Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population

Viruses, where wrong is right The replication of RNA viruses is associated with a higher mutation rate than is seen in organisms using DNA as their genetic material. This can produce nonviable individuals but also, it has been suggested, some useful variation that could enhance the fitness of virus...

Full description

Saved in:
Bibliographic Details
Published inNature Vol. 439; no. 7074; pp. 344 - 348
Main Authors Vignuzzi, Marco, Stone, Jeffrey K., Arnold, Jamie J., Cameron, Craig E., Andino, Raul
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.01.2006
Nature Publishing
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Viruses, where wrong is right The replication of RNA viruses is associated with a higher mutation rate than is seen in organisms using DNA as their genetic material. This can produce nonviable individuals but also, it has been suggested, some useful variation that could enhance the fitness of virus populations by allowing them to adapt to changing environments encountered during infection. Until now there has been no experimental support for this suggestion, known as the ‘quasispecies’ hypothesis. But now a search for viruses that copy their genome too accurately has provided support for this idea. Poliovirus isolates carrying a ‘super accurate’ RNA polymerase are less varied and less infectious than normal viruses. These results could have implications for the development of antiviral drugs. An RNA virus population does not consist of a single genotype; rather, it is an ensemble of related sequences, termed quasispecies 1 , 2 , 3 , 4 . Quasispecies arise from rapid genomic evolution powered by the high mutation rate of RNA viral replication 5 , 6 , 7 , 8 . Although a high mutation rate is dangerous for a virus because it results in nonviable individuals, it has been hypothesized that high mutation rates create a ‘cloud’ of potentially beneficial mutations at the population level, which afford the viral quasispecies a greater probability to evolve and adapt to new environments and challenges during infection 4 , 9 , 10 , 11 . Mathematical models predict that viral quasispecies are not simply a collection of diverse mutants but a group of interactive variants, which together contribute to the characteristics of the population 4 , 12 . According to this view, viral populations, rather than individual variants, are the target of evolutionary selection 4 , 12 . Here we test this hypothesis by examining the consequences of limiting genomic diversity on viral populations. We find that poliovirus carrying a high-fidelity polymerase replicates at wild-type levels but generates less genomic diversity and is unable to adapt to adverse growth conditions. In infected animals, the reduced viral diversity leads to loss of neurotropism and an attenuated pathogenic phenotype. Notably, using chemical mutagenesis to expand quasispecies diversity of the high-fidelity virus before infection restores neurotropism and pathogenesis. Analysis of viruses isolated from brain provides direct evidence for complementation between members in the quasispecies, indicating that selection indeed occurs at the population level rather than on individual variants. Our study provides direct evidence for a fundamental prediction of the quasispecies theory and establishes a link between mutation rate, population dynamics and pathogenesis.
AbstractList An RNA virus population does not consist of a single genotype; rather, it is an ensemble of related sequences, termed quasispecies. Quasispecies arise from rapid genomic evolution powered by the high mutation rate of RNA viral replication. Although a high mutation rate is dangerous for a virus because it results in nonviable individuals, it has been hypothesized that high mutation rates create a 'cloud' of potentially beneficial mutations at the population level, which afford the viral quasispecies a greater probability to evolve and adapt to new environments and challenges during infection. Mathematical models predict that viral quasispecies are not simply a collection of diverse mutants but a group of interactive variants, which together contribute to the characteristics of the population. According to this view, viral populations, rather than individual variants, are the target of evolutionary selection. Here we test this hypothesis by examining the consequences of limiting genomic diversity on viral populations. We find that poliovirus carrying a high-fidelity polymerase replicates at wild-type levels but generates less genomic diversity and is unable to adapt to adverse growth conditions. In infected animals, the reduced viral diversity leads to loss of neurotropism and an attenuated pathogenic phenotype. Notably, using chemical mutagenesis to expand quasispecies diversity of the high-fidelity virus before infection restores neurotropism and pathogenesis. Analysis of viruses isolated from brain provides direct evidence for complementation between members in the quasispecies, indicating that selection indeed occurs at the population level rather than on individual variants. Our study provides direct evidence for a fundamental prediction of the quasispecies theory and establishes a link between mutation rate, population dynamics and pathogenesis.
Viruses, where wrong is right The replication of RNA viruses is associated with a higher mutation rate than is seen in organisms using DNA as their genetic material. This can produce nonviable individuals but also, it has been suggested, some useful variation that could enhance the fitness of virus populations by allowing them to adapt to changing environments encountered during infection. Until now there has been no experimental support for this suggestion, known as the ‘quasispecies’ hypothesis. But now a search for viruses that copy their genome too accurately has provided support for this idea. Poliovirus isolates carrying a ‘super accurate’ RNA polymerase are less varied and less infectious than normal viruses. These results could have implications for the development of antiviral drugs. An RNA virus population does not consist of a single genotype; rather, it is an ensemble of related sequences, termed quasispecies 1 , 2 , 3 , 4 . Quasispecies arise from rapid genomic evolution powered by the high mutation rate of RNA viral replication 5 , 6 , 7 , 8 . Although a high mutation rate is dangerous for a virus because it results in nonviable individuals, it has been hypothesized that high mutation rates create a ‘cloud’ of potentially beneficial mutations at the population level, which afford the viral quasispecies a greater probability to evolve and adapt to new environments and challenges during infection 4 , 9 , 10 , 11 . Mathematical models predict that viral quasispecies are not simply a collection of diverse mutants but a group of interactive variants, which together contribute to the characteristics of the population 4 , 12 . According to this view, viral populations, rather than individual variants, are the target of evolutionary selection 4 , 12 . Here we test this hypothesis by examining the consequences of limiting genomic diversity on viral populations. We find that poliovirus carrying a high-fidelity polymerase replicates at wild-type levels but generates less genomic diversity and is unable to adapt to adverse growth conditions. In infected animals, the reduced viral diversity leads to loss of neurotropism and an attenuated pathogenic phenotype. Notably, using chemical mutagenesis to expand quasispecies diversity of the high-fidelity virus before infection restores neurotropism and pathogenesis. Analysis of viruses isolated from brain provides direct evidence for complementation between members in the quasispecies, indicating that selection indeed occurs at the population level rather than on individual variants. Our study provides direct evidence for a fundamental prediction of the quasispecies theory and establishes a link between mutation rate, population dynamics and pathogenesis.
An RNA virus population does not consist of a single genotype; rather, it is an ensemble of related sequences, termed quasispecies. Quasispecies arise from rapid genomic evolution powered by the high mutation rate of RNA viral replication. Although a high mutation rate is dangerous for a virus because it results in nonviable individuals, it has been hypothesized that high mutation rates create a 'cloud' of potentially beneficial mutations at the population level, which afford the viral quasispecies a greater probability to evolve and adapt to new environments and challenges during infection. Mathematical models predict that viral quasispecies are not simply a collection of diverse mutants but a group of interactive variants, which together contribute to the characteristics of the population. According to this view, viral populations, rather than individual variants, are the target of evolutionary selection. Here we test this hypothesis by examining the consequences of limiting genomic diversity on viral populations. We find that poliovirus carrying a high-fidelity polymerase replicates at wild-type levels but generates less genomic diversity and is unable to adapt to adverse growth conditions. In infected animals, the reduced viral diversity leads to loss of neurotropism and an attenuated pathogenic phenotype. Notably, using chemical mutagenesis to expand quasispecies diversity of the high-fidelity virus before infection restores neurotropism and pathogenesis. Analysis of viruses isolated from brain provides direct evidence for complementation between members in the quasispecies, indicating that selection indeed occurs at the population level rather than on individual variants. Our study provides direct evidence for a fundamental prediction of the quasispecies theory and establishes a link between mutation rate, population dynamics and pathogenesis.An RNA virus population does not consist of a single genotype; rather, it is an ensemble of related sequences, termed quasispecies. Quasispecies arise from rapid genomic evolution powered by the high mutation rate of RNA viral replication. Although a high mutation rate is dangerous for a virus because it results in nonviable individuals, it has been hypothesized that high mutation rates create a 'cloud' of potentially beneficial mutations at the population level, which afford the viral quasispecies a greater probability to evolve and adapt to new environments and challenges during infection. Mathematical models predict that viral quasispecies are not simply a collection of diverse mutants but a group of interactive variants, which together contribute to the characteristics of the population. According to this view, viral populations, rather than individual variants, are the target of evolutionary selection. Here we test this hypothesis by examining the consequences of limiting genomic diversity on viral populations. We find that poliovirus carrying a high-fidelity polymerase replicates at wild-type levels but generates less genomic diversity and is unable to adapt to adverse growth conditions. In infected animals, the reduced viral diversity leads to loss of neurotropism and an attenuated pathogenic phenotype. Notably, using chemical mutagenesis to expand quasispecies diversity of the high-fidelity virus before infection restores neurotropism and pathogenesis. Analysis of viruses isolated from brain provides direct evidence for complementation between members in the quasispecies, indicating that selection indeed occurs at the population level rather than on individual variants. Our study provides direct evidence for a fundamental prediction of the quasispecies theory and establishes a link between mutation rate, population dynamics and pathogenesis.
Audience Academic
Author Vignuzzi, Marco
Andino, Raul
Stone, Jeffrey K.
Arnold, Jamie J.
Cameron, Craig E.
Author_xml – sequence: 1
  givenname: Marco
  surname: Vignuzzi
  fullname: Vignuzzi, Marco
  organization: Department of Microbiology and Immunology, University of California
– sequence: 2
  givenname: Jeffrey K.
  surname: Stone
  fullname: Stone, Jeffrey K.
  organization: Department of Microbiology and Immunology, University of California
– sequence: 3
  givenname: Jamie J.
  surname: Arnold
  fullname: Arnold, Jamie J.
  organization: Department of Biochemistry and Molecular Biology, Pennsylvania State University
– sequence: 4
  givenname: Craig E.
  surname: Cameron
  fullname: Cameron, Craig E.
  organization: Department of Biochemistry and Molecular Biology, Pennsylvania State University
– sequence: 5
  givenname: Raul
  surname: Andino
  fullname: Andino, Raul
  email: andino@itsa.ucsf.edu
  organization: Department of Microbiology and Immunology, University of California
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17391904$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16327776$$D View this record in MEDLINE/PubMed
BookMark eNqF0t1r2zAQAHAxOtY029Pehxl0Y2zuJFuW5MdS9lEojH09m7N8SVQcyZXksv73U5aMJCVb0YPl43cHursTcmSdRUKeM3rGaKneW4ijR8pLpR6RCeNS5FwoeUQmlBYqp6oUx-QkhGtKacUkf0KOmSgLKaWYEPw6QjBhQG0wZJ25RR9MvMs6jOiXxqbgAHHh5piuJmRx4d04X2TauQE9xJSQGZss6GicDekng-zWeOizwQ1jD6vwU_J4Bn3AZ5vvlPz8-OHHxef86suny4vzq1xLJmLOVdnyquQtZwJAtIgF1RwAsMaqYlBI2moteKcZ6BaKDhVrayZYDUwJrcopeb2uO3h3M2KIzdIEjX0PFt0YGslLTrko6iRf_V9SoVRRPQwLRRWltXgQMklryWuZ4Mt78NqN3qa-NAXlFROVYAnlazSHHhtjZy6mFq-mkDqb5j8zKXzOVMWFoMVO0T2vB3PT7KKzAyidDpdGH6z6Zi8hmYi_4hzGEJrL79_27YvNs8Z2iV0zeLMEf9f83bUETjcAgoZ-5sFqE7ZOljWr0xpPydu1096F4HG2JbRZbXyzs_FJs3tam_hn6dLbTP-PnHfrnJAq2zn67QQO8d9XwhJG
CODEN NATUAS
CitedBy_id crossref_primary_10_1073_pnas_2006299117
crossref_primary_10_1371_journal_pbio_2006459
crossref_primary_10_1002_hep_21623
crossref_primary_10_1016_j_coviro_2011_09_001
crossref_primary_10_1016_j_chom_2015_09_009
crossref_primary_10_1371_journal_ppat_1000658
crossref_primary_10_1371_journal_pcbi_1001030
crossref_primary_10_1186_s12864_020_06801_w
crossref_primary_10_1016_j_virol_2012_02_018
crossref_primary_10_2217_17460794_3_6_553
crossref_primary_10_1371_journal_ppat_1006194
crossref_primary_10_1534_genetics_114_172312
crossref_primary_10_1093_nar_gkq655
crossref_primary_10_1371_journal_pone_0209292
crossref_primary_10_1016_j_coviro_2011_09_012
crossref_primary_10_1371_journal_ppat_1000412
crossref_primary_10_1371_journal_ppat_1000896
crossref_primary_10_1128_JVI_02139_12
crossref_primary_10_1016_j_watres_2018_12_014
crossref_primary_10_1371_journal_ppat_1010689
crossref_primary_10_1128_JVI_00245_11
crossref_primary_10_3390_v14051076
crossref_primary_10_1016_j_virusres_2017_01_026
crossref_primary_10_1186_s13062_016_0128_3
crossref_primary_10_1016_j_str_2012_06_012
crossref_primary_10_1074_jbc_M113_484428
crossref_primary_10_1128_JVI_00576_19
crossref_primary_10_1016_j_jaci_2010_04_010
crossref_primary_10_1128_JVI_01296_07
crossref_primary_10_1093_bioinformatics_btv101
crossref_primary_10_1371_journal_pone_0007876
crossref_primary_10_1016_j_vetmic_2009_11_021
crossref_primary_10_1371_journal_pcbi_1000187
crossref_primary_10_3390_ijms23158302
crossref_primary_10_1016_j_coviro_2017_05_001
crossref_primary_10_1038_emi_2017_2
crossref_primary_10_1038_nsmb_1540
crossref_primary_10_1371_journal_pgen_0030093
crossref_primary_10_3390_ijms21239117
crossref_primary_10_1093_femsle_fnab092
crossref_primary_10_1021_bi100833r
crossref_primary_10_1179_2047773214Y_0000000145
crossref_primary_10_1016_j_virusres_2019_03_010
crossref_primary_10_1074_jbc_C112_401471
crossref_primary_10_1128_mBio_01114_16
crossref_primary_10_1016_j_jmb_2006_06_077
crossref_primary_10_1016_j_virusres_2019_03_013
crossref_primary_10_1371_journal_ppat_1009433
crossref_primary_10_1016_j_aquaculture_2021_737318
crossref_primary_10_1007_s10930_022_10073_6
crossref_primary_10_3390_pathogens9090721
crossref_primary_10_12688_wellcomeopenres_13538_2
crossref_primary_10_12688_wellcomeopenres_13538_1
crossref_primary_10_1371_journal_pone_0096070
crossref_primary_10_7554_eLife_26437
crossref_primary_10_1038_srep38831
crossref_primary_10_1128_JVI_02149_13
crossref_primary_10_1146_annurev_ecolsys_38_091206_095637
crossref_primary_10_1128_JVI_00289_14
crossref_primary_10_1371_journal_pbio_1002251
crossref_primary_10_2217_fvl_12_19
crossref_primary_10_1137_19M1282234
crossref_primary_10_1007_s12250_019_00169_2
crossref_primary_10_3389_fmicb_2021_639655
crossref_primary_10_1128_mBio_01503_17
crossref_primary_10_1371_journal_pbio_3001687
crossref_primary_10_1021_cr2004844
crossref_primary_10_1016_j_vaccine_2008_01_006
crossref_primary_10_3389_fmicb_2023_1182695
crossref_primary_10_3934_mbe_2023710
crossref_primary_10_1371_journal_pone_0142473
crossref_primary_10_2217_17460794_2_1_35
crossref_primary_10_3390_v6103991
crossref_primary_10_1128_JVI_00028_15
crossref_primary_10_1371_journal_pone_0074027
crossref_primary_10_1007_s00705_011_1199_1
crossref_primary_10_1128_JVI_00804_14
crossref_primary_10_3390_vaccines11101532
crossref_primary_10_3390_v13122508
crossref_primary_10_1016_j_virol_2008_08_030
crossref_primary_10_1086_590958
crossref_primary_10_1016_j_meegid_2010_12_007
crossref_primary_10_1128_mmbr_00086_21
crossref_primary_10_1016_j_vaccine_2019_10_080
crossref_primary_10_1016_j_jviromet_2019_01_013
crossref_primary_10_1128_JVI_00999_07
crossref_primary_10_1128_JVI_01606_06
crossref_primary_10_1080_03079457_2024_2398030
crossref_primary_10_1016_j_virusres_2019_03_003
crossref_primary_10_1128_jvi_00657_24
crossref_primary_10_1103_PhysRevLett_100_038106
crossref_primary_10_1128_JVI_02150_17
crossref_primary_10_1016_j_jmb_2006_05_027
crossref_primary_10_2149_tmh_2011_S02
crossref_primary_10_1016_j_virol_2012_11_020
crossref_primary_10_2217_fvl_10_61
crossref_primary_10_1016_j_jip_2009_06_014
crossref_primary_10_1371_journal_ppat_1006136
crossref_primary_10_1016_j_jip_2009_06_012
crossref_primary_10_1016_j_virusres_2011_03_009
crossref_primary_10_1002_jmv_21381
crossref_primary_10_1128_JVI_01606_18
crossref_primary_10_1186_s12985_016_0658_4
crossref_primary_10_3389_fmicb_2020_00540
crossref_primary_10_1371_journal_pmed_0030263
crossref_primary_10_1016_j_semcancer_2010_10_005
crossref_primary_10_1038_s41579_020_00449_9
crossref_primary_10_1099_vir_0_026351_0
crossref_primary_10_1007_s42974_020_00006_7
crossref_primary_10_7554_eLife_03753
crossref_primary_10_1098_rsta_2020_0422
crossref_primary_10_3390_math8010117
crossref_primary_10_1038_nrmicro2030
crossref_primary_10_1371_journal_pbio_2004444
crossref_primary_10_1128_mBio_01360_14
crossref_primary_10_4254_wjh_v7_i6_831
crossref_primary_10_1073_pnas_1709166114
crossref_primary_10_1111_mec_13321
crossref_primary_10_1128_JVI_01028_07
crossref_primary_10_1371_journal_pntd_0004052
crossref_primary_10_1128_JVI_00716_11
crossref_primary_10_1038_ncomms5794
crossref_primary_10_1016_j_virol_2012_01_036
crossref_primary_10_1186_s13059_016_0907_2
crossref_primary_10_1128_mbio_02388_23
crossref_primary_10_1016_j_jmb_2023_167973
crossref_primary_10_1093_ve_veac039
crossref_primary_10_1016_j_virol_2016_07_007
crossref_primary_10_1016_j_vaccine_2015_08_055
crossref_primary_10_1016_j_virusres_2013_06_019
crossref_primary_10_1016_j_jhep_2015_08_010
crossref_primary_10_1128_JVI_03594_13
crossref_primary_10_1016_j_biologicals_2018_03_004
crossref_primary_10_1016_j_meegid_2016_03_002
crossref_primary_10_1016_j_isci_2023_107468
crossref_primary_10_1016_j_physa_2017_01_026
crossref_primary_10_1186_1471_2148_10_137
crossref_primary_10_1002_jmv_29209
crossref_primary_10_1016_j_jtbi_2009_07_034
crossref_primary_10_1128_JVI_02057_18
crossref_primary_10_3390_insects14020103
crossref_primary_10_1093_molbev_msz022
crossref_primary_10_3389_fmolb_2023_1141534
crossref_primary_10_1128_JVI_01641_14
crossref_primary_10_3389_fmicb_2018_01753
crossref_primary_10_3347_kjp_2010_48_2_113
crossref_primary_10_1099_vir_0_036988_0
crossref_primary_10_2807_1560_7917_ES_2016_21_19_30226
crossref_primary_10_1098_rspb_2007_1228
crossref_primary_10_3390_v4112786
crossref_primary_10_1098_rsos_202219
crossref_primary_10_1016_j_sbi_2009_10_012
crossref_primary_10_1146_annurev_micro_091313_103416
crossref_primary_10_1371_journal_ppat_1005009
crossref_primary_10_1093_infdis_jir821
crossref_primary_10_3390_v17020211
crossref_primary_10_1128_JVI_00081_17
crossref_primary_10_3389_fmicb_2021_694897
crossref_primary_10_1128_JVI_00979_14
crossref_primary_10_1373_clinchem_2018_292979
crossref_primary_10_1371_journal_pntd_0012728
crossref_primary_10_1128_mBio_01871_18
crossref_primary_10_1093_ve_veac007
crossref_primary_10_1093_ve_veac008
crossref_primary_10_1002_jmv_21991
crossref_primary_10_1177_03000605221086433
crossref_primary_10_1016_j_virusres_2017_01_006
crossref_primary_10_1637_10677_092413_Reg
crossref_primary_10_1186_s12977_018_0401_x
crossref_primary_10_1093_ve_veac001
crossref_primary_10_1016_j_vaccine_2015_08_091
crossref_primary_10_1186_s12862_017_0920_4
crossref_primary_10_1128_JVI_01257_06
crossref_primary_10_2217_fvl_14_41
crossref_primary_10_2217_fvl_14_47
crossref_primary_10_1021_acssynbio_3c00020
crossref_primary_10_1128_JVI_00736_12
crossref_primary_10_1586_14787210_6_4_463
crossref_primary_10_3390_v13010037
crossref_primary_10_1002_rmv_2002
crossref_primary_10_1016_j_virusres_2016_09_016
crossref_primary_10_3390_v10110600
crossref_primary_10_15212_ZOONOSES_2023_0032
crossref_primary_10_1146_annurev_genom_083115_022628
crossref_primary_10_1371_journal_pntd_0010763
crossref_primary_10_3390_applmicrobiol2020024
crossref_primary_10_1016_j_virusres_2019_05_005
crossref_primary_10_1038_s41541_021_00340_5
crossref_primary_10_1128_AAC_01056_07
crossref_primary_10_1128_JVI_00071_10
crossref_primary_10_3390_v5030834
crossref_primary_10_1371_journal_pone_0131972
crossref_primary_10_1016_j_physa_2019_123292
crossref_primary_10_1016_j_biocel_2008_03_019
crossref_primary_10_2139_ssrn_3533279
crossref_primary_10_1371_journal_pntd_0007343
crossref_primary_10_1038_s43856_021_00034_y
crossref_primary_10_1371_journal_ppat_1007863
crossref_primary_10_1371_journal_ppat_1008711
crossref_primary_10_1016_j_coviro_2011_07_008
crossref_primary_10_1128_mSphere_00291_19
crossref_primary_10_1016_j_antiviral_2014_02_006
crossref_primary_10_3389_fgene_2017_00125
crossref_primary_10_3390_v7072788
crossref_primary_10_1016_j_virol_2008_05_016
crossref_primary_10_1128_JVI_00897_21
crossref_primary_10_1128_JVI_05712_11
crossref_primary_10_1038_nm1726
crossref_primary_10_1016_j_antiviral_2011_03_187
crossref_primary_10_1186_1471_2148_13_11
crossref_primary_10_1098_rstb_2010_0076
crossref_primary_10_3390_v3010012
crossref_primary_10_1016_S1684_1182_10_60056_4
crossref_primary_10_1038_nature12861
crossref_primary_10_1128_JVI_01553_15
crossref_primary_10_1371_journal_pone_0027805
crossref_primary_10_1093_ve_vey004
crossref_primary_10_1177_0300985814522077
crossref_primary_10_1093_ve_vey001
crossref_primary_10_3390_v13081661
crossref_primary_10_1093_bioinformatics_btr520
crossref_primary_10_1016_j_celrep_2017_06_021
crossref_primary_10_1016_j_coviro_2012_07_005
crossref_primary_10_4137_BBI_S13076
crossref_primary_10_1099_vir_0_82606_0
crossref_primary_10_1128_JVI_02420_09
crossref_primary_10_1128_JVI_01918_10
crossref_primary_10_1128_JVI_01060_21
crossref_primary_10_1007_s00018_016_2299_6
crossref_primary_10_1099_vir_0_049171_0
crossref_primary_10_1016_j_tibtech_2020_04_010
crossref_primary_10_1128_JVI_00707_12
crossref_primary_10_3390_v15020587
crossref_primary_10_3390_microorganisms8010133
crossref_primary_10_1093_nar_gkv630
crossref_primary_10_1016_j_virol_2007_10_006
crossref_primary_10_3390_microorganisms12112191
crossref_primary_10_1093_ve_veae097
crossref_primary_10_1371_journal_pone_0039941
crossref_primary_10_1099_jgv_0_000231
crossref_primary_10_1371_journal_ppat_1000082
crossref_primary_10_7554_eLife_13974
crossref_primary_10_1080_22221751_2021_1906754
crossref_primary_10_3389_fcimb_2020_575613
crossref_primary_10_1021_ct5006449
crossref_primary_10_3390_v13071407
crossref_primary_10_3390_vaccines11030629
crossref_primary_10_1016_j_ijid_2020_10_041
crossref_primary_10_1371_journal_ppat_1001163
crossref_primary_10_1093_synbio_ysab018
crossref_primary_10_1146_annurev_ecolsys_110308_120248
crossref_primary_10_1586_14760584_2016_1158650
crossref_primary_10_1637_10315_080212_Reg_1
crossref_primary_10_1637_10609_070613_Reg_1
crossref_primary_10_3389_fmicb_2019_01813
crossref_primary_10_1093_nargab_lqae152
crossref_primary_10_1186_1742_4690_5_43
crossref_primary_10_1128_JVI_01062_17
crossref_primary_10_3390_v16050710
crossref_primary_10_1016_j_virusres_2007_05_006
crossref_primary_10_1371_journal_ppat_1003565
crossref_primary_10_1073_pnas_1721061115
crossref_primary_10_1111_jeb_14203
crossref_primary_10_1128_JVI_01805_17
crossref_primary_10_3389_fmicb_2022_824217
crossref_primary_10_1177_2040206620976786
crossref_primary_10_1111_j_1440_1843_2010_01897_x
crossref_primary_10_1099_mgen_0_000678
crossref_primary_10_1093_ve_vew008
crossref_primary_10_1128_JVI_03265_14
crossref_primary_10_1371_journal_pgen_1008271
crossref_primary_10_1002_jmv_20958
crossref_primary_10_1086_593310
crossref_primary_10_1186_1471_2105_10_360
crossref_primary_10_1128_JVI_03056_12
crossref_primary_10_1111_jgh_12109
crossref_primary_10_1128_JVI_00833_20
crossref_primary_10_1371_journal_pone_0210847
crossref_primary_10_1146_annurev_virology_010320_061642
crossref_primary_10_1128_spectrum_02452_21
crossref_primary_10_1016_j_celrep_2019_09_014
crossref_primary_10_1111_j_1420_9101_2007_01418_x
crossref_primary_10_3390_v15030599
crossref_primary_10_1126_scitranslmed_abe2555
crossref_primary_10_1261_rna_080280_124
crossref_primary_10_3390_v12050546
crossref_primary_10_3390_v3081460
crossref_primary_10_3389_fgene_2021_754445
crossref_primary_10_1016_j_jmb_2008_04_024
crossref_primary_10_1080_22221751_2021_1884003
crossref_primary_10_1371_journal_ppat_1004874
crossref_primary_10_1371_journal_pgen_1008017
crossref_primary_10_1099_jgv_0_000682
crossref_primary_10_3389_fmicb_2020_600254
crossref_primary_10_1093_bioinformatics_btt768
crossref_primary_10_1186_s13059_018_1618_7
crossref_primary_10_1128_mBio_01956_15
crossref_primary_10_4155_fmc_09_26
crossref_primary_10_1038_s41579_018_0005_4
crossref_primary_10_1016_j_coviro_2016_09_007
crossref_primary_10_1016_j_coviro_2014_09_004
crossref_primary_10_1016_j_celrep_2015_01_031
crossref_primary_10_1016_j_virol_2012_08_028
crossref_primary_10_1126_sciadv_ado1693
crossref_primary_10_1371_journal_ppat_1002685
crossref_primary_10_1038_s41467_018_04203_x
crossref_primary_10_1016_j_meegid_2009_07_011
crossref_primary_10_1007_s11033_023_08928_x
crossref_primary_10_1099_vir_0_2008_002055_0
crossref_primary_10_1016_j_virusres_2010_12_020
crossref_primary_10_2217_17460794_2_2_183
crossref_primary_10_1038_s41396_022_01194_y
crossref_primary_10_1038_s41421_021_00282_1
crossref_primary_10_1093_genetics_173_1_1
crossref_primary_10_1016_j_virol_2018_01_030
crossref_primary_10_1128_JVI_01801_15
crossref_primary_10_1128_spectrum_02921_22
crossref_primary_10_1128_JVI_01860_14
crossref_primary_10_1371_journal_ppat_1003760
crossref_primary_10_3390_v11020108
crossref_primary_10_1038_s43705_023_00227_7
crossref_primary_10_1007_s00216_021_03806_6
crossref_primary_10_1016_j_bbamcr_2011_11_007
crossref_primary_10_1371_journal_ppat_1004838
crossref_primary_10_1016_j_coviro_2017_03_001
crossref_primary_10_1038_srep17123
crossref_primary_10_1186_1471_2164_13_475
crossref_primary_10_14302_issn_2692_1537_ijcv_22_4117
crossref_primary_10_1016_j_celrep_2018_12_095
crossref_primary_10_1038_ncomms9571
crossref_primary_10_1128_JVI_06843_11
crossref_primary_10_1128_JVI_02590_12
crossref_primary_10_1007_s12250_021_00396_6
crossref_primary_10_1016_j_coviro_2014_09_017
crossref_primary_10_1016_j_coviro_2017_03_013
crossref_primary_10_7554_eLife_66857
crossref_primary_10_1186_s12929_019_0547_4
crossref_primary_10_1371_journal_ppat_1004825
crossref_primary_10_1038_emi_2013_5
crossref_primary_10_1098_rstb_2014_0291
crossref_primary_10_1186_1471_2164_7_117
crossref_primary_10_1371_journal_pcbi_1002097
crossref_primary_10_1016_j_virusres_2019_02_015
crossref_primary_10_3390_v12111305
crossref_primary_10_1093_nar_gkv1098
crossref_primary_10_1016_j_virol_2009_01_012
crossref_primary_10_1128_JVI_01590_19
crossref_primary_10_1016_j_meegid_2014_11_026
crossref_primary_10_1128_JVI_01297_08
crossref_primary_10_1371_journal_ppat_1011352
crossref_primary_10_1371_journal_pone_0009986
crossref_primary_10_1016_j_virusres_2007_07_001
crossref_primary_10_1080_14760584_2016_1184575
crossref_primary_10_1016_j_virusres_2007_07_008
crossref_primary_10_1371_journal_ppat_1004817
crossref_primary_10_1101_cshperspect_a034090
crossref_primary_10_1073_pnas_0600834103
crossref_primary_10_1074_jbc_M117_775643
crossref_primary_10_1099_jgv_0_001142
crossref_primary_10_1099_jgv_0_000298
crossref_primary_10_1128_JVI_02253_07
crossref_primary_10_1239_jap_1346955342
crossref_primary_10_3390_v5010241
crossref_primary_10_1128_JVI_00710_09
crossref_primary_10_3201_eid2707_210315
crossref_primary_10_1016_j_coviro_2014_08_006
crossref_primary_10_1017_S0950268821000248
crossref_primary_10_3390_v16050797
crossref_primary_10_1146_annurev_virology_031413_085507
crossref_primary_10_1534_genetics_118_301556
crossref_primary_10_1016_j_meegid_2020_104556
crossref_primary_10_3390_v14061267
crossref_primary_10_3390_ijms20184657
crossref_primary_10_1186_s12917_015_0330_z
crossref_primary_10_1586_14737159_7_4_419
crossref_primary_10_1099_jgv_0_001393
crossref_primary_10_1016_j_cell_2018_06_013
crossref_primary_10_1086_713913
crossref_primary_10_1002_jmv_27744
crossref_primary_10_1128_JVI_02494_14
crossref_primary_10_1016_j_virol_2016_11_009
crossref_primary_10_1016_j_chaos_2020_110018
crossref_primary_10_1590_0103_6440202104144
crossref_primary_10_1016_j_chom_2014_09_020
crossref_primary_10_1128_JVI_00825_08
crossref_primary_10_1016_j_virol_2012_07_004
crossref_primary_10_1016_j_cbpa_2014_05_008
crossref_primary_10_3389_fmicb_2022_839513
crossref_primary_10_1128_JVI_00032_09
crossref_primary_10_1128_JVI_02020_08
crossref_primary_10_1099_vir_0_004838_0
crossref_primary_10_1371_journal_ppat_1003703
crossref_primary_10_1038_s41598_020_62673_w
crossref_primary_10_1016_j_chom_2008_08_003
crossref_primary_10_1093_ve_vey028
crossref_primary_10_1371_journal_pone_0074575
crossref_primary_10_1002_jmv_70107
crossref_primary_10_1101_cshperspect_a038422
crossref_primary_10_1371_journal_pone_0032714
crossref_primary_10_1016_j_cyto_2019_154895
crossref_primary_10_1016_j_vetmic_2018_02_006
crossref_primary_10_1016_j_virol_2015_03_022
crossref_primary_10_3389_fcimb_2019_00283
crossref_primary_10_1371_journal_pone_0102866
crossref_primary_10_1099_jgv_0_000285
crossref_primary_10_1186_1742_4690_11_22
crossref_primary_10_1128_JVI_03378_13
crossref_primary_10_1111_jpy_12427
crossref_primary_10_1128_Spectrum_00261_21
crossref_primary_10_1016_j_virol_2024_110366
crossref_primary_10_3390_v16111772
crossref_primary_10_1017_S0021900200009621
crossref_primary_10_1038_nm0208_120
crossref_primary_10_3390_v10060320
crossref_primary_10_3390_v16030337
crossref_primary_10_3389_fgene_2021_716623
crossref_primary_10_1099_vir_0_82065_0
crossref_primary_10_1038_s41467_020_20075_6
crossref_primary_10_1128_JVI_00062_06
crossref_primary_10_3390_v10070368
crossref_primary_10_1021_jm400653j
crossref_primary_10_1128_JVI_01594_06
crossref_primary_10_1038_s41598_019_47549_y
crossref_primary_10_1007_s13194_022_00450_4
crossref_primary_10_1016_j_imu_2021_100798
crossref_primary_10_1073_pnas_1007626107
crossref_primary_10_1051_vetres_2010010
crossref_primary_10_1128_JVI_01891_12
crossref_primary_10_1016_j_jmgm_2017_09_008
crossref_primary_10_1534_genetics_113_154963
crossref_primary_10_1016_j_virusres_2006_08_004
crossref_primary_10_1177_117693430600200009
crossref_primary_10_1128_JVI_01569_20
crossref_primary_10_1007_s00705_014_2126_z
crossref_primary_10_1093_genetics_iyac127
crossref_primary_10_2217_fvl_12_114
crossref_primary_10_1128_JVI_02083_19
crossref_primary_10_1007_s00705_010_0778_x
crossref_primary_10_3390_v11040380
crossref_primary_10_1073_pnas_0909787107
crossref_primary_10_1099_vir_0_83662_0
crossref_primary_10_1038_srep45228
crossref_primary_10_1371_journal_pone_0189250
crossref_primary_10_3934_microbiol_2021010
crossref_primary_10_1016_j_virusres_2007_02_001
crossref_primary_10_3390_v12060651
crossref_primary_10_1016_j_cimid_2016_05_007
crossref_primary_10_1074_jbc_M112_424150
crossref_primary_10_1016_j_virep_2014_11_001
crossref_primary_10_3390_v11090859
crossref_primary_10_4161_rna_8_2_15013
crossref_primary_10_1128_mBio_02156_19
crossref_primary_10_1080_21505594_2024_2401985
crossref_primary_10_1128_JVI_01856_19
crossref_primary_10_1098_rsfs_2020_0063
crossref_primary_10_1016_j_jcv_2020_104585
crossref_primary_10_1016_j_cell_2015_01_032
crossref_primary_10_3390_v12060660
crossref_primary_10_1007_s00018_024_05450_6
crossref_primary_10_2139_ssrn_3544428
crossref_primary_10_1111_jam_12656
crossref_primary_10_1016_j_virol_2016_03_017
crossref_primary_10_1093_gbe_evx075
crossref_primary_10_7554_eLife_03679
crossref_primary_10_1099_vir_0_011304_0
crossref_primary_10_1128_JVI_00314_18
crossref_primary_10_1128_mBio_00731_20
crossref_primary_10_1371_journal_pbio_3000003
crossref_primary_10_1074_jbc_M114_584466
crossref_primary_10_1073_pnas_2317851121
crossref_primary_10_1146_annurev_animal_022513_114209
crossref_primary_10_1371_journal_pone_0005554
crossref_primary_10_1371_journal_pcbi_1003515
crossref_primary_10_1016_j_virol_2008_10_031
crossref_primary_10_1128_JVI_01605_20
crossref_primary_10_1016_j_tim_2020_05_012
crossref_primary_10_1016_j_vaccine_2012_04_054
crossref_primary_10_1038_s41598_024_68760_6
crossref_primary_10_1016_j_antiviral_2013_03_007
crossref_primary_10_1371_journal_pcbi_1011173
crossref_primary_10_1016_j_coviro_2016_11_006
crossref_primary_10_1016_j_tibs_2008_10_009
crossref_primary_10_1038_s41541_020_00241_z
crossref_primary_10_3390_v16030352
crossref_primary_10_1371_journal_pone_0032550
crossref_primary_10_2217_fmb_09_8
crossref_primary_10_1038_nchembio_441
crossref_primary_10_31631_2073_3046_2018_17_3_4_18
crossref_primary_10_1146_annurev_virology_100114_055135
crossref_primary_10_1016_j_vetmic_2021_109128
crossref_primary_10_1038_srep20310
crossref_primary_10_3389_fcimb_2022_888804
crossref_primary_10_1128_MMBR_05023_11
crossref_primary_10_1016_j_molimm_2007_12_018
crossref_primary_10_1051_apido_2008051
crossref_primary_10_1186_s12929_024_01116_4
crossref_primary_10_1016_j_coviro_2012_09_008
crossref_primary_10_1016_j_virusres_2009_08_012
crossref_primary_10_1016_j_virol_2010_12_014
crossref_primary_10_3390_genes12111731
crossref_primary_10_1371_journal_ppat_1008428
crossref_primary_10_1128_JVI_01119_20
crossref_primary_10_1038_mt_2008_184
crossref_primary_10_1038_nrmicro3003
crossref_primary_10_3201_eid3002_230122
crossref_primary_10_1371_journal_ppat_1007561
crossref_primary_10_3390_pathogens9100789
crossref_primary_10_1098_rspb_2009_0064
crossref_primary_10_1128_mSphere_00279_16
crossref_primary_10_1371_journal_pone_0011186
crossref_primary_10_1007_s12275_019_9429_4
crossref_primary_10_1016_j_cell_2018_10_056
crossref_primary_10_3390_vetsci8110273
crossref_primary_10_1080_1040841X_2017_1329277
crossref_primary_10_1093_molbev_msn099
crossref_primary_10_1128_mSphereDirect_00552_17
crossref_primary_10_2140_memocs_2024_12_359
crossref_primary_10_1186_1743_422X_8_402
crossref_primary_10_1016_j_virol_2015_06_006
crossref_primary_10_1094_PHYTO_07_19_0247_FI
crossref_primary_10_1016_j_virol_2015_09_019
crossref_primary_10_3390_v11100932
crossref_primary_10_1016_j_virusres_2011_09_018
crossref_primary_10_1111_imr_12688
crossref_primary_10_1097_QAI_0b013e31803104c0
crossref_primary_10_1186_s12985_020_01473_0
crossref_primary_10_1038_nbt_1635
crossref_primary_10_3389_fcimb_2021_728415
crossref_primary_10_3390_v12080893
crossref_primary_10_1371_journal_ppat_1003193
crossref_primary_10_1016_j_jmb_2011_04_078
crossref_primary_10_3390_v13112174
crossref_primary_10_1021_acs_biochem_9b00497
crossref_primary_10_3390_v13091882
crossref_primary_10_3390_v13050847
crossref_primary_10_1128_JVI_00110_15
crossref_primary_10_1186_1743_422X_9_219
crossref_primary_10_4161_cib_3_4_11658
crossref_primary_10_7883_yoken_JJID_2016_357
crossref_primary_10_1371_journal_pone_0024466
crossref_primary_10_3390_math10010096
crossref_primary_10_1080_17513758_2010_544766
crossref_primary_10_1099_vir_0_020818_0
crossref_primary_10_1016_j_meegid_2015_10_016
crossref_primary_10_1098_rsif_2012_0160
crossref_primary_10_1038_srep09163
crossref_primary_10_1016_j_chom_2020_04_003
crossref_primary_10_1016_j_jviromet_2007_02_015
crossref_primary_10_1080_14787210_2021_1851194
crossref_primary_10_3390_v2122594
crossref_primary_10_2217_fvl_2018_0207
crossref_primary_10_3390_microorganisms12051011
crossref_primary_10_1128_mBio_00745_21
crossref_primary_10_3389_fgene_2017_00219
crossref_primary_10_1016_j_coviro_2021_06_002
crossref_primary_10_1128_Spectrum_00256_21
crossref_primary_10_1186_s12864_021_08067_2
crossref_primary_10_1016_j_jmb_2011_01_026
crossref_primary_10_1093_bioinformatics_btab015
crossref_primary_10_1098_rsta_2010_0274
crossref_primary_10_3390_ijms242417185
crossref_primary_10_1074_jbc_M116_750638
crossref_primary_10_1111_jfd_13352
crossref_primary_10_3390_ijms25094863
crossref_primary_10_1128_JVI_01164_17
crossref_primary_10_1261_rna_1051208
crossref_primary_10_1016_j_virol_2007_03_018
crossref_primary_10_1371_journal_pcbi_1002851
crossref_primary_10_1371_journal_pone_0015967
crossref_primary_10_3389_fmicb_2020_01579
crossref_primary_10_1016_j_pt_2009_11_009
crossref_primary_10_1126_science_aan8626
crossref_primary_10_1371_journal_ppat_1008608
crossref_primary_10_1073_pnas_1204022109
crossref_primary_10_1016_j_jinf_2017_04_012
crossref_primary_10_1016_j_virusres_2007_04_010
crossref_primary_10_1128_JVI_01515_21
crossref_primary_10_1038_nature08898
crossref_primary_10_3390_v11070664
crossref_primary_10_1128_JVI_01119_18
crossref_primary_10_1128_JCM_03338_13
crossref_primary_10_7554_eLife_61921
crossref_primary_10_1016_j_meegid_2017_06_004
crossref_primary_10_1051_mmnp_20127508
crossref_primary_10_3390_biology6010014
crossref_primary_10_1128_JVI_01246_20
crossref_primary_10_1128_MMBR_00067_17
crossref_primary_10_1016_j_jviromet_2014_12_003
crossref_primary_10_1111_risa_12022
crossref_primary_10_3390_v12121423
crossref_primary_10_1016_S0140_6736_08_60597_8
crossref_primary_10_1371_journal_ppat_1007610
crossref_primary_10_3390_v10100543
crossref_primary_10_1371_journal_pone_0081571
crossref_primary_10_1016_S1473_3099_18_30288_3
crossref_primary_10_1128_JVI_00834_19
crossref_primary_10_1128_JVI_01370_16
crossref_primary_10_1186_s12864_015_1284_z
crossref_primary_10_1128_JVI_03035_13
crossref_primary_10_1371_journal_ppat_1001072
crossref_primary_10_1093_ve_vex035
crossref_primary_10_1073_pnas_2118590119
crossref_primary_10_1002_jmv_27416
crossref_primary_10_1128_JVI_00033_09
crossref_primary_10_1016_j_jconrel_2015_04_001
crossref_primary_10_1098_rsob_200348
crossref_primary_10_1093_ve_vex043
crossref_primary_10_1099_vir_0_045088_0
crossref_primary_10_1128_JVI_00950_09
crossref_primary_10_1128_JVI_03539_13
crossref_primary_10_4303_jem_235553
crossref_primary_10_1111_nyas_12565
crossref_primary_10_1101_gad_1505307
crossref_primary_10_1016_j_celrep_2016_06_076
crossref_primary_10_1146_annurev_virology_100422_010336
crossref_primary_10_1128_JVI_01692_07
crossref_primary_10_1016_j_pt_2012_06_004
crossref_primary_10_1371_journal_pone_0172206
crossref_primary_10_2217_17460794_1_3_255
crossref_primary_10_1093_ve_vex011
crossref_primary_10_1517_14712598_8_10_1455
crossref_primary_10_1016_j_virol_2006_01_035
crossref_primary_10_1128_JVI_00605_11
crossref_primary_10_1371_journal_pone_0013976
crossref_primary_10_1038_s41564_019_0547_x
crossref_primary_10_1016_j_chom_2018_03_012
crossref_primary_10_1186_s13059_021_02328_9
crossref_primary_10_1099_jgv_0_001693
crossref_primary_10_3390_v14030600
crossref_primary_10_1038_s41586_021_04116_8
crossref_primary_10_1093_nar_gky848
crossref_primary_10_1128_JVI_01932_17
crossref_primary_10_1016_j_jviromet_2024_115107
crossref_primary_10_1128_jvi_01162_23
crossref_primary_10_1038_s41598_021_95771_4
crossref_primary_10_1016_j_virol_2006_10_029
crossref_primary_10_1371_journal_ppat_1002122
crossref_primary_10_1371_journal_ppat_1006961
crossref_primary_10_1016_j_chom_2013_08_007
crossref_primary_10_5812_jamm_96149
crossref_primary_10_1038_nm_2972
crossref_primary_10_1016_j_virol_2008_03_008
crossref_primary_10_1128_JVI_01394_13
crossref_primary_10_1002_jmv_28548
crossref_primary_10_1128_JVI_01073_16
crossref_primary_10_1128_mBio_01146_14
crossref_primary_10_1038_srep39265
crossref_primary_10_1002_ece3_1850
crossref_primary_10_3390_v7102894
crossref_primary_10_1038_s41598_017_14285_0
crossref_primary_10_1128_JVI_01254_10
crossref_primary_10_1002_jobm_202300080
crossref_primary_10_1016_j_tree_2007_11_010
crossref_primary_10_3390_ijms23168876
crossref_primary_10_1007_s10340_020_01322_7
crossref_primary_10_1186_1471_2148_8_207
crossref_primary_10_1073_pnas_0906193106
crossref_primary_10_1073_pnas_1111650108
crossref_primary_10_1007_s11105_019_01148_3
crossref_primary_10_1111_j_1558_5646_2011_01433_x
crossref_primary_10_3390_v7102868
crossref_primary_10_1038_s41541_021_00318_3
crossref_primary_10_1080_22221751_2019_1694394
crossref_primary_10_1016_j_cell_2006_02_003
crossref_primary_10_1086_588077
crossref_primary_10_1007_s11274_021_03048_9
crossref_primary_10_1016_j_jmb_2010_02_005
crossref_primary_10_1007_s10489_021_02193_w
crossref_primary_10_1099_jgv_0_001400
crossref_primary_10_1099_jgv_0_000316
crossref_primary_10_1371_journal_ppat_1001005
crossref_primary_10_1016_j_antiviral_2013_07_008
crossref_primary_10_1039_C7IB00082K
crossref_primary_10_1016_j_jhepr_2021_100254
crossref_primary_10_1128_JVI_01773_05
crossref_primary_10_1128_JVI_00321_07
crossref_primary_10_1128_mBio_00119_16
crossref_primary_10_1128_JVI_01217_10
crossref_primary_10_1099_vir_0_030452_0
crossref_primary_10_1002_jmv_24780
crossref_primary_10_1371_journal_pone_0083361
crossref_primary_10_1111_j_1365_2761_2012_01404_x
crossref_primary_10_4236_aim_2014_416132
crossref_primary_10_1016_j_virol_2011_06_016
crossref_primary_10_1016_j_virol_2016_04_023
crossref_primary_10_3390_v14122775
crossref_primary_10_1128_JVI_05637_11
crossref_primary_10_1146_annurev_virology_101416_041718
crossref_primary_10_1093_molbev_mst189
crossref_primary_10_1016_j_virusres_2016_12_018
crossref_primary_10_1089_cmb_2022_0257
crossref_primary_10_1038_s41598_019_52023_w
crossref_primary_10_1016_j_jmb_2007_03_074
crossref_primary_10_1093_bioinformatics_btu754
crossref_primary_10_1093_infdis_jit551
crossref_primary_10_1007_s10658_018_1594_5
crossref_primary_10_1128_mBio_02014_16
crossref_primary_10_1093_infdis_jit546
crossref_primary_10_3390_v13122550
crossref_primary_10_1101_mcs_a001214
crossref_primary_10_1186_1741_7007_5_29
crossref_primary_10_1371_journal_ppat_1008089
crossref_primary_10_3390_genes10120968
crossref_primary_10_1242_jeb_148148
crossref_primary_10_1371_journal_pbio_3000502
crossref_primary_10_1128_JVI_01097_15
crossref_primary_10_1371_journal_ppat_1003877
crossref_primary_10_1038_s41467_023_43029_0
crossref_primary_10_1002_jmv_23233
crossref_primary_10_1007_s40726_021_00189_1
crossref_primary_10_1074_jbc_M114_616193
crossref_primary_10_1016_j_cell_2012_05_049
crossref_primary_10_1186_s12977_015_0180_6
crossref_primary_10_1016_j_mib_2012_05_007
crossref_primary_10_1128_JVI_02836_15
crossref_primary_10_1016_j_chom_2017_12_013
crossref_primary_10_1038_embor_2009_61
crossref_primary_10_1038_s41467_017_00354_5
crossref_primary_10_1089_aid_2013_0153
crossref_primary_10_1097_QCO_0b013e32834cfb43
crossref_primary_10_1016_j_chom_2012_10_002
crossref_primary_10_1016_j_vaccine_2016_03_033
crossref_primary_10_1074_jbc_M114_592303
crossref_primary_10_1093_ilar_ilx026
crossref_primary_10_1093_molbev_mst173
crossref_primary_10_1016_j_chom_2012_10_008
crossref_primary_10_1042_ETLS20200097
crossref_primary_10_1016_j_cois_2014_11_002
crossref_primary_10_1073_pnas_2105288118
crossref_primary_10_1080_21505594_2021_1910442
crossref_primary_10_2217_17460794_2_3_293
crossref_primary_10_3390_v8100283
crossref_primary_10_1128_JVI_00370_06
crossref_primary_10_1371_journal_ppat_1003855
crossref_primary_10_1128_JVI_00787_20
crossref_primary_10_1186_s13104_020_05126_x
crossref_primary_10_3390_v11050481
crossref_primary_10_1016_j_chom_2017_11_007
crossref_primary_10_1371_journal_pone_0007453
crossref_primary_10_1007_s00249_018_1282_6
crossref_primary_10_1371_journal_ppat_1003838
crossref_primary_10_1371_journal_pone_0060272
crossref_primary_10_1089_cmb_2012_0232
crossref_primary_10_1093_ve_vez028
crossref_primary_10_1128_JVI_02217_10
crossref_primary_10_1016_j_celrep_2017_10_051
crossref_primary_10_1128_JVI_00930_07
crossref_primary_10_1038_s41598_021_87694_x
crossref_primary_10_1007_s11901_016_0326_6
crossref_primary_10_1128_mBio_03341_19
crossref_primary_10_1371_journal_pntd_0012268
crossref_primary_10_1128_JVI_01532_15
crossref_primary_10_1016_j_jmb_2010_05_032
crossref_primary_10_1016_j_tim_2013_05_004
crossref_primary_10_1016_j_virusres_2016_11_023
crossref_primary_10_1016_j_chom_2016_03_009
crossref_primary_10_1128_JVI_00694_10
crossref_primary_10_1186_1471_2148_7_S2_S5
crossref_primary_10_1007_s11538_010_9625_1
crossref_primary_10_1016_j_ympev_2009_10_015
crossref_primary_10_1371_journal_ppat_1009373
crossref_primary_10_1128_mSphere_00323_17
crossref_primary_10_3390_v12090920
crossref_primary_10_1038_s41579_023_00878_2
crossref_primary_10_1186_1471_2164_9_85
crossref_primary_10_1099_vir_0_044685_0
crossref_primary_10_1371_journal_pgen_1006111
crossref_primary_10_3896_IBRA_1_49_1_08
crossref_primary_10_1002_jmv_23287
crossref_primary_10_3389_fmicb_2022_894200
crossref_primary_10_1111_j_1558_5646_2012_01687_x
crossref_primary_10_1016_j_micpath_2024_106661
crossref_primary_10_1099_vir_0_047167_0
crossref_primary_10_1186_s40064_016_1834_0
Cites_doi 10.1038/82191
10.1073/pnas.1232294100
10.1038/sj.emboj.7600357
10.1126/science.7824947
10.1021/bi035429s
10.1006/viro.2000.0320
10.1038/scientificamerican0793-42
10.1093/infdis/166.4.747
10.1126/science.7041255
10.1146/annurev.micro.51.1.151
10.1016/0092-8674(78)90223-4
10.1016/j.virusres.2004.11.002
10.1128/JVI.77.12.7131-7138.2003
10.1096/fasebj.10.8.8666162
10.1073/pnas.111085598
10.1128/JVI.57.2.638-646.1986
10.1146/annurev.micro.58.030603.123649
10.1074/jbc.M503444200
10.1128/JVI.75.20.9723-9730.2001
10.1128/JVI.63.10.4441-4444.1989
ContentType Journal Article
Copyright Springer Nature Limited 2005
2006 INIST-CNRS
COPYRIGHT 2006 Nature Publishing Group
Copyright Nature Publishing Group Jan 19, 2006
Copyright_xml – notice: Springer Nature Limited 2005
– notice: 2006 INIST-CNRS
– notice: COPYRIGHT 2006 Nature Publishing Group
– notice: Copyright Nature Publishing Group Jan 19, 2006
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7U5
L7M
7X8
7SC
7SP
7SR
7TB
8BQ
F28
JG9
JQ2
KR7
L~C
L~D
DOI 10.1038/nature04388
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central Database Suite (ProQuest)
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library (ProQuest)
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
MEDLINE - Academic
Materials Research Database
Civil Engineering Abstracts
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Engineered Materials Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Agricultural Science Database
Materials Research Database

MEDLINE
MEDLINE - Academic
Genetics Abstracts
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
Biology
EISSN 1476-4687
1476-4679
EndPage 348
ExternalDocumentID 996872061
A185466027
16327776
17391904
10_1038_nature04388
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
California
Pennsylvania
GeographicLocations_xml – name: Pennsylvania
– name: United States--US
– name: California
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI045818
– fundername: NIAID NIH HHS
  grantid: R01 AI040085
– fundername: NIAID NIH HHS
  grantid: N01 AI040085
– fundername: NIAID NIH HHS
  grantid: U01 AI054776
– fundername: NIAID NIH HHS
  grantid: R01 AI036178
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
.55
.GJ
.HR
.XZ
00M
08P
0R~
0WA
123
186
1VR
29M
2KS
2XV
354
39C
3EH
3O-
3V.
4.4
41X
42X
4R4
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
9M8
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYOK
AAYZH
ABAWZ
ABDBF
ABDQB
ABEFU
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABNNU
ABOCM
ABPEJ
ABPPZ
ABTAH
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACRPL
ACUHS
ACWUS
ADBBV
ADFRT
ADNMO
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFDN
AFFNX
AFHKK
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGCDD
AGGDT
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCU
BDKGC
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKOMP
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DB5
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L-9
L6V
L7B
LK5
LK8
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
MVM
N4W
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OHT
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
USG
VOH
VQA
VVN
WH7
WOW
X7L
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YV5
YXB
YYP
YZZ
Z5M
ZCA
ZCG
ZGI
ZHY
ZKB
ZKG
ZY4
~02
~7V
~88
~8M
~KM
AARCD
AAYXX
ABDPE
ABFSG
ACMFV
ACSTC
ADGHP
ADXHL
AETEA
AFANA
AGQPQ
ALPWD
ATHPR
CITATION
J5H
PHGZM
PHGZT
.CO
07C
1CY
1OL
1VW
41~
663
79B
AAJYS
AAVBQ
ACBNA
ACBTR
ACTDY
ADRHT
AEZWR
AFBBN
AFHIU
AHWEU
AIXLP
AJUXI
ARMCB
BCR
BES
BLC
FA8
FAC
IQODW
LGEZI
LOTEE
LSO
NADUK
NFIDA
NXXTH
ODYON
PEA
PJZUB
PPXIY
PQGLB
PV9
QS-
R4F
RHI
SHXYY
SIXXV
SKT
TBHMF
TDRGL
TUD
UBY
UHB
XOL
YJ6
YQI
YQJ
YXA
YYQ
ZE2
~G0
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
AEIIB
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
RC3
SOI
36B
ABCQX
AFWHJ
AHBCP
D0L
QF4
QM4
QN7
QO4
7U5
L7M
7X8
7SC
7SP
7SR
7TB
8BQ
F28
JG9
JQ2
KR7
L~C
L~D
ID FETCH-LOGICAL-c716t-483b4534b416aa6bee20c4aaae9e551a270bcc64dc1acba2de81b91619a186c83
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Thu Jul 10 18:36:46 EDT 2025
Thu Aug 07 14:57:34 EDT 2025
Thu Jul 10 18:08:41 EDT 2025
Fri Jul 11 06:26:05 EDT 2025
Sat Aug 23 14:26:40 EDT 2025
Fri Jun 13 00:43:00 EDT 2025
Tue Jun 10 15:34:47 EDT 2025
Tue Jun 10 21:33:52 EDT 2025
Fri Jun 27 04:59:45 EDT 2025
Fri May 30 11:00:36 EDT 2025
Mon Jul 21 09:15:26 EDT 2025
Thu Apr 24 23:09:44 EDT 2025
Tue Jul 01 00:55:37 EDT 2025
Fri Feb 21 02:37:51 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7074
Keywords Virus
Enterovirus
Genetic diversity
Poliovirus
Picornaviridae
Pathogenesis
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c716t-483b4534b416aa6bee20c4aaae9e551a270bcc64dc1acba2de81b91619a186c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://doi.org/10.1038/nature04388
PMID 16327776
PQID 204516561
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_743404629
proquest_miscellaneous_70688259
proquest_miscellaneous_28080096
proquest_miscellaneous_17097497
proquest_journals_204516561
gale_infotracgeneralonefile_A185466027
gale_infotraccpiq_185466027
gale_infotracacademiconefile_A185466027
gale_incontextgauss_ISR_A185466027
pubmed_primary_16327776
pascalfrancis_primary_17391904
crossref_primary_10_1038_nature04388
crossref_citationtrail_10_1038_nature04388
springer_journals_10_1038_nature04388
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-01-19
PublicationDateYYYYMMDD 2006-01-19
PublicationDate_xml – month: 01
  year: 2006
  text: 2006-01-19
  day: 19
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2006
Publisher Nature Publishing Group UK
Nature Publishing
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing
– name: Nature Publishing Group
References JK Pfeiffer (BFnature04388_CR16) 2003; 100
E Domingo (BFnature04388_CR5) 1988
S Crotty (BFnature04388_CR13) 2000; 6
DW Gohara (BFnature04388_CR20) 2004; 43
E Domingo (BFnature04388_CR8) 1978; 13
AA Thompson (BFnature04388_CR15) 2004; 23
N Pariente (BFnature04388_CR24) 2003; 77
J Holland (BFnature04388_CR1) 1982; 215
M Eigen (BFnature04388_CR4) 1993; 269
SE Pincus (BFnature04388_CR18) 1986; 57
E Domingo (BFnature04388_CR3) 1997; 51
N Pariente (BFnature04388_CR23) 2001; 75
S Crotty (BFnature04388_CR14) 2001; 98
R Ren (BFnature04388_CR21) 1992; 166
E Domingo (BFnature04388_CR10) 1996; 10
JJ Holland (BFnature04388_CR2) 1992; 176
M Eigen (BFnature04388_CR11) 1988
CK Biebricher (BFnature04388_CR12) 2005; 107
RF Baltera Jr. (BFnature04388_CR17) 1989; 63
JP Anderson (BFnature04388_CR22) 2004; 58
E Domingo (BFnature04388_CR7) 2000; 270
JJ Arnold (BFnature04388_CR19) 2005; 280
JM Coffin (BFnature04388_CR9) 1995; 267
E Domingo (BFnature04388_CR6) 1994
References_xml – volume: 6
  start-page: 1375
  year: 2000
  ident: BFnature04388_CR13
  publication-title: Nature Med.
  doi: 10.1038/82191
– volume: 100
  start-page: 7289
  year: 2003
  ident: BFnature04388_CR16
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1232294100
– volume: 23
  start-page: 3462
  year: 2004
  ident: BFnature04388_CR15
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600357
– start-page: 161
  volume-title: Mutations and Rapid Evolution of RNA Viruses
  year: 1994
  ident: BFnature04388_CR6
– volume: 267
  start-page: 483
  year: 1995
  ident: BFnature04388_CR9
  publication-title: Science
  doi: 10.1126/science.7824947
– volume: 43
  start-page: 5149
  year: 2004
  ident: BFnature04388_CR20
  publication-title: Biochemistry
  doi: 10.1021/bi035429s
– volume: 270
  start-page: 251
  year: 2000
  ident: BFnature04388_CR7
  publication-title: Virology
  doi: 10.1006/viro.2000.0320
– volume: 176
  start-page: 1
  year: 1992
  ident: BFnature04388_CR2
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 269
  start-page: 42
  year: 1993
  ident: BFnature04388_CR4
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0793-42
– volume: 166
  start-page: 747
  year: 1992
  ident: BFnature04388_CR21
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/166.4.747
– volume: 215
  start-page: 1577
  year: 1982
  ident: BFnature04388_CR1
  publication-title: Science
  doi: 10.1126/science.7041255
– volume: 51
  start-page: 151
  year: 1997
  ident: BFnature04388_CR3
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.51.1.151
– volume: 13
  start-page: 735
  year: 1978
  ident: BFnature04388_CR8
  publication-title: Cell
  doi: 10.1016/0092-8674(78)90223-4
– volume: 107
  start-page: 117
  year: 2005
  ident: BFnature04388_CR12
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2004.11.002
– volume: 77
  start-page: 7131
  year: 2003
  ident: BFnature04388_CR24
  publication-title: J. Virol.
  doi: 10.1128/JVI.77.12.7131-7138.2003
– volume-title: RNA Genetics
  year: 1988
  ident: BFnature04388_CR5
– volume: 10
  start-page: 859
  year: 1996
  ident: BFnature04388_CR10
  publication-title: FASEB J.
  doi: 10.1096/fasebj.10.8.8666162
– volume: 98
  start-page: 6895
  year: 2001
  ident: BFnature04388_CR14
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.111085598
– volume: 57
  start-page: 638
  year: 1986
  ident: BFnature04388_CR18
  publication-title: J. Virol.
  doi: 10.1128/JVI.57.2.638-646.1986
– volume: 58
  start-page: 183
  year: 2004
  ident: BFnature04388_CR22
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.58.030603.123649
– start-page: 211
  volume-title: RNA Genetics: Variability of RNA Genomes
  year: 1988
  ident: BFnature04388_CR11
– volume: 280
  start-page: 25706
  year: 2005
  ident: BFnature04388_CR19
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M503444200
– volume: 75
  start-page: 9723
  year: 2001
  ident: BFnature04388_CR23
  publication-title: J. Virol.
  doi: 10.1128/JVI.75.20.9723-9730.2001
– volume: 63
  start-page: 4441
  year: 1989
  ident: BFnature04388_CR17
  publication-title: J. Virol.
  doi: 10.1128/JVI.63.10.4441-4444.1989
SSID ssj0005174
ssj0014407
Score 2.4462836
Snippet Viruses, where wrong is right The replication of RNA viruses is associated with a higher mutation rate than is seen in organisms using DNA as their genetic...
An RNA virus population does not consist of a single genotype; rather, it is an ensemble of related sequences, termed quasispecies. Quasispecies arise from...
SourceID proquest
gale
pubmed
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 344
SubjectTerms Animals
Biological and medical sciences
Biological Evolution
Fundamental and applied biological sciences. Psychology
Genome, Viral
Genomes
Genomics
Growth conditions
HeLa Cells
Humanities and Social Sciences
Humans
Hypotheses
Lethal Dose 50
letter
Mathematical models
Mice
Microbiology
Models, Biological
multidisciplinary
Mutagenesis - genetics
Mutation
Organ Specificity
Pathogenesis
Phenotype
Poliovirus
Poliovirus - genetics
Poliovirus - pathogenicity
Poliovirus - physiology
Population dynamics
Replicative cycle, interference, host-virus relations, pathogenicity, miscellaneous strains
RNA polymerase
Science
Science (multidisciplinary)
Selection, Genetic
Variance analysis
Virology
Virus Replication
Viruses
Title Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population
URI https://link.springer.com/article/10.1038/nature04388
https://www.ncbi.nlm.nih.gov/pubmed/16327776
https://www.proquest.com/docview/204516561
https://www.proquest.com/docview/17097497
https://www.proquest.com/docview/28080096
https://www.proquest.com/docview/70688259
https://www.proquest.com/docview/743404629
Volume 439
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExISmtj4ygbFQuNjSNWS2I2TJzSmlYHEBINJfYvOjltVmpJsbv9_7hKnXaHlJVLra1L7zpc7393vGDuEMNMi06j9Mm360qAYZ-MBMiQR1hQptXuh2uHvF8n5lfw2Gox8bo7zaZWdTmwUdVEZOiM_Jth0QoqJPtU3fWoaRcFV30HjPtsm5DLK6FIjtczw-AuE2ZfnhSI9blEzKQqWrryQvFp-VIPDJRq3vS3WGZ__BE6b99HwMdvxhiQ_aTm_y-7Zco89aBI6jdtju37TOv7BI0sfPWH25xzclIor0T_mRZeSwQufE4NfUofiakIKcOq4b-LDTVXVtoUI54QvcdtWQzj8wIFTmvA1rxedwJ6yq-HZ79Pzvu-z0DfoLc3oPFHLgZAajTOARFsbh0YCgM0sGlQQq1Abk8jCRGA0xIVFWxfNyiiDKE1MKp6xrbIq7QvGQy3B4LIPYomeI_oiAqBQkGqZGDXOioB97BY7Nx6EnHphXOdNMFyk-R3OBOxwQVy32Bvryd4Q13JCsygpXWYCc-fyr78u8xO0RmSSoOsdsPeeaFzhAw346gP82wSAtUJ5sEJp6ulNfmf03cropGXhutv0VoRoOQMlMrTCJD6nk6rc6w2XL6Q8YK8Xo7jhKYoDpa3mDn8fog-Yqc0UMWGFomu6mUJRqyF0fAPGN1FIIaluGUmetxK_nEAiYqUU3v5ttwWWE1jDn_3_TvSAPexOtaLsJdua3c7tK7TzZrrX7Ga8pqcRXYdfemz789nFj8s_mQxXxw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NIcQkhNiAEQabhTYYSNXSxI2TB4QmYGrZHwnYpL4F23GrSlOTza0QH4rvyF3itAu0vO2x9dWpc-fzne_udwC70k9UmCjUfonSLa5RjJNBBxkShUZnMbV7odrh07Ooe8G_9Dv9Ffhd18JQWmWtE0tFneWa7sgPCDadkGLaH4qrFjWNouBq3UGjkopj8-snemz2fe8TsncvCI4-n3_stlxTgZZG12BCl2eKd0Ku0BKRMlLGBL7mUkqTGLQeZCB8pXXEM92WWskgM2jYoQ3VTmQ7jnQc4rx34C6euz5tKNEX84ySv0CfXTmgH8YHFUonRd3ixgHojoEHhbTIkkHVS2ORsftPoLY8_44ewUNnuLLDStLWYcWMN-BemUCq7QasOyVh2b5Dsn77GMzXqbQjKuZEf5xldQoIy1wODn5JHZHzISnckWWuaRDTeV6YCpKcEZ7FdVV9YfEDk4zSki9ZMes89gQuboUFT2F1nI_NM2C-4lLja-8EHD1V9H1CKTMhY8UjLQZJ5sG7-mWn2oGeU--Ny7QMvodxeoMzHuzOiIsK62Mx2SviWkroGWNKzxnKqbVp7_u39BCtHx5F6Op78MYRDXJ8oJau2gH_NgFuNSi3GpS6GF2lN0ZfN0aHFQsXTbPdEKL5CkSYoNXH8Tm1VKVOT9l0tqs82JmNooKhqJEcm3xq8fc--pyJWE4REDYpusLLKQS1NkJH2wO2jIKHnOqkkWSzkvj5AqIwEELg9Hv1FpgvYAF_nv93oTtwv3t-epKe9M6Ot2CtvlFrJy9gdXI9NS_Rxpyo7XJnM_hx26rkD0Umklc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIRASQmzAKIPNQhsfk6omsRsnDwhNjGplMPE1qW_Bdtyq0tRkcyvEn8Z_x13jtCu0vO2x9dWpc-fzne_udwB7Kkg1TzVqv1SbpjAoxmm_jQyJuTV5Qu1eqHb402l8fCY-9Nq9Nfhd18JQWmWtE6eKOi8M3ZG3CDadkGLCVt9nRXw-6rwtL5rUQIoCrXU3jUpCTuyvn-i9uTfdI2T1fhR13n9_d9z0DQaaBt2EMV2kadHmQqNVolSsrY0CI5RSNrVoSahIBtqYWOQmVEarKLdo5KE9FaYqTGKTcJz3BtyUvB3SFpM9Oc8u-QsA2pcGBjxpVYidFIFLFg5DfyTcLZVD9vSrvhrLDN9_grbTs7BzH-55I5YdVlK3AWt2tAm3psmkxm3ChlcYjr3yqNavH4D9MlFuSIWd6JuzvE4HYbnPx8EvqTtyMSDlO3TMNxBipihKW8GTM8K2uKwqMRx-YIpRivI5K2ddyB7C2bWw4BGsj4qRfQws0EIZfO3tSKDXin4QVyqXKtEiNrKf5g04qF92ZjwAOvXhOM-mgXieZFc404C9GXFZ4X4sJ3tOXMsISWNEQjlQE-ey7rev2SFaQiKO0e1vwEtP1C_wgUb5ygf82wS-tUC5vUBpyuFFdmX0xcLooGLhsml2FoRovgLJU7QABT6nlqrM6yyXzXZYA3Zno6hsKIKkRraYOPx9gP5nKldTRIRTim7xagpJbY7Q6W4AW0UhuKCaaSTZqiR-voCYR1JKnH6_3gLzBSzhz5P_LnQXbqMSyT52T0-24U59uRamT2F9fDmxz9DcHOud6cZm8OO6Nckf_gqWjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasispecies+diversity+determines+pathogenesis+through+cooperative+interactions+in+a+viral+population&rft.jtitle=Nature+%28London%29&rft.au=Vignuzzi%2C+Marco&rft.au=Stone%2C+Jeffrey+K&rft.au=Arnold%2C+Jamie+J&rft.au=Cameron%2C+Craig+E&rft.date=2006-01-19&rft.eissn=1476-4687&rft.volume=439&rft.issue=7074&rft.spage=344&rft_id=info:doi/10.1038%2Fnature04388&rft_id=info%3Apmid%2F16327776&rft.externalDocID=16327776
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon