Glucosinolate-rich broccoli sprouts protect against oxidative stress and improve adaptations to intense exercise training
Oxidative stress plays a vital role for the adaptive responses to physical training. However, excessive oxidative stress can precipitate cellular damage, necessitating protective mechanisms to mitigate this effect. Glucosinolates, found predominantly in cruciferous vegetables, can be converted into...
Saved in:
Published in | Redox biology Vol. 67; p. 102873 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Oxidative stress plays a vital role for the adaptive responses to physical training. However, excessive oxidative stress can precipitate cellular damage, necessitating protective mechanisms to mitigate this effect. Glucosinolates, found predominantly in cruciferous vegetables, can be converted into isothiocyanates, known for their antioxidative properties. These compounds activate crucial antioxidant defence pathways and support mitochondrial function and protein integrity under oxidative stress, in both Nrf2-dependent and independent manners. We here administered glucosinolate-rich broccoli sprouts (GRS), in a randomized double-blinded cross-over fashion to 9 healthy subjects in combination with daily intense exercise training for 7 days. We found that exercise in combination with GRS significantly decreased the levels of carbonylated proteins in skeletal muscle and the release of myeloperoxidase into blood. Moreover, it lowered lactate accumulation during submaximal exercise, and attenuated the severe nocturnal hypoglycaemic episodes seen during the placebo condition. Furthermore, GRS in combination with exercise improved physical performance, which was unchanged in the placebo condition. |
---|---|
AbstractList | Oxidative stress plays a vital role for the adaptive responses to physical training. However, excessive oxidative stress can precipitate cellular damage, necessitating protective mechanisms to mitigate this effect. Glucosinolates, found predominantly in cruciferous vegetables, can be converted into isothiocyanates, known for their antioxidative properties. These compounds activate crucial antioxidant defence pathways and support mitochondrial function and protein integrity under oxidative stress, in both Nrf2-dependent and independent manners. We here administered glucosinolate-rich broccoli sprouts (GRS), in a randomized double-blinded cross-over fashion to 9 healthy subjects in combination with daily intense exercise training for 7 days. We found that exercise in combination with GRS significantly decreased the levels of carbonylated proteins in skeletal muscle and the release of myeloperoxidase into blood. Moreover, it lowered lactate accumulation during submaximal exercise, and attenuated the severe nocturnal hypoglycaemic episodes seen during the placebo condition. Furthermore, GRS in combination with exercise improved physical performance, which was unchanged in the placebo condition.Oxidative stress plays a vital role for the adaptive responses to physical training. However, excessive oxidative stress can precipitate cellular damage, necessitating protective mechanisms to mitigate this effect. Glucosinolates, found predominantly in cruciferous vegetables, can be converted into isothiocyanates, known for their antioxidative properties. These compounds activate crucial antioxidant defence pathways and support mitochondrial function and protein integrity under oxidative stress, in both Nrf2-dependent and independent manners. We here administered glucosinolate-rich broccoli sprouts (GRS), in a randomized double-blinded cross-over fashion to 9 healthy subjects in combination with daily intense exercise training for 7 days. We found that exercise in combination with GRS significantly decreased the levels of carbonylated proteins in skeletal muscle and the release of myeloperoxidase into blood. Moreover, it lowered lactate accumulation during submaximal exercise, and attenuated the severe nocturnal hypoglycaemic episodes seen during the placebo condition. Furthermore, GRS in combination with exercise improved physical performance, which was unchanged in the placebo condition. Oxidative stress plays a vital role for the adaptive responses to physical training. However, excessive oxidative stress can precipitate cellular damage, necessitating protective mechanisms to mitigate this effect. Glucosinolates, found predominantly in cruciferous vegetables, can be converted into isothiocyanates, known for their antioxidative properties. These compounds activate crucial antioxidant defence pathways and support mitochondrial function and protein integrity under oxidative stress, in both Nrf2-dependent and independent manners. We here administered glucosinolate-rich broccoli sprouts (GRS), in a randomized double-blinded cross-over fashion to 9 healthy subjects in combination with daily intense exercise training for 7 days. We found that exercise in combination with GRS significantly decreased the levels of carbonylated proteins in skeletal muscle and the release of myeloperoxidase into blood. Moreover, it lowered lactate accumulation during submaximal exercise, and attenuated the severe nocturnal hypoglycaemic episodes seen during the placebo condition. Furthermore, GRS in combination with exercise improved physical performance, which was unchanged in the placebo condition. |
ArticleNumber | 102873 |
Author | Tillqvist, E.N. Sundqvist, M.L. Millbert, F. Samyn, D. Nilsson, P.H. Flockhart, M. Vinge, F. Apró, W. Nilsson, L.C. Larsen, F.J. Lännerström, J. |
Author_xml | – sequence: 1 givenname: M. surname: Flockhart fullname: Flockhart, M. email: mikael.flockhart@gih.se organization: Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden – sequence: 2 givenname: L.C. surname: Nilsson fullname: Nilsson, L.C. organization: Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden – sequence: 3 givenname: E.N. surname: Tillqvist fullname: Tillqvist, E.N. organization: Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden – sequence: 4 givenname: F. surname: Vinge fullname: Vinge, F. organization: Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden – sequence: 5 givenname: F. surname: Millbert fullname: Millbert, F. organization: Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden – sequence: 6 givenname: J. surname: Lännerström fullname: Lännerström, J. organization: Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden – sequence: 7 givenname: P.H. surname: Nilsson fullname: Nilsson, P.H. organization: Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden – sequence: 8 givenname: D. surname: Samyn fullname: Samyn, D. organization: Department of Laboratory Medicine, Clinical Chemistry, Örebro University Hospital, Örebro, Sweden – sequence: 9 givenname: W. surname: Apró fullname: Apró, W. organization: Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden – sequence: 10 givenname: M.L. surname: Sundqvist fullname: Sundqvist, M.L. organization: Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden – sequence: 11 givenname: F.J. surname: Larsen fullname: Larsen, F.J. email: filip.larsen@gih.se organization: Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:gih:diva-7791$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-125192$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-108192$$DView record from Swedish Publication Index |
BookMark | eNqNkk9v1DAQxSNUREvpJ-CSIxLK4j9J7BwQqgqUSpW4AFfLsSdbr7L2Yjvb7bdndlMklkPBF1vj936ZeN7L4sQHD0XxmpIFJbR9t1pEsGG3YIRxrDAp-LPijDHKK8apOPnjfFpcpLQiuKSsGSUvilMuWik70Z4VD9fjZEJyPow6QxWduSv7GIwJoyvTJoYppxK3DCaXeqmdT7kMO2d1dlsoU46QUqm9Ld0aZVjSVm8y3gafyhxK5zP4BCXsIBqHhxwR4vzyVfF80GOCi8f9vPj--dO3qy_V7dfrm6vL28oI2uWKtTUDDVxoANBMQG1JT4a2kyAGQljTEqLBwlBDh39nW0oE75gh7UAFMYyfFzcz1wa9Upvo1jo-qKCdOhRCXCodszMjKCAUP9BZ2fS27nndD40g3Mq-JiCMGZBVzax0D5upP6J9dD8uD7QQJ0WJpB37P_3oUc-aWf_23_qlu1NCdBTVH2Y1StdgDXh82_HIdHzj0bkMW-yu7rgkBAlvHgkx_JwgZbV2ycA4ag9hSorJlrOuqcm-tW6WmhhSijAo4-Yx7wc6IlPtg6lW6hBMtQ-mmoOJXv6X93ePT7vezy7AdGwdRJWMA2_AuohpxPG5J_2_ANzmAy4 |
CitedBy_id | crossref_primary_10_1016_j_freeradbiomed_2024_08_011 crossref_primary_10_3390_ijms25031790 crossref_primary_10_1021_acs_jafc_3c05609 crossref_primary_10_1021_acs_jafc_3c08039 |
Cites_doi | 10.3390/antiox8060196 10.1111/j.1748-1716.1989.tb08650.x 10.1016/j.freeradbiomed.2022.07.013 10.1038/s41598-017-12926-y 10.1016/j.freeradbiomed.2007.05.022 10.1249/00005768-198205000-00012 10.1152/ajpendo.00154.2016 10.1016/j.foodchem.2015.04.054 10.1002/mnfr.201700665 10.1016/j.exger.2019.01.022 10.1016/j.nut.2021.111266 10.1096/fj.11-182139 10.1016/j.cmet.2021.02.017 10.3390/ijms24031962 10.1016/j.freeradbiomed.2021.11.030 10.1042/bst0300252 10.14814/phy2.15130 10.1152/ajpcell.00374.2015 10.1016/j.redox.2016.11.007 10.1073/pnas.94.19.10367 10.1016/j.phymed.2019.153062 10.1093/carcin/bgz155 10.1046/j.1365-201X.1997.00222.x 10.1113/JP270654 10.1126/scitranslmed.aah4477 10.1002/em.20468 10.1080/10942912.2017.1286353 10.1249/MSS.0000000000002312 10.1111/apha.12898 |
ContentType | Journal Article |
Copyright | 2023 The Authors Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved. 2023 The Authors 2023 |
Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved. – notice: 2023 The Authors 2023 |
DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM ADFMZ ADTPV AOWAS D8T DF1 ZZAVC AGRUY D92 AABEP D91 DOA |
DOI | 10.1016/j.redox.2023.102873 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Gymnastik- och idrottshögskolan full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Gymnastik- och idrottshögskolan SwePub Articles full text SWEPUB Linnéuniversitetet full text SWEPUB Linnéuniversitetet SWEPUB Örebro universitet full text SWEPUB Örebro universitet DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2213-2317 |
ExternalDocumentID | oai_doaj_org_article_e0127e9d85bd4b34bf5703d8b40e7ccf oai_DiVA_org_oru_108192 oai_DiVA_org_lnu_125192 oai_DiVA_org_gih_7791 PMC10493800 10_1016_j_redox_2023_102873 S2213231723002744 |
GroupedDBID | 0R~ 0SF 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABGSF ABMAC ABMYL ACGFS ADBBV ADEZE ADRAZ ADUVX AENEX AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB M48 MO0 M~E NCXOZ O-L O9- OK1 RIG ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKYEP APXCP CITATION 7X8 5PM ADFMZ ADTPV AOWAS D8T DF1 ZZAVC AGRUY D92 AABEP D91 |
ID | FETCH-LOGICAL-c719t-2642eae37aeeea27e4d0b0f698e7f0025600aedef4e9421d6107392c06f170c23 |
IEDL.DBID | M48 |
ISSN | 2213-2317 |
IngestDate | Wed Aug 27 01:23:34 EDT 2025 Thu Aug 21 06:51:48 EDT 2025 Thu Aug 21 07:17:39 EDT 2025 Thu Aug 21 06:49:37 EDT 2025 Thu Aug 21 18:36:26 EDT 2025 Fri Jul 11 04:50:26 EDT 2025 Tue Jul 01 00:47:11 EDT 2025 Thu Apr 24 23:12:53 EDT 2025 Sat Mar 23 16:29:46 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY license. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c719t-2642eae37aeeea27e4d0b0f698e7f0025600aedef4e9421d6107392c06f170c23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2213231723002744 |
PMID | 37688976 |
PQID | 2863295402 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e0127e9d85bd4b34bf5703d8b40e7ccf swepub_primary_oai_DiVA_org_oru_108192 swepub_primary_oai_DiVA_org_lnu_125192 swepub_primary_oai_DiVA_org_gih_7791 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10493800 proquest_miscellaneous_2863295402 crossref_citationtrail_10_1016_j_redox_2023_102873 crossref_primary_10_1016_j_redox_2023_102873 elsevier_sciencedirect_doi_10_1016_j_redox_2023_102873 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Redox biology |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Na (bib29) 2023; 24 Axelsson (bib28) 2017; 9 Flockhart (bib6) 2021; 33 Yan (bib4) 2022; 178 Fahey, Zhang, Talalay (bib12) 1997; 94 Borg (bib21) 1982; 14 Samuelsson (bib26) 2016; 311 Okunade (bib19) 2015; 187 Merry, Ristow (bib7) 2016; 594 Leighton (bib25) 1989; 136 Komine (bib17) 2021; 9 Larsen (bib24) 2011; 25 Oh (bib13) 2017; 7 Gnaiger, Kuznetsov (bib22) 2002; 30 Housley (bib14) 2018; 62 Margaritelis (bib8) 2018; 222 Zhang (bib10) 2021; 86 Sato (bib18) 2021; 90 Tonkonogi, Sahlin (bib23) 1997; 161 Margonis (bib1) 2007; 43 Singh (bib30) 2019; 40 Moberg (bib27) 2016; 310 Vargas-Mendoza (bib3) 2019; 8 Mawlong (bib20) 2017; 20 O'Mealey, Berry, Plafker (bib9) 2017; 11 Esteras, Abramov (bib2) 2022; 189 Valgimigli, Iori (bib11) 2009; 50 Wang (bib15) 2020; 52 Yoshioka (bib16) 1988; 293 Huang (bib5) 2019; 119 O'Mealey (10.1016/j.redox.2023.102873_bib9) 2017; 11 Okunade (10.1016/j.redox.2023.102873_bib19) 2015; 187 Esteras (10.1016/j.redox.2023.102873_bib2) 2022; 189 Singh (10.1016/j.redox.2023.102873_bib30) 2019; 40 Huang (10.1016/j.redox.2023.102873_bib5) 2019; 119 Flockhart (10.1016/j.redox.2023.102873_bib6) 2021; 33 Wang (10.1016/j.redox.2023.102873_bib15) 2020; 52 Yan (10.1016/j.redox.2023.102873_bib4) 2022; 178 Fahey (10.1016/j.redox.2023.102873_bib12) 1997; 94 Axelsson (10.1016/j.redox.2023.102873_bib28) 2017; 9 Housley (10.1016/j.redox.2023.102873_bib14) 2018; 62 Borg (10.1016/j.redox.2023.102873_bib21) 1982; 14 Mawlong (10.1016/j.redox.2023.102873_bib20) 2017; 20 Moberg (10.1016/j.redox.2023.102873_bib27) 2016; 310 Sato (10.1016/j.redox.2023.102873_bib18) 2021; 90 Leighton (10.1016/j.redox.2023.102873_bib25) 1989; 136 Samuelsson (10.1016/j.redox.2023.102873_bib26) 2016; 311 Tonkonogi (10.1016/j.redox.2023.102873_bib23) 1997; 161 Gnaiger (10.1016/j.redox.2023.102873_bib22) 2002; 30 Larsen (10.1016/j.redox.2023.102873_bib24) 2011; 25 Vargas-Mendoza (10.1016/j.redox.2023.102873_bib3) 2019; 8 Merry (10.1016/j.redox.2023.102873_bib7) 2016; 594 Margaritelis (10.1016/j.redox.2023.102873_bib8) 2018; 222 Yoshioka (10.1016/j.redox.2023.102873_bib16) 1988; 293 Komine (10.1016/j.redox.2023.102873_bib17) 2021; 9 Na (10.1016/j.redox.2023.102873_bib29) 2023; 24 Valgimigli (10.1016/j.redox.2023.102873_bib11) 2009; 50 Oh (10.1016/j.redox.2023.102873_bib13) 2017; 7 Zhang (10.1016/j.redox.2023.102873_bib10) 2021; 86 Margonis (10.1016/j.redox.2023.102873_bib1) 2007; 43 |
References_xml | – volume: 594 start-page: 5135 year: 2016 end-page: 5147 ident: bib7 article-title: Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? publication-title: J. Physiol. – volume: 30 start-page: 252 year: 2002 end-page: 258 ident: bib22 article-title: Mitochondrial respiration at low levels of oxygen and cytochrome c publication-title: Biochem. Soc. Trans. – volume: 62 year: 2018 ident: bib14 article-title: Untargeted metabolomic screen reveals changes in human plasma metabolite profiles following consumption of fresh broccoli sprouts publication-title: Mol. Nutr. Food Res. – volume: 9 year: 2021 ident: bib17 article-title: Effect of a sulforaphane supplement on muscle soreness and damage induced by eccentric exercise in young adults: a pilot study publication-title: Physiol. Rep. – volume: 136 start-page: 177 year: 1989 end-page: 184 ident: bib25 article-title: Acute and chronic effects of strenuous exercise on glucose metabolism in isolated, incubated soleus muscle of exercise-trained rats publication-title: Acta Physiol. Scand. – volume: 20 start-page: 3274 year: 2017 end-page: 3281 ident: bib20 article-title: A simple spectrophotometric method for estimating total glucosinolates in mustard de-oiled cake publication-title: Int. J. Food Prop. – volume: 50 start-page: 222 year: 2009 end-page: 237 ident: bib11 article-title: Antioxidant and pro-oxidant capacities of ITCs publication-title: Environ. Mol. Mutagen. – volume: 43 start-page: 901 year: 2007 end-page: 910 ident: bib1 article-title: Oxidative stress biomarkers responses to physical overtraining: implications for diagnosis publication-title: Free Radic. Biol. Med. – volume: 189 start-page: 136 year: 2022 end-page: 153 ident: bib2 article-title: Nrf2 as a regulator of mitochondrial function: energy metabolism and beyond publication-title: Free Radic. Biol. Med. – volume: 8 year: 2019 ident: bib3 article-title: Antioxidant and adaptative response mediated by Nrf2 during physical exercise publication-title: Antioxidants – volume: 52 start-page: 1719 year: 2020 end-page: 1728 ident: bib15 article-title: Nrf2 activation enhances muscular MCT1 expression and hypoxic exercise capacity publication-title: Med. Sci. Sports Exerc. – volume: 14 start-page: 377 year: 1982 end-page: 381 ident: bib21 article-title: Psychophysical bases of perceived exertion publication-title: Med. Sci. Sports Exerc. – volume: 90 year: 2021 ident: bib18 article-title: Oral chronic sulforaphane effects on heavy resistance exercise: implications for inflammatory and muscle damage parameters in young practitioners publication-title: Nutrition – volume: 178 start-page: 59 year: 2022 end-page: 75 ident: bib4 article-title: Nrf2 contributes to the benefits of exercise interventions on age-related skeletal muscle disorder via regulating Drp1 stability and mitochondrial fission publication-title: Free Radic. Biol. Med. – volume: 94 start-page: 10367 year: 1997 end-page: 10372 ident: bib12 article-title: Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 119 start-page: 61 year: 2019 end-page: 73 ident: bib5 article-title: Nrf2 deficiency exacerbates frailty and sarcopenia by impairing skeletal muscle mitochondrial biogenesis and dynamics in an age-dependent manner publication-title: Exp. Gerontol. – volume: 9 year: 2017 ident: bib28 article-title: Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes publication-title: Sci. Transl. Med. – volume: 86 year: 2021 ident: bib10 article-title: The isothiocyanate sulforaphane inhibits mTOR in an NRF2-independent manner publication-title: Phytomedicine – volume: 187 start-page: 485 year: 2015 end-page: 490 ident: bib19 article-title: Thermal and pressure stability of myrosinase enzymes from black mustard (Brassica nigra L. W.D.J. Koch. var. nigra), brown mustard (Brassica juncea L. Czern. var. juncea) and yellow mustard (Sinapsis alba L. subsp. maire) seeds publication-title: Food Chem. – volume: 11 start-page: 103 year: 2017 end-page: 110 ident: bib9 article-title: Sulforaphane is a Nrf2-independent inhibitor of mitochondrial fission publication-title: Redox Biol. – volume: 311 start-page: E246 year: 2016 end-page: E251 ident: bib26 article-title: Intake of branched-chain or essential amino acids attenuates the elevation in muscle levels of PGC-1α4 mRNA caused by resistance exercise publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 40 start-page: 1545 year: 2019 end-page: 1556 ident: bib30 article-title: Reversal of the Warburg phenomenon in chemoprevention of prostate cancer by sulforaphane publication-title: Carcinogenesis – volume: 293 start-page: 162 year: 1988 end-page: 174 ident: bib16 article-title: Effect of SM-2470, a newly synthetized alpha 1-adrenoceptor antagonist, on sympathetic nerve activity in anesthetized rats publication-title: Arch. Int. Pharmacodyn. Ther. – volume: 161 start-page: 345 year: 1997 end-page: 353 ident: bib23 article-title: Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: effect of training status publication-title: Acta Physiol. Scand. – volume: 7 year: 2017 ident: bib13 article-title: Nuclear factor (erythroid derived 2)-like 2 activation increases exercise endurance capacity via redox modulation in skeletal muscles publication-title: Sci. Rep. – volume: 33 start-page: 957 year: 2021 end-page: 970 e6 ident: bib6 article-title: Excessive exercise training causes mitochondrial functional impairment and decreases glucose tolerance in healthy volunteers publication-title: Cell Metabol. – volume: 310 start-page: C874 year: 2016 end-page: C884 ident: bib27 article-title: Activation of mTORC1 by leucine is potentiated by branched-chain amino acids and even more so by essential amino acids following resistance exercise publication-title: Am. J. Physiol.: Cell Physiol. – volume: 222 year: 2018 ident: bib8 article-title: Adaptations to endurance training depend on exercise-induced oxidative stress: exploiting redox interindividual variability publication-title: Acta Physiol. (Oxf) – volume: 25 start-page: 2843 year: 2011 end-page: 2852 ident: bib24 article-title: Mitochondrial oxygen affinity predicts basal metabolic rate in humans publication-title: Faseb. J. – volume: 24 year: 2023 ident: bib29 article-title: Dietary isothiocyanates: novel insights into the potential for cancer prevention and therapy publication-title: Int. J. Mol. Sci. – volume: 8 issue: 6 year: 2019 ident: 10.1016/j.redox.2023.102873_bib3 article-title: Antioxidant and adaptative response mediated by Nrf2 during physical exercise publication-title: Antioxidants doi: 10.3390/antiox8060196 – volume: 136 start-page: 177 issue: 2 year: 1989 ident: 10.1016/j.redox.2023.102873_bib25 article-title: Acute and chronic effects of strenuous exercise on glucose metabolism in isolated, incubated soleus muscle of exercise-trained rats publication-title: Acta Physiol. Scand. doi: 10.1111/j.1748-1716.1989.tb08650.x – volume: 189 start-page: 136 year: 2022 ident: 10.1016/j.redox.2023.102873_bib2 article-title: Nrf2 as a regulator of mitochondrial function: energy metabolism and beyond publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2022.07.013 – volume: 7 issue: 1 year: 2017 ident: 10.1016/j.redox.2023.102873_bib13 article-title: Nuclear factor (erythroid derived 2)-like 2 activation increases exercise endurance capacity via redox modulation in skeletal muscles publication-title: Sci. Rep. doi: 10.1038/s41598-017-12926-y – volume: 43 start-page: 901 issue: 6 year: 2007 ident: 10.1016/j.redox.2023.102873_bib1 article-title: Oxidative stress biomarkers responses to physical overtraining: implications for diagnosis publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2007.05.022 – volume: 14 start-page: 377 issue: 5 year: 1982 ident: 10.1016/j.redox.2023.102873_bib21 article-title: Psychophysical bases of perceived exertion publication-title: Med. Sci. Sports Exerc. doi: 10.1249/00005768-198205000-00012 – volume: 311 start-page: E246 issue: 1 year: 2016 ident: 10.1016/j.redox.2023.102873_bib26 article-title: Intake of branched-chain or essential amino acids attenuates the elevation in muscle levels of PGC-1α4 mRNA caused by resistance exercise publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00154.2016 – volume: 187 start-page: 485 year: 2015 ident: 10.1016/j.redox.2023.102873_bib19 article-title: Thermal and pressure stability of myrosinase enzymes from black mustard (Brassica nigra L. W.D.J. Koch. var. nigra), brown mustard (Brassica juncea L. Czern. var. juncea) and yellow mustard (Sinapsis alba L. subsp. maire) seeds publication-title: Food Chem. doi: 10.1016/j.foodchem.2015.04.054 – volume: 62 issue: 19 year: 2018 ident: 10.1016/j.redox.2023.102873_bib14 article-title: Untargeted metabolomic screen reveals changes in human plasma metabolite profiles following consumption of fresh broccoli sprouts publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201700665 – volume: 119 start-page: 61 year: 2019 ident: 10.1016/j.redox.2023.102873_bib5 article-title: Nrf2 deficiency exacerbates frailty and sarcopenia by impairing skeletal muscle mitochondrial biogenesis and dynamics in an age-dependent manner publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2019.01.022 – volume: 90 year: 2021 ident: 10.1016/j.redox.2023.102873_bib18 article-title: Oral chronic sulforaphane effects on heavy resistance exercise: implications for inflammatory and muscle damage parameters in young practitioners publication-title: Nutrition doi: 10.1016/j.nut.2021.111266 – volume: 25 start-page: 2843 issue: 8 year: 2011 ident: 10.1016/j.redox.2023.102873_bib24 article-title: Mitochondrial oxygen affinity predicts basal metabolic rate in humans publication-title: Faseb. J. doi: 10.1096/fj.11-182139 – volume: 33 start-page: 957 issue: 5 year: 2021 ident: 10.1016/j.redox.2023.102873_bib6 article-title: Excessive exercise training causes mitochondrial functional impairment and decreases glucose tolerance in healthy volunteers publication-title: Cell Metabol. doi: 10.1016/j.cmet.2021.02.017 – volume: 24 issue: 3 year: 2023 ident: 10.1016/j.redox.2023.102873_bib29 article-title: Dietary isothiocyanates: novel insights into the potential for cancer prevention and therapy publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms24031962 – volume: 178 start-page: 59 year: 2022 ident: 10.1016/j.redox.2023.102873_bib4 article-title: Nrf2 contributes to the benefits of exercise interventions on age-related skeletal muscle disorder via regulating Drp1 stability and mitochondrial fission publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2021.11.030 – volume: 30 start-page: 252 issue: 2 year: 2002 ident: 10.1016/j.redox.2023.102873_bib22 article-title: Mitochondrial respiration at low levels of oxygen and cytochrome c publication-title: Biochem. Soc. Trans. doi: 10.1042/bst0300252 – volume: 9 issue: 24 year: 2021 ident: 10.1016/j.redox.2023.102873_bib17 article-title: Effect of a sulforaphane supplement on muscle soreness and damage induced by eccentric exercise in young adults: a pilot study publication-title: Physiol. Rep. doi: 10.14814/phy2.15130 – volume: 310 start-page: C874 issue: 11 year: 2016 ident: 10.1016/j.redox.2023.102873_bib27 article-title: Activation of mTORC1 by leucine is potentiated by branched-chain amino acids and even more so by essential amino acids following resistance exercise publication-title: Am. J. Physiol.: Cell Physiol. doi: 10.1152/ajpcell.00374.2015 – volume: 11 start-page: 103 year: 2017 ident: 10.1016/j.redox.2023.102873_bib9 article-title: Sulforaphane is a Nrf2-independent inhibitor of mitochondrial fission publication-title: Redox Biol. doi: 10.1016/j.redox.2016.11.007 – volume: 94 start-page: 10367 issue: 19 year: 1997 ident: 10.1016/j.redox.2023.102873_bib12 article-title: Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.94.19.10367 – volume: 86 year: 2021 ident: 10.1016/j.redox.2023.102873_bib10 article-title: The isothiocyanate sulforaphane inhibits mTOR in an NRF2-independent manner publication-title: Phytomedicine doi: 10.1016/j.phymed.2019.153062 – volume: 40 start-page: 1545 issue: 12 year: 2019 ident: 10.1016/j.redox.2023.102873_bib30 article-title: Reversal of the Warburg phenomenon in chemoprevention of prostate cancer by sulforaphane publication-title: Carcinogenesis doi: 10.1093/carcin/bgz155 – volume: 161 start-page: 345 issue: 3 year: 1997 ident: 10.1016/j.redox.2023.102873_bib23 article-title: Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: effect of training status publication-title: Acta Physiol. Scand. doi: 10.1046/j.1365-201X.1997.00222.x – volume: 594 start-page: 5135 issue: 18 year: 2016 ident: 10.1016/j.redox.2023.102873_bib7 article-title: Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? publication-title: J. Physiol. doi: 10.1113/JP270654 – volume: 9 issue: 394 year: 2017 ident: 10.1016/j.redox.2023.102873_bib28 article-title: Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aah4477 – volume: 50 start-page: 222 issue: 3 year: 2009 ident: 10.1016/j.redox.2023.102873_bib11 article-title: Antioxidant and pro-oxidant capacities of ITCs publication-title: Environ. Mol. Mutagen. doi: 10.1002/em.20468 – volume: 20 start-page: 3274 issue: 12 year: 2017 ident: 10.1016/j.redox.2023.102873_bib20 article-title: A simple spectrophotometric method for estimating total glucosinolates in mustard de-oiled cake publication-title: Int. J. Food Prop. doi: 10.1080/10942912.2017.1286353 – volume: 52 start-page: 1719 issue: 8 year: 2020 ident: 10.1016/j.redox.2023.102873_bib15 article-title: Nrf2 activation enhances muscular MCT1 expression and hypoxic exercise capacity publication-title: Med. Sci. Sports Exerc. doi: 10.1249/MSS.0000000000002312 – volume: 222 issue: 2 year: 2018 ident: 10.1016/j.redox.2023.102873_bib8 article-title: Adaptations to endurance training depend on exercise-induced oxidative stress: exploiting redox interindividual variability publication-title: Acta Physiol. (Oxf) doi: 10.1111/apha.12898 – volume: 293 start-page: 162 year: 1988 ident: 10.1016/j.redox.2023.102873_bib16 article-title: Effect of SM-2470, a newly synthetized alpha 1-adrenoceptor antagonist, on sympathetic nerve activity in anesthetized rats publication-title: Arch. Int. Pharmacodyn. Ther. |
SSID | ssj0000884210 |
Score | 2.3932695 |
Snippet | Oxidative stress plays a vital role for the adaptive responses to physical training. However, excessive oxidative stress can precipitate cellular damage,... |
SourceID | doaj swepub pubmedcentral proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102873 |
SubjectTerms | Biochemistry Biokemi Medicin/Teknik Medicine/Technology Research Paper |
SummonAdditionalLinks | – databaseName: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcEBQQoYCMVHFiIU28tnMsj1IhwYmi3iw_Jq1RlVTdrNT-e2bspNpw2F64JpONd2bs-SYef8PYgStVq6gH4JLObwnAmd7YpVxIDTJUgBjdUqL446c8ORXfz5ZnG62-qCYs0wNnxX0E2huFJuilC8LVwrXEGRW0EyUo71tafTHmbSRTaQ3WWmAyM9EMpYIuIuC8-UDtwomvQKt6FooSY_8sIm0gzn_rJWesoikSHT9mj0YIyY_y0J-wB9Dtsd3cVPL2Kbv9lqrQY4dJ6wALXOcuuMMwhRaPfIVvWw8rPtIzcHtuIwJE3t_EkCjAeT48wm0XeEwfHIDbYK_yjv2KDz2Pqeod-NStiU9tJp6x0-Ovvz6fLMYGCwuP9hmouq0CC7WyAGBRzSKUrmxlo0G1IxqyEKAV0KA6A0IthXjKl7I9VKWv6udsp-s7eME4tYaxUMoq0JoAynlX--BFEB6t5KBg1aRr40f2cRrdpZnKzP6YZCBDBjLZQAV7f_fQVSbf2C7-iYx4J0rM2ekC-pMZ_cnc508Fk5MLmBGEZHCBPxW3v_3t5DAGpyjtu9gO-vXKVFrWtJ1aVgXTM0-aDXV-p4sXiewb0-WmRlRfsIPsdLNnvsTfR-nvnaO4Us1hwd5tE7vsiDscUXt1j2B_vSbuWBR8-T-0us8ekqryIc5XbGe4XsNrRHODe5Mm7l-KZU__ priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Open Access Journals (Elsevier) dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSkhcEE8RoMhIFSfCpo43To5toVRIcIGivVl-TLZGVbLazUrtv--Mk6wIh0XimGS88XrG48_xzDeMHdtM1YpqAM4pf0sCzvTKzIu0KKHwAhCjG9oofvteXF7Jr4v54oCdj7kwFFY5-P7ep0dvPdyZDaM5W4Uw-yEE7qRw-UMQHXnu0A_nsoxJfIuz3XcWnEVSRFICkk-pwUg-FMO8iJbz9iMVEScWg1LlkwUq8vhP1qk_cOjfUZQTrtG4Pl08Zo8GYMlP-74_YQfQPGUP-lKTd8_Y3ZcYmx4a3Mp2kKL3u-YWFy-0g8A3-LZtt-EDaQM3SxMQNvL2NvhIDM77lBJuGs9D_AwB3Hiz6s_xN7xreYix8MDHGk58LD7xnF1dfP55fpkOZRdSh1rrKOZNgIFcGQAwQoH0mc3qoipB1QNGMuChllDh0HoEYApRlsuK-kRlTuQv2GHTNvCScSoYYyArhCdPAco6mzvvpJdOOWchYWIca-0GTnLq3Y0eg89-66ggTQrSvYIS9mHXaNVTcuwXPyMl7kSJTzveaNdLPRiUBjqBh8qXc-ulzaWtiZnMl1ZmgD2tE1aMJqAn5ok_Ffa__d1oMBonLp3GmAba7UaLssjpkDUTCSsnljTp6vRJE64jBThuoqscsX7Cjnujm7T5FH6dxr-3RHGlqpOEvd8ndtMQozhiefEPwXa9JUZZFHz1vwPymj2kqz6d8w077NZbOEJc19m3ceLeA0SEUaE priority: 102 providerName: Elsevier |
Title | Glucosinolate-rich broccoli sprouts protect against oxidative stress and improve adaptations to intense exercise training |
URI | https://dx.doi.org/10.1016/j.redox.2023.102873 https://www.proquest.com/docview/2863295402 https://pubmed.ncbi.nlm.nih.gov/PMC10493800 https://urn.kb.se/resolve?urn=urn:nbn:se:gih:diva-7791 https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-125192 https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-108192 https://doaj.org/article/e0127e9d85bd4b34bf5703d8b40e7ccf |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGJiReEJ8ifFRGmngiU-q4cfKAUAeMwTQeEIW-RXZ86TJVyWhSqf3vuXOSQdBUeOlDekls353v5_j8O8YOTaByRTUAJ3R-SwJ6eqInkR_FEFkBiNE1LRTPv0SnM_l5Ppnvsb4qajeA9Y1LO6onNVstjzY_t2_R4d_8ztUibs3NEVUCJyqCWIW32AGGJkUlDc47vO-m5jiWwjEUCDEOfcQ2qmciuvk5g2jlSP0HQesPUPp3SuWAeNQFq5N77G6HMvm0NYv7bA_KB-x2W3dy-5BtP7pE9aLEzjfg41R4wQ1GMjSKgtf4tnVT847BgeuFLhBD8mpTWMcSztvzJVyXlhfumwRwbfVVu6lf86bihUuMB94XdOJ9JYpHbHby4du7U7-rweBnqMKGEuAEaAiVBgAtFEgbmCCPkhhU3gEmDRZyCQkOrUU0phByZUGUj1WQifAx2y-rEp4wTtVjNASRsDRtgDKZCTObSSszlWUGPCb6sU6zjqCcWrdM-0y0y9QpKCUFpa2CPPb6-qarlp9jt_gxKfFalMi13YVqtUg7X02BtuMhsfHEWGlCaXKiKbOxkQFgS3OPRb0JpB1OafEHPqrY_faXvcGk6MW0NaNLqNZ1KuIopB3XQHgsHljSoKnDf8riwvGB44o6CRH4e-ywNbrBPe-L71PXvQWKK5WMPfZql9iyJHpxBPbiH4LVak30sij49D_69YzdoZFoj3E-Z_vNag0vEM81ZsQOpmdff5yN3PcQ_P00Px45v_0FFI1SjQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL4inC00gVJ5ZNHW-cHNtC2ULbCy3am2XHk61Rlax2s1L775lxkhXhsEhck3HieB7-HI-_YWzPxqpUVANwQue3JKCn52aSjtIMUicAMbqhheLZeTq9lN9mk9kOO-rPwlBaZRf725geonV3ZdyN5njh_fiHELiSwukPQXTgubvD7iIaUOSdJ7PDzY8WdCMpAisBNRhRi559KOR5ES_nzSeqIk40BplKBjNUIPIfTFR_ANG_0ygHZKNhgjp-xB52yJIftJ1_zHagesLutbUmb5-y268hOd1XuJZtYITh74pbnL3QEDxf4dvWzYp3rA3czI1H3MjrG-8CMzhvz5RwUznuw38I4MaZRbuRv-JNzX1IhgfeF3HiffWJZ-zy-MvF0XTU1V0YFai2hpLeBBhIlAEAIxRIF9u4TPMMVNmBJAMOSgk5Dq1DBKYQZhVxWu6ruBDJc7Zb1RW8YJwqxhiIU-EoVICyhU0KV0gnC1UUFiIm-rHWRUdKTr271n322S8dFKRJQbpVUMQ-bhotWk6O7eKHpMSNKBFqhwv1cq47i9JAW_CQu2xinbSJtCVRk7nMyhiwp2XE0t4E9MA-8VF--9vf9waj0XNpO8ZUUK9XWmRpQrussYhYNrCkQVeHdyp_FTjAcRWdJwj2I7bXGt2gzWf_8yB83hzFlcr3I_Zhm9h1RZTiCObFPwTr5ZooZVHw5f8OyDt2f3pxdqpPT86_v2IP6E57tvM1222Wa3iDIK-xb4MT_wYpfFTB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glucosinolate-rich+broccoli+sprouts+protect+against+oxidative+stress+and+improve+adaptations+to+intense+exercise+training&rft.jtitle=Redox+biology&rft.au=Flockhart%2C+M&rft.au=Nilsson%2C+L+C&rft.au=Tillqvist%2C+E+N&rft.au=Vinge%2C+F&rft.date=2023-11-01&rft.issn=2213-2317&rft.eissn=2213-2317&rft.volume=67&rft.spage=102873&rft_id=info:doi/10.1016%2Fj.redox.2023.102873&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-2317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-2317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-2317&client=summon |