Metabolomics analysis of the effects of chelerythrine on Ustilaginoidea virens
Rice false smut (RFS) caused by Ustilaginoidea virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS with chelerythrine can decrease the germination of fungus spores by 86.7% and induce fungal cell apoptosis. In the present study, the effects of...
Saved in:
Published in | Journal of Pesticide Science Vol. 49; no. 2; pp. 104 - 113 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
Pesticide Science Society of Japan
20.05.2024
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rice false smut (RFS) caused by Ustilaginoidea virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS with chelerythrine can decrease the germination of fungus spores by 86.7% and induce fungal cell apoptosis. In the present study, the effects of chelerythrine on the metabolism of U. virens explored using metabolomics and analyses of differentially accumulated metabolites and altered metabolic pathways. The top 15 metabolites in random forest analysis were significantly different between groups. In positive ion mode, purine, phenylalanine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, pyrimidine metabolism, and nitrogen metabolism were dominant. Alanine, aspartate, glutamate metabolism, and phenylalanine metabolism were enriched in negative ion mode. Differentially expressed genes and altered metabolic pathways of U. virens were effected by chelerythrine. The findings support future research on the prevention and treatment of RFS by chelerythrine and provide a theoretical basis for targeted drug delivery. |
---|---|
AbstractList | Rice false smut (RFS) caused by
Ustilaginoide
a virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS with chelerythrine can decrease the germination of fungus spores by 86.7% and induce fungal cell apoptosis. In the present study, the effects of chelerythrine on the metabolism of
U. virens
explored using metabolomics and analyses of differentially accumulated metabolites and altered metabolic pathways. The top 15 metabolites in random forest analysis were significantly different between groups. In positive ion mode, purine, phenylalanine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, pyrimidine metabolism, and nitrogen metabolism were dominant. Alanine, aspartate, glutamate metabolism, and phenylalanine metabolism were enriched in negative ion mode. Differentially expressed genes and altered metabolic pathways of
U. virens
were effected by chelerythrine. The findings support future research on the prevention and treatment of RFS by chelerythrine and provide a theoretical basis for targeted drug delivery. Rice false smut (RFS) caused by Ustilaginoidea virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS with chelerythrine can decrease the germination of fungus spores by 86.7% and induce fungal cell apoptosis. In the present study, the effects of chelerythrine on the metabolism of U. virens explored using metabolomics and analyses of differentially accumulated metabolites and altered metabolic pathways. The top 15 metabolites in random forest analysis were significantly different between groups. In positive ion mode, purine, phenylalanine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, pyrimidine metabolism, and nitrogen metabolism were dominant. Alanine, aspartate, glutamate metabolism, and phenylalanine metabolism were enriched in negative ion mode. Differentially expressed genes and altered metabolic pathways of U. virens were effected by chelerythrine. The findings support future research on the prevention and treatment of RFS by chelerythrine and provide a theoretical basis for targeted drug delivery. Rice false smut (RFS) caused by Ustilaginoidea virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS with chelerythrine can decrease the germination of fungus spores by 86.7% and induce fungal cell apoptosis. In the present study, the effects of chelerythrine on the metabolism of U. virens explored using metabolomics and analyses of differentially accumulated metabolites and altered metabolic pathways. The top 15 metabolites in random forest analysis were significantly different between groups. In positive ion mode, purine, phenylalanine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, pyrimidine metabolism, and nitrogen metabolism were dominant. Alanine, aspartate, glutamate metabolism, and phenylalanine metabolism were enriched in negative ion mode. Differentially expressed genes and altered metabolic pathways of U. virens were effected by chelerythrine. The findings support future research on the prevention and treatment of RFS by chelerythrine and provide a theoretical basis for targeted drug delivery.Rice false smut (RFS) caused by Ustilaginoidea virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS with chelerythrine can decrease the germination of fungus spores by 86.7% and induce fungal cell apoptosis. In the present study, the effects of chelerythrine on the metabolism of U. virens explored using metabolomics and analyses of differentially accumulated metabolites and altered metabolic pathways. The top 15 metabolites in random forest analysis were significantly different between groups. In positive ion mode, purine, phenylalanine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, pyrimidine metabolism, and nitrogen metabolism were dominant. Alanine, aspartate, glutamate metabolism, and phenylalanine metabolism were enriched in negative ion mode. Differentially expressed genes and altered metabolic pathways of U. virens were effected by chelerythrine. The findings support future research on the prevention and treatment of RFS by chelerythrine and provide a theoretical basis for targeted drug delivery. Rice false smut (RFS) caused by a virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS with chelerythrine can decrease the germination of fungus spores by 86.7% and induce fungal cell apoptosis. In the present study, the effects of chelerythrine on the metabolism of explored using metabolomics and analyses of differentially accumulated metabolites and altered metabolic pathways. The top 15 metabolites in random forest analysis were significantly different between groups. In positive ion mode, purine, phenylalanine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, pyrimidine metabolism, and nitrogen metabolism were dominant. Alanine, aspartate, glutamate metabolism, and phenylalanine metabolism were enriched in negative ion mode. Differentially expressed genes and altered metabolic pathways of were effected by chelerythrine. The findings support future research on the prevention and treatment of RFS by chelerythrine and provide a theoretical basis for targeted drug delivery. |
ArticleNumber | D23-065 |
Author | Song, Weifeng Pan, Yaqing Jiao, Zhanli Shi, Zhenghao Yu, Jiangtao Wei, Qinghui Zhai, Xihai Li, Baoying Li, Zhiyong |
Author_xml | – sequence: 1 fullname: Wei, Qinghui organization: Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences – sequence: 2 fullname: Zhai, Xihai organization: Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences – sequence: 3 fullname: Song, Weifeng organization: Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences – sequence: 4 fullname: Li, Zhiyong organization: Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences – sequence: 5 fullname: Pan, Yaqing organization: Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences – sequence: 6 fullname: Li, Baoying organization: Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences – sequence: 7 fullname: Jiao, Zhanli organization: Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences – sequence: 8 fullname: Shi, Zhenghao organization: Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences – sequence: 9 fullname: Yu, Jiangtao organization: Yongyuan Town People's Government of Daowai District |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38882710$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1vEzEQXaEi-kHvnNBKXLhsGX_srn1CqNAWqcCFStysiTObOHLsYG8q5d_jNGkKPXCxPfJ7b57n-bQ6CjFQVb1hcMFaJT8sVpRHZ_PFZy4a6NoX1QkTUjeguTh6OKumVfrXcXWe8wIAWC96rbtX1bFQSvGewUn1_RuNOIk-LotSjQH9Jrtcx6Ee51TTMJAdH0o7J09pM86TC1THUN-V5h5nLkQ3JazvXaKQX1cvB_SZzvf7WXV39eXn5U1z--P66-Wn28b2rB8bFGqKPXEUErieyE4DwcROSfJ2aO3Q4bTnaiDZtcg0AUlU2mpEa4vxCRNn1ced7mo9WdLUUhgTerNKbolpYyI68-9NcHMzi_eGMdZ30EJReL9XSPH3ukzSLF225D0GiutsBHSa9VLxtkDfPYMu4jqVURUU46oFLuQW9fZvSwcvj7MuANgBbIo5JxoOEAZmm6h5TNSURE1JtFC6ZxTrRhxd3D7K-f8Rr3fE4sRZ9DH4EtuTb7sRW441HLg0AFIDL1trgEGpWfk8EjRAX5SudkqLPOKMDp4xlYaenlpLbfh22Vs4AOwck6Eg_gDYsdny |
CitedBy_id | crossref_primary_10_1051_bioconf_202412707001 |
Cites_doi | 10.1038/nature10962 10.1038/nprot.2011.366 10.1094/PDIS-93-11-1202 10.1016/j.bbagen.2017.01.021 10.1016/j.phytol.2016.07.031 10.3390/ijms22020692 10.1021/jf505609z 10.1248/bpb.b17-00451 10.1007/s11046-021-00550-4 10.1016/j.fgb.2019.04.017 10.1159/000477948 10.1111/jipb.12810 10.1093/bioinformatics/bty528 10.1038/nprot.2012.024 10.3390/microorganisms10061186 10.3892/ol.2021.12870 10.1016/j.pestbp.2020.01.007 10.1016/j.stemcr.2020.12.017 10.1186/s40659-021-00340-8 10.4103/pm.pm_545_16 |
ContentType | Journal Article |
Copyright | Pesticide Science Society of Japan 2024. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License (https://creativecommons.org/licenses/by-nc-nd/4.0/) 2024 Pesticide Science Society of Japan. 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 Pesticide Science Society of Japan 2024 Pesticide Science Society of Japan |
Copyright_xml | – notice: Pesticide Science Society of Japan 2024. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License (https://creativecommons.org/licenses/by-nc-nd/4.0/) – notice: 2024 Pesticide Science Society of Japan. – notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 Pesticide Science Society of Japan 2024 Pesticide Science Society of Japan |
CorporateAuthor | Heilongjiang Academy of Agricultural Sciences Yongyuan Town People's Government of Daowai District Institute of Plant Protection |
CorporateAuthor_xml | – name: Yongyuan Town People's Government of Daowai District – name: Institute of Plant Protection – name: Heilongjiang Academy of Agricultural Sciences |
DBID | AAYXX CITATION NPM 7SS 7ST 7TK 7U7 C1K SOI 7X8 5PM |
DOI | 10.1584/jpestics.D23-065 |
DatabaseName | CrossRef PubMed Entomology Abstracts (Full archive) Environment Abstracts Neurosciences Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Entomology Abstracts Toxicology Abstracts Neurosciences Abstracts Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Entomology Abstracts MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1349-0923 |
EndPage | 113 |
ExternalDocumentID | PMC11176050 38882710 10_1584_jpestics_D23_065 cy3jpesc_2024_004902_005_0104_01134409007 article_jpestics_49_2_49_D23_065_article_char_en |
Genre | Journal Article |
GroupedDBID | 29L 5GY AAFWJ ACGFO AEGXH ALMA_UNASSIGNED_HOLDINGS GX1 HH5 JSF JSH P2P RJT RNS 2WC 7.U A8Z ABDBF ACIWK ACPRK ACUHS AENEX AFPKN AFRAH B.T CS3 E3Z EBD EBS ECGQY EJD ESX GROUPED_DOAJ HYE JMI KQ8 MOJWN N5S OK1 RPM RZJ TKC TUS XSB ~8M AAYXX CITATION OVT M~E NPM 7SS 7ST 7TK 7U7 C1K SOI 7X8 5PM |
ID | FETCH-LOGICAL-c717t-a38da7e2a34029b4690e0bcde425f5cf6ad728fe465a19e0e4a89c9aacc882b13 |
ISSN | 1348-589X |
IngestDate | Thu Aug 21 18:33:33 EDT 2025 Fri Jul 11 00:16:30 EDT 2025 Mon Jun 30 10:07:24 EDT 2025 Wed Feb 19 02:04:53 EST 2025 Tue Jul 01 03:55:23 EDT 2025 Thu Apr 24 23:03:57 EDT 2025 Thu Jul 10 16:15:02 EDT 2025 Thu Jul 04 14:00:22 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Ustilaginoidea virens UPLC-MS/MS rice false smut metabolomics Chelerythrine |
Language | English |
License | 2024 Pesticide Science Society of Japan. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c717t-a38da7e2a34029b4690e0bcde425f5cf6ad728fe465a19e0e4a89c9aacc882b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1584/jpestics.D23-065 |
PMID | 38882710 |
PQID | 3128502345 |
PQPubID | 1976368 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11176050 proquest_miscellaneous_3069174825 proquest_journals_3128502345 pubmed_primary_38882710 crossref_primary_10_1584_jpestics_D23_065 crossref_citationtrail_10_1584_jpestics_D23_065 medicalonline_journals_cy3jpesc_2024_004902_005_0104_01134409007 jstage_primary_article_jpestics_49_2_49_D23_065_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240520 |
PublicationDateYYYYMMDD | 2024-05-20 |
PublicationDate_xml | – month: 5 year: 2024 text: 20240520 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo – name: Nakazato 2-28-10, Kita-ku, Tokyo 114-0015, Japan |
PublicationTitle | Journal of Pesticide Science |
PublicationTitleAlternate | J. Pestic. Sci. |
PublicationYear | 2024 |
Publisher | Pesticide Science Society of Japan Japan Science and Technology Agency |
Publisher_xml | – name: Pesticide Science Society of Japan – name: Japan Science and Technology Agency |
References | 5) M. Chakraborty, S. M. F. Rabby, D. R. Gupta, M. Rahman, S. K. Paul, N. U. Mahmud, A. A. M. Rahat, L. Jankuloski and T. Islam: Natural protein kinase inhibitors, staurosporine, and chelerythrine suppress wheat blast disease caused by magnaporthe oryzae triticum. Microorganisms 10, 1186 (2022). 1) S. A. Brooks, M. M. Anders and K. M. Yeater: Effect of cultural management practices on the severity of false smut and kernel smut of rice. Plant Dis. 93, 1202–1208 (2009). 15) Q. H. Wei, M. Zhao and X. Y. Li: Extraction of Chelerythrine and its Effects on Pathogenic Fungus Spore Germination. Pharmacogn. Mag. 13, 600–606 (2017). 23) M.M Xu: Study on antibacterial mechanism of monoglycerol galactosyl laurate against Bacillus spp. Nanjing agri university (2019). 2) F. Rongtao, W. Jian, L. Daihua, G. Xueshu and Z. Hong: Research progress of rice false Smut (Ustilaginoidea virens) at home and abroad. Zhongguo Nongxue Tongbao 32, 189–194 (2016). 8) Q. H. Wei, D. Z. Cui, X. F. Liu, Y. Y. Chai, N. Zhao, J. Y. Wang and M. Zhao: In vitro antifungal activity and possible mechanisms of action of chelerythrine. Pestic. Biochem. Physiol. 164, 140–148 (2020). 10) J. M. Egan, A. Kaur, H. A. Raja, J. J. Kellogg, N. H. Oberlies and N. B. Cech: Antimicrobial fungal endophytes from the botanical medicine goldenseal (Hydrastis canadensis). Phytochem. Lett. 17, 219–225 (2016). 3) E. Tanaka, T. Ashizawa, R. Sonoda and C. Tanaka: Villosiclava virens gen. nov., comb. nov., teleomorph of Ustilaginoidea virens, the causal agent of rice false smut. Mycotaxon 106, 491–501 (2008). 9) W. Guo, Y. Gao, Z. Yu, Y. Xiao, Z. Zhang and H. Zhang: The adenylate cyclase UvAc1 and phosphodiesterase UvPdeH control the intracellular cAMP level, development, and pathogenicity of the rice false smut fungus Ustilaginoidea virens. Fungal Genet. Biol. 129, 65–73 (2019). 14) J. Chong and J. Xia: MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 34, 4313–4314 (2018). 17) S. Yoshida, T. Honjo, K. Iino, R. Ishibe, S. Leo, T. Shimada, T. Watanabe, M. Ishikawa, K. Maeda, H. Kusuhara, N. Shiraki and S. Kume: Generation of human-induced pluripotent stem cell-derived functional enterocyte-like cells for pharmacokinetic studies. Stem Cell Reports 16, 295–308 (2021). 4) B. Hu, G. Xu, Y. Zheng, F. Tong, P. Qian, X. Pan, X. Zhou and R. Shen: Chelerythrine attenuates renal ischemia/reperfusion-induced myocardial injury by activating CSE/H2S via PKC/NF-κB pathway in diabetic rats. Kidney Blood Press. Res. 42, 379–388 (2017). 7) Y. Zhu, Y. Pan, G. Zhang, Y. Wu, W. Zhong, C. Chu, Y. Qian and G. Zhu: Chelerythrine inhibits human hepatocellular carcinoma metastasis in vitro. Biol. Pharm. Bull. 41, 36–46 (2018). 16) P. A. Chang, W. Z. Qin and J. M. Wei: Phosphatidylcholine and cell cycle. Chin. J. Biochem. Mol. Biol. 22, 947–952 (2006). 25) Y. Jiang, B. Chen, J. Wu, J. Wang and X. Zhang: Effects of 5-aza-2-deoxycytidine on reversing hypermethylation of MEG3 gene promoter and apoptosis in bladder cancer cells. Zhejiang Medical Journal 43(12), 1284–1286, 1294, 1368 (2021). 26) L. Wang and S. Gao: Identification of 5-methylcytosine-related signature for predicting prognosis in ovarian cancer. Biol. Res. 54, 18 (2021). 11) R. Yang, Z. F. Gao, J. Y. Zhao, W. B. Li, L. Zhou and F. Miao: New class of 2-aryl-6-chloro-3,4-dihydroisoquinolinium salts as potential antifungal agents for plant protection: synthesis, bioactivity and structure–activity relationships. J. Agric. Food Chem. 63, 1906–1914 (2015). 6) A. Saavedra, S. Fernández-García, S. Cases, M. Puigdellívol, R. Alcalá-Vida, N. Martín-Flores, J. Alberch, S. Ginés, C. Malagelada and E. Pérez-Navarro: Chelerythrine promotes Ca2+ dependent calpain activation in neuronal cells in a PKC-independent manner. Biochim. Biophys. Acta, Gen. Subj. 1861, 922–935 (2017). 13) M. Yuan, S. B. Breitkopf, X. Yang and J. M. Asara: A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 7, 872–881 (2012). 22) W. D. Bian, A. Chai, S. R. Yu and S. J. Xue: Synthesis and herbicidal activities of 1,3,4-thiadiazole derivatives of 5-(fluoro-substituted phenyl)-2-furamide. Chin. J. Org. Chem. 28, 1475–1478 (2008). 20) H. Tang, X. Shi, P. Zhu, W. Guo, J. Li, B. Yan and S. Zhang: Melatonin inhibits gallbladder cancer cell migration and invasion via ERK-mediated induction of epithelial-to-mesenchymal transition. Oncol. Lett. 22, 609 (2021). 24) F. Feng, F. Yang, W. Rong, X. Wu, J. Zhang, S. Chen, C. He and J.-M. Zhou: A Xanthomonas uridine 5′-monophosphate transferase inhibits plant immune kinases. Nature 485, 114–118 (2012). 21) A. Rossi, M. P. Martins, T. A. Bitencourt, N. T. A. Peres, C. H. L. Rocha, F. M. G. Rocha, J. Neves-da-Rocha, M. E. R. Lopes, P. R. Sanches, J. C. Bortolossi and N. M. Martinez-Rossi: Reassessing the use of undecanoic acid as a therapeutic strategy for treating fungal infections. Mycopathologia 186, 327–340 (2021). 19) M. Valette, M. Rey, F. Gerin, G. Comte and F. Wisniewski-Dyé: A common metabolomic signature is observed upon inoculation of rice roots with various rhizobacteria. J. Integr. Plant Biol. 62, 228–246 (2020). 12) C. A. Sellick, R. Hansen, G. M. Stephens, R. Goodacre and A. J. Dickson: Metabolite extraction from suspension cultured mammalian cells for global metabolite profiling. Nat. Protoc. 6, 1241–1249 (2011). 18) D. Corinti, B. Chiavarino, D. Scuderi, C. Fraschetti, A. Filippi, S. Fornarini and M. E. Crestoni: Molecular properties of bare and microhydrated vitamin B5–calcium complexes. Int. J. Mol. Sci. 22, 692 (2021). 22 23 24 25 26 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 20) H. Tang, X. Shi, P. Zhu, W. Guo, J. Li, B. Yan and S. Zhang: Melatonin inhibits gallbladder cancer cell migration and invasion via ERK-mediated induction of epithelial-to-mesenchymal transition. Oncol. Lett. 22, 609 (2021). – reference: 16) P. A. Chang, W. Z. Qin and J. M. Wei: Phosphatidylcholine and cell cycle. Chin. J. Biochem. Mol. Biol. 22, 947–952 (2006). – reference: 8) Q. H. Wei, D. Z. Cui, X. F. Liu, Y. Y. Chai, N. Zhao, J. Y. Wang and M. Zhao: In vitro antifungal activity and possible mechanisms of action of chelerythrine. Pestic. Biochem. Physiol. 164, 140–148 (2020). – reference: 6) A. Saavedra, S. Fernández-García, S. Cases, M. Puigdellívol, R. Alcalá-Vida, N. Martín-Flores, J. Alberch, S. Ginés, C. Malagelada and E. Pérez-Navarro: Chelerythrine promotes Ca2+ dependent calpain activation in neuronal cells in a PKC-independent manner. Biochim. Biophys. Acta, Gen. Subj. 1861, 922–935 (2017). – reference: 17) S. Yoshida, T. Honjo, K. Iino, R. Ishibe, S. Leo, T. Shimada, T. Watanabe, M. Ishikawa, K. Maeda, H. Kusuhara, N. Shiraki and S. Kume: Generation of human-induced pluripotent stem cell-derived functional enterocyte-like cells for pharmacokinetic studies. Stem Cell Reports 16, 295–308 (2021). – reference: 22) W. D. Bian, A. Chai, S. R. Yu and S. J. Xue: Synthesis and herbicidal activities of 1,3,4-thiadiazole derivatives of 5-(fluoro-substituted phenyl)-2-furamide. Chin. J. Org. Chem. 28, 1475–1478 (2008). – reference: 26) L. Wang and S. Gao: Identification of 5-methylcytosine-related signature for predicting prognosis in ovarian cancer. Biol. Res. 54, 18 (2021). – reference: 4) B. Hu, G. Xu, Y. Zheng, F. Tong, P. Qian, X. Pan, X. Zhou and R. Shen: Chelerythrine attenuates renal ischemia/reperfusion-induced myocardial injury by activating CSE/H2S via PKC/NF-κB pathway in diabetic rats. Kidney Blood Press. Res. 42, 379–388 (2017). – reference: 10) J. M. Egan, A. Kaur, H. A. Raja, J. J. Kellogg, N. H. Oberlies and N. B. Cech: Antimicrobial fungal endophytes from the botanical medicine goldenseal (Hydrastis canadensis). Phytochem. Lett. 17, 219–225 (2016). – reference: 1) S. A. Brooks, M. M. Anders and K. M. Yeater: Effect of cultural management practices on the severity of false smut and kernel smut of rice. Plant Dis. 93, 1202–1208 (2009). – reference: 24) F. Feng, F. Yang, W. Rong, X. Wu, J. Zhang, S. Chen, C. He and J.-M. Zhou: A Xanthomonas uridine 5′-monophosphate transferase inhibits plant immune kinases. Nature 485, 114–118 (2012). – reference: 9) W. Guo, Y. Gao, Z. Yu, Y. Xiao, Z. Zhang and H. Zhang: The adenylate cyclase UvAc1 and phosphodiesterase UvPdeH control the intracellular cAMP level, development, and pathogenicity of the rice false smut fungus Ustilaginoidea virens. Fungal Genet. Biol. 129, 65–73 (2019). – reference: 13) M. Yuan, S. B. Breitkopf, X. Yang and J. M. Asara: A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 7, 872–881 (2012). – reference: 3) E. Tanaka, T. Ashizawa, R. Sonoda and C. Tanaka: Villosiclava virens gen. nov., comb. nov., teleomorph of Ustilaginoidea virens, the causal agent of rice false smut. Mycotaxon 106, 491–501 (2008). – reference: 7) Y. Zhu, Y. Pan, G. Zhang, Y. Wu, W. Zhong, C. Chu, Y. Qian and G. Zhu: Chelerythrine inhibits human hepatocellular carcinoma metastasis in vitro. Biol. Pharm. Bull. 41, 36–46 (2018). – reference: 14) J. Chong and J. Xia: MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 34, 4313–4314 (2018). – reference: 15) Q. H. Wei, M. Zhao and X. Y. Li: Extraction of Chelerythrine and its Effects on Pathogenic Fungus Spore Germination. Pharmacogn. Mag. 13, 600–606 (2017). – reference: 23) M.M Xu: Study on antibacterial mechanism of monoglycerol galactosyl laurate against Bacillus spp. Nanjing agri university (2019). – reference: 19) M. Valette, M. Rey, F. Gerin, G. Comte and F. Wisniewski-Dyé: A common metabolomic signature is observed upon inoculation of rice roots with various rhizobacteria. J. Integr. Plant Biol. 62, 228–246 (2020). – reference: 25) Y. Jiang, B. Chen, J. Wu, J. Wang and X. Zhang: Effects of 5-aza-2-deoxycytidine on reversing hypermethylation of MEG3 gene promoter and apoptosis in bladder cancer cells. Zhejiang Medical Journal 43(12), 1284–1286, 1294, 1368 (2021). – reference: 12) C. A. Sellick, R. Hansen, G. M. Stephens, R. Goodacre and A. J. Dickson: Metabolite extraction from suspension cultured mammalian cells for global metabolite profiling. Nat. Protoc. 6, 1241–1249 (2011). – reference: 5) M. Chakraborty, S. M. F. Rabby, D. R. Gupta, M. Rahman, S. K. Paul, N. U. Mahmud, A. A. M. Rahat, L. Jankuloski and T. Islam: Natural protein kinase inhibitors, staurosporine, and chelerythrine suppress wheat blast disease caused by magnaporthe oryzae triticum. Microorganisms 10, 1186 (2022). – reference: 21) A. Rossi, M. P. Martins, T. A. Bitencourt, N. T. A. Peres, C. H. L. Rocha, F. M. G. Rocha, J. Neves-da-Rocha, M. E. R. Lopes, P. R. Sanches, J. C. Bortolossi and N. M. Martinez-Rossi: Reassessing the use of undecanoic acid as a therapeutic strategy for treating fungal infections. Mycopathologia 186, 327–340 (2021). – reference: 18) D. Corinti, B. Chiavarino, D. Scuderi, C. Fraschetti, A. Filippi, S. Fornarini and M. E. Crestoni: Molecular properties of bare and microhydrated vitamin B5–calcium complexes. Int. J. Mol. Sci. 22, 692 (2021). – reference: 11) R. Yang, Z. F. Gao, J. Y. Zhao, W. B. Li, L. Zhou and F. Miao: New class of 2-aryl-6-chloro-3,4-dihydroisoquinolinium salts as potential antifungal agents for plant protection: synthesis, bioactivity and structure–activity relationships. J. Agric. Food Chem. 63, 1906–1914 (2015). – reference: 2) F. Rongtao, W. Jian, L. Daihua, G. Xueshu and Z. Hong: Research progress of rice false Smut (Ustilaginoidea virens) at home and abroad. Zhongguo Nongxue Tongbao 32, 189–194 (2016). – ident: 2 – ident: 24 doi: 10.1038/nature10962 – ident: 12 doi: 10.1038/nprot.2011.366 – ident: 1 doi: 10.1094/PDIS-93-11-1202 – ident: 6 doi: 10.1016/j.bbagen.2017.01.021 – ident: 16 – ident: 10 doi: 10.1016/j.phytol.2016.07.031 – ident: 18 doi: 10.3390/ijms22020692 – ident: 11 doi: 10.1021/jf505609z – ident: 7 doi: 10.1248/bpb.b17-00451 – ident: 21 doi: 10.1007/s11046-021-00550-4 – ident: 9 doi: 10.1016/j.fgb.2019.04.017 – ident: 4 doi: 10.1159/000477948 – ident: 19 doi: 10.1111/jipb.12810 – ident: 22 – ident: 3 – ident: 14 doi: 10.1093/bioinformatics/bty528 – ident: 13 doi: 10.1038/nprot.2012.024 – ident: 5 doi: 10.3390/microorganisms10061186 – ident: 20 doi: 10.3892/ol.2021.12870 – ident: 8 doi: 10.1016/j.pestbp.2020.01.007 – ident: 17 doi: 10.1016/j.stemcr.2020.12.017 – ident: 26 doi: 10.1186/s40659-021-00340-8 – ident: 15 doi: 10.4103/pm.pm_545_16 – ident: 25 – ident: 23 |
SSID | ssj0001737996 ssj0033558 ssib003115495 ssib023157167 ssib023167461 ssib044745361 ssib020475958 ssib008501316 |
Score | 2.3365886 |
Snippet | Rice false smut (RFS) caused by Ustilaginoidea virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS with... Rice false smut (RFS) caused by a virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS with... Rice false smut (RFS) caused by Ustilaginoide a virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS... |
SourceID | pubmedcentral proquest pubmed crossref medicalonline jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 104 |
SubjectTerms | Alanine Apoptosis Biosynthesis Chelerythrine Drug delivery Drug metabolism False smut Germination Metabolic pathways Metabolites Metabolomics Negative ions Nitrogen metabolism Phenylalanine Positive ions Regular rice false smut Spores Tryptophan Tyrosine UPLC-MS/MS Ustilaginoidea virens |
Title | Metabolomics analysis of the effects of chelerythrine on Ustilaginoidea virens |
URI | https://www.jstage.jst.go.jp/article/jpestics/49/2/49_D23-065/_article/-char/en http://mol.medicalonline.jp/en/journal/download?GoodsID=cy3jpesc/2024/004902/005&name=0104-0113e https://www.ncbi.nlm.nih.gov/pubmed/38882710 https://www.proquest.com/docview/3128502345 https://www.proquest.com/docview/3069174825 https://pubmed.ncbi.nlm.nih.gov/PMC11176050 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Pesticide Science, 2024/05/20, Vol.49(2), pp.104-113 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKhtAQQnwMKIwpSLwg1C1xnK8n6L40Teo0pE2aeIkcx6FFXTptLVJ54F_hX-V3iZMm3YRgL27rnFMn9_Pd2b47M_Y-KeIVud-DrZH2hOayJ-0IwlCLzJFKu3YRKDw49g_PxNG5d97p_G54Lc2myZb6eWtcyV24ijrwlaJk_4Oz9U1Rge_gL0pwGOU_8Xigp-DhmAKLKdXyIr3IkqcGeXvqq_l0SKF-tD1whoE9pvOJJqNUy48_IPfMqt1NO_WE8nAo0FVyYLGZU3gCfIHyG85GjRXoovp8hC_1-o1x_EWTTBtdSV5ABeXX4Wg-MZVm_YEL2jrndo2YG52o3U3RwyMo_LwhXV1BYV7F2blQPlUd-WyVQceVSC6zmBro8YZ8NWcVG1XtlGGsN7QAjCrSApdF16639jgdYOE1ScHHy4sCFW6IOUZgXGvbmbdPBrvQBAEmfPY9tsoxD4EgXe3v7O0cLJbxAjeIKGNhqfxdylZfzPHNk5qdcfRoe7k_a-xB9ecto-j-d8wLKOHDo4tyr67MmXLbFGjZk7dhGp0-YY8NVqx-CdCnrKPzZ-xh_9uVyeuin7PjJlStCqrWJLMAVctAlX62oGpNcqsNVauE6jo7O9g_3T3smaM8eipwgmlPumEqA0gCV9g8SmhNRtuJSjVURuapzJdpwMNMC9-TTqRtLWQYqUhKpfCGEsd9wVbySa5fMctPUyF9V0oRKqFDkUhuayelc9YSN5Nel21X7zJWJs89Hbcyjmm-C0bEFSNiMCIGI7rsQ93isszx8hfaTyV7akoz-heUIoo5FaZFTUBhlJBaXfa5xdfYCJTrWM1duomKaZjFxZ48x4cX05oJCoBK2BGM-i7bqKCwaO3C0vRggQv08V19GcqCdgBlricz0Nh-5AQi5KB5WSKnfo4Ki10WtjBVE1Ai-vaVfDQsEtJXo-T13Zu-YWsL4bLBVqZXM_0W5v402TRDbrNYLkM5-LX_Bx5gCIk |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolomics+analysis+of+the+effects+of+chelerythrine+on+Ustilaginoidea+virens&rft.jtitle=Journal+of+Pesticide+Science&rft.au=Wei%2C+Qinghui&rft.au=Zhai%2C+Xihai&rft.au=Song%2C+Weifeng&rft.au=Li%2C+Zhiyong&rft.date=2024-05-20&rft.pub=Pesticide+Science+Society+of+Japan&rft.issn=1348-589X&rft.eissn=1349-0923&rft.volume=49&rft.issue=2&rft.spage=104&rft.epage=113&rft_id=info:doi/10.1584%2Fjpestics.D23-065&rft_id=info%3Apmid%2F38882710&rft.externalDocID=PMC11176050 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1348-589X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1348-589X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1348-589X&client=summon |