The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation

Macroautophagy is a bulk degradation process induced by starvation in eukaryotic cells. In yeast, 15 Apg proteins coordinate the formation of autophagosomes. Several key reactions performed by these proteins have been described, but a comprehensive understanding of the overall network is still lacki...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 20; no. 21; pp. 5971 - 5981
Main Authors Suzuki, Kuninori, Kirisako, Takayoshi, Kamada, Yoshiaki, Mizushima, Noboru, Noda, Takeshi, Ohsumi, Yoshinori
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.11.2001
Nature Publishing Group UK
Springer Nature B.V
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Macroautophagy is a bulk degradation process induced by starvation in eukaryotic cells. In yeast, 15 Apg proteins coordinate the formation of autophagosomes. Several key reactions performed by these proteins have been described, but a comprehensive understanding of the overall network is still lacking. Based on Apg protein localization, we have identified a novel structure that functions in autophagosome formation. This pre‐autophagosomal structure, containing at least five Apg proteins, i.e. Apg1p, Apg2p, Apg5p, Aut7p/Apg8p and Apg16p, is localized in the vicinity of the vacuole. Analysis of apg mutants revealed that the formation of both a phosphatidylethanolamine‐conjugated Aut7p and an Apg12p–Apg5p conjugate is essential for the localization of Aut7p to the pre‐autophagosomal structure. Vps30p/Apg6p and Apg14p, components of an autophagy‐ specific phosphatidylinositol 3‐kinase complex, Apg9p and Apg16p are all required for the localization of Apg5p and Aut7p to the structure. The Apg1p protein kinase complex functions in the late stage of autophagosome formation. Here, we present the classification of Apg proteins into three groups that reflect each step of autophagosome formation.
AbstractList Macroautophagy is a bulk degradation process induced by starvation in eukaryotic cells. In yeast, 15 Apg proteins coordinate the formation of autophagosomes. Several key reactions performed by these proteins have been described, but a comprehensive understanding of the overall network is still lacking. Based on Apg protein localization, we have identified a novel structure that functions in autophagosome formation. This pre-autophagosomal structure, containing at least five Apg proteins, i.e. Apg1p, Apg2p, Apg5p, Aut7p/Apg8p and Apg16p, is localized in the vicinity of the vacuole. Analysis of apg mutants revealed that the formation of both a phosphatidylethanolamine-conjugated Aut7p and an Apg12p- Apg5p conjugate is essential for the localization of Aut7p to the pre- autophagosomal structure. Vps30p/Apg6p and Apg14p, components of an autophagy- specific phosphatidylinositol 3-kinase complex, Apg9p and Apg16p are all required for the localization of Apg5p and Aut7p to the structure. The Apg1p protein kinase complex functions in the late stage of autophagosome formation. Here, we present the classification of Apg proteins into three groups that reflect each step of autophagosome formation.
Macroautophagy is a bulk degradation process induced by starvation in eukaryotic cells. In yeast, 15 Apg proteins coordinate the formation of autophagosomes. Several key reactions performed by these proteins have been described, but a comprehensive understanding of the overall network is still lacking. Based on Apg protein localization, we have identified a novel structure that functions in autophagosome formation. This pre-autophagosomal structure, containing at least five Apg proteins, i.e. Apg1p, Apg2p, Apg5p, Aut7p/Apg8p and Apg16p, is localized in the vicinity of the vacuole. Analysis of apg mutants revealed that the formation of both a phosphatidylethanolamine-conjugated Aut7p and an Apg12p– Apg5p conjugate is essential for the localization of Aut7p to the pre-autophagosomal structure. Vps30p/Apg6p and Apg14p, components of an autophagy- specific phosphatidylinositol 3-kinase complex, Apg9p and Apg16p are all required for the localization of Apg5p and Aut7p to the structure. The Apg1p protein kinase complex functions in the late stage of autophagosome formation. Here, we present the classification of Apg proteins into three groups that reflect each step of autophagosome formation.
Macroautophagy is a bulk degradation process induced by starvation in eukaryotic cells. In yeast, 15 Apg proteins coordinate the formation of autophagosomes. Several key reactions performed by these proteins have been described, but a comprehensive understanding of the overall network is still lacking. Based on Apg protein localization, we have identified a novel structure that functions in autophagosome formation. This pre-autophagosomal structure, containing at least five Apg proteins, i.e. Apg1p, Apg2p, Apg5p, Aut7p/Apg8p and Apg16p, is localized in the vicinity of the vacuole. Analysis of apg mutants revealed that the formation of both a phosphatidylethanolamine-conjugated Aut7p and an Apg12p- Apg5p conjugate is essential for the localization of Aut7p to the pre-autophagosomal structure. Vps30p/Apg6p and Apg14p, components of an autophagy- specific phosphatidylinositol 3-kinase complex, Apg9p and Apg16p are all required for the localization of Apg5p and Aut7p to the structure. The Apg1p protein kinase complex functions in the late stage of autophagosome formation. Here, we present the classification of Apg proteins into three groups that reflect each step of autophagosome formation.Macroautophagy is a bulk degradation process induced by starvation in eukaryotic cells. In yeast, 15 Apg proteins coordinate the formation of autophagosomes. Several key reactions performed by these proteins have been described, but a comprehensive understanding of the overall network is still lacking. Based on Apg protein localization, we have identified a novel structure that functions in autophagosome formation. This pre-autophagosomal structure, containing at least five Apg proteins, i.e. Apg1p, Apg2p, Apg5p, Aut7p/Apg8p and Apg16p, is localized in the vicinity of the vacuole. Analysis of apg mutants revealed that the formation of both a phosphatidylethanolamine-conjugated Aut7p and an Apg12p- Apg5p conjugate is essential for the localization of Aut7p to the pre-autophagosomal structure. Vps30p/Apg6p and Apg14p, components of an autophagy- specific phosphatidylinositol 3-kinase complex, Apg9p and Apg16p are all required for the localization of Apg5p and Aut7p to the structure. The Apg1p protein kinase complex functions in the late stage of autophagosome formation. Here, we present the classification of Apg proteins into three groups that reflect each step of autophagosome formation.
Author Ohsumi, Yoshinori
Noda, Takeshi
Kamada, Yoshiaki
Mizushima, Noboru
Suzuki, Kuninori
Kirisako, Takayoshi
AuthorAffiliation 1 Department of Cell Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji-cho, Okazaki 444-8585, 2 Department of Molecular Biomechanics, School of Life Science, The Graduate University for Advanced Studies and 3 PRESTO, Japan Science and Technology Corporation, Japan 4 Corresponding author e-mail: yohsumi@nibb.ac.jp
AuthorAffiliation_xml – name: 1 Department of Cell Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji-cho, Okazaki 444-8585, 2 Department of Molecular Biomechanics, School of Life Science, The Graduate University for Advanced Studies and 3 PRESTO, Japan Science and Technology Corporation, Japan 4 Corresponding author e-mail: yohsumi@nibb.ac.jp
Author_xml – sequence: 1
  givenname: Kuninori
  surname: Suzuki
  fullname: Suzuki, Kuninori
  organization: Department of Cell Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji-cho, Okazaki, 444-8585, Japan
– sequence: 2
  givenname: Takayoshi
  surname: Kirisako
  fullname: Kirisako, Takayoshi
  organization: Department of Cell Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji-cho, Okazaki, 444-8585, Japan
– sequence: 3
  givenname: Yoshiaki
  surname: Kamada
  fullname: Kamada, Yoshiaki
  organization: Department of Cell Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji-cho, Okazaki, 444-8585, Japan
– sequence: 4
  givenname: Noboru
  surname: Mizushima
  fullname: Mizushima, Noboru
  organization: Department of Cell Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji-cho, Okazaki, 444-8585, Japan
– sequence: 5
  givenname: Takeshi
  surname: Noda
  fullname: Noda, Takeshi
  organization: Department of Cell Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji-cho, Okazaki, 444-8585, Japan
– sequence: 6
  givenname: Yoshinori
  surname: Ohsumi
  fullname: Ohsumi, Yoshinori
  email: yohsumi@nibb.ac.jp
  organization: Department of Cell Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji-cho, Okazaki, 444-8585, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11689437$$D View this record in MEDLINE/PubMed
BookMark eNqFks1vEzEQxVeoiKaFOye04sBtU397feDQViUFFShSERIXy9mME4eNHexdSvjrcZoShUpVTpbt93szz56j4sAHD0XxEqMhRoqewGIc5icEDQkeciXxk2KAmUAVQZIfFANEBK4YrtVhcZTSHCHEa4mfFYcYi1oxKgfF7c0MymWEyvRdWM7MNKSwMG2Zutg3XR-hDHFqvPsDk3K8KpvgG4hd3tjeN50LPpXBlqfXo3IKHlLpUgkpge9cNrEhlru-sD5ZmDX2vHhqTZvgxf16XHx9d3FzflldfR69Pz-9qhpJkKqsZNRyhCY1rU3uWSFMEWBpmaiJFVhwxFljJ8IQaSyyOT1RXGAqx80YOKLHxduN77IfL2DS5M6iafUyuoWJKx2M0__feDfT0_BLY8KFIpl_c8_H8LOH1OmFSw20rfEQ-qQlIZwwxvYKmaJSME73CnGNCaNIZOHrB8J56KPPr6Wx4iSbsbXo1W6-bbB_P5wFYiNoYkgpgtWN6-6-IMd1rcZIr0dJ342SJkgTrNejlEH0ANx6P46oDXLrWljt1euLj2cfJFcM1SqzeMOmjPkpxJ20j9erNoxLHfze1jPxhxaSSq6_fRrpL99RjdXltT6jfwHtqv9i
CODEN EMJODG
CitedBy_id crossref_primary_10_1074_jbc_M311139200
crossref_primary_10_1111_1574_6968_12047
crossref_primary_10_1134_S0006297916040052
crossref_primary_10_1074_jbc_M611345200
crossref_primary_10_4161_auto_8_2_18373
crossref_primary_10_1038_s41580_020_0241_0
crossref_primary_10_1186_s13578_020_00467_3
crossref_primary_10_1074_jbc_M801836200
crossref_primary_10_1177_0300985810385154
crossref_primary_10_1073_pnas_1121299109
crossref_primary_10_1080_15548627_2021_1909407
crossref_primary_10_1074_jbc_M412617200
crossref_primary_10_1093_jb_mvad099
crossref_primary_10_3390_cells6030023
crossref_primary_10_1038_s41422_020_0297_6
crossref_primary_10_4161_auto_28987
crossref_primary_10_1074_jbc_M109_084681
crossref_primary_10_1016_j_devcel_2009_06_013
crossref_primary_10_1186_s13062_017_0174_5
crossref_primary_10_1007_s00709_020_01507_y
crossref_primary_10_1186_s12935_019_0779_0
crossref_primary_10_1016_j_bbamem_2024_184308
crossref_primary_10_1080_15548627_2023_2259708
crossref_primary_10_3390_biom12020210
crossref_primary_10_1111_j_1365_2443_2008_01188_x
crossref_primary_10_1038_nsmb_2527
crossref_primary_10_4161_sgtp_2_2_15256
crossref_primary_10_1074_jbc_M110_113670
crossref_primary_10_1073_pnas_0501046102
crossref_primary_10_1007_s00436_016_5293_x
crossref_primary_10_1371_journal_pone_0168518
crossref_primary_10_1016_j_tcb_2007_04_005
crossref_primary_10_1093_pcp_pcad149
crossref_primary_10_1002_1873_3468_14509
crossref_primary_10_1007_s00284_024_03838_y
crossref_primary_10_1074_jbc_M110_138958
crossref_primary_10_1016_j_bbrc_2007_02_150
crossref_primary_10_1093_g3journal_jkac337
crossref_primary_10_1007_s00425_017_2835_0
crossref_primary_10_1083_jcb_201402128
crossref_primary_10_1080_15548627_2015_1017178
crossref_primary_10_15252_embr_201643146
crossref_primary_10_1016_j_semcdb_2010_03_007
crossref_primary_10_1074_jbc_M300550200
crossref_primary_10_3390_cells9010138
crossref_primary_10_1038_sj_embor_7400698
crossref_primary_10_1016_j_semcdb_2010_03_009
crossref_primary_10_1016_j_matbio_2021_06_002
crossref_primary_10_1007_s00709_011_0296_z
crossref_primary_10_1074_jbc_M401066200
crossref_primary_10_1083_jcb_200512142
crossref_primary_10_1242_bio_022053
crossref_primary_10_1038_nsmb_2415
crossref_primary_10_1016_j_bbalip_2019_05_004
crossref_primary_10_1134_S0006297914020023
crossref_primary_10_1002_1873_3468_14741
crossref_primary_10_1002_1873_3468_14621
crossref_primary_10_1002_1873_3468_14742
crossref_primary_10_1091_mbc_e06_07_0612
crossref_primary_10_1080_15548627_2016_1196316
crossref_primary_10_3389_fpls_2019_00280
crossref_primary_10_1016_j_ymeth_2014_12_008
crossref_primary_10_3390_cells1030263
crossref_primary_10_1080_08916934_2024_2410192
crossref_primary_10_1038_cdd_2012_73
crossref_primary_10_3989_revmetalm_040
crossref_primary_10_1038_ncomms5121
crossref_primary_10_1007_s00018_015_1917_z
crossref_primary_10_1016_j_celrep_2023_112807
crossref_primary_10_3389_fcell_2018_00160
crossref_primary_10_1016_j_aquaculture_2021_737450
crossref_primary_10_1038_cdd_2008_168
crossref_primary_10_1080_15548627_2021_2008692
crossref_primary_10_1016_j_biochi_2007_08_014
crossref_primary_10_1002_2211_5463_13940
crossref_primary_10_1016_j_bbrc_2008_12_178
crossref_primary_10_1039_C5RA24133B
crossref_primary_10_1016_j_devcel_2016_06_015
crossref_primary_10_1007_s13311_014_0316_8
crossref_primary_10_1016_j_devcel_2021_02_010
crossref_primary_10_1093_carcin_bgm271
crossref_primary_10_1016_j_semcdb_2003_12_004
crossref_primary_10_1091_mbc_e06_08_0683
crossref_primary_10_1111_1462_2920_14076
crossref_primary_10_3389_fcell_2022_910640
crossref_primary_10_1074_jbc_M111_299917
crossref_primary_10_1016_j_tcb_2015_05_004
crossref_primary_10_1515_hsz_2016_0288
crossref_primary_10_3389_fcell_2021_685625
crossref_primary_10_1016_j_semcdb_2016_07_009
crossref_primary_10_4161_auto_6_6_12709
crossref_primary_10_1073_pnas_1421092112
crossref_primary_10_1016_j_jmb_2019_09_005
crossref_primary_10_1177_25152564231183898
crossref_primary_10_1080_09168451_2015_1060846
crossref_primary_10_3892_or_2012_2125
crossref_primary_10_1038_nrm2708
crossref_primary_10_1038_emboj_2012_278
crossref_primary_10_1242_jcs_01287
crossref_primary_10_1016_j_arr_2009_01_001
crossref_primary_10_1534_genetics_107_086199
crossref_primary_10_1111_cmi_12396
crossref_primary_10_5607_en_2015_24_2_117
crossref_primary_10_1083_jcb_200911154
crossref_primary_10_3389_fimmu_2024_1506426
crossref_primary_10_1038_ncb1007_1102
crossref_primary_10_4161_auto_34396
crossref_primary_10_1016_j_antiviral_2017_01_016
crossref_primary_10_1080_27694127_2022_2104781
crossref_primary_10_1360_SSV_2022_0048
crossref_primary_10_1016_j_tcb_2010_03_002
crossref_primary_10_1016_j_cell_2004_11_038
crossref_primary_10_1038_nrm1666
crossref_primary_10_3390_cells10061272
crossref_primary_10_1080_15548627_2015_1089374
crossref_primary_10_4161_auto_7_12_18424
crossref_primary_10_1038_s41419_019_2011_5
crossref_primary_10_1016_S1097_2765_02_00794_3
crossref_primary_10_1186_s12964_018_0236_z
crossref_primary_10_1016_j_bbamcr_2019_118627
crossref_primary_10_1002_2211_5463_12315
crossref_primary_10_1016_j_jmb_2016_02_004
crossref_primary_10_1111_j_1600_065X_2008_00732_x
crossref_primary_10_1146_annurev_cellbio_092910_154005
crossref_primary_10_1091_mbc_e07_12_1257
crossref_primary_10_1038_sj_onc_1207521
crossref_primary_10_1016_j_jprot_2013_01_004
crossref_primary_10_1111_j_1745_7254_2005_00235_x
crossref_primary_10_1016_S1534_5807_03_00402_7
crossref_primary_10_1016_j_cell_2016_09_007
crossref_primary_10_1016_j_tcb_2004_07_014
crossref_primary_10_1021_cr800459r
crossref_primary_10_1016_j_jmb_2016_03_030
crossref_primary_10_1371_journal_pone_0157960
crossref_primary_10_1002_yea_1152
crossref_primary_10_1074_jbc_M110_119180
crossref_primary_10_1016_j_molcel_2018_10_040
crossref_primary_10_1083_jcb_202107151
crossref_primary_10_1155_2018_4701275
crossref_primary_10_1073_pnas_1817078116
crossref_primary_10_1038_s41598_017_17400_3
crossref_primary_10_3389_fcimb_2019_00222
crossref_primary_10_1091_mbc_e09_04_0345
crossref_primary_10_1038_emboj_2009_242
crossref_primary_10_1042_BST20200130
crossref_primary_10_1146_annurev_biophys_060414_034248
crossref_primary_10_1155_2023_8257217
crossref_primary_10_4161_auto_22398
crossref_primary_10_1016_j_ejcb_2015_10_007
crossref_primary_10_1080_15548627_2015_1034404
crossref_primary_10_4161_auto_7_9_16436
crossref_primary_10_1111_j_1600_0854_2008_00715_x
crossref_primary_10_1007_s10059_010_0014_2
crossref_primary_10_1016_j_ejcb_2018_09_002
crossref_primary_10_1016_S1534_5807_02_00373_8
crossref_primary_10_1074_jbc_M110_139915
crossref_primary_10_1038_s41421_020_0161_3
crossref_primary_10_1038_sj_cdd_4401765
crossref_primary_10_1074_jbc_M204736200
crossref_primary_10_1159_000531290
crossref_primary_10_1016_j_thromres_2015_06_038
crossref_primary_10_3389_fmicb_2021_798363
crossref_primary_10_1128_MCB_06159_11
crossref_primary_10_4161_auto_24483
crossref_primary_10_4161_auto_6_7_13287
crossref_primary_10_1074_jbc_M110_173906
crossref_primary_10_1021_pr900583m
crossref_primary_10_1080_15548627_2020_1725402
crossref_primary_10_1586_eri_09_41
crossref_primary_10_1016_j_biocel_2016_05_004
crossref_primary_10_3390_ijms20020300
crossref_primary_10_1002_1873_3468_14679
crossref_primary_10_1016_j_devcel_2015_11_010
crossref_primary_10_1099_mic_0_034389_0
crossref_primary_10_1073_pnas_2209823119
crossref_primary_10_3389_fmicb_2019_02690
crossref_primary_10_1006_bbrc_2002_6645
crossref_primary_10_1038_embor_2008_163
crossref_primary_10_1038_s41420_018_0107_9
crossref_primary_10_1042_BJ20051243
crossref_primary_10_1016_j_tplants_2018_05_002
crossref_primary_10_1371_journal_pone_0166636
crossref_primary_10_5360_membrane_33_2
crossref_primary_10_1016_j_fsi_2015_12_041
crossref_primary_10_1074_jbc_M501308200
crossref_primary_10_1002_cmdc_201300256
crossref_primary_10_1016_j_bbadis_2008_06_010
crossref_primary_10_1186_s12943_020_1138_4
crossref_primary_10_1371_journal_pgen_1003245
crossref_primary_10_1074_jbc_M111889200
crossref_primary_10_1134_S0006297913040044
crossref_primary_10_1371_journal_pbio_3000377
crossref_primary_10_1042_BST20210819
crossref_primary_10_1111_ajt_13729
crossref_primary_10_3892_mmr_2017_7408
crossref_primary_10_1172_JCI20039
crossref_primary_10_1007_s11046_021_00565_x
crossref_primary_10_1016_j_biocel_2004_03_009
crossref_primary_10_1074_jbc_M112_390245
crossref_primary_10_1152_ajpregu_00187_2014
crossref_primary_10_15252_embr_202254993
crossref_primary_10_15302_J_FASE_2016106
crossref_primary_10_1080_21505594_2022_2066611
crossref_primary_10_4161_auto_21274
crossref_primary_10_1007_s00018_013_1513_z
crossref_primary_10_1021_acschemneuro_1c00209
crossref_primary_10_4161_auto_23575
crossref_primary_10_1083_jcb_201002075
crossref_primary_10_1534_genetics_110_116566
crossref_primary_10_1038_ncomms4207
crossref_primary_10_2353_ajpath_2010_090345
crossref_primary_10_1155_2015_130315
crossref_primary_10_1517_14728220802555554
crossref_primary_10_1074_jbc_M117_780874
crossref_primary_10_1091_mbc_e07_12_1292
crossref_primary_10_1111_jnc_14042
crossref_primary_10_1369_jhc_2010_955690
crossref_primary_10_7554_eLife_43088
crossref_primary_10_1016_j_placenta_2015_10_015
crossref_primary_10_1093_hmg_ddl239
crossref_primary_10_3390_antiox10030387
crossref_primary_10_1091_mbc_e03_07_0479
crossref_primary_10_1007_s00726_014_1765_4
crossref_primary_10_1016_j_bpj_2015_11_3524
crossref_primary_10_1155_2011_498768
crossref_primary_10_1146_annurev_nutr_27_061406_093749
crossref_primary_10_1016_j_devcel_2011_06_023
crossref_primary_10_1002_adfm_202212141
crossref_primary_10_1002_cpz1_325
crossref_primary_10_1016_j_febslet_2010_01_017
crossref_primary_10_1111_j_1872_034X_2011_00955_x
crossref_primary_10_3389_fimmu_2021_667664
crossref_primary_10_1534_g3_116_035998
crossref_primary_10_1016_j_fsi_2021_06_006
crossref_primary_10_1002_iub_2582
crossref_primary_10_3390_pathogens13030266
crossref_primary_10_1158_1078_0432_CCR_10_0032
crossref_primary_10_2337_db11_1199
crossref_primary_10_5402_2012_738718
crossref_primary_10_1016_j_yexcr_2025_114478
crossref_primary_10_1016_j_febslet_2010_01_020
crossref_primary_10_1080_15548627_2015_1067363
crossref_primary_10_1080_21505594_2019_1605803
crossref_primary_10_1016_S0006_291X_02_02057_0
crossref_primary_10_1242_jcs_122960
crossref_primary_10_1111_jcmm_13555
crossref_primary_10_1155_2020_9280372
crossref_primary_10_1016_j_bbrc_2008_11_084
crossref_primary_10_4161_auto_27832
crossref_primary_10_1161_CIRCRESAHA_111_246108
crossref_primary_10_1016_j_neuron_2018_05_039
crossref_primary_10_1177_1087057116639202
crossref_primary_10_1016_j_jmb_2016_02_024
crossref_primary_10_1016_j_bbamcr_2021_119064
crossref_primary_10_1074_jbc_RA118_002191
crossref_primary_10_1155_2009_451357
crossref_primary_10_1007_s10495_013_0929_0
crossref_primary_10_3390_cells9040831
crossref_primary_10_1161_CIRCRESAHA_114_303788
crossref_primary_10_1242_bio_013979
crossref_primary_10_1016_j_febslet_2010_02_061
crossref_primary_10_1152_japplphysiol_00952_2011
crossref_primary_10_1128_EC_4_11_1765_1774_2005
crossref_primary_10_1074_jbc_M501701200
crossref_primary_10_1016_j_jmb_2016_02_021
crossref_primary_10_1111_j_1567_1364_2003_tb00135_x
crossref_primary_10_3390_biom14121517
crossref_primary_10_1016_j_bbabio_2009_02_023
crossref_primary_10_3389_fmicb_2022_1019543
crossref_primary_10_1091_mbc_e15_07_0470
crossref_primary_10_1016_j_biocel_2016_08_007
crossref_primary_10_1007_s00281_010_0222_z
crossref_primary_10_1074_jbc_M112_348250
crossref_primary_10_4161_auto_23465
crossref_primary_10_1016_S0304_419X_03_00004_0
crossref_primary_10_1210_endrev_bnad001
crossref_primary_10_3390_antiox11020304
crossref_primary_10_1007_BF03402040
crossref_primary_10_1016_j_preteyeres_2015_09_002
crossref_primary_10_1360_SSV_2024_0039
crossref_primary_10_1016_j_ceb_2009_11_003
crossref_primary_10_12677_BR_2022_113039
crossref_primary_10_1242_jcs_025726
crossref_primary_10_1146_annurev_biochem_052709_094552
crossref_primary_10_1146_annurev_biochem_060815_014556
crossref_primary_10_3390_metabo13010101
crossref_primary_10_1083_jcb_202002085
crossref_primary_10_1080_15548627_2022_2072656
crossref_primary_10_1073_pnas_1406305111
crossref_primary_10_1111_j_1600_0854_2005_00368_x
crossref_primary_10_3389_fmicb_2017_00383
crossref_primary_10_1016_j_cell_2010_12_018
crossref_primary_10_1111_j_1567_1364_2006_00188_x
crossref_primary_10_1074_jbc_M210436200
crossref_primary_10_1083_jcb_200912089
crossref_primary_10_1038_gene_2009_25
crossref_primary_10_3389_fphar_2021_741219
crossref_primary_10_1016_j_ceb_2020_12_011
crossref_primary_10_1111_j_1574_6968_2010_02192_x
crossref_primary_10_4238_2012_August_17_3
crossref_primary_10_1080_15384101_2019_1580488
crossref_primary_10_1074_jbc_RA118_005698
crossref_primary_10_1038_s41467_019_08331_w
crossref_primary_10_1186_s10020_023_00765_9
crossref_primary_10_1016_j_jsb_2006_10_010
crossref_primary_10_1016_j_ejmech_2023_116117
crossref_primary_10_1091_mbc_e08_01_0080
crossref_primary_10_1074_jbc_R500016200
crossref_primary_10_1242_jcs_223792
crossref_primary_10_1074_jbc_M312706200
crossref_primary_10_1016_j_bbamcr_2008_07_014
crossref_primary_10_1242_jcs_00381
crossref_primary_10_1091_mbc_e03_09_0704
crossref_primary_10_1074_jbc_M117_817510
crossref_primary_10_1091_mbc_e02_08_0483
crossref_primary_10_1074_jbc_M110_100420
crossref_primary_10_2183_pjab_83_39
crossref_primary_10_3390_ijms19123940
crossref_primary_10_1080_15548627_2024_2330033
crossref_primary_10_15252_embj_201490315
crossref_primary_10_3390_v12070756
crossref_primary_10_1016_j_neulet_2013_01_044
crossref_primary_10_3390_genes9080413
crossref_primary_10_1074_jbc_M110_143545
crossref_primary_10_3390_cells8010072
crossref_primary_10_1038_s41430_018_0381_x
crossref_primary_10_1186_1423_0127_19_92
crossref_primary_10_1007_s00284_019_01650_7
crossref_primary_10_1091_mbc_E17_08_0516
crossref_primary_10_3390_microorganisms10061146
crossref_primary_10_4161_auto_19385
crossref_primary_10_1074_jbc_M405860200
crossref_primary_10_1091_mbc_e08_05_0544
crossref_primary_10_3389_fgene_2017_00109
crossref_primary_10_1016_j_cbpb_2010_06_011
crossref_primary_10_1016_j_febslet_2013_04_025
crossref_primary_10_1016_j_semcdb_2010_02_008
crossref_primary_10_3389_fpls_2022_867486
crossref_primary_10_1002_1873_3468_14717
crossref_primary_10_1016_j_nano_2014_03_019
crossref_primary_10_3390_pathogens13121139
crossref_primary_10_1371_journal_pone_0181047
crossref_primary_10_1016_j_virol_2019_05_002
crossref_primary_10_1016_j_gene_2018_07_073
crossref_primary_10_1038_ncb0910_814
crossref_primary_10_1083_jcb_201202061
crossref_primary_10_1126_science_aaf6136
crossref_primary_10_1016_j_ijbiomac_2024_134325
crossref_primary_10_1093_plcell_koae099
crossref_primary_10_1080_15548627_2020_1826691
crossref_primary_10_1074_jbc_M803180200
crossref_primary_10_1074_jbc_M600364200
crossref_primary_10_1038_nsmb_2822
crossref_primary_10_1016_S0014_5793_03_00899_8
crossref_primary_10_1242_jcs_01131
crossref_primary_10_1091_mbc_e03_05_0340
crossref_primary_10_1016_j_fgb_2022_103748
crossref_primary_10_1038_s41598_019_51254_1
crossref_primary_10_1016_j_bbamcr_2015_09_023
crossref_primary_10_1111_1346_8138_16185
crossref_primary_10_1247_csf_28_49
crossref_primary_10_1091_mbc_e05_02_0143
crossref_primary_10_1080_15548627_2018_1534507
crossref_primary_10_1111_j_1348_0421_2010_00271_x
crossref_primary_10_1074_jbc_M706214200
crossref_primary_10_3390_fishes6040057
crossref_primary_10_1080_15548627_2015_1107692
crossref_primary_10_1074_jbc_M309238200
crossref_primary_10_1080_15548627_2020_1766332
crossref_primary_10_1074_jbc_M116_762948
crossref_primary_10_1093_abbs_gmv111
crossref_primary_10_1038_cdd_2009_39
crossref_primary_10_1038_s41598_018_25118_z
crossref_primary_10_1093_femsyr_foae022
crossref_primary_10_1083_jcb_201809032
crossref_primary_10_1038_s41421_020_0166_y
crossref_primary_10_1097_MAJ_0b013e31821f978d
crossref_primary_10_1016_j_jmb_2019_06_017
crossref_primary_10_1016_S0014_5793_02_03119_8
crossref_primary_10_3389_fimmu_2017_00355
crossref_primary_10_1002_1873_3468_14720
crossref_primary_10_1016_j_ceb_2013_03_004
crossref_primary_10_1016_j_jmb_2018_04_007
crossref_primary_10_1080_15592324_2021_1977527
crossref_primary_10_1128_JVI_02093_07
crossref_primary_10_1128_spectrum_05249_22
crossref_primary_10_1242_jcs_154716
crossref_primary_10_1111_j_1582_4934_2009_00990_x
crossref_primary_10_3390_cells11233813
crossref_primary_10_1016_j_xplc_2023_100720
crossref_primary_10_1242_jcs_093757
crossref_primary_10_1038_ncomms9065
crossref_primary_10_1016_j_jmb_2019_05_010
crossref_primary_10_1247_csf_27_409
crossref_primary_10_1111_j_1567_1364_2009_00544_x
crossref_primary_10_1073_pnas_0903316106
crossref_primary_10_1074_jbc_M212467200
crossref_primary_10_1155_2017_9860841
crossref_primary_10_1242_jcs_173211
crossref_primary_10_1172_JCI40027
crossref_primary_10_1111_j_1365_2443_2007_01041_x
crossref_primary_10_1038_cr_2007_78
crossref_primary_10_1038_cr_2013_159
crossref_primary_10_1016_j_jsb_2016_04_005
crossref_primary_10_3389_fpls_2019_00935
crossref_primary_10_1074_jbc_M110_143511
crossref_primary_10_1111_febs_13661
crossref_primary_10_15252_embr_202051869
crossref_primary_10_3390_ijms242015116
crossref_primary_10_3389_fcimb_2022_856711
crossref_primary_10_1007_s12035_014_9073_2
crossref_primary_10_1080_15548627_2015_1040971
crossref_primary_10_3390_ijms222212093
crossref_primary_10_1007_s10495_014_0981_4
crossref_primary_10_1016_j_funbio_2017_05_008
crossref_primary_10_1038_s41467_020_18805_x
crossref_primary_10_1016_j_micres_2012_01_004
crossref_primary_10_1016_j_tox_2014_09_010
crossref_primary_10_1016_j_ceb_2007_02_019
crossref_primary_10_1523_JNEUROSCI_3314_12_2013
crossref_primary_10_3892_mmr_2024_13378
crossref_primary_10_1038_cr_2013_168
crossref_primary_10_1038_cr_2013_169
crossref_primary_10_1038_s41418_024_01438_8
crossref_primary_10_1038_mi_2009_20
crossref_primary_10_1091_mbc_e16_11_0762
crossref_primary_10_1161_CIRCULATIONAHA_107_763870
crossref_primary_10_1002_jcp_30819
crossref_primary_10_1111_febs_15833
crossref_primary_10_1016_j_arr_2009_05_001
crossref_primary_10_1038_ja_2017_104
crossref_primary_10_1128_MCB_00811_15
crossref_primary_10_1186_gb_2011_12_7_226
crossref_primary_10_1016_j_tcb_2012_04_005
crossref_primary_10_1074_jbc_M115_677468
crossref_primary_10_1093_hmg_ddu585
crossref_primary_10_1111_j_1365_2443_2009_01299_x
crossref_primary_10_1016_j_bbrc_2009_09_034
crossref_primary_10_1016_S1357_2725_02_00343_6
crossref_primary_10_2174_0929867326666190402120231
crossref_primary_10_1016_j_cell_2010_04_030
crossref_primary_10_1016_j_ymeth_2022_08_008
crossref_primary_10_1016_j_abb_2007_03_034
crossref_primary_10_1016_j_molcel_2011_08_034
crossref_primary_10_1080_15548627_2018_1545821
crossref_primary_10_1038_s41556_024_01348_4
crossref_primary_10_1091_mbc_e13_07_0381
crossref_primary_10_1247_csf_27_421
crossref_primary_10_1016_j_bbalip_2007_01_015
crossref_primary_10_1074_jbc_M205437200
crossref_primary_10_1091_mbc_e04_08_0669
crossref_primary_10_1016_j_molcel_2013_12_011
crossref_primary_10_4161_auto_19496
crossref_primary_10_1177_0748233712462442
crossref_primary_10_1016_j_freeradbiomed_2014_02_028
crossref_primary_10_2183_pjab_101_005
crossref_primary_10_2142_biophys_60_171
crossref_primary_10_1016_j_brainres_2013_08_039
crossref_primary_10_1080_15548627_2019_1580104
crossref_primary_10_1089_ars_2010_3488
crossref_primary_10_1016_j_jbc_2024_107274
crossref_primary_10_1089_ars_2010_3482
crossref_primary_10_1080_15548627_2022_2111635
crossref_primary_10_1002_yea_3075
crossref_primary_10_4161_auto_22532
crossref_primary_10_1016_j_jmb_2017_01_002
crossref_primary_10_1016_j_jmb_2017_01_003
crossref_primary_10_1080_15548627_2016_1226736
crossref_primary_10_1080_14737140_2023_2161518
crossref_primary_10_1038_s41598_017_01452_6
crossref_primary_10_1042_BJ20071427
crossref_primary_10_1091_mbc_e11_09_0785
crossref_primary_10_1016_j_hlc_2004_12_023
crossref_primary_10_1523_JNEUROSCI_2392_12_2012
crossref_primary_10_1074_jbc_M114_626952
crossref_primary_10_1155_2012_142634
crossref_primary_10_1242_jcs_046250
crossref_primary_10_1247_csf_27_431
crossref_primary_10_1074_jbc_C700195200
crossref_primary_10_1016_j_bbamcr_2025_119905
crossref_primary_10_2139_ssrn_3401844
crossref_primary_10_1007_s00253_013_5221_2
crossref_primary_10_1039_C8TB01402G
crossref_primary_10_1371_journal_pgen_1003715
crossref_primary_10_1016_j_tcb_2007_07_009
crossref_primary_10_1016_j_jmb_2019_05_051
crossref_primary_10_1016_j_neuron_2021_12_031
crossref_primary_10_1007_s00109_021_02125_8
crossref_primary_10_1007_s10534_014_9773_0
crossref_primary_10_1080_15548627_2024_2447207
crossref_primary_10_1146_annurev_biochem_061516_044820
crossref_primary_10_1016_S1534_5807_02_00359_3
crossref_primary_10_1101_gad_1599207
crossref_primary_10_1074_jbc_M208191200
crossref_primary_10_15252_embr_202050733
crossref_primary_10_1016_j_ajpath_2011_08_013
crossref_primary_10_1080_15548627_2017_1356949
crossref_primary_10_1083_jcb_200712064
crossref_primary_10_1016_j_febslet_2010_02_001
crossref_primary_10_1016_j_jbc_2023_104712
crossref_primary_10_1091_mbc_e08_03_0309
crossref_primary_10_3390_cells8010002
crossref_primary_10_4161_auto_7_5_14872
crossref_primary_10_4161_auto_19314
crossref_primary_10_1038_s41417_020_0205_8
crossref_primary_10_1083_jcb_200904075
crossref_primary_10_1038_ncb2979
crossref_primary_10_1016_j_ceb_2019_12_001
crossref_primary_10_1091_mbc_e04_02_0147
crossref_primary_10_1074_jbc_M209309200
crossref_primary_10_1038_nrm4024
crossref_primary_10_1074_jbc_M111_308460
crossref_primary_10_1016_j_str_2012_04_018
crossref_primary_10_1186_s40880_017_0219_2
crossref_primary_10_1093_jmcb_mjq028
crossref_primary_10_1074_jbc_M110_177618
crossref_primary_10_4161_auto_7_10_16636
crossref_primary_10_1038_s41594_019_0204_3
crossref_primary_10_1016_j_ydbio_2018_04_009
crossref_primary_10_1242_jcs_01620
crossref_primary_10_1104_pp_011024
crossref_primary_10_1007_s00294_018_0834_8
crossref_primary_10_1146_annurev_cellbio_100818_125242
crossref_primary_10_1016_j_biotechadv_2007_03_004
crossref_primary_10_1016_j_vibspec_2019_102972
crossref_primary_10_1016_j_cell_2007_05_021
crossref_primary_10_1074_jbc_M116_766584
crossref_primary_10_1080_15548627_2021_1994297
crossref_primary_10_1007_s00401_013_1158_x
crossref_primary_10_1128_EC_00342_05
crossref_primary_10_1242_jcs_094573
crossref_primary_10_1111_j_1365_2443_2009_01376_x
crossref_primary_10_1128_JVI_00641_08
crossref_primary_10_15252_embj_201591440
crossref_primary_10_1074_jbc_M113_525782
crossref_primary_10_1016_j_jns_2020_117253
crossref_primary_10_1016_S0014_5793_02_03456_7
crossref_primary_10_1074_jbc_M112_411454
crossref_primary_10_3390_cells9051184
crossref_primary_10_1002_med_21662
crossref_primary_10_1038_ncb1426
crossref_primary_10_1083_jcb_200801035
crossref_primary_10_1631_jzus_B2300402
crossref_primary_10_3892_or_2017_5508
crossref_primary_10_1038_embor_2012_208
crossref_primary_10_3390_ijms13033618
crossref_primary_10_1042_BCJ20210676
crossref_primary_10_1080_15548627_2016_1234564
crossref_primary_10_1016_j_gene_2012_09_086
crossref_primary_10_1080_10408398_2021_1995844
crossref_primary_10_1016_j_ceb_2005_06_007
crossref_primary_10_1091_mbc_e04_10_0894
crossref_primary_10_4161_auto_26095
crossref_primary_10_1016_j_biopha_2019_108775
crossref_primary_10_1091_mbc_e04_11_1035
crossref_primary_10_3390_jof9101003
crossref_primary_10_1016_j_bbamcr_2009_01_008
crossref_primary_10_1128_JVI_01849_13
crossref_primary_10_1007_s00418_008_0406_y
crossref_primary_10_1111_j_1600_0854_2004_00245_x
crossref_primary_10_1016_j_bbamcr_2009_02_009
crossref_primary_10_1038_onc_2014_260
crossref_primary_10_1111_aos_13753
crossref_primary_10_1016_j_jmb_2025_168954
crossref_primary_10_3390_ijms23179550
crossref_primary_10_1091_mbc_e07_10_1048
crossref_primary_10_1016_j_ctmp_2024_200174
crossref_primary_10_3389_fonc_2024_1364070
crossref_primary_10_1016_j_funbio_2015_03_001
crossref_primary_10_1080_27694127_2023_2188523
crossref_primary_10_1016_j_canlet_2013_06_021
crossref_primary_10_1104_pp_108_131490
crossref_primary_10_3390_ijms222112087
crossref_primary_10_1016_j_bbamcr_2009_02_006
crossref_primary_10_1152_ajpcell_00056_2010
crossref_primary_10_1091_mbc_e09_11_0969
crossref_primary_10_1016_j_femsle_2005_03_030
crossref_primary_10_1111_febs_13268
crossref_primary_10_1016_j_chemphyslip_2018_11_001
crossref_primary_10_1016_j_bbadis_2008_10_016
crossref_primary_10_1016_j_bbrc_2011_06_061
crossref_primary_10_1016_j_devcel_2017_02_016
crossref_primary_10_1083_jcb_201408075
crossref_primary_10_1016_j_yexcr_2015_02_003
crossref_primary_10_1002_2211_5463_12355
crossref_primary_10_1242_jcs_03172
crossref_primary_10_1074_jbc_M109_080374
crossref_primary_10_1091_mbc_e07_09_0892
crossref_primary_10_1111_brv_12177
crossref_primary_10_5762_KAIS_2011_12_8_3541
crossref_primary_10_1074_jbc_M609876200
crossref_primary_10_1007_s00018_015_2034_8
crossref_primary_10_1371_journal_pone_0094382
crossref_primary_10_3390_cells12060956
crossref_primary_10_1038_sj_cdd_4401751
crossref_primary_10_1038_s41467_019_11435_y
crossref_primary_10_1080_15548627_2018_1525475
crossref_primary_10_3390_ijms242216508
crossref_primary_10_1002_cbin_10416
crossref_primary_10_1016_j_jmb_2019_04_048
crossref_primary_10_1016_j_mambio_2016_12_005
crossref_primary_10_1093_femsyr_foz079
crossref_primary_10_4161_auto_28577
crossref_primary_10_1016_j_arr_2011_09_001
crossref_primary_10_1080_02713683_2022_2025846
crossref_primary_10_1139_bcb_2013_0029
crossref_primary_10_1016_S1567_1356_03_00207_1
crossref_primary_10_1083_jcb_202210017
crossref_primary_10_14789_pjmj_49_475
crossref_primary_10_1111_1462_2920_13727
crossref_primary_10_1242_jcs_03047
crossref_primary_10_1093_carcin_bgp235
crossref_primary_10_1242_jcs_115725
crossref_primary_10_1002_1873_3468_14589
crossref_primary_10_15252_embj_201488957
crossref_primary_10_3390_jof7110903
crossref_primary_10_1016_S0167_4889_03_00086_7
crossref_primary_10_1080_02772248_2014_904085
crossref_primary_10_3390_ijms22063006
crossref_primary_10_4161_auto_20527
crossref_primary_10_1126_science_1087782
crossref_primary_10_1038_sj_emboj_7601623
crossref_primary_10_3390_cells12162056
crossref_primary_10_1128_JVI_01356_07
crossref_primary_10_3390_nu14030699
crossref_primary_10_1111_j_1753_4887_2009_00252_x
crossref_primary_10_1016_j_exer_2013_06_026
crossref_primary_10_1016_j_biocel_2004_02_002
crossref_primary_10_1016_j_celrep_2023_113291
crossref_primary_10_1016_j_yjmcc_2008_01_010
crossref_primary_10_1083_jcb_200711112
crossref_primary_10_1016_j_cell_2010_01_028
crossref_primary_10_1146_annurev_genet_102808_114910
crossref_primary_10_1242_jcs_177071
crossref_primary_10_4161_auto_19652
crossref_primary_10_1681_ASN_2013101068
crossref_primary_10_1016_j_fsi_2019_03_065
crossref_primary_10_1091_mbc_e07_08_0826
crossref_primary_10_1111_j_1365_2443_2007_01050_x
crossref_primary_10_1534_genetics_112_149013
crossref_primary_10_1586_17446651_2_5_667
crossref_primary_10_1016_j_ceb_2020_02_012
crossref_primary_10_1146_annurev_arplant_042811_105441
crossref_primary_10_3390_cells12050810
crossref_primary_10_1038_cddis_2017_464
crossref_primary_10_1182_bloodadvances_2021005910
crossref_primary_10_1016_j_ejcb_2005_06_004
crossref_primary_10_1007_s00428_013_1482_5
crossref_primary_10_1093_femsyr_foz051
crossref_primary_10_1128_MCB_01344_09
crossref_primary_10_1093_database_baae088
crossref_primary_10_1111_j_1755_148X_2011_00889_x
crossref_primary_10_1091_mbc_e05_09_0841
crossref_primary_10_3389_fphar_2022_977410
crossref_primary_10_3390_cancers3022630
crossref_primary_10_1111_tra_12024
crossref_primary_10_1186_s13578_023_01107_2
crossref_primary_10_1016_j_bbapap_2011_06_019
crossref_primary_10_1038_s41586_020_1977_6
crossref_primary_10_1111_febs_14448
crossref_primary_10_1186_s12870_015_0472_y
crossref_primary_10_1093_hmg_ddt527
crossref_primary_10_1016_j_neulet_2013_12_070
crossref_primary_10_1080_15548627_2017_1382782
crossref_primary_10_1093_pcp_pcl031
crossref_primary_10_1074_jbc_M404399200
crossref_primary_10_1083_jcb_201009067
crossref_primary_10_1091_mbc_e05_07_0629
crossref_primary_10_1016_S0014_5793_02_03739_0
crossref_primary_10_1007_s11481_013_9519_8
crossref_primary_10_7554_eLife_50260
crossref_primary_10_1074_jbc_M400272200
crossref_primary_10_1094_PHYTO_01_21_0015_R
crossref_primary_10_1074_jbc_M611473200
crossref_primary_10_3390_cells11121876
crossref_primary_10_3390_pathogens13110980
crossref_primary_10_1016_j_biocel_2005_02_029
crossref_primary_10_1042_BST20170128
crossref_primary_10_18632_aging_102235
crossref_primary_10_1073_pnas_0810452105
crossref_primary_10_1111_j_1365_2443_2008_01238_x
crossref_primary_10_1042_bse0550039
crossref_primary_10_1074_jbc_M116_753574
crossref_primary_10_3390_jof8020092
crossref_primary_10_1098_rsob_150008
crossref_primary_10_1007_s00294_009_0259_5
crossref_primary_10_1152_ajprenal_00033_2009
crossref_primary_10_1016_j_febslet_2006_07_041
crossref_primary_10_1016_j_febslet_2015_02_003
crossref_primary_10_1080_01652176_2024_2419585
crossref_primary_10_1074_jbc_M115_684233
crossref_primary_10_18632_oncotarget_6986
crossref_primary_10_1038_nrm2245
crossref_primary_10_1074_jbc_M703663200
crossref_primary_10_1038_s41467_021_22252_7
crossref_primary_10_1038_srep30963
crossref_primary_10_1016_j_bbalip_2022_159184
crossref_primary_10_1104_pp_105_060673
crossref_primary_10_1083_jcb_201304123
crossref_primary_10_3390_cells13060500
crossref_primary_10_1016_j_ibmb_2017_08_006
crossref_primary_10_1016_j_devcel_2014_06_001
crossref_primary_10_14336_AD_2021_1027
crossref_primary_10_1074_jbc_M607007200
crossref_primary_10_1128_EC_00024_06
crossref_primary_10_1016_j_yexcr_2024_114310
crossref_primary_10_1104_pp_106_093864
crossref_primary_10_3390_biomedicines10071596
crossref_primary_10_4161_auto_7_11_17661
crossref_primary_10_1146_annurev_cellbio_101011_155756
crossref_primary_10_1105_tpc_111_090993
crossref_primary_10_1161_01_RES_0000261924_76669_36
crossref_primary_10_4161_auto_7_4_14391
crossref_primary_10_1016_j_ejphar_2019_172534
crossref_primary_10_1093_molehr_gaad037
crossref_primary_10_1098_rsob_230192
crossref_primary_10_1007_s10753_019_01076_0
crossref_primary_10_1371_journal_pone_0230981
crossref_primary_10_3390_biom7030052
crossref_primary_10_1016_j_cub_2011_11_034
crossref_primary_10_1016_j_ejcb_2010_06_009
crossref_primary_10_1016_j_febslet_2007_01_096
crossref_primary_10_5115_acb_2014_47_2_101
crossref_primary_10_1074_jbc_M117_782276
crossref_primary_10_1091_mbc_e08_04_0363
crossref_primary_10_1152_ajprenal_00435_2012
crossref_primary_10_1016_j_nut_2006_04_008
crossref_primary_10_1016_j_bbrc_2005_10_163
crossref_primary_10_1155_2011_713435
crossref_primary_10_1016_j_celrep_2018_12_050
crossref_primary_10_1128_AEM_02455_17
crossref_primary_10_1016_S0955_0674_02_00343_5
crossref_primary_10_1083_jcb_201605030
crossref_primary_10_1016_S1534_5807_04_00099_1
crossref_primary_10_1016_j_celrep_2016_02_040
crossref_primary_10_1016_j_celrep_2018_06_065
crossref_primary_10_1111_j_1365_2958_2006_05274_x
crossref_primary_10_1111_j_1365_313X_2005_02397_x
crossref_primary_10_1111_j_1365_3040_2010_02117_x
crossref_primary_10_1074_jbc_M109_093724
crossref_primary_10_1016_j_biocel_2012_11_001
crossref_primary_10_1091_mbc_E19_11_0622
crossref_primary_10_1093_hmg_ddab225
crossref_primary_10_1534_genetics_107_076596
crossref_primary_10_1038_s12276_020_00530_6
crossref_primary_10_1152_ajpheart_00936_2012
crossref_primary_10_1016_j_freeradbiomed_2004_05_025
crossref_primary_10_1016_j_devcel_2004_07_005
crossref_primary_10_1038_s41594_019_0207_0
crossref_primary_10_1091_mbc_e08_12_1248
crossref_primary_10_1177_25152564231162495
crossref_primary_10_2142_biophys_47_107
ContentType Journal Article
Copyright European Molecular Biology Organization 2001
Copyright © 2001 European Molecular Biology Organization
Copyright Oxford University Press(England) Nov 01, 2001
Copyright © 2001 European Molecular Biology Organization 2001
Copyright_xml – notice: European Molecular Biology Organization 2001
– notice: Copyright © 2001 European Molecular Biology Organization
– notice: Copyright Oxford University Press(England) Nov 01, 2001
– notice: Copyright © 2001 European Molecular Biology Organization 2001
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7S9
L.6
7X8
5PM
DOI 10.1093/emboj/20.21.5971
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
Research Library Prep
MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1460-2075
EndPage 5981
ExternalDocumentID PMC125692
374521411
11689437
10_1093_emboj_20_21_5971
EMBJ7594089
ark_67375_WNG_QZ0819HP_B
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-Q-
-~X
.55
0R~
123
1OC
24P
29G
2WC
33P
36B
39C
3O-
3V.
4.4
53G
5VS
70F
7X7
88A
88E
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABLJU
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AI.
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ASPBG
AUFTA
AVWKF
AZFZN
AZQEC
AZVAB
BAWUL
BBNVY
BDRZF
BENPR
BFHJK
BHPHI
BKSAR
BMNLL
BMXJE
BPHCQ
BRXPI
BSCLL
BTFSW
BVXVI
C1A
CAG
CCPQU
COF
CS3
D1J
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
DWQXO
E3Z
EBD
EBS
EJD
EMB
EMOBN
ESTFP
F5P
FEDTE
FYUFA
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
GX1
H13
HCIFZ
HH5
HK~
HMCUK
HVGLF
HYE
H~9
KQ8
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LUTES
LW6
LYRES
M0L
M1P
M2O
M7P
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
PCBAR
PQQKQ
PROAC
PSQYO
Q2X
RHF
RHI
RIG
RNI
RNS
ROL
RPM
RZO
SV3
TN5
TR2
UKHRP
VH1
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WOQ
WXSBR
WYJ
X7M
XSW
Y6R
YSK
YYP
ZCA
ZGI
ZZTAW
~KM
AAJSJ
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEUYN
AFWVQ
PKN
AAYXX
ABZEH
AGQPQ
CITATION
NAO
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
7XB
8FD
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c7209-f743f500d838a68990130e17f4682f6165054cfd6a27af0f1462956137bcbe503
IEDL.DBID 7X7
ISSN 0261-4189
1460-2075
IngestDate Thu Aug 21 13:16:57 EDT 2025
Mon Jul 21 10:13:51 EDT 2025
Fri Jul 11 04:12:15 EDT 2025
Fri Jul 11 15:40:07 EDT 2025
Fri Jul 25 10:37:35 EDT 2025
Wed Feb 19 02:33:42 EST 2025
Tue Jul 01 03:07:52 EDT 2025
Thu Apr 24 22:55:29 EDT 2025
Wed Jan 22 16:22:52 EST 2025
Fri Feb 21 02:43:51 EST 2025
Wed Oct 30 09:55:18 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords GFP
APG
autophagy
autophagosome
membrane dynamics
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c7209-f743f500d838a68990130e17f4682f6165054cfd6a27af0f1462956137bcbe503
Notes istex:CC528EE1576E1519A4DB4507FB32688B7DD15632
ArticleID:EMBJ7594089
ark:/67375/WNG-QZ0819HP-B
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink http://doi.org/10.1093/emboj/20.21.5971
PMID 11689437
PQID 195264546
PQPubID 35985
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_125692
proquest_miscellaneous_72252444
proquest_miscellaneous_49376453
proquest_miscellaneous_18124306
proquest_journals_195264546
pubmed_primary_11689437
crossref_citationtrail_10_1093_emboj_20_21_5971
crossref_primary_10_1093_emboj_20_21_5971
wiley_primary_10_1093_emboj_20_21_5971_EMBJ7594089
springer_journals_10_1093_emboj_20_21_5971
istex_primary_ark_67375_WNG_QZ0819HP_B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-11-01
20011101
November 1, 2001
2001-11-1
2001-Nov-01
PublicationDateYYYYMMDD 2001-11-01
PublicationDate_xml – month: 11
  year: 2001
  text: 2001-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: London
– name: England
– name: New York
– name: Oxford, UK
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2001
Publisher John Wiley & Sons, Ltd
Nature Publishing Group UK
Springer Nature B.V
Oxford University Press
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Oxford University Press
References Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y and Yoshimori T (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol, 152, 657-667.
Shintani T, Suzuki K, Kamada Y, Noda T and Ohsumi Y (2001) Apg2p functions in autophagosome formation on the perivacuolar structure. J Biol Chem, 276, 30452-30460.
Kirisako T et al. (2000) The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol, 151, 263-276.
Abeliovich H, Dunn WA,Jr, Kim J and Klionsky DJ (2000) Dissection of autophagosome biogenesis into distinct nucleation and expansion steps. J Cell Biol, 151, 1025-1033.
Babst M, Sato TK, Banta LM and Emr SD (1997) Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p. EMBO J, 16, 1820-1831.
Kim J, Dalton VM, Eggerton KP, Scott SV and Klionsky DJ (1999) Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy and peroxisome degradation pathways. Mol Biol Cell, 10, 1337-1351.
Noda T and Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem, 273, 3963-3966.
Matsuura A, Tsukada M, Wada Y and Ohsumi Y (1997) Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 192, 245-250.
Harding TM, Hefner-Gravink A, Thumm M and Klionsky DJ (1996) Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway. J Biol Chem, 271, 17621-17624.
Ichimura Y et al. (2000) A ubiquitin-like system mediates protein lipidation. Nature, 408, 488-492.
Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, Yoshimori T, Noda T and Ohsumi Y (1999) Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol, 147, 435-446.
Abeliovich H, Darsow T and Emr SD (1999) Cytoplasm to vacuole trafficking of aminopeptidase I requires a t-SNARE-Sec1p complex composed of Tlg2p and Vps45p. EMBO J, 18, 6005-6016.
Kametaka S, Okano T, Ohsumi M and Ohsumi Y (1998) Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J Biol Chem, 273, 22284-22291.
Kihara A, Kabeya Y, Ohsumi Y and Yoshimori T (2001b) Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep, 2, 330-335.
Kim J, Huang WP and Klionsky DJ (2001) Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p and the autophagy conjugation complex. J Cell Biol, 152, 51-64.
Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H and Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402, 672-676.
Noda T, Matsuura A, Wada Y and Ohsumi Y (1995) Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun, 210, 126-132.
Vida TA and Emr SD (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol, 128, 779-792.
Funakoshi T, Matsuura A, Noda T and Ohsumi Y (1997). Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae. Gene, 192, 207-213.
Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ and Codogno P (2000) Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem, 275, 992-998.
Baba M, Takeshige K, Baba N and Ohsumi Y (1994) Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J Cell Biol, 124, 903-913.
Mizushima N, Noda T and Ohsumi Y (1999) Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J, 18, 3888-3896.
Klionsky DJ and Ohsumi Y (1999) Vacuolar import of proteins and organelles from the cytoplasm. Annu Rev Cell Dev Biol, 15, 1-32.
Tanida I, Mizushima N, Kiyooka M, Ohsumi M, Ueno T, Ohsumi Y and Kominami E (1999) Apg7p/Cvt2p: A novel protein-activating enzyme essential for autophagy. Mol Biol Cell, 10, 1367-1379.
Darsow T, Rieder SE and Emr SD (1997) A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole. J Cell Biol, 138, 517-529.
Kaiser C, Michaelis S and Mitchell A (1994) Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Kametaka S, Matsuura A, Wada Y and Ohsumi Y (1996) Structural and functional analyses of APG5, a gene involved in autophagy in yeast. Gene, 178, 139-143.
Yuan W, Strømhaug PE and Dunn WA,Jr (1999) Glucose-induced autophagy of peroxisomes in Pichia pastoris requires a unique E1-like protein. Mol Biol Cell, 10, 1353-1366.
Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M and Ohsumi Y (1998) A protein conjugation system essential for autophagy. Nature, 395, 395-398.
Noda T, Kim J, Huang WP, Baba M, Tokunaga C, Ohsumi Y and Klionsky DJ (2000) Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol, 148, 465-480.
Kihara A, Noda T, Ishihara N and Ohsumi Y (2001a) Two distinct Vps34 PtdIns 3-kinase complexes function in autophagy and CPY sorting in Saccharomyces cerevisiae. J Cell Biol, 152, 519-530.
Shintani T, Mizushima N, Ogawa Y, Matsuura A, Noda T and Ohsumi Y (1999) Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J, 18, 5234-5241.
George MD, Baba M, Scott SV, Mizushima N, Garrison BS, Ohsumi Y and Klionsky DJ (2000) Apg5p functions in the sequestration step in the cytoplasm-to-vacuole targeting and macroautophagy pathways. Mol Biol Cell, 11, 969-982.
Tsukada M and Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett, 333, 169-174.
Fengsrud M, Roos N, Berg T, Liou W, Slot JW and Seglen PO (1995) Ultrastructural and immunocytochemical characterization of autophagic vacuoles in isolated hepatocytes: effects of vinblastine and asparagine on vacuole distributions. Exp Cell Res, 221, 504-519.
Fengsrud M, Erichsen ES, Berg TO, Raiborg C and Seglen PO (2000) Ultrastructural characterization of the delimiting membranes of isolated autophagosomes and amphisomes by freeze-fracture electron microscopy. Eur J Cell Biol, 79, 871-882.
Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M and Ohsumi Y (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol, 150, 1507-1513.
Nishikawa S, Hirata A and Nakano A (1994) Inhibition of endoplasmic reticulum (ER)-to-Golgi transport induces relocalization of binding protein (BiP) within the ER to form the BiP bodies. Mol Biol Cell, 5, 1129-1143.
Raymond CK, Howald-Stevenson I, Vater CA and Stevens TH (1992) Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell, 3, 1389-1402.
Scott SV, Baba M, Ohsumi Y and Klionsky DJ (1997) Amino peptidase I is targeted to the vacuole by a nonclassical vesicular mechanism. J Cell Biol, 138, 37-44.
Horvath A and Reizman H (1994) Rapid protein extraction from Saccharomyces cerevisiae. Yeast, 10, 1305-1310.
Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y and Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 19, 5720-5728.
Huang WP, Scott SV, Kim J and Klionsky DJ (2000) The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J Biol Chem, 275, 5845-5851.
1997; 138
2001b; 2
2000; 150
2000; 151
1995
1994
2000; 275
1999; 147
1995; 210
1999; 402
1998; 395
1998; 273
2001; 276
1994; 124
2000; 408
2000; 19
2001; 152
2000; 148
1999; 18
2000; 79
2001a; 152
2000; 11
1999; 15
1987
1995; 128
1996; 271
1997; 16
1999; 10
1995; 221
1997; 192
1993; 333
1996; 178
1994; 5
1992; 3
1994; 10
References_xml – reference: Mizushima N, Noda T and Ohsumi Y (1999) Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J, 18, 3888-3896.
– reference: Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M and Ohsumi Y (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol, 150, 1507-1513.
– reference: Yuan W, Strømhaug PE and Dunn WA,Jr (1999) Glucose-induced autophagy of peroxisomes in Pichia pastoris requires a unique E1-like protein. Mol Biol Cell, 10, 1353-1366.
– reference: Nishikawa S, Hirata A and Nakano A (1994) Inhibition of endoplasmic reticulum (ER)-to-Golgi transport induces relocalization of binding protein (BiP) within the ER to form the BiP bodies. Mol Biol Cell, 5, 1129-1143.
– reference: Fengsrud M, Erichsen ES, Berg TO, Raiborg C and Seglen PO (2000) Ultrastructural characterization of the delimiting membranes of isolated autophagosomes and amphisomes by freeze-fracture electron microscopy. Eur J Cell Biol, 79, 871-882.
– reference: Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ and Codogno P (2000) Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem, 275, 992-998.
– reference: George MD, Baba M, Scott SV, Mizushima N, Garrison BS, Ohsumi Y and Klionsky DJ (2000) Apg5p functions in the sequestration step in the cytoplasm-to-vacuole targeting and macroautophagy pathways. Mol Biol Cell, 11, 969-982.
– reference: Kihara A, Kabeya Y, Ohsumi Y and Yoshimori T (2001b) Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep, 2, 330-335.
– reference: Ichimura Y et al. (2000) A ubiquitin-like system mediates protein lipidation. Nature, 408, 488-492.
– reference: Huang WP, Scott SV, Kim J and Klionsky DJ (2000) The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J Biol Chem, 275, 5845-5851.
– reference: Klionsky DJ and Ohsumi Y (1999) Vacuolar import of proteins and organelles from the cytoplasm. Annu Rev Cell Dev Biol, 15, 1-32.
– reference: Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, Yoshimori T, Noda T and Ohsumi Y (1999) Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol, 147, 435-446.
– reference: Scott SV, Baba M, Ohsumi Y and Klionsky DJ (1997) Amino peptidase I is targeted to the vacuole by a nonclassical vesicular mechanism. J Cell Biol, 138, 37-44.
– reference: Raymond CK, Howald-Stevenson I, Vater CA and Stevens TH (1992) Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell, 3, 1389-1402.
– reference: Kametaka S, Okano T, Ohsumi M and Ohsumi Y (1998) Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J Biol Chem, 273, 22284-22291.
– reference: Kametaka S, Matsuura A, Wada Y and Ohsumi Y (1996) Structural and functional analyses of APG5, a gene involved in autophagy in yeast. Gene, 178, 139-143.
– reference: Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M and Ohsumi Y (1998) A protein conjugation system essential for autophagy. Nature, 395, 395-398.
– reference: Noda T, Kim J, Huang WP, Baba M, Tokunaga C, Ohsumi Y and Klionsky DJ (2000) Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol, 148, 465-480.
– reference: Tsukada M and Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett, 333, 169-174.
– reference: Abeliovich H, Dunn WA,Jr, Kim J and Klionsky DJ (2000) Dissection of autophagosome biogenesis into distinct nucleation and expansion steps. J Cell Biol, 151, 1025-1033.
– reference: Harding TM, Hefner-Gravink A, Thumm M and Klionsky DJ (1996) Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway. J Biol Chem, 271, 17621-17624.
– reference: Baba M, Takeshige K, Baba N and Ohsumi Y (1994) Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J Cell Biol, 124, 903-913.
– reference: Kihara A, Noda T, Ishihara N and Ohsumi Y (2001a) Two distinct Vps34 PtdIns 3-kinase complexes function in autophagy and CPY sorting in Saccharomyces cerevisiae. J Cell Biol, 152, 519-530.
– reference: Shintani T, Suzuki K, Kamada Y, Noda T and Ohsumi Y (2001) Apg2p functions in autophagosome formation on the perivacuolar structure. J Biol Chem, 276, 30452-30460.
– reference: Babst M, Sato TK, Banta LM and Emr SD (1997) Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p. EMBO J, 16, 1820-1831.
– reference: Kim J, Dalton VM, Eggerton KP, Scott SV and Klionsky DJ (1999) Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy and peroxisome degradation pathways. Mol Biol Cell, 10, 1337-1351.
– reference: Kim J, Huang WP and Klionsky DJ (2001) Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p and the autophagy conjugation complex. J Cell Biol, 152, 51-64.
– reference: Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y and Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 19, 5720-5728.
– reference: Noda T and Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem, 273, 3963-3966.
– reference: Shintani T, Mizushima N, Ogawa Y, Matsuura A, Noda T and Ohsumi Y (1999) Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J, 18, 5234-5241.
– reference: Funakoshi T, Matsuura A, Noda T and Ohsumi Y (1997). Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae. Gene, 192, 207-213.
– reference: Abeliovich H, Darsow T and Emr SD (1999) Cytoplasm to vacuole trafficking of aminopeptidase I requires a t-SNARE-Sec1p complex composed of Tlg2p and Vps45p. EMBO J, 18, 6005-6016.
– reference: Kaiser C, Michaelis S and Mitchell A (1994) Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
– reference: Kirisako T et al. (2000) The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol, 151, 263-276.
– reference: Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H and Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402, 672-676.
– reference: Matsuura A, Tsukada M, Wada Y and Ohsumi Y (1997) Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 192, 245-250.
– reference: Noda T, Matsuura A, Wada Y and Ohsumi Y (1995) Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun, 210, 126-132.
– reference: Darsow T, Rieder SE and Emr SD (1997) A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole. J Cell Biol, 138, 517-529.
– reference: Tanida I, Mizushima N, Kiyooka M, Ohsumi M, Ueno T, Ohsumi Y and Kominami E (1999) Apg7p/Cvt2p: A novel protein-activating enzyme essential for autophagy. Mol Biol Cell, 10, 1367-1379.
– reference: Vida TA and Emr SD (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol, 128, 779-792.
– reference: Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y and Yoshimori T (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol, 152, 657-667.
– reference: Horvath A and Reizman H (1994) Rapid protein extraction from Saccharomyces cerevisiae. Yeast, 10, 1305-1310.
– reference: Fengsrud M, Roos N, Berg T, Liou W, Slot JW and Seglen PO (1995) Ultrastructural and immunocytochemical characterization of autophagic vacuoles in isolated hepatocytes: effects of vinblastine and asparagine on vacuole distributions. Exp Cell Res, 221, 504-519.
– volume: 151
  start-page: 1025
  year: 2000
  end-page: 1033
  article-title: Dissection of autophagosome biogenesis into distinct nucleation and expansion steps
  publication-title: J Cell Biol
– volume: 273
  start-page: 3963
  year: 1998
  end-page: 3966
  article-title: Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast
  publication-title: J Biol Chem
– volume: 128
  start-page: 779
  year: 1995
  end-page: 792
  article-title: A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast
  publication-title: J Cell Biol
– volume: 147
  start-page: 435
  year: 1999
  end-page: 446
  article-title: Formation process of autophagosome is traced with Apg8/Aut7p in yeast
  publication-title: J Cell Biol
– volume: 333
  start-page: 169
  year: 1993
  end-page: 174
  article-title: Isolation and characterization of autophagy‐defective mutants of
  publication-title: FEBS Lett
– volume: 402
  start-page: 672
  year: 1999
  end-page: 676
  article-title: Induction of autophagy and inhibition of tumorigenesis by
  publication-title: Nature
– volume: 210
  start-page: 126
  year: 1995
  end-page: 132
  article-title: Novel system for monitoring autophagy in the yeast
  publication-title: Biochem Biophys Res Commun
– volume: 192
  start-page: 207
  year: 1997
  end-page: 213
  article-title: Analyses of APG13 gene involved in autophagy in yeast,
  publication-title: Gene
– volume: 151
  start-page: 263
  year: 2000
  end-page: 276
  article-title: The reversible modification regulates the membrane‐binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway
  publication-title: J Cell Biol
– volume: 10
  start-page: 1353
  year: 1999
  end-page: 1366
  article-title: Glucose‐induced autophagy of peroxisomes in requires a unique E1‐like protein
  publication-title: Mol Biol Cell
– volume: 3
  start-page: 1389
  year: 1992
  end-page: 1402
  article-title: Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E mutants
  publication-title: Mol Biol Cell
– volume: 16
  start-page: 1820
  year: 1997
  end-page: 1831
  article-title: Endosomal transport function in yeast requires a novel AAA‐type ATPase, Vps4p
  publication-title: EMBO J
– volume: 15
  start-page: 1
  year: 1999
  end-page: 32
  article-title: Vacuolar import of proteins and organelles from the cytoplasm
  publication-title: Annu Rev Cell Dev Biol
– volume: 221
  start-page: 504
  year: 1995
  end-page: 519
  article-title: Ultrastructural and immunocytochemical characterization of autophagic vacuoles in isolated hepatocytes: effects of vinblastine and asparagine on vacuole distributions
  publication-title: Exp Cell Res
– volume: 124
  start-page: 903
  year: 1994
  end-page: 913
  article-title: Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization
  publication-title: J Cell Biol
– volume: 138
  start-page: 37
  year: 1997
  end-page: 44
  article-title: Amino peptidase I is targeted to the vacuole by a nonclassical vesicular mechanism
  publication-title: J Cell Biol
– volume: 10
  start-page: 1305
  year: 1994
  end-page: 1310
  article-title: Rapid protein extraction from
  publication-title: Yeast
– start-page: 583
  year: 1995
  end-page: 589
  article-title: Mutagenic PCR
– volume: 178
  start-page: 139
  year: 1996
  end-page: 143
  article-title: Structural and functional analyses of APG5, a gene involved in autophagy in yeast
  publication-title: Gene
– volume: 19
  start-page: 5720
  year: 2000
  end-page: 5728
  article-title: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
  publication-title: EMBO J
– year: 1994
– volume: 18
  start-page: 6005
  year: 1999
  end-page: 6016
  article-title: Cytoplasm to vacuole trafficking of aminopeptidase I requires a t‐SNARE‐Sec1p complex composed of Tlg2p and Vps45p
  publication-title: EMBO J
– volume: 408
  start-page: 488
  year: 2000
  end-page: 492
  article-title: A ubiquitin‐like system mediates protein lipidation
  publication-title: Nature
– volume: 10
  start-page: 1337
  year: 1999
  end-page: 1351
  article-title: Apg7p/Cvt2p is required for the cytoplasm‐to‐vacuole targeting, macroautophagy and peroxisome degradation pathways
  publication-title: Mol Biol Cell
– volume: 275
  start-page: 5845
  year: 2000
  end-page: 5851
  article-title: The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways
  publication-title: J Biol Chem
– volume: 152
  start-page: 51
  year: 2001
  end-page: 64
  article-title: Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p and the autophagy conjugation complex
  publication-title: J Cell Biol
– volume: 152
  start-page: 657
  year: 2001
  end-page: 667
  article-title: Dissection of autophagosome formation using Apg5‐deficient mouse embryonic stem cells
  publication-title: J Cell Biol
– volume: 271
  start-page: 17621
  year: 1996
  end-page: 17624
  article-title: Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway
  publication-title: J Biol Chem
– volume: 152
  start-page: 519
  year: 2001a
  end-page: 530
  article-title: Two distinct Vps34 PtdIns 3‐kinase complexes function in autophagy and CPY sorting in
  publication-title: J Cell Biol
– volume: 18
  start-page: 3888
  year: 1999
  end-page: 3896
  article-title: Apg16p is required for the function of the Apg12p–Apg5p conjugate in the yeast autophagy pathway
  publication-title: EMBO J
– volume: 2
  start-page: 330
  year: 2001b
  end-page: 335
  article-title: Beclin‐phosphatidylinositol 3‐kinase complex functions at the ‐Golgi network
  publication-title: EMBO Rep
– start-page: 371
  year: 1987
  end-page: 414
  article-title: Regulation of autophagic protein degradation in isolated liver cells
– volume: 10
  start-page: 1367
  year: 1999
  end-page: 1379
  article-title: Apg7p/Cvt2p: A novel protein‐activating enzyme essential for autophagy
  publication-title: Mol Biol Cell
– volume: 138
  start-page: 517
  year: 1997
  end-page: 529
  article-title: A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole
  publication-title: J Cell Biol
– volume: 150
  start-page: 1507
  year: 2000
  end-page: 1513
  article-title: Tor‐mediated induction of autophagy via an Apg1 protein kinase complex
  publication-title: J Cell Biol
– volume: 18
  start-page: 5234
  year: 1999
  end-page: 5241
  article-title: Apg10p, a novel protein‐conjugating enzyme essential for autophagy in yeast
  publication-title: EMBO J
– volume: 275
  start-page: 992
  year: 2000
  end-page: 998
  article-title: Distinct classes of phosphatidylinositol 3′‐kinases are involved in signaling pathways that control macroautophagy in HT‐29 cells
  publication-title: J Biol Chem
– volume: 192
  start-page: 245
  year: 1997
  end-page: 250
  article-title: Apg1p, a novel protein kinase required for the autophagic process in
  publication-title: Gene
– volume: 79
  start-page: 871
  year: 2000
  end-page: 882
  article-title: Ultrastructural characterization of the delimiting membranes of isolated autophagosomes and amphisomes by freeze‐fracture electron microscopy
  publication-title: Eur J Cell Biol
– volume: 11
  start-page: 969
  year: 2000
  end-page: 982
  article-title: Apg5p functions in the sequestration step in the cytoplasm‐to‐vacuole targeting and macroautophagy pathways
  publication-title: Mol Biol Cell
– volume: 5
  start-page: 1129
  year: 1994
  end-page: 1143
  article-title: Inhibition of endoplasmic reticulum (ER)‐to‐Golgi transport induces relocalization of binding protein (BiP) within the ER to form the BiP bodies
  publication-title: Mol Biol Cell
– volume: 148
  start-page: 465
  year: 2000
  end-page: 480
  article-title: Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways
  publication-title: J Cell Biol
– volume: 276
  start-page: 30452
  year: 2001
  end-page: 30460
  article-title: Apg2p functions in autophagosome formation on the perivacuolar structure
  publication-title: J Biol Chem
– volume: 395
  start-page: 395
  year: 1998
  end-page: 398
  article-title: A protein conjugation system essential for autophagy
  publication-title: Nature
– volume: 273
  start-page: 22284
  year: 1998
  end-page: 22291
  article-title: Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast,
  publication-title: J Biol Chem
SSID ssj0005871
Score 2.3189297
Snippet Macroautophagy is a bulk degradation process induced by starvation in eukaryotic cells. In yeast, 15 Apg proteins coordinate the formation of autophagosomes....
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5971
SubjectTerms APG
APG gene
Apg1 protein
Apg12 protein
Apg16 protein
Apg5 protein
Apg9 protein
Aut7 protein
autophagosome
autophagosomes
Autophagy
Autophagy - physiology
Autophagy-Related Protein 5
Autophagy-Related Protein 8 Family
Autophagy-Related Proteins
Carrier Proteins
Carrier Proteins - genetics
Carrier Proteins - metabolism
cytochemistry
Fungal Proteins
Fungal Proteins - genetics
Fungal Proteins - metabolism
genes
genetic techniques and protocols
genetics
GFP
Green Fluorescent Proteins
Heat-Shock Proteins
Heat-Shock Proteins - genetics
Heat-Shock Proteins - metabolism
Luminescent Proteins
Luminescent Proteins - genetics
macroautophagy
Macromolecular Substances
membrane dynamics
Membrane Proteins
Membrane Proteins - genetics
Membrane Proteins - metabolism
metabolism
Microtubule-Associated Proteins
Microtubule-Associated Proteins - metabolism
Mutagenesis
mutants
phagocytosis
phosphatidylethanolamine
physiology
Protein Processing, Post-Translational
Protein Processing, Post-Translational - physiology
Proteins
Recombinant Fusion Proteins
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Temperature
Transcription Factors
Ubiquitin-Protein Ligases
vacuoles
Vacuoles - metabolism
Vesicular Transport Proteins
Yeasts
Title The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation
URI https://api.istex.fr/ark:/67375/WNG-QZ0819HP-B/fulltext.pdf
https://link.springer.com/article/10.1093/emboj/20.21.5971
https://onlinelibrary.wiley.com/doi/abs/10.1093%2Femboj%2F20.21.5971
https://www.ncbi.nlm.nih.gov/pubmed/11689437
https://www.proquest.com/docview/195264546
https://www.proquest.com/docview/18124306
https://www.proquest.com/docview/49376453
https://www.proquest.com/docview/72252444
https://pubmed.ncbi.nlm.nih.gov/PMC125692
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Rb9MwELZgFWIvCAaMMCh-QEggZY2dxEme0Fp1qyatKoiJihfLTuyxsSWjpYLx67lz0mwVdLxEkXKJlLvL-XPu7jtCXmcWqW-18nXGjB8VwvrK6gLOEhHYIueBxm7ko7EYHUeH03ja1ObMm7LKZUx0gbqocvxH3mNZzJF9Sry__O7j0ChMrjYTNO6SDjKXoVMn0-S6wiN1-y33iyViadZkKWEP3zMXujqDjf8uZ7sAqdnKqtRBBf_6F-T8u3KyTZ-uglu3Ou0_JA8aWEn3aj94RO6YcovcqwdNXm2R-4PlXLfH5Cd4BsXiD7VAUgF1Us2rC7i3ZpJdzAytJz39NgXVVzTHvsYZ4FKKS6DzUlpZujc5oCcYJ-npnCL_eAmh4pwCBKY3n2to2x35hBzvDz8NRn4zfsHPEx5kvgVwYeMgKNIwVSLFBFoYGJbYSKTcCgbYLo5yWwjFE2UDCzGXY5tsmOhcmzgIn5KNsirNM0JZrI2JdJTpFAkGYxVaowQ3SuU8tzr1SG-pfpk33OQ4IuNc1jnyUDqDSR5IziQazCNv2zsua16OW2TfOIu2gmr2DevZklh-Hh_ID18QFo0msu-RnaXJZfMpz2XreB551V4Fk2FiRZWmWoAIoiTYe62XiAAFwkPC9RIJBFaAWpFHtmsXu34tJpAkP_GIWHG-VgAZwlevlKdfHVM4oFeRcY-8W3rpjddaqyzu_Pi_WpXDo_5hEmdRkGbPb1XcDtl0lXuug_MF2QB3Ni8Byv3QXffBwjEdsC7p9IfjyccuLq7xHzfCTGQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjReEIyvMGB-ACSQsjpO4iQPCG1lW_fRakibmHgxdmKPwdaMlmqU_4n_kTunCaug42lvkXK2FN_5_HPu7neEPM8sUt9q5essMH5UCOsrqwt4SgSzRc6Zxmrkbk90DqOdo_hojvyqa2EwrbL2ic5RF2WO_8hbQRZzZJ8Sb8-_-dg0CoOrdQeNyip2zfgCbmzDN9vvQL0vON_cOGh3_ElTAT9POMt8C0emjRkr0jBVIsWwUMhMkNhIpNyKABBLHOW2EIonyjILnoRj8WeY6FybmIUw7w2yEIWwM7EwvX0poyR19zv3SycK0mwSFWVZ2DJnuvzS4myVB6sA4YOpU3ABFfrjXxD370zNJlw7Dabdabh5h9yewFi6VtndXTJn-kvkZtXYcrxEFtt1H7l75AIskWKyiRohiYE6LoflGYytmGtHA0OrzlI_TUH1mOZYRzkAHEzxyHW7gpaWru1v0WP0y_RkSJHvvA-u6ZQC5KaX5zW0qca8Tw6vRTMPyHy_7JtHhAaxNibSUaZTJDSMVWiNEtwolfPc6tQjrXr5ZT7hQseWHKeyismH0ilMciZ5IFFhHnnVjDiveECukH3pNNoIqsFXzJ9LYvmhtyXff0QY1tmX6x5ZrlUuJ65jKBtD98hK8xZUhoEc1TflCEQQlcFdb7ZEBKgTJglnSyTgyAHaRR55WJnYn88KBJLyJx4RU8bXCCAj-fSb_slnx0wOaFlk3COvayu99FkzF4s7O_7vqsqN7vpOEmcRS7PHVy7cClnsHHT35N52b3eZ3HJZg6569AmZB9M2TwFGftfP3Oal5NN1e4vfXZKC2A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VRDwuCMrLFOgeAAkkN_baXtsHDukjTVMaFUHVisuya--WQmtHSSMIJ34Cv4QfxS9h1o-0EQ2IQ2-WPF4_Znb2W8_MNwBPY22ob6WwZewq20-ZtoWWKR6FzNFpQh1pqpF3-qy75_cOgoMF-FnXwhTZ7nVIsqxpMCxN2WlrkOqa_qilTmT-CfftK9RdQUTsVkmV22ryBbdso1db66jfZ5R2Nt6tde2qq4CdhNSJbY1rpg4cJ428SLDIxIU8R7mh9llENXMRsgR-olMmaCi0o9GVUFP96YUykSpwPBz3CjQjhvOzAc12u_e2d5ZUEhVbvOKvju9GcRUYveiZZxbCptHp14tQ7p_JmtOI7SyeLhbEzi24WSFZ0i5N7zYsqGwRrpa9LSeLcH2tbiV3B0x3PDIYql_ff4ixYTIQh_koP8GrS_ra8VCRsr3UN5USOSGJKaYcIhgmZt0tpgbJNWnvbpJD45zJ0YgY0vMM_dMxQdxNzo-ryLQk8y7sXYp27kEjyzP1AIgbSKV86ccyMqyGgfC0EowqIRKaaBlZ0KoVwJOKEN305TjmZWDe44XKOHU4dblRmQUvplcMSjKQv8g-L3Q6FRTDzyaJLgz4fn-Tv3lvsFh3l69asFQrnVf-Y8TdOKCGa41ZsDw9i0oz0RyRqXyMIgaa4YZvvoSP0BMH8eZLhOjNEd_5FtwvjezstVxmmPlDC9iM-U0FDC357Jns6GNBT46QmcXUgpe1nZ57rbkfixaW_M-vyjd2VnthEPtOFD_8nzssw7Xd9Q5_vdXfXoIbRSJhUVD6CBpo6OoxIstT-aSazgQ-XLYH-Q1a6Yin
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+pre-autophagosomal+structure+organized+by+concerted+functions+of+APG+genes+is+essential+for+autophagosome+formation&rft.jtitle=The+EMBO+journal&rft.au=Suzuki%2C+K&rft.au=Kirisako%2C+T&rft.au=Kamada%2C+Y&rft.au=Mizushima%2C+N&rft.date=2001-11-01&rft.issn=0261-4189&rft.volume=20&rft.issue=21&rft.spage=5971&rft_id=info:doi/10.1093%2Femboj%2F20.21.5971&rft_id=info%3Apmid%2F11689437&rft.externalDocID=11689437
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon