Uncertainty quantification in ToxCast high throughput screening
High throughput screening (HTS) projects like the U.S. Environmental Protection Agency's ToxCast program are required to address the large and rapidly increasing number of chemicals for which we have little to no toxicity measurements. Concentration-response parameters such as potency and effic...
Saved in:
Published in | PloS one Vol. 13; no. 7; p. e0196963 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
25.07.2018
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High throughput screening (HTS) projects like the U.S. Environmental Protection Agency's ToxCast program are required to address the large and rapidly increasing number of chemicals for which we have little to no toxicity measurements. Concentration-response parameters such as potency and efficacy are extracted from HTS data using nonlinear regression, and models and analyses built from these parameters are used to predict in vivo and in vitro toxicity of thousands of chemicals. How these predictions are impacted by uncertainties that stem from parameter estimation and propagated through the models and analyses has not been well explored. While data size and complexity makes uncertainty quantification computationally expensive for HTS datasets, continued advancements in computational resources have allowed these computational challenges to be met. This study uses nonparametric bootstrap resampling to calculate uncertainties in concentration-response parameters from a variety of HTS assays. Using the ToxCast estrogen receptor model for bioactivity as a case study, we highlight how these uncertainties can be propagated through models to quantify the uncertainty in model outputs. Uncertainty quantification in model outputs is used to identify potential false positives and false negatives and to determine the distribution of model values around semi-arbitrary activity cutoffs, increasing confidence in model predictions. At the individual chemical-assay level, curves with high variability are flagged for manual inspection or retesting, focusing subject-matter-expert time on results that need further input. This work improves the confidence of predictions made using HTS data, increasing the ability to use this data in risk assessment. |
---|---|
AbstractList | High throughput screening (HTS) projects like the U.S. Environmental Protection Agency's ToxCast program are required to address the large and rapidly increasing number of chemicals for which we have little to no toxicity measurements. Concentration-response parameters such as potency and efficacy are extracted from HTS data using nonlinear regression, and models and analyses built from these parameters are used to predict in vivo and in vitro toxicity of thousands of chemicals. How these predictions are impacted by uncertainties that stem from parameter estimation and propagated through the models and analyses has not been well explored. While data size and complexity makes uncertainty quantification computationally expensive for HTS datasets, continued advancements in computational resources have allowed these computational challenges to be met. This study uses nonparametric bootstrap resampling to calculate uncertainties in concentration-response parameters from a variety of HTS assays. Using the ToxCast estrogen receptor model for bioactivity as a case study, we highlight how these uncertainties can be propagated through models to quantify the uncertainty in model outputs. Uncertainty quantification in model outputs is used to identify potential false positives and false negatives and to determine the distribution of model values around semi-arbitrary activity cutoffs, increasing confidence in model predictions. At the individual chemical-assay level, curves with high variability are flagged for manual inspection or retesting, focusing subject-matter-expert time on results that need further input. This work improves the confidence of predictions made using HTS data, increasing the ability to use this data in risk assessment. High throughput screening (HTS) projects like the U.S. Environmental Protection Agency's ToxCast program are required to address the large and rapidly increasing number of chemicals for which we have little to no toxicity measurements. Concentration-response parameters such as potency and efficacy are extracted from HTS data using nonlinear regression, and models and analyses built from these parameters are used to predict in vivo and in vitro toxicity of thousands of chemicals. How these predictions are impacted by uncertainties that stem from parameter estimation and propagated through the models and analyses has not been well explored. While data size and complexity makes uncertainty quantification computationally expensive for HTS datasets, continued advancements in computational resources have allowed these computational challenges to be met. This study uses nonparametric bootstrap resampling to calculate uncertainties in concentration-response parameters from a variety of HTS assays. Using the ToxCast estrogen receptor model for bioactivity as a case study, we highlight how these uncertainties can be propagated through models to quantify the uncertainty in model outputs. Uncertainty quantification in model outputs is used to identify potential false positives and false negatives and to determine the distribution of model values around semi-arbitrary activity cutoffs, increasing confidence in model predictions. At the individual chemical-assay level, curves with high variability are flagged for manual inspection or retesting, focusing subject-matter-expert time on results that need further input. This work improves the confidence of predictions made using HTS data, increasing the ability to use this data in risk assessment. High throughput screening (HTS) projects like the U.S. Environmental Protection Agency's ToxCast program are required to address the large and rapidly increasing number of chemicals for which we have little to no toxicity measurements. Concentration-response parameters such as potency and efficacy are extracted from HTS data using nonlinear regression, and models and analyses built from these parameters are used to predict in vivo and in vitro toxicity of thousands of chemicals. How these predictions are impacted by uncertainties that stem from parameter estimation and propagated through the models and analyses has not been well explored. While data size and complexity makes uncertainty quantification computationally expensive for HTS datasets, continued advancements in computational resources have allowed these computational challenges to be met. This study uses nonparametric bootstrap resampling to calculate uncertainties in concentration-response parameters from a variety of HTS assays. Using the ToxCast estrogen receptor model for bioactivity as a case study, we highlight how these uncertainties can be propagated through models to quantify the uncertainty in model outputs. Uncertainty quantification in model outputs is used to identify potential false positives and false negatives and to determine the distribution of model values around semi-arbitrary activity cutoffs, increasing confidence in model predictions. At the individual chemical-assay level, curves with high variability are flagged for manual inspection or retesting, focusing subject-matter-expert time on results that need further input. This work improves the confidence of predictions made using HTS data, increasing the ability to use this data in risk assessment.High throughput screening (HTS) projects like the U.S. Environmental Protection Agency's ToxCast program are required to address the large and rapidly increasing number of chemicals for which we have little to no toxicity measurements. Concentration-response parameters such as potency and efficacy are extracted from HTS data using nonlinear regression, and models and analyses built from these parameters are used to predict in vivo and in vitro toxicity of thousands of chemicals. How these predictions are impacted by uncertainties that stem from parameter estimation and propagated through the models and analyses has not been well explored. While data size and complexity makes uncertainty quantification computationally expensive for HTS datasets, continued advancements in computational resources have allowed these computational challenges to be met. This study uses nonparametric bootstrap resampling to calculate uncertainties in concentration-response parameters from a variety of HTS assays. Using the ToxCast estrogen receptor model for bioactivity as a case study, we highlight how these uncertainties can be propagated through models to quantify the uncertainty in model outputs. Uncertainty quantification in model outputs is used to identify potential false positives and false negatives and to determine the distribution of model values around semi-arbitrary activity cutoffs, increasing confidence in model predictions. At the individual chemical-assay level, curves with high variability are flagged for manual inspection or retesting, focusing subject-matter-expert time on results that need further input. This work improves the confidence of predictions made using HTS data, increasing the ability to use this data in risk assessment. |
Audience | Academic |
Author | Judson, Richard S. Watt, Eric D. |
AuthorAffiliation | University of Louisville School of Medicine, UNITED STATES 2 Oak Ridge Institute for Science Education Postdoctoral Fellow, Oak Ridge, Tennessee, United States of America 1 U.S. Environmental Protection Agency, National Center for Computational Toxicology, Research Triangle Park, North Carolina, United States of America |
AuthorAffiliation_xml | – name: University of Louisville School of Medicine, UNITED STATES – name: 1 U.S. Environmental Protection Agency, National Center for Computational Toxicology, Research Triangle Park, North Carolina, United States of America – name: 2 Oak Ridge Institute for Science Education Postdoctoral Fellow, Oak Ridge, Tennessee, United States of America |
Author_xml | – sequence: 1 givenname: Eric D. orcidid: 0000-0002-1211-0229 surname: Watt fullname: Watt, Eric D. – sequence: 2 givenname: Richard S. orcidid: 0000-0002-2348-9633 surname: Judson fullname: Judson, Richard S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30044784$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1904953$$D View this record in Osti.gov |
BookMark | eNqNk9tq3DAQhk1JaQ7tG5TWpFDai93qZMnuRUtYelgIBNqkt0KSZVvBK20kuSRvXzm7W9YhlGKDxfj7f2lGM8fZgXVWZ9lLCOYQM_jh2g3ein6-TuE5gBWtKH6SHcEKoxlFAB_srQ-z4xCuAShwSemz7BADQAgryVH2-coq7aMwNt7lN4Ow0TRGiWiczY3NL93tQoSYd6bt8th5N7Tdeoh5UF5ra2z7PHvaiD7oF9vvSXb19cvl4vvs_OLbcnF2PlMMVnHGdClIQYoSqhoRxGTd1KBGgCpdi0IIWSKJAGQNbGoIJCl0JVFDRSMbjJiQ-CR7vfFd9y7wbe6BI1CmtyQIJmK5IWonrvnam5Xwd9wJw-8Dzrdc-GhUr7mqNKFUNwwiSKAkEiJBJaSlRHiMJq9P290GudK10jZ60U9Mp3-s6XjrfnMKigpXZTI43Ri4EA0PykStOuWs1SpyWAFSFThB77a7eHcz6BD5ygSl-15Y7YYxOUYTisGIvnmAPl6CLdWKlKWxjUuHU6MpPysIY6BkBUjU_BEqPbVemXRG3ZgUnwjeTwSJifo2tmIIgS9__vh_9uLXlH27x3Za9LELrh_G5gtT8NX-dfy9h10bJ-DjBlDeheB1w1PF75s4pWZ6DgEfZ2ZXND7ODN_OTBKTB-Kd_z9lfwChVho0 |
CitedBy_id | crossref_primary_10_1021_acs_est_1c06821 crossref_primary_10_1021_acs_chemrestox_9b00227 crossref_primary_10_3390_ijms22136695 crossref_primary_10_1016_j_envint_2020_105581 crossref_primary_10_1093_toxsci_kfaa008 crossref_primary_10_1289_EHP6664 crossref_primary_10_1093_toxsci_kfz058 crossref_primary_10_1186_s13321_025_00950_4 crossref_primary_10_1039_D3EN00044C crossref_primary_10_1093_toxsci_kfaa147 crossref_primary_10_2903_sp_efsa_2021_EN_6924 crossref_primary_10_1016_j_cotox_2018_10_002 crossref_primary_10_3389_ftox_2024_1346767 crossref_primary_10_1016_j_chemosphere_2018_12_131 crossref_primary_10_1016_j_scitotenv_2020_143874 crossref_primary_10_1016_j_comtox_2022_100245 crossref_primary_10_1021_acs_chemrestox_0c00303 crossref_primary_10_3389_ftox_2023_1275980 crossref_primary_10_3390_toxics12040271 crossref_primary_10_1080_10807039_2023_2258985 crossref_primary_10_1093_toxsci_kfz205 crossref_primary_10_1002_bdr2_2144 crossref_primary_10_1016_j_cotox_2019_04_001 crossref_primary_10_1093_toxsci_kfz201 crossref_primary_10_1021_acs_est_1c07143 crossref_primary_10_1016_j_yrtph_2019_02_010 crossref_primary_10_1002_etc_4315 crossref_primary_10_1016_j_yrtph_2020_104656 crossref_primary_10_1016_j_chemosphere_2022_135929 crossref_primary_10_1021_acs_chemrestox_0c00240 crossref_primary_10_1093_toxsci_kfaa054 crossref_primary_10_1093_toxsci_kfad012 crossref_primary_10_1016_j_yrtph_2020_104764 crossref_primary_10_1080_10807039_2025_2451143 crossref_primary_10_1016_j_taap_2019_114706 crossref_primary_10_1021_acs_est_2c04665 crossref_primary_10_1016_j_crtox_2024_100156 crossref_primary_10_1021_acs_chemrestox_1c00203 |
Cites_doi | 10.1126/science.1154619 10.1016/j.chembiol.2014.03.013 10.1111/j.1539-6924.2008.01168.x 10.1214/aos/1176349025 10.1089/adt.2010.0302 10.1021/tx400117y 10.1093/toxsci/kft178 10.1093/toxsci/kfr220 10.1177/1087057115581317 10.1214/aos/1176350142 10.1016/j.drudis.2010.07.007 10.1093/toxsci/kft012 10.1289/ehp.1409029 10.1016/j.drudis.2013.05.015 10.1016/j.reprotox.2011.01.007 10.1021/acs.est.5b02641 10.1093/toxsci/kfs159 10.1021/tx900325g 10.1016/j.envint.2015.12.008 10.1214/aos/1176351062 10.32614/CRAN.package.tcpl 10.1177/1087057109345525 10.1093/toxsci/kfu169 10.1002/etc.34 10.1038/srep05664 10.1016/j.yrtph.2016.05.008 10.1289/ehp.1002180 10.1289/ehp.1103412 10.1021/tx500501h 10.1289/ehp.1104688 10.1289/ehp.1205784 10.1021/tx400021f 10.1093/toxsci/kfs285 10.1093/toxsci/kfl103 10.1289/ehp.0901392 10.1289/ehp.1002952 10.1038/nchembio790 10.1007/978-1-4899-4541-9 10.1016/j.reprotox.2014.05.014 10.1080/00401706.2012.749166 10.1214/aos/1176344552 10.1016/j.drudis.2014.10.005 10.1093/biomet/ass051 10.1093/toxsci/kfr254 10.1016/j.tox.2010.12.010 10.1093/bioinformatics/bts686 10.1093/toxsci/kfw034 10.1002/bdrc.20214 10.1093/toxsci/kfq220 10.1371/journal.pcbi.1002996 10.1021/tx3000939 10.1016/j.reprotox.2011.10.018 10.1371/journal.pone.0018540 10.1371/journal.pone.0014584 10.1093/toxsci/kfv168 10.1289/ehp.1510352 10.1016/j.jeconom.2008.08.003 10.1002/jat.2949 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 Public Library of Science This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2018 Public Library of Science – notice: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States) |
CorporateAuthor_xml | – name: Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States) |
DBID | AAYXX CITATION NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1371/journal.pone.0196963 |
DatabaseName | CrossRef PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Uncertainty quantification in ToxCast high throughput screening |
EISSN | 1932-6203 |
ExternalDocumentID | 2082088421 oai_doaj_org_article_c9e466ef712141b4b12a6b168b23ef71 PMC6059398 1904953 A547708750 30044784 10_1371_journal_pone_0196963 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GeographicLocations | United States North Carolina New York United States--US |
GeographicLocations_xml | – name: United States – name: New York – name: North Carolina – name: United States--US |
GrantInformation_xml | – fundername: ; |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM IPNFZ NPM PJZUB PPXIY PQGLB RIG BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 AAPBV ABPTK N95 OIOZB OTOTI 5PM PUEGO ESTFP |
ID | FETCH-LOGICAL-c719t-7e8a454581cd2427bdfd0d206ceda5aab82b2017f1fd10b45e9b2f6afbf327ab3 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun Nov 05 00:20:38 EDT 2023 Wed Aug 27 01:19:43 EDT 2025 Thu Aug 21 18:09:11 EDT 2025 Mon Jul 17 03:58:35 EDT 2023 Fri Jul 11 09:52:44 EDT 2025 Fri Jul 25 11:22:41 EDT 2025 Tue Jun 17 20:53:20 EDT 2025 Tue Jun 10 20:19:40 EDT 2025 Fri Jun 27 04:43:55 EDT 2025 Fri Jun 27 05:00:28 EDT 2025 Thu May 22 21:21:29 EDT 2025 Mon Jul 21 06:18:10 EDT 2025 Thu Apr 24 23:03:20 EDT 2025 Tue Jul 01 03:30:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Creative Commons CC0 public domain |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c719t-7e8a454581cd2427bdfd0d206ceda5aab82b2017f1fd10b45e9b2f6afbf327ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 SC0014664 USDOE Office of Science (SC) US Environmental Protection Agency Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0002-2348-9633 0000-0002-1211-0229 0000000223489633 0000000212110229 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0196963 |
PMID | 30044784 |
PQID | 2082088421 |
PQPubID | 1436336 |
PageCount | e0196963 |
ParticipantIDs | plos_journals_2082088421 doaj_primary_oai_doaj_org_article_c9e466ef712141b4b12a6b168b23ef71 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6059398 osti_scitechconnect_1904953 proquest_miscellaneous_2076904303 proquest_journals_2082088421 gale_infotracmisc_A547708750 gale_infotracacademiconefile_A547708750 gale_incontextgauss_ISR_A547708750 gale_incontextgauss_IOV_A547708750 gale_healthsolutions_A547708750 pubmed_primary_30044784 crossref_citationtrail_10_1371_journal_pone_0196963 crossref_primary_10_1371_journal_pone_0196963 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-25 |
PublicationDateYYYYMMDD | 2018-07-25 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2018 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | JE Rager (ref57) 2016; 88 JF Wambaugh (ref46) 2013; 47 R Davidson (ref66) 2008; 146 AS Janesick (ref53) 2016; 124 C Lim (ref54) 2013; 55 CFJ Wu (ref63) 1986; 14 TL Tal (ref19) 2014; 48 MS Attene-Ramos (ref23) 2013; 18 S Auerbach (ref45) 2016 M Barrier (ref17) 2011; 31 B Efron (ref59) 1979; 7 RS Judson (ref37) 2015; 148 GT Ankley (ref41) 2010; 29 R Huang (ref22) 2014; 4 RY Liu (ref64) 1988; 16 DM Reif (ref43) 2010; 118 DM Reif (ref44) 2013; 29 I Shah (ref31) 2011; 6 ME Meek (ref42) 2014; 34 RS Judson (ref4) 2010; 118 FS Collins (ref6) 2008; 319 R Kavlock (ref7) 2012; 25 (ref71) 2015 J-H Hsieh (ref27) 2015; 20 NC Kleinstreuer (ref33) 2013; 131 H Akaike (ref70) 1998 RS Thomas (ref50) 2013; 136 KJ Chandler (ref18) 2011; 6 DM Rotroff (ref15) 2013; 26 S Padilla (ref21) 2012; 33 (ref2) 2007 R Huang (ref24) 2011; 119 E Mammen (ref65) 1993; 21 Kenneth L. Lange (ref69) 2012; 84 KR Shockley (ref56) 2015; 20 MT Martin (ref14) 2010; 23 NS Sipes (ref20) 2011; 93 ref1 PM McDonough (ref16) 2011; 9 NC Kleinstreuer (ref35) 2011; 119 F Stossi (ref12) 2014; 21 B Efron (ref60) 1993 I Shah (ref28) 2015; 124 NS Sipes (ref34) 2011; 124 ref73 ref72 DJ Dix (ref3) 2007; 95 P Browne (ref38) 2015; 49 H Jiang (ref61) 2012; 99 ref68 KA Houck (ref29) 2009; 14 K Paul Friedman (ref30) 2016; 151 I Shah (ref40) 2016; 79 MS Attene-Ramos (ref26) 2014 RR Tice (ref8) 2013; 121 N Kleinstreuer (ref36) 2013; 9 KR Shockley (ref58) 2012; 120 ML MacDonald (ref13) 2006; 2 SJ Shukla (ref25) 2010; 15 DL Filer (ref67) 2016 A Beam (ref55) 2014; 5 RJ Kavlock (ref5) 2009; 29 BA Wetmore (ref49) 2014; 142 J Liu (ref32) 2015; 28 TB Knudsen (ref10) 2011; 282 NS Sipes (ref11) 2013; 26 AM Richard (ref9) 2016 K Mansouri (ref39) 2016 RS Thomas (ref52) 2012; 128 ref62 DM Rotroff (ref51) 2010; 117 BA Wetmore (ref48) 2013; 132 BA Wetmore (ref47) 2012; 125 |
References_xml | – ident: ref62 – ident: ref1 – volume: 319 start-page: 906 year: 2008 ident: ref6 article-title: Transforming Environmental Health Protection publication-title: Science doi: 10.1126/science.1154619 – volume: 21 start-page: 743 year: 2014 ident: ref12 article-title: Defining Estrogenic Mechanisms of Bisphenol A Analogs through High Throughput Microscopy-Based Contextual Assays publication-title: Chemistry & Biology doi: 10.1016/j.chembiol.2014.03.013 – volume: 29 start-page: 485 year: 2009 ident: ref5 article-title: Toxicity Testing in the 21st Century: Implications for Human Health Risk Assessment publication-title: Risk Analysis doi: 10.1111/j.1539-6924.2008.01168.x – volume: 21 start-page: 255 year: 1993 ident: ref65 article-title: Bootstrap and Wild Bootstrap for High Dimensional Linear Models publication-title: Ann Statist doi: 10.1214/aos/1176349025 – volume: 9 start-page: 262 year: 2011 ident: ref16 article-title: Quantification of hormone sensitive lipase phosphorylation and colocalization with lipid droplets in murine 3T3L1 and human subcutaneous adipocytes via automated digital microscopy and high-content analysis publication-title: Assay Drug Dev Technol doi: 10.1089/adt.2010.0302 – volume: 26 start-page: 1097 year: 2013 ident: ref15 article-title: Real-Time Growth Kinetics Measuring Hormone Mimicry for ToxCast Chemicals in T-47D Human Ductal Carcinoma Cells publication-title: Chem Res Toxicol doi: 10.1021/tx400117y – volume: 136 start-page: 4 year: 2013 ident: ref50 article-title: Incorporating New Technologies Into Toxicity Testing and Risk Assessment: Moving From 21st Century Vision to a Data-Driven Framework publication-title: Toxicol Sci doi: 10.1093/toxsci/kft178 – volume: 124 start-page: 109 year: 2011 ident: ref34 article-title: Predictive Models of Prenatal Developmental Toxicity from ToxCast High-Throughput Screening Data publication-title: Toxicol Sci doi: 10.1093/toxsci/kfr220 – ident: ref72 – volume: 20 start-page: 887 year: 2015 ident: ref27 article-title: A Data Analysis Pipeline Accounting for Artifacts in Tox21 Quantitative High-Throughput Screening Assays publication-title: J Biomol Screen doi: 10.1177/1087057115581317 – volume: 14 start-page: 1261 year: 1986 ident: ref63 article-title: Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis publication-title: Ann Statist doi: 10.1214/aos/1176350142 – volume: 15 start-page: 997 year: 2010 ident: ref25 article-title: The future of toxicity testing: A focus on in vitro methods using a quantitative high-throughput screening platform publication-title: Drug Discovery Today doi: 10.1016/j.drudis.2010.07.007 – volume: 132 start-page: 327 year: 2013 ident: ref48 article-title: Relative impact of incorporating pharmacokinetics on predicting in vivo hazard and mode of action from high-throughput in vitro toxicity assays publication-title: Toxicol Sci doi: 10.1093/toxsci/kft012 – volume: 124 year: 2015 ident: ref28 article-title: Using ToxCast™ Data to Reconstruct Dynamic Cell State Trajectories and Estimate Toxicological Points of Departure publication-title: Environmental Health Perspectives doi: 10.1289/ehp.1409029 – volume: 18 start-page: 716 year: 2013 ident: ref23 article-title: The Tox21 robotic platform for the assessment of environmental chemicals—from vision to reality publication-title: Drug Discovery Today doi: 10.1016/j.drudis.2013.05.015 – volume: 31 start-page: 383 year: 2011 ident: ref17 article-title: Mouse embryonic stem cell adherent cell differentiation and cytotoxicity (ACDC) assay publication-title: Reproductive Toxicology doi: 10.1016/j.reprotox.2011.01.007 – volume: 49 start-page: 8804 year: 2015 ident: ref38 article-title: Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model publication-title: Environ Sci Technol doi: 10.1021/acs.est.5b02641 – volume: 128 start-page: 398 year: 2012 ident: ref52 article-title: A Comprehensive Statistical Analysis of Predicting In Vivo Hazard Using High-Throughput In Vitro Screening publication-title: Toxicol Sci doi: 10.1093/toxsci/kfs159 – volume: 23 start-page: 578 year: 2010 ident: ref14 article-title: Impact of Environmental Chemicals on Key Transcription Regulators and Correlation to Toxicity End Points within EPA’s ToxCast Program publication-title: Chem Res Toxicol doi: 10.1021/tx900325g – volume: 88 start-page: 269 year: 2016 ident: ref57 article-title: Linking high resolution mass spectrometry data with exposure and toxicity forecasts to advance high-throughput environmental monitoring publication-title: Environment International doi: 10.1016/j.envint.2015.12.008 – volume: 16 start-page: 1696 year: 1988 ident: ref64 article-title: Bootstrap Procedures under some Non-I.I.D. Models publication-title: Ann Statist doi: 10.1214/aos/1176351062 – ident: ref68 doi: 10.32614/CRAN.package.tcpl – volume: 14 start-page: 1054 year: 2009 ident: ref29 article-title: Profiling Bioactivity of the ToxCast Chemical Library Using BioMAP Primary Human Cell Systems publication-title: J Biomol Screen doi: 10.1177/1087057109345525 – volume: 142 start-page: 210 year: 2014 ident: ref49 article-title: Incorporating population variability and susceptible subpopulations into dosimetry for high-throughput toxicity testing publication-title: Toxicol Sci doi: 10.1093/toxsci/kfu169 – year: 2016 ident: ref67 article-title: Tcpl: The ToxCast Pipeline for High-Throughput Screening Data publication-title: Submitted to Bioinformatics – volume: 29 start-page: 730 year: 2010 ident: ref41 article-title: Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment publication-title: Environmental Toxicology and Chemistry doi: 10.1002/etc.34 – volume: 47 start-page: 8479 year: 2013 ident: ref46 article-title: High-Throughput Models for Exposure-Based Chemical Prioritization in the ExpoCast Project publication-title: Environ Sci Technol – volume: 4 start-page: 5664 year: 2014 ident: ref22 article-title: Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway publication-title: Sci Rep doi: 10.1038/srep05664 – volume: 79 start-page: 12 year: 2016 ident: ref40 article-title: Systematically evaluating read-across prediction and performance using a local validity approach characterized by chemical structure and bioactivity information publication-title: Regul Toxicol Pharmacol doi: 10.1016/j.yrtph.2016.05.008 – volume: 118 start-page: 1714 year: 2010 ident: ref43 article-title: Endocrine Profiling and Prioritization of Environmental Chemicals Using ToxCast Data publication-title: Environmental Health Perspectives doi: 10.1289/ehp.1002180 – volume: 119 start-page: 1596 year: 2011 ident: ref35 article-title: Environmental Impact on Vascular Development Predicted by High-Throughput Screening publication-title: Environmental Health Perspectives doi: 10.1289/ehp.1103412 – start-page: 199 year: 1998 ident: ref70 article-title: Selected Papers of Hirotugu Akaike – volume: 28 start-page: 738 year: 2015 ident: ref32 article-title: Predicting Hepatotoxicity Using ToxCast in Vitro Bioactivity and Chemical Structure publication-title: Chemical Research in Toxicology doi: 10.1021/tx500501h – volume: 120 start-page: 1107 year: 2012 ident: ref58 article-title: A three-stage algorithm to make toxicologically relevant activity calls from quantitative high throughput screening data publication-title: Environ Health Perspect doi: 10.1289/ehp.1104688 – year: 2015 ident: ref71 article-title: R: A language and environment for statistical computing [Internet] – volume: 121 start-page: 756 year: 2013 ident: ref8 article-title: Improving the Human Hazard Characterization of Chemicals: A Tox21 Update publication-title: Environmental Health Perspectives doi: 10.1289/ehp.1205784 – volume: 26 start-page: 878 year: 2013 ident: ref11 article-title: Profiling 976 ToxCast Chemicals across 331 Enzymatic and Receptor Signaling Assays publication-title: Chem Res Toxicol doi: 10.1021/tx400021f – volume: 131 start-page: 40 year: 2013 ident: ref33 article-title: In Vitro Perturbations of Targets in Cancer Hallmark Processes Predict Rodent Chemical Carcinogenesis publication-title: Toxicological Sciences doi: 10.1093/toxsci/kfs285 – volume: 95 start-page: 5 year: 2007 ident: ref3 article-title: The ToxCast Program for Prioritizing Toxicity Testing of Environmental Chemicals publication-title: Toxicol Sci doi: 10.1093/toxsci/kfl103 – volume: 118 start-page: 485 year: 2010 ident: ref4 article-title: In Vitro Screening of Environmental Chemicals for Targeted Testing Prioritization: The ToxCast Project publication-title: Environmental Health Perspectives doi: 10.1289/ehp.0901392 – volume: 119 start-page: 1142 year: 2011 ident: ref24 article-title: Chemical Genomics Profiling of Environmental Chemical Modulation of Human Nuclear Receptors publication-title: Environmental Health Perspectives doi: 10.1289/ehp.1002952 – year: 2016 ident: ref9 article-title: ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology publication-title: Chemical Research in Toxicology – volume: 2 start-page: 329 year: 2006 ident: ref13 article-title: Identifying off-target effects and hidden phenotypes of drugs in human cells publication-title: Nat Chem Biol doi: 10.1038/nchembio790 – year: 1993 ident: ref60 article-title: An introduction to the bootstrap doi: 10.1007/978-1-4899-4541-9 – volume: 48 start-page: 51 year: 2014 ident: ref19 article-title: Immediate and long-term consequences of vascular toxicity during zebrafish development publication-title: Reproductive Toxicology doi: 10.1016/j.reprotox.2014.05.014 – volume: 55 start-page: 150 year: 2013 ident: ref54 article-title: Robust Analysis of High Throughput Screening (HTS) Assay Data publication-title: Technometrics doi: 10.1080/00401706.2012.749166 – volume: 7 start-page: 1 year: 1979 ident: ref59 article-title: Bootstrap Methods: Another Look at the Jackknife publication-title: Ann Statist doi: 10.1214/aos/1176344552 – year: 2007 ident: ref2 article-title: Toxicity Testing in the 21st Century: A Vision and a Strategy [Internet] – volume: 20 start-page: 296 year: 2015 ident: ref56 article-title: Quantitative high-throughput screening data analysis: Challenges and recent advances publication-title: Drug Discovery Today doi: 10.1016/j.drudis.2014.10.005 – volume: 99 start-page: 973 year: 2012 ident: ref61 article-title: Statistical properties of an early stopping rule for resampling-based multiple testing publication-title: Biometrika doi: 10.1093/biomet/ass051 – year: 2016 ident: ref45 article-title: Prioritizing Environmental Chemicals for Obesity and Diabetes Outcomes Research: A Screening Approach Using ToxCast High Throughput Data publication-title: Environmental Health Perspectives – year: 2014 ident: ref26 article-title: Profiling of the Tox21 Chemical Collection for Mitochondrial Function to Identify Compounds that Acutely Decrease Mitochondrial Membrane Potential publication-title: Environmental Health Perspectives – volume: 125 start-page: 157 year: 2012 ident: ref47 article-title: Integration of dosimetry, exposure, and high-throughput screening data in chemical toxicity assessment publication-title: Toxicol Sci doi: 10.1093/toxsci/kfr254 – volume: 282 start-page: 1 year: 2011 ident: ref10 article-title: Activity profiles of 309 ToxCast™ chemicals evaluated across 292 biochemical targets publication-title: Toxicology doi: 10.1016/j.tox.2010.12.010 – volume: 29 start-page: 402 year: 2013 ident: ref44 article-title: ToxPi GUI: An interactive visualization tool for transparent integration of data from diverse sources of evidence publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts686 – volume: 151 start-page: 160 year: 2016 ident: ref30 article-title: Tiered High-Throughput Screening Approach to Identify Thyroperoxidase Inhibitors Within the ToxCast Phase I and II Chemical Libraries publication-title: Toxicological Sciences doi: 10.1093/toxsci/kfw034 – volume: 93 start-page: 256 year: 2011 ident: ref20 article-title: Zebrafish: As an integrative model for twenty-first century toxicity testing publication-title: Birth Defects Res C Embryo Today doi: 10.1002/bdrc.20214 – volume: 117 start-page: 348 year: 2010 ident: ref51 article-title: Incorporating Human Dosimetry and Exposure into High-Throughput In Vitro Toxicity Screening publication-title: Toxicol Sci doi: 10.1093/toxsci/kfq220 – volume: 5 start-page: 1000121 year: 2014 ident: ref55 article-title: Beyond IC50s: Towards Robust Statistical Methods for in vitro Association Studies publication-title: J Pharmacogenomics Pharmacoproteomics – volume: 9 start-page: e1002996 year: 2013 ident: ref36 article-title: A Computational Model Predicting Disruption of Blood Vessel Development publication-title: PLOS Comput Biol doi: 10.1371/journal.pcbi.1002996 – ident: ref73 – volume: 25 start-page: 1287 year: 2012 ident: ref7 article-title: Update on EPA’s ToxCast Program: Providing High Throughput Decision Support Tools for Chemical Risk Management publication-title: Chem Res Toxicol doi: 10.1021/tx3000939 – volume: 33 start-page: 174 year: 2012 ident: ref21 article-title: Zebrafish developmental screening of the ToxCast™ Phase I chemical library publication-title: Reproductive Toxicology doi: 10.1016/j.reprotox.2011.10.018 – volume: 6 start-page: e18540 year: 2011 ident: ref18 article-title: Evaluation of 309 Environmental Chemicals Using a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity Assay publication-title: PLOS ONE doi: 10.1371/journal.pone.0018540 – year: 2016 ident: ref39 article-title: CERAPP: Collaborative Estrogen Receptor Activity Prediction Project publication-title: Environmental Health Perspectives – volume: 84 start-page: 408 year: 2012 ident: ref69 article-title: Robust Statistical Modeling Using the t Distribution publication-title: Journal of the American Statistical Association – volume: 6 start-page: e14584 year: 2011 ident: ref31 article-title: Using Nuclear Receptor Activity to Stratify Hepatocarcinogens publication-title: PLOS ONE doi: 10.1371/journal.pone.0014584 – volume: 148 start-page: 137 year: 2015 ident: ref37 article-title: Integrated Model of Chemical Perturbations of a Biological Pathway Using 18 In Vitro High-Throughput Screening Assays for the Estrogen Receptor publication-title: Toxicol Sci doi: 10.1093/toxsci/kfv168 – volume: 124 year: 2016 ident: ref53 article-title: On the Utility of ToxCast™ and ToxPi as Methods for Identifying New Obesogens publication-title: Environmental Health Perspectives doi: 10.1289/ehp.1510352 – volume: 146 start-page: 162 year: 2008 ident: ref66 article-title: The wild bootstrap, tamed at last publication-title: Journal of Econometrics doi: 10.1016/j.jeconom.2008.08.003 – volume: 34 start-page: 1 year: 2014 ident: ref42 article-title: New developments in the evolution and application of the WHO/IPCS framework on mode of action/species concordance analysis publication-title: J Appl Toxicol doi: 10.1002/jat.2949 |
SSID | ssj0053866 |
Score | 2.445089 |
Snippet | High throughput screening (HTS) projects like the U.S. Environmental Protection Agency's ToxCast program are required to address the large and rapidly... High throughput screening (HTS) projects like the U.S. Environmental Protection Agency’s ToxCast program are required to address the large and rapidly... |
SourceID | plos doaj pubmedcentral osti proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0196963 |
SubjectTerms | Analysis BASIC BIOLOGICAL SCIENCES Biocompatibility Biological activity Biology and Life Sciences Chemicals colorimetric assays Computation Computer applications curve fitting Data analysis Dosimetry Environmental protection Environmental toxicology estrogen Estrogens High-throughput screening Inspection Internet kidneys Laws, regulations and rules Medical screening Medicine and Health Sciences Normal distribution Organic chemistry Parameter estimation Physical Sciences predictive toxicology Regression analysis Resampling Research and Analysis Methods Risk assessment Statistical methods Stem cells Toxicity Toxicology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA9yn3wR59fqrlpFUB-6NWmajyeZwzEFFXRX9haSNtHBaK-2F_S_95w2t6wymA--JqctOd9pTn6HkOeU11SXlmdesjKDjNhmTmuX6YDo4LqwxXCR9sNHcbLi78_Ks0utvrAmbIQHHhl3UGnPhfBBUkY5ddxRZoWjQjlW4Ch6X4h5283U6IPBioWIF-UKSQ-iXPbXbeP3R0SYYhaIBrz-ySsvWjAvRDu9aLurMs-_CygvRaTj2-RWTCXTw3EJO-SGb-6QnWisXfoyIkq_ukter2BkOPrvf6c_NnYsEBpkkp436Wn768h2fYrQxWls3LPe9Cl4FNjlQmy7R1bHb0-PTrLYOSGrJNV9Jr2yHI_EaFVDDJauDnVes1xUvraltU4xB5FfBhpqmjteeu1YEDa4UDBpXXGfLBrg1S5JgyxpyK0P1iteMqch4su6ohDklKjzkJBiy0ZTRVhx7G5xYYazMgnbi5EdBplvIvMTkk1PrUdYjWvo36CEJloExR4GQFVMVBVznaok5AnK14w3TCfTNocllxKR_fOEPBsoEBijwcqbb3bTdebdp6__QPTl84zoRSQKLbCjsvG2A6wJAbdmlMsZJZh3NZveQ200kBAhqm-F5U9VbyCPw8rghOyikm551hmGKZ1SnMFql1vFvXr66TSNn8Rau8a3G6SRQiMUHLz9wajnE98Rn41LxRMiZxYwE8x8pjn_PqCWC2weqdXD_yHJPXIT1FfhP3ZWLsmi_7nxjyA57N3jwQ_8AbNDYcE priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFdDCwSEBBxSYsex41NVKqqCBEjQRXuz7MQulapk2yQS_HtmEm8gqAKu9sRJ5uEZ2-NvCHlOeUVVbnjiJMsTiIhNYpWyifKIDq4ykw0XaT98FMdL_n6Vr8KGWxvSKjdz4jBRV02Je-SwSAdfVRSc0f31RYJVo_B0NZTQuE5uIHQZpnTJ1bTgAlsWIlyXyyR9HaSzt25qtzfiwmQzdzSg9k9z86IBI0PM0_OmvSr-_DON8je_dHSb3AoBZXwwasAWuebqO2QrmGwbvwy40q_ukv0ltAwJAN2P-KI3Y5rQIJn4rI5Pmu-Hpu1iBDCOQ_medd_FMK_AWhc83D2yPHp7cnichPoJSSmp6hLpCsPxYIyWFXhiaStfpRVLRekqkxtjC2bB_0tPfUVTy3OnLPPCeOszJo3N7pNFDbzaJrGXOfWpcd64gufMKvD7siopuLpCVKmPSLZhoy4DuDjWuDjXw4mZhEXGyA6NzNeB-RFJpqfWI7jGP-jfoIQmWoTGHhqay1MdLE2XynEhnJeUUU4tt5QZYakoLMuwNSJPUL56vGc6Gbg-yLmUiO-fRuTZQIHwGDXm35yavm31u09f_4Poy-cZ0YtA5BtgR2nCnQf4J4TdmlHuzijByMtZ9w5qo4awCLF9S0yCKjsN0RzmB0dkG5V0w7NW_zIWGHejuFd3P5268ZWYcVe7pkcaKRQCwsHoD0Y9n_iOKG1cFjwicmYBM8HMe-qzbwN2ucASkqp4-PfP2iE3QTEL3ENn-S5ZdJe9ewTBX2cfDxb-E8KaWZA priority: 102 providerName: ProQuest |
Title | Uncertainty quantification in ToxCast high throughput screening |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30044784 https://www.proquest.com/docview/2082088421 https://www.proquest.com/docview/2076904303 https://www.osti.gov/servlets/purl/1904953 https://pubmed.ncbi.nlm.nih.gov/PMC6059398 https://doaj.org/article/c9e466ef712141b4b12a6b168b23ef71 http://dx.doi.org/10.1371/journal.pone.0196963 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db5swELfa9GUv07qvsmYZmyZte6DCxmB4mKo2atZNajd1zZQ3ywbcVoogDURq__vdgYPGlH288IAPkM93vp_x-XeEvKU8o0mouJcLFnqAiJWnk0R7iUF28CRQQXOQ9uw8Op3yL7NwtkXWNVutAquNSzusJzVdzg_ubu8PweE_NlUbBF0_dLAoi_yg5XsJtskOxCaBrnrGu30F8O5m9xJRixcxP7CH6f70ll6wajj9u5l7UIILIiPqvKw2odPfkyx_iVqTR-ShhZvuUWsfu2QrLx6TXevQlfvesk5_eEIOp3CnSQ-o793blWqTiJpxc28K97K8G6uqdpHe2LXFfRar2oVZB1bCEP-ekunk5HJ86tnqCl4qaFJ7Io8Vx20zmmYQp4XOTOZnzI_SPFOhUjpmGtCBMNRk1Nc8zBPNTKSMNgETSgfPyKAAXe0R14iQGl_lRuUxD5lOABWILKUQCOMo841DgrUaZWqpx7ECxlw2-2kCliCtOiQqX1rlO8Trnlq01Bv_kD_GEepkkTi7uVEur6T1Q5kmOY-i3AjKKKeaa8pUpGkUaxbgXYe8wvGV7SnUzv3lUciFQPZ_3yFvGgkkzygwO-dKrapKfv764z-Evl_0hN5ZIVOCOlJlT0RAn5CUqyc57EnCFJD2mvfRGiWAJmT-TTFFKq0lYD3MHnbIHhrpWmeVZAj74pgz6O1wbbibm193zfhJzMcr8nKFMiJKkC4O3v68tfNO78jhxkXMHSJ6HtAbmH5LcXPdMJtHWGAyiV_8tT_75AHYZYw_2Fk4JIN6ucpfAjKs9Yhsi5mAazymeJ18GpGd45Pzbxej5l_LqJkMfgJBOmZ1 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALorwaWmhAIOCQEjtOnBxQVQrVLn0gQbfam7ETu1Sqkm2TFfRP8RuZyQuCKuDSqz3rZMfzjMffEPKM8owmoeKeESz0ICJWnk4S7SUW0cGTQAX1Rdr9g2g85R9m4WyJ_OjuwmBZZWcTa0OdFSl-I4ckHXxVHHNGN-dnHnaNwtPVroVGIxa75uIbpGzlm8k72N_njO28P9wee21XAS8VNKk8YWLF8biIphn4J6Ezm_kZ86PUZCpUSsdMg1cUltqM-pqHJtHMRspqGzChdADrXiPXwfH6qFFi1id4YDuiqL2eFwj6upWGjXmRm40GhyYYuL-6S0DvC0YFKDVirJ4W5WXx7p9lm7_5wZ3b5FYbwLpbjcQtkyWT3yHLrYko3ZctjvWru2RzCiN1wUF14Z4tVFOWVEuCe5K7h8X3bVVWLgImu227oPmicsGOQW4NHvUemV4JZ--TUQ68WiGuFSG1vjJWmZiHTCcQZ4gspeBa4yjzrUOCjo0ybcHMsafGqaxP6AQkNQ07JDJftsx3iNf_at6AefyD_i3uUE-LUNz1QHF-LFvNlmlieBQZKyijnGquKVORplGsWYCjDlnH_ZXNvdbeoMitkAuB_QR8hzytKRCOI8d6n2O1KEs5-Xj0H0SfPw2IXrREtgB2pKq9YwH_CWG-BpRrA0owKulgehWlUUIYhljCKRZdpZWE6BHrkR2ygkLa8ayUv5QT1u0E9_LpJ_00PhIr_HJTLJBGRAkC0MHqDxo57_mOqHBcxNwhYqABg40ZzuQnX2us9AhbVibxw7-_1jq5MT7c35N7k4PdVXIThDTG7_csXCOj6nxhHkHgWenHtba75MtVm5efgxeYPQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIiEuiPJqaKEBgYBD2rXjxMkBVaVl1aVQEHTR3oyd2KVSlWybrKB_jV_HTOINBFXApVd71smO5xmPvyHkCeU5TSPFAyNYFEBErAKdpjpILaKDp6EKm4u07w7ivQl_M42mS-TH4i4MllUubGJjqPMyw2_kkKSDr0oSzuimdWURH3ZHW7PTADtI4Unrop1GKyL75vwbpG_Vy_Eu7PVTxkavD3f2AtdhIMgETetAmERxPDqiWQ6-Sujc5sOcDePM5CpSSidMg4cUltqcDjWPTKqZjZXVNmRC6RDWvUKuijCiqGNi2iV7YEfi2F3VCwXddJKxMSsLs9Fi0oQ9V9h0DOj8wqAEBUe81ZOyuij2_bOE8zefOLpJbrhg1t9upW-ZLJniFll25qLynztM6xe3ydYERprig_rcP52rtkSpkQr_uPAPy-87qqp9BE_2Xeug2bz2waZBng3e9Q6ZXApn75JBAbxaIb4VEbVDZawyCY-YTiHmEHlGwc0mcT60HgkXbJSZAzbH_honsjmtE5DgtOyQyHzpmO-RoPvVrAX2-Af9K9yhjhZhuZuB8uxIOi2XWWp4HBsrKKOcaq4pU7GmcaJZiKMeWcf9le0d1864yO2IC4G9BYYeedxQIDRHgUJ-pOZVJcfvP_8H0aePPaJnjsiWwI5MufsW8J8Q8qtHudajBAOT9aZXURolhGSIK5xhAVZWS4gksTbZIysopAueVfKXosK6C8G9ePpRN42PxGq_wpRzpBFximB0sPq9Vs47viNCHBcJ94joaUBvY_ozxfHXBjc9xvaVaXL_76-1Tq6BYZFvxwf7q-Q6yGiCn_JZtEYG9dncPIAYtNYPG2X3yZfLti4_AYzenHM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+quantification+in+ToxCast+high+throughput+screening&rft.jtitle=PloS+one&rft.au=Watt%2C+Eric+D.&rft.au=Judson%2C+Richard+S.&rft.date=2018-07-25&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=13&rft.issue=7&rft_id=info:doi/10.1371%2Fjournal.pone.0196963&rft.externalDocID=1904953 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |