Automated feature extraction from population wearable device data identified novel loci associated with sleep and circadian rhythms

Wearable devices have been increasingly used in research to provide continuous physical activity monitoring, but how to effectively extract features remains challenging for researchers. To analyze the generated actigraphy data in large-scale population studies, we developed computationally efficient...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 16; no. 10; p. e1009089
Main Authors Li, Xinyue, Zhao, Hongyu
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 19.10.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wearable devices have been increasingly used in research to provide continuous physical activity monitoring, but how to effectively extract features remains challenging for researchers. To analyze the generated actigraphy data in large-scale population studies, we developed computationally efficient methods to derive sleep and activity features through a Hidden Markov Model-based sleep/wake identification algorithm, and circadian rhythm features through a Penalized Multi-band Learning approach adapted from machine learning. Unsupervised feature extraction is useful when labeled data are unavailable, especially in large-scale population studies. We applied these two methods to the UK Biobank wearable device data and used the derived sleep and circadian features as phenotypes in genome-wide association studies. We identified 53 genetic loci with p<5×10-8 including genes known to be associated with sleep disorders and circadian rhythms as well as novel loci associated with Body Mass Index, mental diseases and neurological disorders, which suggest shared genetic factors of sleep and circadian rhythms with physical and mental health. Further cross-tissue enrichment analysis highlights the important role of the central nervous system and the shared genetic architecture with metabolism-related traits and the metabolic system. Our study demonstrates the effectiveness of our unsupervised methods for wearable device data when additional training data cannot be easily acquired, and our study further expands the application of wearable devices in population studies and genetic studies to provide novel biological insights.
AbstractList Wearable devices have been increasingly used in research to provide continuous physical activity monitoring, but how to effectively extract features remains challenging for researchers. To analyze the generated actigraphy data in large-scale population studies, we developed computationally efficient methods to derive sleep and activity features through a Hidden Markov Model-based sleep/wake identification algorithm, and circadian rhythm features through a Penalized Multi-band Learning approach adapted from machine learning. Unsupervised feature extraction is useful when labeled data are unavailable, especially in large-scale population studies. We applied these two methods to the UK Biobank wearable device data and used the derived sleep and circadian features as phenotypes in genome-wide association studies. We identified 53 genetic loci with p<5×10-8 including genes known to be associated with sleep disorders and circadian rhythms as well as novel loci associated with Body Mass Index, mental diseases and neurological disorders, which suggest shared genetic factors of sleep and circadian rhythms with physical and mental health. Further cross-tissue enrichment analysis highlights the important role of the central nervous system and the shared genetic architecture with metabolism-related traits and the metabolic system. Our study demonstrates the effectiveness of our unsupervised methods for wearable device data when additional training data cannot be easily acquired, and our study further expands the application of wearable devices in population studies and genetic studies to provide novel biological insights.
Wearable devices have been increasingly used in research to provide continuous physical activity monitoring, but how to effectively extract features remains challenging for researchers. To analyze the generated actigraphy data in large-scale population studies, we developed computationally efficient methods to derive sleep and activity features through a Hidden Markov Model-based sleep/wake identification algorithm, and circadian rhythm features through a Penalized Multi-band Learning approach adapted from machine learning. Unsupervised feature extraction is useful when labeled data are unavailable, especially in large-scale population studies. We applied these two methods to the UK Biobank wearable device data and used the derived sleep and circadian features as phenotypes in genome-wide association studies. We identified 53 genetic loci with p<5x10.sup.-8 including genes known to be associated with sleep disorders and circadian rhythms as well as novel loci associated with Body Mass Index, mental diseases and neurological disorders, which suggest shared genetic factors of sleep and circadian rhythms with physical and mental health. Further cross-tissue enrichment analysis highlights the important role of the central nervous system and the shared genetic architecture with metabolism-related traits and the metabolic system. Our study demonstrates the effectiveness of our unsupervised methods for wearable device data when additional training data cannot be easily acquired, and our study further expands the application of wearable devices in population studies and genetic studies to provide novel biological insights.
Wearable devices have been increasingly used in research to provide continuous physical activity monitoring, but how to effectively extract features remains challenging for researchers. To analyze the generated actigraphy data in large-scale population studies, we developed computationally efficient methods to derive sleep and activity features through a Hidden Markov Model-based sleep/wake identification algorithm, and circadian rhythm features through a Penalized Multi-band Learning approach adapted from machine learning. Unsupervised feature extraction is useful when labeled data are unavailable, especially in large-scale population studies. We applied these two methods to the UK Biobank wearable device data and used the derived sleep and circadian features as phenotypes in genome-wide association studies. We identified 53 genetic loci with p<5×10 −8 including genes known to be associated with sleep disorders and circadian rhythms as well as novel loci associated with Body Mass Index, mental diseases and neurological disorders, which suggest shared genetic factors of sleep and circadian rhythms with physical and mental health. Further cross-tissue enrichment analysis highlights the important role of the central nervous system and the shared genetic architecture with metabolism-related traits and the metabolic system. Our study demonstrates the effectiveness of our unsupervised methods for wearable device data when additional training data cannot be easily acquired, and our study further expands the application of wearable devices in population studies and genetic studies to provide novel biological insights. While wearable devices have been increasingly used in research for objective and continuous activity monitoring, how to effectively extract sleep and rest-activity circadian rhythm features remains the major obstacle for researchers, especially in population studies where labeled outcome data such as sleep diaries are unavailable and thus existing supervised methods cannot be applied. Here, we developed unsupervised feature extraction methods based on machine learning without the need for labeled outcome data. We applied the methods to population wearable device data to extract sleep and circadian features, and we further identified novel associated loci and the key roles of the central nervous system and the metabolic system. The findings are essential for understanding the underlying shared genetic architecture of sleep and circadian rhythms with physical and mental health, and the proposed methods can largely expand and promote the use of wearable device data in population and genetic studies.
Wearable devices have been increasingly used in research to provide continuous physical activity monitoring, but how to effectively extract features remains challenging for researchers. To analyze the generated actigraphy data in large-scale population studies, we developed computationally efficient methods to derive sleep and activity features through a Hidden Markov Model-based sleep/wake identification algorithm, and circadian rhythm features through a Penalized Multi-band Learning approach adapted from machine learning. Unsupervised feature extraction is useful when labeled data are unavailable, especially in large-scale population studies. We applied these two methods to the UK Biobank wearable device data and used the derived sleep and circadian features as phenotypes in genome-wide association studies. We identified 53 genetic loci with p<5×10−8 including genes known to be associated with sleep disorders and circadian rhythms as well as novel loci associated with Body Mass Index, mental diseases and neurological disorders, which suggest shared genetic factors of sleep and circadian rhythms with physical and mental health. Further cross-tissue enrichment analysis highlights the important role of the central nervous system and the shared genetic architecture with metabolism-related traits and the metabolic system. Our study demonstrates the effectiveness of our unsupervised methods for wearable device data when additional training data cannot be easily acquired, and our study further expands the application of wearable devices in population studies and genetic studies to provide novel biological insights.
Wearable devices have been increasingly used in research to provide continuous physical activity monitoring, but how to effectively extract features remains challenging for researchers. To analyze the generated actigraphy data in large-scale population studies, we developed computationally efficient methods to derive sleep and activity features through a Hidden Markov Model-based sleep/wake identification algorithm, and circadian rhythm features through a Penalized Multi-band Learning approach adapted from machine learning. Unsupervised feature extraction is useful when labeled data are unavailable, especially in large-scale population studies. We applied these two methods to the UK Biobank wearable device data and used the derived sleep and circadian features as phenotypes in genome-wide association studies. We identified 53 genetic loci with p<5×10-8 including genes known to be associated with sleep disorders and circadian rhythms as well as novel loci associated with Body Mass Index, mental diseases and neurological disorders, which suggest shared genetic factors of sleep and circadian rhythms with physical and mental health. Further cross-tissue enrichment analysis highlights the important role of the central nervous system and the shared genetic architecture with metabolism-related traits and the metabolic system. Our study demonstrates the effectiveness of our unsupervised methods for wearable device data when additional training data cannot be easily acquired, and our study further expands the application of wearable devices in population studies and genetic studies to provide novel biological insights.Wearable devices have been increasingly used in research to provide continuous physical activity monitoring, but how to effectively extract features remains challenging for researchers. To analyze the generated actigraphy data in large-scale population studies, we developed computationally efficient methods to derive sleep and activity features through a Hidden Markov Model-based sleep/wake identification algorithm, and circadian rhythm features through a Penalized Multi-band Learning approach adapted from machine learning. Unsupervised feature extraction is useful when labeled data are unavailable, especially in large-scale population studies. We applied these two methods to the UK Biobank wearable device data and used the derived sleep and circadian features as phenotypes in genome-wide association studies. We identified 53 genetic loci with p<5×10-8 including genes known to be associated with sleep disorders and circadian rhythms as well as novel loci associated with Body Mass Index, mental diseases and neurological disorders, which suggest shared genetic factors of sleep and circadian rhythms with physical and mental health. Further cross-tissue enrichment analysis highlights the important role of the central nervous system and the shared genetic architecture with metabolism-related traits and the metabolic system. Our study demonstrates the effectiveness of our unsupervised methods for wearable device data when additional training data cannot be easily acquired, and our study further expands the application of wearable devices in population studies and genetic studies to provide novel biological insights.
Audience Academic
Author Zhao, Hongyu
Li, Xinyue
AuthorAffiliation 1 School of Data Science, City University of Hong Kong, Hong Kong, China
2 Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States of America
Stanford University School of Medicine, UNITED STATES
4 Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
3 Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States of America
AuthorAffiliation_xml – name: 1 School of Data Science, City University of Hong Kong, Hong Kong, China
– name: 4 Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
– name: 3 Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States of America
– name: Stanford University School of Medicine, UNITED STATES
– name: 2 Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States of America
Author_xml – sequence: 1
  givenname: Xinyue
  orcidid: 0000-0003-1972-9021
  surname: Li
  fullname: Li, Xinyue
– sequence: 2
  givenname: Hongyu
  orcidid: 0000-0003-1195-9607
  surname: Zhao
  fullname: Zhao, Hongyu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33075057$$D View this record in MEDLINE/PubMed
BookMark eNqVk1uL1DAUx4usuBf9BqIFQfRhxrRpmtQHYVi8DCwueHsNaXI6kyVtZpN01n32i5vORabLIto8nDT9nX9zbqfJUWc7SJKnGZpmmGZvrmzvOmGmqwV00wyhCrHqQXKSEYIntEDF0cH-ODn1_gohTFhFHyXHGCNKEKEnya9ZH2wrAqi0ARF6Byn8DE7IoG2XNs626cqueiM27zcgnKgNpArWWkYjgki1gi7oRkeJzq7BpMZKnQrvo9kI3-iwTL0BWKWiU6nUTgqlRZe65W1Ytv5x8rARxsOTnT1Lvn94_-380-Ti8uP8fHYxkTQvwyTLaUVYlqmasgIUq5hqKNRY4bphMkeSqgoqrDKlZI0aRVSMktIKU8agyGt8ljzf6q6M9XyXP8_zokRZfFAVifmWUFZc8ZXTrXC33ArNNwfWLbhwQUsDXOV1iYscSwl10aCCiTovM8JqCrJUrIha73Z_6-sWlIxJcsKMRMdfOr3kC7vmlFSkzPMo8Gon4Ox1Dz7wVnsJxogObD_cm-RFxXBJIvriDnp_dDtqIWIAumvsUOhBlM_KgmCcM0QjNb2HiktBq2XswUbH85HD65FDZELsoYXovefzr1_-g_387-zljzH78oBdgjBh6a3ph671Y_DZYVX-lGM_ERF4uwWks947aLjUYdP9MQ3a8AzxYfz2CebD-PHd-EXn4o7zXv-vbr8BcaQ1Mg
CitedBy_id crossref_primary_10_2196_62831
crossref_primary_10_1111_cns_13966
crossref_primary_10_3389_fpubh_2023_1137191
crossref_primary_10_1152_japplphysiol_00291_2023
crossref_primary_10_1007_s13258_024_01507_9
crossref_primary_10_1371_journal_pbio_3002426
crossref_primary_10_1007_s13679_025_00613_3
crossref_primary_10_2196_42073
crossref_primary_10_1038_s41586_024_08468_9
crossref_primary_10_1038_s41588_024_01793_9
crossref_primary_10_1038_s41746_023_00865_0
crossref_primary_10_1109_JIOT_2023_3313158
crossref_primary_10_1136_bjsports_2020_103604
crossref_primary_10_1186_s12889_023_15934_y
crossref_primary_10_1007_s40520_024_02745_3
Cites_doi 10.2147/NSS.S34838
10.1038/ncomms10448
10.1186/s12966-020-00938-3
10.1007/s13311-012-0145-6
10.1038/tp.2016.171
10.1007/s00424-011-1041-3
10.1093/ije/dyv080
10.1161/CIRCRESAHA.117.312086
10.2147/nedt.2006.2.4.513
10.1097/YCO.0000000000000292
10.1002/jcsm.12171
10.1371/journal.pone.0169649
10.1038/nrendo.2014.78
10.1371/journal.pmed.1001779
10.1016/j.cell.2016.10.042
10.1111/j.1467-9868.2005.00503.x
10.5664/jcsm.7228
10.1038/nprot.2008.211
10.1249/MSS.0b013e31820513be
10.1038/s41366-018-0120-3
10.1038/s41588-017-0009-4
10.1038/ng.3951
10.1186/s12876-019-0945-9
10.1111/j.2517-6161.1996.tb02080.x
10.1371/journal.pone.0167472
10.1038/ncomms10889
10.1159/000491808
10.1186/s13229-017-0137-9
10.1210/er.2016-1083
10.1111/nyas.13143
10.1016/j.sleh.2014.12.010
10.1038/mp.2015.218
10.1111/j.1365-2869.2008.00706.x
10.1214/aoms/1177699147
10.1111/j.1365-2869.2007.00581.x
10.1038/ng.3708
10.1038/s41467-019-09576-1
10.1093/sleep/17.3.201
10.1016/j.jad.2018.09.003
10.1016/j.ncl.2012.08.011
10.1086/504639
10.1002/gepi.22032
10.1038/s41588-019-0345-7
10.1249/MSS.0000000000001435
10.5993/AJHB.39.4.3
10.1016/S1474-4422(17)30327-7
10.1371/journal.pone.0119752
10.1038/ng.3749
10.1038/ng.3211
10.1007/s11325-006-0064-z
10.4314/ahs.v15i2.40
10.1161/CIRCGENETICS.112.964619
10.3109/07420528.2011.565895
10.1038/s41467-019-08917-4
10.1038/s41588-018-0059-2
10.1093/sleep/15.5.461
10.1371/journal.pone.0097263
10.1016/j.cell.2012.04.031
10.1038/nature13595
10.1186/s13742-015-0047-8
10.1214/aoms/1177697196
10.1093/cercor/bht101
10.1002/ajmg.b.32349
10.1038/s41598-018-26174-1
10.7554/eLife.03351
10.1177/0748730414557634
10.1007/s11920-013-0418-8
10.1038/ng.3404
10.1371/journal.pone.0142533
10.1534/genetics.118.301479
10.1016/j.sleep.2016.05.001
10.1002/ajmg.b.32168
10.1038/s41467-018-07743-4
10.1371/journal.pgen.1001308
10.1371/journal.pgen.1002171
10.1371/journal.pgen.1005378
10.1002/art.40051
10.1007/s00125-016-3908-5
10.1016/j.autneu.2019.01.007
10.1007/s11239-008-0240-z
10.1016/j.ajhg.2017.11.001
10.1038/nature14177
10.1093/nar/gkn721
10.2174/15672050113109990134
10.3109/09540261.2014.911149
10.1093/hmg/ddu250
ContentType Journal Article
Copyright COPYRIGHT 2020 Public Library of Science
2020 Li, Zhao. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Li, Zhao 2020 Li, Zhao
Copyright_xml – notice: COPYRIGHT 2020 Public Library of Science
– notice: 2020 Li, Zhao. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Li, Zhao 2020 Li, Zhao
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
3V.
7QP
7QR
7SS
7TK
7TM
7TO
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1009089
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
Proquest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE




MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Automated feature extraction from wearable device data identified novel sleep and circadian rhythms loci
EISSN 1553-7404
ExternalDocumentID 2460111109
oai_doaj_org_article_d2b63423cceb4f048ab26158b7ec6d84
PMC7595622
A645332807
33075057
10_1371_journal_pgen_1009089
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
United Kingdom--UK
United States--US
GeographicLocations_xml – name: United States
– name: United Kingdom--UK
– name: United States--US
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM122078
– fundername: NCATS NIH HHS
  grantid: UL1 TR001863
– fundername: Medical Research Council
  grantid: MC_PC_17228
– fundername: Medical Research Council
  grantid: MC_QA137853
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
WOQ
PMFND
3V.
7QP
7QR
7SS
7TK
7TM
7TO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
AAPBV
ABPTK
M~E
ID FETCH-LOGICAL-c726t-12795811db784ed898df7eb3d3bf8c20c7d9e93d1ddcb0fd5d3077793788e42b3
IEDL.DBID M48
ISSN 1553-7404
1553-7390
IngestDate Sun Nov 05 00:20:31 EDT 2023
Wed Aug 27 01:14:46 EDT 2025
Thu Aug 21 13:46:52 EDT 2025
Fri Jul 11 16:14:35 EDT 2025
Fri Jul 25 12:02:39 EDT 2025
Tue Jun 17 21:37:31 EDT 2025
Tue Jun 10 20:32:40 EDT 2025
Fri Jun 27 05:12:51 EDT 2025
Fri Jun 27 05:14:35 EDT 2025
Fri Jun 27 04:42:04 EDT 2025
Thu May 22 21:20:14 EDT 2025
Mon Jul 21 06:04:58 EDT 2025
Thu Apr 24 22:58:54 EDT 2025
Tue Jul 01 01:18:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c726t-12795811db784ed898df7eb3d3bf8c20c7d9e93d1ddcb0fd5d3077793788e42b3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0003-1972-9021
0000-0003-1195-9607
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1009089
PMID 33075057
PQID 2460111109
PQPubID 1436339
ParticipantIDs plos_journals_2460111109
doaj_primary_oai_doaj_org_article_d2b63423cceb4f048ab26158b7ec6d84
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7595622
proquest_miscellaneous_2452498365
proquest_journals_2460111109
gale_infotracmisc_A645332807
gale_infotracacademiconefile_A645332807
gale_incontextgauss_ISR_A645332807
gale_incontextgauss_ISN_A645332807
gale_incontextgauss_IOV_A645332807
gale_healthsolutions_A645332807
pubmed_primary_33075057
crossref_citationtrail_10_1371_journal_pgen_1009089
crossref_primary_10_1371_journal_pgen_1009089
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-19
PublicationDateYYYYMMDD 2020-10-19
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2020
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References L Zhu (pgen.1009089.ref006) 2012; 30
Q Tu (pgen.1009089.ref075) 2017; 29
YC Klimentidis (pgen.1009089.ref073) 2018; 42
Schizophrenia Working Group of the Psychiatric Genomics C (pgen.1009089.ref049) 2014; 511
C Bycroft (pgen.1009089.ref079) 2017
P Turley (pgen.1009089.ref047) 2018; 50
C Chen (pgen.1009089.ref041) 2018; 43
MS Ryan (pgen.1009089.ref087) 1973; 61
M Zornoza-Moreno (pgen.1009089.ref005) 2011; 28
SE Jones (pgen.1009089.ref084) 2018
SA Prince (pgen.1009089.ref076) 2020; 17
MA Kjellberg (pgen.1009089.ref061) 2014; 9
RJ Cole (pgen.1009089.ref011) 1992; 15
C Herold (pgen.1009089.ref032) 2016; 21
U Hodgson (pgen.1009089.ref066) 2006; 79
HK Finucane (pgen.1009089.ref053) 2015; 47
JE Huffman (pgen.1009089.ref027) 2015; 10
RK Bogan (pgen.1009089.ref069) 2006; 2
B Schormair (pgen.1009089.ref029) 2017; 16
R Tibshirani (pgen.1009089.ref092) 1996
CM Schroeder (pgen.1009089.ref065) 2014; 3
WJ Astle (pgen.1009089.ref035) 2016; 167
MK Hyun (pgen.1009089.ref057) 2019; 19
Y Hu (pgen.1009089.ref051) 2016; 7
H Liu (pgen.1009089.ref037) 2009; 28
EM Wijsman (pgen.1009089.ref024) 2011; 7
M Akiyama (pgen.1009089.ref039) 2017; 49
QS Li (pgen.1009089.ref046) 2016; 6
J Tilmanne (pgen.1009089.ref013) 2009; 18
DW Esliger (pgen.1009089.ref082) 2011; 43
MT Smith (pgen.1009089.ref009) 2018; 14
AF Pardinas (pgen.1009089.ref050) 2018; 50
SE Jones (pgen.1009089.ref089) 2018
M Willetts (pgen.1009089.ref015) 2018; 8
RN Eppinga (pgen.1009089.ref052) 2016; 48
JB Choi (pgen.1009089.ref038) 2006; 10
M Hirshkowitz (pgen.1009089.ref088) 2015; 1
A Doherty (pgen.1009089.ref014) 2018; 9
KG Baron (pgen.1009089.ref008) 2014; 26
A Castello (pgen.1009089.ref064) 2012; 149
AR Wood (pgen.1009089.ref030) 2016; 59
MJ Thorpy (pgen.1009089.ref090) 2012; 9
W Huang da (pgen.1009089.ref068) 2009; 4
MN McDonald (pgen.1009089.ref023) 2017; 8
FS Luyster (pgen.1009089.ref003) 2012; 35
X Li (pgen.1009089.ref059) 2016; 22
HS Dashti (pgen.1009089.ref016) 2019; 10
AE Locke (pgen.1009089.ref031) 2015; 518
S Murat (pgen.1009089.ref058) 2015; 15
CC Chang (pgen.1009089.ref094) 2015; 4
JM Lane (pgen.1009089.ref019) 2017; 49
C Sudlow (pgen.1009089.ref078) 2015; 12
SE Jones (pgen.1009089.ref017) 2019; 10
TW Winkler (pgen.1009089.ref026) 2015; 11
J Philippe (pgen.1009089.ref071) 2015; 30
TJ Hoffmann (pgen.1009089.ref025) 2018; 210
BK Bulik-Sullivan (pgen.1009089.ref018) 2015; 47
EM Byrne (pgen.1009089.ref044) 2013; 162B
TA Hargens (pgen.1009089.ref070) 2013; 5
Q Lu (pgen.1009089.ref096) 2017; 101
G Hemani (pgen.1009089.ref097) 2018
GD Potter (pgen.1009089.ref007) 2016; 37
R Sterniczuk (pgen.1009089.ref004) 2013; 10
JH Wu (pgen.1009089.ref028) 2013; 6
JM Lane (pgen.1009089.ref022) 2016; 7
Autism Spectrum Disorders Working Group of The Psychiatric Genomics C (pgen.1009089.ref034) 2017; 8
LE Baum (pgen.1009089.ref086) 1970; 41
VT van Hees (pgen.1009089.ref010) 2015; 10
J Bowden (pgen.1009089.ref098) 2015; 44
JT Heinzman (pgen.1009089.ref045) 2019; 243
PR Jansen (pgen.1009089.ref021) 2018
KD Pruitt (pgen.1009089.ref067) 2009; 37
SL Pulit (pgen.1009089.ref095) 2017; 41
H Zou (pgen.1009089.ref091) 2005; 67
M Hokama (pgen.1009089.ref063) 2014; 24
X Li (pgen.1009089.ref093) 2019
JH Oh (pgen.1009089.ref074) 2016; 1380
X Li (pgen.1009089.ref077) 2020
KL Gamble (pgen.1009089.ref054) 2014; 10
FS Goes (pgen.1009089.ref033) 2015; 168
X Li (pgen.1009089.ref043) 2019
J Fernandez-Mendoza (pgen.1009089.ref001) 2017; 30
J Winkelmann (pgen.1009089.ref020) 2011; 7
R Saxena (pgen.1009089.ref048) 2017; 69
J Trinder (pgen.1009089.ref055) 2012; 463
S Carbon (pgen.1009089.ref062) 2018
P van der Harst (pgen.1009089.ref040) 2018; 122
M Zhan (pgen.1009089.ref042) 2014; 23
J Fernandez-Mendoza (pgen.1009089.ref002) 2013; 15
A Sadeh (pgen.1009089.ref012) 1994; 17
AV Rowlands (pgen.1009089.ref083) 2018; 50
EE Benarroch (pgen.1009089.ref056) 2019; 218
A Doherty (pgen.1009089.ref080) 2017; 12
Y Hu (pgen.1009089.ref060) 2019; 51
G Vandewalle (pgen.1009089.ref072) 2007; 16
T White (pgen.1009089.ref081) 2016; 11
PD Loprinzi (pgen.1009089.ref036) 2015; 39
LE Baum (pgen.1009089.ref085) 1966; 37
References_xml – volume: 5
  start-page: 27
  year: 2013
  ident: pgen.1009089.ref070
  article-title: Association between sleep disorders, obesity, and exercise: a review
  publication-title: Nat Sci Sleep
  doi: 10.2147/NSS.S34838
– volume: 7
  start-page: 10448
  year: 2016
  ident: pgen.1009089.ref051
  article-title: GWAS of 89,283 individuals identifies genetic variants associated with self-reporting of being a morning person
  publication-title: Nat Commun
  doi: 10.1038/ncomms10448
– volume: 17
  start-page: 31
  issue: 1
  year: 2020
  ident: pgen.1009089.ref076
  article-title: A comparison of self-reported and device measured sedentary behaviour in adults: a systematic review and meta-analysis
  publication-title: Int J Behav Nutr Phys Act
  doi: 10.1186/s12966-020-00938-3
– volume: 9
  start-page: 687
  issue: 4
  year: 2012
  ident: pgen.1009089.ref090
  article-title: Classification of sleep disorders
  publication-title: Neurotherapeutics
  doi: 10.1007/s13311-012-0145-6
– start-page: 303925
  year: 2018
  ident: pgen.1009089.ref084
  article-title: Genetic studies of accelerometer-based sleep measures in 85,670 individuals yield new insights into human sleep behaviour
  publication-title: bioRxiv
– volume: 6
  start-page: e889
  issue: 9
  year: 2016
  ident: pgen.1009089.ref046
  article-title: Analysis of 23andMe antidepressant efficacy survey data: implication of circadian rhythm and neuroplasticity in bupropion response
  publication-title: Transl Psychiatry
  doi: 10.1038/tp.2016.171
– volume: 463
  start-page: 161
  issue: 1
  year: 2012
  ident: pgen.1009089.ref055
  article-title: Sleep and cardiovascular regulation
  publication-title: Pflugers Arch
  doi: 10.1007/s00424-011-1041-3
– volume: 44
  start-page: 512
  issue: 2
  year: 2015
  ident: pgen.1009089.ref098
  article-title: Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyv080
– volume: 122
  start-page: 433
  issue: 3
  year: 2018
  ident: pgen.1009089.ref040
  article-title: Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of Coronary Artery Disease
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.117.312086
– volume: 2
  start-page: 513
  issue: 4
  year: 2006
  ident: pgen.1009089.ref069
  article-title: Effects of restless legs syndrome (RLS) on sleep
  publication-title: Neuropsychiatr Dis Treat
  doi: 10.2147/nedt.2006.2.4.513
– volume: 30
  start-page: 56
  issue: 1
  year: 2017
  ident: pgen.1009089.ref001
  article-title: The insomnia with short sleep duration phenotype: an update on it's importance for health and prevention
  publication-title: Curr Opin Psychiatry
  doi: 10.1097/YCO.0000000000000292
– volume: 8
  start-page: 428
  issue: 3
  year: 2017
  ident: pgen.1009089.ref023
  article-title: Body mass index change in gastrointestinal cancer and chronic obstructive pulmonary disease is associated with Dedicator of Cytokinesis 1
  publication-title: J Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12171
– volume: 12
  start-page: e0169649
  issue: 2
  year: 2017
  ident: pgen.1009089.ref080
  article-title: Large Scale Population Assessment of Physical Activity Using Wrist Worn Accelerometers: The UK Biobank Study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0169649
– volume: 10
  start-page: 466
  issue: 8
  year: 2014
  ident: pgen.1009089.ref054
  article-title: Circadian clock control of endocrine factors
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/nrendo.2014.78
– volume: 12
  start-page: e1001779
  issue: 3
  year: 2015
  ident: pgen.1009089.ref078
  article-title: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001779
– volume: 167
  start-page: 1415
  issue: 5
  year: 2016
  ident: pgen.1009089.ref035
  article-title: The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease
  publication-title: Cell
  doi: 10.1016/j.cell.2016.10.042
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: pgen.1009089.ref091
  article-title: Regularization and variable selection via the elastic net
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 14
  start-page: 1209
  issue: 7
  year: 2018
  ident: pgen.1009089.ref009
  article-title: Use of Actigraphy for the Evaluation of Sleep Disorders and Circadian Rhythm Sleep-Wake Disorders: An American Academy of Sleep Medicine Systematic Review, Meta-Analysis, and GRADE Assessment
  publication-title: J Clin Sleep Med
  doi: 10.5664/jcsm.7228
– volume: 4
  start-page: 44
  issue: 1
  year: 2009
  ident: pgen.1009089.ref068
  article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2008.211
– volume: 43
  start-page: 1085
  issue: 6
  year: 2011
  ident: pgen.1009089.ref082
  article-title: Validation of the GENEA Accelerometer
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0b013e31820513be
– volume: 42
  start-page: 1161
  issue: 6
  year: 2018
  ident: pgen.1009089.ref073
  article-title: Genome-wide association study of habitual physical activity in over 377,000 UK Biobank participants identifies multiple variants including CADM2 and APOE
  publication-title: Int J Obes (Lond)
  doi: 10.1038/s41366-018-0120-3
– volume: 50
  start-page: 229
  issue: 2
  year: 2018
  ident: pgen.1009089.ref047
  article-title: Multi-trait analysis of genome-wide association summary statistics using MTAG
  publication-title: Nat Genet
  doi: 10.1038/s41588-017-0009-4
– volume: 49
  start-page: 1458
  issue: 10
  year: 2017
  ident: pgen.1009089.ref039
  article-title: Genome-wide association study identifies 112 new loci for body mass index in the Japanese population
  publication-title: Nat Genet
  doi: 10.1038/ng.3951
– volume: 19
  start-page: 34
  issue: 1
  year: 2019
  ident: pgen.1009089.ref057
  article-title: Association between digestive symptoms and sleep disturbance: a cross-sectional community-based study
  publication-title: BMC Gastroenterol
  doi: 10.1186/s12876-019-0945-9
– start-page: 267
  year: 1996
  ident: pgen.1009089.ref092
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society Series B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 11
  start-page: e0167472
  issue: 12
  year: 2016
  ident: pgen.1009089.ref081
  article-title: Estimation of Physical Activity Energy Expenditure during Free-Living from Wrist Accelerometry in UK Adults
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0167472
– volume: 7
  start-page: 10889
  year: 2016
  ident: pgen.1009089.ref022
  article-title: Genome-wide association analysis identifies novel loci for chronotype in 100,420 individuals from the UK Biobank
  publication-title: Nature communications
  doi: 10.1038/ncomms10889
– volume: 43
  start-page: 1121
  issue: 4
  year: 2018
  ident: pgen.1009089.ref041
  article-title: Association Between Thyroid-Stimulating Hormone and Renal Function: a Mendelian Randomization Study
  publication-title: Kidney Blood Press Res
  doi: 10.1159/000491808
– volume: 8
  start-page: 21
  year: 2017
  ident: pgen.1009089.ref034
  article-title: Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia
  publication-title: Mol Autism
  doi: 10.1186/s13229-017-0137-9
– volume: 37
  start-page: 584
  issue: 6
  year: 2016
  ident: pgen.1009089.ref007
  article-title: Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures
  publication-title: Endocr Rev
  doi: 10.1210/er.2016-1083
– volume: 1380
  start-page: 195
  issue: 1
  year: 2016
  ident: pgen.1009089.ref074
  article-title: Gastroesophageal reflux disease: recent advances and its association with sleep
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/nyas.13143
– volume: 61
  start-page: 268
  issue: 5
  year: 1973
  ident: pgen.1009089.ref087
  article-title: The Viterbi Algorithm
  publication-title: Proc IEEE
– volume: 1
  start-page: 40
  issue: 1
  year: 2015
  ident: pgen.1009089.ref088
  article-title: National Sleep Foundation's sleep time duration recommendations: methodology and results summary
  publication-title: Sleep Health
  doi: 10.1016/j.sleh.2014.12.010
– volume: 21
  start-page: 1608
  issue: 11
  year: 2016
  ident: pgen.1009089.ref032
  article-title: Family-based association analyses of imputed genotypes reveal genome-wide significant association of Alzheimer's disease with OSBPL6, PTPRG, and PDCL3
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2015.218
– volume: 18
  start-page: 85
  issue: 1
  year: 2009
  ident: pgen.1009089.ref013
  article-title: Algorithms for sleep–wake identification using actigraphy: a comparative study and new results
  publication-title: Journal of Sleep Research
  doi: 10.1111/j.1365-2869.2008.00706.x
– volume: 37
  start-page: 1554
  issue: 6
  year: 1966
  ident: pgen.1009089.ref085
  article-title: Statistical inference for probabilistic functions of finite state Markov chains
  publication-title: Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177699147
– volume: 16
  start-page: 148
  issue: 2
  year: 2007
  ident: pgen.1009089.ref072
  article-title: Robust circadian rhythm in heart rate and its variability: influence of exogenous melatonin and photoperiod
  publication-title: J Sleep Res
  doi: 10.1111/j.1365-2869.2007.00581.x
– volume: 48
  start-page: 1557
  issue: 12
  year: 2016
  ident: pgen.1009089.ref052
  article-title: Identification of genomic loci associated with resting heart rate and shared genetic predictors with all-cause mortality
  publication-title: Nat Genet
  doi: 10.1038/ng.3708
– volume: 10
  start-page: 1585
  issue: 1
  year: 2019
  ident: pgen.1009089.ref017
  article-title: Genetic studies of accelerometer-based sleep measures yield new insights into human sleep behaviour
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09576-1
– volume: 17
  start-page: 201
  issue: 3
  year: 1994
  ident: pgen.1009089.ref012
  article-title: Activity-based sleep-wake identification: an empirical test of methodological issues
  publication-title: Sleep
  doi: 10.1093/sleep/17.3.201
– volume: 243
  start-page: 16
  year: 2019
  ident: pgen.1009089.ref045
  article-title: GWAS and systems biology analysis of depressive symptoms among smokers from the COPDGene cohort
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2018.09.003
– start-page: 1
  year: 2020
  ident: pgen.1009089.ref077
  article-title: A novel machine learning unsupervised algorithm for sleep/wake identification using actigraphy
  publication-title: Chronobiology International
– volume: 29
  issue: 3
  year: 2017
  ident: pgen.1009089.ref075
  article-title: Sleep disturbances in irritable bowel syndrome: a systematic review
  publication-title: Neurogastroenterol Motil
– volume: 30
  start-page: 1167
  issue: 4
  year: 2012
  ident: pgen.1009089.ref006
  article-title: Circadian rhythm sleep disorders
  publication-title: Neurol Clin
  doi: 10.1016/j.ncl.2012.08.011
– volume: 79
  start-page: 149
  issue: 1
  year: 2006
  ident: pgen.1009089.ref066
  article-title: ELMOD2 is a candidate gene for familial idiopathic pulmonary fibrosis
  publication-title: Am J Hum Genet
  doi: 10.1086/504639
– volume: 41
  start-page: 145
  issue: 2
  year: 2017
  ident: pgen.1009089.ref095
  article-title: Resetting the bar: Statistical significance in whole-genome sequencing-based association studies of global populations
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.22032
– volume: 51
  start-page: 568
  issue: 3
  year: 2019
  ident: pgen.1009089.ref060
  article-title: A statistical framework for cross-tissue transcriptome-wide association analysis
  publication-title: Nat Genet
  doi: 10.1038/s41588-019-0345-7
– volume: 50
  start-page: 257
  issue: 2
  year: 2018
  ident: pgen.1009089.ref083
  article-title: Accelerometer-assessed Physical Activity in Epidemiology: Are Monitors Equivalent?
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0000000000001435
– volume: 39
  start-page: 471
  issue: 4
  year: 2015
  ident: pgen.1009089.ref036
  article-title: Sleep duration and sleep disorder with red blood cell distribution width
  publication-title: Am J Health Behav
  doi: 10.5993/AJHB.39.4.3
– volume: 16
  start-page: 898
  issue: 11
  year: 2017
  ident: pgen.1009089.ref029
  article-title: Identification of novel risk loci for restless legs syndrome in genome-wide association studies in individuals of European ancestry: a meta-analysis
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(17)30327-7
– volume: 10
  start-page: e0119752
  issue: 3
  year: 2015
  ident: pgen.1009089.ref027
  article-title: Modulation of genetic associations with serum urate levels by body-mass-index in humans
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0119752
– start-page: 7
  year: 2018
  ident: pgen.1009089.ref097
  article-title: The MR-Base platform supports systematic causal inference across the human phenome
  publication-title: Elife
– volume: 49
  start-page: 274
  issue: 2
  year: 2017
  ident: pgen.1009089.ref019
  article-title: Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits
  publication-title: Nature genetics
  doi: 10.1038/ng.3749
– volume: 47
  start-page: 291
  issue: 3
  year: 2015
  ident: pgen.1009089.ref018
  article-title: LD Score regression distinguishes confounding from polygenicity in genome-wide association studies
  publication-title: Nat Genet
  doi: 10.1038/ng.3211
– volume: 10
  start-page: 155
  issue: 3
  year: 2006
  ident: pgen.1009089.ref038
  article-title: Does obstructive sleep apnea increase hematocrit?
  publication-title: Sleep Breath
  doi: 10.1007/s11325-006-0064-z
– volume: 15
  start-page: 621
  issue: 2
  year: 2015
  ident: pgen.1009089.ref058
  article-title: Assessment of subjective sleep quality in iron deficiency anaemia
  publication-title: Afr Health Sci
  doi: 10.4314/ahs.v15i2.40
– start-page: 166298
  year: 2017
  ident: pgen.1009089.ref079
  article-title: Genome-wide genetic data on~ 500,000 UK Biobank participants
  publication-title: BioRxiv
– volume: 6
  start-page: 171
  issue: 2
  year: 2013
  ident: pgen.1009089.ref028
  article-title: Genome-wide association study identifies novel loci associated with concentrations of four plasma phospholipid fatty acids in the de novo lipogenesis pathway: results from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium
  publication-title: Circ Cardiovasc Genet
  doi: 10.1161/CIRCGENETICS.112.964619
– volume: 28
  start-page: 330
  issue: 4
  year: 2011
  ident: pgen.1009089.ref005
  article-title: Assessment of circadian rhythms of both skin temperature and motor activity in infants during the first 6 months of life
  publication-title: Chronobiol Int
  doi: 10.3109/07420528.2011.565895
– volume: 10
  start-page: 1100
  issue: 1
  year: 2019
  ident: pgen.1009089.ref016
  article-title: Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-08917-4
– volume: 35
  start-page: 727
  issue: 6
  year: 2012
  ident: pgen.1009089.ref003
  article-title: Boards of Directors of the American Academy of Sleep M, the Sleep Research S. Sleep: a health imperative
  publication-title: Sleep
– volume: 50
  start-page: 381
  issue: 3
  year: 2018
  ident: pgen.1009089.ref050
  article-title: Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection
  publication-title: Nat Genet
  doi: 10.1038/s41588-018-0059-2
– volume: 15
  start-page: 461
  issue: 5
  year: 1992
  ident: pgen.1009089.ref011
  article-title: Automatic sleep/wake identification from wrist activity
  publication-title: Sleep
  doi: 10.1093/sleep/15.5.461
– volume: 9
  start-page: e97263
  issue: 5
  year: 2014
  ident: pgen.1009089.ref061
  article-title: Alternation in the glycolipid transfer protein expression causes changes in the cellular lipidome
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0097263
– volume: 149
  start-page: 1393
  issue: 6
  year: 2012
  ident: pgen.1009089.ref064
  article-title: Insights into RNA biology from an atlas of mammalian mRNA-binding proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.031
– volume: 511
  start-page: 421
  issue: 7510
  year: 2014
  ident: pgen.1009089.ref049
  article-title: Biological insights from 108 schizophrenia-associated genetic loci
  publication-title: Nature
  doi: 10.1038/nature13595
– volume: 4
  start-page: 7
  year: 2015
  ident: pgen.1009089.ref094
  article-title: Second-generation PLINK: rising to the challenge of larger and richer datasets
  publication-title: Gigascience
  doi: 10.1186/s13742-015-0047-8
– year: 2019
  ident: pgen.1009089.ref043
  article-title: Penalized Selection of Periodicities Characterizes the Consolidation of Sleep-Wake Circadian Rhythms During Early Childhood Development
  publication-title: Submitted
– volume: 41
  start-page: 164
  issue: 1
  year: 1970
  ident: pgen.1009089.ref086
  article-title: A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains
  publication-title: Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177697196
– volume: 24
  start-page: 2476
  issue: 9
  year: 2014
  ident: pgen.1009089.ref063
  article-title: Altered expression of diabetes-related genes in Alzheimer's disease brains: the Hisayama study
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bht101
– volume: 168
  start-page: 649
  issue: 8
  year: 2015
  ident: pgen.1009089.ref033
  article-title: Genome-wide association study of schizophrenia in Ashkenazi Jews
  publication-title: Am J Med Genet B Neuropsychiatr Genet
  doi: 10.1002/ajmg.b.32349
– volume: 8
  start-page: 7961
  issue: 1
  year: 2018
  ident: pgen.1009089.ref015
  article-title: Statistical machine learning of sleep and physical activity phenotypes from sensor data in 96,220 UK Biobank participants
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-26174-1
– year: 2019
  ident: pgen.1009089.ref093
  publication-title: PML: Penalized Multi-Band Learning for Circadian Rhythm Analysis Using Actigraphy
– volume: 3
  start-page: e03351
  year: 2014
  ident: pgen.1009089.ref065
  article-title: A Ras-like domain in the light intermediate chain bridges the dynein motor to a cargo-binding region
  publication-title: Elife
  doi: 10.7554/eLife.03351
– year: 2018
  ident: pgen.1009089.ref062
  publication-title: Gene Ontology Data Archive
– volume: 30
  start-page: 76
  issue: 2
  year: 2015
  ident: pgen.1009089.ref071
  article-title: Thyroid circadian timing: roles in physiology and thyroid malignancies
  publication-title: J Biol Rhythms
  doi: 10.1177/0748730414557634
– volume: 15
  start-page: 418
  issue: 12
  year: 2013
  ident: pgen.1009089.ref002
  article-title: Insomnia and its impact on physical and mental health
  publication-title: Curr Psychiatry Rep
  doi: 10.1007/s11920-013-0418-8
– volume: 47
  start-page: 1228
  issue: 11
  year: 2015
  ident: pgen.1009089.ref053
  article-title: Partitioning heritability by functional annotation using genome-wide association summary statistics
  publication-title: Nat Genet
  doi: 10.1038/ng.3404
– volume: 10
  start-page: e0142533
  issue: 11
  year: 2015
  ident: pgen.1009089.ref010
  article-title: A Novel, Open Access Method to Assess Sleep Duration Using a Wrist-Worn Accelerometer
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0142533
– start-page: 214973
  year: 2018
  ident: pgen.1009089.ref021
  article-title: Genome-wide Analysis of Insomnia (N = 1,331,010) Identifies Novel Loci and Functional Pathways
  publication-title: bioRxiv
– volume: 210
  start-page: 499
  issue: 2
  year: 2018
  ident: pgen.1009089.ref025
  article-title: A Large Multiethnic Genome-Wide Association Study of Adult Body Mass Index Identifies Novel Loci
  publication-title: Genetics
  doi: 10.1534/genetics.118.301479
– volume: 22
  start-page: 75
  year: 2016
  ident: pgen.1009089.ref059
  article-title: Brain iron deficiency in idiopathic restless legs syndrome measured by quantitative magnetic susceptibility at 7 tesla
  publication-title: Sleep Med
  doi: 10.1016/j.sleep.2016.05.001
– volume: 162B
  start-page: 439
  issue: 5
  year: 2013
  ident: pgen.1009089.ref044
  article-title: A genome-wide association study of sleep habits and insomnia
  publication-title: Am J Med Genet B Neuropsychiatr Genet
  doi: 10.1002/ajmg.b.32168
– volume: 9
  start-page: 5257
  issue: 1
  year: 2018
  ident: pgen.1009089.ref014
  article-title: GWAS identifies 14 loci for device-measured physical activity and sleep duration
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-07743-4
– volume: 7
  start-page: e1001308
  issue: 2
  year: 2011
  ident: pgen.1009089.ref024
  article-title: Genome-wide association of familial late-onset Alzheimer's disease replicates BIN1 and CLU and nominates CUGBP2 in interaction with APOE
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1001308
– volume: 7
  start-page: e1002171
  issue: 7
  year: 2011
  ident: pgen.1009089.ref020
  article-title: Genome-wide association study identifies novel restless legs syndrome susceptibility loci on 2p14 and 16q12. 1
  publication-title: PLoS genetics
  doi: 10.1371/journal.pgen.1002171
– volume: 11
  start-page: e1005378
  issue: 10
  year: 2015
  ident: pgen.1009089.ref026
  article-title: The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1005378
– volume: 69
  start-page: 976
  issue: 5
  year: 2017
  ident: pgen.1009089.ref048
  article-title: A Multinational Arab Genome-Wide Association Study Identifies New Genetic Associations for Rheumatoid Arthritis
  publication-title: Arthritis Rheumatol
  doi: 10.1002/art.40051
– volume: 59
  start-page: 1214
  issue: 6
  year: 2016
  ident: pgen.1009089.ref030
  article-title: Variants in the FTO and CDKAL1 loci have recessive effects on risk of obesity and type 2 diabetes, respectively
  publication-title: Diabetologia
  doi: 10.1007/s00125-016-3908-5
– volume: 218
  start-page: 54
  year: 2019
  ident: pgen.1009089.ref056
  article-title: Control of the cardiovascular and respiratory systems during sleep
  publication-title: Auton Neurosci
  doi: 10.1016/j.autneu.2019.01.007
– volume: 28
  start-page: 46
  issue: 1
  year: 2009
  ident: pgen.1009089.ref037
  article-title: Effects of sleep and sleep deprivation on blood cell count and hemostasis parameters in healthy humans
  publication-title: J Thromb Thrombolysis
  doi: 10.1007/s11239-008-0240-z
– volume: 101
  start-page: 939
  issue: 6
  year: 2017
  ident: pgen.1009089.ref096
  article-title: A Powerful Approach to Estimating Annotation-Stratified Genetic Covariance via GWAS Summary Statistics
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2017.11.001
– volume: 518
  start-page: 197
  issue: 7538
  year: 2015
  ident: pgen.1009089.ref031
  article-title: Genetic studies of body mass index yield new insights for obesity biology
  publication-title: Nature
  doi: 10.1038/nature14177
– volume: 37
  start-page: D32
  year: 2009
  ident: pgen.1009089.ref067
  article-title: NCBI Reference Sequences: current status, policy and new initiatives
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn721
– volume: 10
  start-page: 767
  issue: 7
  year: 2013
  ident: pgen.1009089.ref004
  article-title: Sleep disturbance is associated with incident dementia and mortality
  publication-title: Curr Alzheimer Res
  doi: 10.2174/15672050113109990134
– volume: 26
  start-page: 139
  issue: 2
  year: 2014
  ident: pgen.1009089.ref008
  article-title: Circadian misalignment and health
  publication-title: Int Rev Psychiatry
  doi: 10.3109/09540261.2014.911149
– volume: 23
  start-page: 5505
  issue: 20
  year: 2014
  ident: pgen.1009089.ref042
  article-title: Genome-wide association study identifies a novel susceptibility gene for serum TSH levels in Chinese populations
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddu250
– start-page: 303941
  year: 2018
  ident: pgen.1009089.ref089
  article-title: Genome-wide association analyses of chronotype in 697,828 individuals provides new insights into circadian rhythms in humans and links to disease
  publication-title: BioRxiv
SSID ssj0035897
Score 2.4177022
Snippet Wearable devices have been increasingly used in research to provide continuous physical activity monitoring, but how to effectively extract features remains...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1009089
SubjectTerms Accelerometers
Actigraphy - methods
Biobanks
Biology and Life Sciences
Body mass index
Central nervous system
Chromosomes
Circadian rhythm
Circadian Rhythm - genetics
Circadian Rhythm - physiology
Circadian rhythms
Diaries
Electronic data processing
Exercise
Female
Gene loci
Genetic aspects
Genetic factors
Genetic Predisposition to Disease
Genome-wide association studies
Genome-Wide Association Study
Genomes
Humans
Identification and classification
Insomnia
Learning algorithms
Machine learning
Male
Markov Chains
Medicine and Health Sciences
Mental disorders
Metabolism
Middle Aged
Neurological diseases
Phenotypes
Physical activity
Physical sciences
Population
Population genetics
Population studies
Quantitative trait loci
Sleep
Sleep - genetics
Sleep - physiology
Sleep and wakefulness
Sleep disorders
Sleep Wake Disorders - genetics
Sleep Wake Disorders - pathology
Wearable computers
Wearable Electronic Devices
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_kQPBFrF89rbqK4FNskv3M4ymWKlhBrfQtJPvhHZxJuOQqffYfdyabC40U2gdfs5OEzMzOx2bmN4S8FoUAvyR95GzhIw52MsqkN1HClIPNBxG9xN7hzyfy-JR_OhNnl0Z9YU1YgAcOjDu0aSkRpc4YV3IP-laUEPQLXSpnpNU9Eij4vF0yFWwwEzqMVRGCRQrS-qFpjqnkcJDR2wYEhDUC-ONr4pR67P7RQs-add1eFX7-W0V5yS0d3SN3h3iSLsJ37JFbrrpPbocJkxcPyJ_FtqshKHWWetdjeFKwxpvQzUCxt4Q24wgv-hvUHlupqHVoQCiWj9KVDQVF8IiqPndrCu5vRYtBrHAVj3Jpu3auoUVlqVltTA94QDfLi275q31ITo8-fH9_HA1zFyKjUtlFSaoyoZPElkpzZ3WmrVeQdFtWem3S2CibuYzZxFpTxt4KC4ZCIdCe1o6nJXtEZlVduX1CJfccfGNsPBPcFEUWGxsn3liVWaMKOSdsx_jcDKDkOBtjnfd_2hQkJ4GPOYorH8Q1J9F4VxNAOa6hf4cyHWkRUru_AIqWD4qWX6doc_ICNSIP_amjYcgXkkPIjKBCc_Kqp0BYjQrrdn4W27bNP375cQOibyc3Ifo6IXozEPkaFacYGiqA84jpNaE8mFCCBTGT5X1U8h3r2jzlkKYniEULd-4U_-rll-MyPhQL9ipXb5FGQGKvmRRz8jjsk5H9jGGcKuC9arKDJvKZrlSrZQ99rgTk82n65H8I9Cm5k-LhCZYnZQdk1m227hlEmF35vDcmfwG_9XqZ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Li9RAEG50RPAivnd01VYET3GT9Cs5ySguq-AK6srcQtKPnYExiUlG2bN_3KqkJxpZdK_pSmaoV1d1V31FyDORC9iXpAusyV3AwU8GqXQ6iJiyYHwQ0UvsHX5_LI9O-LulWPoDt9aXVe58Yu-oTaXxjPwg5hLHokdh-rL-FuDUKLxd9SM0LpMrCF2GJV1qOSZcTCTDcBUhWKAgufetc0xFB15SL2oQE1YK4PXXZGvqEfxHPz2rN1V7XhD6dy3lH5vT4Q1y3UeVdDGowU1yyZa3yNVhzuTZbfJzse0qCE2toc72SJ4UfHIz9DRQ7DCh9TjIi_4A5ceGKmosuhGKRaR0bYayIvhEWX23Gwqb4JrmXrjwFA90abuxtqZ5aaheN7qHPaDN6qxbfW3vkJPDN59fHwV--kKgVSy7IIoVcDSKTKESbk2SJsYpSL0NK1yi41Ark9qUmcgYXYTOCAPuQiHcXpJYHhfsLpmVVWn3CJXccdghQ-2Y4DrP01CbMHLaqNRolcs5YTvGZ9pDk-OEjE3W37cpSFEGPmYorsyLa06C8a16gOb4D_0rlOlIi8Da_YOqOc28nWYmLiSCImptC-7AveUF5JgiKZTV0iR8Th6jRmRDl-roHrKF5BA4I7TQnDztKRBco8TqndN827bZ2w9fLkD06fgiRB8nRM89katQcXLfVgGcR2SvCeX-hBL8iJ4s76GS71jXZr8tDt7cKf75y0_GZfwolu2VttoijYD0PmFSzMm9wU5G9jOG0aqA31UTC5rIZ7pSrlc9ALoSkNXH8f1__60H5FqMhyNYfpTuk1nXbO1DiCC74lHvJn4BiydxjA
  priority: 102
  providerName: ProQuest
Title Automated feature extraction from population wearable device data identified novel loci associated with sleep and circadian rhythms
URI https://www.ncbi.nlm.nih.gov/pubmed/33075057
https://www.proquest.com/docview/2460111109
https://www.proquest.com/docview/2452498365
https://pubmed.ncbi.nlm.nih.gov/PMC7595622
https://doaj.org/article/d2b63423cceb4f048ab26158b7ec6d84
http://dx.doi.org/10.1371/journal.pgen.1009089
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF61qZC4IN4NlLAgJE6uYntfPiCUolYFqQEVgnKz7H00kYId7ATImT_OjO1YGKWiV--sbc3uvHZnviHkFU842CXhPGsS5zHQk14knPb8UFoQPvDoBdYOX4zF-YR9mPLpHtn2bG0YWO4M7bCf1KRYHP_6vnkLAv-m6tog_e2k4yWwHG_98SprnxyAbZIoqhesvVcIuYpkU0B33cyOgapw_Ftt3Vsu8nKXK_pvRuVfJursLrnT-JZ0VG-Ge2TPZvfJrbrb5OYB-T1ar3JwUK2hzlZ4nhQ0c1FXNlCsM6HLtp0X_QkigGVV1FhUJhRTSenc1MlF8Ios_2EXFEzhnCbNEsNTPNal5cLaJU0yQ_W80BX4AS1mm9XsW_mQTM5Ov7w795oeDJ6WgVh5fiAjrnzfpFIxa1SkjJMQgJswdUoHQy1NZKPQ-MbodOgMN6A0JILuKWVZkIaPSC_LM3tIqGCOgZ0cahdyppMkGmoz9J02MjJaJqJPwi3jY90AlGOfjEVc3bpJCFRqPsa4XHGzXH3itbOWNUDHf-hPcE1bWoTXrh7kxVXcSGtsglQgNKLWNmUOlFySQqTJVSqtFkaxPnmOOyKua1VbJRGPBAP3GQGG-uRlRYEQGxnm8Fwl67KM33_8egOiz-ObEF12iF43RC7HjZM0xRXAecT36lAedShBm-jO8CFu8i3ryjhgELL7iEsLM7cbf_fwi3YYX4rJe5nN10jDIchXoeB98riWk5b9YYg-K4fvyo4EddanO5LNZxUMuuQQ2wfBk-v_-Cm5HeDxCCYgRUektyrW9hn4kKt0QPblVA7Iwcnp-NPloDqJGVSq4g_D-nc3
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQviO8VBjMIxFNYEsd28oBQB5s6thU0tmlvIbGdtVJJQtMy9Zn_h7-Ru3xB0AR72Wt8cZu78-_O9n0Q8oJHHOySSCyjo8TyACetQCTKcpg0sPjAoxeYO3wwEsNj78MpP10hP5tcGAyrbDCxBGqdKTwj33Q9gW3RHTt4m3-zsGsU3q42LTQqtdgzy3PYshVvdt-DfF-67s720buhVXcVsJR0xdxyXBlw33F0LH3PaD_wdSJhS6lZnPjKtZXUgQmYdrRWsZ1ormEZSCwj5_vGc2MG814jq_CBNgDB6tb26NNhg_2M-1U7F86ZJVlg18l6TDqbtW68zkExMDYBL9w6xrDsGdBahl4-zYqL3N6_ozf_MIc7t8mt2o-lg0rx7pAVk94l16vOlst75MdgMc_AGTaaJqasHUrBCsyqLAqKOS00b1uH0XPgK6ZwUW0QuCiGrdKJrgKZYIo0-26mFMzuhEa1OsFTPEKmxdSYnEappmoyU2WhBTobL-fjr8V9cnwlknlAemmWmjVChZd4YJNtlTDuqSgKbKVtJ1FaBlrJSPQJaxgfqroYOvbkmIblDZ-ETVHFxxDFFdbi6hOrfSuvioH8h34LZdrSYinv8kE2OwtrZAi1Gwssw6iUib0EADWKYVfL_VgaJbTv9ckGakRY5cW2gBQOhAeuOhYz6pPnJQWW80gxXugsWhRFuPvx5BJEn0eXITrsEL2qiZIMFSeqEzmA81hLrEO53qEE5FKd4TVU8oZ1Rfh7jcObjeJfPPysHcZJMVAwNdkCabjrBT4TvE8eVuukZT9j6B9z-F3ZWUEd-XRH0sm4LLkueQAbBffRv__WBrkxPDrYD_d3R3uPyU0Xj2Yw-ClYJ735bGGegP86j5_WoEHJl6vGqV-aSbA_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFWCQFwQ7wYKXRCIk4nt9XrtA0KBEjUUAgJa5WbsfTSRgm3ihCpn_oqvY8YvMKqgl16947U179mdByGPeczBLvnG0io2lgd60gp9Iy2HCQ3CBx69j7XD7yb-_qH3ZsqnW-RnUwuDaZWNTiwVtcoknpEPXM_HseiOHQ5MnRbxYW_0Iv9m4QQpvGltxmlULHKgNycQvhXPx3tA6yeuO3r9-dW-VU8YsKRw_ZXluCLkgeOoRASeVkEYKCMgvFQsMYF0bSlUqEOmHKVkYhvFFYiEwJZyQaA9N2Gw7wVyUTDuoIyJaRvsMR5Ug104Z5ZgoV2X7THhDGoueZYDi2CWAl69dcxiOT2gtRG9fJEVpznAf-dx_mEYR9fI1dqjpcOKBa-TLZ3eIJeqGZebm-THcL3KwC3WihpddhGlgNRlVU9BsbqF5u0QMXoCWMViLqo0qjCKCax0rqqUJtgizb7rBQUDPKdxzVjwFA-TabHQOqdxqqicL2XZcoEuZ5vV7GtxixyeC11uk16apXqbUN8zHlhnWxrGPRnHoS2V7RipRKikiP0-YQ3iI1m3RcfpHIuovOsTEB5VeIyQXFFNrj6x2rfyqi3If-BfIk1bWGzqXT7IlsdRrSMi5SY-NmSUUieeAdUaJxDf8iARWvoq8PpkFzkiqipkW9UUDX0PnHZsa9Qnj0oIbOyRoogcx-uiiMbvj84A9GlyFqCPHaCnNZDJkHHiuqQDMI9dxTqQOx1I0GGys7yNTN6groh-Szu82TD-6csP22XcFFMGU52tEYa7Xhgwn_fJnUpOWvQzhp4yh--KjgR16NNdSeezsvm64CGEDO7df__WLrkM2il6O54c3CNXXDyjwSyocIf0Vsu1vg-O7Cp5UGoMSr6ct4r6BZszsw8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+feature+extraction+from+population+wearable+device+data+identified+novel+loci+associated+with+sleep+and+circadian+rhythms&rft.jtitle=PLoS+genetics&rft.au=Li%2C+Xinyue&rft.au=Zhao%2C+Hongyu&rft.date=2020-10-19&rft.pub=Public+Library+of+Science&rft.eissn=1553-7404&rft.volume=16&rft.issue=10&rft_id=info:doi/10.1371%2Fjournal.pgen.1009089&rft.externalDocID=2460111109
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon