Uncertainty quantification in ToxCast high throughput screening

High throughput screening (HTS) projects like the U.S. Environmental Protection Agency's ToxCast program are required to address the large and rapidly increasing number of chemicals for which we have little to no toxicity measurements. Concentration-response parameters such as potency and effic...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 13; no. 7; p. e0196963
Main Authors Watt, Eric D., Judson, Richard S.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 25.07.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High throughput screening (HTS) projects like the U.S. Environmental Protection Agency's ToxCast program are required to address the large and rapidly increasing number of chemicals for which we have little to no toxicity measurements. Concentration-response parameters such as potency and efficacy are extracted from HTS data using nonlinear regression, and models and analyses built from these parameters are used to predict in vivo and in vitro toxicity of thousands of chemicals. How these predictions are impacted by uncertainties that stem from parameter estimation and propagated through the models and analyses has not been well explored. While data size and complexity makes uncertainty quantification computationally expensive for HTS datasets, continued advancements in computational resources have allowed these computational challenges to be met. This study uses nonparametric bootstrap resampling to calculate uncertainties in concentration-response parameters from a variety of HTS assays. Using the ToxCast estrogen receptor model for bioactivity as a case study, we highlight how these uncertainties can be propagated through models to quantify the uncertainty in model outputs. Uncertainty quantification in model outputs is used to identify potential false positives and false negatives and to determine the distribution of model values around semi-arbitrary activity cutoffs, increasing confidence in model predictions. At the individual chemical-assay level, curves with high variability are flagged for manual inspection or retesting, focusing subject-matter-expert time on results that need further input. This work improves the confidence of predictions made using HTS data, increasing the ability to use this data in risk assessment.
AbstractList High throughput screening (HTS) projects like the U.S. Environmental Protection Agency's ToxCast program are required to address the large and rapidly increasing number of chemicals for which we have little to no toxicity measurements. Concentration-response parameters such as potency and efficacy are extracted from HTS data using nonlinear regression, and models and analyses built from these parameters are used to predict in vivo and in vitro toxicity of thousands of chemicals. How these predictions are impacted by uncertainties that stem from parameter estimation and propagated through the models and analyses has not been well explored. While data size and complexity makes uncertainty quantification computationally expensive for HTS datasets, continued advancements in computational resources have allowed these computational challenges to be met. This study uses nonparametric bootstrap resampling to calculate uncertainties in concentration-response parameters from a variety of HTS assays. Using the ToxCast estrogen receptor model for bioactivity as a case study, we highlight how these uncertainties can be propagated through models to quantify the uncertainty in model outputs. Uncertainty quantification in model outputs is used to identify potential false positives and false negatives and to determine the distribution of model values around semi-arbitrary activity cutoffs, increasing confidence in model predictions. At the individual chemical-assay level, curves with high variability are flagged for manual inspection or retesting, focusing subject-matter-expert time on results that need further input. This work improves the confidence of predictions made using HTS data, increasing the ability to use this data in risk assessment.
High throughput screening (HTS) projects like the U.S. Environmental Protection Agency's ToxCast program are required to address the large and rapidly increasing number of chemicals for which we have little to no toxicity measurements. Concentration-response parameters such as potency and efficacy are extracted from HTS data using nonlinear regression, and models and analyses built from these parameters are used to predict in vivo and in vitro toxicity of thousands of chemicals. How these predictions are impacted by uncertainties that stem from parameter estimation and propagated through the models and analyses has not been well explored. While data size and complexity makes uncertainty quantification computationally expensive for HTS datasets, continued advancements in computational resources have allowed these computational challenges to be met. This study uses nonparametric bootstrap resampling to calculate uncertainties in concentration-response parameters from a variety of HTS assays. Using the ToxCast estrogen receptor model for bioactivity as a case study, we highlight how these uncertainties can be propagated through models to quantify the uncertainty in model outputs. Uncertainty quantification in model outputs is used to identify potential false positives and false negatives and to determine the distribution of model values around semi-arbitrary activity cutoffs, increasing confidence in model predictions. At the individual chemical-assay level, curves with high variability are flagged for manual inspection or retesting, focusing subject-matter-expert time on results that need further input. This work improves the confidence of predictions made using HTS data, increasing the ability to use this data in risk assessment.
High throughput screening (HTS) projects like the U.S. Environmental Protection Agency's ToxCast program are required to address the large and rapidly increasing number of chemicals for which we have little to no toxicity measurements. Concentration-response parameters such as potency and efficacy are extracted from HTS data using nonlinear regression, and models and analyses built from these parameters are used to predict in vivo and in vitro toxicity of thousands of chemicals. How these predictions are impacted by uncertainties that stem from parameter estimation and propagated through the models and analyses has not been well explored. While data size and complexity makes uncertainty quantification computationally expensive for HTS datasets, continued advancements in computational resources have allowed these computational challenges to be met. This study uses nonparametric bootstrap resampling to calculate uncertainties in concentration-response parameters from a variety of HTS assays. Using the ToxCast estrogen receptor model for bioactivity as a case study, we highlight how these uncertainties can be propagated through models to quantify the uncertainty in model outputs. Uncertainty quantification in model outputs is used to identify potential false positives and false negatives and to determine the distribution of model values around semi-arbitrary activity cutoffs, increasing confidence in model predictions. At the individual chemical-assay level, curves with high variability are flagged for manual inspection or retesting, focusing subject-matter-expert time on results that need further input. This work improves the confidence of predictions made using HTS data, increasing the ability to use this data in risk assessment.High throughput screening (HTS) projects like the U.S. Environmental Protection Agency's ToxCast program are required to address the large and rapidly increasing number of chemicals for which we have little to no toxicity measurements. Concentration-response parameters such as potency and efficacy are extracted from HTS data using nonlinear regression, and models and analyses built from these parameters are used to predict in vivo and in vitro toxicity of thousands of chemicals. How these predictions are impacted by uncertainties that stem from parameter estimation and propagated through the models and analyses has not been well explored. While data size and complexity makes uncertainty quantification computationally expensive for HTS datasets, continued advancements in computational resources have allowed these computational challenges to be met. This study uses nonparametric bootstrap resampling to calculate uncertainties in concentration-response parameters from a variety of HTS assays. Using the ToxCast estrogen receptor model for bioactivity as a case study, we highlight how these uncertainties can be propagated through models to quantify the uncertainty in model outputs. Uncertainty quantification in model outputs is used to identify potential false positives and false negatives and to determine the distribution of model values around semi-arbitrary activity cutoffs, increasing confidence in model predictions. At the individual chemical-assay level, curves with high variability are flagged for manual inspection or retesting, focusing subject-matter-expert time on results that need further input. This work improves the confidence of predictions made using HTS data, increasing the ability to use this data in risk assessment.
Audience Academic
Author Judson, Richard S.
Watt, Eric D.
AuthorAffiliation University of Louisville School of Medicine, UNITED STATES
2 Oak Ridge Institute for Science Education Postdoctoral Fellow, Oak Ridge, Tennessee, United States of America
1 U.S. Environmental Protection Agency, National Center for Computational Toxicology, Research Triangle Park, North Carolina, United States of America
AuthorAffiliation_xml – name: University of Louisville School of Medicine, UNITED STATES
– name: 1 U.S. Environmental Protection Agency, National Center for Computational Toxicology, Research Triangle Park, North Carolina, United States of America
– name: 2 Oak Ridge Institute for Science Education Postdoctoral Fellow, Oak Ridge, Tennessee, United States of America
Author_xml – sequence: 1
  givenname: Eric D.
  orcidid: 0000-0002-1211-0229
  surname: Watt
  fullname: Watt, Eric D.
– sequence: 2
  givenname: Richard S.
  orcidid: 0000-0002-2348-9633
  surname: Judson
  fullname: Judson, Richard S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30044784$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1904953$$D View this record in Osti.gov
BookMark eNqNk9tq3DAQhk1JaQ7tG5TWpFDai93qZMnuRUtYelgIBNqkt0KSZVvBK20kuSRvXzm7W9YhlGKDxfj7f2lGM8fZgXVWZ9lLCOYQM_jh2g3ein6-TuE5gBWtKH6SHcEKoxlFAB_srQ-z4xCuAShwSemz7BADQAgryVH2-coq7aMwNt7lN4Ow0TRGiWiczY3NL93tQoSYd6bt8th5N7Tdeoh5UF5ra2z7PHvaiD7oF9vvSXb19cvl4vvs_OLbcnF2PlMMVnHGdClIQYoSqhoRxGTd1KBGgCpdi0IIWSKJAGQNbGoIJCl0JVFDRSMbjJiQ-CR7vfFd9y7wbe6BI1CmtyQIJmK5IWonrvnam5Xwd9wJw-8Dzrdc-GhUr7mqNKFUNwwiSKAkEiJBJaSlRHiMJq9P290GudK10jZ60U9Mp3-s6XjrfnMKigpXZTI43Ri4EA0PykStOuWs1SpyWAFSFThB77a7eHcz6BD5ygSl-15Y7YYxOUYTisGIvnmAPl6CLdWKlKWxjUuHU6MpPysIY6BkBUjU_BEqPbVemXRG3ZgUnwjeTwSJifo2tmIIgS9__vh_9uLXlH27x3Za9LELrh_G5gtT8NX-dfy9h10bJ-DjBlDeheB1w1PF75s4pWZ6DgEfZ2ZXND7ODN_OTBKTB-Kd_z9lfwChVho0
CitedBy_id crossref_primary_10_1021_acs_est_1c06821
crossref_primary_10_1021_acs_chemrestox_9b00227
crossref_primary_10_3390_ijms22136695
crossref_primary_10_1016_j_envint_2020_105581
crossref_primary_10_1093_toxsci_kfaa008
crossref_primary_10_1289_EHP6664
crossref_primary_10_1093_toxsci_kfz058
crossref_primary_10_1186_s13321_025_00950_4
crossref_primary_10_1039_D3EN00044C
crossref_primary_10_1093_toxsci_kfaa147
crossref_primary_10_2903_sp_efsa_2021_EN_6924
crossref_primary_10_1016_j_cotox_2018_10_002
crossref_primary_10_3389_ftox_2024_1346767
crossref_primary_10_1016_j_chemosphere_2018_12_131
crossref_primary_10_1016_j_scitotenv_2020_143874
crossref_primary_10_1016_j_comtox_2022_100245
crossref_primary_10_1021_acs_chemrestox_0c00303
crossref_primary_10_3389_ftox_2023_1275980
crossref_primary_10_3390_toxics12040271
crossref_primary_10_1080_10807039_2023_2258985
crossref_primary_10_1093_toxsci_kfz205
crossref_primary_10_1002_bdr2_2144
crossref_primary_10_1016_j_cotox_2019_04_001
crossref_primary_10_1093_toxsci_kfz201
crossref_primary_10_1021_acs_est_1c07143
crossref_primary_10_1016_j_yrtph_2019_02_010
crossref_primary_10_1002_etc_4315
crossref_primary_10_1016_j_yrtph_2020_104656
crossref_primary_10_1016_j_chemosphere_2022_135929
crossref_primary_10_1021_acs_chemrestox_0c00240
crossref_primary_10_1093_toxsci_kfaa054
crossref_primary_10_1093_toxsci_kfad012
crossref_primary_10_1016_j_yrtph_2020_104764
crossref_primary_10_1080_10807039_2025_2451143
crossref_primary_10_1016_j_taap_2019_114706
crossref_primary_10_1021_acs_est_2c04665
crossref_primary_10_1016_j_crtox_2024_100156
crossref_primary_10_1021_acs_chemrestox_1c00203
Cites_doi 10.1126/science.1154619
10.1016/j.chembiol.2014.03.013
10.1111/j.1539-6924.2008.01168.x
10.1214/aos/1176349025
10.1089/adt.2010.0302
10.1021/tx400117y
10.1093/toxsci/kft178
10.1093/toxsci/kfr220
10.1177/1087057115581317
10.1214/aos/1176350142
10.1016/j.drudis.2010.07.007
10.1093/toxsci/kft012
10.1289/ehp.1409029
10.1016/j.drudis.2013.05.015
10.1016/j.reprotox.2011.01.007
10.1021/acs.est.5b02641
10.1093/toxsci/kfs159
10.1021/tx900325g
10.1016/j.envint.2015.12.008
10.1214/aos/1176351062
10.32614/CRAN.package.tcpl
10.1177/1087057109345525
10.1093/toxsci/kfu169
10.1002/etc.34
10.1038/srep05664
10.1016/j.yrtph.2016.05.008
10.1289/ehp.1002180
10.1289/ehp.1103412
10.1021/tx500501h
10.1289/ehp.1104688
10.1289/ehp.1205784
10.1021/tx400021f
10.1093/toxsci/kfs285
10.1093/toxsci/kfl103
10.1289/ehp.0901392
10.1289/ehp.1002952
10.1038/nchembio790
10.1007/978-1-4899-4541-9
10.1016/j.reprotox.2014.05.014
10.1080/00401706.2012.749166
10.1214/aos/1176344552
10.1016/j.drudis.2014.10.005
10.1093/biomet/ass051
10.1093/toxsci/kfr254
10.1016/j.tox.2010.12.010
10.1093/bioinformatics/bts686
10.1093/toxsci/kfw034
10.1002/bdrc.20214
10.1093/toxsci/kfq220
10.1371/journal.pcbi.1002996
10.1021/tx3000939
10.1016/j.reprotox.2011.10.018
10.1371/journal.pone.0018540
10.1371/journal.pone.0014584
10.1093/toxsci/kfv168
10.1289/ehp.1510352
10.1016/j.jeconom.2008.08.003
10.1002/jat.2949
ContentType Journal Article
Copyright COPYRIGHT 2018 Public Library of Science
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2018 Public Library of Science
– notice: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States)
DBID AAYXX
CITATION
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1371/journal.pone.0196963
DatabaseName CrossRef
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database




PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Uncertainty quantification in ToxCast high throughput screening
EISSN 1932-6203
ExternalDocumentID 2082088421
oai_doaj_org_article_c9e466ef712141b4b12a6b168b23ef71
PMC6059398
1904953
A547708750
30044784
10_1371_journal_pone_0196963
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GeographicLocations United States
North Carolina
New York
United States--US
GeographicLocations_xml – name: United States
– name: New York
– name: North Carolina
– name: United States--US
GrantInformation_xml – fundername: ;
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
AAPBV
ABPTK
N95
OIOZB
OTOTI
5PM
PUEGO
ESTFP
ID FETCH-LOGICAL-c719t-7e8a454581cd2427bdfd0d206ceda5aab82b2017f1fd10b45e9b2f6afbf327ab3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Nov 05 00:20:38 EDT 2023
Wed Aug 27 01:19:43 EDT 2025
Thu Aug 21 18:09:11 EDT 2025
Mon Jul 17 03:58:35 EDT 2023
Fri Jul 11 09:52:44 EDT 2025
Fri Jul 25 11:22:41 EDT 2025
Tue Jun 17 20:53:20 EDT 2025
Tue Jun 10 20:19:40 EDT 2025
Fri Jun 27 04:43:55 EDT 2025
Fri Jun 27 05:00:28 EDT 2025
Thu May 22 21:21:29 EDT 2025
Mon Jul 21 06:18:10 EDT 2025
Thu Apr 24 23:03:20 EDT 2025
Tue Jul 01 03:30:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Creative Commons CC0 public domain
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c719t-7e8a454581cd2427bdfd0d206ceda5aab82b2017f1fd10b45e9b2f6afbf327ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
SC0014664
USDOE Office of Science (SC)
US Environmental Protection Agency
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-2348-9633
0000-0002-1211-0229
0000000223489633
0000000212110229
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0196963
PMID 30044784
PQID 2082088421
PQPubID 1436336
PageCount e0196963
ParticipantIDs plos_journals_2082088421
doaj_primary_oai_doaj_org_article_c9e466ef712141b4b12a6b168b23ef71
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6059398
osti_scitechconnect_1904953
proquest_miscellaneous_2076904303
proquest_journals_2082088421
gale_infotracmisc_A547708750
gale_infotracacademiconefile_A547708750
gale_incontextgauss_ISR_A547708750
gale_incontextgauss_IOV_A547708750
gale_healthsolutions_A547708750
pubmed_primary_30044784
crossref_citationtrail_10_1371_journal_pone_0196963
crossref_primary_10_1371_journal_pone_0196963
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-25
PublicationDateYYYYMMDD 2018-07-25
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2018
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References JE Rager (ref57) 2016; 88
JF Wambaugh (ref46) 2013; 47
R Davidson (ref66) 2008; 146
AS Janesick (ref53) 2016; 124
C Lim (ref54) 2013; 55
CFJ Wu (ref63) 1986; 14
TL Tal (ref19) 2014; 48
MS Attene-Ramos (ref23) 2013; 18
S Auerbach (ref45) 2016
M Barrier (ref17) 2011; 31
B Efron (ref59) 1979; 7
RS Judson (ref37) 2015; 148
GT Ankley (ref41) 2010; 29
R Huang (ref22) 2014; 4
RY Liu (ref64) 1988; 16
DM Reif (ref43) 2010; 118
DM Reif (ref44) 2013; 29
I Shah (ref31) 2011; 6
ME Meek (ref42) 2014; 34
RS Judson (ref4) 2010; 118
FS Collins (ref6) 2008; 319
R Kavlock (ref7) 2012; 25
(ref71) 2015
J-H Hsieh (ref27) 2015; 20
NC Kleinstreuer (ref33) 2013; 131
H Akaike (ref70) 1998
RS Thomas (ref50) 2013; 136
KJ Chandler (ref18) 2011; 6
DM Rotroff (ref15) 2013; 26
S Padilla (ref21) 2012; 33
(ref2) 2007
R Huang (ref24) 2011; 119
E Mammen (ref65) 1993; 21
Kenneth L. Lange (ref69) 2012; 84
KR Shockley (ref56) 2015; 20
MT Martin (ref14) 2010; 23
NS Sipes (ref20) 2011; 93
ref1
PM McDonough (ref16) 2011; 9
NC Kleinstreuer (ref35) 2011; 119
F Stossi (ref12) 2014; 21
B Efron (ref60) 1993
I Shah (ref28) 2015; 124
NS Sipes (ref34) 2011; 124
ref73
ref72
DJ Dix (ref3) 2007; 95
P Browne (ref38) 2015; 49
H Jiang (ref61) 2012; 99
ref68
KA Houck (ref29) 2009; 14
K Paul Friedman (ref30) 2016; 151
I Shah (ref40) 2016; 79
MS Attene-Ramos (ref26) 2014
RR Tice (ref8) 2013; 121
N Kleinstreuer (ref36) 2013; 9
KR Shockley (ref58) 2012; 120
ML MacDonald (ref13) 2006; 2
SJ Shukla (ref25) 2010; 15
DL Filer (ref67) 2016
A Beam (ref55) 2014; 5
RJ Kavlock (ref5) 2009; 29
BA Wetmore (ref49) 2014; 142
J Liu (ref32) 2015; 28
TB Knudsen (ref10) 2011; 282
NS Sipes (ref11) 2013; 26
AM Richard (ref9) 2016
K Mansouri (ref39) 2016
RS Thomas (ref52) 2012; 128
ref62
DM Rotroff (ref51) 2010; 117
BA Wetmore (ref48) 2013; 132
BA Wetmore (ref47) 2012; 125
References_xml – ident: ref62
– ident: ref1
– volume: 319
  start-page: 906
  year: 2008
  ident: ref6
  article-title: Transforming Environmental Health Protection
  publication-title: Science
  doi: 10.1126/science.1154619
– volume: 21
  start-page: 743
  year: 2014
  ident: ref12
  article-title: Defining Estrogenic Mechanisms of Bisphenol A Analogs through High Throughput Microscopy-Based Contextual Assays
  publication-title: Chemistry & Biology
  doi: 10.1016/j.chembiol.2014.03.013
– volume: 29
  start-page: 485
  year: 2009
  ident: ref5
  article-title: Toxicity Testing in the 21st Century: Implications for Human Health Risk Assessment
  publication-title: Risk Analysis
  doi: 10.1111/j.1539-6924.2008.01168.x
– volume: 21
  start-page: 255
  year: 1993
  ident: ref65
  article-title: Bootstrap and Wild Bootstrap for High Dimensional Linear Models
  publication-title: Ann Statist
  doi: 10.1214/aos/1176349025
– volume: 9
  start-page: 262
  year: 2011
  ident: ref16
  article-title: Quantification of hormone sensitive lipase phosphorylation and colocalization with lipid droplets in murine 3T3L1 and human subcutaneous adipocytes via automated digital microscopy and high-content analysis
  publication-title: Assay Drug Dev Technol
  doi: 10.1089/adt.2010.0302
– volume: 26
  start-page: 1097
  year: 2013
  ident: ref15
  article-title: Real-Time Growth Kinetics Measuring Hormone Mimicry for ToxCast Chemicals in T-47D Human Ductal Carcinoma Cells
  publication-title: Chem Res Toxicol
  doi: 10.1021/tx400117y
– volume: 136
  start-page: 4
  year: 2013
  ident: ref50
  article-title: Incorporating New Technologies Into Toxicity Testing and Risk Assessment: Moving From 21st Century Vision to a Data-Driven Framework
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kft178
– volume: 124
  start-page: 109
  year: 2011
  ident: ref34
  article-title: Predictive Models of Prenatal Developmental Toxicity from ToxCast High-Throughput Screening Data
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfr220
– ident: ref72
– volume: 20
  start-page: 887
  year: 2015
  ident: ref27
  article-title: A Data Analysis Pipeline Accounting for Artifacts in Tox21 Quantitative High-Throughput Screening Assays
  publication-title: J Biomol Screen
  doi: 10.1177/1087057115581317
– volume: 14
  start-page: 1261
  year: 1986
  ident: ref63
  article-title: Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis
  publication-title: Ann Statist
  doi: 10.1214/aos/1176350142
– volume: 15
  start-page: 997
  year: 2010
  ident: ref25
  article-title: The future of toxicity testing: A focus on in vitro methods using a quantitative high-throughput screening platform
  publication-title: Drug Discovery Today
  doi: 10.1016/j.drudis.2010.07.007
– volume: 132
  start-page: 327
  year: 2013
  ident: ref48
  article-title: Relative impact of incorporating pharmacokinetics on predicting in vivo hazard and mode of action from high-throughput in vitro toxicity assays
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kft012
– volume: 124
  year: 2015
  ident: ref28
  article-title: Using ToxCast™ Data to Reconstruct Dynamic Cell State Trajectories and Estimate Toxicological Points of Departure
  publication-title: Environmental Health Perspectives
  doi: 10.1289/ehp.1409029
– volume: 18
  start-page: 716
  year: 2013
  ident: ref23
  article-title: The Tox21 robotic platform for the assessment of environmental chemicals—from vision to reality
  publication-title: Drug Discovery Today
  doi: 10.1016/j.drudis.2013.05.015
– volume: 31
  start-page: 383
  year: 2011
  ident: ref17
  article-title: Mouse embryonic stem cell adherent cell differentiation and cytotoxicity (ACDC) assay
  publication-title: Reproductive Toxicology
  doi: 10.1016/j.reprotox.2011.01.007
– volume: 49
  start-page: 8804
  year: 2015
  ident: ref38
  article-title: Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.5b02641
– volume: 128
  start-page: 398
  year: 2012
  ident: ref52
  article-title: A Comprehensive Statistical Analysis of Predicting In Vivo Hazard Using High-Throughput In Vitro Screening
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfs159
– volume: 23
  start-page: 578
  year: 2010
  ident: ref14
  article-title: Impact of Environmental Chemicals on Key Transcription Regulators and Correlation to Toxicity End Points within EPA’s ToxCast Program
  publication-title: Chem Res Toxicol
  doi: 10.1021/tx900325g
– volume: 88
  start-page: 269
  year: 2016
  ident: ref57
  article-title: Linking high resolution mass spectrometry data with exposure and toxicity forecasts to advance high-throughput environmental monitoring
  publication-title: Environment International
  doi: 10.1016/j.envint.2015.12.008
– volume: 16
  start-page: 1696
  year: 1988
  ident: ref64
  article-title: Bootstrap Procedures under some Non-I.I.D. Models
  publication-title: Ann Statist
  doi: 10.1214/aos/1176351062
– ident: ref68
  doi: 10.32614/CRAN.package.tcpl
– volume: 14
  start-page: 1054
  year: 2009
  ident: ref29
  article-title: Profiling Bioactivity of the ToxCast Chemical Library Using BioMAP Primary Human Cell Systems
  publication-title: J Biomol Screen
  doi: 10.1177/1087057109345525
– volume: 142
  start-page: 210
  year: 2014
  ident: ref49
  article-title: Incorporating population variability and susceptible subpopulations into dosimetry for high-throughput toxicity testing
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfu169
– year: 2016
  ident: ref67
  article-title: Tcpl: The ToxCast Pipeline for High-Throughput Screening Data
  publication-title: Submitted to Bioinformatics
– volume: 29
  start-page: 730
  year: 2010
  ident: ref41
  article-title: Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment
  publication-title: Environmental Toxicology and Chemistry
  doi: 10.1002/etc.34
– volume: 47
  start-page: 8479
  year: 2013
  ident: ref46
  article-title: High-Throughput Models for Exposure-Based Chemical Prioritization in the ExpoCast Project
  publication-title: Environ Sci Technol
– volume: 4
  start-page: 5664
  year: 2014
  ident: ref22
  article-title: Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway
  publication-title: Sci Rep
  doi: 10.1038/srep05664
– volume: 79
  start-page: 12
  year: 2016
  ident: ref40
  article-title: Systematically evaluating read-across prediction and performance using a local validity approach characterized by chemical structure and bioactivity information
  publication-title: Regul Toxicol Pharmacol
  doi: 10.1016/j.yrtph.2016.05.008
– volume: 118
  start-page: 1714
  year: 2010
  ident: ref43
  article-title: Endocrine Profiling and Prioritization of Environmental Chemicals Using ToxCast Data
  publication-title: Environmental Health Perspectives
  doi: 10.1289/ehp.1002180
– volume: 119
  start-page: 1596
  year: 2011
  ident: ref35
  article-title: Environmental Impact on Vascular Development Predicted by High-Throughput Screening
  publication-title: Environmental Health Perspectives
  doi: 10.1289/ehp.1103412
– start-page: 199
  year: 1998
  ident: ref70
  article-title: Selected Papers of Hirotugu Akaike
– volume: 28
  start-page: 738
  year: 2015
  ident: ref32
  article-title: Predicting Hepatotoxicity Using ToxCast in Vitro Bioactivity and Chemical Structure
  publication-title: Chemical Research in Toxicology
  doi: 10.1021/tx500501h
– volume: 120
  start-page: 1107
  year: 2012
  ident: ref58
  article-title: A three-stage algorithm to make toxicologically relevant activity calls from quantitative high throughput screening data
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.1104688
– year: 2015
  ident: ref71
  article-title: R: A language and environment for statistical computing [Internet]
– volume: 121
  start-page: 756
  year: 2013
  ident: ref8
  article-title: Improving the Human Hazard Characterization of Chemicals: A Tox21 Update
  publication-title: Environmental Health Perspectives
  doi: 10.1289/ehp.1205784
– volume: 26
  start-page: 878
  year: 2013
  ident: ref11
  article-title: Profiling 976 ToxCast Chemicals across 331 Enzymatic and Receptor Signaling Assays
  publication-title: Chem Res Toxicol
  doi: 10.1021/tx400021f
– volume: 131
  start-page: 40
  year: 2013
  ident: ref33
  article-title: In Vitro Perturbations of Targets in Cancer Hallmark Processes Predict Rodent Chemical Carcinogenesis
  publication-title: Toxicological Sciences
  doi: 10.1093/toxsci/kfs285
– volume: 95
  start-page: 5
  year: 2007
  ident: ref3
  article-title: The ToxCast Program for Prioritizing Toxicity Testing of Environmental Chemicals
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfl103
– volume: 118
  start-page: 485
  year: 2010
  ident: ref4
  article-title: In Vitro Screening of Environmental Chemicals for Targeted Testing Prioritization: The ToxCast Project
  publication-title: Environmental Health Perspectives
  doi: 10.1289/ehp.0901392
– volume: 119
  start-page: 1142
  year: 2011
  ident: ref24
  article-title: Chemical Genomics Profiling of Environmental Chemical Modulation of Human Nuclear Receptors
  publication-title: Environmental Health Perspectives
  doi: 10.1289/ehp.1002952
– year: 2016
  ident: ref9
  article-title: ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology
  publication-title: Chemical Research in Toxicology
– volume: 2
  start-page: 329
  year: 2006
  ident: ref13
  article-title: Identifying off-target effects and hidden phenotypes of drugs in human cells
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio790
– year: 1993
  ident: ref60
  article-title: An introduction to the bootstrap
  doi: 10.1007/978-1-4899-4541-9
– volume: 48
  start-page: 51
  year: 2014
  ident: ref19
  article-title: Immediate and long-term consequences of vascular toxicity during zebrafish development
  publication-title: Reproductive Toxicology
  doi: 10.1016/j.reprotox.2014.05.014
– volume: 55
  start-page: 150
  year: 2013
  ident: ref54
  article-title: Robust Analysis of High Throughput Screening (HTS) Assay Data
  publication-title: Technometrics
  doi: 10.1080/00401706.2012.749166
– volume: 7
  start-page: 1
  year: 1979
  ident: ref59
  article-title: Bootstrap Methods: Another Look at the Jackknife
  publication-title: Ann Statist
  doi: 10.1214/aos/1176344552
– year: 2007
  ident: ref2
  article-title: Toxicity Testing in the 21st Century: A Vision and a Strategy [Internet]
– volume: 20
  start-page: 296
  year: 2015
  ident: ref56
  article-title: Quantitative high-throughput screening data analysis: Challenges and recent advances
  publication-title: Drug Discovery Today
  doi: 10.1016/j.drudis.2014.10.005
– volume: 99
  start-page: 973
  year: 2012
  ident: ref61
  article-title: Statistical properties of an early stopping rule for resampling-based multiple testing
  publication-title: Biometrika
  doi: 10.1093/biomet/ass051
– year: 2016
  ident: ref45
  article-title: Prioritizing Environmental Chemicals for Obesity and Diabetes Outcomes Research: A Screening Approach Using ToxCast High Throughput Data
  publication-title: Environmental Health Perspectives
– year: 2014
  ident: ref26
  article-title: Profiling of the Tox21 Chemical Collection for Mitochondrial Function to Identify Compounds that Acutely Decrease Mitochondrial Membrane Potential
  publication-title: Environmental Health Perspectives
– volume: 125
  start-page: 157
  year: 2012
  ident: ref47
  article-title: Integration of dosimetry, exposure, and high-throughput screening data in chemical toxicity assessment
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfr254
– volume: 282
  start-page: 1
  year: 2011
  ident: ref10
  article-title: Activity profiles of 309 ToxCast™ chemicals evaluated across 292 biochemical targets
  publication-title: Toxicology
  doi: 10.1016/j.tox.2010.12.010
– volume: 29
  start-page: 402
  year: 2013
  ident: ref44
  article-title: ToxPi GUI: An interactive visualization tool for transparent integration of data from diverse sources of evidence
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts686
– volume: 151
  start-page: 160
  year: 2016
  ident: ref30
  article-title: Tiered High-Throughput Screening Approach to Identify Thyroperoxidase Inhibitors Within the ToxCast Phase I and II Chemical Libraries
  publication-title: Toxicological Sciences
  doi: 10.1093/toxsci/kfw034
– volume: 93
  start-page: 256
  year: 2011
  ident: ref20
  article-title: Zebrafish: As an integrative model for twenty-first century toxicity testing
  publication-title: Birth Defects Res C Embryo Today
  doi: 10.1002/bdrc.20214
– volume: 117
  start-page: 348
  year: 2010
  ident: ref51
  article-title: Incorporating Human Dosimetry and Exposure into High-Throughput In Vitro Toxicity Screening
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfq220
– volume: 5
  start-page: 1000121
  year: 2014
  ident: ref55
  article-title: Beyond IC50s: Towards Robust Statistical Methods for in vitro Association Studies
  publication-title: J Pharmacogenomics Pharmacoproteomics
– volume: 9
  start-page: e1002996
  year: 2013
  ident: ref36
  article-title: A Computational Model Predicting Disruption of Blood Vessel Development
  publication-title: PLOS Comput Biol
  doi: 10.1371/journal.pcbi.1002996
– ident: ref73
– volume: 25
  start-page: 1287
  year: 2012
  ident: ref7
  article-title: Update on EPA’s ToxCast Program: Providing High Throughput Decision Support Tools for Chemical Risk Management
  publication-title: Chem Res Toxicol
  doi: 10.1021/tx3000939
– volume: 33
  start-page: 174
  year: 2012
  ident: ref21
  article-title: Zebrafish developmental screening of the ToxCast™ Phase I chemical library
  publication-title: Reproductive Toxicology
  doi: 10.1016/j.reprotox.2011.10.018
– volume: 6
  start-page: e18540
  year: 2011
  ident: ref18
  article-title: Evaluation of 309 Environmental Chemicals Using a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity Assay
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0018540
– year: 2016
  ident: ref39
  article-title: CERAPP: Collaborative Estrogen Receptor Activity Prediction Project
  publication-title: Environmental Health Perspectives
– volume: 84
  start-page: 408
  year: 2012
  ident: ref69
  article-title: Robust Statistical Modeling Using the t Distribution
  publication-title: Journal of the American Statistical Association
– volume: 6
  start-page: e14584
  year: 2011
  ident: ref31
  article-title: Using Nuclear Receptor Activity to Stratify Hepatocarcinogens
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0014584
– volume: 148
  start-page: 137
  year: 2015
  ident: ref37
  article-title: Integrated Model of Chemical Perturbations of a Biological Pathway Using 18 In Vitro High-Throughput Screening Assays for the Estrogen Receptor
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfv168
– volume: 124
  year: 2016
  ident: ref53
  article-title: On the Utility of ToxCast™ and ToxPi as Methods for Identifying New Obesogens
  publication-title: Environmental Health Perspectives
  doi: 10.1289/ehp.1510352
– volume: 146
  start-page: 162
  year: 2008
  ident: ref66
  article-title: The wild bootstrap, tamed at last
  publication-title: Journal of Econometrics
  doi: 10.1016/j.jeconom.2008.08.003
– volume: 34
  start-page: 1
  year: 2014
  ident: ref42
  article-title: New developments in the evolution and application of the WHO/IPCS framework on mode of action/species concordance analysis
  publication-title: J Appl Toxicol
  doi: 10.1002/jat.2949
SSID ssj0053866
Score 2.445089
Snippet High throughput screening (HTS) projects like the U.S. Environmental Protection Agency's ToxCast program are required to address the large and rapidly...
High throughput screening (HTS) projects like the U.S. Environmental Protection Agency’s ToxCast program are required to address the large and rapidly...
SourceID plos
doaj
pubmedcentral
osti
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0196963
SubjectTerms Analysis
BASIC BIOLOGICAL SCIENCES
Biocompatibility
Biological activity
Biology and Life Sciences
Chemicals
colorimetric assays
Computation
Computer applications
curve fitting
Data analysis
Dosimetry
Environmental protection
Environmental toxicology
estrogen
Estrogens
High-throughput screening
Inspection
Internet
kidneys
Laws, regulations and rules
Medical screening
Medicine and Health Sciences
Normal distribution
Organic chemistry
Parameter estimation
Physical Sciences
predictive toxicology
Regression analysis
Resampling
Research and Analysis Methods
Risk assessment
Statistical methods
Stem cells
Toxicity
Toxicology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA9yn3wR59fqrlpFUB-6NWmajyeZwzEFFXRX9haSNtHBaK-2F_S_95w2t6wymA--JqctOd9pTn6HkOeU11SXlmdesjKDjNhmTmuX6YDo4LqwxXCR9sNHcbLi78_Ks0utvrAmbIQHHhl3UGnPhfBBUkY5ddxRZoWjQjlW4Ch6X4h5283U6IPBioWIF-UKSQ-iXPbXbeP3R0SYYhaIBrz-ySsvWjAvRDu9aLurMs-_CygvRaTj2-RWTCXTw3EJO-SGb-6QnWisXfoyIkq_ukter2BkOPrvf6c_NnYsEBpkkp436Wn768h2fYrQxWls3LPe9Cl4FNjlQmy7R1bHb0-PTrLYOSGrJNV9Jr2yHI_EaFVDDJauDnVes1xUvraltU4xB5FfBhpqmjteeu1YEDa4UDBpXXGfLBrg1S5JgyxpyK0P1iteMqch4su6ohDklKjzkJBiy0ZTRVhx7G5xYYazMgnbi5EdBplvIvMTkk1PrUdYjWvo36CEJloExR4GQFVMVBVznaok5AnK14w3TCfTNocllxKR_fOEPBsoEBijwcqbb3bTdebdp6__QPTl84zoRSQKLbCjsvG2A6wJAbdmlMsZJZh3NZveQ200kBAhqm-F5U9VbyCPw8rghOyikm551hmGKZ1SnMFql1vFvXr66TSNn8Rau8a3G6SRQiMUHLz9wajnE98Rn41LxRMiZxYwE8x8pjn_PqCWC2weqdXD_yHJPXIT1FfhP3ZWLsmi_7nxjyA57N3jwQ_8AbNDYcE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFdDCwSEBBxSYsex41NVKqqCBEjQRXuz7MQulapk2yQS_HtmEm8gqAKu9sRJ5uEZ2-NvCHlOeUVVbnjiJMsTiIhNYpWyifKIDq4ykw0XaT98FMdL_n6Vr8KGWxvSKjdz4jBRV02Je-SwSAdfVRSc0f31RYJVo_B0NZTQuE5uIHQZpnTJ1bTgAlsWIlyXyyR9HaSzt25qtzfiwmQzdzSg9k9z86IBI0PM0_OmvSr-_DON8je_dHSb3AoBZXwwasAWuebqO2QrmGwbvwy40q_ukv0ltAwJAN2P-KI3Y5rQIJn4rI5Pmu-Hpu1iBDCOQ_medd_FMK_AWhc83D2yPHp7cnichPoJSSmp6hLpCsPxYIyWFXhiaStfpRVLRekqkxtjC2bB_0tPfUVTy3OnLPPCeOszJo3N7pNFDbzaJrGXOfWpcd64gufMKvD7siopuLpCVKmPSLZhoy4DuDjWuDjXw4mZhEXGyA6NzNeB-RFJpqfWI7jGP-jfoIQmWoTGHhqay1MdLE2XynEhnJeUUU4tt5QZYakoLMuwNSJPUL56vGc6Gbg-yLmUiO-fRuTZQIHwGDXm35yavm31u09f_4Poy-cZ0YtA5BtgR2nCnQf4J4TdmlHuzijByMtZ9w5qo4awCLF9S0yCKjsN0RzmB0dkG5V0w7NW_zIWGHejuFd3P5268ZWYcVe7pkcaKRQCwsHoD0Y9n_iOKG1cFjwicmYBM8HMe-qzbwN2ucASkqp4-PfP2iE3QTEL3ENn-S5ZdJe9ewTBX2cfDxb-E8KaWZA
  priority: 102
  providerName: ProQuest
Title Uncertainty quantification in ToxCast high throughput screening
URI https://www.ncbi.nlm.nih.gov/pubmed/30044784
https://www.proquest.com/docview/2082088421
https://www.proquest.com/docview/2076904303
https://www.osti.gov/servlets/purl/1904953
https://pubmed.ncbi.nlm.nih.gov/PMC6059398
https://doaj.org/article/c9e466ef712141b4b12a6b168b23ef71
http://dx.doi.org/10.1371/journal.pone.0196963
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db5swELfa9GUv07qvsmYZmyZte6DCxmB4mKo2atZNajd1zZQ3ywbcVoogDURq__vdgYPGlH288IAPkM93vp_x-XeEvKU8o0mouJcLFnqAiJWnk0R7iUF28CRQQXOQ9uw8Op3yL7NwtkXWNVutAquNSzusJzVdzg_ubu8PweE_NlUbBF0_dLAoi_yg5XsJtskOxCaBrnrGu30F8O5m9xJRixcxP7CH6f70ll6wajj9u5l7UIILIiPqvKw2odPfkyx_iVqTR-ShhZvuUWsfu2QrLx6TXevQlfvesk5_eEIOp3CnSQ-o793blWqTiJpxc28K97K8G6uqdpHe2LXFfRar2oVZB1bCEP-ekunk5HJ86tnqCl4qaFJ7Io8Vx20zmmYQp4XOTOZnzI_SPFOhUjpmGtCBMNRk1Nc8zBPNTKSMNgETSgfPyKAAXe0R14iQGl_lRuUxD5lOABWILKUQCOMo841DgrUaZWqpx7ECxlw2-2kCliCtOiQqX1rlO8Trnlq01Bv_kD_GEepkkTi7uVEur6T1Q5kmOY-i3AjKKKeaa8pUpGkUaxbgXYe8wvGV7SnUzv3lUciFQPZ_3yFvGgkkzygwO-dKrapKfv764z-Evl_0hN5ZIVOCOlJlT0RAn5CUqyc57EnCFJD2mvfRGiWAJmT-TTFFKq0lYD3MHnbIHhrpWmeVZAj74pgz6O1wbbibm193zfhJzMcr8nKFMiJKkC4O3v68tfNO78jhxkXMHSJ6HtAbmH5LcXPdMJtHWGAyiV_8tT_75AHYZYw_2Fk4JIN6ucpfAjKs9Yhsi5mAazymeJ18GpGd45Pzbxej5l_LqJkMfgJBOmZ1
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALorwaWmhAIOCQEjtOnBxQVQrVLn0gQbfam7ETu1Sqkm2TFfRP8RuZyQuCKuDSqz3rZMfzjMffEPKM8owmoeKeESz0ICJWnk4S7SUW0cGTQAX1Rdr9g2g85R9m4WyJ_OjuwmBZZWcTa0OdFSl-I4ckHXxVHHNGN-dnHnaNwtPVroVGIxa75uIbpGzlm8k72N_njO28P9wee21XAS8VNKk8YWLF8biIphn4J6Ezm_kZ86PUZCpUSsdMg1cUltqM-pqHJtHMRspqGzChdADrXiPXwfH6qFFi1id4YDuiqL2eFwj6upWGjXmRm40GhyYYuL-6S0DvC0YFKDVirJ4W5WXx7p9lm7_5wZ3b5FYbwLpbjcQtkyWT3yHLrYko3ZctjvWru2RzCiN1wUF14Z4tVFOWVEuCe5K7h8X3bVVWLgImu227oPmicsGOQW4NHvUemV4JZ--TUQ68WiGuFSG1vjJWmZiHTCcQZ4gspeBa4yjzrUOCjo0ybcHMsafGqaxP6AQkNQ07JDJftsx3iNf_at6AefyD_i3uUE-LUNz1QHF-LFvNlmlieBQZKyijnGquKVORplGsWYCjDlnH_ZXNvdbeoMitkAuB_QR8hzytKRCOI8d6n2O1KEs5-Xj0H0SfPw2IXrREtgB2pKq9YwH_CWG-BpRrA0owKulgehWlUUIYhljCKRZdpZWE6BHrkR2ygkLa8ayUv5QT1u0E9_LpJ_00PhIr_HJTLJBGRAkC0MHqDxo57_mOqHBcxNwhYqABg40ZzuQnX2us9AhbVibxw7-_1jq5MT7c35N7k4PdVXIThDTG7_csXCOj6nxhHkHgWenHtba75MtVm5efgxeYPQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIiEuiPJqaKEBgYBD2rXjxMkBVaVl1aVQEHTR3oyd2KVSlWybrKB_jV_HTOINBFXApVd71smO5xmPvyHkCeU5TSPFAyNYFEBErAKdpjpILaKDp6EKm4u07w7ivQl_M42mS-TH4i4MllUubGJjqPMyw2_kkKSDr0oSzuimdWURH3ZHW7PTADtI4Unrop1GKyL75vwbpG_Vy_Eu7PVTxkavD3f2AtdhIMgETetAmERxPDqiWQ6-Sujc5sOcDePM5CpSSidMg4cUltqcDjWPTKqZjZXVNmRC6RDWvUKuijCiqGNi2iV7YEfi2F3VCwXddJKxMSsLs9Fi0oQ9V9h0DOj8wqAEBUe81ZOyuij2_bOE8zefOLpJbrhg1t9upW-ZLJniFll25qLynztM6xe3ydYERprig_rcP52rtkSpkQr_uPAPy-87qqp9BE_2Xeug2bz2waZBng3e9Q6ZXApn75JBAbxaIb4VEbVDZawyCY-YTiHmEHlGwc0mcT60HgkXbJSZAzbH_honsjmtE5DgtOyQyHzpmO-RoPvVrAX2-Af9K9yhjhZhuZuB8uxIOi2XWWp4HBsrKKOcaq4pU7GmcaJZiKMeWcf9le0d1864yO2IC4G9BYYeedxQIDRHgUJ-pOZVJcfvP_8H0aePPaJnjsiWwI5MufsW8J8Q8qtHudajBAOT9aZXURolhGSIK5xhAVZWS4gksTbZIysopAueVfKXosK6C8G9ePpRN42PxGq_wpRzpBFximB0sPq9Vs47viNCHBcJ94joaUBvY_ozxfHXBjc9xvaVaXL_76-1Tq6BYZFvxwf7q-Q6yGiCn_JZtEYG9dncPIAYtNYPG2X3yZfLti4_AYzenHM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+quantification+in+ToxCast+high+throughput+screening&rft.jtitle=PloS+one&rft.au=Watt%2C+Eric+D.&rft.au=Judson%2C+Richard+S.&rft.date=2018-07-25&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=13&rft.issue=7&rft_id=info:doi/10.1371%2Fjournal.pone.0196963&rft.externalDocID=1904953
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon