journal_pone_0105120
crossref_primary_10_1186_1756_3305_6_308
crossref_primary_10_15252_embj_2022113155
crossref_primary_10_1080_17469899_2023_2279178
crossref_primary_10_1146_annurev_immunol_032712_095906
crossref_primary_10_1084_jem_20192145
crossref_primary_10_3389_fimmu_2014_00603
crossref_primary_10_1128_mBio_03305_20
crossref_primary_10_3389_fimmu_2017_01261
crossref_primary_10_1038_nri3598
crossref_primary_10_32604_biocell_2023_026629
crossref_primary_10_3389_fimmu_2018_01572
crossref_primary_10_1111_jeu_12639
crossref_primary_10_1155_2019_6152489
crossref_primary_10_1007_s11686_024_00851_w
crossref_primary_10_1186_s12974_022_02639_z
crossref_primary_10_3389_fcimb_2019_00413
crossref_primary_10_1016_j_ijpara_2015_01_003
crossref_primary_10_1016_j_micpath_2023_106340
crossref_primary_10_1007_s00436_022_07499_3
crossref_primary_10_3390_metabo11020061
crossref_primary_10_1111_pim_12166
crossref_primary_10_3389_fcimb_2021_670548
crossref_primary_10_1111_pim_12164
crossref_primary_10_4049_jimmunol_1701045
crossref_primary_10_1371_journal_ppat_1009970
crossref_primary_10_1128_MMBR_00027_15
crossref_primary_10_1016_j_pt_2013_07_001
crossref_primary_10_1128_IAI_01643_14
crossref_primary_10_1128_EC_00215_14
crossref_primary_10_1371_journal_pone_0063650
crossref_primary_10_1038_cmi_2016_21
crossref_primary_10_1016_j_molbiopara_2024_111633
crossref_primary_10_1007_s00436_022_07541_4
crossref_primary_10_1186_s13071_022_05263_1
crossref_primary_10_3389_fimmu_2024_1428232
crossref_primary_10_1111_pim_12410
crossref_primary_10_1038_s41590_018_0250_8
crossref_primary_10_1084_jem_20181757
crossref_primary_10_1016_j_celrep_2023_113601
crossref_primary_10_2139_ssrn_3316792
crossref_primary_10_3390_vaccines12010101
crossref_primary_10_1016_j_exppara_2017_02_011
crossref_primary_10_1038_nrmicro2858
crossref_primary_10_1038_s41579_021_00518_7
crossref_primary_10_1371_journal_pone_0108377
crossref_primary_10_1021_acschemneuro_9b00245
crossref_primary_10_3389_fcimb_2024_1414067
crossref_primary_10_1128_IAI_00511_16
crossref_primary_10_1128_IAI_01615_14
crossref_primary_10_1016_j_ijpara_2012_10_024
crossref_primary_10_1371_journal_ppat_1002410
crossref_primary_10_1111_cmi_13084
crossref_primary_10_3390_ijms21082711
crossref_primary_10_3389_fcimb_2023_1102551
crossref_primary_10_1007_s00436_013_3451_y
crossref_primary_10_1016_j_exppara_2015_03_006
crossref_primary_10_1515_ap_2017_0061
crossref_primary_10_3347_kjp_2020_58_4_461
crossref_primary_10_3389_fpara_2023_1103772
crossref_primary_10_1371_journal_ppat_1008586
crossref_primary_10_1016_j_ejop_2016_07_006
crossref_primary_10_1074_jbc_M113_544718
crossref_primary_10_1007_s12639_022_01518_x
crossref_primary_10_1371_journal_pone_0214310
crossref_primary_10_1186_s12974_021_02370_1
crossref_primary_10_1186_s13071_016_1716_x
crossref_primary_10_3389_fimmu_2022_824695
crossref_primary_10_1155_2013_480231
crossref_primary_10_1016_j_cellsig_2014_02_013
crossref_primary_10_1371_journal_ppat_1003296
crossref_primary_10_3389_fcimb_2022_825458
crossref_primary_10_1186_s13071_022_05502_5
crossref_primary_10_1189_jlb_0412214
crossref_primary_10_1645_14_696_1
crossref_primary_10_1016_j_celrep_2022_110564
crossref_primary_10_1371_journal_pgen_1005619
crossref_primary_10_3390_ani13243817
crossref_primary_10_1371_journal_ppat_1008572
crossref_primary_10_1080_21505594_2021_2012346
crossref_primary_10_1128_mBio_00462_15
crossref_primary_10_1371_journal_ppat_1011347
crossref_primary_10_1016_j_chom_2022_10_001
crossref_primary_10_1128_mBio_00193_16
crossref_primary_10_4161_onci_26296
crossref_primary_10_3390_microorganisms9112340
crossref_primary_10_1016_j_ijpara_2021_10_004
crossref_primary_10_1016_j_exppara_2014_02_015
crossref_primary_10_1038_s41467_021_24083_y
crossref_primary_10_3389_fmicb_2018_00909
crossref_primary_10_1016_j_vetpar_2017_04_020
crossref_primary_10_1016_j_ejcb_2023_151364
crossref_primary_10_1096_fj_201700008R
crossref_primary_10_1084_jem_20201314
crossref_primary_10_1172_JCI136226
crossref_primary_10_1371_journal_ppat_1002990
crossref_primary_10_1016_j_rvsc_2012_07_020
crossref_primary_10_1371_journal_ppat_1006671
crossref_primary_10_3389_fcimb_2020_580425
crossref_primary_10_1186_1756_3305_6_356
crossref_primary_10_1016_j_ijpara_2013_08_003
crossref_primary_10_1007_s00436_017_5579_7
crossref_primary_10_3389_fimmu_2023_1224591
crossref_primary_10_58395_pipd_v49i1_51
crossref_primary_10_1128_IAI_01185_12
crossref_primary_10_1007_s00436_020_06923_w
crossref_primary_10_1371_journal_pone_0060215
crossref_primary_10_1371_journal_ppat_1008327
crossref_primary_10_3389_fcimb_2019_00154
crossref_primary_10_3389_fmicb_2017_00084
crossref_primary_10_1371_journal_ppat_1009816
crossref_primary_10_1056_NEJMc1302895
crossref_primary_10_1371_journal_ppat_1003706
crossref_primary_10_1016_j_meegid_2016_06_053
crossref_primary_10_1038_s41598_017_03978_1
crossref_primary_10_1186_s13071_023_06080_w
crossref_primary_10_1128_IAI_01339_13
crossref_primary_10_1128_CMR_00005_17
crossref_primary_10_1016_j_micpath_2014_03_006
crossref_primary_10_1017_S0031182021000937
crossref_primary_10_1371_journal_pbio_3002690
crossref_primary_10_1371_journal_ppat_1006027
crossref_primary_10_1038_s41598_023_34502_3
crossref_primary_10_1186_1756_3305_6_163
crossref_primary_10_3389_fcimb_2019_00309
crossref_primary_10_3390_ani12243453
crossref_primary_10_3390_microorganisms9122531
crossref_primary_10_1186_s13071_015_0670_3
crossref_primary_10_3389_fmicb_2018_01936
crossref_primary_10_1128_EC_00081_14
crossref_primary_10_4049_jimmunol_1103374
crossref_primary_10_1186_1756_0500_7_696
crossref_primary_10_1038_s12276_024_01165_7
crossref_primary_10_1128_IAI_05974_11
crossref_primary_10_1084_jem_20130103
crossref_primary_10_1111_1574_6976_12013
crossref_primary_10_1128_mbio_02361_22
crossref_primary_10_1038_s41598_018_33274_5
crossref_primary_10_1186_s12864_021_07437_0
crossref_primary_10_1007_s00436_015_4792_5
crossref_primary_10_3390_cells11101630
crossref_primary_10_1242_jcs_177386
crossref_primary_10_3389_fimmu_2018_02403
crossref_primary_10_1038_s41598_023_40147_z
crossref_primary_10_3389_fmicb_2017_02408
crossref_primary_10_1016_j_copbio_2020_09_015
crossref_primary_10_1128_mSphere_00045_16
crossref_primary_10_3389_fmicb_2019_03151
crossref_primary_10_1016_j_meegid_2015_11_005
crossref_primary_10_1111_mmi_13867
Cites_doi 10.1038/ni1528
10.4049/jimmunol.168.12.5997
10.1128/CMR.11.4.569
10.1128/EC.00357-08
10.4049/jimmunol.167.4.2193
10.4049/jimmunol.178.8.5154
10.1111/j.1462-5822.2005.00517.x
10.1038/sj.cdd.4401850
10.1016/j.immuni.2008.07.012
10.1093/intimm/8.6.887
10.1128/IAI.62.7.2908-2916.1994
10.1128/JCM.44.3.720-724.2006
10.1186/1742-2094-7-30
10.4049/jimmunol.177.12.8785
10.4049/jimmunol.179.2.1129
10.4049/jimmunol.167.2.902
10.1093/emboj/20.12.3132
10.4049/jimmunol.166.4.2173
10.1038/nri1885
10.1111/j.1365-3024.2009.01122.x
10.1038/ni.1671
10.1038/nature05395
10.1002/eji.1830250436
10.4049/jimmunol.174.6.3148
10.4049/jimmunol.172.11.6954
10.1002/jnr.21968
10.1371/journal.ppat.1000371
10.1074/jbc.M110.112359
10.1242/jcs.02934
10.4049/jimmunol.173.4.2632
10.1242/jcs.02428
10.1126/science.1133690
10.4049/jimmunol.172.5.3003
10.1016/S1369-5274(02)00349-1
10.1016/S0020-7519(03)00092-4
10.4049/jimmunol.162.6.3512
10.1126/science.1109893
10.1084/jem.20091703
10.1038/ni1102-1041
10.1371/journal.pntd.0000480
10.4049/jimmunol.182.1.489
10.1146/annurev.micro.62.081307.162925
10.1016/S0002-9440(10)65408-9
10.1128/MCB.24.1.407-419.2004
10.4049/jimmunol.181.12.8485
10.1182/blood-2005-02-0666
10.1002/glia.20952
10.4049/jimmunol.181.5.3464
10.1128/IAI.62.5.1995-2001.1994
10.1016/j.semcdb.2008.07.003
10.1016/S0006-291X(88)80015-9
10.4049/jimmunol.0901642
10.4049/jimmunol.172.6.3686
10.1016/j.ijpara.2003.12.001
10.1038/nature06247
10.4049/jimmunol.177.4.2584
10.1136/gut.2006.104497
10.4049/jimmunol.178.5.2623
10.1084/jem.185.7.1261
10.4049/jimmunol.176.3.1840
10.1016/j.micinf.2006.02.031
10.1128/JCM.27.8.1787-1792.1989
10.1093/nar/25.2.451
10.4049/jimmunol.171.11.6052
10.4049/jimmunol.167.8.4574
ContentType Journal Article
Copyright COPYRIGHT 2011 Public Library of Science
2011 Butcher et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Butcher BA, Fox BA, Rommereim LM, Kim SG, Maurer KJ, et al. (2011) Toxoplasma gondii Rhoptry Kinase ROP16 Activates STAT3 and STAT6 Resulting in Cytokine Inhibition and Arginase-1-Dependent Growth Control. PLoS Pathog 7(9): e1002236. doi:10.1371/journal.ppat.1002236
Butcher et al. 2011
Copyright_xml – notice: COPYRIGHT 2011 Public Library of Science
– notice: 2011 Butcher et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Butcher BA, Fox BA, Rommereim LM, Kim SG, Maurer KJ, et al. (2011) Toxoplasma gondii Rhoptry Kinase ROP16 Activates STAT3 and STAT6 Resulting in Cytokine Inhibition and Arginase-1-Dependent Growth Control. PLoS Pathog 7(9): e1002236. doi:10.1371/journal.ppat.1002236
– notice: Butcher et al. 2011
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ISN
ISR
3V.
7QL
7U9
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
5PM
DOA
DOI 10.1371/journal.ppat.1002236
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Gale In Context: Canada
Science in Context
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList MEDLINE
Publicly Available Content Database




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Biology of Toxoplasma gondii Rhoptry Kinase ROP16
EISSN 1553-7374
Editor Hunter, Christopher A.
Editor_xml – sequence: 1
  givenname: Christopher A.
  surname: Hunter
  fullname: Hunter, Christopher A.
ExternalDocumentID 1289089343
oai_doaj_org_article_5d5a3e6ddba6441b90a69369ee02286d
2896603561
A269690078
10_1371_journal_ppat_1002236
21931552
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI050617
– fundername: NIAID NIH HHS
  grantid: R21 AI084570
– fundername: NIAID NIH HHS
  grantid: R21 AI097018
– fundername: NIAID NIH HHS
  grantid: R01 AI041930
– fundername: NIAID NIH HHS
  grantid: R21 AI091461
– fundername: NIAID NIH HHS
  grantid: R21 AI073142
– fundername: NIAID NIH HHS
  grantid: AI073142
– fundername: NIAID NIH HHS
  grantid: AI50617
– fundername: NIAID NIH HHS
  grantid: R01 AI095289
– fundername: NIAID NIH HHS
  grantid: T32 AI007519
GroupedDBID ---
123
29O
2WC
3V.
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EAP
EAS
EBD
ECM
EIF
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
IPNFZ
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
M~E
NPM
O5R
O5S
OK1
P2P
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RIG
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOQ
WOW
~8M
AAYXX
CITATION
7QL
7U9
7XB
8FK
AZQEC
C1K
DWQXO
GNUQQ
H94
K9.
PQEST
PQUKI
PRINS
5PM
AAPBV
ABPTK
ID FETCH-LOGICAL-c726t-e37635620ca3e6eed466d938452e5012c6db075bfae58e806d597e647f37339d3
IEDL.DBID RPM
ISSN 1553-7374
1553-7366
IngestDate Sun Oct 01 00:11:20 EDT 2023
Tue Oct 22 15:15:14 EDT 2024
Tue Sep 17 21:08:39 EDT 2024
Thu Oct 10 18:46:22 EDT 2024
Thu Feb 22 23:48:46 EST 2024
Fri Feb 02 03:57:29 EST 2024
Thu Aug 01 19:54:53 EDT 2024
Thu Aug 01 20:08:30 EDT 2024
Fri Aug 23 00:45:08 EDT 2024
Sat Sep 28 08:01:44 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Phosphorylation
Cytokines
Signal Transduction
Mice, Inbred C57BL
Cells, Cultured
Arginase
Myeloid Differentiation Factor 88
Protozoan Proteins
Gene Knockout Techniques
Macrophages
STAT6 Transcription Factor
Janus Kinase 2
Toxoplasma
Animals
Plasmids
Gene Deletion
Female
Mice
STAT3 Transcription Factor
Protein-Tyrosine Kinases
Interleukin-12 Subunit p40
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c726t-e37635620ca3e6eed466d938452e5012c6db075bfae58e806d597e647f37339d3
Notes Conceived and designed the experiments: BAB BAF DJB EYD. Performed the experiments: BAB BAF LMR SGK KJM DJB EYD. Analyzed the data: BAB BAF DJB EYD. Contributed reagents/materials/analysis tools: FY DRH. Wrote the paper: BAB BAF DJB EYD.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169547/
PMID 21931552
PQID 1289089343
PQPubID 1436335
ParticipantIDs plos_journals_1289089343
doaj_primary_oai_doaj_org_article_5d5a3e6ddba6441b90a69369ee02286d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3169547
proquest_journals_1289089343
gale_infotracmisc_A269690078
gale_infotracacademiconefile_A269690078
gale_incontextgauss_ISR_A269690078
gale_incontextgauss_ISN_A269690078
crossref_primary_10_1371_journal_ppat_1002236
pubmed_primary_21931552
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PLoS pathogens
PublicationTitleAlternate PLoS Pathog
PublicationYear 2011
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References 17312100 - J Immunol. 2007 Mar 1;178(5):2623-9
15860593 - Science. 2005 Jun 10;308(5728):1626-9
16868551 - Nat Rev Immunol. 2006 Aug;6(8):602-12
8671678 - Int Immunol. 1996 Jun;8(6):887-96
16051744 - Blood. 2006 Jan 1;107(1):309-16
11441097 - J Immunol. 2001 Jul 15;167(2):902-9
17943119 - Nature. 2007 Oct 18;449(7164):827-34
19998480 - Glia. 2010 Apr 15;58(6):650-64
3196352 - Biochem Biophys Res Commun. 1988 Nov 30;157(1):87-94
17952043 - Nat Immunol. 2007 Nov;8(11):1179-87
18718768 - Immunity. 2008 Sep 19;29(3):487-96
16824778 - Microbes Infect. 2006 Jul;8(8):1994-2005
19911079 - J Biomed Biotechnol. 2010;2010:737125
19109180 - J Immunol. 2009 Jan 1;182(1):489-97
11160269 - J Immunol. 2001 Feb 15;166(4):2173-7
15294980 - J Immunol. 2004 Aug 15;173(4):2632-40
17404298 - J Immunol. 2007 Apr 15;178(8):5154-65
18978793 - Nat Immunol. 2008 Dec;9(12):1399-406
19115402 - J Neurosci Res. 2009 May 15;87(7):1565-72
19597544 - PLoS Negl Trop Dis. 2009;3(7):e480
12865083 - Int J Parasitol. 2003 Jul 30;33(8):833-44
16424215 - J Immunol. 2006 Feb 1;176(3):1840-7
18691663 - Semin Cell Dev Biol. 2008 Aug;19(4):329-40
11591786 - J Immunol. 2001 Oct 15;167(8):4574-84
16517845 - J Clin Microbiol. 2006 Mar;44(3):720-4
16888020 - J Immunol. 2006 Aug 15;177(4):2584-91
14673173 - Mol Cell Biol. 2004 Jan;24(1):407-19
9767056 - Clin Microbiol Rev. 1998 Oct;11(4):569-88
19050266 - J Immunol. 2008 Dec 15;181(12):8485-91
9104813 - J Exp Med. 1997 Apr 7;185(7):1261-73
12160866 - Curr Opin Microbiol. 2002 Aug;5(4):438-42
19891610 - Parasite Immunol. 2009 Dec;31(12):717-28
17183270 - Nature. 2007 Jan 18;445(7125):324-7
16638808 - J Cell Sci. 2006 May 15;119(Pt 10):2119-26
20624917 - J Biol Chem. 2010 Sep 10;285(37):28731-40
20488791 - J Immunol. 2010 Jun 15;184(12):7022-9
12055206 - J Immunol. 2002 Jun 15;168(12):5997-6001
10329607 - Am J Pathol. 1999 May;154(5):1549-61
15888086 - Cell Microbiol. 2005 Jun;7(6):837-48
15749841 - J Immunol. 2005 Mar 15;174(6):3148-52
12407413 - Nat Immunol. 2002 Nov;3(11):1041-7
19901082 - J Exp Med. 2009 Nov 23;206(12):2747-60
17255219 - Gut. 2007 Jul;56(7):941-8
19360123 - PLoS Pathog. 2009 Apr;5(4):e1000371
10092808 - J Immunol. 1999 Mar 15;162(6):3512-8
15003493 - Int J Parasitol. 2004 Mar 9;34(3):323-31
18714019 - J Immunol. 2008 Sep 1;181(5):3464-73
8168967 - Infect Immun. 1994 May;62(5):1995-2001
19218423 - Eukaryot Cell. 2009 Apr;8(4):520-9
14634118 - J Immunol. 2003 Dec 1;171(11):6052-8
11406590 - EMBO J. 2001 Jun 15;20(12):3132-44
7537672 - Eur J Immunol. 1995 Apr;25(4):1101-4
18544039 - Annu Rev Microbiol. 2008;62:329-51
20482831 - J Neuroinflammation. 2010;7:30
9016579 - Nucleic Acids Res. 1997 Jan 15;25(2):451-2
17617606 - J Immunol. 2007 Jul 15;179(2):1129-37
14978104 - J Immunol. 2004 Mar 1;172(5):3003-10
16079291 - J Cell Sci. 2005 Aug 1;118(Pt 15):3501-8
8005679 - Infect Immun. 1994 Jul;62(7):2908-16
17170306 - Science. 2006 Dec 15;314(5806):1780-3
15004172 - J Immunol. 2004 Mar 15;172(6):3686-94
16410796 - Cell Death Differ. 2006 May;13(5):816-25
2768467 - J Clin Microbiol. 1989 Aug;27(8):1787-92
15153515 - J Immunol. 2004 Jun 1;172(11):6954-60
17142781 - J Immunol. 2006 Dec 15;177(12):8785-95
11490005 - J Immunol. 2001 Aug 15;167(4):2193-201
JP Saeij (ref18) 2006; 314
EY Denkers (ref48) 2010
J Leng (ref49) 2009; 182
JB Hibbs (ref70) 1988; 157
BA Butcher (ref17) 2005; 174
L Del Rio (ref33) 2004; 172
T Kawai (ref47) 2006; 13
E Borysiewicz (ref54) 2009; 87
CGK Luder (ref37) 2003; 33
Y Shen (ref25) 2004; 24
M Modolell (ref59) 2009; 3
S Cassaing (ref69) 2006; 44
J Leng (ref13) 2009; 182
PJ Murray (ref23) 2007; 178
T Chtanova (ref6) 2008; 29
KR Oldenburg (ref64) 1997; 25
CR Roy (ref2) 2007; 8
JT Pesce (ref60) 2009; 5
DM Foureau (ref34) 2010; 184
AP Bhavsar (ref1) 2007; 449
KC El Kasmi (ref40) 2008; 9
LC Gavrilescu (ref45) 2001; 167
AW Pfaff (ref9) 2007
JC Boothroyd (ref44) 2002; 5
NC Reich (ref26) 2006; 6
L Kim (ref65) 2004; 172
F Debierre-Grockiego (ref32) 2007; 179
MM Heimesaat (ref51) 2007; 56
N Courret (ref7) 2006; 107
AS McKee (ref36) 2004; 173
S Bennouna (ref66) 2003; 171
D Sacks (ref3) 2002; 3
W Sukhumavasi (ref31) 2008; 181
PM Robben (ref28) 2004; 172
DG Mordue (ref46) 2001; 167
BA Fox (ref24) 2009; 8
M Modolell (ref38) 1995; 25
E Candolfi (ref61) 1994; 62
YC Ong (ref21) 2010; 285
F Yarovinsky (ref35) 2005; 308
J Leng (ref11) 2009; 31
MM Heimesaat (ref50) 2006; 177
IA Khan (ref63) 1996; 8
L Kim (ref12) 2006; 119
N Hitziger (ref29) 2005; 6
T Scharton-Kersten (ref57) 1997; 185
BA Fox (ref42) 2004; 34
E Peterson (ref8) 2007
S Hakansson (ref20) 2001; 20
PB Sehgal (ref41) 2008; 19
R Rutschman (ref39) 2001; 166
EY Denkers (ref10) 1998; 11
JL Burg (ref68) 1989; 27
CA Scanga (ref30) 2002; 168
S Zimmermann (ref14) 2006; 176
L Kim (ref27) 2006; 177
SK Kim (ref52) 2007; 178
M Deckert-Schluter (ref56) 1999; 154
S Haque (ref62) 1994; 62
BA Butcher (ref15) 2001; 167
LD Sibley (ref43) 2008; 62
C Lang (ref53) 2006; 8
NB Butchi (ref67) 2010; 58
AL Bierly (ref5) 2008; 181
JP Saeij (ref19) 2007; 445
M Yamamoto (ref22) 2009; 206
JP Dubey (ref4) 2007
H Wilms (ref55) 2010; 7
D Schluter (ref58) 1999; 162
S Shapira (ref16) 2005; 118
References_xml – volume: 8
  start-page: 1179
  year: 2007
  ident: ref2
  article-title: Pathogen subversion of cell-intrinsic innate immunity.
  publication-title: Nat Immunol
  doi: 10.1038/ni1528
  contributor:
    fullname: CR Roy
– volume: 168
  start-page: 5997
  year: 2002
  ident: ref30
  article-title: Cutting edge: MyD88 is required for resistance to Toxoplasma gondii infection and regulates parasite-induced IL-12 production by dendritic cells.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.168.12.5997
  contributor:
    fullname: CA Scanga
– volume: 11
  start-page: 569
  year: 1998
  ident: ref10
  article-title: Regulation and function of T cell-mediated immunity during Toxoplasma gondii infection.
  publication-title: Clin Microbiol Rev
  doi: 10.1128/CMR.11.4.569
  contributor:
    fullname: EY Denkers
– volume: 8
  start-page: 520
  year: 2009
  ident: ref24
  article-title: Efficient gene replacements in Toxoplasma gondii strains deficient for nonhomologous end joining.
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.00357-08
  contributor:
    fullname: BA Fox
– volume: 167
  start-page: 2193
  year: 2001
  ident: ref15
  article-title: Toxoplasma gondii tachyzoites inhibit proinflammatory cytokine induction in infected macrophages by preventing nuclear translocation of the transcription factor NFkB.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.167.4.2193
  contributor:
    fullname: BA Butcher
– volume: 178
  start-page: 5154
  year: 2007
  ident: ref52
  article-title: Toxoplasma gondii dysregulates IFN-gamma-inducible gene expression in human fibroblasts: insights from a genome-wide transcriptional profiling.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.178.8.5154
  contributor:
    fullname: SK Kim
– volume: 6
  start-page: 837
  year: 2005
  ident: ref29
  article-title: Dissemination of Toxoplasma gondii to immunoprivileged organs and role of Toll/interleukin-1 receptor signalling for host resistance assessed by in vivo bioluminescence imaging.
  publication-title: Cell Micro
  doi: 10.1111/j.1462-5822.2005.00517.x
  contributor:
    fullname: N Hitziger
– volume: 13
  start-page: 816
  year: 2006
  ident: ref47
  article-title: TLR signaling.
  publication-title: Cell Death Differentiat
  doi: 10.1038/sj.cdd.4401850
  contributor:
    fullname: T Kawai
– volume: 29
  start-page: 487
  year: 2008
  ident: ref6
  article-title: Dynamics of Neutrophil Migration in Lymph Nodes during Infection.
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.07.012
  contributor:
    fullname: T Chtanova
– volume: 8
  start-page: 887
  year: 1996
  ident: ref63
  article-title: Activation-mediated CD4+ T cell unresponsiveness during acute Toxoplasma gondii infection in mice.
  publication-title: International Immunol
  doi: 10.1093/intimm/8.6.887
  contributor:
    fullname: IA Khan
– volume: 62
  start-page: 2908
  year: 1994
  ident: ref62
  article-title: Impairment of the cellular immune response in acute murine toxoplasmosis: Regulation of IL-2 production and macrophage-mediated inhibitory effects.
  publication-title: Infect Immun
  doi: 10.1128/IAI.62.7.2908-2916.1994
  contributor:
    fullname: S Haque
– volume: 44
  start-page: 720
  year: 2006
  ident: ref69
  article-title: Comparison between two amplification sets for molecular diagnosis of toxoplasmosis by real-time PCR.
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.44.3.720-724.2006
  contributor:
    fullname: S Cassaing
– volume: 7
  start-page: 30
  year: 2010
  ident: ref55
  article-title: Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1beta, TNF-alpha and IL-6 in an in-vitro model of brain inflammation.
  publication-title: J Neuroinflammation
  doi: 10.1186/1742-2094-7-30
  contributor:
    fullname: H Wilms
– start-page: 81
  year: 2007
  ident: ref8
  article-title: Clinical disease and diagnostics.
  contributor:
    fullname: E Peterson
– volume: 177
  start-page: 8785
  year: 2006
  ident: ref50
  article-title: Gram-Negative Bacteria Aggravate Murine Small Intestinal Th1-Type Immunopathology following Oral Infection with Toxoplasma gondii.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.177.12.8785
  contributor:
    fullname: MM Heimesaat
– volume: 179
  start-page: 1129
  year: 2007
  ident: ref32
  article-title: Activation of TLR2 and TLR4 by glycosylphosphatidylinositols derived from Toxoplasma gondii.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.179.2.1129
  contributor:
    fullname: F Debierre-Grockiego
– volume: 167
  start-page: 902
  year: 2001
  ident: ref45
  article-title: IFN-g overproduction and high level apoptosis are associated with high but not low virulence Toxoplasma gondii infection.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.167.2.902
  contributor:
    fullname: LC Gavrilescu
– volume: 20
  start-page: 3132
  year: 2001
  ident: ref20
  article-title: Toxoplasma evacuoles: a two-step process of secretion and fusion forms the parasitophorous vacuole.
  publication-title: EMBO J
  doi: 10.1093/emboj/20.12.3132
  contributor:
    fullname: S Hakansson
– volume: 166
  start-page: 2173
  year: 2001
  ident: ref39
  article-title: Stat6-dependent substrate depletion regulates nitric oxide production.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.166.4.2173
  contributor:
    fullname: R Rutschman
– volume: 6
  start-page: 602
  year: 2006
  ident: ref26
  article-title: Tracking STAT nuclear traffic.
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri1885
  contributor:
    fullname: NC Reich
– volume: 31
  start-page: 717
  year: 2009
  ident: ref11
  article-title: Dysregulation of macrophage signal transduction by Toxoplasma gondii: Past progress and recent advances.
  publication-title: Parasite Immunol
  doi: 10.1111/j.1365-3024.2009.01122.x
  contributor:
    fullname: J Leng
– volume: 9
  start-page: 1399
  year: 2008
  ident: ref40
  article-title: Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens.
  publication-title: Nat Immunol
  doi: 10.1038/ni.1671
  contributor:
    fullname: KC El Kasmi
– volume: 445
  start-page: 324
  year: 2007
  ident: ref19
  article-title: Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue.
  publication-title: Nature
  doi: 10.1038/nature05395
  contributor:
    fullname: JP Saeij
– volume: 25
  start-page: 1101
  year: 1995
  ident: ref38
  article-title: Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines.
  publication-title: Eur J Immunol
  doi: 10.1002/eji.1830250436
  contributor:
    fullname: M Modolell
– volume: 174
  start-page: 3148
  year: 2005
  ident: ref17
  article-title: Cutting Edge: IL-10-independent STAT3 activation by Toxoplasma gondii mediates suppression of IL-12 and TNF-a in host macrophages.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.174.6.3148
  contributor:
    fullname: BA Butcher
– volume: 172
  start-page: 6954
  year: 2004
  ident: ref33
  article-title: Toxoplasma gondii triggers MyD88-dependent and CCL2(MCP-1) responses using distinct parasite molecules and host receptors.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.172.11.6954
  contributor:
    fullname: L Del Rio
– volume: 87
  start-page: 1565
  year: 2009
  ident: ref54
  article-title: Rho proteins are negative regulators of TLR2, TLR3, and TLR4 signaling in astrocytes.
  publication-title: J Neurosci Res
  doi: 10.1002/jnr.21968
  contributor:
    fullname: E Borysiewicz
– volume: 5
  start-page: e1000371
  year: 2009
  ident: ref60
  article-title: Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis.
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000371
  contributor:
    fullname: JT Pesce
– volume: 285
  start-page: 28731
  year: 2010
  ident: ref21
  article-title: Toxoplasma rhoptry protein 16 (ROP16) subverts host function by direct tyrosine phosphorylation of STAT6.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.112359
  contributor:
    fullname: YC Ong
– volume: 119
  start-page: 2119
  year: 2006
  ident: ref12
  article-title: Toxoplasma gondii triggers Gi-dependent phosphatidylinositol 3-kinase signaling required for inhibition of host cell apoptosis.
  publication-title: J Cell Sci
  doi: 10.1242/jcs.02934
  contributor:
    fullname: L Kim
– volume: 173
  start-page: 2632
  year: 2004
  ident: ref36
  article-title: Functional inactivation of immature dendritic cells by the intracellular parasite Toxoplasma gondii.
  publication-title: J immunol
  doi: 10.4049/jimmunol.173.4.2632
  contributor:
    fullname: AS McKee
– volume: 118
  start-page: 3501
  year: 2005
  ident: ref16
  article-title: Initiation and termination of NFkB signaling by the intracellular protozoan parasite Toxoplasma gondii.
  publication-title: J Cell Sci
  doi: 10.1242/jcs.02428
  contributor:
    fullname: S Shapira
– volume: 314
  start-page: 1780
  year: 2006
  ident: ref18
  article-title: Polymorphic secreted kinases are key virulence factors in toxoplasmosis.
  publication-title: Science
  doi: 10.1126/science.1133690
  contributor:
    fullname: JP Saeij
– volume: 172
  start-page: 3003
  year: 2004
  ident: ref65
  article-title: Toxoplasma gondii interferes with lipopolysaccharide-induced mitogen-activated protein kinase activation by mechanisms distinct from endotoxin tolerance.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.172.5.3003
  contributor:
    fullname: L Kim
– volume: 5
  start-page: 438
  year: 2002
  ident: ref44
  article-title: Population biology of Toxoplasma gondii and its relevance to human infection: do different strains cause different disease?
  publication-title: Curr Opin Micro
  doi: 10.1016/S1369-5274(02)00349-1
  contributor:
    fullname: JC Boothroyd
– volume: 33
  start-page: 833
  year: 2003
  ident: ref37
  article-title: Reduced expression of the inducible nitric oxide synthase after infection with Toxoplasma gondii facilitates parasite replication in activated murine macrophages.
  publication-title: Internat J Parasitol
  doi: 10.1016/S0020-7519(03)00092-4
  contributor:
    fullname: CGK Luder
– volume: 162
  start-page: 3512
  year: 1999
  ident: ref58
  article-title: Inhibition of inducible nitric oxide synthase exacerbates chronic cerebral toxoplasmosis in Toxoplasma gondii-susceptible C57BL/6 mice but does not reactivate the latent disease in T. gondii-resistant BALB/c mice.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.162.6.3512
  contributor:
    fullname: D Schluter
– volume: 308
  start-page: 1626
  year: 2005
  ident: ref35
  article-title: TLR11 activation of dendritic cells by a protozoan profilin-like protein.
  publication-title: Science
  doi: 10.1126/science.1109893
  contributor:
    fullname: F Yarovinsky
– volume: 206
  start-page: 2747
  year: 2009
  ident: ref22
  article-title: A single polymorphic amino acid on Toxoplasma gondii kinase ROP16 determines the direct and strain-specific activation of Stat3.
  publication-title: J Exp Med
  doi: 10.1084/jem.20091703
  contributor:
    fullname: M Yamamoto
– volume: 3
  start-page: 1041
  year: 2002
  ident: ref3
  article-title: Evasion of innate immunity by parasitic protozoa.
  publication-title: Nature Immunol
  doi: 10.1038/ni1102-1041
  contributor:
    fullname: D Sacks
– volume: 3
  start-page: e480
  year: 2009
  ident: ref59
  article-title: Local suppression of T cell responses by arginase-induced L-arginine depletion in nonhealing leishmaniasis.
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0000480
  contributor:
    fullname: M Modolell
– volume: 182
  start-page: 489
  year: 2009
  ident: ref13
  article-title: Toxoplasma gondii prevents chromatin remodeling initiated by TLR-triggered macrophage activation.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.182.1.489
  contributor:
    fullname: J Leng
– volume: 62
  start-page: 329
  year: 2008
  ident: ref43
  article-title: Population structure of Toxoplasma gondii: clonal expansion driven by infrequent recombination and selective sweeps.
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.micro.62.081307.162925
  contributor:
    fullname: LD Sibley
– volume: 154
  start-page: 1549
  year: 1999
  ident: ref56
  article-title: Interferon-gamma receptor-mediated but not tumor necrosis factor receptor type 1- or type 2-mediated signaling is crucial for the activation of cerebral blood vessel endothelial cells and microglia in murine Toxoplasma encephalitis.
  publication-title: Am J Pathol
  doi: 10.1016/S0002-9440(10)65408-9
  contributor:
    fullname: M Deckert-Schluter
– volume: 24
  start-page: 407
  year: 2004
  ident: ref25
  article-title: Essential role of STAT3 in postnatal survival and growth revealed by mice lacking STAT3 serine 727 phosphorylation.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.24.1.407-419.2004
  contributor:
    fullname: Y Shen
– volume: 181
  start-page: 8445
  year: 2008
  ident: ref5
  article-title: Dendritic cells expressing plasmacytoid marker PDCA-1 are Trojan horses during Toxoplasma gondii infection.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.181.12.8485
  contributor:
    fullname: AL Bierly
– volume: 107
  start-page: 309
  year: 2006
  ident: ref7
  article-title: CD11c and CD11b expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to the brain.
  publication-title: Blood
  doi: 10.1182/blood-2005-02-0666
  contributor:
    fullname: N Courret
– volume: 58
  start-page: 650
  year: 2010
  ident: ref67
  article-title: Interactions between TLR7 and TLR9 agonists and receptors regulate innate immune responses by astrocytes and microglia.
  publication-title: Glia
  doi: 10.1002/glia.20952
  contributor:
    fullname: NB Butchi
– volume: 181
  start-page: 3464
  year: 2008
  ident: ref31
  article-title: TLR adaptor MyD88 is essential for pathogen control during oral toxoplasma gondii infection but not adaptive immunity induced by a vaccine strain of the parasite.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.181.5.3464
  contributor:
    fullname: W Sukhumavasi
– volume: 62
  start-page: 1995
  year: 1994
  ident: ref61
  article-title: Mitogen- and antigen-specific proliferation of T cells in murine toxoplasmosis is inhibited by reactive nitrogen intermediates.
  publication-title: Infect Immun
  doi: 10.1128/IAI.62.5.1995-2001.1994
  contributor:
    fullname: E Candolfi
– volume: 19
  start-page: 329
  year: 2008
  ident: ref41
  article-title: Paradigm shifts in the cell biology of STAT signaling.
  publication-title: Semin Cell Dev Biol
  doi: 10.1016/j.semcdb.2008.07.003
  contributor:
    fullname: PB Sehgal
– volume: 157
  start-page: 87
  year: 1988
  ident: ref70
  article-title: Nitric oxide: a cytotoxic activated macrophage effector molecule.
  publication-title: Biochem Biophys Res Com
  doi: 10.1016/S0006-291X(88)80015-9
  contributor:
    fullname: JB Hibbs
– volume: 184
  start-page: 7022
  year: 2010
  ident: ref34
  article-title: TLR9-dependent induction of intestinal alpha-defensins by Toxoplasma gondii.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0901642
  contributor:
    fullname: DM Foureau
– year: 2010
  ident: ref48
  article-title: Toll-like receptor initiated host defense against Toxoplasma gondii.
  contributor:
    fullname: EY Denkers
– volume: 172
  start-page: 3686
  year: 2004
  ident: ref28
  article-title: Production of IL-12 by macrophages infected with Toxoplasma gondii depends on the parasite genotype.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.172.6.3686
  contributor:
    fullname: PM Robben
– volume: 34
  start-page: 323
  year: 2004
  ident: ref42
  article-title: Toxoplasma gondii lacks the enzymes required for de novo arginine biosynthesis and arginine starvation triggers cyst formation.
  publication-title: Int J Parasitol
  doi: 10.1016/j.ijpara.2003.12.001
  contributor:
    fullname: BA Fox
– volume: 449
  start-page: 827
  year: 2007
  ident: ref1
  article-title: Manipulation of host-cell pathways by bacterial pathogens.
  publication-title: Nature
  doi: 10.1038/nature06247
  contributor:
    fullname: AP Bhavsar
– volume: 177
  start-page: 2584
  year: 2006
  ident: ref27
  article-title: Toxoplasma gondii genotype determines MyD88-dependent signaling in infected macrophages.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.177.4.2584
  contributor:
    fullname: L Kim
– volume: 182
  start-page: 489
  year: 2009
  ident: ref49
  article-title: Toxoplasma gondii prevents chromatin remodeling initiated by Toll-like receptor-triggered macrophages activation.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.182.1.489
  contributor:
    fullname: J Leng
– volume: 56
  start-page: 941
  year: 2007
  ident: ref51
  article-title: Exacerbation of Murine Ileitis By Toll-Like Receptor 4 Meditated Sensing of Lipopolysaccharide From Commensal Escherichia coli.
  publication-title: Gut
  doi: 10.1136/gut.2006.104497
  contributor:
    fullname: MM Heimesaat
– volume: 178
  start-page: 2623
  year: 2007
  ident: ref23
  article-title: The JAK-STAT signaling pathway: input and output integration.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.178.5.2623
  contributor:
    fullname: PJ Murray
– volume: 185
  start-page: 1
  year: 1997
  ident: ref57
  article-title: Inducible nitric oxide is essential for host control of persistent but not acute infection with the intracellular pathogen Toxoplasma gondii.
  publication-title: J Exp Med
  doi: 10.1084/jem.185.7.1261
  contributor:
    fullname: T Scharton-Kersten
– volume: 176
  start-page: 1840
  year: 2006
  ident: ref14
  article-title: Induction of Suppressor of Cytokine Signaling-1 by Toxoplasma gondii Contributes to Immune Evasion in Macrophages by Blocking IFN-{gamma} Signaling.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.176.3.1840
  contributor:
    fullname: S Zimmermann
– start-page: 1
  year: 2007
  ident: ref4
  article-title: The history and life-cycle of Toxoplasma gondii.
  contributor:
    fullname: JP Dubey
– volume: 8
  start-page: 1994
  year: 2006
  ident: ref53
  article-title: Diverse mechanisms employed by Toxoplasma gondii to inhibit IFN-gamma-induced major histocompatibility complex class II gene expression.
  publication-title: Microbes Infect
  doi: 10.1016/j.micinf.2006.02.031
  contributor:
    fullname: C Lang
– volume: 27
  start-page: 1787
  year: 1989
  ident: ref68
  article-title: Direct and sensitive detection of a pathogenic protozoan, Toxoplasma gondii, by polymerase chain reaction.
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.27.8.1787-1792.1989
  contributor:
    fullname: JL Burg
– start-page: 93
  year: 2007
  ident: ref9
  article-title: Congenital toxoplasmosis.
  contributor:
    fullname: AW Pfaff
– volume: 25
  start-page: 451
  year: 1997
  ident: ref64
  article-title: Recombination-mediated PCR-directed plasmid construction in vivo in yeast.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.2.451
  contributor:
    fullname: KR Oldenburg
– volume: 171
  start-page: 6052
  year: 2003
  ident: ref66
  article-title: Cross-talk in the innate immune system: neutrophils instruct early recruitment and activation of dendritic cells during microbial infection.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.171.11.6052
  contributor:
    fullname: S Bennouna
– volume: 167
  start-page: 4574
  year: 2001
  ident: ref46
  article-title: Acute toxoplasmosis leads to lethal overproduction of Th1 cytokines.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.167.8.4574
  contributor:
    fullname: DG Mordue
SSID ssj0041316
Score 2.5008955
Snippet The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and activator of transcription (STAT)-3 and...
The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and activator of transcription (STAT)-3 and...
  The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and activator of transcription (STAT)-3 and...
SourceID plos
doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e1002236
SubjectTerms Animals
Arginase - antagonists & inhibitors
Arginase - genetics
Arginase - metabolism
Biology
Bone marrow
Cells, Cultured
Cloning
Cytokines
Cytokines - immunology
Experiments
Female
Gene Deletion
Gene Knockout Techniques
Health aspects
Immune system
Interleukin-12 Subunit p40 - immunology
Janus Kinase 2 - genetics
Janus Kinase 2 - metabolism
Kinases
Macrophages - immunology
Mice
Mice, Inbred C57BL
Myeloid Differentiation Factor 88 - metabolism
Nitric oxide
Parasites
Phosphorylation
Phosphotransferases
Physiological aspects
Plasmids
Protein-Tyrosine Kinases - genetics
Protein-Tyrosine Kinases - metabolism
Protozoan Proteins - genetics
Protozoan Proteins - metabolism
Rodents
Signal Transduction
STAT proteins
STAT3 Transcription Factor - genetics
STAT3 Transcription Factor - metabolism
STAT6 Transcription Factor - genetics
STAT6 Transcription Factor - metabolism
Toxoplasma
Toxoplasma - enzymology
Toxoplasma - genetics
Toxoplasma - pathogenicity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA6yIPginr9u9ZQggk_12qZN2sdVPE7BU-724N5C0qTdcpqW3d7h_gn-186k7XqVE198K820kJlJ5pt28g0hr8tQWwBtSRBltoAEhRWBLhT2eskzrUyYak_X9PmEH58nny7SixutvrAmrKcH7hV3mJpUMcuN0QpDt85DxbEJnbXI3MKN333DfEym-j0Ydmbf9BSb4gSCcT4cmmMiOhxs9LZtVecJSGNPz_w7KHnu_t0OPWu_NZvb4OefVZQ3wtLRA3J_wJN00c9jj9yx7iG523eY3D4iP5fNj6YFhPxd0apxpq7petW03XpLL2sHEYyefvkacYrHG64RdtKz5WLJqHLGX3EK6TjWHLqK1o4W266B5yxcr2rtq728qFpX_m2QKY5ddTtaQYbfrehQDP-YnB99WL4_DobuC0EhYt4FlnnuujgsUP8QShPOTc6yJI1tCmGt4EYD3tClsmlms5AbyE0sT0TJBGO5YU_IzDXO7hMqDAMgB4pWpkxUFCqwj0jzsAQ7miQO5yQY1S_bnmRD-j9tApKTXo8SzSUHc83JO7TRThYpsv0NcBw5OI78l-PMySu0sEQSDIdVNpW62mzkx7MTuYh5znNET38VOp0IvRmEygY8oVDDyQaYPJJrTSQPJpKwlIvJ8D562zjnjYzwNzAgyoTBk6MH3j78tHfGnU4gEjGk15sTMXHTidKmI65eeX5xWDt5mohn_0PLz8m9_is8VuUdkFm3vrIvAMZ1-qVfsb8AZkNDpQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELagCIkXxO91DGQhJJ7CkjixmycUCmMDMVDXSX2LnNhpI8DJmkyifwL_NXeO2xE0eKvia9rcnX3f2ZfvCHlZ-rkG0BZ5wUQXkKCwwssLib1ekkkulR_nlq7p8yk_Po8-LuKF23BrXVnldk20C7WqC9wjPwzwRAyCa8TeNBcedo3C01XXQuMmuRWE4Lzgz2KxS7hgfbatT7E1jicY5-7VOSaCQ2ep100jO0tDGlqS5qvQZBn8d-v0qPlet9eB0L9rKf8ITkf3yF2HKmnau8F9ckObB-R232dy85D8mtc_6wZw8g9Jl7VRVUVnq7rp1hv6qTIQx-jsy9eA07Swzc50S8_m6ZxRaZT9xOlMt1h5aJa0MnS66epvgE7piVlVua35sqLpemnvBvniO9dbt6MfIM_vVnTal8Q_IudH7-fTY8_1YPAKEfLO08wy2IV-IZnmEFAjzlXCJlEc6hiCW8FVDqgjL6WOJ3ricwUZiuaRKJlgLFHsMRmZ2ug9QoViAOdA0VKVkQx8CfYRceKXjCcqCv0x8bbqz5qeaiOz520CUpRejxmaK3PmGpO3aKOdLBJl2wv1epm5eZfFKsY_rlQuEfnliS859jDUGol_uBqTF2jhDKkwDNbaLOVl22YnZ6dZGvKEJ4ih_ik0Gwi9ckJlDZ5QSPd-Azw8UmwNJA8GkjChi8HwHnrb9pnb7Mr14ZtbD7x--EnvjDudQDxiSLI3JmLgpgOlDUdMtbIs4zB3kjgS-___yafkTr_LjlV3B2TUrS_1M4BpXf7czsXfPq45yA
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fj5QwEG7ONSa-GM9ft3pnGmPiExegpYUHY1bj5TTxNHe7yb2RQgtLPAGBM7d_gv-1MwU2YvYS3widEjqdMt_Q6TeEvM7cxABo444XmhQCFJY6Saqw1ksUJkq7QWLpmr6cidMV_3wZXO6RsWbroMB2Z2iH9aRWzdXxzc_NO1jwb23VBumNnY7rWnWWUtRn4g656yM1Fybz8e2-AnyxbTFULJbjSCbEcJjutqdMnJXl9N9-uWf1VdXugqX_Zlf-5a5OHpIHA86ki94w9smeKR-Re33lyc1j8ntZ3VQ1IOcfiuZVqYuCNuuq7poN_V6U4Nno-ddvnqB47OEXwlF6sVwsGVWltleCQpiOuYhlTouSppuugn4GrtdFYrPArKhqcvs0iCDHarsdzSHy79Z0SJJ_QlYnH5cfTp2hKoOTSl90jmGW0853U8WMABfLhdARC3ngmwDcXSp0AjgkyZQJQhO6QkPMYgSXGZOMRZo9JbOyKs0BoVIzAHigaKUzrjxXwfzIIHIzJiLNfXdOnFH9cd2Tb8R2B05C0NLrMcbpiofpmpP3OEdbWaTOtjeqJo-HlRgHOsAX1zpRiAWTyFUCqxoag1RAQs_JK5zhGMkxSsy-ydV128afLs7ihS8iESGqulXofCL0ZhDKKrCEVA0nHmDwSLo1kTycSMISTyfNB2ht45jb2MPtYUCanEHP0QJ3Nz_rjXGrE_BQDGn35kROzHSitGlLWawt7zisnSjg8vl_D-sFud__gseUvEMy65prcwQYrkte2mX5B6_jRPs
  priority: 102
  providerName: Scholars Portal
Title Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control
URI https://www.ncbi.nlm.nih.gov/pubmed/21931552
https://www.proquest.com/docview/1289089343
https://pubmed.ncbi.nlm.nih.gov/PMC3169547
https://doaj.org/article/5d5a3e6ddba6441b90a69369ee02286d
http://dx.doi.org/10.1371/journal.ppat.1002236
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb5swFLbaTJP2MnXXZusia5q0JxLAYOAxzdq1m5JFaSrlDdnYJGiNQYFKzU_Yv96xgWhM3cteUIQPEZyL_R04_g5Cn1KbSwBtnuWEMoEEhSQWT5ju9RKFnAnb54auaTqjV7fet5W_OkJ-uxfGFO0nPBuqu-1QZRtTW1lsk1FbJzaaTyfEoZHvBaNjdAwO2qbo9fQLk7Lpd6r74VgBobTZL0cCZ9SYZ1gUrDLcoy6hhg04IpqJrLM0GQb_wzzdK-7y8jEQ-nct5R-L0-UJet6gSjyu7_4FOpLqJXpa95ncv0K_lvlDXgBO3jK8zpXIMrzY5EW12-PvmYJ1DC9-zB2Kx4lpdiZLfLMcLwlmSphfFC9kqSsP1RpnCk_2Vf4T0Cm-VpuMm5ovIzrerc2_Qb74pemtW-GvkOdXGzypS-Jfo9vLi-Xkymp6MFhJ4NLKksQw2Ll2woiksKB6lIqIhJ7vSh8Wt4QKDqiDp0z6oQxtKiBDkdQLUhIQEgnyBvVUruQpwoEgAOdA50ykHnNsBqYK_MhOCY2E59p9ZLXqj4uaaiM239sCSFFqPcbacnFjuT461zY6yGqibHMi363jxl1iX_j6xoXgTCM_HtmM6h6GUmriHyr66KO2cKypMJSutVmz-7KMr29m8dilEY00hvqn0KIj9LkRSnPwhIQ1-xvg4TXFVkfyrCMJAZ10hk-1t7XPXMaO_hgMuNIjcGXrgY8Pv62d8aCT1rX7KOi4aUdp3REIOsMy3gTZu_--8j16Vr-A1wV5Z6hX7e7lB0BwFR9A3K6CAXpyfjGbLwbmPQgcp144MLH8G5B0Rww
link.rule.ids 230,315,730,783,787,867,888,2109,2228,12070,21402,24332,27938,27939,31733,33758,43324,43819,53806,53808,74081,74638
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELagCMEL4vcKAyyExFNYGidO84RKYbRsK6jrpL1ZTuy0EeCEJpPon8B_zZ3jdgQN3qr4mjZ3Z9939uU7Ql7lfqoBtIXeYKgzSFBY5qWZxF4vyTCVyo9SS9d0MuOTs_DTeXTuNtxqV1a5XRPtQq3KDPfIDwZ4IgbBNWRvqx8edo3C01XXQuM6uYE8XMidH5_vEi5Yn23rU2yN48WMc_fqHIsHB85Sb6pKNpaGNLAkzZehyTL479bpXvWtrK8CoX_XUv4RnA7vkjsOVdJR6wb3yDVt7pObbZ_JzQPya1H-LCvAyd8lXZZGFQWdr8qqWW_oUWEgjtH55y8DTkeZbXama3q6GC0YlUbZT5zOdY2Vh2ZJC0PHm6b8CuiUTs2qSG3NlxUdrZf2bpAvvne9dRv6EfL8ZkXHbUn8Q3J2-GExnniuB4OXxQFvPM0sg13gZ5JpDgE15FwlbBhGgY4guGVcpYA60lzqaKiHPleQoWgexjmLGUsUe0R6pjR6j9BYMYBzoGip8lAOfAn2iaPEzxlPVBj4feJt1S-qlmpD2PO2GFKUVo8CzSWcufrkHdpoJ4tE2fZCuV4KN-9EpCL840qlEpFfmviSYw9DrZH4h6s-eYkWFkiFYbDWZikv6lpMT2diFPCEJ4ih_ik07wi9dkJ5CZ6QSfd-Azw8Umx1JPc7kjChs87wHnrb9plrcen68M2tB149_Lh1xp1OIB4xJNnrk7jjph2ldUdMsbIs4zB3kiiMn_z_J1-QW5PFybE4ns6OnpLb7Y47VuDtk16zvtDPALI16XM7L38DK_c8uA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELagCMQF8d7CAhZC4hSaxIndnFDpUrYslFW3K_VmObHTRoATmqxEfwL_mrHjdglauFX19JF5eGbiyfch9Cr3UwVFW-QFQ5VBg0IyL82E4XpJhqmQfpxauKbPM3p8Hn1cxks3_1S7scrdnmg3allm5h75IDAnYpBcIzLI3VjE6dHkbfXDMwxS5qTV0WlcRzdYBIkOfJst980X7NWWBtXQ5HiMUOoeoyMsGDirvakq0VhI0tACNl-mKYvmv9-ze9W3sr6qIP17rvKPRDW5i-64ChOPWpe4h64pfR_dbDkntw_Qr0X5s6ygZv4u8KrUsijwfF1WzWaLTwoNOQ3Pv5wGFI8yS3ymany2GC0IFlraVxTPVW2mEPUKFxqPt035FSpVPNXrIrXzX1Z0tFnZb4Pe8cjx7Db4A_T8zRqP2_H4h-h88n4xPvYcH4OXsZA2niIWzS70M0EUheQaUSoTMoziUMWQ6DIqU6hA0lyoeKiGPpXQrSgasZwwQhJJHqGeLrU6QJhJAqUdKFrIPBKBL8A-LE78nNBERqHfR95O_bxqYTe4PXtj0K60euTGXNyZq4_eGRvtZQ1otn2j3Ky4i0Eey9j8cSlTYarANPEFNXyGShkQICr76KWxMDewGNo42Epc1DWfns34KKQJTUw99U-heUfotRPKS_CETLhnHeDiDdxWR_KwIwnBnXWWD4y37a655pdhAJ_ceeDVy49bZ9zrBHITMYB7fcQ6btpRWndFF2uLOA6xk8QRe_L_n3yBbkFI8k_T2clTdLu9-W6G8Q5Rr9lcqGdQvTXpcxuWvwFR6UDt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toxoplasma+gondii+rhoptry+kinase+ROP16+activates+STAT3+and+STAT6+resulting+in+cytokine+inhibition+and+arginase-1-dependent+growth+control&rft.jtitle=PLoS+pathogens&rft.au=Butcher%2C+Barbara+A&rft.au=Fox%2C+Barbara+A&rft.au=Rommereim%2C+Leah+M&rft.au=Kim%2C+Sung+Guk&rft.date=2011-09-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft.eissn=1553-7374&rft.volume=7&rft.issue=9&rft_id=info:doi/10.1371%2Fjournal.ppat.1002236&rft.externalDocID=A269690078
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon