Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation

The majority of extracellular vesicle (EV) studies conducted to date have been performed on cell lines with little knowledge on how well these represent the characteristics of EVs in vivo. The aim of this study was to establish a method to isolate and categorize subpopulations of EVs isolated direct...

Full description

Saved in:
Bibliographic Details
Published inJournal of extracellular vesicles Vol. 9; no. 1; pp. 1722433 - n/a
Main Authors Crescitelli, Rossella, Lässer, Cecilia, Jang, Su Chul, Cvjetkovic, Aleksander, Malmhäll, Carina, Karimi, Nasibeh, Höög, Johanna L., Johansson, Iva, Fuchs, Johannes, Thorsell, Annika, Gho, Yong Song, Olofsson Bagge, R., Lötvall, Jan
Format Journal Article
LanguageEnglish
Published Sweden Taylor & Francis 01.01.2020
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The majority of extracellular vesicle (EV) studies conducted to date have been performed on cell lines with little knowledge on how well these represent the characteristics of EVs in vivo. The aim of this study was to establish a method to isolate and categorize subpopulations of EVs isolated directly from tumour tissue. First we established an isolation protocol for subpopulations of EVs from metastatic melanoma tissue, which included enzymatic treatment (collagenase D and DNase). Small and large EVs were isolated with differential ultracentrifugation, and these were further separated into high and low-density (HD and LD) fractions. All EV subpopulations were then analysed in depth using electron microscopy, Bioanalyzer®, nanoparticle tracking analysis, and quantitative mass spectrometry analysis. Subpopulations of EVs with distinct size, morphology, and RNA and protein cargo could be isolated from the metastatic melanoma tissue. LD EVs showed an RNA profile with the presence of 18S and 28S ribosomal subunits. In contrast, HD EVs had RNA profiles with small or no peaks for ribosomal RNA subunits. Quantitative proteomics showed that several proteins such as flotillin-1 were enriched in both large and small LD EVs, while ADAM10 were exclusively enriched in small LD EVs. In contrast, mitofilin was enriched only in the large EVs. We conclude that enzymatic treatments improve EV isolation from dense fibrotic tissue without any apparent effect on molecular or morphological characteristics. By providing a detailed categorization of several subpopulations of EVs isolated directly from tumour tissues, we might better understand the function of EVs in tumour biology and their possible use in biomarker discovery.
AbstractList The majority of extracellular vesicle (EV) studies conducted to date have been performed on cell lines with little knowledge on how well these represent the characteristics of EVs in vivo. The aim of this study was to establish a method to isolate and categorize subpopulations of EVs isolated directly from tumour tissue. First we established an isolation protocol for subpopulations of EVs from metastatic melanoma tissue, which included enzymatic treatment (collagenase D and DNase). Small and large EVs were isolated with differential ultracentrifugation, and these were further separated into high and low-density (HD and LD) fractions. All EV subpopulations were then analysed in depth using electron microscopy, Bioanalyzer®, nanoparticle tracking analysis, and quantitative mass spectrometry analysis. Subpopulations of EVs with distinct size, morphology, and RNA and protein cargo could be isolated from the metastatic melanoma tissue. LD EVs showed an RNA profile with the presence of 18S and 28S ribosomal subunits. In contrast, HD EVs had RNA profiles with small or no peaks for ribosomal RNA subunits. Quantitative proteomics showed that several proteins such as flotillin-1 were enriched in both large and small LD EVs, while ADAM10 were exclusively enriched in small LD EVs. In contrast, mitofilin was enriched only in the large EVs. We conclude that enzymatic treatments improve EV isolation from dense fibrotic tissue without any apparent effect on molecular or morphological characteristics. By providing a detailed categorization of several subpopulations of EVs isolated directly from tumour tissues, we might better understand the function of EVs in tumour biology and their possible use in biomarker discovery.
The majority of extracellular vesicle (EV) studies conducted to date have been performed on cell lines with little knowledge on how well these represent the characteristics of EVs  in vivo . The aim of this study was to establish a method to isolate and categorize subpopulations of EVs isolated directly from tumour tissue. First we established an isolation protocol for subpopulations of EVs from metastatic melanoma tissue, which included enzymatic treatment (collagenase D and DNase). Small and large EVs were isolated with differential ultracentrifugation, and these were further separated into high and low‐density (HD and LD) fractions. All EV subpopulations were then analysed in depth using electron microscopy, Bioanalyzer®, nanoparticle tracking analysis, and quantitative mass spectrometry analysis. Subpopulations of EVs with distinct size, morphology, and RNA and protein cargo could be isolated from the metastatic melanoma tissue. LD EVs showed an RNA profile with the presence of 18S and 28S ribosomal subunits. In contrast, HD EVs had RNA profiles with small or no peaks for ribosomal RNA subunits. Quantitative proteomics showed that several proteins such as flotillin‐1 were enriched in both large and small LD EVs, while ADAM10 were exclusively enriched in small LD EVs. In contrast, mitofilin was enriched only in the large EVs. We conclude that enzymatic treatments improve EV isolation from dense fibrotic tissue without any apparent effect on molecular or morphological characteristics. By providing a detailed categorization of several subpopulations of EVs isolated directly from tumour tissues, we might better understand the function of EVs in tumour biology and their possible use in biomarker discovery.
ABSTRACT The majority of extracellular vesicle (EV) studies conducted to date have been performed on cell lines with little knowledge on how well these represent the characteristics of EVs in vivo. The aim of this study was to establish a method to isolate and categorize subpopulations of EVs isolated directly from tumour tissue. First we established an isolation protocol for subpopulations of EVs from metastatic melanoma tissue, which included enzymatic treatment (collagenase D and DNase). Small and large EVs were isolated with differential ultracentrifugation, and these were further separated into high and low‐density (HD and LD) fractions. All EV subpopulations were then analysed in depth using electron microscopy, Bioanalyzer®, nanoparticle tracking analysis, and quantitative mass spectrometry analysis. Subpopulations of EVs with distinct size, morphology, and RNA and protein cargo could be isolated from the metastatic melanoma tissue. LD EVs showed an RNA profile with the presence of 18S and 28S ribosomal subunits. In contrast, HD EVs had RNA profiles with small or no peaks for ribosomal RNA subunits. Quantitative proteomics showed that several proteins such as flotillin‐1 were enriched in both large and small LD EVs, while ADAM10 were exclusively enriched in small LD EVs. In contrast, mitofilin was enriched only in the large EVs. We conclude that enzymatic treatments improve EV isolation from dense fibrotic tissue without any apparent effect on molecular or morphological characteristics. By providing a detailed categorization of several subpopulations of EVs isolated directly from tumour tissues, we might better understand the function of EVs in tumour biology and their possible use in biomarker discovery.
The majority of extracellular vesicle (EV) studies conducted to date have been performed on cell lines with little knowledge on how well these represent the characteristics of EVs  . The aim of this study was to establish a method to isolate and categorize subpopulations of EVs isolated directly from tumour tissue. First we established an isolation protocol for subpopulations of EVs from metastatic melanoma tissue, which included enzymatic treatment (collagenase D and DNase). Small and large EVs were isolated with differential ultracentrifugation, and these were further separated into high and low-density (HD and LD) fractions. All EV subpopulations were then analysed in depth using electron microscopy, Bioanalyzer®, nanoparticle tracking analysis, and quantitative mass spectrometry analysis. Subpopulations of EVs with distinct size, morphology, and RNA and protein cargo could be isolated from the metastatic melanoma tissue. LD EVs showed an RNA profile with the presence of 18S and 28S ribosomal subunits. In contrast, HD EVs had RNA profiles with small or no peaks for ribosomal RNA subunits. Quantitative proteomics showed that several proteins such as flotillin-1 were enriched in both large and small LD EVs, while ADAM10 were exclusively enriched in small LD EVs. In contrast, mitofilin was enriched only in the large EVs. We conclude that enzymatic treatments improve EV isolation from dense fibrotic tissue without any apparent effect on molecular or morphological characteristics. By providing a detailed categorization of several subpopulations of EVs isolated directly from tumour tissues, we might better understand the function of EVs in tumour biology and their possible use in biomarker discovery.
The majority of extracellular vesicle (EV) studies conducted to date have been performed on cell lines with little knowledge on how well these represent the characteristics of EVs in vivo. The aim of this study was to establish a method to isolate and categorize subpopulations of EVs isolated directly from tumour tissue. First we established an isolation protocol for subpopulations of EVs from metastatic melanoma tissue, which included enzymatic treatment (collagenase D and DNase). Small and large EVs were isolated with differential ultracentrifugation, and these were further separated into high and low-density (HD and LD) fractions. All EV subpopulations were then analysed in depth using electron microscopy, Bioanalyzer (R), nanoparticle tracking analysis, and quantitative mass spectrometry analysis. Subpopulations of EVs with distinct size, morphology, and RNA and protein cargo could be isolated from the metastatic melanoma tissue. LD EVs showed an RNA profile with the presence of 18S and 28S ribosomal subunits. In contrast, HD EVs had RNA profiles with small or no peaks for ribosomal RNA subunits. Quantitative proteomics showed that several proteins such as flotillin-1 were enriched in both large and small LD EVs, while ADAM10 were exclusively enriched in small LD EVs. In contrast, mitofilin was enriched only in the large EVs. We conclude that enzymatic treatments improve EV isolation from dense fibrotic tissue without any apparent effect on molecular or morphological characteristics. By providing a detailed categorization of several subpopulations of EVs isolated directly from tumour tissues, we might better understand the function of EVs in tumour biology and their possible use in biomarker discovery.
ABSTRACT The majority of extracellular vesicle (EV) studies conducted to date have been performed on cell lines with little knowledge on how well these represent the characteristics of EVs in vivo. The aim of this study was to establish a method to isolate and categorize subpopulations of EVs isolated directly from tumour tissue. First we established an isolation protocol for subpopulations of EVs from metastatic melanoma tissue, which included enzymatic treatment (collagenase D and DNase). Small and large EVs were isolated with differential ultracentrifugation, and these were further separated into high and low‐density (HD and LD) fractions. All EV subpopulations were then analysed in depth using electron microscopy, Bioanalyzer®, nanoparticle tracking analysis, and quantitative mass spectrometry analysis. Subpopulations of EVs with distinct size, morphology, and RNA and protein cargo could be isolated from the metastatic melanoma tissue. LD EVs showed an RNA profile with the presence of 18S and 28S ribosomal subunits. In contrast, HD EVs had RNA profiles with small or no peaks for ribosomal RNA subunits. Quantitative proteomics showed that several proteins such as flotillin‐1 were enriched in both large and small LD EVs, while ADAM10 were exclusively enriched in small LD EVs. In contrast, mitofilin was enriched only in the large EVs. We conclude that enzymatic treatments improve EV isolation from dense fibrotic tissue without any apparent effect on molecular or morphological characteristics. By providing a detailed categorization of several subpopulations of EVs isolated directly from tumour tissues, we might better understand the function of EVs in tumour biology and their possible use in biomarker discovery.
The majority of extracellular vesicle (EV) studies conducted to date have been performed on cell lines with little knowledge on how well these represent the characteristics of EVs in vivo. The aim of this study was to establish a method to isolate and categorize subpopulations of EVs isolated directly from tumour tissue. First we established an isolation protocol for subpopulations of EVs from metastatic melanoma tissue, which included enzymatic treatment (collagenase D and DNase). Small and large EVs were isolated with differential ultracentrifugation, and these were further separated into high and low-density (HD and LD) fractions. All EV subpopulations were then analysed in depth using electron microscopy, Bioanalyzer®, nanoparticle tracking analysis, and quantitative mass spectrometry analysis. Subpopulations of EVs with distinct size, morphology, and RNA and protein cargo could be isolated from the metastatic melanoma tissue. LD EVs showed an RNA profile with the presence of 18S and 28S ribosomal subunits. In contrast, HD EVs had RNA profiles with small or no peaks for ribosomal RNA subunits. Quantitative proteomics showed that several proteins such as flotillin-1 were enriched in both large and small LD EVs, while ADAM10 were exclusively enriched in small LD EVs. In contrast, mitofilin was enriched only in the large EVs. We conclude that enzymatic treatments improve EV isolation from dense fibrotic tissue without any apparent effect on molecular or morphological characteristics. By providing a detailed categorization of several subpopulations of EVs isolated directly from tumour tissues, we might better understand the function of EVs in tumour biology and their possible use in biomarker discovery.The majority of extracellular vesicle (EV) studies conducted to date have been performed on cell lines with little knowledge on how well these represent the characteristics of EVs in vivo. The aim of this study was to establish a method to isolate and categorize subpopulations of EVs isolated directly from tumour tissue. First we established an isolation protocol for subpopulations of EVs from metastatic melanoma tissue, which included enzymatic treatment (collagenase D and DNase). Small and large EVs were isolated with differential ultracentrifugation, and these were further separated into high and low-density (HD and LD) fractions. All EV subpopulations were then analysed in depth using electron microscopy, Bioanalyzer®, nanoparticle tracking analysis, and quantitative mass spectrometry analysis. Subpopulations of EVs with distinct size, morphology, and RNA and protein cargo could be isolated from the metastatic melanoma tissue. LD EVs showed an RNA profile with the presence of 18S and 28S ribosomal subunits. In contrast, HD EVs had RNA profiles with small or no peaks for ribosomal RNA subunits. Quantitative proteomics showed that several proteins such as flotillin-1 were enriched in both large and small LD EVs, while ADAM10 were exclusively enriched in small LD EVs. In contrast, mitofilin was enriched only in the large EVs. We conclude that enzymatic treatments improve EV isolation from dense fibrotic tissue without any apparent effect on molecular or morphological characteristics. By providing a detailed categorization of several subpopulations of EVs isolated directly from tumour tissues, we might better understand the function of EVs in tumour biology and their possible use in biomarker discovery.
Author Malmhäll, Carina
Lötvall, Jan
Cvjetkovic, Aleksander
Johansson, Iva
Lässer, Cecilia
Gho, Yong Song
Jang, Su Chul
Höög, Johanna L.
Fuchs, Johannes
Thorsell, Annika
Crescitelli, Rossella
Olofsson Bagge, R.
Karimi, Nasibeh
Author_xml – sequence: 1
  givenname: Rossella
  orcidid: 0000-0002-1714-3169
  surname: Crescitelli
  fullname: Crescitelli, Rossella
  organization: Institute of Medicine Sahlgrenska Academy at University of Gothenburg
– sequence: 2
  givenname: Cecilia
  orcidid: 0000-0003-1279-1746
  surname: Lässer
  fullname: Lässer, Cecilia
  email: cecilia.lasser@gu.se
  organization: Institute of Medicine Sahlgrenska Academy at University of Gothenburg
– sequence: 3
  givenname: Su Chul
  orcidid: 0000-0003-3326-1007
  surname: Jang
  fullname: Jang, Su Chul
  organization: Institute of Medicine Sahlgrenska Academy at University of Gothenburg
– sequence: 4
  givenname: Aleksander
  orcidid: 0000-0002-9131-9791
  surname: Cvjetkovic
  fullname: Cvjetkovic, Aleksander
  organization: Institute of Medicine Sahlgrenska Academy at University of Gothenburg
– sequence: 5
  givenname: Carina
  surname: Malmhäll
  fullname: Malmhäll, Carina
  organization: Institute of Medicine Sahlgrenska Academy at University of Gothenburg
– sequence: 6
  givenname: Nasibeh
  surname: Karimi
  fullname: Karimi, Nasibeh
  organization: Institute of Medicine Sahlgrenska Academy at University of Gothenburg
– sequence: 7
  givenname: Johanna L.
  surname: Höög
  fullname: Höög, Johanna L.
  organization: University of Gothenburg
– sequence: 8
  givenname: Iva
  orcidid: 0000-0003-2162-3816
  surname: Johansson
  fullname: Johansson, Iva
  organization: Sahlgrenska University Hospital
– sequence: 9
  givenname: Johannes
  surname: Fuchs
  fullname: Fuchs, Johannes
  organization: Sahlgrenska Academy at University of Gothenburg
– sequence: 10
  givenname: Annika
  surname: Thorsell
  fullname: Thorsell, Annika
  organization: Sahlgrenska Academy at University of Gothenburg
– sequence: 11
  givenname: Yong Song
  surname: Gho
  fullname: Gho, Yong Song
  organization: Pohang University of Science and Technology
– sequence: 12
  givenname: R.
  orcidid: 0000-0001-5795-0355
  surname: Olofsson Bagge
  fullname: Olofsson Bagge, R.
  organization: University of Gothenburg
– sequence: 13
  givenname: Jan
  orcidid: 0000-0001-9195-9249
  surname: Lötvall
  fullname: Lötvall, Jan
  email: jan.lotvall@gu.se
  organization: Institute of Medicine Sahlgrenska Academy at University of Gothenburg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32128073$$D View this record in MEDLINE/PubMed
https://gup.ub.gu.se/publication/291542$$DView record from Swedish Publication Index
BookMark eNqNUstu1DAUjVARLaWfALLEhs0UP-tESKhQtVBUiQWPrWU711NXSZzayZThI_hmnGYGtV0A2cQ-95yTk3vv02KnCx0UxXOCDwku8WuKMWFYlocU0wxJSjljj4q9CV9MhZ07593iIKUrnJ-KE1FWT4pdRgktsWR7xa8vo-lDPzZ68KFLKDgEP4aoLTRNBiNaQfK2gYRcDC26HFvdoRYGnYassPnY6C60Gg0-pRGQr6EbvPNQI7NG16POt4m5AtTHMEBovU1IuwEiCv3gW_8zU30Kc4BnxWOnmwQHm_d-8e3s9OvJx8XF5w_nJ-8uFlZSgheAKya4AVM7KxiRwlFWClYaI3FlRcl4fUS4o1ZWWGKDbQ3SUicIrSrJOGf7xfnsWwd9pfroWx3XKmivboEQl0rHYfpxVVpnKi4lpgBcirqCI2GssdyVYKjB2Wsxe6Ub6Edzz2059ipDy1ElULQigtPMfzvzM7mF2uaGRd3ck92vdP5SLcNKSZyji8ng1cYghusR0qBan6aB6Q7CmBRlkhCeuWWmvnxAvQpj7HJrFcMVZVyQamK9uJvoT5TtmmTCm5lgY0gpglP2dqphCugbRbCa9lJt91JNe6k2e5nV4oF6-4F_6TaNuvENrP9PpD6dfqfvz3LpaJrM8WzgOxdiq29CbGo16HUToou6sz634e8ZfgOA2w5D
CitedBy_id crossref_primary_10_1002_jev2_12213
crossref_primary_10_3390_v12060584
crossref_primary_10_1038_s41596_020_00466_1
crossref_primary_10_1002_pmic_202300180
crossref_primary_10_1016_j_jormas_2024_101921
crossref_primary_10_1002_advs_202408964
crossref_primary_10_1038_s41467_024_45753_7
crossref_primary_10_1080_14789450_2021_1984884
crossref_primary_10_1007_s00018_024_05137_y
crossref_primary_10_1016_j_celrep_2021_108960
crossref_primary_10_1021_acs_analchem_0c05194
crossref_primary_10_1016_j_bbcan_2024_189142
crossref_primary_10_2144_btn_2022_0035
crossref_primary_10_1016_j_prp_2021_153604
crossref_primary_10_3390_ijms23020868
crossref_primary_10_1080_20013078_2020_1763594
crossref_primary_10_1186_s40364_024_00661_2
crossref_primary_10_3390_app11167520
crossref_primary_10_1039_D4NA00393D
crossref_primary_10_3389_fbioe_2022_1053217
crossref_primary_10_3390_bios12020089
crossref_primary_10_1002_jev2_12175
crossref_primary_10_1007_s11033_024_09624_0
crossref_primary_10_1016_j_xjidi_2021_100053
crossref_primary_10_1111_cas_15438
crossref_primary_10_3390_ijms24010228
crossref_primary_10_3389_fcell_2021_735529
crossref_primary_10_3389_fnmol_2023_1090556
crossref_primary_10_1016_j_semcancer_2022_11_004
crossref_primary_10_1002_wnan_1835
crossref_primary_10_3390_vetsci8090182
crossref_primary_10_1124_pharmrev_123_000841
crossref_primary_10_1016_j_addr_2020_08_006
crossref_primary_10_33549_physiolres_935143
crossref_primary_10_1186_s40001_024_01937_x
crossref_primary_10_1186_s12943_024_02083_y
crossref_primary_10_3390_ijms21082934
crossref_primary_10_1002_adfm_202205663
crossref_primary_10_1002_pmic_202300055
crossref_primary_10_1038_s41596_022_00719_1
crossref_primary_10_1002_smll_202007174
crossref_primary_10_3390_cancers16122235
crossref_primary_10_1038_s41598_025_91873_5
crossref_primary_10_1002_jcp_30809
crossref_primary_10_1002_INMD_20230017
crossref_primary_10_1038_s41419_020_02803_4
crossref_primary_10_1080_21655979_2021_1977767
crossref_primary_10_1016_j_toxlet_2022_07_465
crossref_primary_10_1002_jev2_12486
crossref_primary_10_1038_s41598_023_44050_5
crossref_primary_10_3390_molecules27123941
crossref_primary_10_1002_med_22035
crossref_primary_10_1002_jev2_12404
crossref_primary_10_1016_j_jdrv_2024_06_006
crossref_primary_10_1002_jev2_12128
crossref_primary_10_1002_jev2_12408
crossref_primary_10_3389_fbioe_2022_876151
crossref_primary_10_1016_j_lfs_2023_121624
crossref_primary_10_1021_acsnano_1c05099
crossref_primary_10_1111_eci_13769
crossref_primary_10_1186_s12974_024_03281_7
crossref_primary_10_3390_ph13120475
crossref_primary_10_3389_fcell_2022_1028854
crossref_primary_10_3390_cells10071763
crossref_primary_10_1152_ajpcell_00541_2022
crossref_primary_10_1080_20013078_2020_1809766
crossref_primary_10_3390_proteomes8040033
crossref_primary_10_1002_mco2_433
crossref_primary_10_1007_s13346_023_01328_5
crossref_primary_10_1002_jev2_12120
crossref_primary_10_1002_jev2_70037
crossref_primary_10_1038_s41551_021_00792_z
crossref_primary_10_3233_THC_231256
crossref_primary_10_1007_s12015_021_10264_1
crossref_primary_10_1016_j_tranon_2025_102342
crossref_primary_10_3389_fmed_2021_725598
crossref_primary_10_3390_biomedicines11041053
crossref_primary_10_3389_fmolb_2022_1036746
crossref_primary_10_3233_JAD_220322
crossref_primary_10_1007_s10555_023_10147_6
crossref_primary_10_1016_j_jconrel_2022_09_045
crossref_primary_10_1111_liv_16011
crossref_primary_10_1016_j_cej_2024_156489
crossref_primary_10_1016_j_exphem_2021_08_004
crossref_primary_10_1177_00220345221130013
crossref_primary_10_1002_jex2_143
crossref_primary_10_3389_fonc_2022_829520
crossref_primary_10_1002_jex2_138
crossref_primary_10_1007_s00432_023_05596_z
crossref_primary_10_1158_2326_6066_CIR_22_0277
crossref_primary_10_1007_s12032_021_01554_2
crossref_primary_10_1186_s12951_023_02211_8
crossref_primary_10_1186_s12951_023_02219_0
crossref_primary_10_3389_fcell_2020_623039
crossref_primary_10_14814_phy2_70056
crossref_primary_10_3390_ani14243598
crossref_primary_10_1002_jev2_70011
crossref_primary_10_3389_fimmu_2024_1436973
crossref_primary_10_1038_s41467_021_25990_w
crossref_primary_10_1002_jev2_12140
crossref_primary_10_1021_acsanm_0c01654
crossref_primary_10_1002_jev2_12380
crossref_primary_10_1186_s12929_022_00798_y
crossref_primary_10_1002_jex2_127
crossref_primary_10_1016_j_nbd_2022_105734
crossref_primary_10_1016_j_tranon_2024_102121
crossref_primary_10_1016_j_critrevonc_2022_103603
crossref_primary_10_1016_j_tranon_2021_101112
crossref_primary_10_1136_jitc_2020_001113
crossref_primary_10_1155_2022_2521025
crossref_primary_10_3390_pr12122938
crossref_primary_10_1038_s43586_023_00240_z
crossref_primary_10_1038_s41598_021_83241_w
crossref_primary_10_1016_j_mcpro_2022_100273
crossref_primary_10_1089_met_2023_0284
crossref_primary_10_1002_jev2_12271
crossref_primary_10_1038_s42003_022_03598_0
crossref_primary_10_1002_jev2_12276
crossref_primary_10_1038_s41580_023_00576_0
crossref_primary_10_1186_s12885_021_08870_w
crossref_primary_10_3390_ijms23073855
crossref_primary_10_3390_ph14040289
crossref_primary_10_1016_j_talanta_2024_125700
crossref_primary_10_1186_s13287_020_01832_2
crossref_primary_10_3390_ijms231911929
crossref_primary_10_1002_jex2_77
crossref_primary_10_1021_acs_jproteome_9b00578
crossref_primary_10_1186_s13287_021_02460_0
crossref_primary_10_1016_j_tranon_2020_100995
crossref_primary_10_1016_j_tice_2024_102470
crossref_primary_10_1080_20013078_2020_1785746
crossref_primary_10_1007_s00018_022_04164_x
crossref_primary_10_1038_s41598_023_36706_z
crossref_primary_10_3390_biom11060833
crossref_primary_10_1111_srt_13463
crossref_primary_10_1016_j_addr_2021_113961
crossref_primary_10_1007_s00335_024_10052_5
crossref_primary_10_3390_ijms22094718
crossref_primary_10_3390_ijms21228550
crossref_primary_10_1016_j_jdiacomp_2023_108435
crossref_primary_10_3390_ijms21155373
crossref_primary_10_1017_erm_2022_34
Cites_doi 10.1016/j.cell.2012.11.024
10.1074/jbc.M011297200
10.1038/nm.2753
10.1083/jcb.201211138
10.1080/20013078.2017.1348885
10.1080/15476286.2016.1249092
10.1186/1755-8794-8-S2-S5
10.3402/jev.v3.24858
10.1016/j.jprot.2010.06.006
10.1074/jbc.M009859200
10.1083/jcb.97.2.329
10.1097/DAD.0000000000000737
10.1038/ncomms3126
10.1186/PREACCEPT-1817458803126023
10.1247/csf.07045
10.1186/1479-5876-9-86
10.1371/journal.pbio.1001450
10.1073/pnas.1521230113
10.1080/19336918.2017.1279784
10.1080/20013078.2019.1656993
10.3402/jev.v2i0.20384
10.1038/srep22519
10.1007/978-1-4939-2438-7_23
10.1016/j.ccell.2014.09.005
10.1038/s41598-017-16363-9
10.7554/eLife.01479
10.1083/jcb.200311084
10.1038/s41556-018-0040-4
10.1038/srep30386
10.1073/pnas.1019055108
10.1016/j.dld.2009.04.006
10.1006/jsbi.1996.0013
10.1097/DAD.0b013e3182042893
10.1038/nmeth.4185
10.1016/j.mam.2018.02.002
10.1074/jbc.M505036200
10.1016/j.jmb.2015.09.019
10.1186/1479-5876-9-9
10.1016/j.cell.2019.02.029
10.1073/pnas.1310501111
10.1126/scitranslmed.aaf6853
10.1016/j.humpath.2013.02.007
10.3402/jev.v2i0.20677
10.1038/ncb1596
10.1556/EuJMI.2.2012.2.3
10.1080/15476286.2015.1056975
10.1038/sj.cdd.4402237
10.1016/0092-8674(83)90040-5
10.1080/20013078.2017.1329476
ContentType Journal Article
Copyright 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of The International Society for Extracellular Vesicles. 2020
2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of The International Society for Extracellular Vesicles.
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of The International Society for Extracellular Vesicles. 2020 The Author(s)
Copyright_xml – notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of The International Society for Extracellular Vesicles. 2020
– notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of The International Society for Extracellular Vesicles.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of The International Society for Extracellular Vesicles. 2020 The Author(s)
DBID 0YH
24P
AAYXX
CITATION
NPM
7QP
7X8
5PM
ADTPV
AOWAS
F1U
DOA
DOI 10.1080/20013078.2020.1722433
DatabaseName Taylor & Francis Open Access
Wiley Online Library Open Access
CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Göteborgs universitet
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef

PubMed


Calcium & Calcified Tissue Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate R. CRESCITELLI ET AL
EISSN 2001-3078
EndPage n/a
ExternalDocumentID oai_doaj_org_article_8cfb947702ee475d9e65bcbc4f8eb2b0
oai_gup_ub_gu_se_291542
PMC7034452
1010802001307820201722433
32128073
10_1080_20013078_2020_1722433
JEV2BF00160
1722433
Genre Research Article
article
Journal Article
GeographicLocations Sweden
Japan
Germany
GeographicLocations_xml – name: Germany
– name: Sweden
– name: Japan
GrantInformation_xml – fundername: Vetenskapsrådet
  funderid: K2014-85X-22504-01-3
– fundername: Cancerfonden
  funderid: CAN2014/844
– fundername: Hjärt‐Lungfonden
  funderid: 20120528
GroupedDBID 0R~
0YH
1OC
24P
53G
5VS
8WT
AAHHS
AAHJG
ABDBF
ABQXS
ACCFJ
ACGFS
ACPRK
ACUHS
ADBBV
AEEZP
AEGXH
AEQDE
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
BAWUL
BBNVY
BCNDV
DIK
EBS
GROUPED_DOAJ
GX1
H13
HCIFZ
HYE
KQ8
M48
M4Z
M7P
M~E
OK1
RNS
RPM
TDBHL
TFW
8FE
8FH
ABMDY
ACCMX
ACESK
ADRAZ
AFKRA
BENPR
BHPHI
CCPQU
EJD
IAO
IHR
INH
IPNFZ
ITC
LK8
PIMPY
PROAC
RIG
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QP
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
WIN
7X8
5PM
ADTPV
AOWAS
F1U
PQGLB
ID FETCH-LOGICAL-c7210-e09354bebdfc53175f238538bb709c5834d614f2c79070b0cde7c2f5129973443
IEDL.DBID M48
ISSN 2001-3078
IngestDate Wed Aug 27 01:31:27 EDT 2025
Thu Aug 21 06:23:56 EDT 2025
Thu Aug 21 18:45:48 EDT 2025
Thu Jul 10 22:40:26 EDT 2025
Wed Aug 13 09:55:36 EDT 2025
Wed Feb 19 02:30:43 EST 2025
Tue Jul 01 03:56:42 EDT 2025
Thu Apr 24 23:04:00 EDT 2025
Wed Jan 22 16:33:16 EST 2025
Wed Dec 25 09:08:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords tandem mass tag
exosomes
subpopulations
tissue-derived vesicles
Extracellular vesicles
mass spectrometry
melanoma
vesicle isolation
microvesicles
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Attribution
http://creativecommons.org/licenses/by/4.0
2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of The International Society for Extracellular Vesicles.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c7210-e09354bebdfc53175f238538bb709c5834d614f2c79070b0cde7c2f5129973443
Notes Joint second authors
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1714-3169
0000-0001-5795-0355
0000-0002-9131-9791
0000-0001-9195-9249
0000-0003-1279-1746
0000-0003-2162-3816
0000-0003-3326-1007
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1080/20013078.2020.1722433
PMID 32128073
PQID 3092345198
PQPubID 2030046
PageCount 21
ParticipantIDs swepub_primary_oai_gup_ub_gu_se_291542
informaworld_taylorfrancis_310_1080_20013078_2020_1722433
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7034452
crossref_citationtrail_10_1080_20013078_2020_1722433
doaj_primary_oai_doaj_org_article_8cfb947702ee475d9e65bcbc4f8eb2b0
proquest_miscellaneous_2371143448
wiley_primary_10_1080_20013078_2020_1722433_JEV2BF00160
proquest_journals_3092345198
pubmed_primary_32128073
crossref_primary_10_1080_20013078_2020_1722433
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Sweden
PublicationPlace_xml – name: Sweden
– name: Abingdon
PublicationTitle Journal of extracellular vesicles
PublicationTitleAlternate J Extracell Vesicles
PublicationYear 2020
Publisher Taylor & Francis
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Taylor & Francis
– name: John Wiley & Sons, Inc
– name: Wiley
References 2019; 8
2017; 6
2015; 12
2017; 7
2004; 164
2009; 41
2013; 4
2013; 2
2016; 428
2013; 200
1983; 97
2008; 15
2014; 26
2011; 33
2012; 18
2008; 33
2018; 60
2012; 59
2014; 111
2015; 8
2018; 20
2012; 10
2014; 45
1983; 33
2011; 9
2001; 276
2012; 151
2016; 6
2005; 280
2012; 2
2011; 108
2014; 3
2017; 14
2017; 39
2002; 62
2017; 11
2016; 113
2007; 9
2015; 1282
2014; 7
2016; 8
2019; 177
2010; 73
1996; 116
e_1_2_10_23_2
e_1_2_10_44_2
e_1_2_10_42_2
e_1_2_10_40_2
Hawes PC (e_1_2_10_27_2) 2015; 1282
e_1_2_10_2_2
e_1_2_10_18_2
Lázaro‐Ibáñez E (e_1_2_10_31_2) 2019; 8
Weinstein D (e_1_2_10_39_2) 2014; 7
e_1_2_10_53_2
e_1_2_10_16_2
e_1_2_10_37_2
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_35_2
e_1_2_10_11_2
e_1_2_10_34_2
e_1_2_10_8_2
e_1_2_10_32_2
e_1_2_10_51_2
Chang HC (e_1_2_10_47_2) 2004; 164
e_1_2_10_29_2
e_1_2_10_48_2
e_1_2_10_25_2
e_1_2_10_46_2
e_1_2_10_22_2
e_1_2_10_45_2
e_1_2_10_20_2
e_1_2_10_43_2
e_1_2_10_41_2
Lässer C (e_1_2_10_30_2) 2012; 59
Kim CW (e_1_2_10_4_2) 2002; 62
e_1_2_10_19_2
e_1_2_10_3_2
e_1_2_10_17_2
e_1_2_10_52_2
e_1_2_10_5_2
e_1_2_10_15_2
e_1_2_10_38_2
e_1_2_10_54_2
e_1_2_10_7_2
e_1_2_10_13_2
e_1_2_10_36_2
e_1_2_10_9_2
e_1_2_10_12_2
e_1_2_10_33_2
e_1_2_10_10_2
e_1_2_10_50_2
Jang SC (e_1_2_10_21_2) 2019; 8
e_1_2_10_28_2
e_1_2_10_26_2
e_1_2_10_49_2
e_1_2_10_24_2
References_xml – volume: 8
  start-page: 354re3
  issue: 354
  year: 2016
  article-title: Origin of the U87MG glioma cell line: good news and bad news
  publication-title: Sci Transl Med
– volume: 10
  issue: 12
  year: 2012
  article-title: Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation
  publication-title: PLoS Biol
– volume: 18
  start-page: 883
  issue: 6
  year: 2012
  end-page: 891
  article-title: Melanoma exosomes educate bone marrow progenitor cells toward a pro‐metastatic phenotype through MET
  publication-title: Nat Med
– volume: 4
  start-page: 2126
  year: 2013
  article-title: Evaluating cell lines as tumour models by comparison of genomic profiles
  publication-title: Nat Commun
– volume: 14
  start-page: 228
  issue: 3
  year: 2017
  end-page: 232
  article-title: EV‐TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research
  publication-title: Nat Methods
– volume: 2
  start-page: 112
  issue: 2
  year: 2012
  end-page: 120
  article-title: Impact of enzymatic tissue disintegration on the level of surface molecule expression and immune cell function
  publication-title: Eur J Microbiol Immunol (Bp)
– volume: 2
  year: 2013
  article-title: Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes
  publication-title: J Extracell Vesicles
– volume: 276
  start-page: 4853
  issue: 7
  year: 2001
  end-page: 4862
  article-title: FPRP, a major, highly stoichiometric, highly specific CD81‐ and CD9‐associated protein
  publication-title: J Biol Chem
– volume: 164
  start-page: 1055
  issue: 7
  year: 2004
  end-page: 1064
  article-title: The J‐domain protein Rme‐8 interacts with Hsc70 to control clathrin‐dependent endocytosis in Drosophila
  publication-title: J Cell Biol
– volume: 108
  start-page: 5003
  issue: 12
  year: 2011
  end-page: 5008
  article-title: Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma
  publication-title: Proc Natl Acad Sci U S A
– volume: 12
  start-page: 810
  issue: 8
  year: 2015
  end-page: 823
  article-title: Small RNA deep sequencing discriminates subsets of extracellular vesicles released by melanoma cells ‐ Evidence of unique microRNA cargos
  publication-title: RNA Biol
– volume: 33
  start-page: 474
  issue: 5
  year: 2011
  end-page: 482
  article-title: Identification of nodal metastases in melanoma using sox‐10
  publication-title: Am J Dermatopathol
– volume: 14
  start-page: 58
  issue: 1
  year: 2017
  end-page: 72
  article-title: Two distinct extracellular RNA signatures released by a single cell type identified by microarray and next‐generation sequencing
  publication-title: RNA Biol
– volume: 276
  start-page: 14329
  issue: 17
  year: 2001
  end-page: 14337
  article-title: The major CD9 and CD81 molecular partner. Identification and characterization of the complexes
  publication-title: J Biol Chem
– volume: 8
  start-page: 1
  year: 2019
  article-title: Mitochondrial protein enriched extracellular vesicles discovered in human melanoma tissues can be detected in patient plasma
  publication-title: J Extracell Vesicles
– volume: 33
  start-page: 967
  issue: 3
  year: 1983
  end-page: 978
  article-title: Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor
  publication-title: Cell
– volume: 97
  start-page: 329
  issue: 2
  year: 1983
  end-page: 339
  article-title: Receptor‐mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes
  publication-title: J Cell Biol
– volume: 2
  year: 2013
  article-title: EVpedia: an integrated database of high‐throughput data for systemic analyses of extracellular vesicles
  publication-title: J Extracell Vesicles
– volume: 280
  start-page: 40135
  issue: 48
  year: 2005
  end-page: 40143
  article-title: The DnaJ‐domain protein RME‐8 functions in endosomal trafficking
  publication-title: J Biol Chem
– volume: 200
  start-page: 373
  issue: 4
  year: 2013
  end-page: 383
  article-title: Extracellular vesicles: exosomes, microvesicles, and friends
  publication-title: J Cell Biol
– volume: 15
  start-page: 80
  issue: 1
  year: 2008
  end-page: 88
  article-title: Tumour‐released exosomes and their implications in cancer immunity
  publication-title: Cell Death Differ
– volume: 9
  start-page: 9
  year: 2011
  article-title: Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages
  publication-title: J Transl Med
– volume: 39
  start-page: 760
  issue: 10
  year: 2017
  end-page: 763
  article-title: Loss of conventional melanocytic markers in malignant melanoma and lymph node metastasis; an uncommon but dangerous pitfall
  publication-title: Am J Dermatopathol
– volume: 26
  start-page: 707
  issue: 5
  year: 2014
  end-page: 721
  article-title: Cancer exosomes perform cell‐independent microRNA biogenesis and promote tumorigenesis
  publication-title: Cancer Cell
– volume: 60
  start-page: 1
  year: 2018
  end-page: 14
  article-title: Subpopulations of extracellular vesicles and their therapeutic potential
  publication-title: Mol Aspects Med
– volume: 116
  start-page: 71
  issue: 1
  year: 1996
  end-page: 76
  article-title: Computer visualization of three‐dimensional image data using IMOD
  publication-title: J Struct Biol
– volume: 20
  start-page: 332
  issue: 3
  year: 2018
  end-page: 343
  article-title: Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field‐flow fractionation
  publication-title: Nat Cell Biol
– volume: 151
  start-page: 1542
  issue: 7
  year: 2012
  end-page: 1556
  article-title: Exosomes mediate stromal mobilization of autocrine Wnt‐PCP signaling in breast cancer cell migration
  publication-title: Cell
– volume: 111
  start-page: 711
  issue: 2
  year: 2014
  end-page: 716
  article-title: Oncogenic KIT‐containing exosomes increase gastrointestinal stromal tumor cell invasion
  publication-title: Proc Natl Acad Sci U S A
– volume: 428
  start-page: 688
  issue: 4
  year: 2016
  end-page: 692
  article-title: ExoCarta: a web‐based compendium of exosomal cargo
  publication-title: J Mol Biol
– volume: 33
  start-page: 35
  issue: 1
  year: 2008
  end-page: 50
  article-title: Human RME‐8 is involved in membrane trafficking through early endosomes
  publication-title: Cell Struct Funct
– volume: 3
  year: 2014
  article-title: Modes of flagellar assembly in Chlamydomonas reinhardtii and Trypanosoma brucei
  publication-title: eLife
– volume: 59
  year: 2012
  article-title: Isolation and characterization of RNA‐containing exosomes
  publication-title: J Vis Exp
– volume: 9
  start-page: 86
  year: 2011
  article-title: Body fluid derived exosomes as a novel template for clinical diagnostics
  publication-title: J Transl Med
– volume: 8
  start-page: 1
  year: 2019
  article-title: DNA analysis of low‐ and high‐density fractions defines heterogeneous subpopulations of small extracellular vesicles based on their DNA cargo and topology
  publication-title: J Extracell Vesicles
– volume: 6
  year: 2016
  article-title: Cells release subpopulations of exosomes with distinct molecular and biological properties
  publication-title: Sci Rep
– volume: 41
  start-page: 875
  issue: 12
  year: 2009
  end-page: 880
  article-title: Gastric cancer exosomes promote tumour cell proliferation through PI3K/Akt and MAPK/ERK activation
  publication-title: Digestive Liver Dis
– volume: 113
  start-page: E968
  issue: 8
  year: 2016
  end-page: 77
  article-title: Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes
  publication-title: Proc Natl Acad Sci U S A
– volume: 45
  start-page: 191
  issue: 2
  year: 2014
  end-page: 205
  article-title: Value of melanocytic‐associated immunohistochemical markers in the diagnosis of malignant melanoma: a review and update
  publication-title: Hum Pathol
– volume: 1282
  start-page: 271
  year: 2015
  end-page: 282
  article-title: Preparation of cultured cells using high‐pressure freezing and freeze substitution for subsequent 2D or 3D visualization in the transmission electron microscope
  publication-title: Methods Mol Biol
– volume: 8
  start-page: S5
  issue: Suppl 2
  year: 2015
  article-title: Relating hepatocellular carcinoma tumor samples and cell lines using gene expression data in translational research
  publication-title: BMC Med Genomics
– volume: 3
  year: 2014
  article-title: The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling
  publication-title: J Extracell Vesicles
– volume: 6
  year: 2016
  article-title: Prostate‐specific extracellular vesicles as a novel biomarker in human prostate cancer
  publication-title: Sci Rep
– volume: 6
  issue: 1
  year: 2017
  article-title: Exosomes purified from a single cell type have diverse morphology
  publication-title: J Extracell Vesicles
– volume: 62
  start-page: 6312
  issue: 21
  year: 2002
  end-page: 6317
  article-title: Extracellular membrane vesicles from tumor cells promote angiogenesis via sphingomyelin
  publication-title: Cancer Res
– volume: 177
  start-page: 428
  issue: 2
  year: 2019
  end-page: 45 e18
  article-title: Reassessment of exosome composition
  publication-title: Cell
– volume: 73
  start-page: 1907
  issue: 10
  year: 2010
  end-page: 1920
  article-title: Exosomes: extracellular organelles important in intercellular communication
  publication-title: J Proteomics
– volume: 7
  issue: 1
  year: 2017
  article-title: Escherichia coli outer membrane vesicles can contribute to sepsis induced cardiac dysfunction
  publication-title: Sci Rep
– volume: 9
  start-page: 654
  issue: 6
  year: 2007
  end-page: 21
  article-title: Exosome‐mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells
  publication-title: Nat Cell Biol
– volume: 6
  issue: 1
  year: 2017
  article-title: A rigorous method to enrich for exosomes from brain tissue
  publication-title: J Extracell Vesicles
– volume: 11
  start-page: 196
  issue: 2
  year: 2017
  end-page: 204
  article-title: The isolation of morphologically intact and biologically active extracellular vesicles from the secretome of cancer‐associated adipose tissue
  publication-title: Cell Adh Migr
– volume: 7
  start-page: 13
  issue: 6
  year: 2014
  end-page: 24
  article-title: Diagnostic and prognostic biomarkers in melanoma
  publication-title: J Clin Aesthet Dermatol
– ident: e_1_2_10_13_2
  doi: 10.1016/j.cell.2012.11.024
– ident: e_1_2_10_48_2
  doi: 10.1074/jbc.M011297200
– volume: 7
  start-page: 13
  issue: 6
  year: 2014
  ident: e_1_2_10_39_2
  article-title: Diagnostic and prognostic biomarkers in melanoma
  publication-title: J Clin Aesthet Dermatol
– ident: e_1_2_10_17_2
  doi: 10.1038/nm.2753
– ident: e_1_2_10_5_2
  doi: 10.1083/jcb.201211138
– ident: e_1_2_10_20_2
  doi: 10.1080/20013078.2017.1348885
– ident: e_1_2_10_8_2
  doi: 10.1080/15476286.2016.1249092
– ident: e_1_2_10_25_2
  doi: 10.1186/1755-8794-8-S2-S5
– ident: e_1_2_10_36_2
  doi: 10.3402/jev.v3.24858
– ident: e_1_2_10_50_2
  doi: 10.1016/j.jprot.2010.06.006
– ident: e_1_2_10_49_2
  doi: 10.1074/jbc.M009859200
– ident: e_1_2_10_51_2
  doi: 10.1083/jcb.97.2.329
– ident: e_1_2_10_38_2
  doi: 10.1097/DAD.0000000000000737
– ident: e_1_2_10_24_2
  doi: 10.1038/ncomms3126
– ident: e_1_2_10_2_2
  doi: 10.1186/PREACCEPT-1817458803126023
– ident: e_1_2_10_45_2
  doi: 10.1247/csf.07045
– volume: 59
  start-page: e3037
  year: 2012
  ident: e_1_2_10_30_2
  article-title: Isolation and characterization of RNA‐containing exosomes
  publication-title: J Vis Exp
– ident: e_1_2_10_19_2
  doi: 10.1186/1479-5876-9-86
– ident: e_1_2_10_34_2
  doi: 10.1371/journal.pbio.1001450
– volume: 8
  start-page: 1
  year: 2019
  ident: e_1_2_10_21_2
  article-title: Mitochondrial protein enriched extracellular vesicles discovered in human melanoma tissues can be detected in patient plasma
  publication-title: J Extracell Vesicles
– ident: e_1_2_10_7_2
  doi: 10.1073/pnas.1521230113
– ident: e_1_2_10_22_2
  doi: 10.1080/19336918.2017.1279784
– volume: 8
  start-page: 1
  year: 2019
  ident: e_1_2_10_31_2
  article-title: DNA analysis of low‐ and high‐density fractions defines heterogeneous subpopulations of small extracellular vesicles based on their DNA cargo and topology
  publication-title: J Extracell Vesicles
  doi: 10.1080/20013078.2019.1656993
– ident: e_1_2_10_32_2
  doi: 10.3402/jev.v2i0.20384
– ident: e_1_2_10_10_2
  doi: 10.1038/srep22519
– volume: 1282
  start-page: 271
  year: 2015
  ident: e_1_2_10_27_2
  article-title: Preparation of cultured cells using high‐pressure freezing and freeze substitution for subsequent 2D or 3D visualization in the transmission electron microscope
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-4939-2438-7_23
– ident: e_1_2_10_54_2
  doi: 10.1016/j.ccell.2014.09.005
– ident: e_1_2_10_28_2
  doi: 10.1038/s41598-017-16363-9
– ident: e_1_2_10_26_2
  doi: 10.7554/eLife.01479
– volume: 164
  start-page: 1055
  issue: 7
  year: 2004
  ident: e_1_2_10_47_2
  article-title: The J‐domain protein Rme‐8 interacts with Hsc70 to control clathrin‐dependent endocytosis in Drosophila
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200311084
– ident: e_1_2_10_11_2
  doi: 10.1038/s41556-018-0040-4
– ident: e_1_2_10_42_2
  doi: 10.1038/srep30386
– ident: e_1_2_10_53_2
  doi: 10.1073/pnas.1019055108
– ident: e_1_2_10_16_2
  doi: 10.1016/j.dld.2009.04.006
– ident: e_1_2_10_29_2
  doi: 10.1006/jsbi.1996.0013
– ident: e_1_2_10_40_2
  doi: 10.1097/DAD.0b013e3182042893
– ident: e_1_2_10_37_2
  doi: 10.1038/nmeth.4185
– ident: e_1_2_10_9_2
  doi: 10.1016/j.mam.2018.02.002
– ident: e_1_2_10_46_2
  doi: 10.1074/jbc.M505036200
– ident: e_1_2_10_33_2
  doi: 10.1016/j.jmb.2015.09.019
– ident: e_1_2_10_18_2
  doi: 10.1186/1479-5876-9-9
– ident: e_1_2_10_35_2
  doi: 10.1016/j.cell.2019.02.029
– ident: e_1_2_10_14_2
  doi: 10.1073/pnas.1310501111
– ident: e_1_2_10_23_2
  doi: 10.1126/scitranslmed.aaf6853
– ident: e_1_2_10_41_2
  doi: 10.1016/j.humpath.2013.02.007
– ident: e_1_2_10_6_2
  doi: 10.3402/jev.v2i0.20677
– ident: e_1_2_10_3_2
  doi: 10.1038/ncb1596
– ident: e_1_2_10_43_2
  doi: 10.1556/EuJMI.2.2012.2.3
– ident: e_1_2_10_44_2
  doi: 10.1080/15476286.2015.1056975
– ident: e_1_2_10_15_2
  doi: 10.1038/sj.cdd.4402237
– ident: e_1_2_10_52_2
  doi: 10.1016/0092-8674(83)90040-5
– volume: 62
  start-page: 6312
  issue: 21
  year: 2002
  ident: e_1_2_10_4_2
  article-title: Extracellular membrane vesicles from tumor cells promote angiogenesis via sphingomyelin
  publication-title: Cancer Res
– ident: e_1_2_10_12_2
  doi: 10.1080/20013078.2017.1329476
SSID ssj0000941589
Score 2.5111048
Snippet The majority of extracellular vesicle (EV) studies conducted to date have been performed on cell lines with little knowledge on how well these represent the...
ABSTRACT The majority of extracellular vesicle (EV) studies conducted to date have been performed on cell lines with little knowledge on how well these...
ABSTRACT The majority of extracellular vesicle (EV) studies conducted to date have been performed on cell lines with little knowledge on how well these...
SourceID doaj
swepub
pubmedcentral
proquest
pubmed
crossref
wiley
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1722433
SubjectTerms Antibodies
Biomarkers
Biotechnology
Cell Biology
Cells
Clinical Medicine
Cloning
Collagenase
Deoxyribonuclease
Electron microscopy
endocytosis
exosomes
Extracellular vesicles
Flow cytometry
Klinisk medicin
malignant-melanoma
markers
mass spectrometry
Mass spectroscopy
Melanoma
membrane-vesicles
Metastases
Metastasis
micrornas
microvesicles
Nanoparticles
Physical characteristics
Proteomics
Ribosomal subunits
rme-8
rRNA 18S
rRNA 28S
Skin cancer
subpopulations
tag
tandem mass
tandem mass tag
tissue-derived vesicles
transferrin receptor
Tumor cell lines
Tumors
Ultracentrifugation
vesicle isolation
visualization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA6yIPgi3q2uEkF8q9tJ0kn66MoOy4I-ubJvIde1stOO21ZYf4S_2ZOkU6YqjA--DCVNhibn67mkJ99B6LXxJbfK0JxR5uDHLXK1NCKnyi2NBRMlbNiH_PBxeXrOzi7Ki51SXyEnLNEDp4U7EsbrinFeEOcYL23llqU22jAvICjUMVoHm7cTTH1N-XKLUlTbIzuiOCLxGx0P2VwEmjiYLkpnxihy9v_GWPo3v_PP9MmRZHTu30YDtbqH7o6eJX6XZnQf3XLNA3Q71Zq8eYh-gorYTNW6Otx6DHr5WoWd-5CKir-7LqbI4XDiBMfafXjtehWOHNUGLq9U064V7qOocG1TnpGzWN_gb4Nq4nE1UJ44cj-E084djiXIcQt6aV3_gK41QD0-wCN0vjr59P40H4sx5AaCxCJ34Ysp005bb8rgdHgw9qAtteZFZUpBmQVL74nhEG4XujDWcUN88CcqThmjj9FB0zbuKcLMWqqMguA4kIERUzlvrPELTQm4-oJmiG2lIs3IVB4KZlzJxUhouhWmDMKUozAz9HYatklUHfsGHAeRT50D03ZsAPzJEX9yH_4yVO0CRvZxo8WnqiiS7nmAwy265Kg6YEgBPncg_REZejXdhpc-4EE1rh06SSiHOBZWFfo8SWCcZkHBGRGguDPEZzCdTXN-p6m_RGJxHvgfS5KhNwnQsyGXw0ZC0-UgOydJBa43dOQR8P-23PLs5DM5XsXK5s_-x9I_R3fC_6cNsUN00F8P7gW4iL1-GbXBL9V6YPM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA66Ivgi3u26SgTxrdpJ0kn76MoOw4I-uaJPIddxYKcdp1Nh90f4mz0nvWC9sIIvQydNoM35ci7pyXcIeWFDLp22PBVcePjxs1TPbZFy7efWgYkqHO5Dvns_X56J00_5kE3Y9GmVGEOHjigi6mpc3No0Q0bcaxY_t0lMzGLQJMEKcX6d3GCIVoB09nk5brNA9DLLi3I4u_O30ROrFMn7f6Eu_ZMD-nseZc82OnV0o6Va3CG3exeTvukwcZdc89U9crMrOnlxn3wHXbEdy3Y1tA4UFPRO4xY-5qTSb76JuXIUj57QWMSPbvxe49mjtYXLc13VG033UWZ07bqEI--ouaBfW13Fc2ugRWkkgcBjzw2NtchpDQpqs76ErmvAfHyAB-RscfLh7TLtqzKkFqLFLPX46VQYb1ywOXofAaw-qE1jZFbavODCgckPzEqIuzOTWeelZQEdi1JyIfhDclDVlX9MqHCOa6shSkZWMGZLH6yzYWY4A5-_4AkRg1SU7SnLsXLGuZr1zKaDMBUKU_XCTMircdi24-y4asAxinzsjJTbsaHerVS_glVhgymFlBnzXsjclX6eG2usCIU3zGQJKX8GjNrHHZfQlUdR_IoHOBrQpXodAkMycL6R_adIyPPxNqx-xIOufN02inEJAS3MKvR51IFxfAsOXkkBGjwhcgLTyWtO71TrL5FhXCIRZM4S8rID9GTIqt0qaFq1qvGKleCDQ0cZAf9v061OTz6y40UscX74H7P2hNzCv92G2BE52O9a_xRcxL15FpXAD-yGXEs
  priority: 102
  providerName: Taylor & Francis
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_nieCL-G31lAjiW7WbpJv20ZNbjwPFB0_uLeRzXbht121XOP8I_2Zn0g-uenDiy1KSzNJ2JpOZ6cxvCHllQy6dtjwVXHj48bNUz22Rcu3n1sERVTiMQ378ND8-FSdn-dke-TDUwnT4EGPADXdG1Ne4wbVpLmXFsfjRTWJ6FoNBCWcR5zfITSyzRRB9Jj6PwRbwYWZ5bIcXU4iQbKjmKbK3V_7T5JyKcP5_gJleZZL-nVnZ449OTd94di3ukju90UnfdVJyj-z56j651bWhvHhAfoH22IyNvBpaBwoqe6sxqI9ZqvSHb2L2HMViFBrb-tG1bzVWI60sXJ7rql5r2kYu0pXrUpC8o-aCft_pKlaygV6lERYCC6EbGruT0xpU1nr1E5auYBfEG3hIThdHX94fp32fhtSC_5ilHj-mCuONCzZHeySAHQCK1BiZlTYvuHBgBARmJXjimcms89KygKZGKbkQ_BHZr-rKPyFUOMe11eA3I04Ys6UP1tkwM5yBF1DwhIiBK8r2IObYS-NczXqs04GZCpmpemYm5M1ItulQPK4jOESWj4sRhDsO1Nul6ve0KmwwpZAyY94LmbvSz3NjjRWh8IaZLCHlZYFRbYzBhK5hiuLX3MDBIF2q1ypAkoE5jnhARUJejtOgD1AedOXrXaMYl7AD4K3CmsedMI5PwcFOKUCnJ0ROxHTymNOZavUtYo5LhIbMWUJedwI9IVnuNgqGljvVeMVKsMphoYwC_2-vW50cfWWHi9j0_Ol_Uz4jt3GqC5AdkP12u_PPwWRszYuoDn4D1_9dYw
  priority: 102
  providerName: Wiley-Blackwell
Title Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation
URI https://www.tandfonline.com/doi/abs/10.1080/20013078.2020.1722433
https://onlinelibrary.wiley.com/doi/abs/10.1080%2F20013078.2020.1722433
https://www.ncbi.nlm.nih.gov/pubmed/32128073
https://www.proquest.com/docview/3092345198
https://www.proquest.com/docview/2371143448
https://pubmed.ncbi.nlm.nih.gov/PMC7034452
https://gup.ub.gu.se/publication/291542
https://doaj.org/article/8cfb947702ee475d9e65bcbc4f8eb2b0
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELe2ISReEOMzMCojId4yUtupkweE2LRSTRrigaLyZPmzFLVJ17SI8kfwN3N2korA0JB4sRLHlhLf-fw75_w7hJ5rl3IjNY0ZZRYK24_lQGcxlXagDSxRmfH7kBfvBqMxO5-kkz3UEio0A1hd6dr5fFLj1fz42-X2NUz4V02E3EsSfr9xH6hFoIrDqkTpProBixP3c_WiQfxf6kC6fprl7Vmev_XurFKBzP83KtOrAOmfcZUN-2gX-IaVa3gH3W4gJ35T68gh2rPFXXSzTkK5vYd-gO1Y7tJ4Vbh0GAz2SvotfR-jir_aKsTOYX8UBYekfnhh19KfRZppuJzLolxIvA4yxDNTByBZg9UWX25kEc6xgVXFgRTCH4OucMhNjkswWIvZd2g6gzkQXuA-Gg_PPpyO4iZLQ6zBe0xi63-lMmWVcTr1aMQBCgAzqhRPcp1mlBmAAI5oDn54ohJtLNfEeaCRc8oYfYAOirKwjxBmxlCpJXjNniWM6Nw6bbTrK0rAB8hohFgrFaEbCnOfSWMu-g3TaStM4YUpGmFG6HjXbVlzeFzX4cSLfNfYU3CHinI1Fc2MFpl2KmecJ8RaxlOT20GqtNLMZVYRlUQo_1VhxDrswLg6XYqg17zAUatdop0SgiYAxj0bUBahZ7vHYA28PsjClptKEMrBwYVRhTYPa2XcfQUFlJKBRY8Q76hp5zO7T4rZ58A4zj0xZEoi9KJW6E6X6WYpoGq6EZUVJAdMDg15UPh_G25xfvaRnAxDyvPH_zFqT9Atf1tvkB2hg_VqY58CZFyrHtpPPo2gJOx9L2y7QPl20u8F4_ATeatmmw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagCMEL4ialgJEQb4Gs7ayTR4q6WkrbpxaVJ8vndqVusuxRqfwIfjMzTjZqOFQkXlYrH1LiGc-VmW8IeWNDLp22PBVcePjxg1QPbZFy7YfWgYoqHMYhD4-G4xOxf5qfXqmFwbRK9KFDAxQRZTVebgxGb1Li3rP4vU1iZhaDIQlqiPOb5FYOyhfbN2Rfx12cBdyXAYxvinf-trunliJ6_y_YpX-yQH9PpGzhRvuWblRVo_vkXmtj0g8NUzwgN3z1kNxuuk5ePiI_QFjMu75dS1oHChJ6oTGGj0mp9MIvY7IcxdoTGrv40ZlfaSw-mlr4e66reqbpKhKNTl2TceQdNZf021pXsXANxCiNKBBY97yksRk5rUFCzabfYekUmD4-wGNyMto7_jhO27YMqQV3MUs9fjsVxhsXbI7mRwC1D3LTGJmVNi-4cKDzA7MSHO_MZNZ5aVlAy6KUXAj-hGxVdeWfESqc49pqcJMRFozZ0gfrbBgYzsDoL3hCxIYqyraY5dg641wNWmjTDTEVElO1xEzIu27bvAHtuG7DLpK8W4yY23GgXkxUe4VVYYMphZQZ817I3JV-mBtrrAiFN8xkCSmvMoxaxZBLaPqjKH7NA-xsuEu1QgS2ZGB9I_xPkZDX3TRcf-QHXfl6vVSMS_Bo4VRhzdOGGbu34GCWFCDCEyJ7bNp7zf5MNT2LEOMSkSBzlpC3DUP3tkzWcwVDk7VaesVKMMJhoYwM_2_Hrfb3vrDdUexxvv0fp_aK3BkfHx6og09Hn5-TuzjVRMd2yNZqsfYvwF5cmZdRIPwExJtfvw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9MwELZgEYgXxE1gASMh3gKp7dTJIwtbLQuseGARPFk-S6VtUpoWafkR_GZmnEOEQ4vES1X5kBLPeK7MfEPIYxty6bTlqeDCw4-fpHpqi5RrP7UOVFThMA759mh6cCwOP-Z9NmHTpVWiDx1aoIgoq_Fyr1zoM-Kesfi5TWJiFoMhCVqI8_PkQl6ArgeWzj4dDGEW8F4mMN7X7vxt90grRfD-X6BL_2SA_p5H2aGNjg3dqKlmV8mVzsSkz1ueuEbO-eo6udg2nTy9Qb6DrFgNbbsaWgcKAnqtMYSPOan0q29irhzF0hMam_jRpd9orD1aWPh7oqt6qekm0owuXJtw5B01p_TLVlexbg2kKI0gEFj23NDYi5zWIKCWi2-wdAE8Hx_gJjme7b9_cZB2XRlSC95ilnr8dCqMNy7YHK2PAFofxKYxMittXnDhQOUHZiX43ZnJrPPSsoCGRSm5EPwW2anqyt8hVDjHtdXgJSMqGLOlD9bZMDGcgc1f8ISInirKdpDl2DnjRE06ZNOemAqJqTpiJuTpsG3VYnactWEPST4sRsjtOFCv56q7waqwwZRCyox5L2TuSj_NjTVWhMIbZrKElD8zjNrEiEto26MofsYD7PbcpToZAlsyML4R_adIyKNhGm4_8oOufL1tFOMSHFo4VVhzu2XG4S04WCUFSPCEyBGbjl5zPFMtPkeEcYlAkDlLyJOWoUdb5tuVgqH5VjVesRJscFgoI8P_23Grw_0PbG8WW5zf_Y9Te0guvXs5U29eHb2-Ry7jTBsb2yU7m_XW3wdrcWMeRHnwA2BbXvE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subpopulations+of+extracellular+vesicles+from+human+metastatic+melanoma+tissue+identified+by+quantitative+proteomics+after+optimized+isolation&rft.jtitle=Journal+of+extracellular+vesicles&rft.au=Crescitelli%2C+Rossella&rft.au=L%C3%A4sser%2C+Cecilia&rft.au=Jang%2C+Su+Chul&rft.au=Cvjetkovic%2C+Aleksander&rft.date=2020-01-01&rft.pub=Taylor+%26+Francis&rft.eissn=2001-3078&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1080%2F20013078.2020.1722433&rft.externalDBID=0YH&rft.externalDocID=1722433
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-3078&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-3078&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-3078&client=summon