Zero-mode waveguides and nanopore-based sequencing technologies accelerate single-molecule studies

Single-molecule technologies can provide detailed information regarding molecular mechanisms and interactions that cannot easily be studied on the bulk scale; generally, individual molecular behaviors cannot be distinguished, and only average characteristics can be measured. Nevertheless, the develo...

Full description

Saved in:
Bibliographic Details
Published inBiophysics and Physicobiology Vol. 19; p. e190032
Main Authors Iizuka, Ryo, Yamazaki, Hirohito, Uemura, Sotaro
Format Journal Article
LanguageEnglish
Published The Biophysical Society of Japan 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single-molecule technologies can provide detailed information regarding molecular mechanisms and interactions that cannot easily be studied on the bulk scale; generally, individual molecular behaviors cannot be distinguished, and only average characteristics can be measured. Nevertheless, the development of the single-molecule sequencer had a significant impact on conventional in vitro single-molecule research, featuring automated equipment, high-throughput chips, and automated analysis systems. However, the utilization of sequencing technology in in vitro single-molecule research is not yet globally prevalent, owing to the large gap between highly organized single-molecule sequencing and manual-based in vitro single-molecule research. Here, we describe the principles of zero-mode waveguides (ZMWs) and nanopore methods used as single-molecule DNA sequencing techniques, and provide examples of functional biological measurements beyond DNA sequencing that contribute to a global understanding of the current applications of these sequencing technologies. Furthermore, through a comparison of these two technologies, we discuss future applications of DNA sequencing technologies in in vitro single-molecule research.
AbstractList Single-molecule technologies can provide detailed information regarding molecular mechanisms and interactions that cannot easily be studied on the bulk scale; generally, individual molecular behaviors cannot be distinguished, and only average characteristics can be measured. Nevertheless, the development of the single-molecule sequencer had a significant impact on conventional in vitro single-molecule research, featuring automated equipment, high-throughput chips, and automated analysis systems. However, the utilization of sequencing technology in in vitro single-molecule research is not yet globally prevalent, owing to the large gap between highly organized single-molecule sequencing and manual-based in vitro single-molecule research. Here, we describe the principles of zero-mode waveguides (ZMWs) and nanopore methods used as single-molecule DNA sequencing techniques, and provide examples of functional biological measurements beyond DNA sequencing that contribute to a global understanding of the current applications of these sequencing technologies. Furthermore, through a comparison of these two technologies, we discuss future applications of DNA sequencing technologies in in vitro single-molecule research.
Single-molecule technologies can provide detailed information regarding molecular mechanisms and interactions that cannot easily be studied on the bulk scale; generally, individual molecular behaviors cannot be distinguished, and only average characteristics can be measured. Nevertheless, the development of the single-molecule sequencer had a significant impact on conventional in vitro single-molecule research, featuring automated equipment, high-throughput chips, and automated analysis systems. However, the utilization of sequencing technology in in vitro single-molecule research is not yet globally prevalent, owing to the large gap between highly organized single-molecule sequencing and manual-based in vitro single-molecule research. Here, we describe the principles of zero-mode waveguides (ZMWs) and nanopore methods used as single-molecule DNA sequencing techniques, and provide examples of functional biological measurements beyond DNA sequencing that contribute to a global understanding of the current applications of these sequencing technologies. Furthermore, through a comparison of these two technologies, we discuss future applications of DNA sequencing technologies in in vitro single-molecule research.
Single-molecule technologies can provide detailed information regarding molecular mechanisms and interactions that cannot easily be studied on the bulk scale; generally, individual molecular behaviors cannot be distinguished, and only average characteristics can be measured. Nevertheless, the development of the single-molecule sequencer had a significant impact on conventional in vitro single-molecule research, featuring automated equipment, high-throughput chips, and automated analysis systems. However, the utilization of sequencing technology in in vitro single-molecule research is not yet globally prevalent, owing to the large gap between highly organized single-molecule sequencing and manual-based in vitro single-molecule research. Here, we describe the principles of zero-mode waveguides (ZMWs) and nanopore methods used as single-molecule DNA sequencing techniques, and provide examples of functional biological measurements beyond DNA sequencing that contribute to a global understanding of the current applications of these sequencing technologies. Furthermore, through a comparison of these two technologies, we discuss future applications of DNA sequencing technologies in in vitro single-molecule research.Single-molecule technologies can provide detailed information regarding molecular mechanisms and interactions that cannot easily be studied on the bulk scale; generally, individual molecular behaviors cannot be distinguished, and only average characteristics can be measured. Nevertheless, the development of the single-molecule sequencer had a significant impact on conventional in vitro single-molecule research, featuring automated equipment, high-throughput chips, and automated analysis systems. However, the utilization of sequencing technology in in vitro single-molecule research is not yet globally prevalent, owing to the large gap between highly organized single-molecule sequencing and manual-based in vitro single-molecule research. Here, we describe the principles of zero-mode waveguides (ZMWs) and nanopore methods used as single-molecule DNA sequencing techniques, and provide examples of functional biological measurements beyond DNA sequencing that contribute to a global understanding of the current applications of these sequencing technologies. Furthermore, through a comparison of these two technologies, we discuss future applications of DNA sequencing technologies in in vitro single-molecule research.
ArticleNumber e190032
Author Yamazaki, Hirohito
Uemura, Sotaro
Iizuka, Ryo
Author_xml – sequence: 1
  orcidid: 0000-0001-9701-1803
  fullname: Iizuka, Ryo
  organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo
– sequence: 2
  orcidid: 0000-0001-9701-1803
  fullname: Yamazaki, Hirohito
  organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo
– sequence: 3
  orcidid: 0000-0001-9701-1803
  fullname: Uemura, Sotaro
  organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo
BookMark eNqNkcFu3CAQhq0qlZqmeQcfe_EWMDbmUimK0iZSpFzSSy9oDGMvKxZcsLfK2xd3001y6wUY5p9vRvN_LM588FgUJSUbRjn70tswbZ-S1WHTT1NfHajcEFKzd8U5o52suBDy7NX7Q3GZ0o4QQlvWtpKcF_1PjKHaB4PlbzjguFiDqQRvSg8-TCFi1UNCUyb8taDX1o_ljHrrgwujXaVao8MIM5YpJx1mmEO9uBzPi8mST8X7AVzCy-f7ovjx7ebx-ra6f_h-d311X2lBxVzxjhnDDEoDgnZ0wFq0g9E6j00ptFw0NSPNQEAiSEIZUoq8ETmQkrOcvSjujlwTYKemaPcQn1QAq_5-hDgqiLPVDlVnOgGtGBrZAme06Unf9jxjZM2l1jSzvh5Z09Lv0Wj0cwT3Bvo24-1WjeGgZCNZI1bA52dADHlxaVZ7m_KmHHgMS1JM1LylbUNXaXeU6hhSijic2lCiVpvVi81qtVllm9Vq88uYp1JtZ5htWIey7n8At0fALs0w4qnzv0W9KlxL1gOpXEtPEr2FqNDXfwBPdtWK
CitedBy_id crossref_primary_10_1093_nar_gkaf131
crossref_primary_10_1101_gr_279559_124
crossref_primary_10_1016_j_nancom_2024_100497
crossref_primary_10_1093_bioinformatics_btae168
crossref_primary_10_1002_ange_202319248
crossref_primary_10_1002_anie_202319248
Cites_doi 10.1039/C9NA00641A
10.1016/j.celrep.2014.04.034
10.1021/nl051063o
10.1002/anie.202110545
10.1073/pnas.2017715118
10.1246/cl.210726
10.1371/journal.pone.0072765
10.1073/pnas.0808797105
10.1038/s41598-019-42867-7
10.1021/acs.nanolett.7b03752
10.1038/nsmb831
10.1016/j.molcel.2016.03.020
10.1088/2050-6120/4/1/015002
10.1016/j.cell.2015.10.064
10.1016/j.bpj.2021.12.011
10.1093/nar/gkab033
10.1073/pnas.1719592115
10.1074/jbc.M804090200
10.1074/jbc.M114.563239
10.1021/acs.analchem.5b03631
10.1529/biophysj.108.140475
10.1366/11-06464
10.1126/science.abi7801
10.1364/OE.21.001189
10.1021/acs.analchem.6b04260
10.1021/acsnano.0c06981
10.1038/nnano.2010.202
10.1016/j.sbi.2021.03.005
10.1021/nl404802f
10.1038/nbt.4316
10.1016/j.celrep.2017.06.028
10.1016/j.gpb.2016.05.004
10.1021/ac800726g
10.1021/jacs.0c09841
10.1038/s41565-021-00958-5
10.1038/nsmb.3148
10.1038/nbt.3357
10.3390/molecules25225369
10.1039/C9AN01253B
10.1021/acs.jpca.6b03309
10.1021/nn5049987
10.1038/nmeth.1208
10.1021/acsnano.7b01212
10.1021/nl049413e
10.1088/1361-6463/aab8be
10.1038/nnano.2013.22
10.1143/JJAP.50.06GK07
10.1038/s41598-020-61856-9
10.1021/acs.langmuir.7b03163
10.1021/acs.analchem.5b03350
10.1261/rna.071217.119
10.1038/s10038-019-0679-0
10.1038/s41557-021-00824-w
10.1126/science.1079700
10.1016/j.celrep.2014.04.033
10.1038/s41576-020-0236-x
10.1038/nnano.2013.221
10.1074/jbc.M110.122101
10.1016/j.ymeth.2016.03.026
10.1034/j.1600-0854.2001.21104.x
10.1038/s41594-018-0030-z
10.1021/jacs.1c11540
10.1021/nn4012434
10.1021/acsnano.8b06805
10.1038/s41565-018-0236-6
10.1038/nphys344
10.1002/anie.202013462
10.1146/annurev-biophys-050511-102338
10.3390/nano12101755
10.1364/OL.33.001026
10.1073/pnas.1220012110
10.1021/jacs.1c11758
10.1021/nl100997s
10.1021/acsnano.9b07385
10.1038/s41592-021-01143-1
10.1021/nl503034j
10.1002/celc.201800288
10.1016/j.cbpa.2014.05.010
10.7554/eLife.20797
10.1038/nnano.2011.12
10.1039/C6NR06936C
10.1038/nature11172
10.1038/s41587-019-0345-2
10.1021/nl204273h
10.1016/j.celrep.2015.07.065
10.1038/nbt.2171
10.1038/s41578-020-0229-6
10.1371/journal.pone.0092880
10.1038/s41378-019-0050-9
10.1038/s41467-019-13810-1
10.1073/pnas.0710982105
10.1039/b704013j
10.1021/nl301480h
10.1021/ja901088b
10.1088/1361-6528/ac467c
10.1371/journal.pone.0216471
10.1038/s41467-017-01006-4
10.1021/acsnano.8b03803
10.1038/srep18177
10.7554/eLife.04418
10.1021/bi2002289
10.1021/acs.jpclett.1c00450
10.1038/nnano.2016.267
10.1038/s41586-021-03686-x
10.1021/acsami.6b03697
10.1073/pnas.1711282114
10.1073/pnas.2016262118
10.1038/nature08925
10.1088/0957-4484/23/45/455301
10.1038/nsmb.2567
10.1073/pnas.1310240110
10.1093/nar/gkv276
10.1039/D1SC04342K
10.1038/s41467-021-26046-9
10.1073/pnas.1309578110
10.1126/science.336.6081.534
10.1146/annurev.biochem.77.070606.101543
10.1007/b102211
10.1093/nar/30.7.1483
10.1016/j.molcel.2015.02.033
10.1016/j.molcel.2021.12.019
10.1126/science.1162986
10.1371/journal.pone.0222964
10.1021/acs.nanolett.1c02371
10.1039/C8NR06423G
10.1021/nl402052v
10.1143/JJAP.43.407
10.1021/acs.analchem.1c05091
10.1002/adfm.201601272
10.1038/srep11643
10.1002/smtd.201900893
10.1021/jp809842g
10.1021/nl3042678
10.1038/nnano.2016.120
10.1038/s41467-018-07423-3
10.1088/2050-6120/ab947d
10.1021/nn1034795
10.1073/pnas.1315735111
10.1016/j.celrep.2013.01.027
10.1038/nature13428
10.1021/acs.nanolett.5b03331
10.1073/pnas.1606518113
10.1016/j.cell.2019.10.035
10.1038/s41589-019-0423-2
10.2142/biophysico.13.0_63
10.1038/nmat941
10.1126/science.abl4381
10.1364/OE.27.019002
10.1093/nar/gkx1050
10.1021/bi0604835
10.1002/anie.201612050
10.1038/nature13768
10.1038/s41467-018-03418-2
10.1038/s41467-020-20409-4
10.1038/35084037
10.1186/1477-3155-11-8
10.1038/srep01638
10.1038/nbt.2503
10.1126/sciadv.aax6969
10.1103/PhysRevE.88.012727
10.1073/pnas.93.24.13770
10.1038/nmeth.1459
10.1021/acs.nanolett.9b02759
10.1016/j.plrev.2012.05.010
10.1021/acs.nanolett.6b00969
10.1038/s41586-019-1561-0
10.1038/ncomms5841
ContentType Journal Article
Copyright 2022 THE BIOPHYSICAL SOCIETY OF JAPAN
2022 THE BIOPHYSICAL SOCIETY OF JAPAN.
2022 THE BIOPHYSICAL SOCIETY OF JAPAN 2022
Copyright_xml – notice: 2022 THE BIOPHYSICAL SOCIETY OF JAPAN
– notice: 2022 THE BIOPHYSICAL SOCIETY OF JAPAN.
– notice: 2022 THE BIOPHYSICAL SOCIETY OF JAPAN 2022
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.2142/biophysico.bppb-v19.0032
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Iizuka et al.: DNA sequencing advances single-molecule studies
EISSN 2189-4779
ExternalDocumentID oai_doaj_org_article_8d87a67f596a4215b0b6b49429349cc1
PMC9592571
10_2142_biophysico_bppb_v19_0032
article_biophysico_19_0_19_e190032_article_char_en
GroupedDBID ABDBF
ADBBV
ADRAZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
EBS
EJD
ESX
GROUPED_DOAJ
HYE
I-F
JMI
JSF
JSH
KQ8
M48
MOJWN
M~E
OK1
RJT
RPM
RZJ
TUS
AAYXX
ABJNI
ACUHS
ADMLS
CITATION
7X8
5PM
ID FETCH-LOGICAL-c717t-482dd2de9da7181fe376fdcc77911a64753205f0a9ea9012e11e457ea99942753
IEDL.DBID M48
ISSN 2189-4779
IngestDate Wed Aug 27 01:30:26 EDT 2025
Thu Aug 21 18:39:46 EDT 2025
Thu Jul 10 23:19:15 EDT 2025
Tue Jul 01 02:14:19 EDT 2025
Thu Apr 24 22:56:25 EDT 2025
Wed Apr 05 11:39:21 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This article is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Inter­national License. To view a copy of this license, visit 
https://creativecommons.org/licenses/by-nc-sa/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c717t-482dd2de9da7181fe376fdcc77911a64753205f0a9ea9012e11e457ea99942753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by Akihiko Ishijima
ORCID 0000-0001-9701-1803
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.2142/biophysico.bppb-v19.0032
PQID 2734616511
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_8d87a67f596a4215b0b6b49429349cc1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9592571
proquest_miscellaneous_2734616511
crossref_primary_10_2142_biophysico_bppb_v19_0032
crossref_citationtrail_10_2142_biophysico_bppb_v19_0032
jstage_primary_article_biophysico_19_0_19_e190032_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Biophysics and Physicobiology
PublicationYear 2022
Publisher The Biophysical Society of Japan
Publisher_xml – name: The Biophysical Society of Japan
References [80] Jamiolkowski, R. M., Chen, K. Y., Fiorenza, S. A., Tate, A. M., Pfeil, S. H., Goldman, Y. E. Nanoaperture fabrication via colloidal lithography for single molecule fluorescence analysis. PLoS One 14, e0222964 (2019). https://doi.org/10.1371/journal.pone.0222964
[113] Steinbock, L. J., Otto, O., Chimerel, C., Gornall, J., Keyser, U. F. Detecting DNA folding with nanocapillaries. Nano Lett. 10, 2493–2497 (2010). https://doi.org/10.1021/nl100997s
[77] Baek, S., Han, D., Kwon, S.-R., Sundaresan, V., Bohn, P. W. Electrochemical zero-mode waveguide potential-dependent fluorescence of glutathione reductase at single-molecule occupancy. Anal. Chem. 94, 3970–3977 (2022). https://doi.org/10.1021/acs.analchem.1c05091
[95] Asandei, A., Schiopu, I., Chinappi, M., Seo, C. H., Park, Y., Luchian, T. Electroosmotic trap against the electrophoretic force near a protein nanopore reveals peptide dynamics during capture and translocation. ACS Appl. Mater. Interfaces 8, 13166–13179 (2016). https://doi.org/10.1021/acsami.6b03697
[91] Pennisi, E. Search for pore-fection. Science 336, 534–537 (2012). https://doi.org/10.1126/science.336.6081.534
[109] Yamazaki, H., Mizuguchi, T., Esashika, K., Saiki, T. Electro-osmotic trapping and compression of single DNA molecules while passing through a nanopore. Analyst 144, 5381–5388 (2019). https://doi.org/10.1039/c9an01253b
[4] Feng, X. A., Poyton, M. F., Ha, T. Multicolor single-molecule FRET for DNA and RNA processes. Curr. Opin. Struct. Biol. 70, 26–33 (2021). https://doi.org/10.1016/j.sbi.2021.03.005
[82] Tanii, T., Akahori, R., Higano, S., Okubo, K., Yamamoto, H., Ueno, T., et al. Improving zero-mode waveguide structure for enhancing signal-to-noise ratio of real-time single-molecule fluorescence imaging: A computational study. Phys. Rev. E 88, 012727 (2013). https://doi.org/10.1103/PhysRevE.88.012727
[9] Lu, H., Giordano, F., Ning, Z. Oxford nanopore MinION sequencing and genome assembly. Genomics Proteomics Bioinformatics 14, 265–279 (2016). https://doi.org/10.1016/j.gpb.2016.05.004
[154] Stefureac, R., Long, Y.-T., Kraatz, H.-B., Howard, P., Lee, J. S. Transport of α-helical peptides through α-hemolysin and aerolysin pores. Biochemistry 45, 9172–9179 (2006). https://doi.org/10.1021/bi0604835
[29] Truniger, V., Lázaro, J. M., Esteban, F. J., Blanco, L., Salas, M. A positively charged residue of phi29 DNA polymerase, highly conserved in DNA polymerases from families A and B, is involved in binding the incoming nucleotide. Nucleic Acids Res. 30, 1483–1492 (2002). https://doi.org/10.1093/nar/30.7.1483
[97] Chinappi, M., Yamaji, M., Kawano, R., Cecconi, F. Analytical model for particle capture in nanopores elucidates competition among electrophoresis, electroosmosis, and dielectrophoresis. ACS Nano 14, 15816–15828 (2020). https://doi.org/10.1021/acsnano.0c06981
[12] Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C., Ha, T. Advances in single-molecule fluorescence methods for molecular biology. Annu. Rev. Biochem. 77, 51–76 (2008). https://doi.org/10.1146/annurev.biochem.77.070606.101543
[105] Kasianowicz, J. J., Brandin, E., Branton, D., Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. U.S.A. 93, 13770–13773 (1996). https://doi.org/10.1073/pnas.93.24.13770
[50] Choi, J., Ieong, K.-W., Demirci, H., Chen, J., Petrov, A., Prabhakar, A., et al. N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat. Struct. Mol. Biol. 23, 110–115 (2016). https://doi.org/10.1038/nsmb.3148
[133] Yusko, E. C., Bruhn, B. R., Eggenberger, O. M., Houghtaling, J., Rollings, R. C., Walsh, N. C., et al. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat. Nanotechnol. 12, 360–367 (2017). https://doi.org/10.1038/nnano.2016.267
[64] Duss, O., Stepanyuk, G. A., Puglisi, J. D., Williamson, J. R. Transient protein-RNA interactions guide nascent ribosomal RNA folding. Cell 179, 1357–1369.e16 (2019). https://doi.org/10.1016/j.cell.2019.10.035
[93] Wanunu, M. Nanopores: A journey towards DNA sequencing. Phys. Life Rev. 9, 125–158 (2012). https://doi.org/10.1016/j.plrev.2012.05.010
[103] Garoli, D., Yamazaki, H., Maccaferri, N., Wanunu, M. Plasmonic nanopores for single-molecule detection and manipulation: Toward sequencing applications. Nano Lett. 19, 7553–7562 (2019). https://doi.org/10.1021/acs.nanolett.9b02759
[3] Blanchard, S. C., Gonzalez, R. L., Kim, H. D., Chu, S., Puglisi, J. D. tRNA selection and kinetic proofreading in translation. Nat. Struct. Mol. Biol. 11, 1008–1014 (2004). https://doi.org/10.1038/nsmb831
[111] Kwok, H., Briggs, K., Tabard-Cossa, V. Nanopore fabrication by controlled dielectric breakdown. PLoS One 9, e92880 (2014). https://doi.org/10.1371/journal.pone.0092880
[148] Derrington, I. M., Craig, J. M., Stava, E., Laszlo, A. H., Ross, B. C., Brinkerhoff, H., et al. Subangstrom single-molecule measurements of motor proteins using a nanopore. Nat. Biotechnol. 33, 1073–1075 (2015). https://doi.org/10.1038/nbt.3357
[40] Simonetti, A., Marzi, S., Billas, I. M. L., Tsai, A., Fabbretti, A., Myasnikov, A. G., et al. Involvement of protein IF2 N domain in ribosomal subunit joining revealed from architecture and function of the full-length initiation factor. Proc. Natl. Acad. Sci. U.S.A. 110, 15656–15661 (2013). https://doi.org/10.1073/pnas.1309578110
[26] Goldschen-Ohm, M. P., White, D. S., Klenchin, V. A., Chanda, B., Goldsmith, R. H. Observing single-molecule dynamics at millimolar concentrations. Angew. Chem. Int. Ed. Engl. 56, 2399–2402 (2017). https://doi.org/10.1002/anie.201612050
[149] Craig, J. M., Laszlo, A. H., Brinkerhoff, H., Derrington, I. M., Noakes, M. T., Nova, I. C., et al. Revealing dynamics of helicase translocation on single-stranded DNA using high-resolution nanopore tweezers. Proc. Natl. Acad. Sci. U.S.A. 114, 11932–11937 (2017). https://doi.org/10.1073/pnas.1711282114
[98] Wanunu, M., Dadosh, T., Ray, V., Jin, J., McReynolds, L., Drndić, M. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol. 5, 807–814 (2010). https://doi.org/10.1038/nnano.2010.202
[18] Levene, M. J., Korlach, J., Turner, S. W., Foquet, M., Craighead, H. G., Webb, W. W. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003). https://doi.org/10.1126/science.1079700
[78] Wada, J., Ryu, S., Asano, Y., Ueno, T., Funatsu, T., Yukawa, T., et al. Fabrication of zero-mode waveguide by ultraviolet nanoimprint lithography lift-off process. Jpn. J. Appl. Phys. 50, 06GK07 (2011). https://doi.org/10.1143/JJAP.50.06GK07
[156] Asandei, A., Rossini, A. E., Chinappi, M., Park, Y., Luchian, T. Protein nanopore-based discrimination between selected neutral amino acids from polypeptides. Langmuir 33, 14451–14459 (2017). https://doi.org/10.1021/acs.langmuir.7b03163
[7] Logsdon, G. A., Vollger, M. R., Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614 (2020). https://doi.org/10.1038/s41576-020-0236-x
[56] Prabhakar, A., Capece, M. C., Petrov, A., Choi, J., Puglisi, J. D. Post-termination ribosome intermediate acts as the gateway to ribosome recycling. Cell Rep. 20, 161–172 (2017). https://doi.org/10.1016/j.celrep.2017.06.028
[106] Manrao, E. A., Derrington, I. M., Laszlo, A. H., Langford, K. W., Hopper, M. K., Gillgren, N., et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012). https://doi.org/10.1038/nbt.2171
[115] Garaj, S., Liu, S., Golovchenko, J. A., Branton, D. Molecule-hugging graphene nanopores. Proc. Natl. Acad. Sci. U.S.A. 110, 12192–12196 (2013). https://doi.org/10.1073/pnas.1220012110
[21] Al Masud, A., Elliott Martin, W., Moonschi, F. H., Park, S. M., Srijanto, B. R., Graham, K. R., et al. Mixed metal zero-mode guides (ZMWs) for tunable fluorescence enhancement. Nanoscale Adv. 2, 1894–1903 (2020). https://doi.org/10.1039/C9NA00641A
[68] Sobek, J., Schlapbach, R. Dependence of fluorescence quenching of CY3 oligonucleotide conjugates on the oxidation potential of the stacking base pair. Molecules 25, 5369 (2020). https://doi.org/10.3390/molecules25225369
[73] White, D. S., Chowdhury, S., Idikuda, V., Zhang, R., Retterer, S. T., Goldsmith, R. H., et al. cAMP binding to closed pacemaker ion channels is non-cooperative. Nature 595, 606–610 (2021). https://doi.org/10.1038/s41586-021-03686-x
[42] Tsai, A., Kornberg, G., Johansson, M., Chen, J., Puglisi, J. D. The dynamics of SecM-induced translational stalling. Cell Rep. 7, 1521–1533 (2014). https://doi.org/10.1016/j.celrep.2014.04.033
[90] Çetin, B., Song, G. J., O’Leary, S. E. Heterogeneous dynamics of protein-RNA interactions across transcriptome-derived messenger RNA populations. J. Am. Chem. Soc. 142, 21249–21253 (2020). https://doi.org/10.1021/jacs.0c09841
[155] Zhao, Q., Jayawardhana, D. A., Wang, D., Guan, X. Study of peptide transport through engineered protein channels. J. Phys. Chem. B 113, 3572–3578 (2009). https://doi.org/10.1021/jp809842g
[129] Zhang, Y., Zhao, J., Si, W., Kan, Y., Xu, Z., Sha, J., et al. Electroosmotic facilitated protein capture and transport through solid‐state nanopores with diameter larger than length. Small Methods 4, 1900893 (2020). https://doi.org/10.1002/smtd.201900893
[61] Johnson, A. G., Lapointe, C. P., Wang, J., Corsepius, N. C., Choi, J., Fuchs, G., et al. RACK1 on and off the ribosome. RNA 25, 881–895 (2019). https://doi.org/10.1261/rna.071217.119
[36] Richards, C. I., Luong, K., Srinivasan, R., Turner, S. W., Dougherty, D. A., Korlach, J., et al. Live-cell imaging of single receptor composition using zero-mode waveguide nanostructures. Nano Lett. 12, 3690–3694 (2012). https://doi.org/10.1021/nl301480h
[10] Bolognini, D., Bartalucci, N., Mingrino, A., Vannucchi, A. M., Magi, A. NanoR: A user-friendly R package to analyze and compare nanopore sequencing data. PLoS One 14, e0216471 (2019). https://doi.org/10.1
88
89
110
111
112
113
114
115
116
90
117
91
118
92
119
93
94
95
96
97
10
98
11
99
12
13
14
15
16
17
18
19
120
121
1
122
2
123
3
124
4
125
5
126
6
127
7
128
8
129
9
20
21
22
23
24
25
26
27
28
29
130
131
132
133
134
135
136
137
138
139
30
31
32
33
34
35
36
37
38
39
140
141
142
143
144
145
146
147
148
149
40
41
42
43
44
45
46
47
48
49
150
151
152
153
154
155
156
157
158
159
50
51
52
53
54
55
56
57
58
59
160
161
162
163
164
165
166
167
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
100
101
102
103
104
105
106
80
107
81
108
82
109
83
84
85
86
87
References_xml – reference: [151] Alfaro, J. A., Bohländer, P., Dai, M., Filius, M., Howard, C. J., van Kooten, X. F., et al. The emerging landscape of single-molecule protein sequencing technologies. Nat. Methods 18, 604–617 (2021). https://doi.org/10.1038/s41592-021-01143-1
– reference: [3] Blanchard, S. C., Gonzalez, R. L., Kim, H. D., Chu, S., Puglisi, J. D. tRNA selection and kinetic proofreading in translation. Nat. Struct. Mol. Biol. 11, 1008–1014 (2004). https://doi.org/10.1038/nsmb831
– reference: [13] Liu, Z., Lavis, L. D., Betzig, E. Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 58, 644–659 (2015). https://doi.org/10.1016/j.molcel.2015.02.033
– reference: [104] Xue, L., Yamazaki, H., Ren, R., Wanunu, M., Ivanov, A. P., Edel, J. B. Solid-state nanopore sensors. Nat. Rev. Mater. 5, 931–951 (2020). https://doi.org/10.1038/s41578-020-0229-6
– reference: [16] Wazawa, T., Ueda, M. Total internal reflection fluorescence microscopy in single molecule nanobioscience. Adv. Biochem. Eng. Biotechnol. 95, 77–106 (2005). https://doi.org/10.1007/b102211
– reference: [77] Baek, S., Han, D., Kwon, S.-R., Sundaresan, V., Bohn, P. W. Electrochemical zero-mode waveguide potential-dependent fluorescence of glutathione reductase at single-molecule occupancy. Anal. Chem. 94, 3970–3977 (2022). https://doi.org/10.1021/acs.analchem.1c05091
– reference: [85] Elting, M. W., Leslie, S. R., Churchman, L. S., Korlach, J., McFaul, C. M. J., Leith, J. S., et al. Single-molecule fluorescence imaging of processive myosin with enhanced background suppression using linear zero-mode waveguides (ZMWs) and convex lens induced confinement (CLIC). Opt. Express 21, 1189–1202 (2013). https://doi.org/10.1364/OE.21.001189
– reference: [114] Choi, J., Lee, C. C., Park, S. Scalable fabrication of sub-10 nm polymer nanopores for DNA analysis. Microsyst. Nanoeng. 5, 12 (2019). https://doi.org/10.1038/s41378-019-0050-9
– reference: [135] Nivala, J., Marks, D. B., Akeson, M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore. Nat. Biotechnol. 31, 247–250 (2013). https://doi.org/10.1038/nbt.2503
– reference: [94] Boukhet, M., Piguet, F., Ouldali, H., Pastoriza-Gallego, M., Pelta, J., Oukhaled, A. Probing driving forces in aerolysin and α-hemolysin biological nanopores: Electrophoresis versus electroosmosis. Nanoscale 8, 18352–18359 (2016). https://doi.org/10.1039/c6nr06936c
– reference: [25] Crouch, G. M., Han, D., Bohn, P. W. Zero-mode waveguide nanophotonic structures for single molecule characterization. J. Phys. D Appl. Phys. 51, 193001 (2018). https://doi.org/10.1088/1361-6463/aab8be
– reference: [164] Yan, S., Zhang, J., Wang, Y., Guo, W., Zhang, S., Liu, Y., et al. Single molecule ratcheting motion of peptides in a Mycobacterium smegmatis Porin A (MspA) nanopore. Nano Lett. 21, 6703–6710 (2021). https://doi.org/10.1021/acs.nanolett.1c02371
– reference: [130] Bandara, Y. M. N. D. Y., Farajpour, N., Freedman, K. J. Nanopore current enhancements lack protein charge dependence and elucidate maximum unfolding at protein’s isoelectric point. J. Am. Chem. Soc. 144, 3063–3073 (2022). https://doi.org/10.1021/jacs.1c11540
– reference: [79] Teng, C.-H., Lionberger, T. A., Zhang, J., Meyhöfer, E., Ku, P.-C. Fabrication of nanoscale zero-mode waveguides using microlithography for single molecule sensing. Nanotechnology 23, 455301 (2012). https://doi.org/10.1088/0957-4484/23/45/455301
– reference: [89] Lundquist, P. M., Zhong, C. F., Zhao, P., Tomaney, A. B., Peluso, P. S., Dixon, J., et al. Parallel confocal detection of single molecules in real time. Opt. Lett. 33, 1026–1028 (2008). https://doi.org/10.1364/ol.33.001026
– reference: [105] Kasianowicz, J. J., Brandin, E., Branton, D., Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. U.S.A. 93, 13770–13773 (1996). https://doi.org/10.1073/pnas.93.24.13770
– reference: [110] Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W., Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540 (2003). https://doi.org/10.1038/nmat941
– reference: [69] Wang, C., Sensale, S., Pan, Z., Senapati, S., Chang, H.-C. Slowing down DNA translocation through solid-state nanopores by edge-field leakage. Nat. Commun. 12, 140 (2021). https://doi.org/10.1038/s41467-020-20409-4
– reference: [99] Wilson, J., Sloman, L., He, Z., Aksimentiev, A. Graphene nanopores for protein sequencing. Adv. Funct. Mater. 26, 4830–4838 (2016). https://doi.org/10.1002/adfm.201601272
– reference: [125] Wanunu, M., Sutin, J., McNally, B., Chow, A., Meller, A. DNA translocation governed by interactions with solid-state nanopores. Biophys. J. 95, 4716–4725 (2008). https://doi.org/10.1529/biophysj.108.140475
– reference: [10] Bolognini, D., Bartalucci, N., Mingrino, A., Vannucchi, A. M., Magi, A. NanoR: A user-friendly R package to analyze and compare nanopore sequencing data. PLoS One 14, e0216471 (2019). https://doi.org/10.1371/journal.pone.0216471
– reference: [33] Suzuki, M., Ueno, T., Iizuka, R., Miura, T., Zako, T., Akahori, R., et al. Effect of the C-terminal truncation on the functional cycle of chaperonin GroEL: Implication that the C-terminal region facilitates the transition from the folding-arrested to the folding-competent state. J. Biol. Chem. 283, 23931–23939 (2008). https://doi.org/10.1074/jbc.M804090200
– reference: [24] Zhu, P., Craighead, H. G. Zero-mode waveguides for single-molecule analysis. Annu. Rev. Biophys. 41, 269–293 (2012). https://doi.org/10.1146/annurev-biophys-050511-102338
– reference: [78] Wada, J., Ryu, S., Asano, Y., Ueno, T., Funatsu, T., Yukawa, T., et al. Fabrication of zero-mode waveguide by ultraviolet nanoimprint lithography lift-off process. Jpn. J. Appl. Phys. 50, 06GK07 (2011). https://doi.org/10.1143/JJAP.50.06GK07
– reference: [133] Yusko, E. C., Bruhn, B. R., Eggenberger, O. M., Houghtaling, J., Rollings, R. C., Walsh, N. C., et al. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat. Nanotechnol. 12, 360–367 (2017). https://doi.org/10.1038/nnano.2016.267
– reference: [165] Chen, Z., Wang, Z., Xu, Y., Zhang, X., Tian, B., Bai, J. Controlled movement of ssDNA conjugated peptide through Mycobacterium smegmatis porin A (MspA) nanopore by a helicase motor for peptide sequencing application. Chem. Sci. 12, 15750–15756 (2021). https://doi.org/10.1039/d1sc04342k
– reference: [121] Squires, A., Atas, E., Meller, A. Nanopore sensing of individual transcription factors bound to DNA. Sci. Rep. 5, 11643 (2015). https://doi.org/10.1038/srep11643
– reference: [144] Fahie, M. A., Yang, B., Mullis, M., Holden, M. A., Chen, M. Selective detection of protein homologues in serum using an OmpG nanopore. Anal. Chem. 87, 11143–11149 (2015). https://doi.org/10.1021/acs.analchem.5b03350
– reference: [46] Zhao, Y., Chen, D., Yue, H., Spiering, M. M., Zhao, C., Benkovic, S. J., et al. Dark-field illumination on zero-mode waveguide/microfluidic hybrid chip reveals T4 replisomal protein interactions. Nano Lett. 14, 1952–1960 (2014). https://doi.org/10.1021/nl404802f
– reference: [88] Patra, S., Baibakov, M., Claude, J.-B., Wenger, J. Surface passivation of zero-mode waveguide nanostructures: Benchmarking protocols and fluorescent labels. Sci. Rep. 10, 5235 (2020). https://doi.org/10.1038/s41598-020-61856-9
– reference: [101] Ouldali, H., Sarthak, K., Ensslen, T., Piguet, F., Manivet, P., Pelta, J., et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat. Biotechnol. 38, 176–181 (2020). https://doi.org/10.1038/s41587-019-0345-2
– reference: [117] Freedman, K. J., Haq, S. R., Edel, J. B., Jemth, P., Kim, M. J. Single molecule unfolding and stretching of protein domains inside a solid-state nanopore by electric field. Sci. Rep. 3, 1638 (2013). https://doi.org/10.1038/srep01638
– reference: [81] Messina, T. C., Srijanto, B. R., Collier, C. P., Kravchenko, I. I., Richards, C. I. Gold ion beam milled gold zero-mode waveguides. Nanomaterials 12, 1755 (2022). https://doi.org/10.3390/nano12101755
– reference: [137] Henley, R. Y., Ashcroft, B. A., Farrell, I., Cooperman, B. S., Lindsay, S. M., Wanunu, M. Electrophoretic deformation of individual transfer RNA molecules reveals their identity. Nano Lett. 16, 138–144 (2016). https://doi.org/10.1021/acs.nanolett.5b03331
– reference: [82] Tanii, T., Akahori, R., Higano, S., Okubo, K., Yamamoto, H., Ueno, T., et al. Improving zero-mode waveguide structure for enhancing signal-to-noise ratio of real-time single-molecule fluorescence imaging: A computational study. Phys. Rev. E 88, 012727 (2013). https://doi.org/10.1103/PhysRevE.88.012727
– reference: [54] Christensen, S. M., Triplet, M. G., Rhodes, C., Iwig, J. S., Tu, H.-L., Stamou, D., et al. Monitoring the waiting time sequence of single Ras GTPase activation events using liposome functionalized zero-mode waveguides. Nano Lett. 16, 2890–2895 (2016). https://doi.org/10.1021/acs.nanolett.6b00969
– reference: [126] Fologea, D., Uplinger, J., Thomas, B., McNabb, D. S., Li, J. Slowing DNA translocation in a solid-state nanopore. Nano Lett. 5, 1734–1737 (2005). https://doi.org/10.1021/nl051063o
– reference: [166] Laszlo, A. H., Derrington, I. M., Brinkerhoff, H., Langford, K. W., Nova, I. C., Samson, J. M., et al. Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore MspA. Proc. Natl. Acad. Sci. U.S.A. 110, 18904–18909 (2013). https://doi.org/10.1073/pnas.1310240110
– reference: [35] Sameshima, T., Iizuka, R., Ueno, T., Wada, J., Aoki, M., Shimamoto, N., et al. Single-molecule study on the decay process of the football-shaped GroEL-GroES complex using zero-mode waveguides. J. Biol. Chem. 285, 23159–23164 (2010). https://doi.org/10.1074/jbc.M110.122101
– reference: [26] Goldschen-Ohm, M. P., White, D. S., Klenchin, V. A., Chanda, B., Goldsmith, R. H. Observing single-molecule dynamics at millimolar concentrations. Angew. Chem. Int. Ed. Engl. 56, 2399–2402 (2017). https://doi.org/10.1002/anie.201612050
– reference: [115] Garaj, S., Liu, S., Golovchenko, J. A., Branton, D. Molecule-hugging graphene nanopores. Proc. Natl. Acad. Sci. U.S.A. 110, 12192–12196 (2013). https://doi.org/10.1073/pnas.1220012110
– reference: [129] Zhang, Y., Zhao, J., Si, W., Kan, Y., Xu, Z., Sha, J., et al. Electroosmotic facilitated protein capture and transport through solid‐state nanopores with diameter larger than length. Small Methods 4, 1900893 (2020). https://doi.org/10.1002/smtd.201900893
– reference: [7] Logsdon, G. A., Vollger, M. R., Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614 (2020). https://doi.org/10.1038/s41576-020-0236-x
– reference: [41] Noriega, T. R., Tsai, A., Elvekrog, M. M., Petrov, A., Neher, S. B., Chen, J., et al. Signal recognition particle-ribosome binding is sensitive to nascent chain length. J. Biol. Chem. 289, 19294–19305 (2014). https://doi.org/10.1074/jbc.M114.563239
– reference: [120] Talaga, D. S., Li, J. Single-molecule protein unfolding in solid state nanopores. J. Am. Chem. Soc. 131, 9287–9297 (2009). https://doi.org/10.1021/ja901088b
– reference: [113] Steinbock, L. J., Otto, O., Chimerel, C., Gornall, J., Keyser, U. F. Detecting DNA folding with nanocapillaries. Nano Lett. 10, 2493–2497 (2010). https://doi.org/10.1021/nl100997s
– reference: [59] Choi, J., Indrisiunaite, G., DeMirci, H., Ieong, K.-W., Wang, J., Petrov, A., et al. 2'-O-methylation in mRNA disrupts tRNA decoding during translation elongation. Nat. Struct. Mol. Biol. 25, 208–216 (2018). https://doi.org/10.1038/s41594-018-0030-z
– reference: [43] Johansson, M., Chen, J., Tsai, A., Kornberg, G., Puglisi, J. D. Sequence-dependent elongation dynamics on macrolide-bound ribosomes. Cell Rep. 7, 1534–1546 (2014). https://doi.org/10.1016/j.celrep.2014.04.034
– reference: [134] Rodriguez-Larrea, D., Bayley, H. Protein co-translocational unfolding depends on the direction of pulling. Nat. Commun. 5, 4841 (2014). https://doi.org/10.1038/ncomms5841
– reference: [127] Kowalczyk, S. W., Wells, D. B., Aksimentiev, A., Dekker, C. Slowing down DNA translocation through a nanopore in lithium chloride. Nano Lett. 12, 1038–1044 (2012). https://doi.org/10.1021/nl204273h
– reference: [58] Johnson, A. G., Petrov, A. N., Fuchs, G., Majzoub, K., Grosely, R., Choi, J., et al. Fluorescently-tagged human eIF3 for single-molecule spectroscopy. Nucleic Acids Res. 46, e8 (2018). https://doi.org/10.1093/nar/gkx1050
– reference: [9] Lu, H., Giordano, F., Ning, Z. Oxford nanopore MinION sequencing and genome assembly. Genomics Proteomics Bioinformatics 14, 265–279 (2016). https://doi.org/10.1016/j.gpb.2016.05.004
– reference: [11] Chen, J., Dalal, R. V., Petrov, A. N., Tsai, A., O’Leary, S. E., Chapin, K., et al. High-throughput platform for real-time monitoring of biological processes by multicolor single-molecule fluorescence. Proc. Natl. Acad. Sci. U.S.A. 111, 664–669 (2014). https://doi.org/10.1073/pnas.1315735111
– reference: [32] Miyake, T., Tanii, T., Sonobe, H., Akahori, R., Shimamoto, N., Ueno, T., et al. Real-time imaging of single-molecule fluorescence with a zero-mode waveguide for the analysis of protein-protein interaction. Anal. Chem. 80, 6018–6022 (2008). https://doi.org/10.1021/ac800726g
– reference: [34] Uemura, S., Aitken, C. E., Korlach, J., Flusberg, B. A., Turner, S. W., Puglisi, J. D. Real-time tRNA transit on single translating ribosomes at codon resolution. Nature 464, 1012–1017 (2010). https://doi.org/10.1038/nature08925
– reference: [97] Chinappi, M., Yamaji, M., Kawano, R., Cecconi, F. Analytical model for particle capture in nanopores elucidates competition among electrophoresis, electroosmosis, and dielectrophoresis. ACS Nano 14, 15816–15828 (2020). https://doi.org/10.1021/acsnano.0c06981
– reference: [128] Di Fiori, N., Squires, A., Bar, D., Gilboa, T., Moustakas, T. D., Meller, A. Optoelectronic control of surface charge and translocation dynamics in solid-state nanopores. Nat. Nanotechnol. 8, 946–951 (2013). https://doi.org/10.1038/nnano.2013.221
– reference: [96] Huang, G., Willems, K., Soskine, M., Wloka, C., Maglia, G. Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores. Nat. Commun. 8, 935 (2017). https://doi.org/10.1038/s41467-017-01006-4
– reference: [14] Ha, T., Kaiser, C., Myong, S., Wu, B., Xiao, J. Next generation single-molecule techniques: Imaging, labeling, and manipulation in vitro and in cellulo. Mol. Cell 82, 304–314 (2022). https://doi.org/10.1016/j.molcel.2021.12.019
– reference: [8] Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009). https://doi.org/10.1126/science.1162986
– reference: [44] Chen, J., Petrov, A., Johansson, M., Tsai, A., O’Leary, S. E., Puglisi, J. D. Dynamic pathways of –1 translational frameshifting. Nature 512, 328–332 (2014). https://doi.org/10.1038/nature13428
– reference: [18] Levene, M. J., Korlach, J., Turner, S. W., Foquet, M., Craighead, H. G., Webb, W. W. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003). https://doi.org/10.1126/science.1079700
– reference: [36] Richards, C. I., Luong, K., Srinivasan, R., Turner, S. W., Dougherty, D. A., Korlach, J., et al. Live-cell imaging of single receptor composition using zero-mode waveguide nanostructures. Nano Lett. 12, 3690–3694 (2012). https://doi.org/10.1021/nl301480h
– reference: [37] Tsai, A., Petrov, A., Marshall, R. A., Korlach, J., Uemura, S., Puglisi, J. D. Heterogeneous pathways and timing of factor departure during translation initiation. Nature 487, 390–393 (2012). https://doi.org/10.1038/nature11172
– reference: [106] Manrao, E. A., Derrington, I. M., Laszlo, A. H., Langford, K. W., Hopper, M. K., Gillgren, N., et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012). https://doi.org/10.1038/nbt.2171
– reference: [102] Shi, W., Friedman, A. K., Baker, L. A. Nanopore sensing. Anal. Chem. 89, 157–188 (2017). https://doi.org/10.1021/acs.analchem.6b04260
– reference: [146] Liu, Y., Pan, T., Wang, K., Wang, Y., Yan, S., Wang, L., et al. Allosteric switching of calmodulin in a Mycobacterium smegmatis porin A (MspA) nanopore-trap. Angew. Chem. Int. Ed Engl. 60, 23863–23870 (2021). https://doi.org/10.1002/anie.202110545
– reference: [21] Al Masud, A., Elliott Martin, W., Moonschi, F. H., Park, S. M., Srijanto, B. R., Graham, K. R., et al. Mixed metal zero-mode guides (ZMWs) for tunable fluorescence enhancement. Nanoscale Adv. 2, 1894–1903 (2020). https://doi.org/10.1039/C9NA00641A
– reference: [23] Masud, A. A., Arefin, S. M. N., Fairooz, F., Fu, X., Moonschi, F., Srijanto, B. R., et al. Photoluminescence enhancement, blinking suppression, and improved biexciton quantum yield of single quantum dots in zero mode waveguides. J. Phys. Chem. Lett. 12, 3303–3311 (2021). https://doi.org/10.1021/acs.jpclett.1c00450
– reference: [50] Choi, J., Ieong, K.-W., Demirci, H., Chen, J., Petrov, A., Prabhakar, A., et al. N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat. Struct. Mol. Biol. 23, 110–115 (2016). https://doi.org/10.1038/nsmb.3148
– reference: [98] Wanunu, M., Dadosh, T., Ray, V., Jin, J., McReynolds, L., Drndić, M. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol. 5, 807–814 (2010). https://doi.org/10.1038/nnano.2010.202
– reference: [83] Wu, M., Liu, W., Hu, J., Zhong, Z., Rujiralai, T., Zhou, L., et al. Fluorescence enhancement in an over-etched gold zero-mode waveguide. Opt. Express 27, 19002–19018 (2019). https://doi.org/10.1364/OE.27.019002
– reference: [84] Iizuka, R., Funatsu, T. Chaperonin GroEL uses asymmetric and symmetric reaction cycles in response to the concentration of non-native substrate proteins. Biophys. Physicobiol. 13, 63–69 (2016). https://doi.org/10.2142/biophysico.13.0_63
– reference: [122] Plesa, C., Kowalczyk, S. W., Zinsmeester, R., Grosberg, A. Y., Rabin, Y., Dekker, C. Fast translocation of proteins through solid state nanopores. Nano Lett. 13, 658–663 (2013). https://doi.org/10.1021/nl3042678
– reference: [60] Duss, O., Stepanyuk, G. A., Grot, A., O’Leary, S. E., Puglisi, J. D., Williamson, J. R. Real-time assembly of ribonucleoprotein complexes on nascent RNA transcripts. Nat. Commun. 9, 5087 (2018). https://doi.org/10.1038/s41467-018-07423-3
– reference: [30] Flusberg, B. A., Webster, D. R., Lee, J. H., Travers, K. J., Olivares, E. C., Clark, T. A., et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 7, 461–465 (2010). https://doi.org/10.1038/nmeth.1459
– reference: [162] Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A., Dekker, C. Multiple rereads of single proteins at single-amino acid resolution using nanopores. Science 374, 1509–1513 (2021). https://doi.org/10.1126/science.abl4381
– reference: [119] Chae, H., Kwak, D.-K., Lee, M.-K., Chi, S.-W., Kim, K.-B. Solid-state nanopore analysis on conformation change of p53TAD-MDM2 fusion protein induced by protein-protein interaction. Nanoscale 10, 17227–17235 (2018). https://doi.org/10.1039/c8nr06423g
– reference: [149] Craig, J. M., Laszlo, A. H., Brinkerhoff, H., Derrington, I. M., Noakes, M. T., Nova, I. C., et al. Revealing dynamics of helicase translocation on single-stranded DNA using high-resolution nanopore tweezers. Proc. Natl. Acad. Sci. U.S.A. 114, 11932–11937 (2017). https://doi.org/10.1073/pnas.1711282114
– reference: [153] Sutherland, T. C., Long, Y.-T., Stefureac, R.-I., Bediako-Amoa, I., Kraatz, H.-B., Lee, J. S. Structure of peptides investigated by nanopore analysis. Nano Lett. 4, 1273–1277 (2004). https://doi.org/10.1021/nl049413e
– reference: [150] Restrepo-Pérez, L., Joo, C., Dekker, C. Paving the way to single-molecule protein sequencing. Nat. Nanotechnol. 13, 786–796 (2018). https://doi.org/10.1038/s41565-018-0236-6
– reference: [19] Jin, E. X., Xu, X. Finitte-difference time-domain studies on optical transmission through planar nano-apertures in a metal film. Jpn. J. Appl. Phys. 43, 407 (2004). https://doi.org/10.1143/JJAP.43.407
– reference: [142] Nicoli, F., Verschueren, D., Klein, M., Dekker, C., Jonsson, M. P. DNA translocations through solid-state plasmonic nanopores. Nano Lett. 14, 6917–6925 (2014). https://doi.org/10.1021/nl503034j
– reference: [45] Noriega, T. R., Chen, J., Walter, P., Puglisi, J. D. Real-time observation of signal recognition particle binding to actively translating ribosomes. eLife 3, e04418 (2014). https://doi.org/10.7554/eLife.04418
– reference: [123] Yusko, E. C., Johnson, J. M., Majd, S., Prangkio, P., Rollings, R. C., Li, J., et al. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat. Nanotechnol. 6, 253–260 (2011). https://doi.org/10.1038/nnano.2011.12
– reference: [141] Angevine, C. E., Seashols-Williams, S. J., Reiner, J. E. Infrared laser heating applied to nanopore sensing for DNA duplex analysis. Anal. Chem. 88, 2645–2651 (2016). https://doi.org/10.1021/acs.analchem.5b03631
– reference: [6] Etchegoin, P. G., Meyer, M., Le Ru, E. C. Statistics of single molecule SERS signals: Is there a Poisson distribution of intensities? Phys. Chem. Chem. Phys. 9, 3006–3010 (2007). https://doi.org/10.1039/b704013j
– reference: [51] Petrov, A., Grosely, R., Chen, J., O’Leary, S. E., Puglisi, J. D. Multiple parallel pathways of translation initiation on the CrPV IRES. Mol. Cell 62, 92–103 (2016). https://doi.org/10.1016/j.molcel.2016.03.020
– reference: [57] Choi, J., Puglisi, J. D. Three tRNAs on the ribosome slow translation elongation. Proc. Natl. Acad. Sci. U.S.A. 114, 13691–13696 (2017). https://doi.org/10.1073/pnas.1719592115
– reference: [63] Verma, M., Choi, J., Cottrell, K. A., Lavagnino, Z., Thomas, E. N., Pavlovic-Djuranovic, S., et al. A short translational ramp determines the efficiency of protein synthesis. Nat. Commun. 10, 5774 (2019). https://doi.org/10.1038/s41467-019-13810-1
– reference: [158] Li, S., Cao, C., Yang, J., Long, Y.-T. Detection of peptides with different charges and lengths by using the aerolysin nanopore. ChemElectroChem 6, 126–129 (2019). https://doi.org/10.1002/celc.201800288
– reference: [71] Ieong, K.-W., Indrisiunaite, G., Prabhakar, A., Puglisi, J. D., Ehrenberg, M. N6-Methyladenosines in mRNAs reduce the accuracy of codon reading by transfer RNAs and peptide release factors. Nucleic Acids Res. 49, 2684–2699 (2021). https://doi.org/10.1093/nar/gkab033
– reference: [74] Hoyer, M., Crevenna, A. H., Correia, J. R. C., Quezada, A. G., Lamb, D. C. Zero-mode waveguides visualize the first steps during gelsolin-mediated actin filament formation. Biophys. J. 121, 327–335 (2022). https://doi.org/10.1016/j.bpj.2021.12.011
– reference: [75] Kawai, K., Fujitsuka, M. Single-molecule fluorescence kinetic sandwich assay using a DNA sequencer. Chem. Lett. 51, 139–141 (2022). https://doi.org/10.1246/cl.210726
– reference: [112] Yamazaki, H., Hu, R., Zhao, Q., Wanunu, M. Photothermally assisted thinning of silicon nitride membranes for ultrathin asymmetric nanopores. ACS Nano 12, 12472–12481 (2018). https://doi.org/10.1021/acsnano.8b06805
– reference: [80] Jamiolkowski, R. M., Chen, K. Y., Fiorenza, S. A., Tate, A. M., Pfeil, S. H., Goldman, Y. E. Nanoaperture fabrication via colloidal lithography for single molecule fluorescence analysis. PLoS One 14, e0222964 (2019). https://doi.org/10.1371/journal.pone.0222964
– reference: [2] Roy, R., Hohng, S., Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008). https://doi.org/10.1038/nmeth.1208
– reference: [90] Çetin, B., Song, G. J., O’Leary, S. E. Heterogeneous dynamics of protein-RNA interactions across transcriptome-derived messenger RNA populations. J. Am. Chem. Soc. 142, 21249–21253 (2020). https://doi.org/10.1021/jacs.0c09841
– reference: [155] Zhao, Q., Jayawardhana, D. A., Wang, D., Guan, X. Study of peptide transport through engineered protein channels. J. Phys. Chem. B 113, 3572–3578 (2009). https://doi.org/10.1021/jp809842g
– reference: [1] Juette, M. F., Terry, D. S., Wasserman, M. R., Zhou, Z., Altman, R. B., Zheng, Q., et al. The bright future of single-molecule fluorescence imaging. Curr. Opin. Chem. Biol. 20, 103–111 (2014). https://doi.org/10.1016/j.cbpa.2014.05.010
– reference: [147] Thakur, A. K., Movileanu, L. Real-time measurement of protein-protein interactions at single-molecule resolution using a biological nanopore. Nat. Biotechnol. 37, 96–101 (2019). https://doi.org/10.1038/nbt.4316
– reference: [100] Di Muccio, G., Rossini, A. E., Di Marino, D., Zollo, G., Chinappi, M. Insights into protein sequencing with an α-Hemolysin nanopore by atomistic simulations. Sci. Rep. 9, 6440 (2019). https://doi.org/10.1038/s41598-019-42867-7
– reference: [157] Piguet, F., Ouldali, H., Pastoriza-Gallego, M., Manivet, P., Pelta, J., Oukhaled, A. Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore. Nat. Commun. 9, 966 (2018). https://doi.org/10.1038/s41467-018-03418-2
– reference: [118] Waduge, P., Hu, R., Bandarkar, P., Yamazaki, H., Cressiot, B., Zhao, Q., et al. Nanopore-based measurements of protein size, fluctuations, and conformational changes. ACS Nano 11, 5706–5716 (2017). https://doi.org/10.1021/acsnano.7b01212
– reference: [160] Afshar Bakshloo, M., Kasianowicz, J. J., Pastoriza-Gallego, M., Mathé, J., Daniel, R., Piguet, F., et al. Nanopore-based protein identification. J. Am. Chem. Soc. 144, 2716–2725 (2022). https://doi.org/10.1021/jacs.1c11758
– reference: [22] Martin, W. E., Srijanto, B. R., Collier, C. P., Vosch, T., Richards, C. I. A comparison of single-molecule emission in aluminum and gold zero-mode waveguides. J. Phys. Chem. A 120, 6719–6727 (2016). https://doi.org/10.1021/acs.jpca.6b03309
– reference: [49] Iwasa, T., Han, Y.-W., Hiramatsu, R., Yokota, H., Nakao, K., Yokokawa, R., et al. Synergistic effect of ATP for RuvA-RuvB-Holliday junction DNA complex formation. Sci. Rep. 5, 18177 (2015). https://doi.org/10.1038/srep18177
– reference: [139] Tripathi, P., Benabbas, A., Mehrafrooz, B., Yamazaki, H., Aksimentiev, A., Champion, P. M., et al. Electrical unfolding of cytochrome c during translocation through a nanopore constriction. Proc. Natl. Acad. Sci. U.S.A. 118, e2016262118 (2021). https://doi.org/10.1073/pnas.2016262118
– reference: [42] Tsai, A., Kornberg, G., Johansson, M., Chen, J., Puglisi, J. D. The dynamics of SecM-induced translational stalling. Cell Rep. 7, 1521–1533 (2014). https://doi.org/10.1016/j.celrep.2014.04.033
– reference: [70] Lapointe, C. P., Grosely, R., Johnson, A. G., Wang, J., Fernández, I. S., Puglisi, J. D. Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation. Proc. Natl. Acad. Sci. U.S.A. 118, e2017715118 (2021). https://doi.org/10.1073/pnas.2017715118
– reference: [15] Axelrod, D. Total internal reflection fluorescence microscopy in cell biology. Traffic 2, 764–774 (2001). https://doi.org/10.1034/j.1600-0854.2001.21104.x
– reference: [65] Choi, J., Marks, J., Zhang, J., Chen, D.-H., Wang, J., Vázquez-Laslop, N., et al. Dynamics of the context-specific translation arrest by chloramphenicol and linezolid. Nat. Chem. Biol. 16, 310–317 (2020). https://doi.org/10.1038/s41589-019-0423-2
– reference: [154] Stefureac, R., Long, Y.-T., Kraatz, H.-B., Howard, P., Lee, J. S. Transport of α-helical peptides through α-hemolysin and aerolysin pores. Biochemistry 45, 9172–9179 (2006). https://doi.org/10.1021/bi0604835
– reference: [92] Xu, L., Seki, M. Recent advances in the detection of base modifications using the Nanopore sequencer. J. Hum. Genet. 65, 25–33 (2020). https://doi.org/10.1038/s10038-019-0679-0
– reference: [148] Derrington, I. M., Craig, J. M., Stava, E., Laszlo, A. H., Ross, B. C., Brinkerhoff, H., et al. Subangstrom single-molecule measurements of motor proteins using a nanopore. Nat. Biotechnol. 33, 1073–1075 (2015). https://doi.org/10.1038/nbt.3357
– reference: [53] Sobek, J., Rehrauer, H., Schauer, S., Fischer, D., Patrignani, A., Landgraf, S., et al. Single-molecule DNA hybridisation studied by using a modified DNA sequencer: A comparison with surface plasmon resonance data. Methods Appl. Fluoresc. 4, 015002 (2016). https://doi.org/10.1088/2050-6120/4/1/015002
– reference: [140] Yamazaki, H., Hu, R., Henley, R. Y., Halman, J., Afonin, K. A., Yu, D., et al. Label-free single-molecule thermoscopy using a laser-heated nanopore. Nano Lett. 17, 7067–7074 (2017). https://doi.org/10.1021/acs.nanolett.7b03752
– reference: [17] Bar-Even, A., Noor, E., Savir, Y., Liebermeister, W., Davidi, D., Tawfik, D. S., et al. The moderately efficient enzyme: Evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402–4410 (2011). https://doi.org/10.1021/bi2002289
– reference: [29] Truniger, V., Lázaro, J. M., Esteban, F. J., Blanco, L., Salas, M. A positively charged residue of phi29 DNA polymerase, highly conserved in DNA polymerases from families A and B, is involved in binding the incoming nucleotide. Nucleic Acids Res. 30, 1483–1492 (2002). https://doi.org/10.1093/nar/30.7.1483
– reference: [91] Pennisi, E. Search for pore-fection. Science 336, 534–537 (2012). https://doi.org/10.1126/science.336.6081.534
– reference: [152] Hu, Z.-L., Huo, M.-Z., Ying, Y.-L., Long, Y.-T. Biological nanopore approach for single-molecule protein sequencing. Angew. Chem. Int. Ed. Engl. 60, 14738–14749 (2021). https://doi.org/10.1002/anie.202013462
– reference: [93] Wanunu, M. Nanopores: A journey towards DNA sequencing. Phys. Life Rev. 9, 125–158 (2012). https://doi.org/10.1016/j.plrev.2012.05.010
– reference: [109] Yamazaki, H., Mizuguchi, T., Esashika, K., Saiki, T. Electro-osmotic trapping and compression of single DNA molecules while passing through a nanopore. Analyst 144, 5381–5388 (2019). https://doi.org/10.1039/c9an01253b
– reference: [12] Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C., Ha, T. Advances in single-molecule fluorescence methods for molecular biology. Annu. Rev. Biochem. 77, 51–76 (2008). https://doi.org/10.1146/annurev.biochem.77.070606.101543
– reference: [48] Chen, J., Coakley, A., O’Connor, M., Petrov, A., O’Leary, S. E., Atkins, J. F., et al. Coupling of mRNA structure rearrangement to ribosome movement during bypassing of non-coding regions. Cell 163, 1267–1280 (2015). https://doi.org/10.1016/j.cell.2015.10.064
– reference: [107] Goyal, P., Krasteva, P. V., Van Gerven, N., Gubellini, F., Van den Broeck, I., Troupiotis-Tsaïlaki, A., et al. Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature 516, 250–253 (2014). https://doi.org/10.1038/nature13768
– reference: [161] Kennedy, E., Dong, Z., Tennant, C., Timp, G. Reading the primary structure of a protein with 0.07 nm3 resolution using a subnanometre-diameter pore. Nat. Nanotechnol. 11, 968–976 (2016). https://doi.org/10.1038/nnano.2016.120
– reference: [76] Nemashkalo, A., Phipps, M. E., Hennelly, S. P., Goodwin, P. M. Real-time, single-molecule observation of biomolecular interactions inside nanophotonic zero mode waveguides. Nanotechnology 33, 165101 (2022). https://doi.org/10.1088/1361-6528/ac467c
– reference: [143] Li, X., Lee, K. H., Shorkey, S., Chen, J., Chen, M. Different anomeric sugar bound states of maltose binding protein resolved by a cytolysin a nanopore tweezer. ACS Nano 14, 1727–1737 (2020). https://doi.org/10.1021/acsnano.9b07385
– reference: [5] Ngo, T. T. M., Ha, T. Nucleosomes undergo slow spontaneous gaping. Nucleic Acids Res. 43, 3964–3971 (2015). https://doi.org/10.1093/nar/gkv276
– reference: [163] Zhang, S., Huang, G., Versloot, R. C. A., Bruininks, B. M. H., de Souza, P. C. T., Marrink, S.-J., et al. Bottom-up fabrication of a proteasome-nanopore that unravels and processes single proteins. Nat. Chem. 13, 1192–1199 (2021). https://doi.org/10.1038/s41557-021-00824-w
– reference: [86] Fujimoto, K., Morita, Y., Iino, R., Tomishige, M., Shintaku, H., Kotera, H., et al. Simultaneous observation of kinesin-driven microtubule motility and binding of adenosine triphosphate using linear zero-mode waveguides. ACS Nano 12, 11975–11985 (2018). https://doi.org/10.1021/acsnano.8b03803
– reference: [111] Kwok, H., Briggs, K., Tabard-Cossa, V. Nanopore fabrication by controlled dielectric breakdown. PLoS One 9, e92880 (2014). https://doi.org/10.1371/journal.pone.0092880
– reference: [87] Korlach, J., Marks, P. J., Cicero, R. L., Gray, J. J., Murphy, D. L., Roitman, D. B., et al. Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. Proc. Natl. Acad. Sci. U.S.A. 105, 1176–1181 (2008). https://doi.org/10.1073/pnas.0710982105
– reference: [27] del Prado, A., Lázaro, J. M., Villar, L., Salas, M., de Vega, M. Dual role of φ29 DNA polymerase Lys529 in stabilisation of the DNA priming-terminus and the terminal protein-priming residue at the polymerisation site. PLoS One 8, e72765 (2013). https://doi.org/10.1371/journal.pone.0072765
– reference: [64] Duss, O., Stepanyuk, G. A., Puglisi, J. D., Williamson, J. R. Transient protein-RNA interactions guide nascent ribosomal RNA folding. Cell 179, 1357–1369.e16 (2019). https://doi.org/10.1016/j.cell.2019.10.035
– reference: [38] Tsai, A., Uemura, S., Johansson, M., Puglisi, E. V., Marshall, R. A., Aitken, C. E., et al. The impact of aminoglycosides on the dynamics of translation elongation. Cell Rep. 3, 497–508 (2013). https://doi.org/10.1016/j.celrep.2013.01.027
– reference: [39] Chen, J., Petrov, A., Tsai, A., O’Leary, S. E., Puglisi, J. D. Coordinated conformational and compositional dynamics drive ribosome translocation. Nat. Struct. Mol. Biol. 20, 718–727 (2013). https://doi.org/10.1038/nsmb.2567
– reference: [132] Keyser, U. F., Koeleman, B. N., van Dorp, S., Krapf, D., Smeets, R. M. M., Lemay, S. G., et al. Direct force measurements on DNA in a solid-state nanopore. Nat. Phys. 2, 473–477 (2006). https://doi.org/10.1038/nphys344
– reference: [31] Vilfan, I. D., Tsai, Y.-C., Clark, T. A., Wegener, J., Dai, Q., Yi, C., et al. Analysis of RNA base modification and structural rearrangement by single-molecule real-time detection of reverse transcription. J. Nanobiotechnology 11, 8 (2013). https://doi.org/10.1186/1477-3155-11-8
– reference: [159] Lucas, F. L. R., Versloot, R. C. A., Yakovlieva, L., Walvoort, M. T. C., Maglia, G. Protein identification by nanopore peptide profiling. Nat. Commun. 12, 5795 (2021). https://doi.org/10.1038/s41467-021-26046-9
– reference: [28] Serrano-Heras, G., Bravo, A., Salas, M. Phage φ29 protein p56 prevents viral DNA replication impairment caused by uracil excision activity of uracil-DNA glycosylase. Proc. Natl. Acad. Sci. U.S.A. 105, 19044–19049 (2008). https://doi.org/10.1073/pnas.0808797105
– reference: [124] Lu, B., Hoogerheide, D. P., Zhao, Q., Zhang, H., Tang, Z., Yu, D., et al. Pressure-controlled motion of single polymers through solid-state nanopores. Nano Lett. 13, 3048–3052 (2013). https://doi.org/10.1021/nl402052v
– reference: [47] Nilsson, O. B., Hedman, R., Marino, J., Wickles, S., Bischoff, L., Johansson, M., et al. Cotranslational protein folding inside the ribosome exit tunnel. Cell Rep. 12, 1533–1540 (2015). https://doi.org/10.1016/j.celrep.2015.07.065
– reference: [4] Feng, X. A., Poyton, M. F., Ha, T. Multicolor single-molecule FRET for DNA and RNA processes. Curr. Opin. Struct. Biol. 70, 26–33 (2021). https://doi.org/10.1016/j.sbi.2021.03.005
– reference: [55] Goldschen-Ohm, M. P., Klenchin, V. A., White, D. S., Cowgill, J. B., Cui, Q., Goldsmith, R. H., et al. Structure and dynamics underlying elementary ligand binding events in human pacemaking channels. eLife 5, e20797 (2016). https://doi.org/10.7554/eLife.20797
– reference: [136] Nivala, J., Mulroney, L., Li, G., Schreiber, J., Akeson, M. Discrimination among protein variants using an unfoldase-coupled nanopore. ACS Nano 8, 12365–12375 (2014). https://doi.org/10.1021/nn5049987
– reference: [66] Choi, J., O’Loughlin, S., Atkins, J. F., Puglisi, J. D. The energy landscape of -1 ribosomal frameshifting. Sci. Adv. 6, eaax6969 (2020). https://doi.org/10.1126/sciadv.aax6969
– reference: [62] Wang, J., Johnson, A. G., Lapointe, C. P., Choi, J., Prabhakar, A., Chen, D.-H., et al. eIF5B gates the transition from translation initiation to elongation. Nature 573, 605–608 (2019). https://doi.org/10.1038/s41586-019-1561-0
– reference: [68] Sobek, J., Schlapbach, R. Dependence of fluorescence quenching of CY3 oligonucleotide conjugates on the oxidation potential of the stacking base pair. Molecules 25, 5369 (2020). https://doi.org/10.3390/molecules25225369
– reference: [72] Lawson, M. R., Lessen, L. N., Wang, J., Prabhakar, A., Corsepius, N. C., Green, R., et al. Mechanisms that ensure speed and fidelity in eukaryotic translation termination. Science 373, 876–882 (2021). https://doi.org/10.1126/science.abi7801
– reference: [95] Asandei, A., Schiopu, I., Chinappi, M., Seo, C. H., Park, Y., Luchian, T. Electroosmotic trap against the electrophoretic force near a protein nanopore reveals peptide dynamics during capture and translocation. ACS Appl. Mater. Interfaces 8, 13166–13179 (2016). https://doi.org/10.1021/acsami.6b03697
– reference: [103] Garoli, D., Yamazaki, H., Maccaferri, N., Wanunu, M. Plasmonic nanopores for single-molecule detection and manipulation: Toward sequencing applications. Nano Lett. 19, 7553–7562 (2019). https://doi.org/10.1021/acs.nanolett.9b02759
– reference: [52] Navon, S. P., Kornberg, G., Chen, J., Schwartzman, T., Tsai, A., Puglisi, E. V., et al. Amino acid sequence repertoire of the bacterial proteome and the occurrence of untranslatable sequences. Proc. Natl. Acad. Sci. U.S.A. 113, 7166–7170 (2016). https://doi.org/10.1073/pnas.1606518113
– reference: [138] Rodriguez-Larrea, D., Bayley, H. Multistep protein unfolding during nanopore translocation. Nat. Nanotechnol. 8, 288–295 (2013). https://doi.org/10.1038/nnano.2013.22
– reference: [167] Laszlo, A. H., Derrington, I. M., Gundlach, J. H. MspA nanopore as a single-molecule tool: From sequencing to SPRNT. Methods 105, 75–89 (2016). https://doi.org/10.1016/j.ymeth.2016.03.026
– reference: [145] Schmid, S., Stömmer, P., Dietz, H., Dekker, C. Nanopore electro-osmotic trap for the label-free study of single proteins and their conformations. Nat. Nanotechnol. 16, 1244–1250 (2021). https://doi.org/10.1038/s41565-021-00958-5
– reference: [73] White, D. S., Chowdhury, S., Idikuda, V., Zhang, R., Retterer, S. T., Goldsmith, R. H., et al. cAMP binding to closed pacemaker ion channels is non-cooperative. Nature 595, 606–610 (2021). https://doi.org/10.1038/s41586-021-03686-x
– reference: [108] Li, J., Stein, D., McMullan, C., Branton, D., Aziz, M. J., Golovchenko, J. A. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001). https://doi.org/10.1038/35084037
– reference: [40] Simonetti, A., Marzi, S., Billas, I. M. L., Tsai, A., Fabbretti, A., Myasnikov, A. G., et al. Involvement of protein IF2 N domain in ribosomal subunit joining revealed from architecture and function of the full-length initiation factor. Proc. Natl. Acad. Sci. U.S.A. 110, 15656–15661 (2013). https://doi.org/10.1073/pnas.1309578110
– reference: [67] Sobek, J., Schmidt, M., Grossmann, J., Rehrauer, H., Schmidt, L., Schlapbach, R. Single-molecule chemistry. Part I: Monitoring oxidation of G in oligonucleotides using CY3 fluorescence. Methods Appl. Fluoresc. 8, 035010 (2020). https://doi.org/10.1088/2050-6120/ab947d
– reference: [156] Asandei, A., Rossini, A. E., Chinappi, M., Park, Y., Luchian, T. Protein nanopore-based discrimination between selected neutral amino acids from polypeptides. Langmuir 33, 14451–14459 (2017). https://doi.org/10.1021/acs.langmuir.7b03163
– reference: [56] Prabhakar, A., Capece, M. C., Petrov, A., Choi, J., Puglisi, J. D. Post-termination ribosome intermediate acts as the gateway to ribosome recycling. Cell Rep. 20, 161–172 (2017). https://doi.org/10.1016/j.celrep.2017.06.028
– reference: [131] Hyun, C., Kaur, H., Rollings, R., Xiao, M., Li, J. Threading immobilized DNA molecules through a solid-state nanopore at >100 μs per base rate. ACS Nano 7, 5892–5900 (2013). https://doi.org/10.1021/nn4012434
– reference: [61] Johnson, A. G., Lapointe, C. P., Wang, J., Corsepius, N. C., Choi, J., Fuchs, G., et al. RACK1 on and off the ribosome. RNA 25, 881–895 (2019). https://doi.org/10.1261/rna.071217.119
– reference: [20] Zhao, J., Branagan, S. P., Bohn, P. W. Single-molecule enzyme dynamics of monomeric sarcosine oxidase in a gold-based zero-mode waveguide. Appl. Spectrosc. 66, 163–169 (2012). https://doi.org/10.1366/11-06464
– reference: [116] Oukhaled, A., Cressiot, B., Bacri, L., Pastoriza-Gallego, M., Betton, J.-M., Bourhis, E., et al. Dynamics of completely unfolded and native proteins through solid-state nanopores as a function of electric driving force. ACS Nano 5, 3628–3638 (2011). https://doi.org/10.1021/nn1034795
– ident: 21
  doi: 10.1039/C9NA00641A
– ident: 43
  doi: 10.1016/j.celrep.2014.04.034
– ident: 126
  doi: 10.1021/nl051063o
– ident: 146
  doi: 10.1002/anie.202110545
– ident: 70
  doi: 10.1073/pnas.2017715118
– ident: 75
  doi: 10.1246/cl.210726
– ident: 27
  doi: 10.1371/journal.pone.0072765
– ident: 28
  doi: 10.1073/pnas.0808797105
– ident: 100
  doi: 10.1038/s41598-019-42867-7
– ident: 140
  doi: 10.1021/acs.nanolett.7b03752
– ident: 3
  doi: 10.1038/nsmb831
– ident: 51
  doi: 10.1016/j.molcel.2016.03.020
– ident: 53
  doi: 10.1088/2050-6120/4/1/015002
– ident: 48
  doi: 10.1016/j.cell.2015.10.064
– ident: 74
  doi: 10.1016/j.bpj.2021.12.011
– ident: 71
  doi: 10.1093/nar/gkab033
– ident: 57
  doi: 10.1073/pnas.1719592115
– ident: 33
  doi: 10.1074/jbc.M804090200
– ident: 41
  doi: 10.1074/jbc.M114.563239
– ident: 141
  doi: 10.1021/acs.analchem.5b03631
– ident: 125
  doi: 10.1529/biophysj.108.140475
– ident: 20
  doi: 10.1366/11-06464
– ident: 72
  doi: 10.1126/science.abi7801
– ident: 85
  doi: 10.1364/OE.21.001189
– ident: 102
  doi: 10.1021/acs.analchem.6b04260
– ident: 97
  doi: 10.1021/acsnano.0c06981
– ident: 98
  doi: 10.1038/nnano.2010.202
– ident: 4
  doi: 10.1016/j.sbi.2021.03.005
– ident: 46
  doi: 10.1021/nl404802f
– ident: 147
  doi: 10.1038/nbt.4316
– ident: 56
  doi: 10.1016/j.celrep.2017.06.028
– ident: 9
  doi: 10.1016/j.gpb.2016.05.004
– ident: 32
  doi: 10.1021/ac800726g
– ident: 90
  doi: 10.1021/jacs.0c09841
– ident: 145
  doi: 10.1038/s41565-021-00958-5
– ident: 50
  doi: 10.1038/nsmb.3148
– ident: 148
  doi: 10.1038/nbt.3357
– ident: 68
  doi: 10.3390/molecules25225369
– ident: 109
  doi: 10.1039/C9AN01253B
– ident: 22
  doi: 10.1021/acs.jpca.6b03309
– ident: 136
  doi: 10.1021/nn5049987
– ident: 2
  doi: 10.1038/nmeth.1208
– ident: 118
  doi: 10.1021/acsnano.7b01212
– ident: 153
  doi: 10.1021/nl049413e
– ident: 25
  doi: 10.1088/1361-6463/aab8be
– ident: 138
  doi: 10.1038/nnano.2013.22
– ident: 78
  doi: 10.1143/JJAP.50.06GK07
– ident: 88
  doi: 10.1038/s41598-020-61856-9
– ident: 156
  doi: 10.1021/acs.langmuir.7b03163
– ident: 144
  doi: 10.1021/acs.analchem.5b03350
– ident: 61
  doi: 10.1261/rna.071217.119
– ident: 92
  doi: 10.1038/s10038-019-0679-0
– ident: 163
  doi: 10.1038/s41557-021-00824-w
– ident: 18
  doi: 10.1126/science.1079700
– ident: 42
  doi: 10.1016/j.celrep.2014.04.033
– ident: 7
  doi: 10.1038/s41576-020-0236-x
– ident: 128
  doi: 10.1038/nnano.2013.221
– ident: 35
  doi: 10.1074/jbc.M110.122101
– ident: 167
  doi: 10.1016/j.ymeth.2016.03.026
– ident: 15
  doi: 10.1034/j.1600-0854.2001.21104.x
– ident: 59
  doi: 10.1038/s41594-018-0030-z
– ident: 130
  doi: 10.1021/jacs.1c11540
– ident: 131
  doi: 10.1021/nn4012434
– ident: 112
  doi: 10.1021/acsnano.8b06805
– ident: 150
  doi: 10.1038/s41565-018-0236-6
– ident: 132
  doi: 10.1038/nphys344
– ident: 152
  doi: 10.1002/anie.202013462
– ident: 24
  doi: 10.1146/annurev-biophys-050511-102338
– ident: 81
  doi: 10.3390/nano12101755
– ident: 89
  doi: 10.1364/OL.33.001026
– ident: 115
  doi: 10.1073/pnas.1220012110
– ident: 160
  doi: 10.1021/jacs.1c11758
– ident: 113
  doi: 10.1021/nl100997s
– ident: 143
  doi: 10.1021/acsnano.9b07385
– ident: 151
  doi: 10.1038/s41592-021-01143-1
– ident: 142
  doi: 10.1021/nl503034j
– ident: 158
  doi: 10.1002/celc.201800288
– ident: 1
  doi: 10.1016/j.cbpa.2014.05.010
– ident: 55
  doi: 10.7554/eLife.20797
– ident: 123
  doi: 10.1038/nnano.2011.12
– ident: 94
  doi: 10.1039/C6NR06936C
– ident: 37
  doi: 10.1038/nature11172
– ident: 101
  doi: 10.1038/s41587-019-0345-2
– ident: 127
  doi: 10.1021/nl204273h
– ident: 47
  doi: 10.1016/j.celrep.2015.07.065
– ident: 106
  doi: 10.1038/nbt.2171
– ident: 104
  doi: 10.1038/s41578-020-0229-6
– ident: 111
  doi: 10.1371/journal.pone.0092880
– ident: 114
  doi: 10.1038/s41378-019-0050-9
– ident: 63
  doi: 10.1038/s41467-019-13810-1
– ident: 87
  doi: 10.1073/pnas.0710982105
– ident: 6
  doi: 10.1039/b704013j
– ident: 36
  doi: 10.1021/nl301480h
– ident: 120
  doi: 10.1021/ja901088b
– ident: 76
  doi: 10.1088/1361-6528/ac467c
– ident: 10
  doi: 10.1371/journal.pone.0216471
– ident: 96
  doi: 10.1038/s41467-017-01006-4
– ident: 86
  doi: 10.1021/acsnano.8b03803
– ident: 49
  doi: 10.1038/srep18177
– ident: 45
  doi: 10.7554/eLife.04418
– ident: 17
  doi: 10.1021/bi2002289
– ident: 23
  doi: 10.1021/acs.jpclett.1c00450
– ident: 133
  doi: 10.1038/nnano.2016.267
– ident: 73
  doi: 10.1038/s41586-021-03686-x
– ident: 95
  doi: 10.1021/acsami.6b03697
– ident: 149
  doi: 10.1073/pnas.1711282114
– ident: 139
  doi: 10.1073/pnas.2016262118
– ident: 34
  doi: 10.1038/nature08925
– ident: 79
  doi: 10.1088/0957-4484/23/45/455301
– ident: 39
  doi: 10.1038/nsmb.2567
– ident: 166
  doi: 10.1073/pnas.1310240110
– ident: 5
  doi: 10.1093/nar/gkv276
– ident: 165
  doi: 10.1039/D1SC04342K
– ident: 159
  doi: 10.1038/s41467-021-26046-9
– ident: 40
  doi: 10.1073/pnas.1309578110
– ident: 91
  doi: 10.1126/science.336.6081.534
– ident: 12
  doi: 10.1146/annurev.biochem.77.070606.101543
– ident: 16
  doi: 10.1007/b102211
– ident: 29
  doi: 10.1093/nar/30.7.1483
– ident: 13
  doi: 10.1016/j.molcel.2015.02.033
– ident: 14
  doi: 10.1016/j.molcel.2021.12.019
– ident: 8
  doi: 10.1126/science.1162986
– ident: 80
  doi: 10.1371/journal.pone.0222964
– ident: 164
  doi: 10.1021/acs.nanolett.1c02371
– ident: 119
  doi: 10.1039/C8NR06423G
– ident: 124
  doi: 10.1021/nl402052v
– ident: 19
  doi: 10.1143/JJAP.43.407
– ident: 77
  doi: 10.1021/acs.analchem.1c05091
– ident: 99
  doi: 10.1002/adfm.201601272
– ident: 121
  doi: 10.1038/srep11643
– ident: 129
  doi: 10.1002/smtd.201900893
– ident: 155
  doi: 10.1021/jp809842g
– ident: 122
  doi: 10.1021/nl3042678
– ident: 161
  doi: 10.1038/nnano.2016.120
– ident: 60
  doi: 10.1038/s41467-018-07423-3
– ident: 67
  doi: 10.1088/2050-6120/ab947d
– ident: 116
  doi: 10.1021/nn1034795
– ident: 11
  doi: 10.1073/pnas.1315735111
– ident: 38
  doi: 10.1016/j.celrep.2013.01.027
– ident: 44
  doi: 10.1038/nature13428
– ident: 137
  doi: 10.1021/acs.nanolett.5b03331
– ident: 52
  doi: 10.1073/pnas.1606518113
– ident: 64
  doi: 10.1016/j.cell.2019.10.035
– ident: 65
  doi: 10.1038/s41589-019-0423-2
– ident: 84
  doi: 10.2142/biophysico.13.0_63
– ident: 110
  doi: 10.1038/nmat941
– ident: 162
  doi: 10.1126/science.abl4381
– ident: 83
  doi: 10.1364/OE.27.019002
– ident: 58
  doi: 10.1093/nar/gkx1050
– ident: 154
  doi: 10.1021/bi0604835
– ident: 26
  doi: 10.1002/anie.201612050
– ident: 107
  doi: 10.1038/nature13768
– ident: 157
  doi: 10.1038/s41467-018-03418-2
– ident: 69
  doi: 10.1038/s41467-020-20409-4
– ident: 108
  doi: 10.1038/35084037
– ident: 31
  doi: 10.1186/1477-3155-11-8
– ident: 117
  doi: 10.1038/srep01638
– ident: 135
  doi: 10.1038/nbt.2503
– ident: 66
  doi: 10.1126/sciadv.aax6969
– ident: 82
  doi: 10.1103/PhysRevE.88.012727
– ident: 105
  doi: 10.1073/pnas.93.24.13770
– ident: 30
  doi: 10.1038/nmeth.1459
– ident: 103
  doi: 10.1021/acs.nanolett.9b02759
– ident: 93
  doi: 10.1016/j.plrev.2012.05.010
– ident: 54
  doi: 10.1021/acs.nanolett.6b00969
– ident: 62
  doi: 10.1038/s41586-019-1561-0
– ident: 134
  doi: 10.1038/ncomms5841
SSID ssj0001626690
Score 2.2110224
SecondaryResourceType review_article
Snippet Single-molecule technologies can provide detailed information regarding molecular mechanisms and interactions that cannot easily be studied on the bulk scale;...
SourceID doaj
pubmedcentral
proquest
crossref
jstage
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e190032
SubjectTerms DNA sequencer
nanopore
Review
single-molecule measurements
zero-mode waveguides
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - May need to register for free articles
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF5KoJBL6CMhTh-o0Ksa7Vra1R7T0hAK7amB0IvYxyhxCJJJ7JT--36jlV3r1B56McjaleSZ0c4349lvhHivgqUg5yG3deU4WyVz7wkKUYUORoeibnlz8tdv-uKy_HJVXe20-uKasEQPnAR3WsfaOG3aympXwj_5wmtfWiyj89KGMAQ-8Hk7wdSQXQFOR9yXSneYVezUL_qUK-g_-OXS54-SiSrnauKPBtp--KJbILNrmoDOacnkjg86fyYORvCYnaWHfi6eUPdCPE3tJH-9FP4H3fc597bJfrpHul4vIj1krotZ57oeQJtydloxG-un4bWy1Sa1vuChIcALMXlEximEO8LFhu65OE71hofi8vzz908X-dhDIQ8I1FaQvopRRbLRwQvJlrCgtDEEY7DKOV0abgxRtYWz5AANFElJZWVwYCFjnD0Se13f0bHIIFDAobZqS2CowtW1pShNxECSZEjNhNlIsgkjwTj3ubhrEGiwDpo_OmhYBwjQLXOTYqbczlwmko1_mPORlbUdzzTZwxcwnmY0nuZvxjMTZ0nV28tsZu7clm_IHyQ566u2Q3hbHNaWmXi3sZIGryb_3-I66tcPDTMHaakBaSGaiflMnnp6plvcDCTftrJYTeXJ__iZr8S-4l0bQ-botdhb3a_pDbDUyr8dXpvfcnAjgw
  priority: 102
  providerName: Directory of Open Access Journals
Title Zero-mode waveguides and nanopore-based sequencing technologies accelerate single-molecule studies
URI https://www.jstage.jst.go.jp/article/biophysico/19/0/19_e190032/_article/-char/en
https://www.proquest.com/docview/2734616511
https://pubmed.ncbi.nlm.nih.gov/PMC9592571
https://doaj.org/article/8d87a67f596a4215b0b6b49429349cc1
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Biophysics and Physicobiology, 2022, Vol.19, pp.e190032
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zi9RAEG6WFcEX8cTxWCL4mjXdk6TTDyKruCzC-uTA4kvoozKODMk4xx7_3q9yjBsQ8cGXQJK-0tVd9VWlukqIN8ob8nLqY1Nklq1VMnaOQBCV5F7nPikqPpx8_iU_m6WfL7KLAzEcV-wncPNH1Y7zSc3Wy-PrnzfvseHfsRuzTNVbt2g6M0Bz7FYrF19KjkE5BWO-A_mkOa_BeQ_6W8sLMDx0ws6t568NjGRVG9IfcuoHUNucRoB07E55Sz6dPhD3e2AZnXQr4aE4oPqRuNulmrx5LNw3Wjcx572JruwlzXeLQJvI1iGqbd3g-ylmgRai3rcaEi3aDmb3BRf1HhKKA0tEbF5YEhprM-vivvNFfCJmp5--fjyL-_wKsYcStwVlVAgqkAkWEkpWBGZTBe-1Bge0eao5aURWJdaQBWxQJCWlmcaNManC26fisG5qeiYiTCigUpVVKfBVYovCUJA6oCBJ0qQmQg8zWfo--DjnwFiWUEKYBuVvGpRMAyjvhuOWoqbc11x1ATj-oc4HJta-PIfQbh8063nZ78iyCIW2ua4yk9sUwMclLncpPsxMU-O9nIiTjtT7Zoaat7rlDvlCki3Cal-Ej8yB70zE62GVlNi2_C_G1tTsNiVHFcplDriLqRktn9Gox2_qxfc2ALjJDDitfP4fRvhC3FN8oKM1Kr0Uh9v1jl4BZm3dUWueOGr3zi9PbTMC
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zero-mode+waveguides+and+nanopore-based+sequencing+technologies+accelerate+single-molecule+studies&rft.jtitle=Biophysics+and+Physicobiology&rft.au=Iizuka%2C+Ryo&rft.au=Yamazaki%2C+Hirohito&rft.au=Uemura%2C+Sotaro&rft.date=2022-01-01&rft.pub=The+Biophysical+Society+of+Japan&rft.eissn=2189-4779&rft.volume=19&rft.spage=e190032&rft_id=info:doi/10.2142%2Fbiophysico.bppb-v19.0032&rft.externalDocID=article_biophysico_19_0_19_e190032_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2189-4779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2189-4779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2189-4779&client=summon