Parallel group independent component analysis for massive fMRI data sets
Independent component analysis (ICA) is widely used in the field of functional neuroimaging to decompose data into spatio-temporal patterns of co-activation. In particular, ICA has found wide usage in the analysis of resting state fMRI (rs-fMRI) data. Recently, a number of large-scale data sets have...
Saved in:
Published in | PloS one Vol. 12; no. 3; p. e0173496 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
09.03.2017
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-6203 1932-6203 |
DOI | 10.1371/journal.pone.0173496 |
Cover
Abstract | Independent component analysis (ICA) is widely used in the field of functional neuroimaging to decompose data into spatio-temporal patterns of co-activation. In particular, ICA has found wide usage in the analysis of resting state fMRI (rs-fMRI) data. Recently, a number of large-scale data sets have become publicly available that consist of rs-fMRI scans from thousands of subjects. As a result, efficient ICA algorithms that scale well to the increased number of subjects are required. To address this problem, we propose a two-stage likelihood-based algorithm for performing group ICA, which we denote Parallel Group Independent Component Analysis (PGICA). By utilizing the sequential nature of the algorithm and parallel computing techniques, we are able to efficiently analyze data sets from large numbers of subjects. We illustrate the efficacy of PGICA, which has been implemented in R and is freely available through the Comprehensive R Archive Network, through simulation studies and application to rs-fMRI data from two large multi-subject data sets, consisting of 301 and 779 subjects respectively. |
---|---|
AbstractList | Independent component analysis (ICA) is widely used in the field of functional neuroimaging to decompose data into spatio-temporal patterns of co-activation. In particular, ICA has found wide usage in the analysis of resting state fMRI (rs-fMRI) data. Recently, a number of large-scale data sets have become publicly available that consist of rs-fMRI scans from thousands of subjects. As a result, efficient ICA algorithms that scale well to the increased number of subjects are required. To address this problem, we propose a two-stage likelihood-based algorithm for performing group ICA, which we denote Parallel Group Independent Component Analysis (PGICA). By utilizing the sequential nature of the algorithm and parallel computing techniques, we are able to efficiently analyze data sets from large numbers of subjects. We illustrate the efficacy of PGICA, which has been implemented in R and is freely available through the Comprehensive R Archive Network, through simulation studies and application to rs-fMRI data from two large multi-subject data sets, consisting of 301 and 779 subjects respectively. Independent component analysis (ICA) is widely used in the field of functional neuroimaging to decompose data into spatio-temporal patterns of co-activation. In particular, ICA has found wide usage in the analysis of resting state fMRI (rs-fMRI) data. Recently, a number of large-scale data sets have become publicly available that consist of rs-fMRI scans from thousands of subjects. As a result, efficient ICA algorithms that scale well to the increased number of subjects are required. To address this problem, we propose a two-stage likelihood-based algorithm for performing group ICA, which we denote Parallel Group Independent Component Analysis (PGICA). By utilizing the sequential nature of the algorithm and parallel computing techniques, we are able to efficiently analyze data sets from large numbers of subjects. We illustrate the efficacy of PGICA, which has been implemented in R and is freely available through the Comprehensive R Archive Network, through simulation studies and application to rs-fMRI data from two large multi-subject data sets, consisting of 301 and 779 subjects respectively.Independent component analysis (ICA) is widely used in the field of functional neuroimaging to decompose data into spatio-temporal patterns of co-activation. In particular, ICA has found wide usage in the analysis of resting state fMRI (rs-fMRI) data. Recently, a number of large-scale data sets have become publicly available that consist of rs-fMRI scans from thousands of subjects. As a result, efficient ICA algorithms that scale well to the increased number of subjects are required. To address this problem, we propose a two-stage likelihood-based algorithm for performing group ICA, which we denote Parallel Group Independent Component Analysis (PGICA). By utilizing the sequential nature of the algorithm and parallel computing techniques, we are able to efficiently analyze data sets from large numbers of subjects. We illustrate the efficacy of PGICA, which has been implemented in R and is freely available through the Comprehensive R Archive Network, through simulation studies and application to rs-fMRI data from two large multi-subject data sets, consisting of 301 and 779 subjects respectively. |
Audience | Academic |
Author | Lindquist, Martin A. Nebel, Mary Beth Huang, Lei Mostofsky, Stewart H. Caffo, Brian S. Pekar, James J. Eloyan, Ani Chen, Shaojie Qiu, Huitong |
AuthorAffiliation | 5 Department of Neurology, Johns Hopkins University, Baltimore, United States of America 2 School of Medicine, Johns Hopkins University, Baltimore, United States of America 4 Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, United States of America 1 Department of Biostatistics, Johns Hopkins University, Baltimore, United States of America University of Texas at Austin, UNITED STATES 3 Kennedy Krieger Institute, Baltimore, United States of America 6 Department of Biostatistics, Brown University, Providence, Rhode Island, United States of America |
AuthorAffiliation_xml | – name: 1 Department of Biostatistics, Johns Hopkins University, Baltimore, United States of America – name: 4 Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, United States of America – name: 3 Kennedy Krieger Institute, Baltimore, United States of America – name: 5 Department of Neurology, Johns Hopkins University, Baltimore, United States of America – name: 2 School of Medicine, Johns Hopkins University, Baltimore, United States of America – name: 6 Department of Biostatistics, Brown University, Providence, Rhode Island, United States of America – name: University of Texas at Austin, UNITED STATES |
Author_xml | – sequence: 1 givenname: Shaojie orcidid: 0000-0002-3543-8964 surname: Chen fullname: Chen, Shaojie – sequence: 2 givenname: Lei surname: Huang fullname: Huang, Lei – sequence: 3 givenname: Huitong surname: Qiu fullname: Qiu, Huitong – sequence: 4 givenname: Mary Beth surname: Nebel fullname: Nebel, Mary Beth – sequence: 5 givenname: Stewart H. surname: Mostofsky fullname: Mostofsky, Stewart H. – sequence: 6 givenname: James J. surname: Pekar fullname: Pekar, James J. – sequence: 7 givenname: Martin A. surname: Lindquist fullname: Lindquist, Martin A. – sequence: 8 givenname: Ani surname: Eloyan fullname: Eloyan, Ani – sequence: 9 givenname: Brian S. surname: Caffo fullname: Caffo, Brian S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28278208$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk2uL1DAUhousuBf9B6IFQfTDjLm1af0gLIu6Aysr6-VryOQykyVtxqRd3H_vqdOR6bKoFNpw-pw357wnOc4O2tCaLHuK0RxTjt9chz620s83EJ4jzCmrywfZEa4pmZUE0YO99WF2nNI1QgWtyvJRdkgqwiuCqqPs_LOM0nvj81UM_SZ3rTYbA6-2y1VoBnFYSdjoNrmU2xDzRqbkbkxuP10tci07mSfTpcfZQyt9Mk_G70n27cP7r2fns4vLj4uz04uZ4qToZqWRXBOD6hIzUnOKETJFwbFGbGmJIspSyjWFbgyhmjGriS0U5nXBJTW0oifZ863uxockRhOSwBUvKmgLl0AstoQO8lpsomtkvBVBOvE7EOJKyNg55Y1gy5rzQlFb6yWjWktZGIskRqUqENQDWu_G3fplY7QCM8Cuiej0T-vWYhVuREEZYxSBwKtRIIYfvUmdaFxSxnvZmtAPdVcYKq_Ain-jvGR1Tdlgwos76P1GjNRKQq-utQFKVIOoOGUV4wxhzICa30PBo03jFMzfOohPEl5PEoDpzM9uJfuUxOLL1f-zl9-n7Ms9dm2k79Yp-L5zoU1T8Nn-UP5MY3eqAXi7BVQMKUVjhXKdHHSgNecFRmK4QjvTxHDKxXiFIJndSd7p_zXtFxKiHeE |
CitedBy_id | crossref_primary_10_1016_j_envint_2023_108344 crossref_primary_10_1016_j_jneumeth_2018_02_013 crossref_primary_10_1007_s12561_017_9195_y crossref_primary_10_1186_s41044_018_0033_0 crossref_primary_10_1515_revneuro_2019_0108 |
Cites_doi | 10.1162/neco.1995.7.6.1129 10.1002/hbm.21170 10.1016/j.neuroimage.2008.10.057 10.1145/1465482.1465560 10.1002/hbm.1048 10.1016/j.neuroimage.2015.05.047 10.1002/hbm.23086 10.1073/pnas.0911855107 10.1038/mp.2013.78 10.3389/fnsys.2014.00080 10.3389/fnsys.2014.00106 10.1016/j.neuroimage.2008.05.008 10.1080/10485252.2010.532554 10.1016/0165-1684(91)90079-X 10.1016/j.neuroimage.2004.10.043 10.1016/j.neuroimage.2014.07.051 10.1016/j.neuroimage.2004.07.051 10.1016/j.neuroimage.2009.12.008 10.1162/neco.1997.9.7.1483 10.1016/j.neuroimage.2012.11.008 10.1093/biostatistics/kxs055 10.1109/TC.1972.5009071 10.1002/mrm.22818 10.3389/fnsys.2011.00002 10.1137/100804139 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2017 Public Library of Science 2017 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2017 Chen et al 2017 Chen et al |
Copyright_xml | – notice: COPYRIGHT 2017 Public Library of Science – notice: 2017 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2017 Chen et al 2017 Chen et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0173496 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Engineering Research Database MEDLINE - Academic Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Parallel group independent component analysis for massive fMRI data sets |
EISSN | 1932-6203 |
ExternalDocumentID | 1875828216 oai_doaj_org_article_4b9775c3f9db43ddaa5ef0a106c50bf2 PMC5344430 4319960811 A484740114 28278208 10_1371_journal_pone_0173496 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH078160 – fundername: NIBIB NIH HHS grantid: R01 EB012547 – fundername: NIBIB NIH HHS grantid: P41 EB015909 – fundername: NIBIB NIH HHS grantid: R01 EB016061 – fundername: NINDS NIH HHS grantid: R01 NS060910 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 ESTFP PUEGO 5PM - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c725t-6ea7d2e096142973100e5571d04bf2c2cf337d3734e23d44fd2f5c17957a3e383 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Fri Nov 26 17:13:31 EST 2021 Wed Aug 27 01:28:49 EDT 2025 Thu Aug 21 18:32:57 EDT 2025 Mon Sep 08 13:45:28 EDT 2025 Mon Sep 08 12:38:53 EDT 2025 Fri Jul 25 10:25:17 EDT 2025 Tue Jun 17 21:07:29 EDT 2025 Tue Jun 10 20:39:12 EDT 2025 Fri Jun 27 05:09:24 EDT 2025 Fri Jun 27 03:40:39 EDT 2025 Thu May 22 21:21:44 EDT 2025 Thu Apr 03 06:59:52 EDT 2025 Tue Jul 01 04:09:23 EDT 2025 Thu Apr 24 22:56:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c725t-6ea7d2e096142973100e5571d04bf2c2cf337d3734e23d44fd2f5c17957a3e383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceptualization: BC AE ML JP. Data curation: MB SM JP. Formal analysis: SC LH HQ AE. Funding acquisition: BC. Investigation: MB SM JP AE. Methodology: SC LH HQ MB BC AE. Project administration: BC AE ML. Resources: SM MB JP ML. Software: SC LH HQ AE BC. Supervision: BC AE ML JP SM MB. Validation: MB AE SM JP BC. Writing – original draft: SC AE BC LH HQ MB SM JP ML. Writing – review & editing: SC AE BC LH HQ MB SM JP ML. Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0002-3543-8964 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0173496 |
PMID | 28278208 |
PQID | 1875828216 |
PQPubID | 1436336 |
PageCount | e0173496 |
ParticipantIDs | plos_journals_1875828216 doaj_primary_oai_doaj_org_article_4b9775c3f9db43ddaa5ef0a106c50bf2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5344430 proquest_miscellaneous_1881758897 proquest_miscellaneous_1876499348 proquest_journals_1875828216 gale_infotracmisc_A484740114 gale_infotracacademiconefile_A484740114 gale_incontextgauss_ISR_A484740114 gale_incontextgauss_IOV_A484740114 gale_healthsolutions_A484740114 pubmed_primary_28278208 crossref_citationtrail_10_1371_journal_pone_0173496 crossref_primary_10_1371_journal_pone_0173496 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-09 |
PublicationDateYYYYMMDD | 2017-03-09 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2017 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | A Di Martino (ref24) 2014; 19 W Koch (ref3) 2010; 51 ref17 Y Du (ref6) 2013; 69 ref16 VD Calhoun (ref13) 2015; 118 SM Smith (ref11) 2014; 101 N Halko (ref12) 2011; 33 SE Joel (ref29) 2011; 66 SM Smith (ref23) 2004; 23 VD Calhoun (ref10) 2009; 45 A Hyvärinen (ref21) 1997; 9 MJ Flynn (ref28) 1972; 100 A Eloyan (ref14) 2013; 14 ref26 ref25 AM Michael (ref4) 2014; 8 ref20 TG Mattson (ref27) 2004 EB Erhardt (ref7) 2011; 32 AJ Bell (ref15) 1995; 7 Y Du (ref5) 2016; 37 HH Harman (ref18) 1976 Y Guo (ref9) 2008; 42 BB Biswal (ref22) 2010; 107 CF Beckmann (ref8) 2005; 25 VD Calhoun (ref2) 2001; 14 C Jutten (ref1) 1991; 24 A Eloyan (ref19) 2011; 23 |
References_xml | – volume: 7 start-page: 1129 issue: 6 year: 1995 ident: ref15 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural computation doi: 10.1162/neco.1995.7.6.1129 – volume: 32 start-page: 2075 issue: 12 year: 2011 ident: ref7 article-title: Comparison of multi-subject ICA methods for analysis of fMRI data publication-title: Human brain mapping doi: 10.1002/hbm.21170 – volume: 45 start-page: S163 issue: 1 year: 2009 ident: ref10 article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.10.057 – year: 1976 ident: ref18 article-title: Modern factor analysis – ident: ref20 doi: 10.1145/1465482.1465560 – volume: 14 start-page: 140 issue: 3 year: 2001 ident: ref2 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Human brain mapping doi: 10.1002/hbm.1048 – volume: 118 start-page: 662 year: 2015 ident: ref13 article-title: Comparison of PCA approaches for very large group ICA publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.05.047 – volume: 37 start-page: 1005 issue: 3 year: 2016 ident: ref5 article-title: Artifact removal in the context of group ICA: A comparison of single-subject and group approaches publication-title: Human brain mapping doi: 10.1002/hbm.23086 – volume: 107 start-page: 4734 issue: 10 year: 2010 ident: ref22 article-title: Toward discovery science of human brain function publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0911855107 – ident: ref17 – volume: 19 start-page: 659 issue: 6 year: 2014 ident: ref24 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Molecular psychiatry doi: 10.1038/mp.2013.78 – ident: ref25 doi: 10.3389/fnsys.2014.00080 – volume: 8 start-page: 106 year: 2014 ident: ref4 article-title: Preserving subject variability in group fMRI analysis: performance evaluation of GICA vs. IVA publication-title: Front Syst Neurosci doi: 10.3389/fnsys.2014.00106 – volume: 42 start-page: 1078 issue: 3 year: 2008 ident: ref9 article-title: A unified framework for group independent component analysis for multi-subject fMRI data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.05.008 – volume: 23 start-page: 513 issue: 2 year: 2011 ident: ref19 article-title: Smooth density estimation with moment constraints using mixture distributions publication-title: Journal of nonparametric statistics doi: 10.1080/10485252.2010.532554 – volume: 24 start-page: 1 issue: 1 year: 1991 ident: ref1 article-title: Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture publication-title: Signal processing doi: 10.1016/0165-1684(91)90079-X – volume: 25 start-page: 294 issue: 1 year: 2005 ident: ref8 article-title: Tensorial extensions of independent component analysis for multisubject FMRI analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.10.043 – year: 2004 ident: ref27 article-title: Patterns for parallel programming – volume: 101 start-page: 738 year: 2014 ident: ref11 article-title: Group-PCA for very large fMRI datasets publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.07.051 – volume: 23 start-page: S208 year: 2004 ident: ref23 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 51 start-page: 280 issue: 1 year: 2010 ident: ref3 article-title: Effects of aging on default mode network activity in resting state fMRI: does the method of analysis matter? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.12.008 – volume: 9 start-page: 1483 issue: 7 year: 1997 ident: ref21 article-title: A fast fixed-point algorithm for independent component analysis publication-title: Neural computation doi: 10.1162/neco.1997.9.7.1483 – volume: 69 start-page: 157 year: 2013 ident: ref6 article-title: Group information guided ICA for fMRI data analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.11.008 – volume: 14 start-page: 514 issue: 3 year: 2013 ident: ref14 article-title: Likelihood-based population independent component analysis publication-title: Biostatistics doi: 10.1093/biostatistics/kxs055 – volume: 100 start-page: 948 issue: 9 year: 1972 ident: ref28 article-title: Some computer organizations and their effectiveness publication-title: Computers, IEEE Transactions on doi: 10.1109/TC.1972.5009071 – ident: ref16 – volume: 66 start-page: 644 issue: 3 year: 2011 ident: ref29 article-title: On the relationship between seed-based and ICA-based measures of functional connectivity publication-title: Magnetic Resonance in Medicine doi: 10.1002/mrm.22818 – ident: ref26 doi: 10.3389/fnsys.2011.00002 – volume: 33 start-page: 2580 issue: 5 year: 2011 ident: ref12 article-title: An algorithm for the principal component analysis of large data sets publication-title: SIAM Journal on Scientific computing doi: 10.1137/100804139 |
SSID | ssj0053866 |
Score | 2.2633483 |
Snippet | Independent component analysis (ICA) is widely used in the field of functional neuroimaging to decompose data into spatio-temporal patterns of co-activation.... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0173496 |
SubjectTerms | Adolescent Adult Algorithms Autism Autism Spectrum Disorder - diagnostic imaging Bioengineering Biology and Life Sciences Brain Brain Mapping Child Computer and Information Sciences Computer simulation Data processing Datasets Functional magnetic resonance imaging Health aspects Humans Image Processing, Computer-Assisted - methods Independent component analysis Magnetic Resonance Imaging Medical imaging Medicine and Health Sciences Methods Neuroimaging Neurology Neurosciences Physical Sciences Principal components analysis Research and Analysis Methods Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBpRiEBBzSJn7EybEgqi1SARWKeoscP6DSkl012f_fGccbNaiiHLhF8SRyPs_YM8rMN4S8bipnvXIsddzYVDiRpY1gNi0b6UumXeEzLHA--VwszsSnc3l-rdUX5oQN9MADcAeiAQ9FGu4r2whurdbS-UxDJGNk1viw-2ZVtg2mhj0YrLgoYqEcV_lBXJf99ap1-6CDyJI-OYgCX_-4K8_Wy1V3k8v5Z-bktaPo6D65F31IejjMfYfcce0DshOttKNvI5X0u4dk8VVfYrOUJQ3VG_RibHrbU0wmh4nClY7EJBQcWPobvGnYAak_OT2mmD9KO9d3j8jZ0cfvHxZp7J2QGsVknxZOK8scNnQRoT1VljkpVW4zAaAZZjznynJAwjFuhfCWeWnAOqXS3EHY-pjMWpjELqGKV4CmAz_HM-GV0XnuKjzYC-VzrXxC-BbI2kRicexvsazD3zIFAcaAS41fVUf4E5KOT60HYo1b5N_jGo2ySIsdboCy1FFZ6tuUJSEvcIXrocZ0NO76UMAhLTA2TMirIIHUGC3m3vzUm66rj7_8-Aehb6cToTdRyK8ADqNjvQN8E1JuTSTnE0kwcDMZ3kV93KLS1TnEmBAosxxAmW919Obhl-MwvhTz6Vq32gSZAmJdLsq_yZTgW5ZlpRLyZFD7EX14PRItwtNqYhCT5ZmOtBe_Anu55EIInj39H-v5jNxl6GZhTmA1J7P-cuOeg5PYN3thP7gCFatmNw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcXChiEBBzSJn7EyQkVxLJFKqBCUW-R40dbaUm2m93_35nECQRVhdtqPY7seXkmGX9DyKsyd9YrxyLHjY2EE3FUCmajrJQ-Y9qlPsYLzodf0vmx-HwiT8ILtyaUVfY-sXXUtjb4jnwvgcAasgOWpO-WFxF2jcKvq6GFxk1yK4GTBvU8m33qPTHYcpqG63JcJXtBOrvLunK7oImIlT46jlrU_sE3T5aLurkq8Py7fvKPA2l2l9wJkSTd70S_RW646h7ZCrba0DcBUPrtfTL_plfYMmVB2zsc9HxofbumWFIOC4VfOsCTUAhj6S-IqcEPUn94dECxipQ2bt08IMezjz8-zKPQQSEyisl1lDqtLHPY1kW0Tari2EmpEhuL0jPDjOdcWQ6ccIxbIbxlXhqwUak0d5C8PiSTChaxTajiOXDTQbTjmfDK6CRxOR7vqfKJVn5KeM_IwgR4cexysSjab2YK0oyOLwXuqgjsn5JomLXs4DX-Qf8eZTTQIjh2-0e9Oi2CrRWihKBWGu5zWwpurdbS-VhD8mtkDPuekuco4aK7aTqYeLEv4KgWmCFOycuWAgEyKqzAOdWbpikOvv78D6LvRyOi14HI18AOo8OtB9gTAm-NKHdGlGDmZjS8jfrYc6UpfhsEzOx19OrhF8MwPhSr6ipXb1qaFDJeLrLraDKIMLMsV1PyqFP7gfvweIRbhNlqZBAj8YxHqvOzFsNcciEEjx9fv_Qn5DbDMApr_vIdMlmvNu4pBIHr8llr6ZfEk1yb priority: 102 providerName: ProQuest |
Title | Parallel group independent component analysis for massive fMRI data sets |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28278208 https://www.proquest.com/docview/1875828216 https://www.proquest.com/docview/1876499348 https://www.proquest.com/docview/1881758897 https://pubmed.ncbi.nlm.nih.gov/PMC5344430 https://doaj.org/article/4b9775c3f9db43ddaa5ef0a106c50bf2 http://dx.doi.org/10.1371/journal.pone.0173496 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELe27oUXxPhaoJSAkICHVIk_4uQBoW1a6ZA6pkJR3yIntrdJJS1NK8F_z13qRgSVjwdeoqo-R_H5zneX3P2OkBd5arSVhgaGFTrghodBzqkOklzYhCoT2xALnEcX8XDC30_FdI9se7Y6BlY7QzvsJzVZzvrfvn5_Cwr_pu7aIKPtpP5iXpo-SBhioO-TA7BNMYZjI958VwDtjmNXQPe7mS0DVeP4N6d1ZzGbV7tc0V8zKn8yUYM75LbzLf3jjTAckj1T3iWHTnsr_5WDmH59jwwv1RKbqMz8uqrDv2ma4a58TDKHB4VfygGW-ODY-l_Ay4aT0bej8bmPeaV-ZVbVfTIZnH06HQaup0JQSCpWQWyU1NRgoxdet60KQyOEjHTIc0sLWljGpGbACUOZ5txqakUBWiukYgbC2QekU8JDHBFfshS4acD_sZRbWagoMika_FjaSEnrEbZlZFY4wHHsezHL6q9oEgKPDV8yXFXm2O-RoJm12ABu_IX-BPeooUW47PqP-fIqc9qX8RzcXFEwm-qcM62VEsaGCsLhQoSwbo88xR3ONrWnjdJnxxyMN8eY0SPPawqEzCgxJ-dKrasqO__w-R-IPo5bRC8dkZ0DOwrl6iBgTQjF1aLstihB8YvW8BHK45YrVRZB7AkBNI2AKd2tjO4eftYM400xz64083VNE0MMzHjyJ5oEfM4kSaVHHm7EvuE-3B4BGGG2bClEa3vaI-XNdY1qLhjnnIWP_sd-Pia3KLpfmCuYdklntVybJ-A8rvIe2ZdTCdfkNMLr4F2PHJycXVyOe_XrmF59XvwAIYB1Lg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALory6UKhBIOCQNrGdODkgVB7VLn2ASov2FpzYLpWWZNnsCvGn-I3MJE4gqCpceovisWWPx-NvknkQ8jhLjLbSMM_wXHvCCN_LBNNenIU2ZspE1scA5_2DaHQs3k3CyQr52cbCoFtlqxNrRa3LHL-RbwUArME6YEH0cvbNw6pR-He1LaHRiMWu-fEdTLbqxfgN7O8TxnbeHr0eea6qgJdLFi68yCipmcFSJ6Iu3OT7JgxloH2RWZaz3HIuNZdcGMa1EFYzG-Ygt6FU3IBBB-NeIpcFdoTzIyedgQe6I4pceB6XwZaThs1ZWZhNkHzMzd67_uoqAd1dMJhNy-osoPu3v-YfF-DOdXLNIVe63YjaKlkxxQ2y6nRDRZ-5BNbPb5LRBzXHEi1TWseM0NOu1O6Cogs7TBSelEuHQgE206-A4UHvUrt_OKbotUors6hukeML4e1tMihgEmuESp4ANw2gK8uElbkKApMgnIikDZS0Q8JbRqa5S2eOVTWmaf2PToJZ0_AlxVWljv1D4nW9Zk06j3_Qv8I96mgxGXf9opyfpO5spyIDEB3m3CY6E1xrpUJjfQXGdh76sO4h2cAdTpvI1k6lpNsCoIFAi3RIHtUUmJCjQI-fE7WsqnT8_tN_EH087BE9dUS2BHbkykVZwJow0VePcr1HCWol7zWvoTy2XKnS3wcQerYyenbzw64ZB0UvvsKUy5omAgubi_g8mhgQbRwnckjuNGLfcR-Gx_SO0Fv2DkRve_otxemXOmd6yIUQ3L97_tQ3yJXR0f5eujc-2L1HrjKEcOhvmKyTwWK-NPcBgC6yB_Wpp-TzRauZX1qol7o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkRAviPG1wmABgYCHrIntxMkDQoNRtYyNaTDUt-D4Y0wqaWlaIf41_jruEicQNA1e9lbVZys-351_l9wHIY_z1GgrDPUNU9rnhgd-zqn2kzyyCZUmtgEmOO8fxKNj_nYSTdbIzyYXBsMqG5tYGWo9U_iOfBACsAbvgIbxwLqwiMPd4cv5Nx87SOGX1qadRi0ie-bHd3DfyhfjXTjrJ5QO33x8PfJdhwFfCRot_dhIoanBtie8auIUBCaKRKgDnluqqLKMCc0E44YyzbnV1EYKZDgSkhlw7mDdS-SyYICqQJfEpHX2wI7EsUvVYyIcOMnYns8Ksw1agHXaO1dh1TGgvRd68-msPAv0_h27-cdlOLxOrjkU6-3UYrdO1kxxg6w7O1F6z1wx6-c3yehQLrBdy9Sr8ke807bt7tLDcHZ4UPglXWkUDyC09xXwPNhgz-4fjT2MYPVKsyxvkeML4e1t0ivgITaIJ1gK3DSAtCzlVigZhiZFaBELG0ph-4Q1jMyUK22OHTamWfW9ToCLU_Mlw11ljv194rez5nVpj3_Qv8IzammxMHf1x2xxkjk9z3gOgDpSzKY650xrKSNjAwmOt4oC2HefbOEJZ3WWa2tesh0OMIGjd9onjyoKLM5RoJifyFVZZuP3n_6D6MNRh-ipI7IzYIeSLuMC9oRFvzqUmx1KMDGqM7yB8thwpcx-KyPMbGT07OGH7TAuihF9hZmtKpoYvG3Gk_NoEkC3SZKKPrlTi33LfVgeSz3CbNFRiM7xdEeK0y9V_fSIcc5ZcPf8R98iV8DAZO_GB3v3yFWKaA5DD9NN0lsuVuY-YNFl_qBSeo98vmgr8wvDoZv5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+group+independent+component+analysis+for+massive+fMRI+data+sets&rft.jtitle=PloS+one&rft.au=Shaojie+Chen&rft.au=Lei+Huang&rft.au=Huitong+Qiu&rft.au=Mary+Beth+Nebel&rft.date=2017-03-09&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=12&rft.issue=3&rft.spage=e0173496&rft_id=info:doi/10.1371%2Fjournal.pone.0173496&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4b9775c3f9db43ddaa5ef0a106c50bf2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |