Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population
Viruses, where wrong is right The replication of RNA viruses is associated with a higher mutation rate than is seen in organisms using DNA as their genetic material. This can produce nonviable individuals but also, it has been suggested, some useful variation that could enhance the fitness of virus...
Saved in:
Published in | Nature Vol. 439; no. 7074; pp. 344 - 348 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
19.01.2006
Nature Publishing Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Viruses, where wrong is right
The replication of RNA viruses is associated with a higher mutation rate than is seen in organisms using DNA as their genetic material. This can produce nonviable individuals but also, it has been suggested, some useful variation that could enhance the fitness of virus populations by allowing them to adapt to changing environments encountered during infection. Until now there has been no experimental support for this suggestion, known as the ‘quasispecies’ hypothesis. But now a search for viruses that copy their genome too accurately has provided support for this idea. Poliovirus isolates carrying a ‘super accurate’ RNA polymerase are less varied and less infectious than normal viruses. These results could have implications for the development of antiviral drugs.
An RNA virus population does not consist of a single genotype; rather, it is an ensemble of related sequences, termed quasispecies
1
,
2
,
3
,
4
. Quasispecies arise from rapid genomic evolution powered by the high mutation rate of RNA viral replication
5
,
6
,
7
,
8
. Although a high mutation rate is dangerous for a virus because it results in nonviable individuals, it has been hypothesized that high mutation rates create a ‘cloud’ of potentially beneficial mutations at the population level, which afford the viral quasispecies a greater probability to evolve and adapt to new environments and challenges during infection
4
,
9
,
10
,
11
. Mathematical models predict that viral quasispecies are not simply a collection of diverse mutants but a group of interactive variants, which together contribute to the characteristics of the population
4
,
12
. According to this view, viral populations, rather than individual variants, are the target of evolutionary selection
4
,
12
. Here we test this hypothesis by examining the consequences of limiting genomic diversity on viral populations. We find that poliovirus carrying a high-fidelity polymerase replicates at wild-type levels but generates less genomic diversity and is unable to adapt to adverse growth conditions. In infected animals, the reduced viral diversity leads to loss of neurotropism and an attenuated pathogenic phenotype. Notably, using chemical mutagenesis to expand quasispecies diversity of the high-fidelity virus before infection restores neurotropism and pathogenesis. Analysis of viruses isolated from brain provides direct evidence for complementation between members in the quasispecies, indicating that selection indeed occurs at the population level rather than on individual variants. Our study provides direct evidence for a fundamental prediction of the quasispecies theory and establishes a link between mutation rate, population dynamics and pathogenesis. |
---|---|
AbstractList | An RNA virus population does not consist of a single genotype; rather, it is an ensemble of related sequences, termed quasispecies. Quasispecies arise from rapid genomic evolution powered by the high mutation rate of RNA viral replication. Although a high mutation rate is dangerous for a virus because it results in nonviable individuals, it has been hypothesized that high mutation rates create a 'cloud' of potentially beneficial mutations at the population level, which afford the viral quasispecies a greater probability to evolve and adapt to new environments and challenges during infection. Mathematical models predict that viral quasispecies are not simply a collection of diverse mutants but a group of interactive variants, which together contribute to the characteristics of the population. According to this view, viral populations, rather than individual variants, are the target of evolutionary selection. Here we test this hypothesis by examining the consequences of limiting genomic diversity on viral populations. We find that poliovirus carrying a high-fidelity polymerase replicates at wild-type levels but generates less genomic diversity and is unable to adapt to adverse growth conditions. In infected animals, the reduced viral diversity leads to loss of neurotropism and an attenuated pathogenic phenotype. Notably, using chemical mutagenesis to expand quasispecies diversity of the high-fidelity virus before infection restores neurotropism and pathogenesis. Analysis of viruses isolated from brain provides direct evidence for complementation between members in the quasispecies, indicating that selection indeed occurs at the population level rather than on individual variants. Our study provides direct evidence for a fundamental prediction of the quasispecies theory and establishes a link between mutation rate, population dynamics and pathogenesis. Viruses, where wrong is right The replication of RNA viruses is associated with a higher mutation rate than is seen in organisms using DNA as their genetic material. This can produce nonviable individuals but also, it has been suggested, some useful variation that could enhance the fitness of virus populations by allowing them to adapt to changing environments encountered during infection. Until now there has been no experimental support for this suggestion, known as the ‘quasispecies’ hypothesis. But now a search for viruses that copy their genome too accurately has provided support for this idea. Poliovirus isolates carrying a ‘super accurate’ RNA polymerase are less varied and less infectious than normal viruses. These results could have implications for the development of antiviral drugs. An RNA virus population does not consist of a single genotype; rather, it is an ensemble of related sequences, termed quasispecies 1 , 2 , 3 , 4 . Quasispecies arise from rapid genomic evolution powered by the high mutation rate of RNA viral replication 5 , 6 , 7 , 8 . Although a high mutation rate is dangerous for a virus because it results in nonviable individuals, it has been hypothesized that high mutation rates create a ‘cloud’ of potentially beneficial mutations at the population level, which afford the viral quasispecies a greater probability to evolve and adapt to new environments and challenges during infection 4 , 9 , 10 , 11 . Mathematical models predict that viral quasispecies are not simply a collection of diverse mutants but a group of interactive variants, which together contribute to the characteristics of the population 4 , 12 . According to this view, viral populations, rather than individual variants, are the target of evolutionary selection 4 , 12 . Here we test this hypothesis by examining the consequences of limiting genomic diversity on viral populations. We find that poliovirus carrying a high-fidelity polymerase replicates at wild-type levels but generates less genomic diversity and is unable to adapt to adverse growth conditions. In infected animals, the reduced viral diversity leads to loss of neurotropism and an attenuated pathogenic phenotype. Notably, using chemical mutagenesis to expand quasispecies diversity of the high-fidelity virus before infection restores neurotropism and pathogenesis. Analysis of viruses isolated from brain provides direct evidence for complementation between members in the quasispecies, indicating that selection indeed occurs at the population level rather than on individual variants. Our study provides direct evidence for a fundamental prediction of the quasispecies theory and establishes a link between mutation rate, population dynamics and pathogenesis. An RNA virus population does not consist of a single genotype; rather, it is an ensemble of related sequences, termed quasispecies. Quasispecies arise from rapid genomic evolution powered by the high mutation rate of RNA viral replication. Although a high mutation rate is dangerous for a virus because it results in nonviable individuals, it has been hypothesized that high mutation rates create a 'cloud' of potentially beneficial mutations at the population level, which afford the viral quasispecies a greater probability to evolve and adapt to new environments and challenges during infection. Mathematical models predict that viral quasispecies are not simply a collection of diverse mutants but a group of interactive variants, which together contribute to the characteristics of the population. According to this view, viral populations, rather than individual variants, are the target of evolutionary selection. Here we test this hypothesis by examining the consequences of limiting genomic diversity on viral populations. We find that poliovirus carrying a high-fidelity polymerase replicates at wild-type levels but generates less genomic diversity and is unable to adapt to adverse growth conditions. In infected animals, the reduced viral diversity leads to loss of neurotropism and an attenuated pathogenic phenotype. Notably, using chemical mutagenesis to expand quasispecies diversity of the high-fidelity virus before infection restores neurotropism and pathogenesis. Analysis of viruses isolated from brain provides direct evidence for complementation between members in the quasispecies, indicating that selection indeed occurs at the population level rather than on individual variants. Our study provides direct evidence for a fundamental prediction of the quasispecies theory and establishes a link between mutation rate, population dynamics and pathogenesis.An RNA virus population does not consist of a single genotype; rather, it is an ensemble of related sequences, termed quasispecies. Quasispecies arise from rapid genomic evolution powered by the high mutation rate of RNA viral replication. Although a high mutation rate is dangerous for a virus because it results in nonviable individuals, it has been hypothesized that high mutation rates create a 'cloud' of potentially beneficial mutations at the population level, which afford the viral quasispecies a greater probability to evolve and adapt to new environments and challenges during infection. Mathematical models predict that viral quasispecies are not simply a collection of diverse mutants but a group of interactive variants, which together contribute to the characteristics of the population. According to this view, viral populations, rather than individual variants, are the target of evolutionary selection. Here we test this hypothesis by examining the consequences of limiting genomic diversity on viral populations. We find that poliovirus carrying a high-fidelity polymerase replicates at wild-type levels but generates less genomic diversity and is unable to adapt to adverse growth conditions. In infected animals, the reduced viral diversity leads to loss of neurotropism and an attenuated pathogenic phenotype. Notably, using chemical mutagenesis to expand quasispecies diversity of the high-fidelity virus before infection restores neurotropism and pathogenesis. Analysis of viruses isolated from brain provides direct evidence for complementation between members in the quasispecies, indicating that selection indeed occurs at the population level rather than on individual variants. Our study provides direct evidence for a fundamental prediction of the quasispecies theory and establishes a link between mutation rate, population dynamics and pathogenesis. |
Audience | Academic |
Author | Vignuzzi, Marco Andino, Raul Stone, Jeffrey K. Arnold, Jamie J. Cameron, Craig E. |
Author_xml | – sequence: 1 givenname: Marco surname: Vignuzzi fullname: Vignuzzi, Marco organization: Department of Microbiology and Immunology, University of California – sequence: 2 givenname: Jeffrey K. surname: Stone fullname: Stone, Jeffrey K. organization: Department of Microbiology and Immunology, University of California – sequence: 3 givenname: Jamie J. surname: Arnold fullname: Arnold, Jamie J. organization: Department of Biochemistry and Molecular Biology, Pennsylvania State University – sequence: 4 givenname: Craig E. surname: Cameron fullname: Cameron, Craig E. organization: Department of Biochemistry and Molecular Biology, Pennsylvania State University – sequence: 5 givenname: Raul surname: Andino fullname: Andino, Raul email: andino@itsa.ucsf.edu organization: Department of Microbiology and Immunology, University of California |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17391904$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16327776$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0t1r2zAQAHAxOtY029Pehxl0Y2zuJFuW5MdS9lEojH09m7N8SVQcyZXksv73U5aMJCVb0YPl43cHursTcmSdRUKeM3rGaKneW4ijR8pLpR6RCeNS5FwoeUQmlBYqp6oUx-QkhGtKacUkf0KOmSgLKaWYEPw6QjBhQG0wZJ25RR9MvMs6jOiXxqbgAHHh5piuJmRx4d04X2TauQE9xJSQGZss6GicDekng-zWeOizwQ1jD6vwU_J4Bn3AZ5vvlPz8-OHHxef86suny4vzq1xLJmLOVdnyquQtZwJAtIgF1RwAsMaqYlBI2moteKcZ6BaKDhVrayZYDUwJrcopeb2uO3h3M2KIzdIEjX0PFt0YGslLTrko6iRf_V9SoVRRPQwLRRWltXgQMklryWuZ4Mt78NqN3qa-NAXlFROVYAnlazSHHhtjZy6mFq-mkDqb5j8zKXzOVMWFoMVO0T2vB3PT7KKzAyidDpdGH6z6Zi8hmYi_4hzGEJrL79_27YvNs8Z2iV0zeLMEf9f83bUETjcAgoZ-5sFqE7ZOljWr0xpPydu1096F4HG2JbRZbXyzs_FJs3tam_hn6dLbTP-PnHfrnJAq2zn67QQO8d9XwhJG |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1073_pnas_2006299117 crossref_primary_10_1371_journal_pbio_2006459 crossref_primary_10_1002_hep_21623 crossref_primary_10_1016_j_coviro_2011_09_001 crossref_primary_10_1016_j_chom_2015_09_009 crossref_primary_10_1371_journal_ppat_1000658 crossref_primary_10_1371_journal_pcbi_1001030 crossref_primary_10_1186_s12864_020_06801_w crossref_primary_10_1016_j_virol_2012_02_018 crossref_primary_10_2217_17460794_3_6_553 crossref_primary_10_1371_journal_ppat_1006194 crossref_primary_10_1534_genetics_114_172312 crossref_primary_10_1093_nar_gkq655 crossref_primary_10_1371_journal_pone_0209292 crossref_primary_10_1016_j_coviro_2011_09_012 crossref_primary_10_1371_journal_ppat_1000412 crossref_primary_10_1371_journal_ppat_1000896 crossref_primary_10_1128_JVI_02139_12 crossref_primary_10_1016_j_watres_2018_12_014 crossref_primary_10_1371_journal_ppat_1010689 crossref_primary_10_1128_JVI_00245_11 crossref_primary_10_3390_v14051076 crossref_primary_10_1016_j_virusres_2017_01_026 crossref_primary_10_1186_s13062_016_0128_3 crossref_primary_10_1016_j_str_2012_06_012 crossref_primary_10_1074_jbc_M113_484428 crossref_primary_10_1128_JVI_00576_19 crossref_primary_10_1016_j_jaci_2010_04_010 crossref_primary_10_1128_JVI_01296_07 crossref_primary_10_1093_bioinformatics_btv101 crossref_primary_10_1371_journal_pone_0007876 crossref_primary_10_1016_j_vetmic_2009_11_021 crossref_primary_10_1371_journal_pcbi_1000187 crossref_primary_10_3390_ijms23158302 crossref_primary_10_1016_j_coviro_2017_05_001 crossref_primary_10_1038_emi_2017_2 crossref_primary_10_1038_nsmb_1540 crossref_primary_10_1371_journal_pgen_0030093 crossref_primary_10_3390_ijms21239117 crossref_primary_10_1093_femsle_fnab092 crossref_primary_10_1021_bi100833r crossref_primary_10_1179_2047773214Y_0000000145 crossref_primary_10_1016_j_virusres_2019_03_010 crossref_primary_10_1074_jbc_C112_401471 crossref_primary_10_1128_mBio_01114_16 crossref_primary_10_1016_j_jmb_2006_06_077 crossref_primary_10_1016_j_virusres_2019_03_013 crossref_primary_10_1371_journal_ppat_1009433 crossref_primary_10_1016_j_aquaculture_2021_737318 crossref_primary_10_1007_s10930_022_10073_6 crossref_primary_10_3390_pathogens9090721 crossref_primary_10_12688_wellcomeopenres_13538_2 crossref_primary_10_12688_wellcomeopenres_13538_1 crossref_primary_10_1371_journal_pone_0096070 crossref_primary_10_7554_eLife_26437 crossref_primary_10_1038_srep38831 crossref_primary_10_1128_JVI_02149_13 crossref_primary_10_1146_annurev_ecolsys_38_091206_095637 crossref_primary_10_1128_JVI_00289_14 crossref_primary_10_1371_journal_pbio_1002251 crossref_primary_10_2217_fvl_12_19 crossref_primary_10_1137_19M1282234 crossref_primary_10_1007_s12250_019_00169_2 crossref_primary_10_3389_fmicb_2021_639655 crossref_primary_10_1128_mBio_01503_17 crossref_primary_10_1371_journal_pbio_3001687 crossref_primary_10_1021_cr2004844 crossref_primary_10_1016_j_vaccine_2008_01_006 crossref_primary_10_3389_fmicb_2023_1182695 crossref_primary_10_3934_mbe_2023710 crossref_primary_10_1371_journal_pone_0142473 crossref_primary_10_2217_17460794_2_1_35 crossref_primary_10_3390_v6103991 crossref_primary_10_1128_JVI_00028_15 crossref_primary_10_1371_journal_pone_0074027 crossref_primary_10_1007_s00705_011_1199_1 crossref_primary_10_1128_JVI_00804_14 crossref_primary_10_3390_vaccines11101532 crossref_primary_10_3390_v13122508 crossref_primary_10_1016_j_virol_2008_08_030 crossref_primary_10_1086_590958 crossref_primary_10_1016_j_meegid_2010_12_007 crossref_primary_10_1128_mmbr_00086_21 crossref_primary_10_1016_j_vaccine_2019_10_080 crossref_primary_10_1016_j_jviromet_2019_01_013 crossref_primary_10_1128_JVI_00999_07 crossref_primary_10_1128_JVI_01606_06 crossref_primary_10_1080_03079457_2024_2398030 crossref_primary_10_1016_j_virusres_2019_03_003 crossref_primary_10_1128_jvi_00657_24 crossref_primary_10_1103_PhysRevLett_100_038106 crossref_primary_10_1128_JVI_02150_17 crossref_primary_10_1016_j_jmb_2006_05_027 crossref_primary_10_2149_tmh_2011_S02 crossref_primary_10_1016_j_virol_2012_11_020 crossref_primary_10_2217_fvl_10_61 crossref_primary_10_1016_j_jip_2009_06_014 crossref_primary_10_1371_journal_ppat_1006136 crossref_primary_10_1016_j_jip_2009_06_012 crossref_primary_10_1016_j_virusres_2011_03_009 crossref_primary_10_1002_jmv_21381 crossref_primary_10_1128_JVI_01606_18 crossref_primary_10_1186_s12985_016_0658_4 crossref_primary_10_3389_fmicb_2020_00540 crossref_primary_10_1371_journal_pmed_0030263 crossref_primary_10_1016_j_semcancer_2010_10_005 crossref_primary_10_1038_s41579_020_00449_9 crossref_primary_10_1099_vir_0_026351_0 crossref_primary_10_1007_s42974_020_00006_7 crossref_primary_10_7554_eLife_03753 crossref_primary_10_1098_rsta_2020_0422 crossref_primary_10_3390_math8010117 crossref_primary_10_1038_nrmicro2030 crossref_primary_10_1371_journal_pbio_2004444 crossref_primary_10_1128_mBio_01360_14 crossref_primary_10_4254_wjh_v7_i6_831 crossref_primary_10_1073_pnas_1709166114 crossref_primary_10_1111_mec_13321 crossref_primary_10_1128_JVI_01028_07 crossref_primary_10_1371_journal_pntd_0004052 crossref_primary_10_1128_JVI_00716_11 crossref_primary_10_1038_ncomms5794 crossref_primary_10_1016_j_virol_2012_01_036 crossref_primary_10_1186_s13059_016_0907_2 crossref_primary_10_1128_mbio_02388_23 crossref_primary_10_1016_j_jmb_2023_167973 crossref_primary_10_1093_ve_veac039 crossref_primary_10_1016_j_virol_2016_07_007 crossref_primary_10_1016_j_vaccine_2015_08_055 crossref_primary_10_1016_j_virusres_2013_06_019 crossref_primary_10_1016_j_jhep_2015_08_010 crossref_primary_10_1128_JVI_03594_13 crossref_primary_10_1016_j_biologicals_2018_03_004 crossref_primary_10_1016_j_meegid_2016_03_002 crossref_primary_10_1016_j_isci_2023_107468 crossref_primary_10_1016_j_physa_2017_01_026 crossref_primary_10_1186_1471_2148_10_137 crossref_primary_10_1002_jmv_29209 crossref_primary_10_1016_j_jtbi_2009_07_034 crossref_primary_10_1128_JVI_02057_18 crossref_primary_10_3390_insects14020103 crossref_primary_10_1093_molbev_msz022 crossref_primary_10_3389_fmolb_2023_1141534 crossref_primary_10_1128_JVI_01641_14 crossref_primary_10_3389_fmicb_2018_01753 crossref_primary_10_3347_kjp_2010_48_2_113 crossref_primary_10_1099_vir_0_036988_0 crossref_primary_10_2807_1560_7917_ES_2016_21_19_30226 crossref_primary_10_1098_rspb_2007_1228 crossref_primary_10_3390_v4112786 crossref_primary_10_1098_rsos_202219 crossref_primary_10_1016_j_sbi_2009_10_012 crossref_primary_10_1146_annurev_micro_091313_103416 crossref_primary_10_1371_journal_ppat_1005009 crossref_primary_10_1093_infdis_jir821 crossref_primary_10_3390_v17020211 crossref_primary_10_1128_JVI_00081_17 crossref_primary_10_3389_fmicb_2021_694897 crossref_primary_10_1128_JVI_00979_14 crossref_primary_10_1373_clinchem_2018_292979 crossref_primary_10_1371_journal_pntd_0012728 crossref_primary_10_1128_mBio_01871_18 crossref_primary_10_1093_ve_veac007 crossref_primary_10_1093_ve_veac008 crossref_primary_10_1002_jmv_21991 crossref_primary_10_1177_03000605221086433 crossref_primary_10_1016_j_virusres_2017_01_006 crossref_primary_10_1637_10677_092413_Reg crossref_primary_10_1186_s12977_018_0401_x crossref_primary_10_1093_ve_veac001 crossref_primary_10_1016_j_vaccine_2015_08_091 crossref_primary_10_1186_s12862_017_0920_4 crossref_primary_10_1128_JVI_01257_06 crossref_primary_10_2217_fvl_14_41 crossref_primary_10_2217_fvl_14_47 crossref_primary_10_1021_acssynbio_3c00020 crossref_primary_10_1128_JVI_00736_12 crossref_primary_10_1586_14787210_6_4_463 crossref_primary_10_3390_v13010037 crossref_primary_10_1002_rmv_2002 crossref_primary_10_1016_j_virusres_2016_09_016 crossref_primary_10_3390_v10110600 crossref_primary_10_15212_ZOONOSES_2023_0032 crossref_primary_10_1146_annurev_genom_083115_022628 crossref_primary_10_1371_journal_pntd_0010763 crossref_primary_10_3390_applmicrobiol2020024 crossref_primary_10_1016_j_virusres_2019_05_005 crossref_primary_10_1038_s41541_021_00340_5 crossref_primary_10_1128_AAC_01056_07 crossref_primary_10_1128_JVI_00071_10 crossref_primary_10_3390_v5030834 crossref_primary_10_1371_journal_pone_0131972 crossref_primary_10_1016_j_physa_2019_123292 crossref_primary_10_1016_j_biocel_2008_03_019 crossref_primary_10_2139_ssrn_3533279 crossref_primary_10_1371_journal_pntd_0007343 crossref_primary_10_1038_s43856_021_00034_y crossref_primary_10_1371_journal_ppat_1007863 crossref_primary_10_1371_journal_ppat_1008711 crossref_primary_10_1016_j_coviro_2011_07_008 crossref_primary_10_1128_mSphere_00291_19 crossref_primary_10_1016_j_antiviral_2014_02_006 crossref_primary_10_3389_fgene_2017_00125 crossref_primary_10_3390_v7072788 crossref_primary_10_1016_j_virol_2008_05_016 crossref_primary_10_1128_JVI_00897_21 crossref_primary_10_1128_JVI_05712_11 crossref_primary_10_1038_nm1726 crossref_primary_10_1016_j_antiviral_2011_03_187 crossref_primary_10_1186_1471_2148_13_11 crossref_primary_10_1098_rstb_2010_0076 crossref_primary_10_3390_v3010012 crossref_primary_10_1016_S1684_1182_10_60056_4 crossref_primary_10_1038_nature12861 crossref_primary_10_1128_JVI_01553_15 crossref_primary_10_1371_journal_pone_0027805 crossref_primary_10_1093_ve_vey004 crossref_primary_10_1177_0300985814522077 crossref_primary_10_1093_ve_vey001 crossref_primary_10_3390_v13081661 crossref_primary_10_1093_bioinformatics_btr520 crossref_primary_10_1016_j_celrep_2017_06_021 crossref_primary_10_1016_j_coviro_2012_07_005 crossref_primary_10_4137_BBI_S13076 crossref_primary_10_1099_vir_0_82606_0 crossref_primary_10_1128_JVI_02420_09 crossref_primary_10_1128_JVI_01918_10 crossref_primary_10_1128_JVI_01060_21 crossref_primary_10_1007_s00018_016_2299_6 crossref_primary_10_1099_vir_0_049171_0 crossref_primary_10_1016_j_tibtech_2020_04_010 crossref_primary_10_1128_JVI_00707_12 crossref_primary_10_3390_v15020587 crossref_primary_10_3390_microorganisms8010133 crossref_primary_10_1093_nar_gkv630 crossref_primary_10_1016_j_virol_2007_10_006 crossref_primary_10_3390_microorganisms12112191 crossref_primary_10_1093_ve_veae097 crossref_primary_10_1371_journal_pone_0039941 crossref_primary_10_1099_jgv_0_000231 crossref_primary_10_1371_journal_ppat_1000082 crossref_primary_10_7554_eLife_13974 crossref_primary_10_1080_22221751_2021_1906754 crossref_primary_10_3389_fcimb_2020_575613 crossref_primary_10_1021_ct5006449 crossref_primary_10_3390_v13071407 crossref_primary_10_3390_vaccines11030629 crossref_primary_10_1016_j_ijid_2020_10_041 crossref_primary_10_1371_journal_ppat_1001163 crossref_primary_10_1093_synbio_ysab018 crossref_primary_10_1146_annurev_ecolsys_110308_120248 crossref_primary_10_1586_14760584_2016_1158650 crossref_primary_10_1637_10315_080212_Reg_1 crossref_primary_10_1637_10609_070613_Reg_1 crossref_primary_10_3389_fmicb_2019_01813 crossref_primary_10_1093_nargab_lqae152 crossref_primary_10_1186_1742_4690_5_43 crossref_primary_10_1128_JVI_01062_17 crossref_primary_10_3390_v16050710 crossref_primary_10_1016_j_virusres_2007_05_006 crossref_primary_10_1371_journal_ppat_1003565 crossref_primary_10_1073_pnas_1721061115 crossref_primary_10_1111_jeb_14203 crossref_primary_10_1128_JVI_01805_17 crossref_primary_10_3389_fmicb_2022_824217 crossref_primary_10_1177_2040206620976786 crossref_primary_10_1111_j_1440_1843_2010_01897_x crossref_primary_10_1099_mgen_0_000678 crossref_primary_10_1093_ve_vew008 crossref_primary_10_1128_JVI_03265_14 crossref_primary_10_1371_journal_pgen_1008271 crossref_primary_10_1002_jmv_20958 crossref_primary_10_1086_593310 crossref_primary_10_1186_1471_2105_10_360 crossref_primary_10_1128_JVI_03056_12 crossref_primary_10_1111_jgh_12109 crossref_primary_10_1128_JVI_00833_20 crossref_primary_10_1371_journal_pone_0210847 crossref_primary_10_1146_annurev_virology_010320_061642 crossref_primary_10_1128_spectrum_02452_21 crossref_primary_10_1016_j_celrep_2019_09_014 crossref_primary_10_1111_j_1420_9101_2007_01418_x crossref_primary_10_3390_v15030599 crossref_primary_10_1126_scitranslmed_abe2555 crossref_primary_10_1261_rna_080280_124 crossref_primary_10_3390_v12050546 crossref_primary_10_3390_v3081460 crossref_primary_10_3389_fgene_2021_754445 crossref_primary_10_1016_j_jmb_2008_04_024 crossref_primary_10_1080_22221751_2021_1884003 crossref_primary_10_1371_journal_ppat_1004874 crossref_primary_10_1371_journal_pgen_1008017 crossref_primary_10_1099_jgv_0_000682 crossref_primary_10_3389_fmicb_2020_600254 crossref_primary_10_1093_bioinformatics_btt768 crossref_primary_10_1186_s13059_018_1618_7 crossref_primary_10_1128_mBio_01956_15 crossref_primary_10_4155_fmc_09_26 crossref_primary_10_1038_s41579_018_0005_4 crossref_primary_10_1016_j_coviro_2016_09_007 crossref_primary_10_1016_j_coviro_2014_09_004 crossref_primary_10_1016_j_celrep_2015_01_031 crossref_primary_10_1016_j_virol_2012_08_028 crossref_primary_10_1126_sciadv_ado1693 crossref_primary_10_1371_journal_ppat_1002685 crossref_primary_10_1038_s41467_018_04203_x crossref_primary_10_1016_j_meegid_2009_07_011 crossref_primary_10_1007_s11033_023_08928_x crossref_primary_10_1099_vir_0_2008_002055_0 crossref_primary_10_1016_j_virusres_2010_12_020 crossref_primary_10_2217_17460794_2_2_183 crossref_primary_10_1038_s41396_022_01194_y crossref_primary_10_1038_s41421_021_00282_1 crossref_primary_10_1093_genetics_173_1_1 crossref_primary_10_1016_j_virol_2018_01_030 crossref_primary_10_1128_JVI_01801_15 crossref_primary_10_1128_spectrum_02921_22 crossref_primary_10_1128_JVI_01860_14 crossref_primary_10_1371_journal_ppat_1003760 crossref_primary_10_3390_v11020108 crossref_primary_10_1038_s43705_023_00227_7 crossref_primary_10_1007_s00216_021_03806_6 crossref_primary_10_1016_j_bbamcr_2011_11_007 crossref_primary_10_1371_journal_ppat_1004838 crossref_primary_10_1016_j_coviro_2017_03_001 crossref_primary_10_1038_srep17123 crossref_primary_10_1186_1471_2164_13_475 crossref_primary_10_14302_issn_2692_1537_ijcv_22_4117 crossref_primary_10_1016_j_celrep_2018_12_095 crossref_primary_10_1038_ncomms9571 crossref_primary_10_1128_JVI_06843_11 crossref_primary_10_1128_JVI_02590_12 crossref_primary_10_1007_s12250_021_00396_6 crossref_primary_10_1016_j_coviro_2014_09_017 crossref_primary_10_1016_j_coviro_2017_03_013 crossref_primary_10_7554_eLife_66857 crossref_primary_10_1186_s12929_019_0547_4 crossref_primary_10_1371_journal_ppat_1004825 crossref_primary_10_1038_emi_2013_5 crossref_primary_10_1098_rstb_2014_0291 crossref_primary_10_1186_1471_2164_7_117 crossref_primary_10_1371_journal_pcbi_1002097 crossref_primary_10_1016_j_virusres_2019_02_015 crossref_primary_10_3390_v12111305 crossref_primary_10_1093_nar_gkv1098 crossref_primary_10_1016_j_virol_2009_01_012 crossref_primary_10_1128_JVI_01590_19 crossref_primary_10_1016_j_meegid_2014_11_026 crossref_primary_10_1128_JVI_01297_08 crossref_primary_10_1371_journal_ppat_1011352 crossref_primary_10_1371_journal_pone_0009986 crossref_primary_10_1016_j_virusres_2007_07_001 crossref_primary_10_1080_14760584_2016_1184575 crossref_primary_10_1016_j_virusres_2007_07_008 crossref_primary_10_1371_journal_ppat_1004817 crossref_primary_10_1101_cshperspect_a034090 crossref_primary_10_1073_pnas_0600834103 crossref_primary_10_1074_jbc_M117_775643 crossref_primary_10_1099_jgv_0_001142 crossref_primary_10_1099_jgv_0_000298 crossref_primary_10_1128_JVI_02253_07 crossref_primary_10_1239_jap_1346955342 crossref_primary_10_3390_v5010241 crossref_primary_10_1128_JVI_00710_09 crossref_primary_10_3201_eid2707_210315 crossref_primary_10_1016_j_coviro_2014_08_006 crossref_primary_10_1017_S0950268821000248 crossref_primary_10_3390_v16050797 crossref_primary_10_1146_annurev_virology_031413_085507 crossref_primary_10_1534_genetics_118_301556 crossref_primary_10_1016_j_meegid_2020_104556 crossref_primary_10_3390_v14061267 crossref_primary_10_3390_ijms20184657 crossref_primary_10_1186_s12917_015_0330_z crossref_primary_10_1586_14737159_7_4_419 crossref_primary_10_1099_jgv_0_001393 crossref_primary_10_1016_j_cell_2018_06_013 crossref_primary_10_1086_713913 crossref_primary_10_1002_jmv_27744 crossref_primary_10_1128_JVI_02494_14 crossref_primary_10_1016_j_virol_2016_11_009 crossref_primary_10_1016_j_chaos_2020_110018 crossref_primary_10_1590_0103_6440202104144 crossref_primary_10_1016_j_chom_2014_09_020 crossref_primary_10_1128_JVI_00825_08 crossref_primary_10_1016_j_virol_2012_07_004 crossref_primary_10_1016_j_cbpa_2014_05_008 crossref_primary_10_3389_fmicb_2022_839513 crossref_primary_10_1128_JVI_00032_09 crossref_primary_10_1128_JVI_02020_08 crossref_primary_10_1099_vir_0_004838_0 crossref_primary_10_1371_journal_ppat_1003703 crossref_primary_10_1038_s41598_020_62673_w crossref_primary_10_1016_j_chom_2008_08_003 crossref_primary_10_1093_ve_vey028 crossref_primary_10_1371_journal_pone_0074575 crossref_primary_10_1002_jmv_70107 crossref_primary_10_1101_cshperspect_a038422 crossref_primary_10_1371_journal_pone_0032714 crossref_primary_10_1016_j_cyto_2019_154895 crossref_primary_10_1016_j_vetmic_2018_02_006 crossref_primary_10_1016_j_virol_2015_03_022 crossref_primary_10_3389_fcimb_2019_00283 crossref_primary_10_1371_journal_pone_0102866 crossref_primary_10_1099_jgv_0_000285 crossref_primary_10_1186_1742_4690_11_22 crossref_primary_10_1128_JVI_03378_13 crossref_primary_10_1111_jpy_12427 crossref_primary_10_1128_Spectrum_00261_21 crossref_primary_10_1016_j_virol_2024_110366 crossref_primary_10_3390_v16111772 crossref_primary_10_1017_S0021900200009621 crossref_primary_10_1038_nm0208_120 crossref_primary_10_3390_v10060320 crossref_primary_10_3390_v16030337 crossref_primary_10_3389_fgene_2021_716623 crossref_primary_10_1099_vir_0_82065_0 crossref_primary_10_1038_s41467_020_20075_6 crossref_primary_10_1128_JVI_00062_06 crossref_primary_10_3390_v10070368 crossref_primary_10_1021_jm400653j crossref_primary_10_1128_JVI_01594_06 crossref_primary_10_1038_s41598_019_47549_y crossref_primary_10_1007_s13194_022_00450_4 crossref_primary_10_1016_j_imu_2021_100798 crossref_primary_10_1073_pnas_1007626107 crossref_primary_10_1051_vetres_2010010 crossref_primary_10_1128_JVI_01891_12 crossref_primary_10_1016_j_jmgm_2017_09_008 crossref_primary_10_1534_genetics_113_154963 crossref_primary_10_1016_j_virusres_2006_08_004 crossref_primary_10_1177_117693430600200009 crossref_primary_10_1128_JVI_01569_20 crossref_primary_10_1007_s00705_014_2126_z crossref_primary_10_1093_genetics_iyac127 crossref_primary_10_2217_fvl_12_114 crossref_primary_10_1128_JVI_02083_19 crossref_primary_10_1007_s00705_010_0778_x crossref_primary_10_3390_v11040380 crossref_primary_10_1073_pnas_0909787107 crossref_primary_10_1099_vir_0_83662_0 crossref_primary_10_1038_srep45228 crossref_primary_10_1371_journal_pone_0189250 crossref_primary_10_3934_microbiol_2021010 crossref_primary_10_1016_j_virusres_2007_02_001 crossref_primary_10_3390_v12060651 crossref_primary_10_1016_j_cimid_2016_05_007 crossref_primary_10_1074_jbc_M112_424150 crossref_primary_10_1016_j_virep_2014_11_001 crossref_primary_10_3390_v11090859 crossref_primary_10_4161_rna_8_2_15013 crossref_primary_10_1128_mBio_02156_19 crossref_primary_10_1080_21505594_2024_2401985 crossref_primary_10_1128_JVI_01856_19 crossref_primary_10_1098_rsfs_2020_0063 crossref_primary_10_1016_j_jcv_2020_104585 crossref_primary_10_1016_j_cell_2015_01_032 crossref_primary_10_3390_v12060660 crossref_primary_10_1007_s00018_024_05450_6 crossref_primary_10_2139_ssrn_3544428 crossref_primary_10_1111_jam_12656 crossref_primary_10_1016_j_virol_2016_03_017 crossref_primary_10_1093_gbe_evx075 crossref_primary_10_7554_eLife_03679 crossref_primary_10_1099_vir_0_011304_0 crossref_primary_10_1128_JVI_00314_18 crossref_primary_10_1128_mBio_00731_20 crossref_primary_10_1371_journal_pbio_3000003 crossref_primary_10_1074_jbc_M114_584466 crossref_primary_10_1073_pnas_2317851121 crossref_primary_10_1146_annurev_animal_022513_114209 crossref_primary_10_1371_journal_pone_0005554 crossref_primary_10_1371_journal_pcbi_1003515 crossref_primary_10_1016_j_virol_2008_10_031 crossref_primary_10_1128_JVI_01605_20 crossref_primary_10_1016_j_tim_2020_05_012 crossref_primary_10_1016_j_vaccine_2012_04_054 crossref_primary_10_1038_s41598_024_68760_6 crossref_primary_10_1016_j_antiviral_2013_03_007 crossref_primary_10_1371_journal_pcbi_1011173 crossref_primary_10_1016_j_coviro_2016_11_006 crossref_primary_10_1016_j_tibs_2008_10_009 crossref_primary_10_1038_s41541_020_00241_z crossref_primary_10_3390_v16030352 crossref_primary_10_1371_journal_pone_0032550 crossref_primary_10_2217_fmb_09_8 crossref_primary_10_1038_nchembio_441 crossref_primary_10_31631_2073_3046_2018_17_3_4_18 crossref_primary_10_1146_annurev_virology_100114_055135 crossref_primary_10_1016_j_vetmic_2021_109128 crossref_primary_10_1038_srep20310 crossref_primary_10_3389_fcimb_2022_888804 crossref_primary_10_1128_MMBR_05023_11 crossref_primary_10_1016_j_molimm_2007_12_018 crossref_primary_10_1051_apido_2008051 crossref_primary_10_1186_s12929_024_01116_4 crossref_primary_10_1016_j_coviro_2012_09_008 crossref_primary_10_1016_j_virusres_2009_08_012 crossref_primary_10_1016_j_virol_2010_12_014 crossref_primary_10_3390_genes12111731 crossref_primary_10_1371_journal_ppat_1008428 crossref_primary_10_1128_JVI_01119_20 crossref_primary_10_1038_mt_2008_184 crossref_primary_10_1038_nrmicro3003 crossref_primary_10_3201_eid3002_230122 crossref_primary_10_1371_journal_ppat_1007561 crossref_primary_10_3390_pathogens9100789 crossref_primary_10_1098_rspb_2009_0064 crossref_primary_10_1128_mSphere_00279_16 crossref_primary_10_1371_journal_pone_0011186 crossref_primary_10_1007_s12275_019_9429_4 crossref_primary_10_1016_j_cell_2018_10_056 crossref_primary_10_3390_vetsci8110273 crossref_primary_10_1080_1040841X_2017_1329277 crossref_primary_10_1093_molbev_msn099 crossref_primary_10_1128_mSphereDirect_00552_17 crossref_primary_10_2140_memocs_2024_12_359 crossref_primary_10_1186_1743_422X_8_402 crossref_primary_10_1016_j_virol_2015_06_006 crossref_primary_10_1094_PHYTO_07_19_0247_FI crossref_primary_10_1016_j_virol_2015_09_019 crossref_primary_10_3390_v11100932 crossref_primary_10_1016_j_virusres_2011_09_018 crossref_primary_10_1111_imr_12688 crossref_primary_10_1097_QAI_0b013e31803104c0 crossref_primary_10_1186_s12985_020_01473_0 crossref_primary_10_1038_nbt_1635 crossref_primary_10_3389_fcimb_2021_728415 crossref_primary_10_3390_v12080893 crossref_primary_10_1371_journal_ppat_1003193 crossref_primary_10_1016_j_jmb_2011_04_078 crossref_primary_10_3390_v13112174 crossref_primary_10_1021_acs_biochem_9b00497 crossref_primary_10_3390_v13091882 crossref_primary_10_3390_v13050847 crossref_primary_10_1128_JVI_00110_15 crossref_primary_10_1186_1743_422X_9_219 crossref_primary_10_4161_cib_3_4_11658 crossref_primary_10_7883_yoken_JJID_2016_357 crossref_primary_10_1371_journal_pone_0024466 crossref_primary_10_3390_math10010096 crossref_primary_10_1080_17513758_2010_544766 crossref_primary_10_1099_vir_0_020818_0 crossref_primary_10_1016_j_meegid_2015_10_016 crossref_primary_10_1098_rsif_2012_0160 crossref_primary_10_1038_srep09163 crossref_primary_10_1016_j_chom_2020_04_003 crossref_primary_10_1016_j_jviromet_2007_02_015 crossref_primary_10_1080_14787210_2021_1851194 crossref_primary_10_3390_v2122594 crossref_primary_10_2217_fvl_2018_0207 crossref_primary_10_3390_microorganisms12051011 crossref_primary_10_1128_mBio_00745_21 crossref_primary_10_3389_fgene_2017_00219 crossref_primary_10_1016_j_coviro_2021_06_002 crossref_primary_10_1128_Spectrum_00256_21 crossref_primary_10_1186_s12864_021_08067_2 crossref_primary_10_1016_j_jmb_2011_01_026 crossref_primary_10_1093_bioinformatics_btab015 crossref_primary_10_1098_rsta_2010_0274 crossref_primary_10_3390_ijms242417185 crossref_primary_10_1074_jbc_M116_750638 crossref_primary_10_1111_jfd_13352 crossref_primary_10_3390_ijms25094863 crossref_primary_10_1128_JVI_01164_17 crossref_primary_10_1261_rna_1051208 crossref_primary_10_1016_j_virol_2007_03_018 crossref_primary_10_1371_journal_pcbi_1002851 crossref_primary_10_1371_journal_pone_0015967 crossref_primary_10_3389_fmicb_2020_01579 crossref_primary_10_1016_j_pt_2009_11_009 crossref_primary_10_1126_science_aan8626 crossref_primary_10_1371_journal_ppat_1008608 crossref_primary_10_1073_pnas_1204022109 crossref_primary_10_1016_j_jinf_2017_04_012 crossref_primary_10_1016_j_virusres_2007_04_010 crossref_primary_10_1128_JVI_01515_21 crossref_primary_10_1038_nature08898 crossref_primary_10_3390_v11070664 crossref_primary_10_1128_JVI_01119_18 crossref_primary_10_1128_JCM_03338_13 crossref_primary_10_7554_eLife_61921 crossref_primary_10_1016_j_meegid_2017_06_004 crossref_primary_10_1051_mmnp_20127508 crossref_primary_10_3390_biology6010014 crossref_primary_10_1128_JVI_01246_20 crossref_primary_10_1128_MMBR_00067_17 crossref_primary_10_1016_j_jviromet_2014_12_003 crossref_primary_10_1111_risa_12022 crossref_primary_10_3390_v12121423 crossref_primary_10_1016_S0140_6736_08_60597_8 crossref_primary_10_1371_journal_ppat_1007610 crossref_primary_10_3390_v10100543 crossref_primary_10_1371_journal_pone_0081571 crossref_primary_10_1016_S1473_3099_18_30288_3 crossref_primary_10_1128_JVI_00834_19 crossref_primary_10_1128_JVI_01370_16 crossref_primary_10_1186_s12864_015_1284_z crossref_primary_10_1128_JVI_03035_13 crossref_primary_10_1371_journal_ppat_1001072 crossref_primary_10_1093_ve_vex035 crossref_primary_10_1073_pnas_2118590119 crossref_primary_10_1002_jmv_27416 crossref_primary_10_1128_JVI_00033_09 crossref_primary_10_1016_j_jconrel_2015_04_001 crossref_primary_10_1098_rsob_200348 crossref_primary_10_1093_ve_vex043 crossref_primary_10_1099_vir_0_045088_0 crossref_primary_10_1128_JVI_00950_09 crossref_primary_10_1128_JVI_03539_13 crossref_primary_10_4303_jem_235553 crossref_primary_10_1111_nyas_12565 crossref_primary_10_1101_gad_1505307 crossref_primary_10_1016_j_celrep_2016_06_076 crossref_primary_10_1146_annurev_virology_100422_010336 crossref_primary_10_1128_JVI_01692_07 crossref_primary_10_1016_j_pt_2012_06_004 crossref_primary_10_1371_journal_pone_0172206 crossref_primary_10_2217_17460794_1_3_255 crossref_primary_10_1093_ve_vex011 crossref_primary_10_1517_14712598_8_10_1455 crossref_primary_10_1016_j_virol_2006_01_035 crossref_primary_10_1128_JVI_00605_11 crossref_primary_10_1371_journal_pone_0013976 crossref_primary_10_1038_s41564_019_0547_x crossref_primary_10_1016_j_chom_2018_03_012 crossref_primary_10_1186_s13059_021_02328_9 crossref_primary_10_1099_jgv_0_001693 crossref_primary_10_3390_v14030600 crossref_primary_10_1038_s41586_021_04116_8 crossref_primary_10_1093_nar_gky848 crossref_primary_10_1128_JVI_01932_17 crossref_primary_10_1016_j_jviromet_2024_115107 crossref_primary_10_1128_jvi_01162_23 crossref_primary_10_1038_s41598_021_95771_4 crossref_primary_10_1016_j_virol_2006_10_029 crossref_primary_10_1371_journal_ppat_1002122 crossref_primary_10_1371_journal_ppat_1006961 crossref_primary_10_1016_j_chom_2013_08_007 crossref_primary_10_5812_jamm_96149 crossref_primary_10_1038_nm_2972 crossref_primary_10_1016_j_virol_2008_03_008 crossref_primary_10_1128_JVI_01394_13 crossref_primary_10_1002_jmv_28548 crossref_primary_10_1128_JVI_01073_16 crossref_primary_10_1128_mBio_01146_14 crossref_primary_10_1038_srep39265 crossref_primary_10_1002_ece3_1850 crossref_primary_10_3390_v7102894 crossref_primary_10_1038_s41598_017_14285_0 crossref_primary_10_1128_JVI_01254_10 crossref_primary_10_1002_jobm_202300080 crossref_primary_10_1016_j_tree_2007_11_010 crossref_primary_10_3390_ijms23168876 crossref_primary_10_1007_s10340_020_01322_7 crossref_primary_10_1186_1471_2148_8_207 crossref_primary_10_1073_pnas_0906193106 crossref_primary_10_1073_pnas_1111650108 crossref_primary_10_1007_s11105_019_01148_3 crossref_primary_10_1111_j_1558_5646_2011_01433_x crossref_primary_10_3390_v7102868 crossref_primary_10_1038_s41541_021_00318_3 crossref_primary_10_1080_22221751_2019_1694394 crossref_primary_10_1016_j_cell_2006_02_003 crossref_primary_10_1086_588077 crossref_primary_10_1007_s11274_021_03048_9 crossref_primary_10_1016_j_jmb_2010_02_005 crossref_primary_10_1007_s10489_021_02193_w crossref_primary_10_1099_jgv_0_001400 crossref_primary_10_1099_jgv_0_000316 crossref_primary_10_1371_journal_ppat_1001005 crossref_primary_10_1016_j_antiviral_2013_07_008 crossref_primary_10_1039_C7IB00082K crossref_primary_10_1016_j_jhepr_2021_100254 crossref_primary_10_1128_JVI_01773_05 crossref_primary_10_1128_JVI_00321_07 crossref_primary_10_1128_mBio_00119_16 crossref_primary_10_1128_JVI_01217_10 crossref_primary_10_1099_vir_0_030452_0 crossref_primary_10_1002_jmv_24780 crossref_primary_10_1371_journal_pone_0083361 crossref_primary_10_1111_j_1365_2761_2012_01404_x crossref_primary_10_4236_aim_2014_416132 crossref_primary_10_1016_j_virol_2011_06_016 crossref_primary_10_1016_j_virol_2016_04_023 crossref_primary_10_3390_v14122775 crossref_primary_10_1128_JVI_05637_11 crossref_primary_10_1146_annurev_virology_101416_041718 crossref_primary_10_1093_molbev_mst189 crossref_primary_10_1016_j_virusres_2016_12_018 crossref_primary_10_1089_cmb_2022_0257 crossref_primary_10_1038_s41598_019_52023_w crossref_primary_10_1016_j_jmb_2007_03_074 crossref_primary_10_1093_bioinformatics_btu754 crossref_primary_10_1093_infdis_jit551 crossref_primary_10_1007_s10658_018_1594_5 crossref_primary_10_1128_mBio_02014_16 crossref_primary_10_1093_infdis_jit546 crossref_primary_10_3390_v13122550 crossref_primary_10_1101_mcs_a001214 crossref_primary_10_1186_1741_7007_5_29 crossref_primary_10_1371_journal_ppat_1008089 crossref_primary_10_3390_genes10120968 crossref_primary_10_1242_jeb_148148 crossref_primary_10_1371_journal_pbio_3000502 crossref_primary_10_1128_JVI_01097_15 crossref_primary_10_1371_journal_ppat_1003877 crossref_primary_10_1038_s41467_023_43029_0 crossref_primary_10_1002_jmv_23233 crossref_primary_10_1007_s40726_021_00189_1 crossref_primary_10_1074_jbc_M114_616193 crossref_primary_10_1016_j_cell_2012_05_049 crossref_primary_10_1186_s12977_015_0180_6 crossref_primary_10_1016_j_mib_2012_05_007 crossref_primary_10_1128_JVI_02836_15 crossref_primary_10_1016_j_chom_2017_12_013 crossref_primary_10_1038_embor_2009_61 crossref_primary_10_1038_s41467_017_00354_5 crossref_primary_10_1089_aid_2013_0153 crossref_primary_10_1097_QCO_0b013e32834cfb43 crossref_primary_10_1016_j_chom_2012_10_002 crossref_primary_10_1016_j_vaccine_2016_03_033 crossref_primary_10_1074_jbc_M114_592303 crossref_primary_10_1093_ilar_ilx026 crossref_primary_10_1093_molbev_mst173 crossref_primary_10_1016_j_chom_2012_10_008 crossref_primary_10_1042_ETLS20200097 crossref_primary_10_1016_j_cois_2014_11_002 crossref_primary_10_1073_pnas_2105288118 crossref_primary_10_1080_21505594_2021_1910442 crossref_primary_10_2217_17460794_2_3_293 crossref_primary_10_3390_v8100283 crossref_primary_10_1128_JVI_00370_06 crossref_primary_10_1371_journal_ppat_1003855 crossref_primary_10_1128_JVI_00787_20 crossref_primary_10_1186_s13104_020_05126_x crossref_primary_10_3390_v11050481 crossref_primary_10_1016_j_chom_2017_11_007 crossref_primary_10_1371_journal_pone_0007453 crossref_primary_10_1007_s00249_018_1282_6 crossref_primary_10_1371_journal_ppat_1003838 crossref_primary_10_1371_journal_pone_0060272 crossref_primary_10_1089_cmb_2012_0232 crossref_primary_10_1093_ve_vez028 crossref_primary_10_1128_JVI_02217_10 crossref_primary_10_1016_j_celrep_2017_10_051 crossref_primary_10_1128_JVI_00930_07 crossref_primary_10_1038_s41598_021_87694_x crossref_primary_10_1007_s11901_016_0326_6 crossref_primary_10_1128_mBio_03341_19 crossref_primary_10_1371_journal_pntd_0012268 crossref_primary_10_1128_JVI_01532_15 crossref_primary_10_1016_j_jmb_2010_05_032 crossref_primary_10_1016_j_tim_2013_05_004 crossref_primary_10_1016_j_virusres_2016_11_023 crossref_primary_10_1016_j_chom_2016_03_009 crossref_primary_10_1128_JVI_00694_10 crossref_primary_10_1186_1471_2148_7_S2_S5 crossref_primary_10_1007_s11538_010_9625_1 crossref_primary_10_1016_j_ympev_2009_10_015 crossref_primary_10_1371_journal_ppat_1009373 crossref_primary_10_1128_mSphere_00323_17 crossref_primary_10_3390_v12090920 crossref_primary_10_1038_s41579_023_00878_2 crossref_primary_10_1186_1471_2164_9_85 crossref_primary_10_1099_vir_0_044685_0 crossref_primary_10_1371_journal_pgen_1006111 crossref_primary_10_3896_IBRA_1_49_1_08 crossref_primary_10_1002_jmv_23287 crossref_primary_10_3389_fmicb_2022_894200 crossref_primary_10_1111_j_1558_5646_2012_01687_x crossref_primary_10_1016_j_micpath_2024_106661 crossref_primary_10_1099_vir_0_047167_0 crossref_primary_10_1186_s40064_016_1834_0 |
Cites_doi | 10.1038/82191 10.1073/pnas.1232294100 10.1038/sj.emboj.7600357 10.1126/science.7824947 10.1021/bi035429s 10.1006/viro.2000.0320 10.1038/scientificamerican0793-42 10.1093/infdis/166.4.747 10.1126/science.7041255 10.1146/annurev.micro.51.1.151 10.1016/0092-8674(78)90223-4 10.1016/j.virusres.2004.11.002 10.1128/JVI.77.12.7131-7138.2003 10.1096/fasebj.10.8.8666162 10.1073/pnas.111085598 10.1128/JVI.57.2.638-646.1986 10.1146/annurev.micro.58.030603.123649 10.1074/jbc.M503444200 10.1128/JVI.75.20.9723-9730.2001 10.1128/JVI.63.10.4441-4444.1989 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2005 2006 INIST-CNRS COPYRIGHT 2006 Nature Publishing Group Copyright Nature Publishing Group Jan 19, 2006 |
Copyright_xml | – notice: Springer Nature Limited 2005 – notice: 2006 INIST-CNRS – notice: COPYRIGHT 2006 Nature Publishing Group – notice: Copyright Nature Publishing Group Jan 19, 2006 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7U5 L7M 7X8 7SC 7SP 7SR 7TB 8BQ F28 JG9 JQ2 KR7 L~C L~D |
DOI | 10.1038/nature04388 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Database Suite (ProQuest) ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library (ProQuest) Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace MEDLINE - Academic Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts MEDLINE - Academic Materials Research Database Civil Engineering Abstracts Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts METADEX Computer and Information Systems Abstracts Professional Engineered Materials Abstracts ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Agricultural Science Database Materials Research Database MEDLINE MEDLINE - Academic Genetics Abstracts Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics Biology |
EISSN | 1476-4687 1476-4679 |
EndPage | 348 |
ExternalDocumentID | 996872061 A185466027 16327776 17391904 10_1038_nature04388 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States--US California Pennsylvania |
GeographicLocations_xml | – name: Pennsylvania – name: United States--US – name: California |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI045818 – fundername: NIAID NIH HHS grantid: R01 AI040085 – fundername: NIAID NIH HHS grantid: N01 AI040085 – fundername: NIAID NIH HHS grantid: U01 AI054776 – fundername: NIAID NIH HHS grantid: R01 AI036178 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 .55 .GJ .HR .XZ 00M 08P 0R~ 0WA 123 186 1VR 29M 2KS 2XV 354 39C 3EH 3O- 3V. 4.4 41X 42X 4R4 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L 9M8 A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYOK AAYZH ABAWZ ABDBF ABDQB ABEFU ABFSI ABIVO ABJCF ABJNI ABLJU ABNNU ABOCM ABPEJ ABPPZ ABTAH ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACRPL ACUHS ACWUS ADBBV ADFRT ADNMO ADUKH ADYSU ADZCM AENEX AEUYN AFFDN AFFNX AFHKK AFKRA AFLOW AFRAH AFSHS AGAYW AGCDD AGGDT AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCU BDKGC BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKOMP BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DB5 DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L-9 L6V L7B LK5 LK8 M0K M0L M1P M2M M2O M2P M7P M7R M7S MVM N4W N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OHT OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL USG VOH VQA VVN WH7 WOW X7L X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YV5 YXB YYP YZZ Z5M ZCA ZCG ZGI ZHY ZKB ZKG ZY4 ~02 ~7V ~88 ~8M ~KM AARCD AAYXX ABDPE ABFSG ACMFV ACSTC ADGHP ADXHL AETEA AFANA AGQPQ ALPWD ATHPR CITATION J5H PHGZM PHGZT .CO 07C 1CY 1OL 1VW 41~ 663 79B AAJYS AAVBQ ACBNA ACBTR ACTDY ADRHT AEZWR AFBBN AFHIU AHWEU AIXLP AJUXI ARMCB BCR BES BLC FA8 FAC IQODW LGEZI LOTEE LSO NADUK NFIDA NXXTH ODYON PEA PJZUB PPXIY PQGLB PV9 QS- R4F RHI SHXYY SIXXV SKT TBHMF TDRGL TUD UBY UHB XOL YJ6 YQI YQJ YXA YYQ ZE2 ~G0 CGR CUY CVF ECM EIF NPM PMFND AEIIB 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS PUEGO Q9U RC3 SOI 36B ABCQX AFWHJ AHBCP D0L QF4 QM4 QN7 QO4 7U5 L7M 7X8 7SC 7SP 7SR 7TB 8BQ F28 JG9 JQ2 KR7 L~C L~D |
ID | FETCH-LOGICAL-c716t-483b4534b416aa6bee20c4aaae9e551a270bcc64dc1acba2de81b91619a186c83 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Jul 10 18:36:46 EDT 2025 Thu Aug 07 14:57:34 EDT 2025 Thu Jul 10 18:08:41 EDT 2025 Fri Jul 11 06:26:05 EDT 2025 Sat Aug 23 14:26:40 EDT 2025 Fri Jun 13 00:43:00 EDT 2025 Tue Jun 10 15:34:47 EDT 2025 Tue Jun 10 21:33:52 EDT 2025 Fri Jun 27 04:59:45 EDT 2025 Fri May 30 11:00:36 EDT 2025 Mon Jul 21 09:15:26 EDT 2025 Thu Apr 24 23:09:44 EDT 2025 Tue Jul 01 00:55:37 EDT 2025 Fri Feb 21 02:37:51 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7074 |
Keywords | Virus Enterovirus Genetic diversity Poliovirus Picornaviridae Pathogenesis |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c716t-483b4534b416aa6bee20c4aaae9e551a270bcc64dc1acba2de81b91619a186c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | http://doi.org/10.1038/nature04388 |
PMID | 16327776 |
PQID | 204516561 |
PQPubID | 23500 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_743404629 proquest_miscellaneous_70688259 proquest_miscellaneous_28080096 proquest_miscellaneous_17097497 proquest_journals_204516561 gale_infotracgeneralonefile_A185466027 gale_infotraccpiq_185466027 gale_infotracacademiconefile_A185466027 gale_incontextgauss_ISR_A185466027 pubmed_primary_16327776 pascalfrancis_primary_17391904 crossref_primary_10_1038_nature04388 crossref_citationtrail_10_1038_nature04388 springer_journals_10_1038_nature04388 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-01-19 |
PublicationDateYYYYMMDD | 2006-01-19 |
PublicationDate_xml | – month: 01 year: 2006 text: 2006-01-19 day: 19 |
PublicationDecade | 2000 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2006 |
Publisher | Nature Publishing Group UK Nature Publishing Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing – name: Nature Publishing Group |
References | JK Pfeiffer (BFnature04388_CR16) 2003; 100 E Domingo (BFnature04388_CR5) 1988 S Crotty (BFnature04388_CR13) 2000; 6 DW Gohara (BFnature04388_CR20) 2004; 43 E Domingo (BFnature04388_CR8) 1978; 13 AA Thompson (BFnature04388_CR15) 2004; 23 N Pariente (BFnature04388_CR24) 2003; 77 J Holland (BFnature04388_CR1) 1982; 215 M Eigen (BFnature04388_CR4) 1993; 269 SE Pincus (BFnature04388_CR18) 1986; 57 E Domingo (BFnature04388_CR3) 1997; 51 N Pariente (BFnature04388_CR23) 2001; 75 S Crotty (BFnature04388_CR14) 2001; 98 R Ren (BFnature04388_CR21) 1992; 166 E Domingo (BFnature04388_CR10) 1996; 10 JJ Holland (BFnature04388_CR2) 1992; 176 M Eigen (BFnature04388_CR11) 1988 CK Biebricher (BFnature04388_CR12) 2005; 107 RF Baltera Jr. (BFnature04388_CR17) 1989; 63 JP Anderson (BFnature04388_CR22) 2004; 58 E Domingo (BFnature04388_CR7) 2000; 270 JJ Arnold (BFnature04388_CR19) 2005; 280 JM Coffin (BFnature04388_CR9) 1995; 267 E Domingo (BFnature04388_CR6) 1994 |
References_xml | – volume: 6 start-page: 1375 year: 2000 ident: BFnature04388_CR13 publication-title: Nature Med. doi: 10.1038/82191 – volume: 100 start-page: 7289 year: 2003 ident: BFnature04388_CR16 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1232294100 – volume: 23 start-page: 3462 year: 2004 ident: BFnature04388_CR15 publication-title: EMBO J. doi: 10.1038/sj.emboj.7600357 – start-page: 161 volume-title: Mutations and Rapid Evolution of RNA Viruses year: 1994 ident: BFnature04388_CR6 – volume: 267 start-page: 483 year: 1995 ident: BFnature04388_CR9 publication-title: Science doi: 10.1126/science.7824947 – volume: 43 start-page: 5149 year: 2004 ident: BFnature04388_CR20 publication-title: Biochemistry doi: 10.1021/bi035429s – volume: 270 start-page: 251 year: 2000 ident: BFnature04388_CR7 publication-title: Virology doi: 10.1006/viro.2000.0320 – volume: 176 start-page: 1 year: 1992 ident: BFnature04388_CR2 publication-title: Curr. Top. Microbiol. Immunol. – volume: 269 start-page: 42 year: 1993 ident: BFnature04388_CR4 publication-title: Sci. Am. doi: 10.1038/scientificamerican0793-42 – volume: 166 start-page: 747 year: 1992 ident: BFnature04388_CR21 publication-title: J. Infect. Dis. doi: 10.1093/infdis/166.4.747 – volume: 215 start-page: 1577 year: 1982 ident: BFnature04388_CR1 publication-title: Science doi: 10.1126/science.7041255 – volume: 51 start-page: 151 year: 1997 ident: BFnature04388_CR3 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.51.1.151 – volume: 13 start-page: 735 year: 1978 ident: BFnature04388_CR8 publication-title: Cell doi: 10.1016/0092-8674(78)90223-4 – volume: 107 start-page: 117 year: 2005 ident: BFnature04388_CR12 publication-title: Virus Res. doi: 10.1016/j.virusres.2004.11.002 – volume: 77 start-page: 7131 year: 2003 ident: BFnature04388_CR24 publication-title: J. Virol. doi: 10.1128/JVI.77.12.7131-7138.2003 – volume-title: RNA Genetics year: 1988 ident: BFnature04388_CR5 – volume: 10 start-page: 859 year: 1996 ident: BFnature04388_CR10 publication-title: FASEB J. doi: 10.1096/fasebj.10.8.8666162 – volume: 98 start-page: 6895 year: 2001 ident: BFnature04388_CR14 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.111085598 – volume: 57 start-page: 638 year: 1986 ident: BFnature04388_CR18 publication-title: J. Virol. doi: 10.1128/JVI.57.2.638-646.1986 – volume: 58 start-page: 183 year: 2004 ident: BFnature04388_CR22 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.58.030603.123649 – start-page: 211 volume-title: RNA Genetics: Variability of RNA Genomes year: 1988 ident: BFnature04388_CR11 – volume: 280 start-page: 25706 year: 2005 ident: BFnature04388_CR19 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M503444200 – volume: 75 start-page: 9723 year: 2001 ident: BFnature04388_CR23 publication-title: J. Virol. doi: 10.1128/JVI.75.20.9723-9730.2001 – volume: 63 start-page: 4441 year: 1989 ident: BFnature04388_CR17 publication-title: J. Virol. doi: 10.1128/JVI.63.10.4441-4444.1989 |
SSID | ssj0005174 ssj0014407 |
Score | 2.4462836 |
Snippet | Viruses, where wrong is right
The replication of RNA viruses is associated with a higher mutation rate than is seen in organisms using DNA as their genetic... An RNA virus population does not consist of a single genotype; rather, it is an ensemble of related sequences, termed quasispecies. Quasispecies arise from... |
SourceID | proquest gale pubmed pascalfrancis crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 344 |
SubjectTerms | Animals Biological and medical sciences Biological Evolution Fundamental and applied biological sciences. Psychology Genome, Viral Genomes Genomics Growth conditions HeLa Cells Humanities and Social Sciences Humans Hypotheses Lethal Dose 50 letter Mathematical models Mice Microbiology Models, Biological multidisciplinary Mutagenesis - genetics Mutation Organ Specificity Pathogenesis Phenotype Poliovirus Poliovirus - genetics Poliovirus - pathogenicity Poliovirus - physiology Population dynamics Replicative cycle, interference, host-virus relations, pathogenicity, miscellaneous strains RNA polymerase Science Science (multidisciplinary) Selection, Genetic Variance analysis Virology Virus Replication Viruses |
Title | Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population |
URI | https://link.springer.com/article/10.1038/nature04388 https://www.ncbi.nlm.nih.gov/pubmed/16327776 https://www.proquest.com/docview/204516561 https://www.proquest.com/docview/17097497 https://www.proquest.com/docview/28080096 https://www.proquest.com/docview/70688259 https://www.proquest.com/docview/743404629 |
Volume | 439 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExISmtj4ygbFQuNjSNWS2I2TJzSmlYHEBINJfYvOjltVmpJsbv9_7hKnXaHlJVLra1L7zpc7393vGDuEMNMi06j9Mm360qAYZ-MBMiQR1hQptXuh2uHvF8n5lfw2Gox8bo7zaZWdTmwUdVEZOiM_Jth0QoqJPtU3fWoaRcFV30HjPtsm5DLK6FIjtczw-AuE2ZfnhSI9blEzKQqWrryQvFp-VIPDJRq3vS3WGZ__BE6b99HwMdvxhiQ_aTm_y-7Zco89aBI6jdtju37TOv7BI0sfPWH25xzclIor0T_mRZeSwQufE4NfUofiakIKcOq4b-LDTVXVtoUI54QvcdtWQzj8wIFTmvA1rxedwJ6yq-HZ79Pzvu-z0DfoLc3oPFHLgZAajTOARFsbh0YCgM0sGlQQq1Abk8jCRGA0xIVFWxfNyiiDKE1MKp6xrbIq7QvGQy3B4LIPYomeI_oiAqBQkGqZGDXOioB97BY7Nx6EnHphXOdNMFyk-R3OBOxwQVy32Bvryd4Q13JCsygpXWYCc-fyr78u8xO0RmSSoOsdsPeeaFzhAw346gP82wSAtUJ5sEJp6ulNfmf03cropGXhutv0VoRoOQMlMrTCJD6nk6rc6w2XL6Q8YK8Xo7jhKYoDpa3mDn8fog-Yqc0UMWGFomu6mUJRqyF0fAPGN1FIIaluGUmetxK_nEAiYqUU3v5ttwWWE1jDn_3_TvSAPexOtaLsJdua3c7tK7TzZrrX7Ga8pqcRXYdfemz789nFj8s_mQxXxw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NIcQkhNiAEQabhTYYSNXSxI2TB4QmYGrZHwnYpL4F23GrSlOTza0QH4rvyF3itAu0vO2x9dWpc-fzne_udwC70k9UmCjUfonSLa5RjJNBBxkShUZnMbV7odrh07Ooe8G_9Dv9Ffhd18JQWmWtE0tFneWa7sgPCDadkGLaH4qrFjWNouBq3UGjkopj8-snemz2fe8TsncvCI4-n3_stlxTgZZG12BCl2eKd0Ku0BKRMlLGBL7mUkqTGLQeZCB8pXXEM92WWskgM2jYoQ3VTmQ7jnQc4rx34C6euz5tKNEX84ySv0CfXTmgH8YHFUonRd3ixgHojoEHhbTIkkHVS2ORsftPoLY8_44ewUNnuLLDStLWYcWMN-BemUCq7QasOyVh2b5Dsn77GMzXqbQjKuZEf5xldQoIy1wODn5JHZHzISnckWWuaRDTeV6YCpKcEZ7FdVV9YfEDk4zSki9ZMes89gQuboUFT2F1nI_NM2C-4lLja-8EHD1V9H1CKTMhY8UjLQZJ5sG7-mWn2oGeU--Ny7QMvodxeoMzHuzOiIsK62Mx2SviWkroGWNKzxnKqbVp7_u39BCtHx5F6Op78MYRDXJ8oJau2gH_NgFuNSi3GpS6GF2lN0ZfN0aHFQsXTbPdEKL5CkSYoNXH8Tm1VKVOT9l0tqs82JmNooKhqJEcm3xq8fc--pyJWE4REDYpusLLKQS1NkJH2wO2jIKHnOqkkWSzkvj5AqIwEELg9Hv1FpgvYAF_nv93oTtwv3t-epKe9M6Ot2CtvlFrJy9gdXI9NS_Rxpyo7XJnM_hx26rkD0Umklc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIRASQmzAKIPNQhsfk6omsRsnDwhNjGplMPE1qW_Bdtyq0tRkcyvEn8Z_x13jtCu0vO2x9dWpc-fzne_udwB7Kkg1TzVqv1SbpjAoxmm_jQyJuTV5Qu1eqHb402l8fCY-9Nq9Nfhd18JQWmWtE6eKOi8M3ZG3CDadkGLCVt9nRXw-6rwtL5rUQIoCrXU3jUpCTuyvn-i9uTfdI2T1fhR13n9_d9z0DQaaBt2EMV2kadHmQqNVolSsrY0CI5RSNrVoSahIBtqYWOQmVEarKLdo5KE9FaYqTGKTcJz3BtyUvB3SFpM9Oc8u-QsA2pcGBjxpVYidFIFLFg5DfyTcLZVD9vSrvhrLDN9_grbTs7BzH-55I5YdVlK3AWt2tAm3psmkxm3ChlcYjr3yqNavH4D9MlFuSIWd6JuzvE4HYbnPx8EvqTtyMSDlO3TMNxBipihKW8GTM8K2uKwqMRx-YIpRivI5K2ddyB7C2bWw4BGsj4qRfQws0EIZfO3tSKDXin4QVyqXKtEiNrKf5g04qF92ZjwAOvXhOM-mgXieZFc404C9GXFZ4X4sJ3tOXMsISWNEQjlQE-ey7rev2SFaQiKO0e1vwEtP1C_wgUb5ygf82wS-tUC5vUBpyuFFdmX0xcLooGLhsml2FoRovgLJU7QABT6nlqrM6yyXzXZYA3Zno6hsKIKkRraYOPx9gP5nKldTRIRTim7xagpJbY7Q6W4AW0UhuKCaaSTZqiR-voCYR1JKnH6_3gLzBSzhz5P_LnQXbqMSyT52T0-24U59uRamT2F9fDmxz9DcHOud6cZm8OO6Nckf_gqWjQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasispecies+diversity+determines+pathogenesis+through+cooperative+interactions+in+a+viral+population&rft.jtitle=Nature+%28London%29&rft.au=Vignuzzi%2C+Marco&rft.au=Stone%2C+Jeffrey+K&rft.au=Arnold%2C+Jamie+J&rft.au=Cameron%2C+Craig+E&rft.date=2006-01-19&rft.eissn=1476-4687&rft.volume=439&rft.issue=7074&rft.spage=344&rft_id=info:doi/10.1038%2Fnature04388&rft_id=info%3Apmid%2F16327776&rft.externalDocID=16327776 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |