Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors
Pandemic potential The fact that the H5N1 bird flu virus circulating in Asia, Europe and Africa is unable to attach to human-type cell receptors has helped to prevent it from causing a worldwide epidemic of a human variant of the disease. Now a study of H5N1 isolates from some of the few humans that...
Saved in:
Published in | Nature Vol. 444; no. 7117; pp. 378 - 382 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
16.11.2006
Nature Publishing Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pandemic potential
The fact that the H5N1 bird flu virus circulating in Asia, Europe and Africa is unable to attach to human-type cell receptors has helped to prevent it from causing a worldwide epidemic of a human variant of the disease. Now a study of H5N1 isolates from some of the few humans that have been infected (from Vietnam and Thailand) has identified two mutations in a viral haemagglutinin that allow it to bind to both human and avian receptors. These mutations might be of use as molecular markers for assessing the pandemic potential of H5N1 field isolates.
H5N1 influenza A viruses have spread to numerous countries in Asia, Europe and Africa, infecting not only large numbers of poultry, but also an increasing number of humans, often with lethal effects
1
,
2
. Human and avian influenza A viruses differ in their recognition of host cell receptors: the former preferentially recognize receptors with saccharides terminating in sialic acid-α2,6-galactose (SAα2,6Gal), whereas the latter prefer those ending in SAα2,3Gal (refs
3–6
). A conversion from SAα2,3Gal to SAα2,6Gal recognition is thought to be one of the changes that must occur before avian influenza viruses can replicate efficiently in humans and acquire the potential to cause a pandemic. By identifying mutations in the receptor-binding haemagglutinin (HA) molecule that would enable avian H5N1 viruses to recognize human-type host cell receptors, it may be possible to predict (and thus to increase preparedness for) the emergence of pandemic viruses. Here we show that some H5N1 viruses isolated from humans can bind to both human and avian receptors, in contrast to those isolated from chickens and ducks, which recognize the avian receptors exclusively. Mutations at positions 182 and 192 independently convert the HAs of H5N1 viruses known to recognize the avian receptor to ones that recognize the human receptor. Analysis of the crystal structure of the HA from an H5N1 virus used in our genetic experiments shows that the locations of these amino acids in the HA molecule are compatible with an effect on receptor binding. The amino acid changes that we identify might serve as molecular markers for assessing the pandemic potential of H5N1 field isolates. |
---|---|
AbstractList | H5N1 influenza A viruses have spread to numerous countries in Asia, Europe and Africa, infecting not only large numbers of poultry, but also an increasing number of humans, often with lethal effects. Human and avian influenza A viruses differ in their recognition of host cell receptors: the former preferentially recognize receptors with saccharides terminating in sialic acid-alpha2,6-galactose (SAalpha2,6Gal), whereas the latter prefer those ending in SAalpha2,3Gal (refs 3-6). A conversion from SAalpha2,3Gal to SAalpha2,6Gal recognition is thought to be one of the changes that must occur before avian influenza viruses can replicate efficiently in humans and acquire the potential to cause a pandemic. By identifying mutations in the receptor-binding haemagglutinin (HA) molecule that would enable avian H5N1 viruses to recognize human-type host cell receptors, it may be possible to predict (and thus to increase preparedness for) the emergence of pandemic viruses. Here we show that some H5N1 viruses isolated from humans can bind to both human and avian receptors, in contrast to those isolated from chickens and ducks, which recognize the avian receptors exclusively. Mutations at positions 182 and 192 independently convert the HAs of H5N1 viruses known to recognize the avian receptor to ones that recognize the human receptor. Analysis of the crystal structure of the HA from an H5N1 virus used in our genetic experiments shows that the locations of these amino acids in the HA molecule are compatible with an effect on receptor binding. The amino acid changes that we identify might serve as molecular markers for assessing the pandemic potential of H5N1 field isolates. Pandemic potential The fact that the H5N1 bird flu virus circulating in Asia, Europe and Africa is unable to attach to human-type cell receptors has helped to prevent it from causing a worldwide epidemic of a human variant of the disease. Now a study of H5N1 isolates from some of the few humans that have been infected (from Vietnam and Thailand) has identified two mutations in a viral haemagglutinin that allow it to bind to both human and avian receptors. These mutations might be of use as molecular markers for assessing the pandemic potential of H5N1 field isolates. H5N1 influenza A viruses have spread to numerous countries in Asia, Europe and Africa, infecting not only large numbers of poultry, but also an increasing number of humans, often with lethal effects 1 , 2 . Human and avian influenza A viruses differ in their recognition of host cell receptors: the former preferentially recognize receptors with saccharides terminating in sialic acid-α2,6-galactose (SAα2,6Gal), whereas the latter prefer those ending in SAα2,3Gal (refs 3–6 ). A conversion from SAα2,3Gal to SAα2,6Gal recognition is thought to be one of the changes that must occur before avian influenza viruses can replicate efficiently in humans and acquire the potential to cause a pandemic. By identifying mutations in the receptor-binding haemagglutinin (HA) molecule that would enable avian H5N1 viruses to recognize human-type host cell receptors, it may be possible to predict (and thus to increase preparedness for) the emergence of pandemic viruses. Here we show that some H5N1 viruses isolated from humans can bind to both human and avian receptors, in contrast to those isolated from chickens and ducks, which recognize the avian receptors exclusively. Mutations at positions 182 and 192 independently convert the HAs of H5N1 viruses known to recognize the avian receptor to ones that recognize the human receptor. Analysis of the crystal structure of the HA from an H5N1 virus used in our genetic experiments shows that the locations of these amino acids in the HA molecule are compatible with an effect on receptor binding. The amino acid changes that we identify might serve as molecular markers for assessing the pandemic potential of H5N1 field isolates. H5N1 influenza A viruses have spread to numerous countries in Asia, Europe and Africa, infecting not only large numbers of poultry, but also an increasing number of humans, often with lethal effects. Human and avian influenza A viruses differ in their recognition of host cell receptors: the former preferentially recognize receptors with saccharides terminating in sialic acid-[greek letter alpha] 2,6-galactose (SA [greek letter alpha]2,6Gal), whereas the latter prefer those ending in SA [greek letter alpha]2,3Gal. A conversion from SA[greek letter alpha]2,3Gal to SA[greek letter alpha]2,6Gal recognition is thought to be one of the changes that must occur before avian influenza viruses can replicate efficiently in humans and acquire the potential to cause a pandemic. By identifying mutations in the receptor-binding haemagglutinin (HA) molecule that would enable avian H5N1 viruses to recognize human-type host cell receptors, it may be possible to predict (and thus to increase preparedness for) the emergence of pandemic viruses. Here we show that some H5N1 viruses isolated from humans can bind to both human and avian receptors, in contrast to those isolated from chickens and ducks, which recognize the avian receptors exclusively. Mutations at positions 182 and 192 independently convert the HAs of H5N1 viruses known to recognize the avian receptor to ones that recognize the human receptor. Analysis of the crystal structure of the HA from an H5N1 virus used in our genetic experiments shows that the locations of these amino acids in the HA molecule are compatible with an effect on receptor binding. The amino acid changes that we identify might serve as molecular markers for assessing the pandemic potential of H5N1 field isolates. H5N1 influenza A viruses have spread to numerous countries in Asia, Europe and Africa, infecting not only large numbers of poultry, but also an increasing number of humans, often with lethal effects. Human and avian influenza A viruses differ in their recognition of host cell receptors: the former preferentially recognize receptors with saccharides terminating in sialic acid-alpha2,6-galactose (SAalpha2,6Gal), whereas the latter prefer those ending in SAalpha2,3Gal (refs 3-6). A conversion from SAalpha2,3Gal to SAalpha2,6Gal recognition is thought to be one of the changes that must occur before avian influenza viruses can replicate efficiently in humans and acquire the potential to cause a pandemic. By identifying mutations in the receptor-binding haemagglutinin (HA) molecule that would enable avian H5N1 viruses to recognize human-type host cell receptors, it may be possible to predict (and thus to increase preparedness for) the emergence of pandemic viruses. Here we show that some H5N1 viruses isolated from humans can bind to both human and avian receptors, in contrast to those isolated from chickens and ducks, which recognize the avian receptors exclusively. Mutations at positions 182 and 192 independently convert the HAs of H5N1 viruses known to recognize the avian receptor to ones that recognize the human receptor. Analysis of the crystal structure of the HA from an H5N1 virus used in our genetic experiments shows that the locations of these amino acids in the HA molecule are compatible with an effect on receptor binding. The amino acid changes that we identify might serve as molecular markers for assessing the pandemic potential of H5N1 field isolates.H5N1 influenza A viruses have spread to numerous countries in Asia, Europe and Africa, infecting not only large numbers of poultry, but also an increasing number of humans, often with lethal effects. Human and avian influenza A viruses differ in their recognition of host cell receptors: the former preferentially recognize receptors with saccharides terminating in sialic acid-alpha2,6-galactose (SAalpha2,6Gal), whereas the latter prefer those ending in SAalpha2,3Gal (refs 3-6). A conversion from SAalpha2,3Gal to SAalpha2,6Gal recognition is thought to be one of the changes that must occur before avian influenza viruses can replicate efficiently in humans and acquire the potential to cause a pandemic. By identifying mutations in the receptor-binding haemagglutinin (HA) molecule that would enable avian H5N1 viruses to recognize human-type host cell receptors, it may be possible to predict (and thus to increase preparedness for) the emergence of pandemic viruses. Here we show that some H5N1 viruses isolated from humans can bind to both human and avian receptors, in contrast to those isolated from chickens and ducks, which recognize the avian receptors exclusively. Mutations at positions 182 and 192 independently convert the HAs of H5N1 viruses known to recognize the avian receptor to ones that recognize the human receptor. Analysis of the crystal structure of the HA from an H5N1 virus used in our genetic experiments shows that the locations of these amino acids in the HA molecule are compatible with an effect on receptor binding. The amino acid changes that we identify might serve as molecular markers for assessing the pandemic potential of H5N1 field isolates. H5N1 influenza A viruses have spread to numerous countries in Asia, Europe and Africa, infecting not only large numbers of poultry, but also an increasing number of humans, often with lethal effects. Human and avian influenza A viruses differ in their recognition of host cell receptors: the former preferentially recognize receptors with saccharides terminating in sialic acid- alpha 2,6-galactose (SA alpha 2,6Gal), whereas the latter prefer those ending in SA alpha 2,3Gal (refs 3-6). A conversion from SA alpha 2,3Gal to SA alpha 2,6Gal recognition is thought to be one of the changes that must occur before avian influenza viruses can replicate efficiently in humans and acquire the potential to cause a pandemic. By identifying mutations in the receptor-binding haemagglutinin (HA) molecule that would enable avian H5N1 viruses to recognize human-type host cell receptors, it may be possible to predict (and thus to increase preparedness for) the emergence of pandemic viruses. Here we show that some H5N1 viruses isolated from humans can bind to both human and avian receptors, in contrast to those isolated from chickens and ducks, which recognize the avian receptors exclusively. Mutations at positions 182 and 192 independently convert the HAs of H5N1 viruses known to recognize the avian receptor to ones that recognize the human receptor. Analysis of the crystal structure of the HA from an H5N1 virus used in our genetic experiments shows that the locations of these amino acids in the HA molecule are compatible with an effect on receptor binding. The amino acid changes that we identify might serve as molecular markers for assessing the pandemic potential of H5N1 field isolates. H5N1 influenza A viruses have spread to numerous countries in Asia, Europe and Africa, infecting not only large numbers of poultry, but also an increasing number of humans, often with lethal effects. Human and avian influenza A viruses differ in their recognition of host cell receptors: the former preferentially recognize receptors with saccharides terminating in sialic acid-alpha2,6-galactose (SAalpha2,6Gal), whereas the latter prefer those ending in SAalpha2,3Gal. A conversion from SAalpha2,3Gal to SAalpha2,6Gal recognition is thought to be one of the changes that must occur before avian influenza viruses can replicate efficiently in humans and acquire the potential to cause a pandemic. By identifying mutations in the receptor-binding haemagglutinin (HA) molecule that would enable avian H5N1 viruses to recognize human-type host cell receptors, it may be possible to predict (and thus to increase preparedness for) the emergence of pandemic viruses. Here we show that some H5N1 viruses isolated from humans can bind to both human and avian receptors, in contrast to those isolated from chickens and ducks, which recognize the avian receptors exclusively. Mutations at positions 182 and 192 independently convert the HAs of H5N1 viruses known to recognize the avian receptor to ones that recognize the human receptor. Analysis of the crystal structure of the HA from an H5N1 virus used in our genetic experiments shows that the locations of these amino acids in the HA molecule are compatible with an effect on receptor binding. The amino acid changes that we identify might serve as molecular markers for assessing the pandemic potential of H5N1 field isolates. [PUBLICATION ABSTRACT] |
Audience | Academic |
Author | Le, Mai Q. Nidom, Chairul A. Suzuki, Yasuo Suzuki, Takashi Lin, Yipu Muramoto, Yukiko Murata, Takeomi Gamblin, Steven J. Kiso, Maki Kiso, Makoto Kawaoka, Yoshihiro Sakai-Tagawa, Yuko Hay, Alan Skehel, John J. Usui, Taiichi Haire, Lesley F. Stevens, David J. Russell, Rupert J. Ito, Mutsumi Sawada, Toshihiko Shinya, Kyoko Yamada, Shinya Horimoto, Taisuke |
Author_xml | – sequence: 1 givenname: Shinya surname: Yamada fullname: Yamada, Shinya organization: Division of Virology, Department of Microbiology and Immunology, Core Research for Evolutional Science and Technology, Japan Science and Technology Agency – sequence: 2 givenname: Yasuo surname: Suzuki fullname: Suzuki, Yasuo organization: Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, College of Life and Health Sciences, Chubu University – sequence: 3 givenname: Takashi surname: Suzuki fullname: Suzuki, Takashi organization: Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Department of Biochemistry, University of Shizuoka, School of Pharmaceutical Sciences and COE Program in the 21st Century – sequence: 4 givenname: Mai Q. surname: Le fullname: Le, Mai Q. organization: National Institute of Hygiene and Epidemiology – sequence: 5 givenname: Chairul A. surname: Nidom fullname: Nidom, Chairul A. organization: Avian Influenza Laboratory, Tropical Disease Centre, Airlangga University – sequence: 6 givenname: Yuko surname: Sakai-Tagawa fullname: Sakai-Tagawa, Yuko organization: Division of Virology, Department of Microbiology and Immunology, Core Research for Evolutional Science and Technology, Japan Science and Technology Agency – sequence: 7 givenname: Yukiko surname: Muramoto fullname: Muramoto, Yukiko organization: Division of Virology, Department of Microbiology and Immunology, Core Research for Evolutional Science and Technology, Japan Science and Technology Agency – sequence: 8 givenname: Mutsumi surname: Ito fullname: Ito, Mutsumi organization: Division of Virology, Department of Microbiology and Immunology, Core Research for Evolutional Science and Technology, Japan Science and Technology Agency – sequence: 9 givenname: Maki surname: Kiso fullname: Kiso, Maki organization: Division of Virology, Department of Microbiology and Immunology, Core Research for Evolutional Science and Technology, Japan Science and Technology Agency – sequence: 10 givenname: Taisuke surname: Horimoto fullname: Horimoto, Taisuke organization: Division of Virology, Department of Microbiology and Immunology, Core Research for Evolutional Science and Technology, Japan Science and Technology Agency – sequence: 11 givenname: Kyoko surname: Shinya fullname: Shinya, Kyoko organization: The Avian Zoonosis Research Centre, Tottori University – sequence: 12 givenname: Toshihiko surname: Sawada fullname: Sawada, Toshihiko organization: Department of Applied Bioorganic Chemistry, The United Graduate School of Agricultural Science, Gifu University – sequence: 13 givenname: Makoto surname: Kiso fullname: Kiso, Makoto organization: Department of Applied Bioorganic Chemistry, The United Graduate School of Agricultural Science, Gifu University – sequence: 14 givenname: Taiichi surname: Usui fullname: Usui, Taiichi organization: Department of Applied Biological Chemistry, Shizuoka University – sequence: 15 givenname: Takeomi surname: Murata fullname: Murata, Takeomi organization: Department of Applied Biological Chemistry, Shizuoka University – sequence: 16 givenname: Yipu surname: Lin fullname: Lin, Yipu organization: MRC National Institute for Medical Research – sequence: 17 givenname: Alan surname: Hay fullname: Hay, Alan organization: MRC National Institute for Medical Research – sequence: 18 givenname: Lesley F. surname: Haire fullname: Haire, Lesley F. organization: MRC National Institute for Medical Research – sequence: 19 givenname: David J. surname: Stevens fullname: Stevens, David J. organization: MRC National Institute for Medical Research – sequence: 20 givenname: Rupert J. surname: Russell fullname: Russell, Rupert J. organization: MRC National Institute for Medical Research, Centre for Biomolecular Sciences, University of St Andrews – sequence: 21 givenname: Steven J. surname: Gamblin fullname: Gamblin, Steven J. organization: MRC National Institute for Medical Research – sequence: 22 givenname: John J. surname: Skehel fullname: Skehel, John J. organization: MRC National Institute for Medical Research – sequence: 23 givenname: Yoshihiro surname: Kawaoka fullname: Kawaoka, Yoshihiro email: kawaoka@ims.u-tokyo.ac.jp organization: Division of Virology, Department of Microbiology and Immunology, International Research Centre for Infectious Diseases, Institute of Medical Science, University of Tokyo, Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Department of Pathobiological Sciences, University of Wisconsin-Madison |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18270909$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17108965$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0-9r1DAYB_AiE3ebvvK9FGGiaGeS5ldfHod6gzFBJ74safq0l9GmXZKK8683405uN26OvAiEz_MNPHlylBzYwUKSvMToFKNcfrQqTA4QI5w-SWaYCp5RLsVBMkOIyAzJnB8mR95fIYQYFvRZcogFRrLgbJaslgp61bbdFIw1Nu2noIIZrE8d-DHupuogbQaXhhWklbG1sW06NOmSXeDU2KabwP5R6Tz9ZdzkwadhSFdTr2wWbkaIKRrGMDj_PHnaqM7Di81-nPz4_OlysczOv345W8zPMy0wD1ldY0IY4hXnPKeE1IrwqmFVzZgEClxUDQEsCGU6F4gSIRjVNRWaiobVmufHyZt17uiG6wl8KHvjNXSdsjBMvuQSM1Tg4lGYMxJ7yeSjMGbJHDEa4dv_Q8KEZLnISaSv79GrYXI2NqYkiDJCkby9OFujVnVQxl4PwSndggWnujgDjYnHcywZpSIv6DZ0x-vRXJd30ekeFFcNvdF7U9_tFEQT4Hdo1eR9efb92659_7CdX_5cXOzqV5smTFUPdTk60yt3U_6bzghONkB5rbrGKauN3zpJBCpQsb1Wu8F7B82WoPL2j5R3_kjU-J7WZj30sROme6Dmw7rGx2Tbgtu-1z7-F7CNHt8 |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1016_j_virol_2015_08_033 crossref_primary_10_1099_vir_0_062836_0 crossref_primary_10_1128_mBio_02430_14 crossref_primary_10_1007_s11427_010_4010_8 crossref_primary_10_1371_journal_pone_0016247 crossref_primary_10_1021_ja105051e crossref_primary_10_1007_s10719_008_9193_x crossref_primary_10_1371_journal_pone_0018664 crossref_primary_10_1371_journal_pone_0075209 crossref_primary_10_1021_nn401317t crossref_primary_10_3390_v15071596 crossref_primary_10_1371_journal_pone_0247429 crossref_primary_10_1038_nbt0407_433 crossref_primary_10_1128_jvi_00416_22 crossref_primary_10_1155_2023_8834913 crossref_primary_10_1038_emi_2012_24 crossref_primary_10_1007_s00705_008_0255_y crossref_primary_10_1080_07391102_2015_1106341 crossref_primary_10_1038_nsmb_1566 crossref_primary_10_3390_v16101636 crossref_primary_10_1271_bbb_100505 crossref_primary_10_1016_j_cell_2013_05_035 crossref_primary_10_1016_S1773_035X_07_80365_0 crossref_primary_10_1007_s00705_007_0985_2 crossref_primary_10_1007_s11427_009_0062_z crossref_primary_10_1128_JVI_01822_10 crossref_primary_10_3390_ijms18071541 crossref_primary_10_1128_JVI_02403_10 crossref_primary_10_5501_wjv_v3_i4_30 crossref_primary_10_1016_j_patbio_2010_01_012 crossref_primary_10_7717_peerj_13038 crossref_primary_10_1016_j_antiviral_2014_03_005 crossref_primary_10_1016_j_coviro_2012_03_003 crossref_primary_10_1155_2024_4900097 crossref_primary_10_1371_journal_pone_0100754 crossref_primary_10_1007_s00705_009_0476_8 crossref_primary_10_2903_j_efsa_2008_715 crossref_primary_10_3390_vaccines5040051 crossref_primary_10_1128_JVI_06959_11 crossref_primary_10_1186_s12985_014_0208_x crossref_primary_10_1016_j_vaccine_2014_09_050 crossref_primary_10_1134_S000629791507007X crossref_primary_10_1128_mBio_02431_14 crossref_primary_10_2222_jsv_58_69 crossref_primary_10_1016_j_jcv_2007_04_010 crossref_primary_10_1021_bc800460p crossref_primary_10_1038_nature11192 crossref_primary_10_3389_fmicb_2019_01328 crossref_primary_10_1126_science_1213362 crossref_primary_10_5458_jag_57_137 crossref_primary_10_1038_nature12392 crossref_primary_10_1021_acscentsci_0c01175 crossref_primary_10_1128_JVI_00967_13 crossref_primary_10_1002_adfm_201301075 crossref_primary_10_2478_acve_2024_0011 crossref_primary_10_2217_fvl_12_43 crossref_primary_10_1038_s41572_018_0002_y crossref_primary_10_3390_v1030335 crossref_primary_10_3389_fmicb_2015_01170 crossref_primary_10_1099_vir_0_056184_0 crossref_primary_10_1039_B714717A crossref_primary_10_1111_j_1348_0421_2009_00177_x crossref_primary_10_1016_S0140_6736_08_60493_6 crossref_primary_10_1016_j_meegid_2013_02_020 crossref_primary_10_1016_j_tim_2011_10_003 crossref_primary_10_1007_s00705_011_1056_2 crossref_primary_10_1016_j_csbj_2022_08_052 crossref_primary_10_1637_10899_071114_ResNote_1 crossref_primary_10_1111_j_1749_6632_2010_05829_x crossref_primary_10_1111_irv_12075 crossref_primary_10_1080_22221751_2024_2380421 crossref_primary_10_1002_rmv_1884 crossref_primary_10_1177_1087057108330786 crossref_primary_10_3201_eid1404_071343 crossref_primary_10_1038_cr_2009_124 crossref_primary_10_1038_nri3166 crossref_primary_10_1007_s11262_007_0120_1 crossref_primary_10_1126_sciimmunol_ado9572 crossref_primary_10_1007_s00253_009_2267_2 crossref_primary_10_4103_2225_4110_124335 crossref_primary_10_1111_irv_12184 crossref_primary_10_1128_microbiolspec_PFS_0007_2014 crossref_primary_10_1371_journal_pone_0004436 crossref_primary_10_1371_journal_pone_0225428 crossref_primary_10_1371_journal_pone_0003462 crossref_primary_10_1371_journal_pone_0099201 crossref_primary_10_1016_j_vaccine_2007_01_050 crossref_primary_10_1016_j_sbi_2008_07_006 crossref_primary_10_1038_s41598_017_07000_6 crossref_primary_10_1186_1743_422X_4_42 crossref_primary_10_1073_pnas_1121297109 crossref_primary_10_1183_16000617_0038_2020 crossref_primary_10_3389_fcimb_2021_643326 crossref_primary_10_3724_SP_J_1206_2011_00618 crossref_primary_10_1021_acsomega_9b02788 crossref_primary_10_1186_1743_422X_8_54 crossref_primary_10_1016_j_bios_2014_10_036 crossref_primary_10_1186_1743_422X_6_124 crossref_primary_10_1038_s41467_024_54505_6 crossref_primary_10_1016_j_bbagen_2019_05_012 crossref_primary_10_5458_bag_14_3_175 crossref_primary_10_1073_pnas_0912807107 crossref_primary_10_3201_eid2407_171441 crossref_primary_10_1016_j_vaccine_2012_04_049 crossref_primary_10_3389_fvets_2021_740472 crossref_primary_10_1038_srep12828 crossref_primary_10_1021_acsnano_1c00166 crossref_primary_10_1371_journal_pone_0007836 crossref_primary_10_1007_s11427_020_1981_5 crossref_primary_10_1371_journal_ppat_1000709 crossref_primary_10_1016_j_virusres_2013_02_015 crossref_primary_10_1371_journal_pone_0004682 crossref_primary_10_1016_j_arr_2012_02_002 crossref_primary_10_1128_JVI_02470_07 crossref_primary_10_1073_pnas_0708363104 crossref_primary_10_1016_j_meegid_2020_104375 crossref_primary_10_1093_glycob_cwp157 crossref_primary_10_1128_JVI_00921_07 crossref_primary_10_4236_health_2014_619294 crossref_primary_10_1128_JVI_00063_09 crossref_primary_10_3389_fvets_2023_1255213 crossref_primary_10_1099_vir_0_017459_0 crossref_primary_10_5536_KJPS_2013_40_3_243 crossref_primary_10_1093_glycob_cwx092 crossref_primary_10_1016_j_jinf_2018_07_015 crossref_primary_10_1371_journal_pone_0034865 crossref_primary_10_1371_journal_pone_0056659 crossref_primary_10_3390_ijms231911433 crossref_primary_10_1016_j_vetmic_2018_08_016 crossref_primary_10_1080_22221751_2024_2302854 crossref_primary_10_3389_fcimb_2025_1560250 crossref_primary_10_1128_JVI_02004_17 crossref_primary_10_1529_biophysj_108_141507 crossref_primary_10_1016_j_vaccine_2007_11_031 crossref_primary_10_1021_jp805529z crossref_primary_10_1016_j_compbiomed_2022_105660 crossref_primary_10_1073_pnas_0700435104 crossref_primary_10_1093_glycob_cwn067 crossref_primary_10_1016_j_bbagen_2015_10_016 crossref_primary_10_1186_1743_422X_7_135 crossref_primary_10_1038_s41421_023_00571_x crossref_primary_10_1074_jbc_REV120_013309 crossref_primary_10_3390_md8112781 crossref_primary_10_1016_j_coviro_2012_02_013 crossref_primary_10_1089_vim_2017_0020 crossref_primary_10_1097_INF_0b013e3181684d41 crossref_primary_10_1016_j_virol_2011_02_015 crossref_primary_10_1038_ncomms5791 crossref_primary_10_1016_S0300_2896_10_70018_1 crossref_primary_10_3201_eid3010_240583 crossref_primary_10_1086_594374 crossref_primary_10_1371_journal_pone_0043596 crossref_primary_10_1007_s11262_012_0717_x crossref_primary_10_1016_j_virol_2010_01_036 crossref_primary_10_3390_ijms18122706 crossref_primary_10_2169_naika_102_2705 crossref_primary_10_1016_j_ebiom_2024_105034 crossref_primary_10_1128_JVI_02596_08 crossref_primary_10_1128_JVI_00006_07 crossref_primary_10_1038_nature10831 crossref_primary_10_1007_s10719_012_9431_0 crossref_primary_10_1016_j_virol_2017_02_009 crossref_primary_10_1128_JVI_02016_17 crossref_primary_10_1128_JVI_02737_09 crossref_primary_10_1128_mBio_00081_15 crossref_primary_10_1016_j_tim_2008_01_008 crossref_primary_10_1186_s12985_015_0448_4 crossref_primary_10_1128_JVI_01899_07 crossref_primary_10_1128_JVI_02199_16 crossref_primary_10_1016_j_ejphar_2011_04_013 crossref_primary_10_1586_ers_09_44 crossref_primary_10_3389_fcimb_2018_00414 crossref_primary_10_1007_s12272_009_1400_1 crossref_primary_10_1016_j_sbi_2016_10_003 crossref_primary_10_3389_fmicb_2024_1477738 crossref_primary_10_1007_s11262_019_01700_z crossref_primary_10_3389_fviro_2021_727163 crossref_primary_10_1016_j_chom_2020_03_009 crossref_primary_10_7554_eLife_03883 crossref_primary_10_1016_j_meegid_2017_05_001 crossref_primary_10_1128_JVI_00653_15 crossref_primary_10_1007_s00705_010_0666_4 crossref_primary_10_1126_science_1135165 crossref_primary_10_4161_bbug_19943 crossref_primary_10_1128_JVI_02069_09 crossref_primary_10_1186_1743_422X_7_231 crossref_primary_10_1016_j_idc_2010_04_001 crossref_primary_10_1128_JVI_02256_07 crossref_primary_10_1128_JVI_02468_07 crossref_primary_10_3390_v14050958 crossref_primary_10_1016_j_vaccine_2019_03_018 crossref_primary_10_1080_09168451_2017_1325315 crossref_primary_10_1073_pnas_0801259105 crossref_primary_10_1172_JCI44947 crossref_primary_10_1128_JVI_01887_14 crossref_primary_10_1177_135965350701200S07_1 crossref_primary_10_3201_eid2808_212530 crossref_primary_10_1016_j_jviromet_2011_07_014 crossref_primary_10_3201_eid1610_100508 crossref_primary_10_1016_j_cbpa_2008_01_036 crossref_primary_10_1016_j_jcpa_2022_06_006 crossref_primary_10_1128_JVI_00375_18 crossref_primary_10_1016_j_meegid_2014_09_008 crossref_primary_10_1128_JVI_01958_07 crossref_primary_10_3390_v5061431 crossref_primary_10_1135_cccc2009087 crossref_primary_10_3389_fmicb_2020_602124 crossref_primary_10_1016_j_jmb_2018_04_015 crossref_primary_10_1128_CMR_00037_06 crossref_primary_10_4161_viru_27103 crossref_primary_10_1186_1743_422X_8_434 crossref_primary_10_1186_1743_422X_8_554 crossref_primary_10_1016_j_celrep_2015_10_027 crossref_primary_10_1080_13543784_2017_1269170 crossref_primary_10_1186_1297_9716_43_28 crossref_primary_10_3390_plants11060740 crossref_primary_10_1128_JVI_02081_08 crossref_primary_10_1056_NEJMra0707279 crossref_primary_10_3390_v15051093 crossref_primary_10_1016_j_virol_2014_07_048 crossref_primary_10_1099_vir_0_005660_0 crossref_primary_10_1074_jbc_R110_129809 crossref_primary_10_1371_journal_pone_0113078 crossref_primary_10_1111_tbed_13281 crossref_primary_10_1146_annurev_genom_083115_022628 crossref_primary_10_1371_journal_pone_0067011 crossref_primary_10_1021_bm900300j crossref_primary_10_1128_JVI_05570_11 crossref_primary_10_1093_jac_dkq387 crossref_primary_10_1126_science_1171491 crossref_primary_10_1371_journal_ppat_1002068 crossref_primary_10_1002_ptr_6024 crossref_primary_10_2217_fvl_14_30 crossref_primary_10_1111_irv_12458 crossref_primary_10_1371_journal_pone_0133910 crossref_primary_10_1099_vir_0_2008_002469_0 crossref_primary_10_1093_glycob_cwm038 crossref_primary_10_1371_journal_pone_0004842 crossref_primary_10_1016_j_meegid_2016_05_027 crossref_primary_10_1007_s11427_009_0161_x crossref_primary_10_3390_vaccines11111628 crossref_primary_10_1128_JVI_01714_09 crossref_primary_10_1159_000517057 crossref_primary_10_1099_jgv_0_001802 crossref_primary_10_1007_s00108_007_1837_6 crossref_primary_10_1002_eji_200939532 crossref_primary_10_1073_pnas_1502762112 crossref_primary_10_3389_fmicb_2019_01411 crossref_primary_10_1021_ja904557w crossref_primary_10_1038_s41598_020_74604_w crossref_primary_10_1371_journal_pone_0078125 crossref_primary_10_1128_JVI_00468_07 crossref_primary_10_1016_j_antiviral_2008_02_001 crossref_primary_10_1111_j_1750_2659_2007_00011_x crossref_primary_10_1371_journal_pone_0050955 crossref_primary_10_5897_AJMR2013_5609 crossref_primary_10_1186_1472_6750_13_51 crossref_primary_10_1371_journal_pone_0050959 crossref_primary_10_1038_emi_2017_38 crossref_primary_10_3389_fmicb_2016_01066 crossref_primary_10_1380_vss_62_470 crossref_primary_10_1007_s10719_010_9303_4 crossref_primary_10_1080_00439339_2023_2294268 crossref_primary_10_1007_s00705_017_3246_z crossref_primary_10_1099_vir_0_023168_0 crossref_primary_10_2353_ajpath_2007_070695 crossref_primary_10_1038_emi_2016_71 crossref_primary_10_1007_s00705_010_0891_x crossref_primary_10_1007_s11262_024_02085_4 crossref_primary_10_1128_JVI_01393_08 crossref_primary_10_1371_journal_ppat_1008816 crossref_primary_10_3390_condmat1010007 crossref_primary_10_1155_2023_8855164 crossref_primary_10_4052_tigg_23_248 crossref_primary_10_4161_bbug_20190 crossref_primary_10_1371_journal_ppat_1002398 crossref_primary_10_1016_j_jmb_2009_01_040 crossref_primary_10_1128_JVI_00514_08 crossref_primary_10_1039_C7AY01585B crossref_primary_10_1111_j_1749_6632_2010_05451_x crossref_primary_10_3390_v15051056 crossref_primary_10_1099_vir_0_057778_0 crossref_primary_10_1007_s12275_012_1573_z crossref_primary_10_1126_science_1222526 crossref_primary_10_1096_fj_06_7880com crossref_primary_10_1021_ac401085c crossref_primary_10_2222_jsv_65_187 crossref_primary_10_1016_j_cimid_2008_01_007 crossref_primary_10_1016_j_cimid_2008_01_003 crossref_primary_10_1016_j_vaccine_2008_07_072 crossref_primary_10_1017_S1466252310000137 crossref_primary_10_7567_1347_4065_ab1b68 crossref_primary_10_1128_JVI_00078_15 crossref_primary_10_1016_j_bbrc_2006_12_239 crossref_primary_10_1016_j_virs_2024_12_005 crossref_primary_10_1142_S0219720018400231 crossref_primary_10_1039_c1an15354d crossref_primary_10_1186_1755_8794_7_S3_S1 crossref_primary_10_1371_journal_ppat_1000072 crossref_primary_10_3390_v5071719 crossref_primary_10_4155_fmc_10_290 crossref_primary_10_1093_bmb_ldz036 crossref_primary_10_1017_S1466252307001272 crossref_primary_10_1016_j_meegid_2011_10_019 crossref_primary_10_1155_2024_9923259 crossref_primary_10_1021_jm8000967 crossref_primary_10_1128_JVI_02238_08 crossref_primary_10_1146_annurev_med_050908_132031 crossref_primary_10_7554_eLife_18491 crossref_primary_10_1016_j_tim_2007_06_004 crossref_primary_10_1007_s11434_008_0161_4 crossref_primary_10_1093_ve_veae027 crossref_primary_10_1099_vir_0_83111_0 crossref_primary_10_1016_j_azn_2024_10_001 crossref_primary_10_1002_elps_201200304 crossref_primary_10_1073_pnas_1323162111 crossref_primary_10_1128_JVI_01413_18 crossref_primary_10_1007_s12010_016_2064_1 crossref_primary_10_1038_nature08157 crossref_primary_10_1111_nyas_13304 crossref_primary_10_4049_jimmunol_0901617 crossref_primary_10_1007_s10719_008_9141_9 crossref_primary_10_3851_IMP1730 crossref_primary_10_1099_jgv_0_001305 crossref_primary_10_1002_jcc_21274 crossref_primary_10_1038_nbt0108_60 crossref_primary_10_1007_s00705_017_3695_4 crossref_primary_10_1099_jgv_0_001672 crossref_primary_10_1016_j_sbi_2008_08_001 crossref_primary_10_1074_jbc_RA118_007008 crossref_primary_10_1021_acs_langmuir_8b01586 crossref_primary_10_1177_135965350701200S08_1 crossref_primary_10_1007_s11427_009_0067_7 crossref_primary_10_1016_j_molimm_2012_10_001 crossref_primary_10_2217_17460794_4_2_177 crossref_primary_10_4236_cmb_2012_22005 crossref_primary_10_1016_j_vaccine_2009_10_019 crossref_primary_10_1371_journal_pone_0084628 crossref_primary_10_1099_jgv_0_000542 crossref_primary_10_1186_s12879_018_3222_6 crossref_primary_10_1128_JVI_00878_19 crossref_primary_10_1111_tbed_13430 crossref_primary_10_1371_journal_ppat_1000043 crossref_primary_10_15212_ZOONOSES_2021_0026 crossref_primary_10_1021_bi401525h crossref_primary_10_1093_infdis_jiw348 crossref_primary_10_1016_j_vetmic_2013_01_044 crossref_primary_10_1016_j_coi_2011_07_016 crossref_primary_10_1016_j_jmb_2008_04_016 crossref_primary_10_1155_2013_121924 crossref_primary_10_1371_journal_pone_0079165 crossref_primary_10_4236_jbpc_2011_23031 crossref_primary_10_1128_JVI_00547_18 crossref_primary_10_1139_O10_017 crossref_primary_10_2174_1871530323666230622122901 crossref_primary_10_1371_journal_pone_0013811 crossref_primary_10_1007_s00705_015_2428_9 crossref_primary_10_1016_S1672_0229_08_60032_7 crossref_primary_10_1016_j_virol_2014_03_008 crossref_primary_10_1038_s41467_023_40126_y crossref_primary_10_1128_genomeA_01062_16 crossref_primary_10_3724_SP_J_1005_2011_00189 crossref_primary_10_1016_j_coviro_2011_05_005 crossref_primary_10_1126_science_1236787 crossref_primary_10_1128_JVI_00195_20 crossref_primary_10_1089_vim_2010_0058 crossref_primary_10_1016_j_bpj_2012_01_043 crossref_primary_10_1128_JVI_01679_14 crossref_primary_10_1038_embor_2012_212 crossref_primary_10_1016_j_meegid_2014_11_020 crossref_primary_10_20965_jdr_2011_p0398 crossref_primary_10_1016_j_virol_2011_10_006 crossref_primary_10_3201_eid1503_081190 crossref_primary_10_1186_1423_0127_17_25 crossref_primary_10_1371_journal_pone_0038794 crossref_primary_10_1007_s12275_011_0311_2 crossref_primary_10_1038_s41467_023_44134_w crossref_primary_10_1007_s00705_015_2442_y crossref_primary_10_1016_j_antiviral_2008_04_006 crossref_primary_10_1074_jbc_RA118_004604 crossref_primary_10_4236_ajmb_2011_12007 crossref_primary_10_3390_molecules200610415 crossref_primary_10_1099_vir_0_050526_0 crossref_primary_10_1016_j_cimid_2013_06_003 crossref_primary_10_3390_v11050458 crossref_primary_10_1080_22221751_2025_2455601 crossref_primary_10_1016_j_molimm_2013_07_010 crossref_primary_10_2353_ajpath_2008_070791 crossref_primary_10_3201_eid1412_071567 crossref_primary_10_1002_med_20196 crossref_primary_10_1371_journal_ppat_0030133 crossref_primary_10_1038_emi_2013_89 crossref_primary_10_1371_journal_ppat_1001106 crossref_primary_10_1038_emi_2014_9 crossref_primary_10_1002_ptr_5782 crossref_primary_10_1016_j_meegid_2009_07_006 crossref_primary_10_1038_aps_2013_121 crossref_primary_10_1016_j_bmcl_2014_04_057 crossref_primary_10_1128_JVI_01417_16 crossref_primary_10_1128_jvi_01694_22 crossref_primary_10_1371_journal_ppat_1000130 crossref_primary_10_1016_S0213_005X_08_76227_X crossref_primary_10_3201_eid2907_221149 crossref_primary_10_1016_j_jcv_2007_10_017 crossref_primary_10_1016_S1773_035X_10_70558_X crossref_primary_10_1371_journal_pone_0049224 crossref_primary_10_1128_JVI_00180_16 crossref_primary_10_1128_JVI_02692_15 crossref_primary_10_1093_infdis_jiq168 crossref_primary_10_1016_j_vaccine_2013_12_005 crossref_primary_10_1089_vim_2012_0055 crossref_primary_10_1126_scitranslmed_3000624 crossref_primary_10_1016_j_jviromet_2013_08_040 crossref_primary_10_3724_SP_J_1206_2011_00090 crossref_primary_10_1128_JVI_00939_15 crossref_primary_10_1016_j_arcmed_2009_10_007 crossref_primary_10_1038_nbt1375 crossref_primary_10_1038_nrmicro2613 crossref_primary_10_1128_MMBR_00004_08 crossref_primary_10_1101_cshperspect_a038620 crossref_primary_10_1016_j_cplett_2013_07_010 crossref_primary_10_1007_s00705_009_0393_x crossref_primary_10_1016_j_vaccine_2016_03_031 crossref_primary_10_1007_s00894_019_3982_y crossref_primary_10_1016_j_bbamem_2013_10_004 crossref_primary_10_1016_j_coviro_2013_07_005 crossref_primary_10_1371_journal_pone_0061572 crossref_primary_10_1007_s00705_015_2660_3 crossref_primary_10_1371_journal_ppat_1008191 crossref_primary_10_1007_s11427_008_0131_8 crossref_primary_10_1021_ja904052q crossref_primary_10_1128_JVI_01416_19 crossref_primary_10_1098_rspb_2007_0884 crossref_primary_10_3201_eid1404_071178 crossref_primary_10_1016_j_virusres_2007_07_007 crossref_primary_10_1073_pnas_1214913110 crossref_primary_10_1126_science_abm3125 crossref_primary_10_1038_nature12144 crossref_primary_10_1007_s00894_007_0245_0 crossref_primary_10_1021_bi8000837 crossref_primary_10_1016_j_cell_2009_01_029 crossref_primary_10_1186_s40659_024_00570_6 crossref_primary_10_1128_JVI_02427_09 crossref_primary_10_1007_s13238_013_3906_z crossref_primary_10_1080_21505594_2023_2223057 crossref_primary_10_1093_glycob_cwr080 crossref_primary_10_1128_JVI_00907_14 crossref_primary_10_1016_j_jviromet_2012_11_006 crossref_primary_10_1038_nature11170 crossref_primary_10_1016_j_chom_2017_05_011 crossref_primary_10_1016_j_virusres_2013_08_007 crossref_primary_10_1038_nature12379 crossref_primary_10_1007_s00705_009_0429_2 crossref_primary_10_1007_s11684_010_0030_9 crossref_primary_10_1016_j_micinf_2017_09_008 crossref_primary_10_1371_journal_pone_0112302 crossref_primary_10_3389_fmicb_2020_583252 crossref_primary_10_1128_JVI_00170_07 crossref_primary_10_1016_j_vaccine_2009_03_061 crossref_primary_10_1016_j_chembiol_2009_08_002 crossref_primary_10_1002_psc_1415 crossref_primary_10_1146_annurev_animal_031412_103733 crossref_primary_10_1016_j_virol_2013_08_010 crossref_primary_10_1128_JVI_01357_19 crossref_primary_10_1371_journal_ppat_1000557 crossref_primary_10_1021_ja410918a crossref_primary_10_1109_JSEN_2008_923945 crossref_primary_10_1007_s00705_010_0813_y crossref_primary_10_1128_JVI_06100_11 crossref_primary_10_1128_JVI_01241_10 crossref_primary_10_1186_s12859_020_03650_y crossref_primary_10_1080_21505594_2022_2082672 crossref_primary_10_1007_s12560_021_09506_9 crossref_primary_10_2222_jsv_59_1 crossref_primary_10_1016_j_vaccine_2010_10_065 crossref_primary_10_1039_D2BM01595A crossref_primary_10_1128_JVI_02356_10 crossref_primary_10_3390_v12030304 crossref_primary_10_3390_ijms25158550 crossref_primary_10_1016_j_virusres_2024_199482 crossref_primary_10_1016_j_bios_2017_02_023 crossref_primary_10_1155_2024_6661672 crossref_primary_10_1128_JVI_01368_07 |
Cites_doi | 10.1006/viro.1997.8526 10.1038/4371108a 10.1073/pnas.201401198 10.1126/science.311.5763.932a 10.1128/JVI.74.18.8502-8512.2000 10.1016/0042-6822(83)90507-X 10.1093/glycob/cwg032 10.1126/science.1124513 10.1126/science.1122818 10.1006/viro.1994.1100 10.3201/eid1201.051024 10.1016/j.virol.2003.11.030 10.1107/S0907444998003254 10.1016/0042-6822(83)90150-2 10.1002/rmv.319 10.1006/viro.1994.1615 10.1128/JVI.67.4.1761-1764.1993 10.1073/pnas.96.16.9345 10.1128/JCM.30.3.655-662.1992 10.1128/JVI.79.15.9926-9932.2005 10.1093/emboj/21.5.865 10.1006/viro.1995.1405 10.1038/440435a 10.1107/S0108767390010224 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2006 2007 INIST-CNRS COPYRIGHT 2006 Nature Publishing Group Copyright Nature Publishing Group Nov 16, 2006 |
Copyright_xml | – notice: Springer Nature Limited 2006 – notice: 2007 INIST-CNRS – notice: COPYRIGHT 2006 Nature Publishing Group – notice: Copyright Nature Publishing Group Nov 16, 2006 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7SC 7SP 7SR 7TB 7U5 8BQ F28 JG9 JQ2 KR7 L7M L~C L~D 7X8 |
DOI | 10.1038/nature05264 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) Materials Research Database Civil Engineering Abstracts Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts METADEX Computer and Information Systems Abstracts Professional Engineered Materials Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE AIDS and Cancer Research Abstracts MEDLINE - Academic AIDS and Cancer Research Abstracts Agricultural Science Database Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics Biology |
EISSN | 1476-4687 1476-4679 |
EndPage | 382 |
ExternalDocumentID | 1163987491 A185447394 17108965 18270909 10_1038_nature05264 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Medical Research Council grantid: MC_U117512711 – fundername: Wellcome Trust – fundername: Medical Research Council grantid: MC_U117512708 – fundername: Medical Research Council grantid: G0600522 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 .55 .GJ .HR .XZ 00M 08P 0R~ 0WA 123 186 1VR 29M 2KS 2XV 354 39C 3EH 3O- 3V. 4.4 41X 42X 4R4 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L 9M8 A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYOK AAYZH ABAWZ ABDBF ABDQB ABEFU ABFSI ABIVO ABJCF ABJNI ABLJU ABNNU ABOCM ABPEJ ABPPZ ABTAH ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACRPL ACUHS ACWUS ADBBV ADFRT ADNMO ADUKH ADYSU ADZCM AENEX AEUYN AFFDN AFFNX AFHKK AFKRA AFLOW AFRAH AFSHS AGAYW AGCDD AGGDT AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCR BCU BDKGC BEC BENPR BES BGLVJ BHPHI BIN BKEYQ BKKNO BKOMP BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DB5 DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L-9 L6V L7B LK5 LK8 M0K M0L M1P M2M M2O M2P M7P M7R M7S MVM N4W N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OHT OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PEA PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL USG VOH VQA VVN WH7 WOW X7L X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YYP YZZ Z5M ZCA ZCG ZGI ZHY ZKB ZKG ZY4 ~02 ~7V ~88 ~8M ~KM .CO 07C 1CY 1OL 1VW 41~ 663 79B AAJYS AARCD AAVBQ AAYXX ABDPE ABFSG ACBNA ACBTR ACMFV ACSTC ACTDY ADGHP ADRHT ADXHL AETEA AEZWR AFANA AFBBN AFHIU AGQPQ AHWEU AIXLP AJUXI ALPWD ARMCB ATHPR CITATION FA8 FAC J5H LGEZI LOTEE LSO NADUK NFIDA NXXTH ODYON PHGZM PHGZT PV9 QS- R4F RHI SHXYY SIXXV SKT TBHMF TDRGL TUD UBY UHB XOL YJ6 YQI YQJ YV5 YXA YYQ ZE2 ~G0 IQODW PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM PMFND AEIIB 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 36B ABCQX AFWHJ AHBCP D0L QF4 QM4 QN7 QO4 7SC 7SP 7SR 7TB 7U5 8BQ F28 JG9 JQ2 KR7 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c716t-dd122506b6663422da26bf5bd558e4e67bf2e17245c370427754cd47c47f5dc63 |
IEDL.DBID | 8FG |
ISSN | 0028-0836 1476-4687 |
IngestDate | Fri Jul 11 03:25:11 EDT 2025 Thu Jul 10 19:17:52 EDT 2025 Mon Jul 21 10:14:00 EDT 2025 Fri Jul 11 15:31:13 EDT 2025 Sat Aug 23 12:50:05 EDT 2025 Fri Jun 13 00:45:22 EDT 2025 Tue Jun 10 15:35:27 EDT 2025 Tue Jun 10 21:33:45 EDT 2025 Fri Jun 27 06:03:37 EDT 2025 Fri Jun 27 06:00:31 EDT 2025 Fri May 30 11:00:56 EDT 2025 Mon Jul 21 09:16:04 EDT 2025 Tue Jul 01 03:37:20 EDT 2025 Thu Apr 24 22:59:59 EDT 2025 Fri Feb 21 02:37:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7117 |
Keywords | Human Hemagglutinin Host specificity Orthomyxoviridae Binding site Molecular marker Infection Virus Avian influenza Influenzavirus A(H5N1) Vertebrata Biological fixation Influenzavirus A Avian influenzavirus Viral disease Replication Chicken Mutation Aves Aminoacid sequence Biological receptor |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c716t-dd122506b6663422da26bf5bd558e4e67bf2e17245c370427754cd47c47f5dc63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 17108965 |
PQID | 204524088 |
PQPubID | 23462 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_68150919 proquest_miscellaneous_35214758 proquest_miscellaneous_19383054 proquest_miscellaneous_1257853732 proquest_journals_204524088 gale_infotracgeneralonefile_A185447394 gale_infotraccpiq_185447394 gale_infotracacademiconefile_A185447394 gale_incontextgauss_ISR_A185447394 gale_incontextgauss_ATWCN_A185447394 pubmed_primary_17108965 pascalfrancis_primary_18270909 crossref_primary_10_1038_nature05264 crossref_citationtrail_10_1038_nature05264 springer_journals_10_1038_nature05264 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-11-16 |
PublicationDateYYYYMMDD | 2006-11-16 |
PublicationDate_xml | – month: 11 year: 2006 text: 2006-11-16 day: 16 |
PublicationDecade | 2000 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2006 |
Publisher | Nature Publishing Group UK Nature Publishing Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing – name: Nature Publishing Group |
References | K Shinya (BFnature05264_CR21) 2005; 79 G Neumann (BFnature05264_CR8) 1999; 96 RG Webster (BFnature05264_CR1) 2006; 12 K Shinya (BFnature05264_CR20) 2004; 320 CT Hardy (BFnature05264_CR12) 1995; 211 GN Rogers (BFnature05264_CR4) 1983; 127 LV Gubareva (BFnature05264_CR13) 1994; 199 T Kuiken (BFnature05264_CR16) 2006; 312 Z Otwinowski (BFnature05264_CR24) 1993 Y Ha (BFnature05264_CR9) 2001; 98 AT Brunger (BFnature05264_CR26) 1998; 54 EK Subbarao (BFnature05264_CR19) 1993; 67 M Matrosovich (BFnature05264_CR3) 2000; 74 TA Jones (BFnature05264_CR14) 1991; 47 ML Clements (BFnature05264_CR18) 1992; 30 QM Le (BFnature05264_CR7) 2005; 437 MC Zambon (BFnature05264_CR6) 2001; 11 Y Ha (BFnature05264_CR23) 2002; 21 GN Rogers (BFnature05264_CR5) 1983; 131 J Stevens (BFnature05264_CR10) 2006; 312 K Totani (BFnature05264_CR22) 2003; 13 K Shinya (BFnature05264_CR15) 2006; 440 M Enserink (BFnature05264_CR2) 2006; 311 BFnature05264_CR25 MB Eisen (BFnature05264_CR11) 1997; 232 RJ Connor (BFnature05264_CR17) 1994; 205 |
References_xml | – volume: 232 start-page: 19 year: 1997 ident: BFnature05264_CR11 publication-title: Virology doi: 10.1006/viro.1997.8526 – volume: 437 start-page: 1108 year: 2005 ident: BFnature05264_CR7 publication-title: Nature doi: 10.1038/4371108a – volume: 98 start-page: 11181 year: 2001 ident: BFnature05264_CR9 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.201401198 – volume: 311 start-page: 932 year: 2006 ident: BFnature05264_CR2 publication-title: Science doi: 10.1126/science.311.5763.932a – volume: 74 start-page: 8502 year: 2000 ident: BFnature05264_CR3 publication-title: J. Virol. doi: 10.1128/JVI.74.18.8502-8512.2000 – volume: 131 start-page: 394 year: 1983 ident: BFnature05264_CR5 publication-title: Virology doi: 10.1016/0042-6822(83)90507-X – volume: 13 start-page: 315 year: 2003 ident: BFnature05264_CR22 publication-title: Glycobiology doi: 10.1093/glycob/cwg032 – volume: 312 start-page: 404 year: 2006 ident: BFnature05264_CR10 publication-title: Science doi: 10.1126/science.1124513 – volume: 312 start-page: 394 year: 2006 ident: BFnature05264_CR16 publication-title: Science doi: 10.1126/science.1122818 – volume: 199 start-page: 89 year: 1994 ident: BFnature05264_CR13 publication-title: Virology doi: 10.1006/viro.1994.1100 – volume: 12 start-page: 3 year: 2006 ident: BFnature05264_CR1 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1201.051024 – volume: 320 start-page: 258 year: 2004 ident: BFnature05264_CR20 publication-title: Virology doi: 10.1016/j.virol.2003.11.030 – volume: 54 start-page: 905 year: 1998 ident: BFnature05264_CR26 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444998003254 – volume: 127 start-page: 361 year: 1983 ident: BFnature05264_CR4 publication-title: Virology doi: 10.1016/0042-6822(83)90150-2 – volume: 11 start-page: 227 year: 2001 ident: BFnature05264_CR6 publication-title: Rev. Med. Virol. doi: 10.1002/rmv.319 – volume: 205 start-page: 17 year: 1994 ident: BFnature05264_CR17 publication-title: Virology doi: 10.1006/viro.1994.1615 – start-page: 556 volume-title: Data Collection and Processing year: 1993 ident: BFnature05264_CR24 – volume: 67 start-page: 1761 year: 1993 ident: BFnature05264_CR19 publication-title: J. Virol. doi: 10.1128/JVI.67.4.1761-1764.1993 – volume: 96 start-page: 9345 year: 1999 ident: BFnature05264_CR8 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.96.16.9345 – volume: 30 start-page: 655 year: 1992 ident: BFnature05264_CR18 publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.30.3.655-662.1992 – volume: 79 start-page: 9926 year: 2005 ident: BFnature05264_CR21 publication-title: J. Virol. doi: 10.1128/JVI.79.15.9926-9932.2005 – volume: 21 start-page: 865 year: 2002 ident: BFnature05264_CR23 publication-title: EMBO J. doi: 10.1093/emboj/21.5.865 – volume: 211 start-page: 302 year: 1995 ident: BFnature05264_CR12 publication-title: Virology doi: 10.1006/viro.1995.1405 – volume: 440 start-page: 435 year: 2006 ident: BFnature05264_CR15 publication-title: Nature doi: 10.1038/440435a – volume: 47 start-page: 110 year: 1991 ident: BFnature05264_CR14 publication-title: Acta Crystallogr. A doi: 10.1107/S0108767390010224 – ident: BFnature05264_CR25 |
SSID | ssj0005174 ssj0014407 |
Score | 2.4357593 |
Snippet | Pandemic potential
The fact that the H5N1 bird flu virus circulating in Asia, Europe and Africa is unable to attach to human-type cell receptors has helped to... H5N1 influenza A viruses have spread to numerous countries in Asia, Europe and Africa, infecting not only large numbers of poultry, but also an increasing... |
SourceID | proquest gale pubmed pascalfrancis crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 378 |
SubjectTerms | Amino acids Animal viral diseases Animals Aquatic birds Avian flu Binding sites Biological and medical sciences Cell Line Cellular biology Chickens Crystal structure Crystallography, X-Ray Dogs Fundamental and applied biological sciences. Psychology Genetics Hemagglutinin Glycoproteins, Influenza Virus - chemistry Hemagglutinin Glycoproteins, Influenza Virus - genetics Hemagglutinin Glycoproteins, Influenza Virus - metabolism Human viral diseases Humanities and Social Sciences Humans Infectious diseases Influenza A Virus, H5N1 Subtype - chemistry Influenza A Virus, H5N1 Subtype - genetics Influenza A Virus, H5N1 Subtype - metabolism Lethal effects letter Medical sciences Microbiology multidisciplinary Mutation Mutation - genetics Pandemics Poultry Receptors, Virus - chemistry Receptors, Virus - metabolism Replicative cycle, interference, host-virus relations, pathogenicity, miscellaneous strains Saccharides Science Science (multidisciplinary) Viral diseases Viral diseases of the respiratory system and ent viral diseases Virology |
Title | Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors |
URI | https://link.springer.com/article/10.1038/nature05264 https://www.ncbi.nlm.nih.gov/pubmed/17108965 https://www.proquest.com/docview/204524088 https://www.proquest.com/docview/1257853732 https://www.proquest.com/docview/19383054 https://www.proquest.com/docview/35214758 https://www.proquest.com/docview/68150919 |
Volume | 444 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfYJiQkhNj4KoNi0PiUojXxR5wnVKqVgkSFxqb1LXKcuFTakq5peeCv5y5x2wVaXvLin5w45zuffeffEXJkOxIWdSs9CfPJ46lJvMgY40WawZw2ibICLwp_G8rBOf86EiOXm1O6tMqlTawMdVoYPCM_Rtp0pONSH6fXHhaNwuCqq6CxQ_Z8WGgwo0v1P68zPP4iYXbX8zpMHdesmch1whsLkjPLd6e6hF9k69oWm5zPfwKn1XrUv0_uOUeSdmvJ75NbWX5AblcJnaY8IPtOaUv6zjFLv39Afg50dqXHY5xt-SSnV4s6EF_S2TJV9jKj4MZScAtpMqluvNDC0oEY-nRS1zP5rWmX_prMFiV0Pi9oVeXPw6Nc6AWTZIpZ-ZCc90_OegPPlVrwDGyY5l6a-qDYHZnAbobxIEh1IBMrklQIlfFMhokNMvB1uDAsxPIcoeAm5aHhoRWpkewR2c2LPHtCqBYSKa24SGXGQQc140mkDQje-on1dYt8WP7v2DgeciyHcRlX8XCm4hvCaZGjFXha029sgaHgYiS0yDFjZqwXZRl3zy56w7gLLgnnIYsA9moT7MuP0wborQPZAr7LaHdPAUaHVFkN5GEDaaaT6_hG65tG67gW9qZu2o3pth6oCsJO1IngPcv5FzsLU8YrfWiRl6tWMA0Y79F5VizK2EdzLFjIghZ5sQ0TMQUmn29HgIfuc9hVbkdI5aPbCd_5uFaO9QjAf1WRFC3yeqkt6xFskOPT_470kNypDsAwCVM-I7vz2SJ7Di7hPGmTnXAUwlP1_HZlBNpk79PJ8PvpH4jWYzs |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEAIJITa-ymAzaAOGFK2JP5I8IFQNSsu2PrBO7C1zHKdU2pKuaUHwP_E_cpePdoGWtz37Jzfune_O9t3vCNmOmxKceiwtCfpk8UiHlq-1tnzFQKd16MUCC4WPerJzwj-fitMV8ruqhcG0ysom5oY6SjXeke8hbTrScXnvR5cWNo3Cx9Wqg0ahFQfm5w84sWXvuh9AvDuO0_7Y3-9YZVMBS8PRYGJFkQ0q3JQhxO2MO06kHBnGIoyE8Aw30g1jx4BX50IzFxtRuILriLuau7GItGQw7w1ykzNw5FiY3v40zyj5i_S5LAdsMm-vYOlEbhVec4ClG7g7UhmIJC56aSwKdv95qM39X_s-uVcGrrRVaNoaWTHJOrmVJ5DqbJ2slUYio29KJuvdB-RbR5kLNRigdifDhF5Mi4f_jI6r1NxzQyFsphCG0nCYV9jQNKYd0bPpsOif8kvRFv0-HE8zmHyS0ryroIVXxzALJuWk4-whObkWKTwiq0mamCeEKiGRQouLSBoOe14xHvpKg6LFdhjbqkHeVv93oEvec2y_cR7k7-_MC64Ip0G2Z-BRQfexBIaCC5BAI8EMnYGaZlnQ6n_d7wUtCIE4d5kPsJeLYN3jLzXQ6xIUp_BdWpV1EbA6pOaqITdqSD0aXgZXRl_VRgeFsBdNs1lTt_lCPcdt-k0ffqfSv6C0aFkw238N8mI2CqYI35dUYtJpFtho_gVzmdMgW8swPvPAxfDlCDgR2BxOscsR0rMxzIXvfFxsjvkKIF72fCkaZKfaLfMVLJDj0_-udIvc7vSPDoPDbu9gg9zJL98wAVQ-I6uT8dQ8h3B0Em7mRoCSs-u2On8AjY-bgw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELbGEAgJITbeymAzaONNitrEL0k-IFR1VC2DCsEm9i04TlwqbUnXtCD4Z_w77vLSNtDybZ_9yI1757uzffccIfumJcGpG2lJ0CeLRzq0fK215SsGOq1DzwgsFP4wkL0T_u5UnG6Q31UtDKZVVjYxN9RRqvGOvIm06UjH5TVNmRXx8bD7ZnxhYQMpfGitumkUGnIU__wBp7fsdf8QRH3gON23x52eVTYYsDQcE6ZWFNmgzi0ZQgzPuONEypGhEWEkhBfzWLqhcWLw8Fxo5mJTCldwHXFXc9eISEsG814hV13merjFvM5SdslfBNBlaWCLec2CsRN5VnjNGZYu4eZYZSAeU_TVWBX4_vNom_vC7m1yqwxiabvQui2yESfb5FqeTKqzbbJVGoyMvihZrV_eId96Kj5XwyFqejJK6PmsSALI6KRK0z2LKYTQFEJSGo7yahuaGtoTA5uOil4qvxRt0--jySyDyacpzTsMWniNDLNggk46ye6Sk0uRwj2ymaRJ_IBQJSTSaXERyZjD_leMh77SoHTGDo2tGuRV9X8HuuRAx1YcZ0H-Fs-8YEk4DbI_B48L6o81MBRcgGQaCerlUM2yLGgff-kMgjaEQ5y7zAfY01Ww_udPNdDzEmRS-C6tyhoJWB3SdNWQOzWkHo8ugqXRZ7XRYSHsVdPs1tRtsVDPcVt-y4ffqfQvKK1bFsz3YoM8mY-CWcK3JpXE6SwLbHQFgrnMaZC9dRifeeBu-HoEnA5sDifa9Qjp2RjywnfeLzbHYgUQO3u-FA1yUO2WxQpWyPHhf1e6R66DvQne9wdHO-RGfg-HuaDyEdmcTmbxY4hMp-FubgMo-XrZRucPfumfhA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Haemagglutinin+mutations+responsible+for+the+binding+of+H5N1+influenza+A+viruses+to+human-type+receptors&rft.jtitle=Nature+%28London%29&rft.au=Yamada%2C+Shinya&rft.au=Suzuki%2C+Yasuo&rft.au=Suzuki%2C+Takashi&rft.au=Le%2C+Mai+Q.&rft.date=2006-11-16&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=444&rft.issue=7117&rft.spage=378&rft.epage=382&rft_id=info:doi/10.1038%2Fnature05264&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_nature05264 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |