Zero-mode waveguides and nanopore-based sequencing technologies accelerate single-molecule studies
Single-molecule technologies can provide detailed information regarding molecular mechanisms and interactions that cannot easily be studied on the bulk scale; generally, individual molecular behaviors cannot be distinguished, and only average characteristics can be measured. Nevertheless, the develo...
Saved in:
Published in | Biophysics and Physicobiology Vol. 19; p. e190032 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
The Biophysical Society of Japan
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single-molecule technologies can provide detailed information regarding molecular mechanisms and interactions that cannot easily be studied on the bulk scale; generally, individual molecular behaviors cannot be distinguished, and only average characteristics can be measured. Nevertheless, the development of the single-molecule sequencer had a significant impact on conventional in vitro single-molecule research, featuring automated equipment, high-throughput chips, and automated analysis systems. However, the utilization of sequencing technology in in vitro single-molecule research is not yet globally prevalent, owing to the large gap between highly organized single-molecule sequencing and manual-based in vitro single-molecule research. Here, we describe the principles of zero-mode waveguides (ZMWs) and nanopore methods used as single-molecule DNA sequencing techniques, and provide examples of functional biological measurements beyond DNA sequencing that contribute to a global understanding of the current applications of these sequencing technologies. Furthermore, through a comparison of these two technologies, we discuss future applications of DNA sequencing technologies in in vitro single-molecule research. |
---|---|
AbstractList | Single-molecule technologies can provide detailed information regarding molecular mechanisms and interactions that cannot easily be studied on the bulk scale; generally, individual molecular behaviors cannot be distinguished, and only average characteristics can be measured. Nevertheless, the development of the single-molecule sequencer had a significant impact on conventional
in vitro
single-molecule research, featuring automated equipment, high-throughput chips, and automated analysis systems. However, the utilization of sequencing technology in
in vitro
single-molecule research is not yet globally prevalent, owing to the large gap between highly organized single-molecule sequencing and manual-based
in vitro
single-molecule research. Here, we describe the principles of zero-mode waveguides (ZMWs) and nanopore methods used as single-molecule DNA sequencing techniques, and provide examples of functional biological measurements beyond DNA sequencing that contribute to a global understanding of the current applications of these sequencing technologies. Furthermore, through a comparison of these two technologies, we discuss future applications of DNA sequencing technologies in
in vitro
single-molecule research. Single-molecule technologies can provide detailed information regarding molecular mechanisms and interactions that cannot easily be studied on the bulk scale; generally, individual molecular behaviors cannot be distinguished, and only average characteristics can be measured. Nevertheless, the development of the single-molecule sequencer had a significant impact on conventional in vitro single-molecule research, featuring automated equipment, high-throughput chips, and automated analysis systems. However, the utilization of sequencing technology in in vitro single-molecule research is not yet globally prevalent, owing to the large gap between highly organized single-molecule sequencing and manual-based in vitro single-molecule research. Here, we describe the principles of zero-mode waveguides (ZMWs) and nanopore methods used as single-molecule DNA sequencing techniques, and provide examples of functional biological measurements beyond DNA sequencing that contribute to a global understanding of the current applications of these sequencing technologies. Furthermore, through a comparison of these two technologies, we discuss future applications of DNA sequencing technologies in in vitro single-molecule research. Single-molecule technologies can provide detailed information regarding molecular mechanisms and interactions that cannot easily be studied on the bulk scale; generally, individual molecular behaviors cannot be distinguished, and only average characteristics can be measured. Nevertheless, the development of the single-molecule sequencer had a significant impact on conventional in vitro single-molecule research, featuring automated equipment, high-throughput chips, and automated analysis systems. However, the utilization of sequencing technology in in vitro single-molecule research is not yet globally prevalent, owing to the large gap between highly organized single-molecule sequencing and manual-based in vitro single-molecule research. Here, we describe the principles of zero-mode waveguides (ZMWs) and nanopore methods used as single-molecule DNA sequencing techniques, and provide examples of functional biological measurements beyond DNA sequencing that contribute to a global understanding of the current applications of these sequencing technologies. Furthermore, through a comparison of these two technologies, we discuss future applications of DNA sequencing technologies in in vitro single-molecule research.Single-molecule technologies can provide detailed information regarding molecular mechanisms and interactions that cannot easily be studied on the bulk scale; generally, individual molecular behaviors cannot be distinguished, and only average characteristics can be measured. Nevertheless, the development of the single-molecule sequencer had a significant impact on conventional in vitro single-molecule research, featuring automated equipment, high-throughput chips, and automated analysis systems. However, the utilization of sequencing technology in in vitro single-molecule research is not yet globally prevalent, owing to the large gap between highly organized single-molecule sequencing and manual-based in vitro single-molecule research. Here, we describe the principles of zero-mode waveguides (ZMWs) and nanopore methods used as single-molecule DNA sequencing techniques, and provide examples of functional biological measurements beyond DNA sequencing that contribute to a global understanding of the current applications of these sequencing technologies. Furthermore, through a comparison of these two technologies, we discuss future applications of DNA sequencing technologies in in vitro single-molecule research. |
ArticleNumber | e190032 |
Author | Yamazaki, Hirohito Uemura, Sotaro Iizuka, Ryo |
Author_xml | – sequence: 1 orcidid: 0000-0001-9701-1803 fullname: Iizuka, Ryo organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo – sequence: 2 orcidid: 0000-0001-9701-1803 fullname: Yamazaki, Hirohito organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo – sequence: 3 orcidid: 0000-0001-9701-1803 fullname: Uemura, Sotaro organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo |
BookMark | eNqNkcFu3CAQhq0qlZqmeQcfe_EWMDbmUimK0iZSpFzSSy9oDGMvKxZcsLfK2xd3001y6wUY5p9vRvN_LM588FgUJSUbRjn70tswbZ-S1WHTT1NfHajcEFKzd8U5o52suBDy7NX7Q3GZ0o4QQlvWtpKcF_1PjKHaB4PlbzjguFiDqQRvSg8-TCFi1UNCUyb8taDX1o_ljHrrgwujXaVao8MIM5YpJx1mmEO9uBzPi8mST8X7AVzCy-f7ovjx7ebx-ra6f_h-d311X2lBxVzxjhnDDEoDgnZ0wFq0g9E6j00ptFw0NSPNQEAiSEIZUoq8ETmQkrOcvSjujlwTYKemaPcQn1QAq_5-hDgqiLPVDlVnOgGtGBrZAme06Unf9jxjZM2l1jSzvh5Z09Lv0Wj0cwT3Bvo24-1WjeGgZCNZI1bA52dADHlxaVZ7m_KmHHgMS1JM1LylbUNXaXeU6hhSijic2lCiVpvVi81qtVllm9Vq88uYp1JtZ5htWIey7n8At0fALs0w4qnzv0W9KlxL1gOpXEtPEr2FqNDXfwBPdtWK |
CitedBy_id | crossref_primary_10_1093_nar_gkaf131 crossref_primary_10_1101_gr_279559_124 crossref_primary_10_1016_j_nancom_2024_100497 crossref_primary_10_1093_bioinformatics_btae168 crossref_primary_10_1002_ange_202319248 crossref_primary_10_1002_anie_202319248 |
Cites_doi | 10.1039/C9NA00641A 10.1016/j.celrep.2014.04.034 10.1021/nl051063o 10.1002/anie.202110545 10.1073/pnas.2017715118 10.1246/cl.210726 10.1371/journal.pone.0072765 10.1073/pnas.0808797105 10.1038/s41598-019-42867-7 10.1021/acs.nanolett.7b03752 10.1038/nsmb831 10.1016/j.molcel.2016.03.020 10.1088/2050-6120/4/1/015002 10.1016/j.cell.2015.10.064 10.1016/j.bpj.2021.12.011 10.1093/nar/gkab033 10.1073/pnas.1719592115 10.1074/jbc.M804090200 10.1074/jbc.M114.563239 10.1021/acs.analchem.5b03631 10.1529/biophysj.108.140475 10.1366/11-06464 10.1126/science.abi7801 10.1364/OE.21.001189 10.1021/acs.analchem.6b04260 10.1021/acsnano.0c06981 10.1038/nnano.2010.202 10.1016/j.sbi.2021.03.005 10.1021/nl404802f 10.1038/nbt.4316 10.1016/j.celrep.2017.06.028 10.1016/j.gpb.2016.05.004 10.1021/ac800726g 10.1021/jacs.0c09841 10.1038/s41565-021-00958-5 10.1038/nsmb.3148 10.1038/nbt.3357 10.3390/molecules25225369 10.1039/C9AN01253B 10.1021/acs.jpca.6b03309 10.1021/nn5049987 10.1038/nmeth.1208 10.1021/acsnano.7b01212 10.1021/nl049413e 10.1088/1361-6463/aab8be 10.1038/nnano.2013.22 10.1143/JJAP.50.06GK07 10.1038/s41598-020-61856-9 10.1021/acs.langmuir.7b03163 10.1021/acs.analchem.5b03350 10.1261/rna.071217.119 10.1038/s10038-019-0679-0 10.1038/s41557-021-00824-w 10.1126/science.1079700 10.1016/j.celrep.2014.04.033 10.1038/s41576-020-0236-x 10.1038/nnano.2013.221 10.1074/jbc.M110.122101 10.1016/j.ymeth.2016.03.026 10.1034/j.1600-0854.2001.21104.x 10.1038/s41594-018-0030-z 10.1021/jacs.1c11540 10.1021/nn4012434 10.1021/acsnano.8b06805 10.1038/s41565-018-0236-6 10.1038/nphys344 10.1002/anie.202013462 10.1146/annurev-biophys-050511-102338 10.3390/nano12101755 10.1364/OL.33.001026 10.1073/pnas.1220012110 10.1021/jacs.1c11758 10.1021/nl100997s 10.1021/acsnano.9b07385 10.1038/s41592-021-01143-1 10.1021/nl503034j 10.1002/celc.201800288 10.1016/j.cbpa.2014.05.010 10.7554/eLife.20797 10.1038/nnano.2011.12 10.1039/C6NR06936C 10.1038/nature11172 10.1038/s41587-019-0345-2 10.1021/nl204273h 10.1016/j.celrep.2015.07.065 10.1038/nbt.2171 10.1038/s41578-020-0229-6 10.1371/journal.pone.0092880 10.1038/s41378-019-0050-9 10.1038/s41467-019-13810-1 10.1073/pnas.0710982105 10.1039/b704013j 10.1021/nl301480h 10.1021/ja901088b 10.1088/1361-6528/ac467c 10.1371/journal.pone.0216471 10.1038/s41467-017-01006-4 10.1021/acsnano.8b03803 10.1038/srep18177 10.7554/eLife.04418 10.1021/bi2002289 10.1021/acs.jpclett.1c00450 10.1038/nnano.2016.267 10.1038/s41586-021-03686-x 10.1021/acsami.6b03697 10.1073/pnas.1711282114 10.1073/pnas.2016262118 10.1038/nature08925 10.1088/0957-4484/23/45/455301 10.1038/nsmb.2567 10.1073/pnas.1310240110 10.1093/nar/gkv276 10.1039/D1SC04342K 10.1038/s41467-021-26046-9 10.1073/pnas.1309578110 10.1126/science.336.6081.534 10.1146/annurev.biochem.77.070606.101543 10.1007/b102211 10.1093/nar/30.7.1483 10.1016/j.molcel.2015.02.033 10.1016/j.molcel.2021.12.019 10.1126/science.1162986 10.1371/journal.pone.0222964 10.1021/acs.nanolett.1c02371 10.1039/C8NR06423G 10.1021/nl402052v 10.1143/JJAP.43.407 10.1021/acs.analchem.1c05091 10.1002/adfm.201601272 10.1038/srep11643 10.1002/smtd.201900893 10.1021/jp809842g 10.1021/nl3042678 10.1038/nnano.2016.120 10.1038/s41467-018-07423-3 10.1088/2050-6120/ab947d 10.1021/nn1034795 10.1073/pnas.1315735111 10.1016/j.celrep.2013.01.027 10.1038/nature13428 10.1021/acs.nanolett.5b03331 10.1073/pnas.1606518113 10.1016/j.cell.2019.10.035 10.1038/s41589-019-0423-2 10.2142/biophysico.13.0_63 10.1038/nmat941 10.1126/science.abl4381 10.1364/OE.27.019002 10.1093/nar/gkx1050 10.1021/bi0604835 10.1002/anie.201612050 10.1038/nature13768 10.1038/s41467-018-03418-2 10.1038/s41467-020-20409-4 10.1038/35084037 10.1186/1477-3155-11-8 10.1038/srep01638 10.1038/nbt.2503 10.1126/sciadv.aax6969 10.1103/PhysRevE.88.012727 10.1073/pnas.93.24.13770 10.1038/nmeth.1459 10.1021/acs.nanolett.9b02759 10.1016/j.plrev.2012.05.010 10.1021/acs.nanolett.6b00969 10.1038/s41586-019-1561-0 10.1038/ncomms5841 |
ContentType | Journal Article |
Copyright | 2022 THE BIOPHYSICAL SOCIETY OF JAPAN 2022 THE BIOPHYSICAL SOCIETY OF JAPAN. 2022 THE BIOPHYSICAL SOCIETY OF JAPAN 2022 |
Copyright_xml | – notice: 2022 THE BIOPHYSICAL SOCIETY OF JAPAN – notice: 2022 THE BIOPHYSICAL SOCIETY OF JAPAN. – notice: 2022 THE BIOPHYSICAL SOCIETY OF JAPAN 2022 |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.2142/biophysico.bppb-v19.0032 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Iizuka et al.: DNA sequencing advances single-molecule studies |
EISSN | 2189-4779 |
ExternalDocumentID | oai_doaj_org_article_8d87a67f596a4215b0b6b49429349cc1 PMC9592571 10_2142_biophysico_bppb_v19_0032 article_biophysico_19_0_19_e190032_article_char_en |
GroupedDBID | ABDBF ADBBV ADRAZ ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV EBS EJD ESX GROUPED_DOAJ HYE I-F JMI JSF JSH KQ8 M48 MOJWN M~E OK1 RJT RPM RZJ TUS AAYXX ABJNI ACUHS ADMLS CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c717t-482dd2de9da7181fe376fdcc77911a64753205f0a9ea9012e11e457ea99942753 |
IEDL.DBID | M48 |
ISSN | 2189-4779 |
IngestDate | Wed Aug 27 01:30:26 EDT 2025 Thu Aug 21 18:39:46 EDT 2025 Thu Jul 10 23:19:15 EDT 2025 Tue Jul 01 02:14:19 EDT 2025 Thu Apr 24 22:56:25 EDT 2025 Wed Apr 05 11:39:21 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This article is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit
https://creativecommons.org/licenses/by-nc-sa/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c717t-482dd2de9da7181fe376fdcc77911a64753205f0a9ea9012e11e457ea99942753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by Akihiko Ishijima |
ORCID | 0000-0001-9701-1803 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.2142/biophysico.bppb-v19.0032 |
PQID | 2734616511 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8d87a67f596a4215b0b6b49429349cc1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9592571 proquest_miscellaneous_2734616511 crossref_primary_10_2142_biophysico_bppb_v19_0032 crossref_citationtrail_10_2142_biophysico_bppb_v19_0032 jstage_primary_article_biophysico_19_0_19_e190032_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Biophysics and Physicobiology |
PublicationYear | 2022 |
Publisher | The Biophysical Society of Japan |
Publisher_xml | – name: The Biophysical Society of Japan |
References | [80] Jamiolkowski, R. M., Chen, K. Y., Fiorenza, S. A., Tate, A. M., Pfeil, S. H., Goldman, Y. E. Nanoaperture fabrication via colloidal lithography for single molecule fluorescence analysis. PLoS One 14, e0222964 (2019). https://doi.org/10.1371/journal.pone.0222964 [113] Steinbock, L. J., Otto, O., Chimerel, C., Gornall, J., Keyser, U. F. Detecting DNA folding with nanocapillaries. Nano Lett. 10, 2493–2497 (2010). https://doi.org/10.1021/nl100997s [77] Baek, S., Han, D., Kwon, S.-R., Sundaresan, V., Bohn, P. W. Electrochemical zero-mode waveguide potential-dependent fluorescence of glutathione reductase at single-molecule occupancy. Anal. Chem. 94, 3970–3977 (2022). https://doi.org/10.1021/acs.analchem.1c05091 [95] Asandei, A., Schiopu, I., Chinappi, M., Seo, C. H., Park, Y., Luchian, T. Electroosmotic trap against the electrophoretic force near a protein nanopore reveals peptide dynamics during capture and translocation. ACS Appl. Mater. Interfaces 8, 13166–13179 (2016). https://doi.org/10.1021/acsami.6b03697 [91] Pennisi, E. Search for pore-fection. Science 336, 534–537 (2012). https://doi.org/10.1126/science.336.6081.534 [109] Yamazaki, H., Mizuguchi, T., Esashika, K., Saiki, T. Electro-osmotic trapping and compression of single DNA molecules while passing through a nanopore. Analyst 144, 5381–5388 (2019). https://doi.org/10.1039/c9an01253b [4] Feng, X. A., Poyton, M. F., Ha, T. Multicolor single-molecule FRET for DNA and RNA processes. Curr. Opin. Struct. Biol. 70, 26–33 (2021). https://doi.org/10.1016/j.sbi.2021.03.005 [82] Tanii, T., Akahori, R., Higano, S., Okubo, K., Yamamoto, H., Ueno, T., et al. Improving zero-mode waveguide structure for enhancing signal-to-noise ratio of real-time single-molecule fluorescence imaging: A computational study. Phys. Rev. E 88, 012727 (2013). https://doi.org/10.1103/PhysRevE.88.012727 [9] Lu, H., Giordano, F., Ning, Z. Oxford nanopore MinION sequencing and genome assembly. Genomics Proteomics Bioinformatics 14, 265–279 (2016). https://doi.org/10.1016/j.gpb.2016.05.004 [154] Stefureac, R., Long, Y.-T., Kraatz, H.-B., Howard, P., Lee, J. S. Transport of α-helical peptides through α-hemolysin and aerolysin pores. Biochemistry 45, 9172–9179 (2006). https://doi.org/10.1021/bi0604835 [29] Truniger, V., Lázaro, J. M., Esteban, F. J., Blanco, L., Salas, M. A positively charged residue of phi29 DNA polymerase, highly conserved in DNA polymerases from families A and B, is involved in binding the incoming nucleotide. Nucleic Acids Res. 30, 1483–1492 (2002). https://doi.org/10.1093/nar/30.7.1483 [97] Chinappi, M., Yamaji, M., Kawano, R., Cecconi, F. Analytical model for particle capture in nanopores elucidates competition among electrophoresis, electroosmosis, and dielectrophoresis. ACS Nano 14, 15816–15828 (2020). https://doi.org/10.1021/acsnano.0c06981 [12] Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C., Ha, T. Advances in single-molecule fluorescence methods for molecular biology. Annu. Rev. Biochem. 77, 51–76 (2008). https://doi.org/10.1146/annurev.biochem.77.070606.101543 [105] Kasianowicz, J. J., Brandin, E., Branton, D., Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. U.S.A. 93, 13770–13773 (1996). https://doi.org/10.1073/pnas.93.24.13770 [50] Choi, J., Ieong, K.-W., Demirci, H., Chen, J., Petrov, A., Prabhakar, A., et al. N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat. Struct. Mol. Biol. 23, 110–115 (2016). https://doi.org/10.1038/nsmb.3148 [133] Yusko, E. C., Bruhn, B. R., Eggenberger, O. M., Houghtaling, J., Rollings, R. C., Walsh, N. C., et al. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat. Nanotechnol. 12, 360–367 (2017). https://doi.org/10.1038/nnano.2016.267 [64] Duss, O., Stepanyuk, G. A., Puglisi, J. D., Williamson, J. R. Transient protein-RNA interactions guide nascent ribosomal RNA folding. Cell 179, 1357–1369.e16 (2019). https://doi.org/10.1016/j.cell.2019.10.035 [93] Wanunu, M. Nanopores: A journey towards DNA sequencing. Phys. Life Rev. 9, 125–158 (2012). https://doi.org/10.1016/j.plrev.2012.05.010 [103] Garoli, D., Yamazaki, H., Maccaferri, N., Wanunu, M. Plasmonic nanopores for single-molecule detection and manipulation: Toward sequencing applications. Nano Lett. 19, 7553–7562 (2019). https://doi.org/10.1021/acs.nanolett.9b02759 [3] Blanchard, S. C., Gonzalez, R. L., Kim, H. D., Chu, S., Puglisi, J. D. tRNA selection and kinetic proofreading in translation. Nat. Struct. Mol. Biol. 11, 1008–1014 (2004). https://doi.org/10.1038/nsmb831 [111] Kwok, H., Briggs, K., Tabard-Cossa, V. Nanopore fabrication by controlled dielectric breakdown. PLoS One 9, e92880 (2014). https://doi.org/10.1371/journal.pone.0092880 [148] Derrington, I. M., Craig, J. M., Stava, E., Laszlo, A. H., Ross, B. C., Brinkerhoff, H., et al. Subangstrom single-molecule measurements of motor proteins using a nanopore. Nat. Biotechnol. 33, 1073–1075 (2015). https://doi.org/10.1038/nbt.3357 [40] Simonetti, A., Marzi, S., Billas, I. M. L., Tsai, A., Fabbretti, A., Myasnikov, A. G., et al. Involvement of protein IF2 N domain in ribosomal subunit joining revealed from architecture and function of the full-length initiation factor. Proc. Natl. Acad. Sci. U.S.A. 110, 15656–15661 (2013). https://doi.org/10.1073/pnas.1309578110 [26] Goldschen-Ohm, M. P., White, D. S., Klenchin, V. A., Chanda, B., Goldsmith, R. H. Observing single-molecule dynamics at millimolar concentrations. Angew. Chem. Int. Ed. Engl. 56, 2399–2402 (2017). https://doi.org/10.1002/anie.201612050 [149] Craig, J. M., Laszlo, A. H., Brinkerhoff, H., Derrington, I. M., Noakes, M. T., Nova, I. C., et al. Revealing dynamics of helicase translocation on single-stranded DNA using high-resolution nanopore tweezers. Proc. Natl. Acad. Sci. U.S.A. 114, 11932–11937 (2017). https://doi.org/10.1073/pnas.1711282114 [98] Wanunu, M., Dadosh, T., Ray, V., Jin, J., McReynolds, L., Drndić, M. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol. 5, 807–814 (2010). https://doi.org/10.1038/nnano.2010.202 [18] Levene, M. J., Korlach, J., Turner, S. W., Foquet, M., Craighead, H. G., Webb, W. W. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003). https://doi.org/10.1126/science.1079700 [78] Wada, J., Ryu, S., Asano, Y., Ueno, T., Funatsu, T., Yukawa, T., et al. Fabrication of zero-mode waveguide by ultraviolet nanoimprint lithography lift-off process. Jpn. J. Appl. Phys. 50, 06GK07 (2011). https://doi.org/10.1143/JJAP.50.06GK07 [156] Asandei, A., Rossini, A. E., Chinappi, M., Park, Y., Luchian, T. Protein nanopore-based discrimination between selected neutral amino acids from polypeptides. Langmuir 33, 14451–14459 (2017). https://doi.org/10.1021/acs.langmuir.7b03163 [7] Logsdon, G. A., Vollger, M. R., Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614 (2020). https://doi.org/10.1038/s41576-020-0236-x [56] Prabhakar, A., Capece, M. C., Petrov, A., Choi, J., Puglisi, J. D. Post-termination ribosome intermediate acts as the gateway to ribosome recycling. Cell Rep. 20, 161–172 (2017). https://doi.org/10.1016/j.celrep.2017.06.028 [106] Manrao, E. A., Derrington, I. M., Laszlo, A. H., Langford, K. W., Hopper, M. K., Gillgren, N., et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012). https://doi.org/10.1038/nbt.2171 [115] Garaj, S., Liu, S., Golovchenko, J. A., Branton, D. Molecule-hugging graphene nanopores. Proc. Natl. Acad. Sci. U.S.A. 110, 12192–12196 (2013). https://doi.org/10.1073/pnas.1220012110 [21] Al Masud, A., Elliott Martin, W., Moonschi, F. H., Park, S. M., Srijanto, B. R., Graham, K. R., et al. Mixed metal zero-mode guides (ZMWs) for tunable fluorescence enhancement. Nanoscale Adv. 2, 1894–1903 (2020). https://doi.org/10.1039/C9NA00641A [68] Sobek, J., Schlapbach, R. Dependence of fluorescence quenching of CY3 oligonucleotide conjugates on the oxidation potential of the stacking base pair. Molecules 25, 5369 (2020). https://doi.org/10.3390/molecules25225369 [73] White, D. S., Chowdhury, S., Idikuda, V., Zhang, R., Retterer, S. T., Goldsmith, R. H., et al. cAMP binding to closed pacemaker ion channels is non-cooperative. Nature 595, 606–610 (2021). https://doi.org/10.1038/s41586-021-03686-x [42] Tsai, A., Kornberg, G., Johansson, M., Chen, J., Puglisi, J. D. The dynamics of SecM-induced translational stalling. Cell Rep. 7, 1521–1533 (2014). https://doi.org/10.1016/j.celrep.2014.04.033 [90] Çetin, B., Song, G. J., O’Leary, S. E. Heterogeneous dynamics of protein-RNA interactions across transcriptome-derived messenger RNA populations. J. Am. Chem. Soc. 142, 21249–21253 (2020). https://doi.org/10.1021/jacs.0c09841 [155] Zhao, Q., Jayawardhana, D. A., Wang, D., Guan, X. Study of peptide transport through engineered protein channels. J. Phys. Chem. B 113, 3572–3578 (2009). https://doi.org/10.1021/jp809842g [129] Zhang, Y., Zhao, J., Si, W., Kan, Y., Xu, Z., Sha, J., et al. Electroosmotic facilitated protein capture and transport through solid‐state nanopores with diameter larger than length. Small Methods 4, 1900893 (2020). https://doi.org/10.1002/smtd.201900893 [61] Johnson, A. G., Lapointe, C. P., Wang, J., Corsepius, N. C., Choi, J., Fuchs, G., et al. RACK1 on and off the ribosome. RNA 25, 881–895 (2019). https://doi.org/10.1261/rna.071217.119 [36] Richards, C. I., Luong, K., Srinivasan, R., Turner, S. W., Dougherty, D. A., Korlach, J., et al. Live-cell imaging of single receptor composition using zero-mode waveguide nanostructures. Nano Lett. 12, 3690–3694 (2012). https://doi.org/10.1021/nl301480h [10] Bolognini, D., Bartalucci, N., Mingrino, A., Vannucchi, A. M., Magi, A. NanoR: A user-friendly R package to analyze and compare nanopore sequencing data. PLoS One 14, e0216471 (2019). https://doi.org/10.1 88 89 110 111 112 113 114 115 116 90 117 91 118 92 119 93 94 95 96 97 10 98 11 99 12 13 14 15 16 17 18 19 120 121 1 122 2 123 3 124 4 125 5 126 6 127 7 128 8 129 9 20 21 22 23 24 25 26 27 28 29 130 131 132 133 134 135 136 137 138 139 30 31 32 33 34 35 36 37 38 39 140 141 142 143 144 145 146 147 148 149 40 41 42 43 44 45 46 47 48 49 150 151 152 153 154 155 156 157 158 159 50 51 52 53 54 55 56 57 58 59 160 161 162 163 164 165 166 167 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 100 101 102 103 104 105 106 80 107 81 108 82 109 83 84 85 86 87 |
References_xml | – reference: [151] Alfaro, J. A., Bohländer, P., Dai, M., Filius, M., Howard, C. J., van Kooten, X. F., et al. The emerging landscape of single-molecule protein sequencing technologies. Nat. Methods 18, 604–617 (2021). https://doi.org/10.1038/s41592-021-01143-1 – reference: [3] Blanchard, S. C., Gonzalez, R. L., Kim, H. D., Chu, S., Puglisi, J. D. tRNA selection and kinetic proofreading in translation. Nat. Struct. Mol. Biol. 11, 1008–1014 (2004). https://doi.org/10.1038/nsmb831 – reference: [13] Liu, Z., Lavis, L. D., Betzig, E. Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 58, 644–659 (2015). https://doi.org/10.1016/j.molcel.2015.02.033 – reference: [104] Xue, L., Yamazaki, H., Ren, R., Wanunu, M., Ivanov, A. P., Edel, J. B. Solid-state nanopore sensors. Nat. Rev. Mater. 5, 931–951 (2020). https://doi.org/10.1038/s41578-020-0229-6 – reference: [16] Wazawa, T., Ueda, M. Total internal reflection fluorescence microscopy in single molecule nanobioscience. Adv. Biochem. Eng. Biotechnol. 95, 77–106 (2005). https://doi.org/10.1007/b102211 – reference: [77] Baek, S., Han, D., Kwon, S.-R., Sundaresan, V., Bohn, P. W. Electrochemical zero-mode waveguide potential-dependent fluorescence of glutathione reductase at single-molecule occupancy. Anal. Chem. 94, 3970–3977 (2022). https://doi.org/10.1021/acs.analchem.1c05091 – reference: [85] Elting, M. W., Leslie, S. R., Churchman, L. S., Korlach, J., McFaul, C. M. J., Leith, J. S., et al. Single-molecule fluorescence imaging of processive myosin with enhanced background suppression using linear zero-mode waveguides (ZMWs) and convex lens induced confinement (CLIC). Opt. Express 21, 1189–1202 (2013). https://doi.org/10.1364/OE.21.001189 – reference: [114] Choi, J., Lee, C. C., Park, S. Scalable fabrication of sub-10 nm polymer nanopores for DNA analysis. Microsyst. Nanoeng. 5, 12 (2019). https://doi.org/10.1038/s41378-019-0050-9 – reference: [135] Nivala, J., Marks, D. B., Akeson, M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore. Nat. Biotechnol. 31, 247–250 (2013). https://doi.org/10.1038/nbt.2503 – reference: [94] Boukhet, M., Piguet, F., Ouldali, H., Pastoriza-Gallego, M., Pelta, J., Oukhaled, A. Probing driving forces in aerolysin and α-hemolysin biological nanopores: Electrophoresis versus electroosmosis. Nanoscale 8, 18352–18359 (2016). https://doi.org/10.1039/c6nr06936c – reference: [25] Crouch, G. M., Han, D., Bohn, P. W. Zero-mode waveguide nanophotonic structures for single molecule characterization. J. Phys. D Appl. Phys. 51, 193001 (2018). https://doi.org/10.1088/1361-6463/aab8be – reference: [164] Yan, S., Zhang, J., Wang, Y., Guo, W., Zhang, S., Liu, Y., et al. Single molecule ratcheting motion of peptides in a Mycobacterium smegmatis Porin A (MspA) nanopore. Nano Lett. 21, 6703–6710 (2021). https://doi.org/10.1021/acs.nanolett.1c02371 – reference: [130] Bandara, Y. M. N. D. Y., Farajpour, N., Freedman, K. J. Nanopore current enhancements lack protein charge dependence and elucidate maximum unfolding at protein’s isoelectric point. J. Am. Chem. Soc. 144, 3063–3073 (2022). https://doi.org/10.1021/jacs.1c11540 – reference: [79] Teng, C.-H., Lionberger, T. A., Zhang, J., Meyhöfer, E., Ku, P.-C. Fabrication of nanoscale zero-mode waveguides using microlithography for single molecule sensing. Nanotechnology 23, 455301 (2012). https://doi.org/10.1088/0957-4484/23/45/455301 – reference: [89] Lundquist, P. M., Zhong, C. F., Zhao, P., Tomaney, A. B., Peluso, P. S., Dixon, J., et al. Parallel confocal detection of single molecules in real time. Opt. Lett. 33, 1026–1028 (2008). https://doi.org/10.1364/ol.33.001026 – reference: [105] Kasianowicz, J. J., Brandin, E., Branton, D., Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. U.S.A. 93, 13770–13773 (1996). https://doi.org/10.1073/pnas.93.24.13770 – reference: [110] Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W., Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540 (2003). https://doi.org/10.1038/nmat941 – reference: [69] Wang, C., Sensale, S., Pan, Z., Senapati, S., Chang, H.-C. Slowing down DNA translocation through solid-state nanopores by edge-field leakage. Nat. Commun. 12, 140 (2021). https://doi.org/10.1038/s41467-020-20409-4 – reference: [99] Wilson, J., Sloman, L., He, Z., Aksimentiev, A. Graphene nanopores for protein sequencing. Adv. Funct. Mater. 26, 4830–4838 (2016). https://doi.org/10.1002/adfm.201601272 – reference: [125] Wanunu, M., Sutin, J., McNally, B., Chow, A., Meller, A. DNA translocation governed by interactions with solid-state nanopores. Biophys. J. 95, 4716–4725 (2008). https://doi.org/10.1529/biophysj.108.140475 – reference: [10] Bolognini, D., Bartalucci, N., Mingrino, A., Vannucchi, A. M., Magi, A. NanoR: A user-friendly R package to analyze and compare nanopore sequencing data. PLoS One 14, e0216471 (2019). https://doi.org/10.1371/journal.pone.0216471 – reference: [33] Suzuki, M., Ueno, T., Iizuka, R., Miura, T., Zako, T., Akahori, R., et al. Effect of the C-terminal truncation on the functional cycle of chaperonin GroEL: Implication that the C-terminal region facilitates the transition from the folding-arrested to the folding-competent state. J. Biol. Chem. 283, 23931–23939 (2008). https://doi.org/10.1074/jbc.M804090200 – reference: [24] Zhu, P., Craighead, H. G. Zero-mode waveguides for single-molecule analysis. Annu. Rev. Biophys. 41, 269–293 (2012). https://doi.org/10.1146/annurev-biophys-050511-102338 – reference: [78] Wada, J., Ryu, S., Asano, Y., Ueno, T., Funatsu, T., Yukawa, T., et al. Fabrication of zero-mode waveguide by ultraviolet nanoimprint lithography lift-off process. Jpn. J. Appl. Phys. 50, 06GK07 (2011). https://doi.org/10.1143/JJAP.50.06GK07 – reference: [133] Yusko, E. C., Bruhn, B. R., Eggenberger, O. M., Houghtaling, J., Rollings, R. C., Walsh, N. C., et al. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat. Nanotechnol. 12, 360–367 (2017). https://doi.org/10.1038/nnano.2016.267 – reference: [165] Chen, Z., Wang, Z., Xu, Y., Zhang, X., Tian, B., Bai, J. Controlled movement of ssDNA conjugated peptide through Mycobacterium smegmatis porin A (MspA) nanopore by a helicase motor for peptide sequencing application. Chem. Sci. 12, 15750–15756 (2021). https://doi.org/10.1039/d1sc04342k – reference: [121] Squires, A., Atas, E., Meller, A. Nanopore sensing of individual transcription factors bound to DNA. Sci. Rep. 5, 11643 (2015). https://doi.org/10.1038/srep11643 – reference: [144] Fahie, M. A., Yang, B., Mullis, M., Holden, M. A., Chen, M. Selective detection of protein homologues in serum using an OmpG nanopore. Anal. Chem. 87, 11143–11149 (2015). https://doi.org/10.1021/acs.analchem.5b03350 – reference: [46] Zhao, Y., Chen, D., Yue, H., Spiering, M. M., Zhao, C., Benkovic, S. J., et al. Dark-field illumination on zero-mode waveguide/microfluidic hybrid chip reveals T4 replisomal protein interactions. Nano Lett. 14, 1952–1960 (2014). https://doi.org/10.1021/nl404802f – reference: [88] Patra, S., Baibakov, M., Claude, J.-B., Wenger, J. Surface passivation of zero-mode waveguide nanostructures: Benchmarking protocols and fluorescent labels. Sci. Rep. 10, 5235 (2020). https://doi.org/10.1038/s41598-020-61856-9 – reference: [101] Ouldali, H., Sarthak, K., Ensslen, T., Piguet, F., Manivet, P., Pelta, J., et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat. Biotechnol. 38, 176–181 (2020). https://doi.org/10.1038/s41587-019-0345-2 – reference: [117] Freedman, K. J., Haq, S. R., Edel, J. B., Jemth, P., Kim, M. J. Single molecule unfolding and stretching of protein domains inside a solid-state nanopore by electric field. Sci. Rep. 3, 1638 (2013). https://doi.org/10.1038/srep01638 – reference: [81] Messina, T. C., Srijanto, B. R., Collier, C. P., Kravchenko, I. I., Richards, C. I. Gold ion beam milled gold zero-mode waveguides. Nanomaterials 12, 1755 (2022). https://doi.org/10.3390/nano12101755 – reference: [137] Henley, R. Y., Ashcroft, B. A., Farrell, I., Cooperman, B. S., Lindsay, S. M., Wanunu, M. Electrophoretic deformation of individual transfer RNA molecules reveals their identity. Nano Lett. 16, 138–144 (2016). https://doi.org/10.1021/acs.nanolett.5b03331 – reference: [82] Tanii, T., Akahori, R., Higano, S., Okubo, K., Yamamoto, H., Ueno, T., et al. Improving zero-mode waveguide structure for enhancing signal-to-noise ratio of real-time single-molecule fluorescence imaging: A computational study. Phys. Rev. E 88, 012727 (2013). https://doi.org/10.1103/PhysRevE.88.012727 – reference: [54] Christensen, S. M., Triplet, M. G., Rhodes, C., Iwig, J. S., Tu, H.-L., Stamou, D., et al. Monitoring the waiting time sequence of single Ras GTPase activation events using liposome functionalized zero-mode waveguides. Nano Lett. 16, 2890–2895 (2016). https://doi.org/10.1021/acs.nanolett.6b00969 – reference: [126] Fologea, D., Uplinger, J., Thomas, B., McNabb, D. S., Li, J. Slowing DNA translocation in a solid-state nanopore. Nano Lett. 5, 1734–1737 (2005). https://doi.org/10.1021/nl051063o – reference: [166] Laszlo, A. H., Derrington, I. M., Brinkerhoff, H., Langford, K. W., Nova, I. C., Samson, J. M., et al. Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore MspA. Proc. Natl. Acad. Sci. U.S.A. 110, 18904–18909 (2013). https://doi.org/10.1073/pnas.1310240110 – reference: [35] Sameshima, T., Iizuka, R., Ueno, T., Wada, J., Aoki, M., Shimamoto, N., et al. Single-molecule study on the decay process of the football-shaped GroEL-GroES complex using zero-mode waveguides. J. Biol. Chem. 285, 23159–23164 (2010). https://doi.org/10.1074/jbc.M110.122101 – reference: [26] Goldschen-Ohm, M. P., White, D. S., Klenchin, V. A., Chanda, B., Goldsmith, R. H. Observing single-molecule dynamics at millimolar concentrations. Angew. Chem. Int. Ed. Engl. 56, 2399–2402 (2017). https://doi.org/10.1002/anie.201612050 – reference: [115] Garaj, S., Liu, S., Golovchenko, J. A., Branton, D. Molecule-hugging graphene nanopores. Proc. Natl. Acad. Sci. U.S.A. 110, 12192–12196 (2013). https://doi.org/10.1073/pnas.1220012110 – reference: [129] Zhang, Y., Zhao, J., Si, W., Kan, Y., Xu, Z., Sha, J., et al. Electroosmotic facilitated protein capture and transport through solid‐state nanopores with diameter larger than length. Small Methods 4, 1900893 (2020). https://doi.org/10.1002/smtd.201900893 – reference: [7] Logsdon, G. A., Vollger, M. R., Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614 (2020). https://doi.org/10.1038/s41576-020-0236-x – reference: [41] Noriega, T. R., Tsai, A., Elvekrog, M. M., Petrov, A., Neher, S. B., Chen, J., et al. Signal recognition particle-ribosome binding is sensitive to nascent chain length. J. Biol. Chem. 289, 19294–19305 (2014). https://doi.org/10.1074/jbc.M114.563239 – reference: [120] Talaga, D. S., Li, J. Single-molecule protein unfolding in solid state nanopores. J. Am. Chem. Soc. 131, 9287–9297 (2009). https://doi.org/10.1021/ja901088b – reference: [113] Steinbock, L. J., Otto, O., Chimerel, C., Gornall, J., Keyser, U. F. Detecting DNA folding with nanocapillaries. Nano Lett. 10, 2493–2497 (2010). https://doi.org/10.1021/nl100997s – reference: [59] Choi, J., Indrisiunaite, G., DeMirci, H., Ieong, K.-W., Wang, J., Petrov, A., et al. 2'-O-methylation in mRNA disrupts tRNA decoding during translation elongation. Nat. Struct. Mol. Biol. 25, 208–216 (2018). https://doi.org/10.1038/s41594-018-0030-z – reference: [43] Johansson, M., Chen, J., Tsai, A., Kornberg, G., Puglisi, J. D. Sequence-dependent elongation dynamics on macrolide-bound ribosomes. Cell Rep. 7, 1534–1546 (2014). https://doi.org/10.1016/j.celrep.2014.04.034 – reference: [134] Rodriguez-Larrea, D., Bayley, H. Protein co-translocational unfolding depends on the direction of pulling. Nat. Commun. 5, 4841 (2014). https://doi.org/10.1038/ncomms5841 – reference: [127] Kowalczyk, S. W., Wells, D. B., Aksimentiev, A., Dekker, C. Slowing down DNA translocation through a nanopore in lithium chloride. Nano Lett. 12, 1038–1044 (2012). https://doi.org/10.1021/nl204273h – reference: [58] Johnson, A. G., Petrov, A. N., Fuchs, G., Majzoub, K., Grosely, R., Choi, J., et al. Fluorescently-tagged human eIF3 for single-molecule spectroscopy. Nucleic Acids Res. 46, e8 (2018). https://doi.org/10.1093/nar/gkx1050 – reference: [9] Lu, H., Giordano, F., Ning, Z. Oxford nanopore MinION sequencing and genome assembly. Genomics Proteomics Bioinformatics 14, 265–279 (2016). https://doi.org/10.1016/j.gpb.2016.05.004 – reference: [11] Chen, J., Dalal, R. V., Petrov, A. N., Tsai, A., O’Leary, S. E., Chapin, K., et al. High-throughput platform for real-time monitoring of biological processes by multicolor single-molecule fluorescence. Proc. Natl. Acad. Sci. U.S.A. 111, 664–669 (2014). https://doi.org/10.1073/pnas.1315735111 – reference: [32] Miyake, T., Tanii, T., Sonobe, H., Akahori, R., Shimamoto, N., Ueno, T., et al. Real-time imaging of single-molecule fluorescence with a zero-mode waveguide for the analysis of protein-protein interaction. Anal. Chem. 80, 6018–6022 (2008). https://doi.org/10.1021/ac800726g – reference: [34] Uemura, S., Aitken, C. E., Korlach, J., Flusberg, B. A., Turner, S. W., Puglisi, J. D. Real-time tRNA transit on single translating ribosomes at codon resolution. Nature 464, 1012–1017 (2010). https://doi.org/10.1038/nature08925 – reference: [97] Chinappi, M., Yamaji, M., Kawano, R., Cecconi, F. Analytical model for particle capture in nanopores elucidates competition among electrophoresis, electroosmosis, and dielectrophoresis. ACS Nano 14, 15816–15828 (2020). https://doi.org/10.1021/acsnano.0c06981 – reference: [128] Di Fiori, N., Squires, A., Bar, D., Gilboa, T., Moustakas, T. D., Meller, A. Optoelectronic control of surface charge and translocation dynamics in solid-state nanopores. Nat. Nanotechnol. 8, 946–951 (2013). https://doi.org/10.1038/nnano.2013.221 – reference: [96] Huang, G., Willems, K., Soskine, M., Wloka, C., Maglia, G. Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores. Nat. Commun. 8, 935 (2017). https://doi.org/10.1038/s41467-017-01006-4 – reference: [14] Ha, T., Kaiser, C., Myong, S., Wu, B., Xiao, J. Next generation single-molecule techniques: Imaging, labeling, and manipulation in vitro and in cellulo. Mol. Cell 82, 304–314 (2022). https://doi.org/10.1016/j.molcel.2021.12.019 – reference: [8] Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009). https://doi.org/10.1126/science.1162986 – reference: [44] Chen, J., Petrov, A., Johansson, M., Tsai, A., O’Leary, S. E., Puglisi, J. D. Dynamic pathways of –1 translational frameshifting. Nature 512, 328–332 (2014). https://doi.org/10.1038/nature13428 – reference: [18] Levene, M. J., Korlach, J., Turner, S. W., Foquet, M., Craighead, H. G., Webb, W. W. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003). https://doi.org/10.1126/science.1079700 – reference: [36] Richards, C. I., Luong, K., Srinivasan, R., Turner, S. W., Dougherty, D. A., Korlach, J., et al. Live-cell imaging of single receptor composition using zero-mode waveguide nanostructures. Nano Lett. 12, 3690–3694 (2012). https://doi.org/10.1021/nl301480h – reference: [37] Tsai, A., Petrov, A., Marshall, R. A., Korlach, J., Uemura, S., Puglisi, J. D. Heterogeneous pathways and timing of factor departure during translation initiation. Nature 487, 390–393 (2012). https://doi.org/10.1038/nature11172 – reference: [106] Manrao, E. A., Derrington, I. M., Laszlo, A. H., Langford, K. W., Hopper, M. K., Gillgren, N., et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012). https://doi.org/10.1038/nbt.2171 – reference: [102] Shi, W., Friedman, A. K., Baker, L. A. Nanopore sensing. Anal. Chem. 89, 157–188 (2017). https://doi.org/10.1021/acs.analchem.6b04260 – reference: [146] Liu, Y., Pan, T., Wang, K., Wang, Y., Yan, S., Wang, L., et al. Allosteric switching of calmodulin in a Mycobacterium smegmatis porin A (MspA) nanopore-trap. Angew. Chem. Int. Ed Engl. 60, 23863–23870 (2021). https://doi.org/10.1002/anie.202110545 – reference: [21] Al Masud, A., Elliott Martin, W., Moonschi, F. H., Park, S. M., Srijanto, B. R., Graham, K. R., et al. Mixed metal zero-mode guides (ZMWs) for tunable fluorescence enhancement. Nanoscale Adv. 2, 1894–1903 (2020). https://doi.org/10.1039/C9NA00641A – reference: [23] Masud, A. A., Arefin, S. M. N., Fairooz, F., Fu, X., Moonschi, F., Srijanto, B. R., et al. Photoluminescence enhancement, blinking suppression, and improved biexciton quantum yield of single quantum dots in zero mode waveguides. J. Phys. Chem. Lett. 12, 3303–3311 (2021). https://doi.org/10.1021/acs.jpclett.1c00450 – reference: [50] Choi, J., Ieong, K.-W., Demirci, H., Chen, J., Petrov, A., Prabhakar, A., et al. N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat. Struct. Mol. Biol. 23, 110–115 (2016). https://doi.org/10.1038/nsmb.3148 – reference: [98] Wanunu, M., Dadosh, T., Ray, V., Jin, J., McReynolds, L., Drndić, M. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol. 5, 807–814 (2010). https://doi.org/10.1038/nnano.2010.202 – reference: [83] Wu, M., Liu, W., Hu, J., Zhong, Z., Rujiralai, T., Zhou, L., et al. Fluorescence enhancement in an over-etched gold zero-mode waveguide. Opt. Express 27, 19002–19018 (2019). https://doi.org/10.1364/OE.27.019002 – reference: [84] Iizuka, R., Funatsu, T. Chaperonin GroEL uses asymmetric and symmetric reaction cycles in response to the concentration of non-native substrate proteins. Biophys. Physicobiol. 13, 63–69 (2016). https://doi.org/10.2142/biophysico.13.0_63 – reference: [122] Plesa, C., Kowalczyk, S. W., Zinsmeester, R., Grosberg, A. Y., Rabin, Y., Dekker, C. Fast translocation of proteins through solid state nanopores. Nano Lett. 13, 658–663 (2013). https://doi.org/10.1021/nl3042678 – reference: [60] Duss, O., Stepanyuk, G. A., Grot, A., O’Leary, S. E., Puglisi, J. D., Williamson, J. R. Real-time assembly of ribonucleoprotein complexes on nascent RNA transcripts. Nat. Commun. 9, 5087 (2018). https://doi.org/10.1038/s41467-018-07423-3 – reference: [30] Flusberg, B. A., Webster, D. R., Lee, J. H., Travers, K. J., Olivares, E. C., Clark, T. A., et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 7, 461–465 (2010). https://doi.org/10.1038/nmeth.1459 – reference: [162] Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A., Dekker, C. Multiple rereads of single proteins at single-amino acid resolution using nanopores. Science 374, 1509–1513 (2021). https://doi.org/10.1126/science.abl4381 – reference: [119] Chae, H., Kwak, D.-K., Lee, M.-K., Chi, S.-W., Kim, K.-B. Solid-state nanopore analysis on conformation change of p53TAD-MDM2 fusion protein induced by protein-protein interaction. Nanoscale 10, 17227–17235 (2018). https://doi.org/10.1039/c8nr06423g – reference: [149] Craig, J. M., Laszlo, A. H., Brinkerhoff, H., Derrington, I. M., Noakes, M. T., Nova, I. C., et al. Revealing dynamics of helicase translocation on single-stranded DNA using high-resolution nanopore tweezers. Proc. Natl. Acad. Sci. U.S.A. 114, 11932–11937 (2017). https://doi.org/10.1073/pnas.1711282114 – reference: [153] Sutherland, T. C., Long, Y.-T., Stefureac, R.-I., Bediako-Amoa, I., Kraatz, H.-B., Lee, J. S. Structure of peptides investigated by nanopore analysis. Nano Lett. 4, 1273–1277 (2004). https://doi.org/10.1021/nl049413e – reference: [150] Restrepo-Pérez, L., Joo, C., Dekker, C. Paving the way to single-molecule protein sequencing. Nat. Nanotechnol. 13, 786–796 (2018). https://doi.org/10.1038/s41565-018-0236-6 – reference: [19] Jin, E. X., Xu, X. Finitte-difference time-domain studies on optical transmission through planar nano-apertures in a metal film. Jpn. J. Appl. Phys. 43, 407 (2004). https://doi.org/10.1143/JJAP.43.407 – reference: [142] Nicoli, F., Verschueren, D., Klein, M., Dekker, C., Jonsson, M. P. DNA translocations through solid-state plasmonic nanopores. Nano Lett. 14, 6917–6925 (2014). https://doi.org/10.1021/nl503034j – reference: [45] Noriega, T. R., Chen, J., Walter, P., Puglisi, J. D. Real-time observation of signal recognition particle binding to actively translating ribosomes. eLife 3, e04418 (2014). https://doi.org/10.7554/eLife.04418 – reference: [123] Yusko, E. C., Johnson, J. M., Majd, S., Prangkio, P., Rollings, R. C., Li, J., et al. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat. Nanotechnol. 6, 253–260 (2011). https://doi.org/10.1038/nnano.2011.12 – reference: [141] Angevine, C. E., Seashols-Williams, S. J., Reiner, J. E. Infrared laser heating applied to nanopore sensing for DNA duplex analysis. Anal. Chem. 88, 2645–2651 (2016). https://doi.org/10.1021/acs.analchem.5b03631 – reference: [6] Etchegoin, P. G., Meyer, M., Le Ru, E. C. Statistics of single molecule SERS signals: Is there a Poisson distribution of intensities? Phys. Chem. Chem. Phys. 9, 3006–3010 (2007). https://doi.org/10.1039/b704013j – reference: [51] Petrov, A., Grosely, R., Chen, J., O’Leary, S. E., Puglisi, J. D. Multiple parallel pathways of translation initiation on the CrPV IRES. Mol. Cell 62, 92–103 (2016). https://doi.org/10.1016/j.molcel.2016.03.020 – reference: [57] Choi, J., Puglisi, J. D. Three tRNAs on the ribosome slow translation elongation. Proc. Natl. Acad. Sci. U.S.A. 114, 13691–13696 (2017). https://doi.org/10.1073/pnas.1719592115 – reference: [63] Verma, M., Choi, J., Cottrell, K. A., Lavagnino, Z., Thomas, E. N., Pavlovic-Djuranovic, S., et al. A short translational ramp determines the efficiency of protein synthesis. Nat. Commun. 10, 5774 (2019). https://doi.org/10.1038/s41467-019-13810-1 – reference: [158] Li, S., Cao, C., Yang, J., Long, Y.-T. Detection of peptides with different charges and lengths by using the aerolysin nanopore. ChemElectroChem 6, 126–129 (2019). https://doi.org/10.1002/celc.201800288 – reference: [71] Ieong, K.-W., Indrisiunaite, G., Prabhakar, A., Puglisi, J. D., Ehrenberg, M. N6-Methyladenosines in mRNAs reduce the accuracy of codon reading by transfer RNAs and peptide release factors. Nucleic Acids Res. 49, 2684–2699 (2021). https://doi.org/10.1093/nar/gkab033 – reference: [74] Hoyer, M., Crevenna, A. H., Correia, J. R. C., Quezada, A. G., Lamb, D. C. Zero-mode waveguides visualize the first steps during gelsolin-mediated actin filament formation. Biophys. J. 121, 327–335 (2022). https://doi.org/10.1016/j.bpj.2021.12.011 – reference: [75] Kawai, K., Fujitsuka, M. Single-molecule fluorescence kinetic sandwich assay using a DNA sequencer. Chem. Lett. 51, 139–141 (2022). https://doi.org/10.1246/cl.210726 – reference: [112] Yamazaki, H., Hu, R., Zhao, Q., Wanunu, M. Photothermally assisted thinning of silicon nitride membranes for ultrathin asymmetric nanopores. ACS Nano 12, 12472–12481 (2018). https://doi.org/10.1021/acsnano.8b06805 – reference: [80] Jamiolkowski, R. M., Chen, K. Y., Fiorenza, S. A., Tate, A. M., Pfeil, S. H., Goldman, Y. E. Nanoaperture fabrication via colloidal lithography for single molecule fluorescence analysis. PLoS One 14, e0222964 (2019). https://doi.org/10.1371/journal.pone.0222964 – reference: [2] Roy, R., Hohng, S., Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008). https://doi.org/10.1038/nmeth.1208 – reference: [90] Çetin, B., Song, G. J., O’Leary, S. E. Heterogeneous dynamics of protein-RNA interactions across transcriptome-derived messenger RNA populations. J. Am. Chem. Soc. 142, 21249–21253 (2020). https://doi.org/10.1021/jacs.0c09841 – reference: [155] Zhao, Q., Jayawardhana, D. A., Wang, D., Guan, X. Study of peptide transport through engineered protein channels. J. Phys. Chem. B 113, 3572–3578 (2009). https://doi.org/10.1021/jp809842g – reference: [1] Juette, M. F., Terry, D. S., Wasserman, M. R., Zhou, Z., Altman, R. B., Zheng, Q., et al. The bright future of single-molecule fluorescence imaging. Curr. Opin. Chem. Biol. 20, 103–111 (2014). https://doi.org/10.1016/j.cbpa.2014.05.010 – reference: [147] Thakur, A. K., Movileanu, L. Real-time measurement of protein-protein interactions at single-molecule resolution using a biological nanopore. Nat. Biotechnol. 37, 96–101 (2019). https://doi.org/10.1038/nbt.4316 – reference: [100] Di Muccio, G., Rossini, A. E., Di Marino, D., Zollo, G., Chinappi, M. Insights into protein sequencing with an α-Hemolysin nanopore by atomistic simulations. Sci. Rep. 9, 6440 (2019). https://doi.org/10.1038/s41598-019-42867-7 – reference: [157] Piguet, F., Ouldali, H., Pastoriza-Gallego, M., Manivet, P., Pelta, J., Oukhaled, A. Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore. Nat. Commun. 9, 966 (2018). https://doi.org/10.1038/s41467-018-03418-2 – reference: [118] Waduge, P., Hu, R., Bandarkar, P., Yamazaki, H., Cressiot, B., Zhao, Q., et al. Nanopore-based measurements of protein size, fluctuations, and conformational changes. ACS Nano 11, 5706–5716 (2017). https://doi.org/10.1021/acsnano.7b01212 – reference: [160] Afshar Bakshloo, M., Kasianowicz, J. J., Pastoriza-Gallego, M., Mathé, J., Daniel, R., Piguet, F., et al. Nanopore-based protein identification. J. Am. Chem. Soc. 144, 2716–2725 (2022). https://doi.org/10.1021/jacs.1c11758 – reference: [22] Martin, W. E., Srijanto, B. R., Collier, C. P., Vosch, T., Richards, C. I. A comparison of single-molecule emission in aluminum and gold zero-mode waveguides. J. Phys. Chem. A 120, 6719–6727 (2016). https://doi.org/10.1021/acs.jpca.6b03309 – reference: [49] Iwasa, T., Han, Y.-W., Hiramatsu, R., Yokota, H., Nakao, K., Yokokawa, R., et al. Synergistic effect of ATP for RuvA-RuvB-Holliday junction DNA complex formation. Sci. Rep. 5, 18177 (2015). https://doi.org/10.1038/srep18177 – reference: [139] Tripathi, P., Benabbas, A., Mehrafrooz, B., Yamazaki, H., Aksimentiev, A., Champion, P. M., et al. Electrical unfolding of cytochrome c during translocation through a nanopore constriction. Proc. Natl. Acad. Sci. U.S.A. 118, e2016262118 (2021). https://doi.org/10.1073/pnas.2016262118 – reference: [42] Tsai, A., Kornberg, G., Johansson, M., Chen, J., Puglisi, J. D. The dynamics of SecM-induced translational stalling. Cell Rep. 7, 1521–1533 (2014). https://doi.org/10.1016/j.celrep.2014.04.033 – reference: [70] Lapointe, C. P., Grosely, R., Johnson, A. G., Wang, J., Fernández, I. S., Puglisi, J. D. Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation. Proc. Natl. Acad. Sci. U.S.A. 118, e2017715118 (2021). https://doi.org/10.1073/pnas.2017715118 – reference: [15] Axelrod, D. Total internal reflection fluorescence microscopy in cell biology. Traffic 2, 764–774 (2001). https://doi.org/10.1034/j.1600-0854.2001.21104.x – reference: [65] Choi, J., Marks, J., Zhang, J., Chen, D.-H., Wang, J., Vázquez-Laslop, N., et al. Dynamics of the context-specific translation arrest by chloramphenicol and linezolid. Nat. Chem. Biol. 16, 310–317 (2020). https://doi.org/10.1038/s41589-019-0423-2 – reference: [154] Stefureac, R., Long, Y.-T., Kraatz, H.-B., Howard, P., Lee, J. S. Transport of α-helical peptides through α-hemolysin and aerolysin pores. Biochemistry 45, 9172–9179 (2006). https://doi.org/10.1021/bi0604835 – reference: [92] Xu, L., Seki, M. Recent advances in the detection of base modifications using the Nanopore sequencer. J. Hum. Genet. 65, 25–33 (2020). https://doi.org/10.1038/s10038-019-0679-0 – reference: [148] Derrington, I. M., Craig, J. M., Stava, E., Laszlo, A. H., Ross, B. C., Brinkerhoff, H., et al. Subangstrom single-molecule measurements of motor proteins using a nanopore. Nat. Biotechnol. 33, 1073–1075 (2015). https://doi.org/10.1038/nbt.3357 – reference: [53] Sobek, J., Rehrauer, H., Schauer, S., Fischer, D., Patrignani, A., Landgraf, S., et al. Single-molecule DNA hybridisation studied by using a modified DNA sequencer: A comparison with surface plasmon resonance data. Methods Appl. Fluoresc. 4, 015002 (2016). https://doi.org/10.1088/2050-6120/4/1/015002 – reference: [140] Yamazaki, H., Hu, R., Henley, R. Y., Halman, J., Afonin, K. A., Yu, D., et al. Label-free single-molecule thermoscopy using a laser-heated nanopore. Nano Lett. 17, 7067–7074 (2017). https://doi.org/10.1021/acs.nanolett.7b03752 – reference: [17] Bar-Even, A., Noor, E., Savir, Y., Liebermeister, W., Davidi, D., Tawfik, D. S., et al. The moderately efficient enzyme: Evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402–4410 (2011). https://doi.org/10.1021/bi2002289 – reference: [29] Truniger, V., Lázaro, J. M., Esteban, F. J., Blanco, L., Salas, M. A positively charged residue of phi29 DNA polymerase, highly conserved in DNA polymerases from families A and B, is involved in binding the incoming nucleotide. Nucleic Acids Res. 30, 1483–1492 (2002). https://doi.org/10.1093/nar/30.7.1483 – reference: [91] Pennisi, E. Search for pore-fection. Science 336, 534–537 (2012). https://doi.org/10.1126/science.336.6081.534 – reference: [152] Hu, Z.-L., Huo, M.-Z., Ying, Y.-L., Long, Y.-T. Biological nanopore approach for single-molecule protein sequencing. Angew. Chem. Int. Ed. Engl. 60, 14738–14749 (2021). https://doi.org/10.1002/anie.202013462 – reference: [93] Wanunu, M. Nanopores: A journey towards DNA sequencing. Phys. Life Rev. 9, 125–158 (2012). https://doi.org/10.1016/j.plrev.2012.05.010 – reference: [109] Yamazaki, H., Mizuguchi, T., Esashika, K., Saiki, T. Electro-osmotic trapping and compression of single DNA molecules while passing through a nanopore. Analyst 144, 5381–5388 (2019). https://doi.org/10.1039/c9an01253b – reference: [12] Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C., Ha, T. Advances in single-molecule fluorescence methods for molecular biology. Annu. Rev. Biochem. 77, 51–76 (2008). https://doi.org/10.1146/annurev.biochem.77.070606.101543 – reference: [48] Chen, J., Coakley, A., O’Connor, M., Petrov, A., O’Leary, S. E., Atkins, J. F., et al. Coupling of mRNA structure rearrangement to ribosome movement during bypassing of non-coding regions. Cell 163, 1267–1280 (2015). https://doi.org/10.1016/j.cell.2015.10.064 – reference: [107] Goyal, P., Krasteva, P. V., Van Gerven, N., Gubellini, F., Van den Broeck, I., Troupiotis-Tsaïlaki, A., et al. Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature 516, 250–253 (2014). https://doi.org/10.1038/nature13768 – reference: [161] Kennedy, E., Dong, Z., Tennant, C., Timp, G. Reading the primary structure of a protein with 0.07 nm3 resolution using a subnanometre-diameter pore. Nat. Nanotechnol. 11, 968–976 (2016). https://doi.org/10.1038/nnano.2016.120 – reference: [76] Nemashkalo, A., Phipps, M. E., Hennelly, S. P., Goodwin, P. M. Real-time, single-molecule observation of biomolecular interactions inside nanophotonic zero mode waveguides. Nanotechnology 33, 165101 (2022). https://doi.org/10.1088/1361-6528/ac467c – reference: [143] Li, X., Lee, K. H., Shorkey, S., Chen, J., Chen, M. Different anomeric sugar bound states of maltose binding protein resolved by a cytolysin a nanopore tweezer. ACS Nano 14, 1727–1737 (2020). https://doi.org/10.1021/acsnano.9b07385 – reference: [5] Ngo, T. T. M., Ha, T. Nucleosomes undergo slow spontaneous gaping. Nucleic Acids Res. 43, 3964–3971 (2015). https://doi.org/10.1093/nar/gkv276 – reference: [163] Zhang, S., Huang, G., Versloot, R. C. A., Bruininks, B. M. H., de Souza, P. C. T., Marrink, S.-J., et al. Bottom-up fabrication of a proteasome-nanopore that unravels and processes single proteins. Nat. Chem. 13, 1192–1199 (2021). https://doi.org/10.1038/s41557-021-00824-w – reference: [86] Fujimoto, K., Morita, Y., Iino, R., Tomishige, M., Shintaku, H., Kotera, H., et al. Simultaneous observation of kinesin-driven microtubule motility and binding of adenosine triphosphate using linear zero-mode waveguides. ACS Nano 12, 11975–11985 (2018). https://doi.org/10.1021/acsnano.8b03803 – reference: [111] Kwok, H., Briggs, K., Tabard-Cossa, V. Nanopore fabrication by controlled dielectric breakdown. PLoS One 9, e92880 (2014). https://doi.org/10.1371/journal.pone.0092880 – reference: [87] Korlach, J., Marks, P. J., Cicero, R. L., Gray, J. J., Murphy, D. L., Roitman, D. B., et al. Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. Proc. Natl. Acad. Sci. U.S.A. 105, 1176–1181 (2008). https://doi.org/10.1073/pnas.0710982105 – reference: [27] del Prado, A., Lázaro, J. M., Villar, L., Salas, M., de Vega, M. Dual role of φ29 DNA polymerase Lys529 in stabilisation of the DNA priming-terminus and the terminal protein-priming residue at the polymerisation site. PLoS One 8, e72765 (2013). https://doi.org/10.1371/journal.pone.0072765 – reference: [64] Duss, O., Stepanyuk, G. A., Puglisi, J. D., Williamson, J. R. Transient protein-RNA interactions guide nascent ribosomal RNA folding. Cell 179, 1357–1369.e16 (2019). https://doi.org/10.1016/j.cell.2019.10.035 – reference: [38] Tsai, A., Uemura, S., Johansson, M., Puglisi, E. V., Marshall, R. A., Aitken, C. E., et al. The impact of aminoglycosides on the dynamics of translation elongation. Cell Rep. 3, 497–508 (2013). https://doi.org/10.1016/j.celrep.2013.01.027 – reference: [39] Chen, J., Petrov, A., Tsai, A., O’Leary, S. E., Puglisi, J. D. Coordinated conformational and compositional dynamics drive ribosome translocation. Nat. Struct. Mol. Biol. 20, 718–727 (2013). https://doi.org/10.1038/nsmb.2567 – reference: [132] Keyser, U. F., Koeleman, B. N., van Dorp, S., Krapf, D., Smeets, R. M. M., Lemay, S. G., et al. Direct force measurements on DNA in a solid-state nanopore. Nat. Phys. 2, 473–477 (2006). https://doi.org/10.1038/nphys344 – reference: [31] Vilfan, I. D., Tsai, Y.-C., Clark, T. A., Wegener, J., Dai, Q., Yi, C., et al. Analysis of RNA base modification and structural rearrangement by single-molecule real-time detection of reverse transcription. J. Nanobiotechnology 11, 8 (2013). https://doi.org/10.1186/1477-3155-11-8 – reference: [159] Lucas, F. L. R., Versloot, R. C. A., Yakovlieva, L., Walvoort, M. T. C., Maglia, G. Protein identification by nanopore peptide profiling. Nat. Commun. 12, 5795 (2021). https://doi.org/10.1038/s41467-021-26046-9 – reference: [28] Serrano-Heras, G., Bravo, A., Salas, M. Phage φ29 protein p56 prevents viral DNA replication impairment caused by uracil excision activity of uracil-DNA glycosylase. Proc. Natl. Acad. Sci. U.S.A. 105, 19044–19049 (2008). https://doi.org/10.1073/pnas.0808797105 – reference: [124] Lu, B., Hoogerheide, D. P., Zhao, Q., Zhang, H., Tang, Z., Yu, D., et al. Pressure-controlled motion of single polymers through solid-state nanopores. Nano Lett. 13, 3048–3052 (2013). https://doi.org/10.1021/nl402052v – reference: [47] Nilsson, O. B., Hedman, R., Marino, J., Wickles, S., Bischoff, L., Johansson, M., et al. Cotranslational protein folding inside the ribosome exit tunnel. Cell Rep. 12, 1533–1540 (2015). https://doi.org/10.1016/j.celrep.2015.07.065 – reference: [4] Feng, X. A., Poyton, M. F., Ha, T. Multicolor single-molecule FRET for DNA and RNA processes. Curr. Opin. Struct. Biol. 70, 26–33 (2021). https://doi.org/10.1016/j.sbi.2021.03.005 – reference: [55] Goldschen-Ohm, M. P., Klenchin, V. A., White, D. S., Cowgill, J. B., Cui, Q., Goldsmith, R. H., et al. Structure and dynamics underlying elementary ligand binding events in human pacemaking channels. eLife 5, e20797 (2016). https://doi.org/10.7554/eLife.20797 – reference: [136] Nivala, J., Mulroney, L., Li, G., Schreiber, J., Akeson, M. Discrimination among protein variants using an unfoldase-coupled nanopore. ACS Nano 8, 12365–12375 (2014). https://doi.org/10.1021/nn5049987 – reference: [66] Choi, J., O’Loughlin, S., Atkins, J. F., Puglisi, J. D. The energy landscape of -1 ribosomal frameshifting. Sci. Adv. 6, eaax6969 (2020). https://doi.org/10.1126/sciadv.aax6969 – reference: [62] Wang, J., Johnson, A. G., Lapointe, C. P., Choi, J., Prabhakar, A., Chen, D.-H., et al. eIF5B gates the transition from translation initiation to elongation. Nature 573, 605–608 (2019). https://doi.org/10.1038/s41586-019-1561-0 – reference: [68] Sobek, J., Schlapbach, R. Dependence of fluorescence quenching of CY3 oligonucleotide conjugates on the oxidation potential of the stacking base pair. Molecules 25, 5369 (2020). https://doi.org/10.3390/molecules25225369 – reference: [72] Lawson, M. R., Lessen, L. N., Wang, J., Prabhakar, A., Corsepius, N. C., Green, R., et al. Mechanisms that ensure speed and fidelity in eukaryotic translation termination. Science 373, 876–882 (2021). https://doi.org/10.1126/science.abi7801 – reference: [95] Asandei, A., Schiopu, I., Chinappi, M., Seo, C. H., Park, Y., Luchian, T. Electroosmotic trap against the electrophoretic force near a protein nanopore reveals peptide dynamics during capture and translocation. ACS Appl. Mater. Interfaces 8, 13166–13179 (2016). https://doi.org/10.1021/acsami.6b03697 – reference: [103] Garoli, D., Yamazaki, H., Maccaferri, N., Wanunu, M. Plasmonic nanopores for single-molecule detection and manipulation: Toward sequencing applications. Nano Lett. 19, 7553–7562 (2019). https://doi.org/10.1021/acs.nanolett.9b02759 – reference: [52] Navon, S. P., Kornberg, G., Chen, J., Schwartzman, T., Tsai, A., Puglisi, E. V., et al. Amino acid sequence repertoire of the bacterial proteome and the occurrence of untranslatable sequences. Proc. Natl. Acad. Sci. U.S.A. 113, 7166–7170 (2016). https://doi.org/10.1073/pnas.1606518113 – reference: [138] Rodriguez-Larrea, D., Bayley, H. Multistep protein unfolding during nanopore translocation. Nat. Nanotechnol. 8, 288–295 (2013). https://doi.org/10.1038/nnano.2013.22 – reference: [167] Laszlo, A. H., Derrington, I. M., Gundlach, J. H. MspA nanopore as a single-molecule tool: From sequencing to SPRNT. Methods 105, 75–89 (2016). https://doi.org/10.1016/j.ymeth.2016.03.026 – reference: [145] Schmid, S., Stömmer, P., Dietz, H., Dekker, C. Nanopore electro-osmotic trap for the label-free study of single proteins and their conformations. Nat. Nanotechnol. 16, 1244–1250 (2021). https://doi.org/10.1038/s41565-021-00958-5 – reference: [73] White, D. S., Chowdhury, S., Idikuda, V., Zhang, R., Retterer, S. T., Goldsmith, R. H., et al. cAMP binding to closed pacemaker ion channels is non-cooperative. Nature 595, 606–610 (2021). https://doi.org/10.1038/s41586-021-03686-x – reference: [108] Li, J., Stein, D., McMullan, C., Branton, D., Aziz, M. J., Golovchenko, J. A. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001). https://doi.org/10.1038/35084037 – reference: [40] Simonetti, A., Marzi, S., Billas, I. M. L., Tsai, A., Fabbretti, A., Myasnikov, A. G., et al. Involvement of protein IF2 N domain in ribosomal subunit joining revealed from architecture and function of the full-length initiation factor. Proc. Natl. Acad. Sci. U.S.A. 110, 15656–15661 (2013). https://doi.org/10.1073/pnas.1309578110 – reference: [67] Sobek, J., Schmidt, M., Grossmann, J., Rehrauer, H., Schmidt, L., Schlapbach, R. Single-molecule chemistry. Part I: Monitoring oxidation of G in oligonucleotides using CY3 fluorescence. Methods Appl. Fluoresc. 8, 035010 (2020). https://doi.org/10.1088/2050-6120/ab947d – reference: [156] Asandei, A., Rossini, A. E., Chinappi, M., Park, Y., Luchian, T. Protein nanopore-based discrimination between selected neutral amino acids from polypeptides. Langmuir 33, 14451–14459 (2017). https://doi.org/10.1021/acs.langmuir.7b03163 – reference: [56] Prabhakar, A., Capece, M. C., Petrov, A., Choi, J., Puglisi, J. D. Post-termination ribosome intermediate acts as the gateway to ribosome recycling. Cell Rep. 20, 161–172 (2017). https://doi.org/10.1016/j.celrep.2017.06.028 – reference: [131] Hyun, C., Kaur, H., Rollings, R., Xiao, M., Li, J. Threading immobilized DNA molecules through a solid-state nanopore at >100 μs per base rate. ACS Nano 7, 5892–5900 (2013). https://doi.org/10.1021/nn4012434 – reference: [61] Johnson, A. G., Lapointe, C. P., Wang, J., Corsepius, N. C., Choi, J., Fuchs, G., et al. RACK1 on and off the ribosome. RNA 25, 881–895 (2019). https://doi.org/10.1261/rna.071217.119 – reference: [20] Zhao, J., Branagan, S. P., Bohn, P. W. Single-molecule enzyme dynamics of monomeric sarcosine oxidase in a gold-based zero-mode waveguide. Appl. Spectrosc. 66, 163–169 (2012). https://doi.org/10.1366/11-06464 – reference: [116] Oukhaled, A., Cressiot, B., Bacri, L., Pastoriza-Gallego, M., Betton, J.-M., Bourhis, E., et al. Dynamics of completely unfolded and native proteins through solid-state nanopores as a function of electric driving force. ACS Nano 5, 3628–3638 (2011). https://doi.org/10.1021/nn1034795 – ident: 21 doi: 10.1039/C9NA00641A – ident: 43 doi: 10.1016/j.celrep.2014.04.034 – ident: 126 doi: 10.1021/nl051063o – ident: 146 doi: 10.1002/anie.202110545 – ident: 70 doi: 10.1073/pnas.2017715118 – ident: 75 doi: 10.1246/cl.210726 – ident: 27 doi: 10.1371/journal.pone.0072765 – ident: 28 doi: 10.1073/pnas.0808797105 – ident: 100 doi: 10.1038/s41598-019-42867-7 – ident: 140 doi: 10.1021/acs.nanolett.7b03752 – ident: 3 doi: 10.1038/nsmb831 – ident: 51 doi: 10.1016/j.molcel.2016.03.020 – ident: 53 doi: 10.1088/2050-6120/4/1/015002 – ident: 48 doi: 10.1016/j.cell.2015.10.064 – ident: 74 doi: 10.1016/j.bpj.2021.12.011 – ident: 71 doi: 10.1093/nar/gkab033 – ident: 57 doi: 10.1073/pnas.1719592115 – ident: 33 doi: 10.1074/jbc.M804090200 – ident: 41 doi: 10.1074/jbc.M114.563239 – ident: 141 doi: 10.1021/acs.analchem.5b03631 – ident: 125 doi: 10.1529/biophysj.108.140475 – ident: 20 doi: 10.1366/11-06464 – ident: 72 doi: 10.1126/science.abi7801 – ident: 85 doi: 10.1364/OE.21.001189 – ident: 102 doi: 10.1021/acs.analchem.6b04260 – ident: 97 doi: 10.1021/acsnano.0c06981 – ident: 98 doi: 10.1038/nnano.2010.202 – ident: 4 doi: 10.1016/j.sbi.2021.03.005 – ident: 46 doi: 10.1021/nl404802f – ident: 147 doi: 10.1038/nbt.4316 – ident: 56 doi: 10.1016/j.celrep.2017.06.028 – ident: 9 doi: 10.1016/j.gpb.2016.05.004 – ident: 32 doi: 10.1021/ac800726g – ident: 90 doi: 10.1021/jacs.0c09841 – ident: 145 doi: 10.1038/s41565-021-00958-5 – ident: 50 doi: 10.1038/nsmb.3148 – ident: 148 doi: 10.1038/nbt.3357 – ident: 68 doi: 10.3390/molecules25225369 – ident: 109 doi: 10.1039/C9AN01253B – ident: 22 doi: 10.1021/acs.jpca.6b03309 – ident: 136 doi: 10.1021/nn5049987 – ident: 2 doi: 10.1038/nmeth.1208 – ident: 118 doi: 10.1021/acsnano.7b01212 – ident: 153 doi: 10.1021/nl049413e – ident: 25 doi: 10.1088/1361-6463/aab8be – ident: 138 doi: 10.1038/nnano.2013.22 – ident: 78 doi: 10.1143/JJAP.50.06GK07 – ident: 88 doi: 10.1038/s41598-020-61856-9 – ident: 156 doi: 10.1021/acs.langmuir.7b03163 – ident: 144 doi: 10.1021/acs.analchem.5b03350 – ident: 61 doi: 10.1261/rna.071217.119 – ident: 92 doi: 10.1038/s10038-019-0679-0 – ident: 163 doi: 10.1038/s41557-021-00824-w – ident: 18 doi: 10.1126/science.1079700 – ident: 42 doi: 10.1016/j.celrep.2014.04.033 – ident: 7 doi: 10.1038/s41576-020-0236-x – ident: 128 doi: 10.1038/nnano.2013.221 – ident: 35 doi: 10.1074/jbc.M110.122101 – ident: 167 doi: 10.1016/j.ymeth.2016.03.026 – ident: 15 doi: 10.1034/j.1600-0854.2001.21104.x – ident: 59 doi: 10.1038/s41594-018-0030-z – ident: 130 doi: 10.1021/jacs.1c11540 – ident: 131 doi: 10.1021/nn4012434 – ident: 112 doi: 10.1021/acsnano.8b06805 – ident: 150 doi: 10.1038/s41565-018-0236-6 – ident: 132 doi: 10.1038/nphys344 – ident: 152 doi: 10.1002/anie.202013462 – ident: 24 doi: 10.1146/annurev-biophys-050511-102338 – ident: 81 doi: 10.3390/nano12101755 – ident: 89 doi: 10.1364/OL.33.001026 – ident: 115 doi: 10.1073/pnas.1220012110 – ident: 160 doi: 10.1021/jacs.1c11758 – ident: 113 doi: 10.1021/nl100997s – ident: 143 doi: 10.1021/acsnano.9b07385 – ident: 151 doi: 10.1038/s41592-021-01143-1 – ident: 142 doi: 10.1021/nl503034j – ident: 158 doi: 10.1002/celc.201800288 – ident: 1 doi: 10.1016/j.cbpa.2014.05.010 – ident: 55 doi: 10.7554/eLife.20797 – ident: 123 doi: 10.1038/nnano.2011.12 – ident: 94 doi: 10.1039/C6NR06936C – ident: 37 doi: 10.1038/nature11172 – ident: 101 doi: 10.1038/s41587-019-0345-2 – ident: 127 doi: 10.1021/nl204273h – ident: 47 doi: 10.1016/j.celrep.2015.07.065 – ident: 106 doi: 10.1038/nbt.2171 – ident: 104 doi: 10.1038/s41578-020-0229-6 – ident: 111 doi: 10.1371/journal.pone.0092880 – ident: 114 doi: 10.1038/s41378-019-0050-9 – ident: 63 doi: 10.1038/s41467-019-13810-1 – ident: 87 doi: 10.1073/pnas.0710982105 – ident: 6 doi: 10.1039/b704013j – ident: 36 doi: 10.1021/nl301480h – ident: 120 doi: 10.1021/ja901088b – ident: 76 doi: 10.1088/1361-6528/ac467c – ident: 10 doi: 10.1371/journal.pone.0216471 – ident: 96 doi: 10.1038/s41467-017-01006-4 – ident: 86 doi: 10.1021/acsnano.8b03803 – ident: 49 doi: 10.1038/srep18177 – ident: 45 doi: 10.7554/eLife.04418 – ident: 17 doi: 10.1021/bi2002289 – ident: 23 doi: 10.1021/acs.jpclett.1c00450 – ident: 133 doi: 10.1038/nnano.2016.267 – ident: 73 doi: 10.1038/s41586-021-03686-x – ident: 95 doi: 10.1021/acsami.6b03697 – ident: 149 doi: 10.1073/pnas.1711282114 – ident: 139 doi: 10.1073/pnas.2016262118 – ident: 34 doi: 10.1038/nature08925 – ident: 79 doi: 10.1088/0957-4484/23/45/455301 – ident: 39 doi: 10.1038/nsmb.2567 – ident: 166 doi: 10.1073/pnas.1310240110 – ident: 5 doi: 10.1093/nar/gkv276 – ident: 165 doi: 10.1039/D1SC04342K – ident: 159 doi: 10.1038/s41467-021-26046-9 – ident: 40 doi: 10.1073/pnas.1309578110 – ident: 91 doi: 10.1126/science.336.6081.534 – ident: 12 doi: 10.1146/annurev.biochem.77.070606.101543 – ident: 16 doi: 10.1007/b102211 – ident: 29 doi: 10.1093/nar/30.7.1483 – ident: 13 doi: 10.1016/j.molcel.2015.02.033 – ident: 14 doi: 10.1016/j.molcel.2021.12.019 – ident: 8 doi: 10.1126/science.1162986 – ident: 80 doi: 10.1371/journal.pone.0222964 – ident: 164 doi: 10.1021/acs.nanolett.1c02371 – ident: 119 doi: 10.1039/C8NR06423G – ident: 124 doi: 10.1021/nl402052v – ident: 19 doi: 10.1143/JJAP.43.407 – ident: 77 doi: 10.1021/acs.analchem.1c05091 – ident: 99 doi: 10.1002/adfm.201601272 – ident: 121 doi: 10.1038/srep11643 – ident: 129 doi: 10.1002/smtd.201900893 – ident: 155 doi: 10.1021/jp809842g – ident: 122 doi: 10.1021/nl3042678 – ident: 161 doi: 10.1038/nnano.2016.120 – ident: 60 doi: 10.1038/s41467-018-07423-3 – ident: 67 doi: 10.1088/2050-6120/ab947d – ident: 116 doi: 10.1021/nn1034795 – ident: 11 doi: 10.1073/pnas.1315735111 – ident: 38 doi: 10.1016/j.celrep.2013.01.027 – ident: 44 doi: 10.1038/nature13428 – ident: 137 doi: 10.1021/acs.nanolett.5b03331 – ident: 52 doi: 10.1073/pnas.1606518113 – ident: 64 doi: 10.1016/j.cell.2019.10.035 – ident: 65 doi: 10.1038/s41589-019-0423-2 – ident: 84 doi: 10.2142/biophysico.13.0_63 – ident: 110 doi: 10.1038/nmat941 – ident: 162 doi: 10.1126/science.abl4381 – ident: 83 doi: 10.1364/OE.27.019002 – ident: 58 doi: 10.1093/nar/gkx1050 – ident: 154 doi: 10.1021/bi0604835 – ident: 26 doi: 10.1002/anie.201612050 – ident: 107 doi: 10.1038/nature13768 – ident: 157 doi: 10.1038/s41467-018-03418-2 – ident: 69 doi: 10.1038/s41467-020-20409-4 – ident: 108 doi: 10.1038/35084037 – ident: 31 doi: 10.1186/1477-3155-11-8 – ident: 117 doi: 10.1038/srep01638 – ident: 135 doi: 10.1038/nbt.2503 – ident: 66 doi: 10.1126/sciadv.aax6969 – ident: 82 doi: 10.1103/PhysRevE.88.012727 – ident: 105 doi: 10.1073/pnas.93.24.13770 – ident: 30 doi: 10.1038/nmeth.1459 – ident: 103 doi: 10.1021/acs.nanolett.9b02759 – ident: 93 doi: 10.1016/j.plrev.2012.05.010 – ident: 54 doi: 10.1021/acs.nanolett.6b00969 – ident: 62 doi: 10.1038/s41586-019-1561-0 – ident: 134 doi: 10.1038/ncomms5841 |
SSID | ssj0001626690 |
Score | 2.2110224 |
SecondaryResourceType | review_article |
Snippet | Single-molecule technologies can provide detailed information regarding molecular mechanisms and interactions that cannot easily be studied on the bulk scale;... |
SourceID | doaj pubmedcentral proquest crossref jstage |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e190032 |
SubjectTerms | DNA sequencer nanopore Review single-molecule measurements zero-mode waveguides |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF5KoJBL6CMhTh-o0Ksa7Vra1R7T0hAK7amB0IvYxyhxCJJJ7JT--36jlV3r1B56McjaleSZ0c4349lvhHivgqUg5yG3deU4WyVz7wkKUYUORoeibnlz8tdv-uKy_HJVXe20-uKasEQPnAR3WsfaOG3aympXwj_5wmtfWiyj89KGMAQ-8Hk7wdSQXQFOR9yXSneYVezUL_qUK-g_-OXS54-SiSrnauKPBtp--KJbILNrmoDOacnkjg86fyYORvCYnaWHfi6eUPdCPE3tJH-9FP4H3fc597bJfrpHul4vIj1krotZ57oeQJtydloxG-un4bWy1Sa1vuChIcALMXlEximEO8LFhu65OE71hofi8vzz908X-dhDIQ8I1FaQvopRRbLRwQvJlrCgtDEEY7DKOV0abgxRtYWz5AANFElJZWVwYCFjnD0Se13f0bHIIFDAobZqS2CowtW1pShNxECSZEjNhNlIsgkjwTj3ubhrEGiwDpo_OmhYBwjQLXOTYqbczlwmko1_mPORlbUdzzTZwxcwnmY0nuZvxjMTZ0nV28tsZu7clm_IHyQ566u2Q3hbHNaWmXi3sZIGryb_3-I66tcPDTMHaakBaSGaiflMnnp6plvcDCTftrJYTeXJ__iZr8S-4l0bQ-botdhb3a_pDbDUyr8dXpvfcnAjgw priority: 102 providerName: Directory of Open Access Journals |
Title | Zero-mode waveguides and nanopore-based sequencing technologies accelerate single-molecule studies |
URI | https://www.jstage.jst.go.jp/article/biophysico/19/0/19_e190032/_article/-char/en https://www.proquest.com/docview/2734616511 https://pubmed.ncbi.nlm.nih.gov/PMC9592571 https://doaj.org/article/8d87a67f596a4215b0b6b49429349cc1 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Biophysics and Physicobiology, 2022, Vol.19, pp.e190032 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zi9RAEG6WFcEX8cTxWCL4mjXdk6TTDyKruCzC-uTA4kvoozKODMk4xx7_3q9yjBsQ8cGXQJK-0tVd9VWlukqIN8ob8nLqY1Nklq1VMnaOQBCV5F7nPikqPpx8_iU_m6WfL7KLAzEcV-wncPNH1Y7zSc3Wy-PrnzfvseHfsRuzTNVbt2g6M0Bz7FYrF19KjkE5BWO-A_mkOa_BeQ_6W8sLMDx0ws6t568NjGRVG9IfcuoHUNucRoB07E55Sz6dPhD3e2AZnXQr4aE4oPqRuNulmrx5LNw3Wjcx572JruwlzXeLQJvI1iGqbd3g-ylmgRai3rcaEi3aDmb3BRf1HhKKA0tEbF5YEhprM-vivvNFfCJmp5--fjyL-_wKsYcStwVlVAgqkAkWEkpWBGZTBe-1Bge0eao5aURWJdaQBWxQJCWlmcaNManC26fisG5qeiYiTCigUpVVKfBVYovCUJA6oCBJ0qQmQg8zWfo--DjnwFiWUEKYBuVvGpRMAyjvhuOWoqbc11x1ATj-oc4HJta-PIfQbh8063nZ78iyCIW2ua4yk9sUwMclLncpPsxMU-O9nIiTjtT7Zoaat7rlDvlCki3Cal-Ej8yB70zE62GVlNi2_C_G1tTsNiVHFcplDriLqRktn9Gox2_qxfc2ALjJDDitfP4fRvhC3FN8oKM1Kr0Uh9v1jl4BZm3dUWueOGr3zi9PbTMC |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zero-mode+waveguides+and+nanopore-based+sequencing+technologies+accelerate+single-molecule+studies&rft.jtitle=Biophysics+and+Physicobiology&rft.au=Iizuka%2C+Ryo&rft.au=Yamazaki%2C+Hirohito&rft.au=Uemura%2C+Sotaro&rft.date=2022-01-01&rft.pub=The+Biophysical+Society+of+Japan&rft.eissn=2189-4779&rft.volume=19&rft.spage=e190032&rft_id=info:doi/10.2142%2Fbiophysico.bppb-v19.0032&rft.externalDocID=article_biophysico_19_0_19_e190032_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2189-4779&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2189-4779&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2189-4779&client=summon |