A viral guide RNA delivery system for CRISPR-based transcriptional activation and heritable targeted DNA demethylation in Arabidopsis thaliana
Plant RNA viruses are used as delivery vectors for their high level of accumulation and efficient spread during virus multiplication and movement. Utilizing this concept, several viral-based guide RNA delivery platforms for CRISPR-Cas9 genome editing have been developed. The CRISPR-Cas9 system has a...
Saved in:
Published in | PLoS genetics Vol. 16; no. 12; p. e1008983 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
14.12.2020
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant RNA viruses are used as delivery vectors for their high level of accumulation and efficient spread during virus multiplication and movement. Utilizing this concept, several viral-based guide RNA delivery platforms for CRISPR-Cas9 genome editing have been developed. The CRISPR-Cas9 system has also been adapted for epigenome editing. While systems have been developed for CRISPR-Cas9 based gene activation or site-specific DNA demethylation, viral delivery of guide RNAs remains to be developed for these purposes. To address this gap we have developed a tobacco rattle virus (TRV)-based single guide RNA delivery system for epigenome editing in
Arabidopsis thaliana
. Because tRNA-like sequences have been shown to facilitate the cell-to-cell movement of RNAs in plants, we used the tRNA-guide RNA expression system to express guide RNAs from the viral genome to promote heritable epigenome editing. We demonstrate that the tRNA-gRNA system with TRV can be used for both transcriptional activation and targeted DNA demethylation of the
FLOWERING WAGENINGEN
gene in Arabidopsis. We achieved up to ~8% heritability of the induced demethylation phenotype in the progeny of virus inoculated plants. We did not detect the virus in the next generation, indicating effective clearance of the virus from plant tissues. Thus, TRV delivery, combined with a specific tRNA-gRNA architecture, provides for fast and effective epigenome editing. |
---|---|
AbstractList | Plant RNA viruses are used as delivery vectors for their high level of accumulation and efficient spread during virus multiplication and movement. Utilizing this concept, several viral-based guide RNA delivery platforms for CRISPR-Cas9 genome editing have been developed. The CRISPR-Cas9 system has also been adapted for epigenome editing. While systems have been developed for CRISPR-Cas9 based gene activation or site-specific DNA demethylation, viral delivery of guide RNAs remains to be developed for these purposes. To address this gap we have developed a tobacco rattle virus (TRV)-based single guide RNA delivery system for epigenome editing in Arabidopsis thaliana. Because tRNA-like sequences have been shown to facilitate the cell-to-cell movement of RNAs in plants, we used the tRNA-guide RNA expression system to express guide RNAs from the viral genome to promote heritable epigenome editing. We demonstrate that the tRNA-gRNA system with TRV can be used for both transcriptional activation and targeted DNA demethylation of the FLOWERING WAGENINGEN gene in Arabidopsis. We achieved up to ~8% heritability of the induced demethylation phenotype in the progeny of virus inoculated plants. We did not detect the virus in the next generation, indicating effective clearance of the virus from plant tissues. Thus, TRV delivery, combined with a specific tRNA-gRNA architecture, provides for fast and effective epigenome editing. Plant RNA viruses are used as delivery vectors for their high level of accumulation and efficient spread during virus multiplication and movement. Utilizing this concept, several viral-based guide RNA delivery platforms for CRISPR-Cas9 genome editing have been developed. The CRISPR-Cas9 system has also been adapted for epigenome editing. While systems have been developed for CRISPR-Cas9 based gene activation or site-specific DNA demethylation, viral delivery of guide RNAs remains to be developed for these purposes. To address this gap we have developed a tobacco rattle virus (TRV)-based single guide RNA delivery system for epigenome editing in Arabidopsis thaliana . Because tRNA-like sequences have been shown to facilitate the cell-to-cell movement of RNAs in plants, we used the tRNA-guide RNA expression system to express guide RNAs from the viral genome to promote heritable epigenome editing. We demonstrate that the tRNA-gRNA system with TRV can be used for both transcriptional activation and targeted DNA demethylation of the FLOWERING WAGENINGEN gene in Arabidopsis. We achieved up to ~8% heritability of the induced demethylation phenotype in the progeny of virus inoculated plants. We did not detect the virus in the next generation, indicating effective clearance of the virus from plant tissues. Thus, TRV delivery, combined with a specific tRNA-gRNA architecture, provides for fast and effective epigenome editing. The discovery of CRISPR-CAS9 and its non-catalytic variants have provided enormous capacity for crop improvement and basic research by modifying the genome and the epigenome. The standard methods for delivering genome and epigenome editing reagents to plants consist of generating stable transgenic lines through tissue culture processes, which have several drawbacks including the need for plant regeneration and crossing. To overcome some of these challenges, plant virus-based platforms are being developed for genome editing. Although viruses have a limited cargo capacity, limiting the use of viruses to encode entire editing systems, guide RNAs have been successfully delivered to transgenic CAS9 expressing plants for genome editing. However, the use of viruses for CRISPR-based epigenome editing and transcriptional activation have not yet been explored. In this study we show that viral delivery of guide RNAs using a modified tobacco rattle virus can be used for transcriptional activation and heritable epigenome editing. This study advances the use of plant RNA viruses as delivery agents for epigenome editing. Introduction Tools that enable targeted regulation of gene expression provide powerful systems for studying and manipulating diverse cellular processes [1]. Targeted gene regulation at the transcriptional level can be achieved by recruiting transcriptional activators, repressors, or epigenetic modifiers to a particular genomic locus using a programmable DNA-binding module, such as the catalytically inactive version of the CRISPR-CAS9 system [1–3]. The limitation in cargo capacity means that viral delivery of the entire editing system remains challenging in plants. [...]the viral-based delivery systems currently available for CRISPR-CAS9 genome editing systems are mainly focused on the delivery of guide RNA component of the system. [...]viral delivery of guide RNAs to transgenic CAS9 plants may provide the advantage of bypassing the repeated need to generate transgenic plants expressing different guide RNAs each time a new gene is targeted. Plant RNA viruses are used as delivery vectors for their high level of accumulation and efficient spread during virus multiplication and movement. Utilizing this concept, several viral-based guide RNA delivery platforms for CRISPR-Cas9 genome editing have been developed. The CRISPR-Cas9 system has also been adapted for epigenome editing. While systems have been developed for CRISPR-Cas9 based gene activation or site-specific DNA demethylation, viral delivery of guide RNAs remains to be developed for these purposes. To address this gap we have developed a tobacco rattle virus (TRV)-based single guide RNA delivery system for epigenome editing in Arabidopsis thaliana. Because tRNA-like sequences have been shown to facilitate the cell-to-cell movement of RNAs in plants, we used the tRNA-guide RNA expression system to express guide RNAs from the viral genome to promote heritable epigenome editing. We demonstrate that the tRNA-gRNA system with TRV can be used for both transcriptional activation and targeted DNA demethylation of the FLOWERING WAGENINGEN gene in Arabidopsis. We achieved up to ~8% heritability of the induced demethylation phenotype in the progeny of virus inoculated plants. We did not detect the virus in the next generation, indicating effective clearance of the virus from plant tissues. Thus, TRV delivery, combined with a specific tRNA-gRNA architecture, provides for fast and effective epigenome editing.Plant RNA viruses are used as delivery vectors for their high level of accumulation and efficient spread during virus multiplication and movement. Utilizing this concept, several viral-based guide RNA delivery platforms for CRISPR-Cas9 genome editing have been developed. The CRISPR-Cas9 system has also been adapted for epigenome editing. While systems have been developed for CRISPR-Cas9 based gene activation or site-specific DNA demethylation, viral delivery of guide RNAs remains to be developed for these purposes. To address this gap we have developed a tobacco rattle virus (TRV)-based single guide RNA delivery system for epigenome editing in Arabidopsis thaliana. Because tRNA-like sequences have been shown to facilitate the cell-to-cell movement of RNAs in plants, we used the tRNA-guide RNA expression system to express guide RNAs from the viral genome to promote heritable epigenome editing. We demonstrate that the tRNA-gRNA system with TRV can be used for both transcriptional activation and targeted DNA demethylation of the FLOWERING WAGENINGEN gene in Arabidopsis. We achieved up to ~8% heritability of the induced demethylation phenotype in the progeny of virus inoculated plants. We did not detect the virus in the next generation, indicating effective clearance of the virus from plant tissues. Thus, TRV delivery, combined with a specific tRNA-gRNA architecture, provides for fast and effective epigenome editing. Introduction Tools that enable targeted regulation of gene expression provide powerful systems for studying and manipulating diverse cellular processes [1]. Targeted gene regulation at the transcriptional level can be achieved by recruiting transcriptional activators, repressors, or epigenetic modifiers to a particular genomic locus using a programmable DNA-binding module, such as the catalytically inactive version of the CRISPR-CAS9 system [1–3]. The limitation in cargo capacity means that viral delivery of the entire editing system remains challenging in plants. [...]the viral-based delivery systems currently available for CRISPR-CAS9 genome editing systems are mainly focused on the delivery of guide RNA component of the system. [...]viral delivery of guide RNAs to transgenic CAS9 plants may provide the advantage of bypassing the repeated need to generate transgenic plants expressing different guide RNAs each time a new gene is targeted. Plant RNA viruses are used as delivery vectors for their high level of accumulation and efficient spread during virus multiplication and movement. Utilizing this concept, several viral-based guide RNA delivery platforms for CRISPR-Cas9 genome editing have been developed. The CRISPR-Cas9 system has also been adapted for epigenome editing. While systems have been developed for CRISPR-Cas9 based gene activation or site-specific DNA demethylation, viral delivery of guide RNAs remains to be developed for these purposes. To address this gap we have developed a tobacco rattle virus (TRV)-based single guide RNA delivery system for epigenome editing in Arabidopsis thaliana . Because tRNA-like sequences have been shown to facilitate the cell-to-cell movement of RNAs in plants, we used the tRNA-guide RNA expression system to express guide RNAs from the viral genome to promote heritable epigenome editing. We demonstrate that the tRNA-gRNA system with TRV can be used for both transcriptional activation and targeted DNA demethylation of the FLOWERING WAGENINGEN gene in Arabidopsis. We achieved up to ~8% heritability of the induced demethylation phenotype in the progeny of virus inoculated plants. We did not detect the virus in the next generation, indicating effective clearance of the virus from plant tissues. Thus, TRV delivery, combined with a specific tRNA-gRNA architecture, provides for fast and effective epigenome editing. |
Audience | Academic |
Author | Ghoshal, Basudev Vong, Brandon Picard, Colette L. Jacobsen, Steven E. Feng, Suhua Tam, Janet M. |
AuthorAffiliation | 1 Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, United States of America 2 Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, California, United States of America 3 Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, California, United States of America University of Minnesota, UNITED STATES |
AuthorAffiliation_xml | – name: 3 Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, California, United States of America – name: 1 Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, United States of America – name: 2 Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, California, United States of America – name: University of Minnesota, UNITED STATES |
Author_xml | – sequence: 1 givenname: Basudev orcidid: 0000-0003-1387-0139 surname: Ghoshal fullname: Ghoshal, Basudev – sequence: 2 givenname: Brandon orcidid: 0000-0001-8278-1469 surname: Vong fullname: Vong, Brandon – sequence: 3 givenname: Colette L. surname: Picard fullname: Picard, Colette L. – sequence: 4 givenname: Suhua surname: Feng fullname: Feng, Suhua – sequence: 5 givenname: Janet M. orcidid: 0000-0002-8502-1913 surname: Tam fullname: Tam, Janet M. – sequence: 6 givenname: Steven E. orcidid: 0000-0001-9483-138X surname: Jacobsen fullname: Jacobsen, Steven E. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33315895$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk1tv0zAUxyM0xC7wDRBYQkLw0OLEdpzwgFSNW6VpQx3wajmOnXpy42I7Ff0SfGZO1w6t04RAeciJ8zt_n-txdtD7XmfZ0xyPc8LzN1d-CL1042Wn-3GOcVVX5EF2lDNGRpxienDLPsyOY7zCmLCq5o-yQ0JIDiY7yn5N0MoG6VA32Faj2fkEtdrZlQ5rFNcx6QUyPqDT2fTyy2zUyKhblILsowp2mayHCJBUya7k5gPJvkVzHWySjdMoydDpBB7vr2UXOs3XbgvaHk2CbGzrl9FGlObSWdnLx9lDI13UT3bvk-zbxw9fTz-Pzi4-TU8nZyPFiyJBHBg3baFIqSiVFJd1WZRtQ6kuuWmbluFCagMlYXlBmGLKEMYrzg3YWLOKnGTPt7pL56PYlTKKgvKalnlNMBDTLdF6eSWWwS5kWAsvrbg-8KETMiSrnBalaWrDc6bbuqG5wU3BqcGY4aqkBDcGtN7tbhuahW6V7qGEbk90_09v56LzK8E5ZIYJCLzaCQT_Y9AxiYWNSjsne-2H67hxURFeM0Bf3EHvz25HdRISsL3xcK_aiIpJCYHntALuJBvfQ8EDvbQKxtFYON9zeL3nAEzSP1MnhxjF9HL2H-z5v7MX3_fZl7fYuZYuzaN3w2bs4j747HZX_rTjZjkAeLsFVPAxBm2EgsHe6EAZrBM5FptNvCmw2Gyi2G0iONM7zjf6f3X7Db0CNyw |
CitedBy_id | crossref_primary_10_3389_fcell_2022_794650 crossref_primary_10_1007_s41348_022_00677_6 crossref_primary_10_1111_mpp_13252 crossref_primary_10_1111_tpj_15906 crossref_primary_10_3390_ijms231810202 crossref_primary_10_1016_j_pbi_2020_101989 crossref_primary_10_1007_s44154_021_00026_x crossref_primary_10_1007_s13237_024_00483_5 crossref_primary_10_1111_tpj_17196 crossref_primary_10_1016_j_pbi_2023_102432 crossref_primary_10_1016_j_plantsci_2022_111491 crossref_primary_10_1016_j_tig_2024_04_003 crossref_primary_10_1111_pbi_13834 crossref_primary_10_1016_j_molp_2023_02_003 crossref_primary_10_1093_plphys_kiac033 crossref_primary_10_1111_nyas_14675 crossref_primary_10_1016_j_xpro_2023_102091 crossref_primary_10_1007_s42994_024_00147_7 crossref_primary_10_1073_pnas_2125016118 crossref_primary_10_3389_fpls_2021_668580 crossref_primary_10_1126_sciadv_adi9036 crossref_primary_10_1007_s11627_021_10197_x crossref_primary_10_1093_plphys_kiac159 crossref_primary_10_1093_plphys_kiae015 crossref_primary_10_3389_fpls_2022_1039094 |
Cites_doi | 10.1038/nbt.3658 10.1105/tpc.113.119792 10.1146/annurev-phyto-082718-100301 10.1126/science.1089835 10.1038/srep14926 10.1073/pnas.1413053112 10.1046/j.1365-313X.2002.01394.x 10.1126/science.1225829 10.1371/journal.pgen.1005142 10.1016/j.cell.2014.09.039 10.1128/JVI.02346-08 10.1073/pnas.1420294112 10.1038/s41467-018-03289-7 10.1038/s41467-019-08736-7 10.1093/bioinformatics/btr167 10.1007/978-1-4939-7125-1_12 10.1104/pp.17.00411 10.1104/pp.106.084624 10.1111/j.1365-313X.2006.02936.x 10.1128/JVI.02438-07 10.1105/tpc.16.00493 10.1073/pnas.1716945115 10.1016/j.virusres.2017.10.009 10.1126/science.277.5329.1100 10.1038/nplants.2017.103 10.1038/nature06745 10.7554/eLife.00471 10.1016/j.cell.2016.08.056 10.1126/science.1165313 10.1073/pnas.95.2.632 10.1093/bioinformatics/btx633 10.1016/j.molp.2015.02.011 10.1038/s41477-020-0670-y 10.1038/s41467-017-02219-3 10.1016/j.jmb.2018.06.037 10.1016/S1097-2765(05)00090-0 10.1038/s41477-020-0704-5 10.1016/j.molp.2017.11.010 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Public Library of Science 2020 Ghoshal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Ghoshal et al 2020 Ghoshal et al |
Copyright_xml | – notice: COPYRIGHT 2020 Public Library of Science – notice: 2020 Ghoshal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Ghoshal et al 2020 Ghoshal et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 3V. 7QP 7QR 7SS 7TK 7TM 7TO 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pgen.1008983 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | TRV-mediated guide RNA delivery showing epigenome editing of the FLOWERING WAGENINGEN gene |
EISSN | 1553-7404 |
ExternalDocumentID | 2479461930 oai_doaj_org_article_6fb9f715ed9b41f0b274f005086430bf PMC7769603 A650814819 33315895 10_1371_journal_pgen_1008983 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM130272 – fundername: NCI NIH HHS grantid: P30 CA016042 – fundername: Howard Hughes Medical Institute – fundername: NIGMS NIH HHS grantid: F32 GM136115 – fundername: ; grantid: OPP1210659 – fundername: ; grantid: R35 GM130272 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 QF4 QN7 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ADRAZ C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM PJZUB PPXIY PQGLB RIG WOQ PMFND 3V. 7QP 7QR 7SS 7TK 7TM 7TO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM PUEGO - AAPBV ABPTK ADACO BBAFP M~E |
ID | FETCH-LOGICAL-c722t-ba00bd2c36c44a4069626db44e67fdbd502aef08951235c5cf357877f5c50e583 |
IEDL.DBID | DOA |
ISSN | 1553-7404 1553-7390 |
IngestDate | Fri Nov 26 17:12:22 EST 2021 Wed Aug 27 01:19:27 EDT 2025 Thu Aug 21 14:11:37 EDT 2025 Fri Jul 11 09:03:49 EDT 2025 Fri Jul 25 12:03:11 EDT 2025 Tue Jun 17 21:00:37 EDT 2025 Tue Jun 10 20:46:39 EDT 2025 Fri Jun 27 04:03:43 EDT 2025 Fri Jun 27 04:11:20 EDT 2025 Fri Jun 27 04:32:29 EDT 2025 Thu May 22 21:06:21 EDT 2025 Mon Jul 21 05:34:06 EDT 2025 Tue Jul 01 01:18:54 EDT 2025 Thu Apr 24 23:00:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c722t-ba00bd2c36c44a4069626db44e67fdbd502aef08951235c5cf357877f5c50e583 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist. |
ORCID | 0000-0002-8502-1913 0000-0001-8278-1469 0000-0001-9483-138X 0000-0003-1387-0139 |
OpenAccessLink | https://doaj.org/article/6fb9f715ed9b41f0b274f005086430bf |
PMID | 33315895 |
PQID | 2479461930 |
PQPubID | 1436339 |
ParticipantIDs | plos_journals_2479461930 doaj_primary_oai_doaj_org_article_6fb9f715ed9b41f0b274f005086430bf pubmedcentral_primary_oai_pubmedcentral_nih_gov_7769603 proquest_miscellaneous_2470283795 proquest_journals_2479461930 gale_infotracmisc_A650814819 gale_infotracacademiconefile_A650814819 gale_incontextgauss_ISR_A650814819 gale_incontextgauss_ISN_A650814819 gale_incontextgauss_IOV_A650814819 gale_healthsolutions_A650814819 pubmed_primary_33315895 crossref_citationtrail_10_1371_journal_pgen_1008983 crossref_primary_10_1371_journal_pgen_1008983 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201214 |
PublicationDateYYYYMMDD | 2020-12-14 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201214 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS genetics |
PublicationTitleAlternate | PLoS Genet |
PublicationYear | 2020 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | J Mach (pgen.1008983.ref022) 2016; 28 Y Liu (pgen.1008983.ref037) 2002; 31 SJ Cokus (pgen.1008983.ref039) 2008; 452 A Papikian (pgen.1008983.ref006) 2019; 10 X Tang (pgen.1008983.ref002) 2017; 3 M Jinek (pgen.1008983.ref004) 2013; 2 WB Cody (pgen.1008983.ref013) 2019; 57 J Hoek (pgen.1008983.ref031) 2006; 71 SE Jacobsen (pgen.1008983.ref035) 1997; 277 WB Cody (pgen.1008983.ref015) 2017; 175 DM Bond (pgen.1008983.ref030) 2015; 112 BP Williams (pgen.1008983.ref036) 2015; 11 TM Burch-Smith (pgen.1008983.ref027) 2006; 142 L Ji (pgen.1008983.ref029) 2018; 9 AM Martin-Hernandez (pgen.1008983.ref021) 2008; 82 K Xie (pgen.1008983.ref026) 2015; 112 P Abrahamian (pgen.1008983.ref014) 2020 K Yin (pgen.1008983.ref017) 2015; 5 M Jinek (pgen.1008983.ref005) 2012; 337 BP Williams (pgen.1008983.ref032) 2017; 8 F Krueger (pgen.1008983.ref038) 2011; 27 X Huang (pgen.1008983.ref040) 2018; 34 S Morita (pgen.1008983.ref008) 2016; 34 EE Ellison (pgen.1008983.ref020) 2020; 6 LG Lowder (pgen.1008983.ref003) 2018; 11 J Gallego-Bartolome (pgen.1008983.ref010) 2018; 115 X Ma (pgen.1008983.ref025) 2020; 6 Z Ali (pgen.1008983.ref018) 2018; 244 WJ Soppe (pgen.1008983.ref012) 2000; 6 ME Tanenbaum (pgen.1008983.ref009) 2014; 159 FK Teixeira (pgen.1008983.ref033) 2009; 323 XS Liu (pgen.1008983.ref007) 2016; 167 NJ Baltes (pgen.1008983.ref016) 2014; 26 LG Lowder (pgen.1008983.ref024) 2017; 1629 C Li (pgen.1008983.ref023) 2009; 83 Y Kinoshita (pgen.1008983.ref028) 2007; 49 Z Ali (pgen.1008983.ref019) 2015; 8 O Mittelsten Scheid (pgen.1008983.ref034) 1998; 95 X Xu (pgen.1008983.ref001) 2019; 431 T Kinoshita (pgen.1008983.ref011) 2004; 303 |
References_xml | – volume: 34 start-page: 1060 issue: 10 year: 2016 ident: pgen.1008983.ref008 article-title: Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions publication-title: Nat Biotechnol doi: 10.1038/nbt.3658 – volume: 26 start-page: 151 issue: 1 year: 2014 ident: pgen.1008983.ref016 article-title: DNA replicons for plant genome engineering publication-title: Plant Cell doi: 10.1105/tpc.113.119792 – volume: 57 start-page: 211 year: 2019 ident: pgen.1008983.ref013 article-title: Plant Virus Vectors 3.0: Transitioning into Synthetic Genomics publication-title: Annu Rev Phytopathol doi: 10.1146/annurev-phyto-082718-100301 – volume: 303 start-page: 521 issue: 5657 year: 2004 ident: pgen.1008983.ref011 article-title: One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation publication-title: Science doi: 10.1126/science.1089835 – volume: 5 start-page: 14926 year: 2015 ident: pgen.1008983.ref017 article-title: A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. publication-title: Sci Rep doi: 10.1038/srep14926 – volume: 112 start-page: 917 issue: 3 year: 2015 ident: pgen.1008983.ref030 article-title: Epigenetic transitions leading to heritable, RNA-mediated de novo silencing in Arabidopsis thaliana publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1413053112 – volume: 31 start-page: 777 issue: 6 year: 2002 ident: pgen.1008983.ref037 article-title: Virus-induced gene silencing in tomato publication-title: Plant J doi: 10.1046/j.1365-313X.2002.01394.x – volume: 337 start-page: 816 issue: 6096 year: 2012 ident: pgen.1008983.ref005 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science doi: 10.1126/science.1225829 – volume: 11 start-page: e1005142 issue: 3 year: 2015 ident: pgen.1008983.ref036 article-title: Methylation-sensitive expression of a DNA demethylase gene serves as an epigenetic rheostat publication-title: PLoS Genet doi: 10.1371/journal.pgen.1005142 – volume: 159 start-page: 635 issue: 3 year: 2014 ident: pgen.1008983.ref009 article-title: A protein-tagging system for signal amplification in gene expression and fluorescence imaging publication-title: Cell doi: 10.1016/j.cell.2014.09.039 – volume: 83 start-page: 3540 issue: 8 year: 2009 ident: pgen.1008983.ref023 article-title: A cis element within flowering locus T mRNA determines its mobility and facilitates trafficking of heterologous viral RNA publication-title: J Virol doi: 10.1128/JVI.02346-08 – volume: 112 start-page: 3570 issue: 11 year: 2015 ident: pgen.1008983.ref026 article-title: Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1420294112 – volume: 9 start-page: 895 issue: 1 year: 2018 ident: pgen.1008983.ref029 article-title: TET-mediated epimutagenesis of the Arabidopsis thaliana methylome publication-title: Nat Commun doi: 10.1038/s41467-018-03289-7 – volume: 10 start-page: 729 issue: 1 year: 2019 ident: pgen.1008983.ref006 article-title: Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems publication-title: Nat Commun doi: 10.1038/s41467-019-08736-7 – volume: 27 start-page: 1571 issue: 11 year: 2011 ident: pgen.1008983.ref038 article-title: Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr167 – volume: 1629 start-page: 167 year: 2017 ident: pgen.1008983.ref024 article-title: Multiplexed Transcriptional Activation or Repression in Plants Using CRISPR-dCas9-Based Systems publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-7125-1_12 – year: 2020 ident: pgen.1008983.ref014 article-title: Plant Virus-Derived Vectors: Applications in Agricultural and Medical Biotechnology. publication-title: Annu Rev Virol – volume: 175 start-page: 23 issue: 1 year: 2017 ident: pgen.1008983.ref015 article-title: Multiplexed Gene Editing and Protein Overexpression Using a Tobacco mosaic virus Viral Vector publication-title: Plant Physiol doi: 10.1104/pp.17.00411 – volume: 142 start-page: 21 issue: 1 year: 2006 ident: pgen.1008983.ref027 article-title: Efficient virus-induced gene silencing in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.106.084624 – volume: 71 start-page: 887 issue: 3 year: 2006 ident: pgen.1008983.ref031 article-title: Transmission of tobacco rattle virus (TRV) via seed potatoes publication-title: Commun Agric Appl Biol Sci. – volume: 49 start-page: 38 issue: 1 year: 2007 ident: pgen.1008983.ref028 article-title: Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats publication-title: Plant J doi: 10.1111/j.1365-313X.2006.02936.x – volume: 82 start-page: 4064 issue: 8 year: 2008 ident: pgen.1008983.ref021 article-title: Tobacco rattle virus 16-kilodalton protein encodes a suppressor of RNA silencing that allows transient viral entry in meristems publication-title: J Virol doi: 10.1128/JVI.02438-07 – volume: 28 start-page: 1231 issue: 6 year: 2016 ident: pgen.1008983.ref022 article-title: Ticket to Ride: tRNA-Related Sequences and Systemic Movement of mRNAs publication-title: Plant Cell doi: 10.1105/tpc.16.00493 – volume: 115 start-page: E2125 issue: 9 year: 2018 ident: pgen.1008983.ref010 article-title: Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1716945115 – volume: 244 start-page: 333 year: 2018 ident: pgen.1008983.ref018 article-title: Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis publication-title: Virus Res doi: 10.1016/j.virusres.2017.10.009 – volume: 277 start-page: 1100 issue: 5329 year: 1997 ident: pgen.1008983.ref035 article-title: Hypermethylated SUPERMAN epigenetic alleles in arabidopsis publication-title: Science doi: 10.1126/science.277.5329.1100 – volume: 3 start-page: 17103 year: 2017 ident: pgen.1008983.ref002 article-title: A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants publication-title: Nat Plants doi: 10.1038/nplants.2017.103 – volume: 452 start-page: 215 issue: 7184 year: 2008 ident: pgen.1008983.ref039 article-title: Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning publication-title: Nature doi: 10.1038/nature06745 – volume: 2 start-page: e00471 year: 2013 ident: pgen.1008983.ref004 article-title: RNA-programmed genome editing in human cells publication-title: Elife doi: 10.7554/eLife.00471 – volume: 167 start-page: 233 issue: 1 year: 2016 ident: pgen.1008983.ref007 article-title: Editing DNA Methylation in the Mammalian Genome publication-title: Cell doi: 10.1016/j.cell.2016.08.056 – volume: 323 start-page: 1600 issue: 5921 year: 2009 ident: pgen.1008983.ref033 article-title: A role for RNAi in the selective correction of DNA methylation defects publication-title: Science doi: 10.1126/science.1165313 – volume: 95 start-page: 632 issue: 2 year: 1998 ident: pgen.1008983.ref034 article-title: Release of epigenetic gene silencing by trans-acting mutations in Arabidopsis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.95.2.632 – volume: 34 start-page: 708 issue: 4 year: 2018 ident: pgen.1008983.ref040 article-title: ViewBS: a powerful toolkit for visualization of high-throughput bisulfite sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx633 – volume: 8 start-page: 1288 issue: 8 year: 2015 ident: pgen.1008983.ref019 article-title: Efficient Virus-Mediated Genome Editing in Plants Using the CRISPR/Cas9 System. publication-title: Mol Plant. doi: 10.1016/j.molp.2015.02.011 – volume: 6 start-page: 620 issue: 6 year: 2020 ident: pgen.1008983.ref020 article-title: Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs publication-title: Nat Plants. doi: 10.1038/s41477-020-0670-y – volume: 8 start-page: 2124 issue: 1 year: 2017 ident: pgen.1008983.ref032 article-title: Stable transgenerational epigenetic inheritance requires a DNA methylation-sensing circuit publication-title: Nat Commun doi: 10.1038/s41467-017-02219-3 – volume: 431 start-page: 34 issue: 1 year: 2019 ident: pgen.1008983.ref001 article-title: A CRISPR-dCas Toolbox for Genetic Engineering and Synthetic Biology publication-title: J Mol Biol doi: 10.1016/j.jmb.2018.06.037 – volume: 6 start-page: 791 issue: 4 year: 2000 ident: pgen.1008983.ref012 article-title: The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene publication-title: Mol Cell doi: 10.1016/S1097-2765(05)00090-0 – volume: 6 start-page: 773 issue: 7 year: 2020 ident: pgen.1008983.ref025 article-title: Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9 publication-title: Nat Plants. doi: 10.1038/s41477-020-0704-5 – volume: 11 start-page: 245 issue: 2 year: 2018 ident: pgen.1008983.ref003 article-title: Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems publication-title: Mol Plant. doi: 10.1016/j.molp.2017.11.010 |
SSID | ssj0035897 |
Score | 2.4817185 |
Snippet | Plant RNA viruses are used as delivery vectors for their high level of accumulation and efficient spread during virus multiplication and movement. Utilizing... Introduction Tools that enable targeted regulation of gene expression provide powerful systems for studying and manipulating diverse cellular processes [1].... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1008983 |
SubjectTerms | Arabidopsis Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Biology and life sciences CRISPR CRISPR-Cas Systems Demethylation Deoxyribonucleic acid Diseases and pests Distribution DNA DNA Methylation Drug delivery systems Drugs Engineering and Technology Epigenetics Epigenome Experiments Gene Editing - methods Gene expression Gene regulation Gene Targeting - methods Genetic aspects Genomes Innovations Plant Viruses - genetics Proteins Repressors Research and Analysis Methods Ribonucleic acid RNA RNA, Guide, CRISPR-Cas Systems - genetics RNA, Transfer - genetics Tobacco mosaic virus Transcription activation Transcription factors Transcriptional Activation Transcriptional coactivators Transgenic plants Vectors (Biology) Vehicles Viruses |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegCImXie8VBhiExFNYEid18oTKYNqQKKhjqG-RP7tKVRKW9KH_BH8zd44bCJpgb1V8Tq278_nOufsdIa-FyMHvZSYQcFZCgJJNgjxTWWClBO9YgRIoLBT-PJucnCefFunCX7g1Pq1yZxOdodaVwjvyw9hBoYO7Eb6rfwTYNQq_rvoWGjfJLYQuw5QuvugDLpZmXXOVNGUBh-Del84xHh16Sb2tQUyYKZDlGRscTQ7Bv7fTo3pdNVc5oX_nUv5xOB3fJXveq6TTTg3ukRumvE9ud30mtw_IzynFXN41XW5W2tD5bEq1WWNGxpZ2UM4UfFd6ND89-zoP8GDTtMVDbGdSYCoWQHTXt1SUmmLZYItlV7TLJYcZH9xrsSX1tkuwo6sSliTkSld1s2poe-EuVcRDcn788dvRSeAbMQSKx3EL_xuGUseKTVSSCKyVhTBIyyQxE2611GkYC2OBhylW3qpUWcTQ4dzC79CkGXtERmVVmn1Chckk0xpIpEyYFHkCSqKVCBm3US7tmLCdDArlUcqxWca6cJ_eOEQrHUsLlFzhJTcmQT-r7lA6_kP_HsXb0yLGtntQXS4Lv2WLiZW55VFqdC6TyIYSAniLeDkZeHEhLvUFKkfRFaz2lqKYotMLUWaUj8krR4E4GyUm8izFpmmK0y_fr0F0NrsO0XxA9MYT2Qp4poSvsADOI8jXgPJgQAkmRQ2G91Hfd6xrit-bD2bu9sDVwy_7YXwpZvCVpto4GnRleZ6OyeNuy_TsZ4xFsFdhhA8200A-w5FydeGw0DkHZQzZk38v6ym5E-M9SRQHUXJARu3lxjwDZ7KVz53F-AVUZnSO priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LbtNAcFWCkLgg3g0tsCAkTq5sr521DwiFQtUiNaCUoN6sfaaRIjuNHYn8BN_MzPohjILogZvlnV1b89iZ2Z0HIW-ESMHuZcYToCvBQUlGXpqoxLNSgnWsgAkUJgqfT0ans-jzZXy5R9qerQ0Cy52uHfaTmq2XRz-ut-9B4N-5rg08aCcdrQDleOufpAm7RW6DbuIoqudRd6_A4qRutxLHzOPg7jfJdH9bpaesXE3_bucerJZFucss_TO68jd1dXKf3GvsTDquGeMB2TP5Q3Kn7jy5fUR-jilG9y7pfLPQhk4nY6rNEmM0trQu7kzBmqXH07OLr1MPVZ2mFaq1dpOBqZgSUR_oUpFriomEFSZi0Tq6HGZ8dMtik-ptHXJHFzn8kpALXazKRUmrK3fMIh6T2cmnb8enXtOawVM8DCv4ru9LHSo2UlEkMHsWHCMto8iMuNVSx34ojAUcxpiLq2JlsaoO5xaefRMn7AkZ5EVu9gkVJpFMawCRMmJSpBGwjVbCZ9wGqbRDwloaZKqpW47tM5aZu4zj4L_UKM2QcllDuSHxulmrum7HP-A_IHk7WKy67V4U63nWCHE2sjK1PIiNTmUUWF-CS2-xgk4Cdp2Pv_oSmSOrU1i7vSMboxkMfmeQDslrB4GVN3IM7ZmLTVlmZ1--3wDoYnIToGkP6G0DZAvAmRJNzgVgHst-9SAPe5Cwyaje8D7ye4u6MgtdZwKw_n2Y2crA7uFX3TAuijF9uSk2DgaNW57GQ_K0FpkO_YyxAGQVRnhPmHr06Y_kiytXHZ1zYEafPfsfBD0gd0M8XwlCL4gOyaBab8xzMEIr-cLtK78AGiCHMA priority: 102 providerName: Scholars Portal |
Title | A viral guide RNA delivery system for CRISPR-based transcriptional activation and heritable targeted DNA demethylation in Arabidopsis thaliana |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33315895 https://www.proquest.com/docview/2479461930 https://www.proquest.com/docview/2470283795 https://pubmed.ncbi.nlm.nih.gov/PMC7769603 https://doaj.org/article/6fb9f715ed9b41f0b274f005086430bf http://dx.doi.org/10.1371/journal.pgen.1008983 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BEBIXxLtuS1gQEidT22tn7WNaWrVIDZVLUW7WPttIkRNh55A_wW9mxmtbNarUHrhEUfZbO5mZnYczD0I-C5GB38uML8BWQoCSTvwsValvpQTvWIEQKCwUPp9NTq_i7_NkfmvUF-aEufbAjnAHEyszy8PE6EzGoQ0khFEWu5akYEsDaVH7gs3rgimng1mSurEqScJ8DmF9WzTHeHjQ8ujrGhiEOQJplrKBUWp69_caerRerqq73M9_syhvmaWTF-R560_SqfsdL8kjU74iT92Eye1r8mdKMYt3Sa83C21oPptSbZaYi7GlrokzBa-VHuVnlxe5jyZN0xrNV6dMYCuWPrgHt1SUmmLBYI0FV9RlkcOOb81lcRj11qXW0UUJX0nIhV6tq0VF65vmcYp4Q65Ojn8enfrtCAZf8Siq4b5BIHWk2ETFscAqWQiAtIxjM-FWS50EkTAWaJhgza1KlMXuOZxbeB-YJGVvyahclWaHUGFSybQGiJQxkyKLQTy0EgHjNsyk9QjreFCotj85jslYFs2fbhziFEfSAjlXtJzziN_vWrv-HPfgD5G9PRa7azcfgMwVrcwV98mcRz6gcBSuVLXXEcUU3V2IL8PMI58aBHbYKDGF51psqqo4-_HrAaDL2UNA-QD0pQXZFdBMiba2AiiP7b0GyP0BEpSJGizvoLx3pKuKqJlAAF5-ADu7M3D38sd-GS-KuXulWW0aDDqxPEs88s4dmZ78jLEQziqs8MFhGvBnuFIubpou6JyDMAZs938wdI88i_A5Shj5YbxPRvXvjXkPzmYtx-Qxn_MxeXJ4PLvIx42WgdfzOP0LpamAFA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAguiHcDhS4IxMnU9tpZ-4BQ-lJD21ClLerN7DONFNmhToTyJ_gp_EZm_AKjCnrpLcrOrlYzszPfrudByBshYsC9zDgCfCVcUKKeE0cqcqyUgI4VKIHCROGjYW__LPh0Hp6vkJ91LgyGVdY2sTDUOlP4Rr7pF6XQAW64H2ffHOwahV9X6xYapVocmOV3uLLlHwY7IN-3vr-3e7q971RdBRzFfX_uSOG6UvuK9VQQCEz8BEyvZRCYHrda6tD1hbFuBNDDZ6EKlcWCMJxb-O2aMGKw7i2yGjC4ynTI6tbu8HhU234WRmU7lzBkDmexWyXrMe5tVrrxfgaKgbEJURyxljMsegY0nqEzm2b5VbD37-jNP9zh3n1yr8KxtF8q3gOyYtKH5HbZ2XL5iPzoU4wentLxYqINHQ37VJspxoAsaVk8mgJaptujwcnxyEFXqukc3WZtxGAqplyUD8ZUpJpiouIcE71oGb0OM3aKZbEJ9rIM6aOTFLYk5ERns3yS0_lF8YwjHpOzGxHSE9JJs9SsESpMJJnWQCJlwKSIA1BLrYTLuPViabuE1TJIVFUXHdtzTJPiYx-H-1HJ0gQll1SS6xKnmTUr64L8h34LxdvQYlXv4o_scpxURiLpWRlb7oVGxzLwrCt9Hlis0BMBbnRxqxuoHEmZItvYpqSPMBvutV7cJa8LCqzskWLo0Fgs8jwZfP5yDaKT4XWIRi2idxWRzYBnSlQ5HcB5LCvWolxvUYIRU63hNdT3mnV58vu4w8z6DFw9_KoZxkUxZjA12aKgQfDM47BLnpZHpmE_Y8yDswojvHWYWvJpj6STi6L6OuegjC579u9tbZA7-6dHh8nhYHjwnNz18ZXG8x0vWCed-eXCvAAoO5cvK_tBydebNlm_AKe-si0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGEYgXxH2FwQwC8RSaxEmdPCBUVqaVQZk6hvoWfO0qVUlZWqH-CX4Qv45zcoOgCfayt6o-tiyf22fnXAh5LkQMuJcZR4CvhAtK1HfiSEWOlRLQsQIhUJgo_HHcPzgJ3k_D6Rb5WefCYFhlbRMLQ60zhW_kPb8ohQ5ww-3ZKiziaLj_ZvnNwQ5S-KW1bqdRisih2XyH61v-ejQEXr_w_f13n_cOnKrDgKO4768cKVxXal-xvgoCgUmggO-1DALT51ZLHbq-MNaNAIb4LFShslgchnMLv10TRgzWvUKuchZ6qGN82lz2WBiVjV3CkDmcxW6Vtse416uk5NUSRASjFKI4Yi23WHQPaHxEZ7nI8vMA8N9xnH84xv1b5GaFaOmgFMHbZMukd8i1ssfl5i75MaAYR7ygs_VcGzoZD6g2C4wG2dCyjDQF3Ez3JqPjo4mDTlXTFTrQ2pzBVEy-KJ-OqUg1xZTFFaZ80TKOHWYMi2WxHfamDO6j8xS2JORcZ8t8ntPVafGgI-6Rk0th0X3SSbPUbBMqTCSZ1kAiZcCkiAMQUK2Ey7j1Ymm7hNU8SFRVIR0bdSyS4rMfh5tSeaQJci6pONclTjNrWVYI-Q_9W2RvQ4v1vYs_srNZUpmLpG9lbLkXGh3LwLOu9HlgsVZPBAjSxa3uonAkZbJsY6WSAQJuuOF6cZc8KyiwxkeK2jIT6zxPRp--XIDoeHwRokmL6GVFZDM4MyWq7A44eSww1qLcaVGCOVOt4W2U9_ro8uS34sPMWgfOH37aDOOiGD2Ymmxd0CCM5nHYJQ9KlWmOnzHmga7CCG8pU4s_7ZF0flrUYecchNFlD_-9rV1yHQxV8mE0PnxEbvj4XOP5jhfskM7qbG0eA6ZdySeF8aDk62Vbq1_PZrT9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+viral+guide+RNA+delivery+system+for+CRISPR-based+transcriptional+activation+and+heritable+targeted+DNA+demethylation+in+Arabidopsis+thaliana&rft.jtitle=PLoS+genetics&rft.au=Basudev+Ghoshal&rft.au=Brandon+Vong&rft.au=Colette+L+Picard&rft.au=Suhua+Feng&rft.date=2020-12-14&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-7390&rft.eissn=1553-7404&rft.volume=16&rft.issue=12&rft.spage=e1008983&rft_id=info:doi/10.1371%2Fjournal.pgen.1008983&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6fb9f715ed9b41f0b274f005086430bf |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |