Metabolomics analysis of the effects of chelerythrine on Ustilaginoidea virens

Rice false smut (RFS) caused by Ustilaginoidea virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS with chelerythrine can decrease the germination of fungus spores by 86.7% and induce fungal cell apoptosis. In the present study, the effects of...

Full description

Saved in:
Bibliographic Details
Published inJournal of Pesticide Science Vol. 49; no. 2; pp. 104 - 113
Main Authors Wei, Qinghui, Zhai, Xihai, Song, Weifeng, Li, Zhiyong, Pan, Yaqing, Li, Baoying, Jiao, Zhanli, Shi, Zhenghao, Yu, Jiangtao
Format Journal Article
LanguageEnglish
Published Japan Pesticide Science Society of Japan 20.05.2024
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rice false smut (RFS) caused by Ustilaginoidea virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS with chelerythrine can decrease the germination of fungus spores by 86.7% and induce fungal cell apoptosis. In the present study, the effects of chelerythrine on the metabolism of U. virens explored using metabolomics and analyses of differentially accumulated metabolites and altered metabolic pathways. The top 15 metabolites in random forest analysis were significantly different between groups. In positive ion mode, purine, phenylalanine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, pyrimidine metabolism, and nitrogen metabolism were dominant. Alanine, aspartate, glutamate metabolism, and phenylalanine metabolism were enriched in negative ion mode. Differentially expressed genes and altered metabolic pathways of U. virens were effected by chelerythrine. The findings support future research on the prevention and treatment of RFS by chelerythrine and provide a theoretical basis for targeted drug delivery.
AbstractList Rice false smut (RFS) caused by Ustilaginoide a virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS with chelerythrine can decrease the germination of fungus spores by 86.7% and induce fungal cell apoptosis. In the present study, the effects of chelerythrine on the metabolism of U. virens explored using metabolomics and analyses of differentially accumulated metabolites and altered metabolic pathways. The top 15 metabolites in random forest analysis were significantly different between groups. In positive ion mode, purine, phenylalanine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, pyrimidine metabolism, and nitrogen metabolism were dominant. Alanine, aspartate, glutamate metabolism, and phenylalanine metabolism were enriched in negative ion mode. Differentially expressed genes and altered metabolic pathways of U. virens were effected by chelerythrine. The findings support future research on the prevention and treatment of RFS by chelerythrine and provide a theoretical basis for targeted drug delivery.
Rice false smut (RFS) caused by Ustilaginoidea virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS with chelerythrine can decrease the germination of fungus spores by 86.7% and induce fungal cell apoptosis. In the present study, the effects of chelerythrine on the metabolism of U. virens explored using metabolomics and analyses of differentially accumulated metabolites and altered metabolic pathways. The top 15 metabolites in random forest analysis were significantly different between groups. In positive ion mode, purine, phenylalanine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, pyrimidine metabolism, and nitrogen metabolism were dominant. Alanine, aspartate, glutamate metabolism, and phenylalanine metabolism were enriched in negative ion mode. Differentially expressed genes and altered metabolic pathways of U. virens were effected by chelerythrine. The findings support future research on the prevention and treatment of RFS by chelerythrine and provide a theoretical basis for targeted drug delivery.
Rice false smut (RFS) caused by Ustilaginoidea virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS with chelerythrine can decrease the germination of fungus spores by 86.7% and induce fungal cell apoptosis. In the present study, the effects of chelerythrine on the metabolism of U. virens explored using metabolomics and analyses of differentially accumulated metabolites and altered metabolic pathways. The top 15 metabolites in random forest analysis were significantly different between groups. In positive ion mode, purine, phenylalanine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, pyrimidine metabolism, and nitrogen metabolism were dominant. Alanine, aspartate, glutamate metabolism, and phenylalanine metabolism were enriched in negative ion mode. Differentially expressed genes and altered metabolic pathways of U. virens were effected by chelerythrine. The findings support future research on the prevention and treatment of RFS by chelerythrine and provide a theoretical basis for targeted drug delivery.Rice false smut (RFS) caused by Ustilaginoidea virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS with chelerythrine can decrease the germination of fungus spores by 86.7% and induce fungal cell apoptosis. In the present study, the effects of chelerythrine on the metabolism of U. virens explored using metabolomics and analyses of differentially accumulated metabolites and altered metabolic pathways. The top 15 metabolites in random forest analysis were significantly different between groups. In positive ion mode, purine, phenylalanine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, pyrimidine metabolism, and nitrogen metabolism were dominant. Alanine, aspartate, glutamate metabolism, and phenylalanine metabolism were enriched in negative ion mode. Differentially expressed genes and altered metabolic pathways of U. virens were effected by chelerythrine. The findings support future research on the prevention and treatment of RFS by chelerythrine and provide a theoretical basis for targeted drug delivery.
Rice false smut (RFS) caused by a virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS with chelerythrine can decrease the germination of fungus spores by 86.7% and induce fungal cell apoptosis. In the present study, the effects of chelerythrine on the metabolism of explored using metabolomics and analyses of differentially accumulated metabolites and altered metabolic pathways. The top 15 metabolites in random forest analysis were significantly different between groups. In positive ion mode, purine, phenylalanine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, pyrimidine metabolism, and nitrogen metabolism were dominant. Alanine, aspartate, glutamate metabolism, and phenylalanine metabolism were enriched in negative ion mode. Differentially expressed genes and altered metabolic pathways of were effected by chelerythrine. The findings support future research on the prevention and treatment of RFS by chelerythrine and provide a theoretical basis for targeted drug delivery.
ArticleNumber D23-065
Author Song, Weifeng
Pan, Yaqing
Jiao, Zhanli
Shi, Zhenghao
Yu, Jiangtao
Wei, Qinghui
Zhai, Xihai
Li, Baoying
Li, Zhiyong
Author_xml – sequence: 1
  fullname: Wei, Qinghui
  organization: Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences
– sequence: 2
  fullname: Zhai, Xihai
  organization: Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences
– sequence: 3
  fullname: Song, Weifeng
  organization: Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences
– sequence: 4
  fullname: Li, Zhiyong
  organization: Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences
– sequence: 5
  fullname: Pan, Yaqing
  organization: Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences
– sequence: 6
  fullname: Li, Baoying
  organization: Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences
– sequence: 7
  fullname: Jiao, Zhanli
  organization: Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences
– sequence: 8
  fullname: Shi, Zhenghao
  organization: Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences
– sequence: 9
  fullname: Yu, Jiangtao
  organization: Yongyuan Town People's Government of Daowai District
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38882710$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vEzEQXaEi-kHvnNBKXLhsGX_srn1CqNAWqcCFStysiTObOHLsYG8q5d_jNGkKPXCxPfJ7b57n-bQ6CjFQVb1hcMFaJT8sVpRHZ_PFZy4a6NoX1QkTUjeguTh6OKumVfrXcXWe8wIAWC96rbtX1bFQSvGewUn1_RuNOIk-LotSjQH9Jrtcx6Ee51TTMJAdH0o7J09pM86TC1THUN-V5h5nLkQ3JazvXaKQX1cvB_SZzvf7WXV39eXn5U1z--P66-Wn28b2rB8bFGqKPXEUErieyE4DwcROSfJ2aO3Q4bTnaiDZtcg0AUlU2mpEa4vxCRNn1ced7mo9WdLUUhgTerNKbolpYyI68-9NcHMzi_eGMdZ30EJReL9XSPH3ukzSLF225D0GiutsBHSa9VLxtkDfPYMu4jqVURUU46oFLuQW9fZvSwcvj7MuANgBbIo5JxoOEAZmm6h5TNSURE1JtFC6ZxTrRhxd3D7K-f8Rr3fE4sRZ9DH4EtuTb7sRW441HLg0AFIDL1trgEGpWfk8EjRAX5SudkqLPOKMDp4xlYaenlpLbfh22Vs4AOwck6Eg_gDYsdny
CitedBy_id crossref_primary_10_1051_bioconf_202412707001
Cites_doi 10.1038/nature10962
10.1038/nprot.2011.366
10.1094/PDIS-93-11-1202
10.1016/j.bbagen.2017.01.021
10.1016/j.phytol.2016.07.031
10.3390/ijms22020692
10.1021/jf505609z
10.1248/bpb.b17-00451
10.1007/s11046-021-00550-4
10.1016/j.fgb.2019.04.017
10.1159/000477948
10.1111/jipb.12810
10.1093/bioinformatics/bty528
10.1038/nprot.2012.024
10.3390/microorganisms10061186
10.3892/ol.2021.12870
10.1016/j.pestbp.2020.01.007
10.1016/j.stemcr.2020.12.017
10.1186/s40659-021-00340-8
10.4103/pm.pm_545_16
ContentType Journal Article
Copyright Pesticide Science Society of Japan 2024. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License (https://creativecommons.org/licenses/by-nc-nd/4.0/)
2024 Pesticide Science Society of Japan.
2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Pesticide Science Society of Japan 2024 Pesticide Science Society of Japan
Copyright_xml – notice: Pesticide Science Society of Japan 2024. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License (https://creativecommons.org/licenses/by-nc-nd/4.0/)
– notice: 2024 Pesticide Science Society of Japan.
– notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Pesticide Science Society of Japan 2024 Pesticide Science Society of Japan
CorporateAuthor Heilongjiang Academy of Agricultural Sciences
Yongyuan Town People's Government of Daowai District
Institute of Plant Protection
CorporateAuthor_xml – name: Yongyuan Town People's Government of Daowai District
– name: Institute of Plant Protection
– name: Heilongjiang Academy of Agricultural Sciences
DBID AAYXX
CITATION
NPM
7SS
7ST
7TK
7U7
C1K
SOI
7X8
5PM
DOI 10.1584/jpestics.D23-065
DatabaseName CrossRef
PubMed
Entomology Abstracts (Full archive)
Environment Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Entomology Abstracts
Toxicology Abstracts
Neurosciences Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList


Entomology Abstracts
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1349-0923
EndPage 113
ExternalDocumentID PMC11176050
38882710
10_1584_jpestics_D23_065
cy3jpesc_2024_004902_005_0104_01134409007
article_jpestics_49_2_49_D23_065_article_char_en
Genre Journal Article
GroupedDBID 29L
5GY
AAFWJ
ACGFO
AEGXH
ALMA_UNASSIGNED_HOLDINGS
GX1
HH5
JSF
JSH
P2P
RJT
RNS
2WC
7.U
A8Z
ABDBF
ACIWK
ACPRK
ACUHS
AENEX
AFPKN
AFRAH
B.T
CS3
E3Z
EBD
EBS
ECGQY
EJD
ESX
GROUPED_DOAJ
HYE
JMI
KQ8
MOJWN
N5S
OK1
RPM
RZJ
TKC
TUS
XSB
~8M
AAYXX
CITATION
OVT
M~E
NPM
7SS
7ST
7TK
7U7
C1K
SOI
7X8
5PM
ID FETCH-LOGICAL-c717t-a38da7e2a34029b4690e0bcde425f5cf6ad728fe465a19e0e4a89c9aacc882b13
ISSN 1348-589X
IngestDate Thu Aug 21 18:33:33 EDT 2025
Fri Jul 11 00:16:30 EDT 2025
Mon Jun 30 10:07:24 EDT 2025
Wed Feb 19 02:04:53 EST 2025
Tue Jul 01 03:55:23 EDT 2025
Thu Apr 24 23:03:57 EDT 2025
Thu Jul 10 16:15:02 EDT 2025
Thu Jul 04 14:00:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Ustilaginoidea virens
UPLC-MS/MS
rice false smut
metabolomics
Chelerythrine
Language English
License 2024 Pesticide Science Society of Japan.
This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c717t-a38da7e2a34029b4690e0bcde425f5cf6ad728fe465a19e0e4a89c9aacc882b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://dx.doi.org/10.1584/jpestics.D23-065
PMID 38882710
PQID 3128502345
PQPubID 1976368
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11176050
proquest_miscellaneous_3069174825
proquest_journals_3128502345
pubmed_primary_38882710
crossref_primary_10_1584_jpestics_D23_065
crossref_citationtrail_10_1584_jpestics_D23_065
medicalonline_journals_cy3jpesc_2024_004902_005_0104_01134409007
jstage_primary_article_jpestics_49_2_49_D23_065_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240520
PublicationDateYYYYMMDD 2024-05-20
PublicationDate_xml – month: 5
  year: 2024
  text: 20240520
  day: 20
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
– name: Nakazato 2-28-10, Kita-ku, Tokyo 114-0015, Japan
PublicationTitle Journal of Pesticide Science
PublicationTitleAlternate J. Pestic. Sci.
PublicationYear 2024
Publisher Pesticide Science Society of Japan
Japan Science and Technology Agency
Publisher_xml – name: Pesticide Science Society of Japan
– name: Japan Science and Technology Agency
References 5) M. Chakraborty, S. M. F. Rabby, D. R. Gupta, M. Rahman, S. K. Paul, N. U. Mahmud, A. A. M. Rahat, L. Jankuloski and T. Islam: Natural protein kinase inhibitors, staurosporine, and chelerythrine suppress wheat blast disease caused by magnaporthe oryzae triticum. Microorganisms 10, 1186 (2022).
1) S. A. Brooks, M. M. Anders and K. M. Yeater: Effect of cultural management practices on the severity of false smut and kernel smut of rice. Plant Dis. 93, 1202–1208 (2009).
15) Q. H. Wei, M. Zhao and X. Y. Li: Extraction of Chelerythrine and its Effects on Pathogenic Fungus Spore Germination. Pharmacogn. Mag. 13, 600–606 (2017).
23) M.M Xu: Study on antibacterial mechanism of monoglycerol galactosyl laurate against Bacillus spp. Nanjing agri university (2019).
2) F. Rongtao, W. Jian, L. Daihua, G. Xueshu and Z. Hong: Research progress of rice false Smut (Ustilaginoidea virens) at home and abroad. Zhongguo Nongxue Tongbao 32, 189–194 (2016).
8) Q. H. Wei, D. Z. Cui, X. F. Liu, Y. Y. Chai, N. Zhao, J. Y. Wang and M. Zhao: In vitro antifungal activity and possible mechanisms of action of chelerythrine. Pestic. Biochem. Physiol. 164, 140–148 (2020).
10) J. M. Egan, A. Kaur, H. A. Raja, J. J. Kellogg, N. H. Oberlies and N. B. Cech: Antimicrobial fungal endophytes from the botanical medicine goldenseal (Hydrastis canadensis). Phytochem. Lett. 17, 219–225 (2016).
3) E. Tanaka, T. Ashizawa, R. Sonoda and C. Tanaka: Villosiclava virens gen. nov., comb. nov., teleomorph of Ustilaginoidea virens, the causal agent of rice false smut. Mycotaxon 106, 491–501 (2008).
9) W. Guo, Y. Gao, Z. Yu, Y. Xiao, Z. Zhang and H. Zhang: The adenylate cyclase UvAc1 and phosphodiesterase UvPdeH control the intracellular cAMP level, development, and pathogenicity of the rice false smut fungus Ustilaginoidea virens. Fungal Genet. Biol. 129, 65–73 (2019).
14) J. Chong and J. Xia: MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 34, 4313–4314 (2018).
17) S. Yoshida, T. Honjo, K. Iino, R. Ishibe, S. Leo, T. Shimada, T. Watanabe, M. Ishikawa, K. Maeda, H. Kusuhara, N. Shiraki and S. Kume: Generation of human-induced pluripotent stem cell-derived functional enterocyte-like cells for pharmacokinetic studies. Stem Cell Reports 16, 295–308 (2021).
4) B. Hu, G. Xu, Y. Zheng, F. Tong, P. Qian, X. Pan, X. Zhou and R. Shen: Chelerythrine attenuates renal ischemia/reperfusion-induced myocardial injury by activating CSE/H2S via PKC/NF-κB pathway in diabetic rats. Kidney Blood Press. Res. 42, 379–388 (2017).
7) Y. Zhu, Y. Pan, G. Zhang, Y. Wu, W. Zhong, C. Chu, Y. Qian and G. Zhu: Chelerythrine inhibits human hepatocellular carcinoma metastasis in vitro. Biol. Pharm. Bull. 41, 36–46 (2018).
16) P. A. Chang, W. Z. Qin and J. M. Wei: Phosphatidylcholine and cell cycle. Chin. J. Biochem. Mol. Biol. 22, 947–952 (2006).
25) Y. Jiang, B. Chen, J. Wu, J. Wang and X. Zhang: Effects of 5-aza-2-deoxycytidine on reversing hypermethylation of MEG3 gene promoter and apoptosis in bladder cancer cells. Zhejiang Medical Journal 43(12), 1284–1286, 1294, 1368 (2021).
26) L. Wang and S. Gao: Identification of 5-methylcytosine-related signature for predicting prognosis in ovarian cancer. Biol. Res. 54, 18 (2021).
11) R. Yang, Z. F. Gao, J. Y. Zhao, W. B. Li, L. Zhou and F. Miao: New class of 2-aryl-6-chloro-3,4-dihydroisoquinolinium salts as potential antifungal agents for plant protection: synthesis, bioactivity and structure–activity relationships. J. Agric. Food Chem. 63, 1906–1914 (2015).
6) A. Saavedra, S. Fernández-García, S. Cases, M. Puigdellívol, R. Alcalá-Vida, N. Martín-Flores, J. Alberch, S. Ginés, C. Malagelada and E. Pérez-Navarro: Chelerythrine promotes Ca2+ dependent calpain activation in neuronal cells in a PKC-independent manner. Biochim. Biophys. Acta, Gen. Subj. 1861, 922–935 (2017).
13) M. Yuan, S. B. Breitkopf, X. Yang and J. M. Asara: A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 7, 872–881 (2012).
22) W. D. Bian, A. Chai, S. R. Yu and S. J. Xue: Synthesis and herbicidal activities of 1,3,4-thiadiazole derivatives of 5-(fluoro-substituted phenyl)-2-furamide. Chin. J. Org. Chem. 28, 1475–1478 (2008).
20) H. Tang, X. Shi, P. Zhu, W. Guo, J. Li, B. Yan and S. Zhang: Melatonin inhibits gallbladder cancer cell migration and invasion via ERK-mediated induction of epithelial-to-mesenchymal transition. Oncol. Lett. 22, 609 (2021).
24) F. Feng, F. Yang, W. Rong, X. Wu, J. Zhang, S. Chen, C. He and J.-M. Zhou: A Xanthomonas uridine 5′-monophosphate transferase inhibits plant immune kinases. Nature 485, 114–118 (2012).
21) A. Rossi, M. P. Martins, T. A. Bitencourt, N. T. A. Peres, C. H. L. Rocha, F. M. G. Rocha, J. Neves-da-Rocha, M. E. R. Lopes, P. R. Sanches, J. C. Bortolossi and N. M. Martinez-Rossi: Reassessing the use of undecanoic acid as a therapeutic strategy for treating fungal infections. Mycopathologia 186, 327–340 (2021).
19) M. Valette, M. Rey, F. Gerin, G. Comte and F. Wisniewski-Dyé: A common metabolomic signature is observed upon inoculation of rice roots with various rhizobacteria. J. Integr. Plant Biol. 62, 228–246 (2020).
12) C. A. Sellick, R. Hansen, G. M. Stephens, R. Goodacre and A. J. Dickson: Metabolite extraction from suspension cultured mammalian cells for global metabolite profiling. Nat. Protoc. 6, 1241–1249 (2011).
18) D. Corinti, B. Chiavarino, D. Scuderi, C. Fraschetti, A. Filippi, S. Fornarini and M. E. Crestoni: Molecular properties of bare and microhydrated vitamin B5–calcium complexes. Int. J. Mol. Sci. 22, 692 (2021).
22
23
24
25
26
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 20) H. Tang, X. Shi, P. Zhu, W. Guo, J. Li, B. Yan and S. Zhang: Melatonin inhibits gallbladder cancer cell migration and invasion via ERK-mediated induction of epithelial-to-mesenchymal transition. Oncol. Lett. 22, 609 (2021).
– reference: 16) P. A. Chang, W. Z. Qin and J. M. Wei: Phosphatidylcholine and cell cycle. Chin. J. Biochem. Mol. Biol. 22, 947–952 (2006).
– reference: 8) Q. H. Wei, D. Z. Cui, X. F. Liu, Y. Y. Chai, N. Zhao, J. Y. Wang and M. Zhao: In vitro antifungal activity and possible mechanisms of action of chelerythrine. Pestic. Biochem. Physiol. 164, 140–148 (2020).
– reference: 6) A. Saavedra, S. Fernández-García, S. Cases, M. Puigdellívol, R. Alcalá-Vida, N. Martín-Flores, J. Alberch, S. Ginés, C. Malagelada and E. Pérez-Navarro: Chelerythrine promotes Ca2+ dependent calpain activation in neuronal cells in a PKC-independent manner. Biochim. Biophys. Acta, Gen. Subj. 1861, 922–935 (2017).
– reference: 17) S. Yoshida, T. Honjo, K. Iino, R. Ishibe, S. Leo, T. Shimada, T. Watanabe, M. Ishikawa, K. Maeda, H. Kusuhara, N. Shiraki and S. Kume: Generation of human-induced pluripotent stem cell-derived functional enterocyte-like cells for pharmacokinetic studies. Stem Cell Reports 16, 295–308 (2021).
– reference: 22) W. D. Bian, A. Chai, S. R. Yu and S. J. Xue: Synthesis and herbicidal activities of 1,3,4-thiadiazole derivatives of 5-(fluoro-substituted phenyl)-2-furamide. Chin. J. Org. Chem. 28, 1475–1478 (2008).
– reference: 26) L. Wang and S. Gao: Identification of 5-methylcytosine-related signature for predicting prognosis in ovarian cancer. Biol. Res. 54, 18 (2021).
– reference: 4) B. Hu, G. Xu, Y. Zheng, F. Tong, P. Qian, X. Pan, X. Zhou and R. Shen: Chelerythrine attenuates renal ischemia/reperfusion-induced myocardial injury by activating CSE/H2S via PKC/NF-κB pathway in diabetic rats. Kidney Blood Press. Res. 42, 379–388 (2017).
– reference: 10) J. M. Egan, A. Kaur, H. A. Raja, J. J. Kellogg, N. H. Oberlies and N. B. Cech: Antimicrobial fungal endophytes from the botanical medicine goldenseal (Hydrastis canadensis). Phytochem. Lett. 17, 219–225 (2016).
– reference: 1) S. A. Brooks, M. M. Anders and K. M. Yeater: Effect of cultural management practices on the severity of false smut and kernel smut of rice. Plant Dis. 93, 1202–1208 (2009).
– reference: 24) F. Feng, F. Yang, W. Rong, X. Wu, J. Zhang, S. Chen, C. He and J.-M. Zhou: A Xanthomonas uridine 5′-monophosphate transferase inhibits plant immune kinases. Nature 485, 114–118 (2012).
– reference: 9) W. Guo, Y. Gao, Z. Yu, Y. Xiao, Z. Zhang and H. Zhang: The adenylate cyclase UvAc1 and phosphodiesterase UvPdeH control the intracellular cAMP level, development, and pathogenicity of the rice false smut fungus Ustilaginoidea virens. Fungal Genet. Biol. 129, 65–73 (2019).
– reference: 13) M. Yuan, S. B. Breitkopf, X. Yang and J. M. Asara: A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 7, 872–881 (2012).
– reference: 3) E. Tanaka, T. Ashizawa, R. Sonoda and C. Tanaka: Villosiclava virens gen. nov., comb. nov., teleomorph of Ustilaginoidea virens, the causal agent of rice false smut. Mycotaxon 106, 491–501 (2008).
– reference: 7) Y. Zhu, Y. Pan, G. Zhang, Y. Wu, W. Zhong, C. Chu, Y. Qian and G. Zhu: Chelerythrine inhibits human hepatocellular carcinoma metastasis in vitro. Biol. Pharm. Bull. 41, 36–46 (2018).
– reference: 14) J. Chong and J. Xia: MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 34, 4313–4314 (2018).
– reference: 15) Q. H. Wei, M. Zhao and X. Y. Li: Extraction of Chelerythrine and its Effects on Pathogenic Fungus Spore Germination. Pharmacogn. Mag. 13, 600–606 (2017).
– reference: 23) M.M Xu: Study on antibacterial mechanism of monoglycerol galactosyl laurate against Bacillus spp. Nanjing agri university (2019).
– reference: 19) M. Valette, M. Rey, F. Gerin, G. Comte and F. Wisniewski-Dyé: A common metabolomic signature is observed upon inoculation of rice roots with various rhizobacteria. J. Integr. Plant Biol. 62, 228–246 (2020).
– reference: 25) Y. Jiang, B. Chen, J. Wu, J. Wang and X. Zhang: Effects of 5-aza-2-deoxycytidine on reversing hypermethylation of MEG3 gene promoter and apoptosis in bladder cancer cells. Zhejiang Medical Journal 43(12), 1284–1286, 1294, 1368 (2021).
– reference: 12) C. A. Sellick, R. Hansen, G. M. Stephens, R. Goodacre and A. J. Dickson: Metabolite extraction from suspension cultured mammalian cells for global metabolite profiling. Nat. Protoc. 6, 1241–1249 (2011).
– reference: 5) M. Chakraborty, S. M. F. Rabby, D. R. Gupta, M. Rahman, S. K. Paul, N. U. Mahmud, A. A. M. Rahat, L. Jankuloski and T. Islam: Natural protein kinase inhibitors, staurosporine, and chelerythrine suppress wheat blast disease caused by magnaporthe oryzae triticum. Microorganisms 10, 1186 (2022).
– reference: 21) A. Rossi, M. P. Martins, T. A. Bitencourt, N. T. A. Peres, C. H. L. Rocha, F. M. G. Rocha, J. Neves-da-Rocha, M. E. R. Lopes, P. R. Sanches, J. C. Bortolossi and N. M. Martinez-Rossi: Reassessing the use of undecanoic acid as a therapeutic strategy for treating fungal infections. Mycopathologia 186, 327–340 (2021).
– reference: 18) D. Corinti, B. Chiavarino, D. Scuderi, C. Fraschetti, A. Filippi, S. Fornarini and M. E. Crestoni: Molecular properties of bare and microhydrated vitamin B5–calcium complexes. Int. J. Mol. Sci. 22, 692 (2021).
– reference: 11) R. Yang, Z. F. Gao, J. Y. Zhao, W. B. Li, L. Zhou and F. Miao: New class of 2-aryl-6-chloro-3,4-dihydroisoquinolinium salts as potential antifungal agents for plant protection: synthesis, bioactivity and structure–activity relationships. J. Agric. Food Chem. 63, 1906–1914 (2015).
– reference: 2) F. Rongtao, W. Jian, L. Daihua, G. Xueshu and Z. Hong: Research progress of rice false Smut (Ustilaginoidea virens) at home and abroad. Zhongguo Nongxue Tongbao 32, 189–194 (2016).
– ident: 2
– ident: 24
  doi: 10.1038/nature10962
– ident: 12
  doi: 10.1038/nprot.2011.366
– ident: 1
  doi: 10.1094/PDIS-93-11-1202
– ident: 6
  doi: 10.1016/j.bbagen.2017.01.021
– ident: 16
– ident: 10
  doi: 10.1016/j.phytol.2016.07.031
– ident: 18
  doi: 10.3390/ijms22020692
– ident: 11
  doi: 10.1021/jf505609z
– ident: 7
  doi: 10.1248/bpb.b17-00451
– ident: 21
  doi: 10.1007/s11046-021-00550-4
– ident: 9
  doi: 10.1016/j.fgb.2019.04.017
– ident: 4
  doi: 10.1159/000477948
– ident: 19
  doi: 10.1111/jipb.12810
– ident: 22
– ident: 3
– ident: 14
  doi: 10.1093/bioinformatics/bty528
– ident: 13
  doi: 10.1038/nprot.2012.024
– ident: 5
  doi: 10.3390/microorganisms10061186
– ident: 20
  doi: 10.3892/ol.2021.12870
– ident: 8
  doi: 10.1016/j.pestbp.2020.01.007
– ident: 17
  doi: 10.1016/j.stemcr.2020.12.017
– ident: 26
  doi: 10.1186/s40659-021-00340-8
– ident: 15
  doi: 10.4103/pm.pm_545_16
– ident: 25
– ident: 23
SSID ssj0001737996
ssj0033558
ssib003115495
ssib023157167
ssib023167461
ssib044745361
ssib020475958
ssib008501316
Score 2.3365886
Snippet Rice false smut (RFS) caused by Ustilaginoidea virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS with...
Rice false smut (RFS) caused by a virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS with...
Rice false smut (RFS) caused by Ustilaginoide a virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS...
SourceID pubmedcentral
proquest
pubmed
crossref
medicalonline
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104
SubjectTerms Alanine
Apoptosis
Biosynthesis
Chelerythrine
Drug delivery
Drug metabolism
False smut
Germination
Metabolic pathways
Metabolites
Metabolomics
Negative ions
Nitrogen metabolism
Phenylalanine
Positive ions
Regular
rice false smut
Spores
Tryptophan
Tyrosine
UPLC-MS/MS
Ustilaginoidea virens
Title Metabolomics analysis of the effects of chelerythrine on Ustilaginoidea virens
URI https://www.jstage.jst.go.jp/article/jpestics/49/2/49_D23-065/_article/-char/en
http://mol.medicalonline.jp/en/journal/download?GoodsID=cy3jpesc/2024/004902/005&name=0104-0113e
https://www.ncbi.nlm.nih.gov/pubmed/38882710
https://www.proquest.com/docview/3128502345
https://www.proquest.com/docview/3069174825
https://pubmed.ncbi.nlm.nih.gov/PMC11176050
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Pesticide Science, 2024/05/20, Vol.49(2), pp.104-113
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKhtAQQnwMKIwpSLwg1C1xnK8n6L40Teo0pE2aeIkcx6FFXTptLVJ54F_hX-V3iZMm3YRgL27rnFMn9_Pd2b47M_Y-KeIVud-DrZH2hOayJ-0IwlCLzJFKu3YRKDw49g_PxNG5d97p_G54Lc2myZb6eWtcyV24ijrwlaJk_4Oz9U1Rge_gL0pwGOU_8Xigp-DhmAKLKdXyIr3IkqcGeXvqq_l0SKF-tD1whoE9pvOJJqNUy48_IPfMqt1NO_WE8nAo0FVyYLGZU3gCfIHyG85GjRXoovp8hC_1-o1x_EWTTBtdSV5ABeXX4Wg-MZVm_YEL2jrndo2YG52o3U3RwyMo_LwhXV1BYV7F2blQPlUd-WyVQceVSC6zmBro8YZ8NWcVG1XtlGGsN7QAjCrSApdF16639jgdYOE1ScHHy4sCFW6IOUZgXGvbmbdPBrvQBAEmfPY9tsoxD4EgXe3v7O0cLJbxAjeIKGNhqfxdylZfzPHNk5qdcfRoe7k_a-xB9ecto-j-d8wLKOHDo4tyr67MmXLbFGjZk7dhGp0-YY8NVqx-CdCnrKPzZ-xh_9uVyeuin7PjJlStCqrWJLMAVctAlX62oGpNcqsNVauE6jo7O9g_3T3smaM8eipwgmlPumEqA0gCV9g8SmhNRtuJSjVURuapzJdpwMNMC9-TTqRtLWQYqUhKpfCGEsd9wVbySa5fMctPUyF9V0oRKqFDkUhuayelc9YSN5Nel21X7zJWJs89Hbcyjmm-C0bEFSNiMCIGI7rsQ93isszx8hfaTyV7akoz-heUIoo5FaZFTUBhlJBaXfa5xdfYCJTrWM1duomKaZjFxZ48x4cX05oJCoBK2BGM-i7bqKCwaO3C0vRggQv08V19GcqCdgBlricz0Nh-5AQi5KB5WSKnfo4Ki10WtjBVE1Ai-vaVfDQsEtJXo-T13Zu-YWsL4bLBVqZXM_0W5v402TRDbrNYLkM5-LX_Bx5gCIk
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolomics+analysis+of+the+effects+of+chelerythrine+on+Ustilaginoidea+virens&rft.jtitle=Journal+of+Pesticide+Science&rft.au=Wei%2C+Qinghui&rft.au=Zhai%2C+Xihai&rft.au=Song%2C+Weifeng&rft.au=Li%2C+Zhiyong&rft.date=2024-05-20&rft.pub=Pesticide+Science+Society+of+Japan&rft.issn=1348-589X&rft.eissn=1349-0923&rft.volume=49&rft.issue=2&rft.spage=104&rft.epage=113&rft_id=info:doi/10.1584%2Fjpestics.D23-065&rft_id=info%3Apmid%2F38882710&rft.externalDocID=PMC11176050
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1348-589X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1348-589X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1348-589X&client=summon