Determining the Control Circuitry of Redox Metabolism at the Genome-Scale

Determining how facultative anaerobic organisms sense and direct cellular responses to electron acceptor availability has been a subject of intense study. However, even in the model organism Escherichia coli, established mechanisms only explain a small fraction of the hundreds of genes that are regu...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 10; no. 4; p. e1004264
Main Authors Federowicz, Stephen, Kim, Donghyuk, Ebrahim, Ali, Lerman, Joshua, Nagarajan, Harish, Cho, Byung-kwan, Zengler, Karsten, Palsson, Bernhard
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.04.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7404
1553-7390
1553-7404
DOI10.1371/journal.pgen.1004264

Cover

Loading…
Abstract Determining how facultative anaerobic organisms sense and direct cellular responses to electron acceptor availability has been a subject of intense study. However, even in the model organism Escherichia coli, established mechanisms only explain a small fraction of the hundreds of genes that are regulated during electron acceptor shifts. Here we propose a qualitative model that accounts for the full breadth of regulated genes by detailing how two global transcription factors (TFs), ArcA and Fnr of E. coli, sense key metabolic redox ratios and act on a genome-wide basis to regulate anabolic, catabolic, and energy generation pathways. We first fill gaps in our knowledge of this transcriptional regulatory network by carrying out ChIP-chip and gene expression experiments to identify 463 regulatory events. We then interfaced this reconstructed regulatory network with a highly curated genome-scale metabolic model to show that ArcA and Fnr regulate >80% of total metabolic flux and 96% of differential gene expression across fermentative and nitrate respiratory conditions. Based on the data, we propose a feedforward with feedback trim regulatory scheme, given the extensive repression of catabolic genes by ArcA and extensive activation of chemiosmotic genes by Fnr. We further corroborated this regulatory scheme by showing a 0.71 r(2) (p<1e-6) correlation between changes in metabolic flux and changes in regulatory activity across fermentative and nitrate respiratory conditions. Finally, we are able to relate the proposed model to a wealth of previously generated data by contextualizing the existing transcriptional regulatory network.
AbstractList Determining how facultative anaerobic organisms sense and direct cellular responses to electron acceptor availability has been a subject of intense study. However, even in the model organism Escherichia coli, established mechanisms only explain a small fraction of the hundreds of genes that are regulated during electron acceptor shifts. Here we propose a qualitative model that accounts for the full breadth of regulated genes by detailing how two global transcription factors (TFs), ArcA and Fnr of E. coli, sense key metabolic redox ratios and act on a genome-wide basis to regulate anabolic, catabolic, and energy generation pathways. We first fill gaps in our knowledge of this transcriptional regulatory network by carrying out ChIP-chip and gene expression experiments to identify 463 regulatory events. We then interfaced this reconstructed regulatory network with a highly curated genome-scale metabolic model to show that ArcA and Fnr regulate >80% of total metabolic flux and 96% of differential gene expression across fermentative and nitrate respiratory conditions. Based on the data, we propose a feedforward with feedback trim regulatory scheme, given the extensive repression of catabolic genes by ArcA and extensive activation of chemiosmotic genes by Fnr. We further corroborated this regulatory scheme by showing a 0.71 r(2) (p<1e-6) correlation between changes in metabolic flux and changes in regulatory activity across fermentative and nitrate respiratory conditions. Finally, we are able to relate the proposed model to a wealth of previously generated data by contextualizing the existing transcriptional regulatory network.
Determining how facultative anaerobic organisms sense and direct cellular responses to electron acceptor availability has been a subject of intense study. However, even in the model organism Escherichia coli, established mechanisms only explain a small fraction of the hundreds of genes that are regulated during electron acceptor shifts. Here we propose a qualitative model that accounts for the full breadth of regulated genes by detailing how two global transcription factors (TFs), ArcA and Fnr of E. coli, sense key metabolic redox ratios and act on a genome-wide basis to regulate anabolic, catabolic, and energy generation pathways. We first fill gaps in our knowledge of this transcriptional regulatory network by carrying out ChIP-chip and gene expression experiments to identify 463 regulatory events. We then interfaced this reconstructed regulatory network with a highly curated genome-scale metabolic model to show that ArcA and Fnr regulate >80% of total metabolic flux and 96% of differential gene expression across fermentative and nitrate respiratory conditions. Based on the data, we propose a feedforward with feedback trim regulatory scheme, given the extensive repression of catabolic genes by ArcA and extensive activation of chemiosmotic genes by Fnr. We further corroborated this regulatory scheme by showing a 0.71 r(2) (p<1e-6) correlation between changes in metabolic flux and changes in regulatory activity across fermentative and nitrate respiratory conditions. Finally, we are able to relate the proposed model to a wealth of previously generated data by contextualizing the existing transcriptional regulatory network.Determining how facultative anaerobic organisms sense and direct cellular responses to electron acceptor availability has been a subject of intense study. However, even in the model organism Escherichia coli, established mechanisms only explain a small fraction of the hundreds of genes that are regulated during electron acceptor shifts. Here we propose a qualitative model that accounts for the full breadth of regulated genes by detailing how two global transcription factors (TFs), ArcA and Fnr of E. coli, sense key metabolic redox ratios and act on a genome-wide basis to regulate anabolic, catabolic, and energy generation pathways. We first fill gaps in our knowledge of this transcriptional regulatory network by carrying out ChIP-chip and gene expression experiments to identify 463 regulatory events. We then interfaced this reconstructed regulatory network with a highly curated genome-scale metabolic model to show that ArcA and Fnr regulate >80% of total metabolic flux and 96% of differential gene expression across fermentative and nitrate respiratory conditions. Based on the data, we propose a feedforward with feedback trim regulatory scheme, given the extensive repression of catabolic genes by ArcA and extensive activation of chemiosmotic genes by Fnr. We further corroborated this regulatory scheme by showing a 0.71 r(2) (p<1e-6) correlation between changes in metabolic flux and changes in regulatory activity across fermentative and nitrate respiratory conditions. Finally, we are able to relate the proposed model to a wealth of previously generated data by contextualizing the existing transcriptional regulatory network.
  Determining how facultative anaerobic organisms sense and direct cellular responses to electron acceptor availability has been a subject of intense study. However, even in the model organism Escherichia coli, established mechanisms only explain a small fraction of the hundreds of genes that are regulated during electron acceptor shifts. Here we propose a qualitative model that accounts for the full breadth of regulated genes by detailing how two global transcription factors (TFs), ArcA and Fnr of E. coli, sense key metabolic redox ratios and act on a genome-wide basis to regulate anabolic, catabolic, and energy generation pathways. We first fill gaps in our knowledge of this transcriptional regulatory network by carrying out ChIP-chip and gene expression experiments to identify 463 regulatory events. We then interfaced this reconstructed regulatory network with a highly curated genome-scale metabolic model to show that ArcA and Fnr regulate >80% of total metabolic flux and 96% of differential gene expression across fermentative and nitrate respiratory conditions. Based on the data, we propose a feedforward with feedback trim regulatory scheme, given the extensive repression of catabolic genes by ArcA and extensive activation of chemiosmotic genes by Fnr. We further corroborated this regulatory scheme by showing a 0.71 r2 (p<1e-6) correlation between changes in metabolic flux and changes in regulatory activity across fermentative and nitrate respiratory conditions. Finally, we are able to relate the proposed model to a wealth of previously generated data by contextualizing the existing transcriptional regulatory network.
Determining how facultative anaerobic organisms sense and direct cellular responses to electron acceptor availability has been a subject of intense study. However, even in the model organism Escherichia coli , established mechanisms only explain a small fraction of the hundreds of genes that are regulated during electron acceptor shifts. Here we propose a qualitative model that accounts for the full breadth of regulated genes by detailing how two global transcription factors (TFs), ArcA and Fnr of E. coli , sense key metabolic redox ratios and act on a genome-wide basis to regulate anabolic, catabolic, and energy generation pathways. We first fill gaps in our knowledge of this transcriptional regulatory network by carrying out ChIP-chip and gene expression experiments to identify 463 regulatory events. We then interfaced this reconstructed regulatory network with a highly curated genome-scale metabolic model to show that ArcA and Fnr regulate >80% of total metabolic flux and 96% of differential gene expression across fermentative and nitrate respiratory conditions. Based on the data, we propose a feedforward with feedback trim regulatory scheme, given the extensive repression of catabolic genes by ArcA and extensive activation of chemiosmotic genes by Fnr. We further corroborated this regulatory scheme by showing a 0.71 r 2 (p<1e-6) correlation between changes in metabolic flux and changes in regulatory activity across fermentative and nitrate respiratory conditions. Finally, we are able to relate the proposed model to a wealth of previously generated data by contextualizing the existing transcriptional regulatory network. All heterotrophic organisms must balance the deployment of consumed carbon compounds between growth and the generation of energy. These two competing objectives have been shown, both computationally and experimentally, to exist as the principal dimensions of the function of metabolic networks. Each of these dimensions can also be thought of as the familiar metabolic functions of catabolism, anabolism, and generation of energy. Here we detail how two global transcription factors (TFs), ArcA and Fnr of Escherichia coli that sense redox ratios, act on a genome-wide basis to coordinately regulate these global metabolic functions through transcriptional control of enzyme and transporter levels in changing environments. A model results from the study that shows how global transcription factors regulate global dimensions of metabolism and form a regulatory hierarchy that reflects the structural hierarchy of the metabolic network.
Determining how facultative anaerobic organisms sense and direct cellular responses to electron acceptor availability has been a subject of intense study. However, even in the model organism Escherichia coli, established mechanisms only explain a small fraction of the hundreds of genes that are regulated during electron acceptor shifts. Here we propose a qualitative model that accounts for the full breadth of regulated genes by detailing how two global transcription factors (TFs), ArcA and Fnr of E. coli, sense key metabolic redox ratios and act on a genome-wide basis to regulate anabolic, catabolic, and energy generation pathways. We first fill gaps in our knowledge of this transcriptional regulatory network by carrying out ChIP-chip and gene expression experiments to identify 463 regulatory events. We then interfaced this reconstructed regulatory network with a highly curated genome-scale metabolic model to show that ArcA and Fnr regulate >80% of total metabolic flux and 96% of differential gene expression across fermentative and nitrate respiratory conditions. Based on the data, we propose a feedforward with feedback trim regulatory scheme, given the extensive repression of catabolic genes by ArcA and extensive activation of chemiosmotic genes by Fnr. We further corroborated this regulatory scheme by showing a 0.71 [r.sup.2] (p < 1e 6) correlation between changes in metabolic flux and changes in regulatory activity across fermentative and nitrate respiratory conditions. Finally, we are able to relate the proposed model to a wealth of previously generated data by contextualizing the existing transcriptional regulatory network.
Determining how facultative anaerobic organisms sense and direct cellular responses to electron acceptor availability has been a subject of intense study. However, even in the model organism Escherichia coli, established mechanisms only explain a small fraction of the hundreds of genes that are regulated during electron acceptor shifts. Here we propose a qualitative model that accounts for the full breadth of regulated genes by detailing how two global transcription factors (TFs), ArcA and Fnr of E. coli, sense key metabolic redox ratios and act on a genome-wide basis to regulate anabolic, catabolic, and energy generation pathways. We first fill gaps in our knowledge of this transcriptional regulatory network by carrying out ChIP-chip and gene expression experiments to identify 463 regulatory events. We then interfaced this reconstructed regulatory network with a highly curated genome-scale metabolic model to show that ArcA and Fnr regulate .80% of total metabolic flux and 96% of differential gene expression across fermentative and nitrate respiratory conditions. Based on the data, we propose a feedforward with feedback trim regulatory scheme, given the extensive repression of catabolic genes by ArcA and extensive activation of chemiosmotic genes by Fnr. We further corroborated this regulatory scheme by showing a 0.71 r2 (p,1e-6) correlation between changes in metabolic flux and changes in regulatory activity across fermentative and nitrate respiratory conditions. Finally, we are able to relate the proposed model to a wealth of previously generated data by contextualizing the existing transcriptional regulatory network.
Audience Academic
Author Zengler, Karsten
Palsson, Bernhard
Nagarajan, Harish
Kim, Donghyuk
Federowicz, Stephen
Ebrahim, Ali
Cho, Byung-kwan
Lerman, Joshua
AuthorAffiliation 1 Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
3 Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
2 Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California, United States of America
Institute of Molecular and Cell Biology (IMCB), ASTAR, Singapore
AuthorAffiliation_xml – name: Institute of Molecular and Cell Biology (IMCB), ASTAR, Singapore
– name: 3 Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
– name: 1 Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
– name: 2 Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California, United States of America
Author_xml – sequence: 1
  givenname: Stephen
  surname: Federowicz
  fullname: Federowicz, Stephen
– sequence: 2
  givenname: Donghyuk
  surname: Kim
  fullname: Kim, Donghyuk
– sequence: 3
  givenname: Ali
  surname: Ebrahim
  fullname: Ebrahim, Ali
– sequence: 4
  givenname: Joshua
  surname: Lerman
  fullname: Lerman, Joshua
– sequence: 5
  givenname: Harish
  surname: Nagarajan
  fullname: Nagarajan, Harish
– sequence: 6
  givenname: Byung-kwan
  surname: Cho
  fullname: Cho, Byung-kwan
– sequence: 7
  givenname: Karsten
  surname: Zengler
  fullname: Zengler, Karsten
– sequence: 8
  givenname: Bernhard
  surname: Palsson
  fullname: Palsson, Bernhard
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24699140$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1904015$$D View this record in Osti.gov
BookMark eNqVk11v0zAUhiM0xLbCP0AQDQnBRYs_88EF0lRgVBpM2oBby3VOWleOXWwHbf8ed-2mBiEE8kUs53nfNznH5zg7sM5Clj3FaIJpid-sXO-tNJP1AuwEI8RIwR5kR5hzOi4ZYgd7-8PsOIQVQpRXdfkoOySsqGvM0FE2ew8RfKettos8LiGfOhu9M_lUe9Xr6G9y1-aX0Ljr_DNEOXdGhy6X8RY-A-s6GF8paeBx9rCVJsCT3XOUffv44ev00_j84mw2PT0fq5LwOAbUAqlAlpQpUtSc8prNm7pqSCFrQMBJQxlQUFwqWqsCtRQSKQlvkZQE01H2fOu7Ni6IXRWCwJxwiigrUSJmW6JxciXWXnfS3wgntbg9cH4hpI9aGUgqKlFVAiZqznCB5lULlCAuG1RhyVXyerdL6-cdNApSdaQZmA7fWL0UC_dT0LpkBSXJ4GRr4ELUIigdQS2VsxZUFLhGDKVvGGWvdine_eghRNHpoMAYacH1m5_DFHFMaJnQF1t0kWoutG1dilUbXJzSoiIVI7hK1OQPVFoNdDqlQ6vT-UDweiBITITruJB9CGJ2dfkf7Jd_Zy--D9mXe-wSpInL4EwftbNhCD7bb8p9N-6udQLYFlDeheChvUcwEpvpubs3YjM9Yjc9Sfb2N1lql9zEp-pp83fxL8UZHYs
CitedBy_id crossref_primary_10_1016_j_copbio_2014_12_017
crossref_primary_10_1016_j_jmb_2016_12_008
crossref_primary_10_1016_j_copbio_2014_12_016
crossref_primary_10_1128_spectrum_02101_22
crossref_primary_10_1128_mbio_03298_22
crossref_primary_10_1371_journal_pgen_1006590
crossref_primary_10_1038_s41467_018_06219_9
crossref_primary_10_1002_pmic_201600316
crossref_primary_10_1128_msystems_00001_21
crossref_primary_10_1038_s41598_017_02110_7
crossref_primary_10_1534_g3_116_029785
crossref_primary_10_1074_jbc_M117_789164
crossref_primary_10_1371_journal_pcbi_1011824
crossref_primary_10_1016_j_celrep_2023_113105
crossref_primary_10_1016_j_celrep_2015_07_043
crossref_primary_10_1128_mmbr_00110_21
crossref_primary_10_1093_nargab_lqad006
crossref_primary_10_1128_jb_00545_21
crossref_primary_10_1371_journal_pcbi_1008647
crossref_primary_10_1016_j_jia_2024_02_014
crossref_primary_10_1038_s41598_020_77927_w
crossref_primary_10_3389_fmicb_2021_711077
crossref_primary_10_1016_j_biortech_2025_132061
crossref_primary_10_1016_j_vetmic_2016_10_011
crossref_primary_10_1371_journal_pgen_1005007
crossref_primary_10_1128_mbio_01448_23
crossref_primary_10_1093_nar_gkad253
crossref_primary_10_1089_ars_2017_7365
crossref_primary_10_1016_j_biotechadv_2019_107441
crossref_primary_10_1128_AEM_00823_18
crossref_primary_10_15252_msb_202010064
crossref_primary_10_1371_journal_pone_0197272
crossref_primary_10_1128_mSphere_00443_21
crossref_primary_10_1007_s12257_020_0030_9
crossref_primary_10_1016_j_coche_2014_08_003
crossref_primary_10_1093_nar_gky069
crossref_primary_10_1371_journal_pone_0147651
crossref_primary_10_1371_journal_pone_0152917
crossref_primary_10_1073_pnas_1702581114
crossref_primary_10_3390_biom12081019
crossref_primary_10_1099_mic_0_000346
crossref_primary_10_1016_j_bbamcr_2014_11_018
crossref_primary_10_1186_s12915_018_0555_y
crossref_primary_10_3390_genes9110565
crossref_primary_10_1016_j_jbc_2022_102304
crossref_primary_10_1093_nar_gky752
crossref_primary_10_1021_jacs_7b13292
crossref_primary_10_1111_mmi_14795
crossref_primary_10_1186_s12934_017_0744_3
crossref_primary_10_3390_microorganisms10030647
crossref_primary_10_1038_s41598_019_42768_9
crossref_primary_10_1128_msystems_00784_24
Cites_doi 10.1074/jbc.M311657200
10.1046/j.1365-2958.2000.01972.x
10.1073/pnas.0406811102
10.1074/jbc.M512312200
10.1073/pnas.0403064101
10.1016/j.tibs.2009.12.001
10.1128/ecosalplus.3.4.4
10.1093/nar/gkq1143
10.1128/MMBR.52.3.318-326.1988
10.1073/pnas.1202582110
10.1016/j.cell.2012.01.021
10.1002/bit.10812
10.1093/nar/gkq780
10.1016/0092-8674(91)90130-Q
10.1111/j.1365-2958.1993.tb01664.x
10.1038/nrmicro787
10.1046/j.1365-2958.1999.01347.x
10.1002/bit.20381
10.1002/bit.20044
10.1006/jmbi.1998.2160
10.1073/pnas.0807227105
10.1371/journal.pone.0025501
10.1073/pnas.0609023104
10.1128/JB.185.1.204-209.2003
10.1371/journal.pgen.1003839
10.1038/nrmicro1022
10.1038/msb.2010.47
10.2144/000112039
10.1038/nrmicro2549
10.1074/jbc.M603450200
10.1038/nbt.2205
10.1074/jbc.M110.211144
10.1093/nar/gkq1110
10.1109/MCSE.2007.53
10.1101/gad.13.16.2134
10.1038/nprot.2011.308
10.1371/journal.pgen.1003565
10.1111/j.1742-4658.2005.04840.x
10.1126/science.1216882
10.1074/jbc.M700728200
10.1093/oxfordjournals.jbchem.a021519
10.1038/ncomms1928
10.1093/nar/gkp335
10.1016/j.molcel.2010.08.031
ContentType Journal Article
Copyright COPYRIGHT 2014 Public Library of Science
2014 Federowicz et al 2014 Federowicz et al
2014 Federowicz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Federowicz S, Kim D, Ebrahim A, Lerman J, Nagarajan H, et al. (2014) Determining the Control Circuitry of Redox Metabolism at the Genome-Scale. PLoS Genet 10(4): e1004264. doi:10.1371/journal.pgen.1004264
Copyright_xml – notice: COPYRIGHT 2014 Public Library of Science
– notice: 2014 Federowicz et al 2014 Federowicz et al
– notice: 2014 Federowicz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Federowicz S, Kim D, Ebrahim A, Lerman J, Nagarajan H, et al. (2014) Determining the Control Circuitry of Redox Metabolism at the Genome-Scale. PLoS Genet 10(4): e1004264. doi:10.1371/journal.pgen.1004264
CorporateAuthor University of California San Diego, La Jolla, CA (United States)
CorporateAuthor_xml – name: University of California San Diego, La Jolla, CA (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1371/journal.pgen.1004264
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals (ND)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic






Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Genome-Scale Control Circuitry of Redox Metabolism
EISSN 1553-7404
ExternalDocumentID 1525303470
oai_doaj_org_article_153a087e12cb4160b8fe3205ad081a5c
PMC3974632
1904015
A368284218
24699140
10_1371_journal_pgen_1004264
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM062791
– fundername: NIGMS NIH HHS
  grantid: GM062791
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
QF4
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
PV9
RIG
RZL
WOQ
PMFND
7X8
3V.
AAPBV
ABPTK
M~E
OIOZB
OTOTI
PQEST
PQUKI
5PM
PUEGO
-
ADACO
BBAFP
PRINS
ID FETCH-LOGICAL-c725t-e0fe28ea734c26953594bd98d26a9e0e52d34e3ec5ac39c60f3e4c2a25f0aa213
IEDL.DBID DOA
ISSN 1553-7404
1553-7390
IngestDate Fri Nov 26 17:13:36 EST 2021
Wed Aug 27 01:19:09 EDT 2025
Thu Aug 21 14:05:37 EDT 2025
Mon Jul 17 03:59:00 EDT 2023
Fri Jul 11 10:01:11 EDT 2025
Tue Jun 17 21:11:51 EDT 2025
Tue Jun 10 20:32:48 EDT 2025
Fri Jun 27 04:12:46 EDT 2025
Fri Jun 27 05:03:57 EDT 2025
Fri Jun 27 04:41:42 EDT 2025
Thu May 22 21:15:41 EDT 2025
Mon Jul 21 05:42:40 EDT 2025
Tue Jul 01 04:24:05 EDT 2025
Thu Apr 24 22:53:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c725t-e0fe28ea734c26953594bd98d26a9e0e52d34e3ec5ac39c60f3e4c2a25f0aa213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
FOA-0000143; GM062791
National Institutes of Health (NIH)
USDOE Office of Science (SC), Biological and Environmental Research (BER)
Current address: Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejoen, Korea.
Conceived and designed the experiments: SF BP BkC. Performed the experiments: BkC DK. Analyzed the data: SF BkC JL KZ. Contributed reagents/materials/analysis tools: SF AE HN. Wrote the paper: SF JL KZ BP.
Current address: Genomatica, Inc., San Diego, California, United States of America.
The authors have declared that no competing interests exist.
OpenAccessLink https://doaj.org/article/153a087e12cb4160b8fe3205ad081a5c
PMID 24699140
PQID 1513051237
PQPubID 23479
ParticipantIDs plos_journals_1525303470
doaj_primary_oai_doaj_org_article_153a087e12cb4160b8fe3205ad081a5c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3974632
osti_scitechconnect_1904015
proquest_miscellaneous_1513051237
gale_infotracmisc_A368284218
gale_infotracacademiconefile_A368284218
gale_incontextgauss_ISR_A368284218
gale_incontextgauss_ISN_A368284218
gale_incontextgauss_IOV_A368284218
gale_healthsolutions_A368284218
pubmed_primary_24699140
crossref_primary_10_1371_journal_pgen_1004264
crossref_citationtrail_10_1371_journal_pgen_1004264
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2014
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References G Unden (ref4) 2008; 79
DF Browning (ref39) 2004; 2
K Kochanowski (ref33) 2013; 110
P Kiley (ref13) 1998
JD Partridge (ref34) 2007; 282
K Patil (ref41) 2005; 102
B-K Cho (ref44) 2006; 40
J Green (ref1) 2004; 2
MD Rolfe (ref3) 2011; 286
DP Clark (ref30) 2005
R Carlson (ref20) 2004; 86
E Noor (ref19) 2010; 39
EW Trotter (ref6) 2011; 6
C Constantinidou (ref5) 2006; 281
JA Lerman (ref36) 2012; 3
R Gourse (ref47) 2000; 37
S Iuchi (ref8) 1996; 120
U Sauer (ref32) 2003; 279
S Estrem (ref27) 1999; 13
BK Cho (ref45) 2008; 105
S Iuchi (ref7) 1993; 9
NE Lewis (ref49) 2010; 6
O Chumsakul (ref29) 2011; 39
R Malpica (ref12) 2004; 101
J Schellenberger (ref50) 2011; 6
ref40
G Semenza (ref43) 2012; 148
S Gama-Castro (ref24) 2010; 39
RBH van Rijsewijk Bart (ref35) 2011; 7
M Cosentino Lagomarsino (ref38) 2007; 104
K Robison (ref22) 1998; 284
S Iuchi (ref2) 1991; 66
S Achebach (ref15) 2005; 272
G Unden (ref14) 2002; 4
E Sharon (ref48) 2012; 30
M Bostock (ref46) 2011
JD Orth (ref31) 2011; 7
IM Keseler (ref26) 2010; 39
JD Partridge (ref11) 2006; 281
DM Park (ref16) 2013; 9
CF Beck (ref28) 1988; 52
S Alexeeva (ref9) 2003; 185
R Carlson (ref17) 2003; 85
TA Krulwich (ref37) 2011; 9
R Schuetz (ref18) 2012; 336
TL Bailey (ref21) 2009; 37
KS Myers (ref25) 2013; 9
S Shalel Levanon (ref10) 2005; 89
N-M Gruning (ref42) 2010; 35
F Perez (ref51) 2007; 9
AM McGuire (ref23) 1999; 32
References_xml – volume: 279
  start-page: 6613
  year: 2003
  ident: ref32
  article-title: The Soluble and Membrane-bound Transhydrogenases UdhA and PntAB Have Divergent Functions in NADPH Metabolism of Escherichia coli
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M311657200
– volume: 7
  start-page: 1
  year: 2011
  ident: ref35
  article-title: Large-scale 13C-flux analysis reveals distinct transcriptional control of respiratory and fermentative metabolism in Escherichia coli
  publication-title: Mol Syst Biol
– volume: 37
  start-page: 687
  issue: 4
  year: 2000
  ident: ref47
  article-title: UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2000.01972.x
– year: 1998
  ident: ref13
  article-title: Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster
  publication-title: FEMS Microbiology Reviews
– volume: 102
  start-page: 2685
  year: 2005
  ident: ref41
  article-title: Uncovering transcriptional regulation of metabolism by using metabolic network topology
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0406811102
– volume: 281
  start-page: 4802
  year: 2006
  ident: ref5
  article-title: A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to nitrate respiration
  publication-title: The Journal of biological chemistry
  doi: 10.1074/jbc.M512312200
– volume: 101
  start-page: 13318
  year: 2004
  ident: ref12
  article-title: Identification of a quinone-sensitive redox switch in the ArcB sensor kinase
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0403064101
– volume: 35
  start-page: 220
  year: 2010
  ident: ref42
  article-title: Regulatory crosstalk of the metabolic network
  publication-title: Trends in Biochemical Sciences
  doi: 10.1016/j.tibs.2009.12.001
– year: 2005
  ident: ref30
  article-title: Two-carbon compounds and fatty acids as carbon sources
  doi: 10.1128/ecosalplus.3.4.4
– volume: 39
  start-page: D583
  year: 2010
  ident: ref26
  article-title: EcoCyc: a comprehensive database of Escherichia coli biology
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gkq1143
– volume: 52
  start-page: 318
  year: 1988
  ident: ref28
  article-title: Divergent Promoters, a Common Form of Gene Organization
  publication-title: Microbiological reviews
  doi: 10.1128/MMBR.52.3.318-326.1988
– volume: 110
  start-page: 1130
  year: 2013
  ident: ref33
  article-title: Functioning of a metabolic flux sensor in Escherichia coli
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1202582110
– volume: 148
  start-page: 399
  year: 2012
  ident: ref43
  article-title: Hypoxia-Inducible Factors in Physiology and Medicine
  publication-title: Cell
  doi: 10.1016/j.cell.2012.01.021
– volume: 4
  start-page: 263
  issue: 3
  year: 2002
  ident: ref14
  article-title: Control of FNR Function of Escherichia coli by O2 and Reducing Conditions
  publication-title: Journal of molecular microbiolog
– volume: 85
  start-page: 1
  year: 2003
  ident: ref17
  article-title: Fundamental Escherichia coli biochemical pathways for biomass and energy production: Identification of reactions
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.10812
– volume: 39
  start-page: 414
  issue: 2
  year: 2011
  ident: ref29
  article-title: Genome-wide binding profiles of the Bacillus subtilis transition state regulator AbrB and its homolog Abh reveals their interactive role in transcriptional regulation
  publication-title: Nucleic acids Research
  doi: 10.1093/nar/gkq780
– ident: ref40
– volume: 66
  start-page: 5
  year: 1991
  ident: ref2
  article-title: Adaptation of Escherichia coli to respiratory conditions: regulation of gene expression
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90130-Q
– volume: 7
  year: 2011
  ident: ref31
  article-title: A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011
  publication-title: Mol Syst Biol
– volume: 9
  start-page: 9
  year: 1993
  ident: ref7
  article-title: Adaptation of Escherichia coli to redox environments by gene expression
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.1993.tb01664.x
– volume: 2
  start-page: 57
  year: 2004
  ident: ref39
  article-title: The regulation of bacterial transcription initiation
  publication-title: Nat Rev Micro
  doi: 10.1038/nrmicro787
– volume: 32
  start-page: 219
  year: 1999
  ident: ref23
  article-title: A weight matrix for binding recognition by the redox-response regulator ArcA-P of Escherichia coli
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.1999.01347.x
– volume: 89
  start-page: 556
  year: 2005
  ident: ref10
  article-title: Effect of oxygen on the Escherichia coli ArcA and FNR regulation systems and metabolic responses
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.20381
– volume: 86
  start-page: 149
  year: 2004
  ident: ref20
  article-title: Fundamental Escherichia coli biochemical pathways for biomass and energy production: creation of overall flux states
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.20044
– volume: 284
  start-page: 241
  year: 1998
  ident: ref22
  article-title: A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1998.2160
– volume: 105
  start-page: 19462
  year: 2008
  ident: ref45
  article-title: Genome-scale reconstruction of the Lrp regulatory network in Escherichia coli
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0807227105
– volume: 6
  start-page: e25501
  year: 2011
  ident: ref6
  article-title: Reprogramming of Escherichia coli K-12 Metabolism during the Initial Phase of Transition from an Anaerobic to a Micro-Aerobic Environment
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0025501
– volume: 104
  start-page: 5516
  year: 2007
  ident: ref38
  article-title: Hierarchy and feedback in the evolution of the Escherichia coli transcription network
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0609023104
– volume: 185
  start-page: 204
  issue: 1
  year: 2003
  ident: ref9
  article-title: Requirement of ArcA for Redox Regulation in Escherichia coli under Microaerobic but Not Anaerobic or Aerobic Conditions
  publication-title: Journal of Bacteriology
  doi: 10.1128/JB.185.1.204-209.2003
– volume: 9
  start-page: e1003839
  year: 2013
  ident: ref16
  article-title: The Bacterial Response Regulator ArcA Uses a Diverse Binding Site Architecture to Regulate Carbon Oxidation Globally
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003839
– volume: 2
  start-page: 954
  year: 2004
  ident: ref1
  article-title: Bacterial redox sensors
  publication-title: Nat Rev Micro
  doi: 10.1038/nrmicro1022
– volume: 6
  start-page: 390
  year: 2010
  ident: ref49
  article-title: Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2010.47
– volume: 40
  start-page: 67
  issue: 1
  year: 2006
  ident: ref44
  article-title: PCR-based tandem epitope tagging system for Escherichia coli genome engineering
  publication-title: Biotechniques
  doi: 10.2144/000112039
– volume: 9
  start-page: 330
  year: 2011
  ident: ref37
  article-title: Molecular aspects of bacterial pH sensing and homeostasis
  publication-title: Nat Rev Micro
  doi: 10.1038/nrmicro2549
– volume: 281
  start-page: 27806
  year: 2006
  ident: ref11
  article-title: Escherichia coli transcriptome dynamics during the transition from anaerobic to aerobic conditions
  publication-title: The Journal of biological chemistry
  doi: 10.1074/jbc.M603450200
– volume: 30
  start-page: 521
  year: 2012
  ident: ref48
  article-title: Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2205
– volume: 286
  start-page: 10147
  year: 2011
  ident: ref3
  article-title: Transcript Profiling and Inference of Escherichia coli K-12 ArcA Activity across the Range of Physiologically Relevant Oxygen Concentrations
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M110.211144
– volume: 39
  start-page: D98
  year: 2010
  ident: ref24
  article-title: RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units)
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gkq1110
– volume: 9
  start-page: 21
  year: 2007
  ident: ref51
  article-title: IPython: A System for Interactive Scientific Computing
  publication-title: Comput Sci Eng
  doi: 10.1109/MCSE.2007.53
– volume: 13
  start-page: 2134
  year: 1999
  ident: ref27
  article-title: Bacterial promoter architecture: subsite structure of UP elements and interactions with the carboxy-terminal domain of the RNA polymerase α subunit
  publication-title: Genes & Development
  doi: 10.1101/gad.13.16.2134
– volume: 6
  start-page: 1290
  year: 2011
  ident: ref50
  article-title: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2011.308
– volume: 9
  start-page: e1003565
  year: 2013
  ident: ref25
  article-title: Genome-scale Analysis of Escherichia coli FNR Reveals Complex Features of Transcription Factor Binding
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003565
– volume: 272
  start-page: 4260
  year: 2005
  ident: ref15
  article-title: Properties and significance of apoFNR as a second form of air-inactivated [4Fe-4S]·FNR of Escherichia coli
  publication-title: FEBS Journal
  doi: 10.1111/j.1742-4658.2005.04840.x
– volume: 336
  start-page: 597
  year: 2012
  ident: ref18
  article-title: Multidimensional Optimality of Microbial Metabolism
  publication-title: Science
  doi: 10.1126/science.1216882
– volume: 282
  start-page: 11230
  year: 2007
  ident: ref34
  article-title: Transition of Escherichia coli from Aerobic to Micro-aerobic Conditions Involves Fast and Slow Reacting Regulatory Components
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.M700728200
– start-page: 1
  year: 2011
  ident: ref46
  article-title: Data-Driven Documents
  publication-title: Data-Driven Documents
– volume: 120
  start-page: 1055
  year: 1996
  ident: ref8
  article-title: Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments
  publication-title: J Biochem
  doi: 10.1093/oxfordjournals.jbchem.a021519
– volume: 3
  start-page: 929
  year: 2012
  ident: ref36
  article-title: In silico method for modelling metabolism and gene product expression at genome scale
  publication-title: Nat Comms
  doi: 10.1038/ncomms1928
– volume: 37
  start-page: W202
  year: 2009
  ident: ref21
  article-title: MEME SUITE: tools for motif discovery and searching
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gkp335
– volume: 39
  start-page: 809
  year: 2010
  ident: ref19
  article-title: Central Carbon Metabolism as a Minimal Biochemical Walk between Precursors for Biomass and Energy
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2010.08.031
– volume: 79
  start-page: 4218
  year: 2008
  ident: ref4
  article-title: The Aerobic and Anaerobic Respiratory Chain of Escherichia coli and Salmonella enterica: Enzymes and Energetics
  publication-title: Ecosal
SSID ssj0035897
Score 2.3522744
Snippet Determining how facultative anaerobic organisms sense and direct cellular responses to electron acceptor availability has been a subject of intense study....
  Determining how facultative anaerobic organisms sense and direct cellular responses to electron acceptor availability has been a subject of intense study....
SourceID plos
doaj
pubmedcentral
osti
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1004264
SubjectTerms Anaerobiosis - genetics
BASIC BIOLOGICAL SCIENCES
Biology and Life Sciences
Computer and Information Sciences
E coli
Electron Transport - genetics
Electrons
Energy Metabolism - genetics
enzyme regulation
Enzymes
Escherichia coli - genetics
Escherichia coli Proteins - genetics
Experiments
Gene expression
Gene Expression Regulation, Bacterial - genetics
gene regulation
Gene Regulatory Networks - genetics
Genetic aspects
Genetic research
Genomes
genomics
metabolic networks
Metabolism
Metabolism - genetics
Metabolites
Neural circuitry
Neurological research
Nitrates
Oxidation-Reduction
oxidation-reduction reactions
Transcription factors
Transcription Factors - genetics
Transcription, Genetic - genetics
transcriptional control
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbKIiQuqDwbWiAgJE6pEj-TA0LlUbVILRKwqDfLcZyy0m5SNlmp--87k3gjgorogcseNp9zGM94vlHG3xDyushUrnhqoTYxEn-SKCsLqFJsLhg1mcm78W0np_Joyj-fibMtspnZ6g3YXFva4Typ6XK-f_lr_Q4C_m03tUElm0X7F2By_OqPSf4WuQ25SWGonvDhuwITaT9uRQgWKSj3_WW6v71llKw6Tf_h5J7UEIKoiDqvm-vY6Z9Nlr9lrcNtcs_TzfCg94_7ZMtVD8idfgDl-iE5_ui7YSCBhUAFQ9-5HtrZ0q5m7XId1mWImqKX4cK14DDzWbMITduBUd914aIGttk9ItPDT98_HEV-uEJkFRVt5OLS0dQZxbilMhNMZDwvsrSg0mQudoIWjDvmrDCWZVbGJXOANFSUsTE0YY_JpKort0NCWqQylyaNuY0h1zksioA5JjLHm7eOBoRtrKitVx7HARhz3X1OU1CB9NbQaHvtbR-QaFh10Stv_AP_HjdowKJudvdHvTzXPgw1nO8mTpVLqM2BisZ5WjpGY2EKoEZG2IC8wO3V_SXUIfr1AZNQmnLgQwF51SFQO6PC5pxzs2oaffzlxw1A305vAvo6Ar3xoLIGm1njb02A5VG4a4TcGyHhmLCjx7vosRqIFaoDW2yjsq0GPggVtgjIDjryxrCNxrFYwG64igPycuPcGt-JTXmVq1eIAQIEhJGpgDzpnX2wPuUSKg8Oq9UoDEbbM35SzX528ubAkLlk9On_2M9dchcYrm-12iOTdrlyz4BFtvnz7mC4Ao-Ibg8
  priority: 102
  providerName: Scholars Portal
Title Determining the Control Circuitry of Redox Metabolism at the Genome-Scale
URI https://www.ncbi.nlm.nih.gov/pubmed/24699140
https://www.proquest.com/docview/1513051237
https://www.osti.gov/servlets/purl/1904015
https://pubmed.ncbi.nlm.nih.gov/PMC3974632
https://doaj.org/article/153a087e12cb4160b8fe3205ad081a5c
http://dx.doi.org/10.1371/journal.pgen.1004264
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9RAEF70RPBF_N3YekYRfIpN9mfy2GpLK_SUauXels1mowd3SbnkwP73ziR7oRGhffAlD5cvgczM7nzDzX5DyLsiU7niqYXaxEi8JFFWFlCl2FwwajKTd-Pbzmby5IJ_nov5tVFf2BPWywP3htuHFWniVLmE2hzIQ5ynpWM0FqaAZGaExd0Xct62mOr3YCbSfqyKECxSUNb7Q3NMJfveRx8uwUHYI4CUYJSUOu3-YYee1LDUUPl0WTf_YqF_N1Ney07Hj8hDTyvDg_5zHpM7rnpC7veDJq-ektNPvusFElUIlC_0HeqhXaztZtGur8K6DFE79He4ci0ExnLRrELTdmDUcV25qAF3umfk4vjo-8eTyA9RiKyioo1cXDqaOqMYt1RmgomM50WWFlSazMVO0IJxx5wVxrLMyrhkDpCGijI2hibsOZlUdeV2SEiLVObSpDG3MeQ0h8UPMMRE5njC1tGAsK0VtfUK4zjoYqm7v80UVBq9NTTaXnvbByQanrrsFTZuwB-igwYs6mN3P0DUaB81-qaoCchrdK_uD5sOq1wfMAklKAfeE5C3HQI1MipswvlpNk2jT7_8uAXo2-w2oPMR6L0HlTXYzBp_OgIsjwJdI-TeCAnbgR3d3sWI1UCgUAXYYruUbTXwPqikRUB2MJC3hm00jr8CFsNVHJA32-DW-E5svqtcvUEMEB0ghkwF5EUf7IP1KZdQYXB4Wo2Wwcg94zvV4lcnYw5MmEtGX_4Pf-6SB8BkfUvVHpm06417BWyxzafkrpqrKbl3eDT7ej7ttgm4nvH0D3jFZuY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determining+the+control+circuitry+of+redox+metabolism+at+the+genome-scale&rft.jtitle=PLoS+genetics&rft.au=Stephen+Federowicz&rft.au=Donghyuk+Kim&rft.au=Ali+Ebrahim&rft.au=Joshua+Lerman&rft.date=2014-04-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-7390&rft.eissn=1553-7404&rft.volume=10&rft.issue=4&rft.spage=e1004264&rft_id=info:doi/10.1371%2Fjournal.pgen.1004264&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_153a087e12cb4160b8fe3205ad081a5c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon