Parallel group independent component analysis for massive fMRI data sets

Independent component analysis (ICA) is widely used in the field of functional neuroimaging to decompose data into spatio-temporal patterns of co-activation. In particular, ICA has found wide usage in the analysis of resting state fMRI (rs-fMRI) data. Recently, a number of large-scale data sets have...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 12; no. 3; p. e0173496
Main Authors Chen, Shaojie, Huang, Lei, Qiu, Huitong, Nebel, Mary Beth, Mostofsky, Stewart H., Pekar, James J., Lindquist, Martin A., Eloyan, Ani, Caffo, Brian S.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 09.03.2017
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0173496

Cover

Abstract Independent component analysis (ICA) is widely used in the field of functional neuroimaging to decompose data into spatio-temporal patterns of co-activation. In particular, ICA has found wide usage in the analysis of resting state fMRI (rs-fMRI) data. Recently, a number of large-scale data sets have become publicly available that consist of rs-fMRI scans from thousands of subjects. As a result, efficient ICA algorithms that scale well to the increased number of subjects are required. To address this problem, we propose a two-stage likelihood-based algorithm for performing group ICA, which we denote Parallel Group Independent Component Analysis (PGICA). By utilizing the sequential nature of the algorithm and parallel computing techniques, we are able to efficiently analyze data sets from large numbers of subjects. We illustrate the efficacy of PGICA, which has been implemented in R and is freely available through the Comprehensive R Archive Network, through simulation studies and application to rs-fMRI data from two large multi-subject data sets, consisting of 301 and 779 subjects respectively.
AbstractList Independent component analysis (ICA) is widely used in the field of functional neuroimaging to decompose data into spatio-temporal patterns of co-activation. In particular, ICA has found wide usage in the analysis of resting state fMRI (rs-fMRI) data. Recently, a number of large-scale data sets have become publicly available that consist of rs-fMRI scans from thousands of subjects. As a result, efficient ICA algorithms that scale well to the increased number of subjects are required. To address this problem, we propose a two-stage likelihood-based algorithm for performing group ICA, which we denote Parallel Group Independent Component Analysis (PGICA). By utilizing the sequential nature of the algorithm and parallel computing techniques, we are able to efficiently analyze data sets from large numbers of subjects. We illustrate the efficacy of PGICA, which has been implemented in R and is freely available through the Comprehensive R Archive Network, through simulation studies and application to rs-fMRI data from two large multi-subject data sets, consisting of 301 and 779 subjects respectively.
Independent component analysis (ICA) is widely used in the field of functional neuroimaging to decompose data into spatio-temporal patterns of co-activation. In particular, ICA has found wide usage in the analysis of resting state fMRI (rs-fMRI) data. Recently, a number of large-scale data sets have become publicly available that consist of rs-fMRI scans from thousands of subjects. As a result, efficient ICA algorithms that scale well to the increased number of subjects are required. To address this problem, we propose a two-stage likelihood-based algorithm for performing group ICA, which we denote Parallel Group Independent Component Analysis (PGICA). By utilizing the sequential nature of the algorithm and parallel computing techniques, we are able to efficiently analyze data sets from large numbers of subjects. We illustrate the efficacy of PGICA, which has been implemented in R and is freely available through the Comprehensive R Archive Network, through simulation studies and application to rs-fMRI data from two large multi-subject data sets, consisting of 301 and 779 subjects respectively.Independent component analysis (ICA) is widely used in the field of functional neuroimaging to decompose data into spatio-temporal patterns of co-activation. In particular, ICA has found wide usage in the analysis of resting state fMRI (rs-fMRI) data. Recently, a number of large-scale data sets have become publicly available that consist of rs-fMRI scans from thousands of subjects. As a result, efficient ICA algorithms that scale well to the increased number of subjects are required. To address this problem, we propose a two-stage likelihood-based algorithm for performing group ICA, which we denote Parallel Group Independent Component Analysis (PGICA). By utilizing the sequential nature of the algorithm and parallel computing techniques, we are able to efficiently analyze data sets from large numbers of subjects. We illustrate the efficacy of PGICA, which has been implemented in R and is freely available through the Comprehensive R Archive Network, through simulation studies and application to rs-fMRI data from two large multi-subject data sets, consisting of 301 and 779 subjects respectively.
Audience Academic
Author Lindquist, Martin A.
Nebel, Mary Beth
Huang, Lei
Mostofsky, Stewart H.
Caffo, Brian S.
Pekar, James J.
Eloyan, Ani
Chen, Shaojie
Qiu, Huitong
AuthorAffiliation 5 Department of Neurology, Johns Hopkins University, Baltimore, United States of America
2 School of Medicine, Johns Hopkins University, Baltimore, United States of America
4 Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, United States of America
1 Department of Biostatistics, Johns Hopkins University, Baltimore, United States of America
University of Texas at Austin, UNITED STATES
3 Kennedy Krieger Institute, Baltimore, United States of America
6 Department of Biostatistics, Brown University, Providence, Rhode Island, United States of America
AuthorAffiliation_xml – name: 1 Department of Biostatistics, Johns Hopkins University, Baltimore, United States of America
– name: 4 Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, United States of America
– name: 3 Kennedy Krieger Institute, Baltimore, United States of America
– name: 5 Department of Neurology, Johns Hopkins University, Baltimore, United States of America
– name: 2 School of Medicine, Johns Hopkins University, Baltimore, United States of America
– name: 6 Department of Biostatistics, Brown University, Providence, Rhode Island, United States of America
– name: University of Texas at Austin, UNITED STATES
Author_xml – sequence: 1
  givenname: Shaojie
  orcidid: 0000-0002-3543-8964
  surname: Chen
  fullname: Chen, Shaojie
– sequence: 2
  givenname: Lei
  surname: Huang
  fullname: Huang, Lei
– sequence: 3
  givenname: Huitong
  surname: Qiu
  fullname: Qiu, Huitong
– sequence: 4
  givenname: Mary Beth
  surname: Nebel
  fullname: Nebel, Mary Beth
– sequence: 5
  givenname: Stewart H.
  surname: Mostofsky
  fullname: Mostofsky, Stewart H.
– sequence: 6
  givenname: James J.
  surname: Pekar
  fullname: Pekar, James J.
– sequence: 7
  givenname: Martin A.
  surname: Lindquist
  fullname: Lindquist, Martin A.
– sequence: 8
  givenname: Ani
  surname: Eloyan
  fullname: Eloyan, Ani
– sequence: 9
  givenname: Brian S.
  surname: Caffo
  fullname: Caffo, Brian S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28278208$$D View this record in MEDLINE/PubMed
BookMark eNqNk2uL1DAUhousuBf9B6IFQfTDjLm1af0gLIu6Aysr6-VryOQykyVtxqRd3H_vqdOR6bKoFNpw-pw357wnOc4O2tCaLHuK0RxTjt9chz620s83EJ4jzCmrywfZEa4pmZUE0YO99WF2nNI1QgWtyvJRdkgqwiuCqqPs_LOM0nvj81UM_SZ3rTYbA6-2y1VoBnFYSdjoNrmU2xDzRqbkbkxuP10tci07mSfTpcfZQyt9Mk_G70n27cP7r2fns4vLj4uz04uZ4qToZqWRXBOD6hIzUnOKETJFwbFGbGmJIspSyjWFbgyhmjGriS0U5nXBJTW0oifZ863uxockRhOSwBUvKmgLl0AstoQO8lpsomtkvBVBOvE7EOJKyNg55Y1gy5rzQlFb6yWjWktZGIskRqUqENQDWu_G3fplY7QCM8Cuiej0T-vWYhVuREEZYxSBwKtRIIYfvUmdaFxSxnvZmtAPdVcYKq_Ain-jvGR1Tdlgwos76P1GjNRKQq-utQFKVIOoOGUV4wxhzICa30PBo03jFMzfOohPEl5PEoDpzM9uJfuUxOLL1f-zl9-n7Ms9dm2k79Yp-L5zoU1T8Nn-UP5MY3eqAXi7BVQMKUVjhXKdHHSgNecFRmK4QjvTxHDKxXiFIJndSd7p_zXtFxKiHeE
CitedBy_id crossref_primary_10_1016_j_envint_2023_108344
crossref_primary_10_1016_j_jneumeth_2018_02_013
crossref_primary_10_1007_s12561_017_9195_y
crossref_primary_10_1186_s41044_018_0033_0
crossref_primary_10_1515_revneuro_2019_0108
Cites_doi 10.1162/neco.1995.7.6.1129
10.1002/hbm.21170
10.1016/j.neuroimage.2008.10.057
10.1145/1465482.1465560
10.1002/hbm.1048
10.1016/j.neuroimage.2015.05.047
10.1002/hbm.23086
10.1073/pnas.0911855107
10.1038/mp.2013.78
10.3389/fnsys.2014.00080
10.3389/fnsys.2014.00106
10.1016/j.neuroimage.2008.05.008
10.1080/10485252.2010.532554
10.1016/0165-1684(91)90079-X
10.1016/j.neuroimage.2004.10.043
10.1016/j.neuroimage.2014.07.051
10.1016/j.neuroimage.2004.07.051
10.1016/j.neuroimage.2009.12.008
10.1162/neco.1997.9.7.1483
10.1016/j.neuroimage.2012.11.008
10.1093/biostatistics/kxs055
10.1109/TC.1972.5009071
10.1002/mrm.22818
10.3389/fnsys.2011.00002
10.1137/100804139
ContentType Journal Article
Copyright COPYRIGHT 2017 Public Library of Science
2017 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2017 Chen et al 2017 Chen et al
Copyright_xml – notice: COPYRIGHT 2017 Public Library of Science
– notice: 2017 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2017 Chen et al 2017 Chen et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0173496
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Engineering Research Database
MEDLINE - Academic




Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Parallel group independent component analysis for massive fMRI data sets
EISSN 1932-6203
ExternalDocumentID 1875828216
oai_doaj_org_article_4b9775c3f9db43ddaa5ef0a106c50bf2
PMC5344430
4319960811
A484740114
28278208
10_1371_journal_pone_0173496
Genre Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH078160
– fundername: NIBIB NIH HHS
  grantid: R01 EB012547
– fundername: NIBIB NIH HHS
  grantid: P41 EB015909
– fundername: NIBIB NIH HHS
  grantid: R01 EB016061
– fundername: NINDS NIH HHS
  grantid: R01 NS060910
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
ESTFP
PUEGO
5PM
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c725t-6ea7d2e096142973100e5571d04bf2c2cf337d3734e23d44fd2f5c17957a3e383
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:13:31 EST 2021
Wed Aug 27 01:28:49 EDT 2025
Thu Aug 21 18:32:57 EDT 2025
Mon Sep 08 13:45:28 EDT 2025
Mon Sep 08 12:38:53 EDT 2025
Fri Jul 25 10:25:17 EDT 2025
Tue Jun 17 21:07:29 EDT 2025
Tue Jun 10 20:39:12 EDT 2025
Fri Jun 27 05:09:24 EDT 2025
Fri Jun 27 03:40:39 EDT 2025
Thu May 22 21:21:44 EDT 2025
Thu Apr 03 06:59:52 EDT 2025
Tue Jul 01 04:09:23 EDT 2025
Thu Apr 24 22:56:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c725t-6ea7d2e096142973100e5571d04bf2c2cf337d3734e23d44fd2f5c17957a3e383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceptualization: BC AE ML JP. Data curation: MB SM JP. Formal analysis: SC LH HQ AE. Funding acquisition: BC. Investigation: MB SM JP AE. Methodology: SC LH HQ MB BC AE. Project administration: BC AE ML. Resources: SM MB JP ML. Software: SC LH HQ AE BC. Supervision: BC AE ML JP SM MB. Validation: MB AE SM JP BC. Writing – original draft: SC AE BC LH HQ MB SM JP ML. Writing – review & editing: SC AE BC LH HQ MB SM JP ML.
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-3543-8964
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0173496
PMID 28278208
PQID 1875828216
PQPubID 1436336
PageCount e0173496
ParticipantIDs plos_journals_1875828216
doaj_primary_oai_doaj_org_article_4b9775c3f9db43ddaa5ef0a106c50bf2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5344430
proquest_miscellaneous_1881758897
proquest_miscellaneous_1876499348
proquest_journals_1875828216
gale_infotracmisc_A484740114
gale_infotracacademiconefile_A484740114
gale_incontextgauss_ISR_A484740114
gale_incontextgauss_IOV_A484740114
gale_healthsolutions_A484740114
pubmed_primary_28278208
crossref_citationtrail_10_1371_journal_pone_0173496
crossref_primary_10_1371_journal_pone_0173496
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-09
PublicationDateYYYYMMDD 2017-03-09
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2017
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References A Di Martino (ref24) 2014; 19
W Koch (ref3) 2010; 51
ref17
Y Du (ref6) 2013; 69
ref16
VD Calhoun (ref13) 2015; 118
SM Smith (ref11) 2014; 101
N Halko (ref12) 2011; 33
SE Joel (ref29) 2011; 66
SM Smith (ref23) 2004; 23
VD Calhoun (ref10) 2009; 45
A Hyvärinen (ref21) 1997; 9
MJ Flynn (ref28) 1972; 100
A Eloyan (ref14) 2013; 14
ref26
ref25
AM Michael (ref4) 2014; 8
ref20
TG Mattson (ref27) 2004
EB Erhardt (ref7) 2011; 32
AJ Bell (ref15) 1995; 7
Y Du (ref5) 2016; 37
HH Harman (ref18) 1976
Y Guo (ref9) 2008; 42
BB Biswal (ref22) 2010; 107
CF Beckmann (ref8) 2005; 25
VD Calhoun (ref2) 2001; 14
C Jutten (ref1) 1991; 24
A Eloyan (ref19) 2011; 23
References_xml – volume: 7
  start-page: 1129
  issue: 6
  year: 1995
  ident: ref15
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural computation
  doi: 10.1162/neco.1995.7.6.1129
– volume: 32
  start-page: 2075
  issue: 12
  year: 2011
  ident: ref7
  article-title: Comparison of multi-subject ICA methods for analysis of fMRI data
  publication-title: Human brain mapping
  doi: 10.1002/hbm.21170
– volume: 45
  start-page: S163
  issue: 1
  year: 2009
  ident: ref10
  article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.10.057
– year: 1976
  ident: ref18
  article-title: Modern factor analysis
– ident: ref20
  doi: 10.1145/1465482.1465560
– volume: 14
  start-page: 140
  issue: 3
  year: 2001
  ident: ref2
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Human brain mapping
  doi: 10.1002/hbm.1048
– volume: 118
  start-page: 662
  year: 2015
  ident: ref13
  article-title: Comparison of PCA approaches for very large group ICA
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.05.047
– volume: 37
  start-page: 1005
  issue: 3
  year: 2016
  ident: ref5
  article-title: Artifact removal in the context of group ICA: A comparison of single-subject and group approaches
  publication-title: Human brain mapping
  doi: 10.1002/hbm.23086
– volume: 107
  start-page: 4734
  issue: 10
  year: 2010
  ident: ref22
  article-title: Toward discovery science of human brain function
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0911855107
– ident: ref17
– volume: 19
  start-page: 659
  issue: 6
  year: 2014
  ident: ref24
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Molecular psychiatry
  doi: 10.1038/mp.2013.78
– ident: ref25
  doi: 10.3389/fnsys.2014.00080
– volume: 8
  start-page: 106
  year: 2014
  ident: ref4
  article-title: Preserving subject variability in group fMRI analysis: performance evaluation of GICA vs. IVA
  publication-title: Front Syst Neurosci
  doi: 10.3389/fnsys.2014.00106
– volume: 42
  start-page: 1078
  issue: 3
  year: 2008
  ident: ref9
  article-title: A unified framework for group independent component analysis for multi-subject fMRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.05.008
– volume: 23
  start-page: 513
  issue: 2
  year: 2011
  ident: ref19
  article-title: Smooth density estimation with moment constraints using mixture distributions
  publication-title: Journal of nonparametric statistics
  doi: 10.1080/10485252.2010.532554
– volume: 24
  start-page: 1
  issue: 1
  year: 1991
  ident: ref1
  article-title: Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture
  publication-title: Signal processing
  doi: 10.1016/0165-1684(91)90079-X
– volume: 25
  start-page: 294
  issue: 1
  year: 2005
  ident: ref8
  article-title: Tensorial extensions of independent component analysis for multisubject FMRI analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.10.043
– year: 2004
  ident: ref27
  article-title: Patterns for parallel programming
– volume: 101
  start-page: 738
  year: 2014
  ident: ref11
  article-title: Group-PCA for very large fMRI datasets
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.07.051
– volume: 23
  start-page: S208
  year: 2004
  ident: ref23
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.051
– volume: 51
  start-page: 280
  issue: 1
  year: 2010
  ident: ref3
  article-title: Effects of aging on default mode network activity in resting state fMRI: does the method of analysis matter?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.008
– volume: 9
  start-page: 1483
  issue: 7
  year: 1997
  ident: ref21
  article-title: A fast fixed-point algorithm for independent component analysis
  publication-title: Neural computation
  doi: 10.1162/neco.1997.9.7.1483
– volume: 69
  start-page: 157
  year: 2013
  ident: ref6
  article-title: Group information guided ICA for fMRI data analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.11.008
– volume: 14
  start-page: 514
  issue: 3
  year: 2013
  ident: ref14
  article-title: Likelihood-based population independent component analysis
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxs055
– volume: 100
  start-page: 948
  issue: 9
  year: 1972
  ident: ref28
  article-title: Some computer organizations and their effectiveness
  publication-title: Computers, IEEE Transactions on
  doi: 10.1109/TC.1972.5009071
– ident: ref16
– volume: 66
  start-page: 644
  issue: 3
  year: 2011
  ident: ref29
  article-title: On the relationship between seed-based and ICA-based measures of functional connectivity
  publication-title: Magnetic Resonance in Medicine
  doi: 10.1002/mrm.22818
– ident: ref26
  doi: 10.3389/fnsys.2011.00002
– volume: 33
  start-page: 2580
  issue: 5
  year: 2011
  ident: ref12
  article-title: An algorithm for the principal component analysis of large data sets
  publication-title: SIAM Journal on Scientific computing
  doi: 10.1137/100804139
SSID ssj0053866
Score 2.2633483
Snippet Independent component analysis (ICA) is widely used in the field of functional neuroimaging to decompose data into spatio-temporal patterns of co-activation....
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0173496
SubjectTerms Adolescent
Adult
Algorithms
Autism
Autism Spectrum Disorder - diagnostic imaging
Bioengineering
Biology and Life Sciences
Brain
Brain Mapping
Child
Computer and Information Sciences
Computer simulation
Data processing
Datasets
Functional magnetic resonance imaging
Health aspects
Humans
Image Processing, Computer-Assisted - methods
Independent component analysis
Magnetic Resonance Imaging
Medical imaging
Medicine and Health Sciences
Methods
Neuroimaging
Neurology
Neurosciences
Physical Sciences
Principal components analysis
Research and Analysis Methods
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBpRiEBBzSJn7EybEgqi1SARWKeoscP6DSkl012f_fGccbNaiiHLhF8SRyPs_YM8rMN4S8bipnvXIsddzYVDiRpY1gNi0b6UumXeEzLHA--VwszsSnc3l-rdUX5oQN9MADcAeiAQ9FGu4r2whurdbS-UxDJGNk1viw-2ZVtg2mhj0YrLgoYqEcV_lBXJf99ap1-6CDyJI-OYgCX_-4K8_Wy1V3k8v5Z-bktaPo6D65F31IejjMfYfcce0DshOttKNvI5X0u4dk8VVfYrOUJQ3VG_RibHrbU0wmh4nClY7EJBQcWPobvGnYAak_OT2mmD9KO9d3j8jZ0cfvHxZp7J2QGsVknxZOK8scNnQRoT1VljkpVW4zAaAZZjznynJAwjFuhfCWeWnAOqXS3EHY-pjMWpjELqGKV4CmAz_HM-GV0XnuKjzYC-VzrXxC-BbI2kRicexvsazD3zIFAcaAS41fVUf4E5KOT60HYo1b5N_jGo2ySIsdboCy1FFZ6tuUJSEvcIXrocZ0NO76UMAhLTA2TMirIIHUGC3m3vzUm66rj7_8-Aehb6cToTdRyK8ADqNjvQN8E1JuTSTnE0kwcDMZ3kV93KLS1TnEmBAosxxAmW919Obhl-MwvhTz6Vq32gSZAmJdLsq_yZTgW5ZlpRLyZFD7EX14PRItwtNqYhCT5ZmOtBe_Anu55EIInj39H-v5jNxl6GZhTmA1J7P-cuOeg5PYN3thP7gCFatmNw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcXChiEBBzSJn7EyQkVxLJFKqBCUW-R40dbaUm2m93_35nECQRVhdtqPY7seXkmGX9DyKsyd9YrxyLHjY2EE3FUCmajrJQ-Y9qlPsYLzodf0vmx-HwiT8ILtyaUVfY-sXXUtjb4jnwvgcAasgOWpO-WFxF2jcKvq6GFxk1yK4GTBvU8m33qPTHYcpqG63JcJXtBOrvLunK7oImIlT46jlrU_sE3T5aLurkq8Py7fvKPA2l2l9wJkSTd70S_RW646h7ZCrba0DcBUPrtfTL_plfYMmVB2zsc9HxofbumWFIOC4VfOsCTUAhj6S-IqcEPUn94dECxipQ2bt08IMezjz8-zKPQQSEyisl1lDqtLHPY1kW0Tari2EmpEhuL0jPDjOdcWQ6ccIxbIbxlXhqwUak0d5C8PiSTChaxTajiOXDTQbTjmfDK6CRxOR7vqfKJVn5KeM_IwgR4cexysSjab2YK0oyOLwXuqgjsn5JomLXs4DX-Qf8eZTTQIjh2-0e9Oi2CrRWihKBWGu5zWwpurdbS-VhD8mtkDPuekuco4aK7aTqYeLEv4KgWmCFOycuWAgEyKqzAOdWbpikOvv78D6LvRyOi14HI18AOo8OtB9gTAm-NKHdGlGDmZjS8jfrYc6UpfhsEzOx19OrhF8MwPhSr6ipXb1qaFDJeLrLraDKIMLMsV1PyqFP7gfvweIRbhNlqZBAj8YxHqvOzFsNcciEEjx9fv_Qn5DbDMApr_vIdMlmvNu4pBIHr8llr6ZfEk1yb
  priority: 102
  providerName: ProQuest
Title Parallel group independent component analysis for massive fMRI data sets
URI https://www.ncbi.nlm.nih.gov/pubmed/28278208
https://www.proquest.com/docview/1875828216
https://www.proquest.com/docview/1876499348
https://www.proquest.com/docview/1881758897
https://pubmed.ncbi.nlm.nih.gov/PMC5344430
https://doaj.org/article/4b9775c3f9db43ddaa5ef0a106c50bf2
http://dx.doi.org/10.1371/journal.pone.0173496
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELe27oUXxPhaoJSAkICHVIk_4uQBoW1a6ZA6pkJR3yIntrdJJS1NK8F_z13qRgSVjwdeoqo-R_H5zneX3P2OkBd5arSVhgaGFTrghodBzqkOklzYhCoT2xALnEcX8XDC30_FdI9se7Y6BlY7QzvsJzVZzvrfvn5_Cwr_pu7aIKPtpP5iXpo-SBhioO-TA7BNMYZjI958VwDtjmNXQPe7mS0DVeP4N6d1ZzGbV7tc0V8zKn8yUYM75LbzLf3jjTAckj1T3iWHTnsr_5WDmH59jwwv1RKbqMz8uqrDv2ma4a58TDKHB4VfygGW-ODY-l_Ay4aT0bej8bmPeaV-ZVbVfTIZnH06HQaup0JQSCpWQWyU1NRgoxdet60KQyOEjHTIc0sLWljGpGbACUOZ5txqakUBWiukYgbC2QekU8JDHBFfshS4acD_sZRbWagoMika_FjaSEnrEbZlZFY4wHHsezHL6q9oEgKPDV8yXFXm2O-RoJm12ABu_IX-BPeooUW47PqP-fIqc9qX8RzcXFEwm-qcM62VEsaGCsLhQoSwbo88xR3ONrWnjdJnxxyMN8eY0SPPawqEzCgxJ-dKrasqO__w-R-IPo5bRC8dkZ0DOwrl6iBgTQjF1aLstihB8YvW8BHK45YrVRZB7AkBNI2AKd2tjO4eftYM400xz64083VNE0MMzHjyJ5oEfM4kSaVHHm7EvuE-3B4BGGG2bClEa3vaI-XNdY1qLhjnnIWP_sd-Pia3KLpfmCuYdklntVybJ-A8rvIe2ZdTCdfkNMLr4F2PHJycXVyOe_XrmF59XvwAIYB1Lg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALory6UKhBIOCQNrGdODkgVB7VLn2ASov2FpzYLpWWZNnsCvGn-I3MJE4gqCpceovisWWPx-NvknkQ8jhLjLbSMM_wXHvCCN_LBNNenIU2ZspE1scA5_2DaHQs3k3CyQr52cbCoFtlqxNrRa3LHL-RbwUArME6YEH0cvbNw6pR-He1LaHRiMWu-fEdTLbqxfgN7O8TxnbeHr0eea6qgJdLFi68yCipmcFSJ6Iu3OT7JgxloH2RWZaz3HIuNZdcGMa1EFYzG-Ygt6FU3IBBB-NeIpcFdoTzIyedgQe6I4pceB6XwZaThs1ZWZhNkHzMzd67_uoqAd1dMJhNy-osoPu3v-YfF-DOdXLNIVe63YjaKlkxxQ2y6nRDRZ-5BNbPb5LRBzXHEi1TWseM0NOu1O6Cogs7TBSelEuHQgE206-A4UHvUrt_OKbotUors6hukeML4e1tMihgEmuESp4ANw2gK8uElbkKApMgnIikDZS0Q8JbRqa5S2eOVTWmaf2PToJZ0_AlxVWljv1D4nW9Zk06j3_Qv8I96mgxGXf9opyfpO5spyIDEB3m3CY6E1xrpUJjfQXGdh76sO4h2cAdTpvI1k6lpNsCoIFAi3RIHtUUmJCjQI-fE7WsqnT8_tN_EH087BE9dUS2BHbkykVZwJow0VePcr1HCWol7zWvoTy2XKnS3wcQerYyenbzw64ZB0UvvsKUy5omAgubi_g8mhgQbRwnckjuNGLfcR-Gx_SO0Fv2DkRve_otxemXOmd6yIUQ3L97_tQ3yJXR0f5eujc-2L1HrjKEcOhvmKyTwWK-NPcBgC6yB_Wpp-TzRauZX1qol7o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkRAviPG1wmABgYCHrIntxMkDQoNRtYyNaTDUt-D4Y0wqaWlaIf41_jruEicQNA1e9lbVZys-351_l9wHIY_z1GgrDPUNU9rnhgd-zqn2kzyyCZUmtgEmOO8fxKNj_nYSTdbIzyYXBsMqG5tYGWo9U_iOfBACsAbvgIbxwLqwiMPd4cv5Nx87SOGX1qadRi0ie-bHd3DfyhfjXTjrJ5QO33x8PfJdhwFfCRot_dhIoanBtie8auIUBCaKRKgDnluqqLKMCc0E44YyzbnV1EYKZDgSkhlw7mDdS-SyYICqQJfEpHX2wI7EsUvVYyIcOMnYns8Ksw1agHXaO1dh1TGgvRd68-msPAv0_h27-cdlOLxOrjkU6-3UYrdO1kxxg6w7O1F6z1wx6-c3yehQLrBdy9Sr8ke807bt7tLDcHZ4UPglXWkUDyC09xXwPNhgz-4fjT2MYPVKsyxvkeML4e1t0ivgITaIJ1gK3DSAtCzlVigZhiZFaBELG0ph-4Q1jMyUK22OHTamWfW9ToCLU_Mlw11ljv194rez5nVpj3_Qv8IzammxMHf1x2xxkjk9z3gOgDpSzKY650xrKSNjAwmOt4oC2HefbOEJZ3WWa2tesh0OMIGjd9onjyoKLM5RoJifyFVZZuP3n_6D6MNRh-ipI7IzYIeSLuMC9oRFvzqUmx1KMDGqM7yB8thwpcx-KyPMbGT07OGH7TAuihF9hZmtKpoYvG3Gk_NoEkC3SZKKPrlTi33LfVgeSz3CbNFRiM7xdEeK0y9V_fSIcc5ZcPf8R98iV8DAZO_GB3v3yFWKaA5DD9NN0lsuVuY-YNFl_qBSeo98vmgr8wvDoZv5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+group+independent+component+analysis+for+massive+fMRI+data+sets&rft.jtitle=PloS+one&rft.au=Shaojie+Chen&rft.au=Lei+Huang&rft.au=Huitong+Qiu&rft.au=Mary+Beth+Nebel&rft.date=2017-03-09&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=12&rft.issue=3&rft.spage=e0173496&rft_id=info:doi/10.1371%2Fjournal.pone.0173496&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4b9775c3f9db43ddaa5ef0a106c50bf2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon