Whole genome expression profiling associates activation of unfolded protein response with impaired production and release of epinephrine after recurrent hypoglycemia

Recurrent hypoglycemia can occur as a major complication of insulin replacement therapy, limiting the long-term health benefits of intense glycemic control in type 1 and advanced type 2 diabetic patients. It impairs the normal counter-regulatory hormonal and behavioral responses to glucose deprivati...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 12; no. 2; p. e0172789
Main Authors Kim, Juhye Lena, La Gamma, Edmund F, Estabrook, Todd, Kudrick, Necla, Nankova, Bistra B
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 24.02.2017
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recurrent hypoglycemia can occur as a major complication of insulin replacement therapy, limiting the long-term health benefits of intense glycemic control in type 1 and advanced type 2 diabetic patients. It impairs the normal counter-regulatory hormonal and behavioral responses to glucose deprivation, a phenomenon known as hypoglycemia associated autonomic failure (HAAF). The molecular mechanisms leading to defective counter-regulation are not completely understood. We hypothesized that both neuronal (excessive cholinergic signaling between the splanchnic nerve fibers and the adrenal medulla) and humoral factors contribute to the impaired epinephrine production and release in HAAF. To gain further insight into the molecular mechanism(s) mediating the blunted epinephrine responses following recurrent hypoglycemia, we utilized a global gene expression profiling approach. We characterized the transcriptomes during recurrent (defective counter-regulation model) and acute hypoglycemia (normal counter-regulation group) in the adrenal medulla of normal Sprague-Dawley rats. Based on comparison analysis of differentially expressed genes, a set of unique genes that are activated only at specific time points after recurrent hypoglycemia were revealed. A complementary bioinformatics analysis of the functional category, pathway, and integrated network indicated activation of the unfolded protein response. Furthermore, at least three additional pathways/interaction networks altered in the adrenal medulla following recurrent hypoglycemia were identified, which may contribute to the impaired epinephrine secretion in HAAF: greatly increased neuropeptide signaling (proenkephalin, neuropeptide Y, galanin); altered ion homeostasis (Na+, K+, Ca2+) and downregulation of genes involved in Ca2+-dependent exocytosis of secretory vesicles. Given the pleiotropic effects of the unfolded protein response in different organs, involved in maintaining glucose homeostasis, these findings uncover broader general mechanisms that arise following recurrent hypoglycemia which may afford clinicians an opportunity to modulate the magnitude of HAAF syndrome.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceptualization: BBN EFLG.Data curation: TE BBN.Formal analysis: JLK BBN.Funding acquisition: EFLG.Investigation: NK JLK BBN TE.Validation: BBN JLK.Visualization: JLK BBN.Writing – original draft: JLK BBN.Writing – review & editing: BBN EFLG.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0172789