Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons
Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena 1 , 2 that have sparked renewed interest in carbon-based spintronics 3 , 4 . Zigzag graphene nanoribbons (ZGNRs)—quasi one-dimensional semiconducting strips of graphene bounded by parall...
Saved in:
Published in | Nature (London) Vol. 600; no. 7890; pp. 647 - 652 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.12.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena
1
,
2
that have sparked renewed interest in carbon-based spintronics
3
,
4
. Zigzag graphene nanoribbons (ZGNRs)—quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges—host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width
1
,
2
,
5
. Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases
6
–
8
and even metallic zero mode bands
9
, the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support
10
–
15
. Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices
15
–
21
.
Decoupling spin-polarized edge states using substitutional N-atom dopants along the edges of a zigzag graphene nanoribbon (ZGNR) reveals giant spin splitting of a N-dopant edge state, and supports the predicted emergent magnetic order in ZGNRs. |
---|---|
AbstractList | Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena that have sparked renewed interest in carbon-based spintronics. Zigzag graphene nanoribbons (ZGNRs)-quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges-host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width. Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases and even metallic zero mode bands, the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support. Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Finally, our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices. Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena.sup.1,2 that have sparked renewed interest in carbon-based spintronics.sup.3,4. Zigzag graphene nanoribbons (ZGNRs)--quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges--host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width.sup.1,2,5. Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases.sup.6-8 and even metallic zero mode bands.sup.9, the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support.sup.10-15. Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices.sup.15-21. Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena 1 , 2 that have sparked renewed interest in carbon-based spintronics 3 , 4 . Zigzag graphene nanoribbons (ZGNRs)—quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges—host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width 1 , 2 , 5 . Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases 6 – 8 and even metallic zero mode bands 9 , the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support 10 – 15 . Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices 15 – 21 . Decoupling spin-polarized edge states using substitutional N-atom dopants along the edges of a zigzag graphene nanoribbon (ZGNR) reveals giant spin splitting of a N-dopant edge state, and supports the predicted emergent magnetic order in ZGNRs. Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena that have sparked renewed interest in carbon-based spintronics . Zigzag graphene nanoribbons (ZGNRs)-quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges-host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width . Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases and even metallic zero mode bands , the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support . Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices . Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena1,2 that have sparked renewed interest in carbon-based spintronics3,4. Zigzag graphene nanoribbons (ZGNRs)-quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges-host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width1,2,5. Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases6-8 and even metallic zero mode bands9, the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support10-15. Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices15-21. Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena.sup.1,2 that have sparked renewed interest in carbon-based spintronics.sup.3,4. Zigzag graphene nanoribbons (ZGNRs)--quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges--host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width.sup.1,2,5. Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases.sup.6-8 and even metallic zero mode bands.sup.9, the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support.sup.10-15. Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices.sup.15-21. Decoupling spin-polarized edge states using substitutional N-atom dopants along the edges of a zigzag graphene nanoribbon (ZGNR) reveals giant spin splitting of a N-dopant edge state, and supports the predicted emergent magnetic order in ZGNRs. Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena1,2 that have sparked renewed interest in carbon-based spintronics3,4. Zigzag graphene nanoribbons (ZGNRs)-quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges-host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width1,2,5. Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases6-8 and even metallic zero mode bands9, the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support10-15. Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices15-21.Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena1,2 that have sparked renewed interest in carbon-based spintronics3,4. Zigzag graphene nanoribbons (ZGNRs)-quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges-host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width1,2,5. Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases6-8 and even metallic zero mode bands9, the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support10-15. Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices15-21. |
Audience | Academic |
Author | Louie, Steven G. Delgado, Aidan Brooks, Erin Piskun, Ilya Fischer, Felix R. Zhao, Fangzhou Zhu, Junmian Blackwell, Raymond E. Wang, Shenkai Lee, Yea-Lee |
Author_xml | – sequence: 1 givenname: Raymond E. surname: Blackwell fullname: Blackwell, Raymond E. organization: Department of Chemistry, University of California – sequence: 2 givenname: Fangzhou surname: Zhao fullname: Zhao, Fangzhou organization: Department of Physics, University of California, Materials Sciences Division, Lawrence Berkeley National Laboratory – sequence: 3 givenname: Erin orcidid: 0000-0002-5834-0679 surname: Brooks fullname: Brooks, Erin organization: Department of Chemistry, University of California – sequence: 4 givenname: Junmian surname: Zhu fullname: Zhu, Junmian organization: Department of Chemistry, University of California – sequence: 5 givenname: Ilya surname: Piskun fullname: Piskun, Ilya organization: Department of Chemistry, University of California – sequence: 6 givenname: Shenkai surname: Wang fullname: Wang, Shenkai organization: Department of Chemistry, University of California – sequence: 7 givenname: Aidan surname: Delgado fullname: Delgado, Aidan organization: Department of Chemistry, University of California – sequence: 8 givenname: Yea-Lee surname: Lee fullname: Lee, Yea-Lee organization: Department of Physics, University of California – sequence: 9 givenname: Steven G. orcidid: 0000-0003-0622-0170 surname: Louie fullname: Louie, Steven G. email: sglouie@berkeley.edu organization: Department of Physics, University of California, Materials Sciences Division, Lawrence Berkeley National Laboratory – sequence: 10 givenname: Felix R. orcidid: 0000-0003-4723-3111 surname: Fischer fullname: Fischer, Felix R. email: ffischer@berkeley.edu organization: Department of Chemistry, University of California, Materials Sciences Division, Lawrence Berkeley National Laboratory, Kavli Energy NanoScience Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34937899$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1900420$$D View this record in Osti.gov |
BookMark | eNp90k1v1DAQBmALFdEP-AMcUNReQCjFdhw7Pq5WfFRUINEijpbjTFJXWTu1vRLbX4-XLdCtliqHKNHzjpOZOUR7zjtA6CXBpwRXzbvISN3wElNSYkYxKVdP0AFhgpeMN2IPHWBMmxI3Fd9HhzFeY4xrItgztF8xWYlGygP0-WKyrojTaFOybih8X3R-0i4V0A1QxKQTFFks9OAgWVPc2uFWD8UQ9HQFDgqnnQ-2bb2Lz9HTXo8RXtzdj9D3D-8v55_K868fz-az89IIwlIJsiWVBiyoIB3UlDMuNcO0Fj0hpjGEYMFo2-ZHI2uNWcU1ZYxUtBMgDa6O0PGmro_JqmhsAnNlvHNgkiISr5uR0esNmoK_WUJMamGjgXHUDvwyKspzQUmIrDM9eUCv_TK4_AtrxSkVkt1Tgx5BWdf7FLRZF1Wz3G4upWh4VuUONeROBT3m8fU2v97yxzu8meyNuo9Od6B8dbCwZmfVN1uBbBL8TINexqjOLr5t27f_t7PLH_Mv2_rVXa-W7QI6NQW70GGl_mxUBnQDTPAxBuj_EoLVem3VZm1VXlv1e23VKoeaB6E8VJ1s_pSg7fh4tNpEYz7HDRD-De-R1C8uHfqC |
CitedBy_id | crossref_primary_10_1021_jacs_2c10711 crossref_primary_10_1038_s41586_024_08296_x crossref_primary_10_1021_jacs_3c00563 crossref_primary_10_1038_s42004_024_01222_2 crossref_primary_10_1039_D3NH00233K crossref_primary_10_1016_j_physe_2022_115512 crossref_primary_10_1021_jacs_4c16328 crossref_primary_10_1002_EXP_20210233 crossref_primary_10_1021_prechem_3c00116 crossref_primary_10_1021_acs_nanolett_3c04675 crossref_primary_10_1002_adfm_202408213 crossref_primary_10_1002_ange_202307884 crossref_primary_10_1021_acsnano_3c08089 crossref_primary_10_1016_j_apsusc_2024_160825 crossref_primary_10_1002_pssb_202400250 crossref_primary_10_1103_PhysRevB_108_045401 crossref_primary_10_1038_s44160_025_00743_5 crossref_primary_10_1103_PhysRevB_107_245417 crossref_primary_10_1038_s41598_024_62624_9 crossref_primary_10_1002_cjoc_202300614 crossref_primary_10_1103_PhysRevB_110_195411 crossref_primary_10_1038_s41467_024_50086_6 crossref_primary_10_1039_D4TC05082G crossref_primary_10_1021_acsnano_4c12313 crossref_primary_10_1016_j_chempr_2023_06_017 crossref_primary_10_1038_s41586_024_08563_x crossref_primary_10_1002_anie_202307884 crossref_primary_10_1126_science_abq6948 crossref_primary_10_1021_jacs_3c05755 crossref_primary_10_1021_jacs_4c18123 crossref_primary_10_1016_j_carbon_2024_119708 crossref_primary_10_1038_s41427_024_00583_3 crossref_primary_10_1038_s41565_024_01805_z crossref_primary_10_1021_acs_jpcc_3c02227 crossref_primary_10_1103_PhysRevLett_129_037701 crossref_primary_10_1103_PhysRevB_107_205418 crossref_primary_10_1021_acs_jpcc_4c05949 crossref_primary_10_1038_s41467_023_42436_7 crossref_primary_10_1021_acs_nanolett_3c00771 crossref_primary_10_1002_ange_202312610 crossref_primary_10_1016_j_carbon_2023_118688 crossref_primary_10_1039_D2CP03379H crossref_primary_10_1002_ejoc_202101428 crossref_primary_10_1002_smtd_202300768 crossref_primary_10_2174_1872210518666230911150337 crossref_primary_10_1002_smll_202308430 crossref_primary_10_1002_smtd_202300401 crossref_primary_10_1016_j_mtquan_2025_100028 crossref_primary_10_1021_acs_jpcc_3c06938 crossref_primary_10_1021_acs_nanolett_4c00920 crossref_primary_10_1039_D2PY00809B crossref_primary_10_1021_acsnano_3c09825 crossref_primary_10_1002_bio_4334 crossref_primary_10_1007_s43630_022_00235_x crossref_primary_10_1021_acs_nanolett_3c03534 crossref_primary_10_1103_PhysRevLett_133_036401 crossref_primary_10_1002_aelm_202300733 crossref_primary_10_1364_OE_527710 crossref_primary_10_1039_D2NR05443D crossref_primary_10_1021_acs_jpclett_3c00344 crossref_primary_10_1039_D4RA00806E crossref_primary_10_1088_2516_1075_ad159f crossref_primary_10_1021_jacs_3c01576 crossref_primary_10_1103_PhysRevB_106_155122 crossref_primary_10_7498_aps_71_20220895 crossref_primary_10_1002_anie_202312610 crossref_primary_10_1007_s44214_024_00050_8 crossref_primary_10_1021_acs_jpcc_2c07450 crossref_primary_10_1039_D3CP01436C crossref_primary_10_1063_5_0086377 crossref_primary_10_1021_acsnano_3c05974 crossref_primary_10_1021_acs_chemmater_3c02783 crossref_primary_10_1039_D5CP00069F crossref_primary_10_1103_PhysRevB_110_144417 crossref_primary_10_1039_D4NR00058G crossref_primary_10_1021_acs_chemmater_3c03073 crossref_primary_10_1039_D3NR04656G crossref_primary_10_1039_D2CP06025F crossref_primary_10_1021_acs_jpcc_4c08572 crossref_primary_10_1021_acs_nanolett_4c01476 crossref_primary_10_1088_1361_648X_ac8a7f crossref_primary_10_1039_D3CC01311A crossref_primary_10_1038_d41586_021_03768_w crossref_primary_10_1038_s41467_024_53927_6 crossref_primary_10_1088_2752_5724_ac8a63 crossref_primary_10_1002_aenm_202401529 crossref_primary_10_1002_adma_202306311 crossref_primary_10_1039_D4EN00340C crossref_primary_10_1063_5_0186359 crossref_primary_10_3390_nano13243085 crossref_primary_10_1021_acs_jpclett_2c02810 crossref_primary_10_1038_s41598_023_31573_0 crossref_primary_10_2139_ssrn_4096965 crossref_primary_10_1063_5_0098639 crossref_primary_10_1038_s41557_024_01453_9 crossref_primary_10_1038_s42004_024_01344_7 crossref_primary_10_1002_adma_202110099 crossref_primary_10_1002_ajoc_202400748 crossref_primary_10_1016_j_jmmm_2023_170662 crossref_primary_10_1039_D2CP03001B crossref_primary_10_1016_j_cej_2023_148438 crossref_primary_10_1016_j_susc_2022_122180 crossref_primary_10_1016_j_revip_2023_100082 crossref_primary_10_1016_j_jallcom_2023_170989 crossref_primary_10_1007_s12274_022_5247_9 crossref_primary_10_1002_ange_202306938 crossref_primary_10_1021_acsnano_3c06006 crossref_primary_10_1021_acsnano_3c06128 crossref_primary_10_1021_acs_nanolett_3c01940 crossref_primary_10_1038_s41467_023_36613_x crossref_primary_10_1103_PhysRevB_109_075117 crossref_primary_10_1021_acs_jctc_4c00933 crossref_primary_10_1021_acsnano_3c04581 crossref_primary_10_1016_j_apsusc_2022_155999 crossref_primary_10_1063_5_0078234 crossref_primary_10_1021_jacs_2c11799 crossref_primary_10_3390_mi14101889 crossref_primary_10_1039_D4TA05960C crossref_primary_10_1021_jacs_2c05670 crossref_primary_10_1016_j_jmmm_2024_172118 crossref_primary_10_1002_adom_202500152 crossref_primary_10_1088_1402_4896_ad9a0e crossref_primary_10_1002_anie_202306938 crossref_primary_10_1021_acsaelm_4c01811 crossref_primary_10_1007_s12274_023_5605_2 crossref_primary_10_1016_j_cclet_2024_110100 crossref_primary_10_1021_jacs_2c09637 crossref_primary_10_1002_chem_202404189 crossref_primary_10_1557_s43577_023_00608_2 |
Cites_doi | 10.1103/PhysRevB.23.5048 10.1103/PhysRevLett.99.186801 10.1038/s41928-019-0273-7 10.1038/s41586-018-0375-9 10.1038/nmat2378 10.1002/anie.202000488 10.1038/nphys1991 10.1103/PhysRevB.98.214204 10.1103/PhysRevLett.119.076401 10.1039/C4RA08677E 10.1016/j.cpc.2011.12.006 10.1103/PhysRevLett.62.1201 10.1038/s41524-017-0036-9 10.1038/nature13831 10.1038/s41586-018-0376-8 10.1038/nature17151 10.1126/science.aay3588 10.1038/nature05180 10.1038/srep07634 10.1016/j.carbon.2017.08.018 10.1103/PhysRevB.79.165440 10.1038/nature05833 10.1038/natrevmats.2018.9 10.1038/nnano.2014.214 10.1016/j.apsusc.2020.146435 10.1143/JPSJ.65.1920 10.1109/TED.2011.2173498 10.1021/jacs.8b10407 10.1038/ncomms5311 10.1103/PhysRevB.34.5390 10.1088/0953-8984/21/39/395502 10.1021/acs.jpca.0c10731 10.1088/1367-2630/11/12/123005 10.1038/d41586-018-05240-8 10.1038/srep02030 10.1021/acsnano.1c00695 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021 2021. The Author(s), under exclusive licence to Springer Nature Limited. COPYRIGHT 2021 Nature Publishing Group Copyright Nature Publishing Group Dec 23-Dec 30, 2021 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021 – notice: 2021. The Author(s), under exclusive licence to Springer Nature Limited. – notice: COPYRIGHT 2021 Nature Publishing Group – notice: Copyright Nature Publishing Group Dec 23-Dec 30, 2021 |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) |
CorporateAuthor_xml | – sequence: 0 name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 OIOZB OTOTI |
DOI | 10.1038/s41586-021-04201-y |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Agricultural Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 652 |
ExternalDocumentID | 1900420 A687699786 34937899 10_1038_s41586_021_04201_y |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIH HHS grantid: S10 OD024998 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAVBQ AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS ABAWZ ABDBF ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADXHL ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AGQPQ AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC CGR CUY CVF DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC ECM EIF EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 FAC I-F J5H L-9 LGEZI LOTEE MVM N4W NADUK NEJ NFIDA NPM NXXTH ODYON OHT P-O PEA PJZUB PM3 PPXIY PQGLB PV9 QS- R4F RHI SKT SV3 TH9 TUD TUS UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZY4 ~8M ~G0 AEIIB PMFND 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 AGEZK B-7 OIOZB OTOTI |
ID | FETCH-LOGICAL-c714t-e9b13ae07271de526469a40257f11c8c110742bb7f1c95a0436a244132d7e9c03 |
IEDL.DBID | 8FG |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Dec 05 06:26:31 EST 2024 Wed Jul 30 11:19:50 EDT 2025 Fri Jul 25 09:02:59 EDT 2025 Tue Jun 17 21:28:50 EDT 2025 Thu Jun 12 23:42:42 EDT 2025 Tue Jun 10 15:32:08 EDT 2025 Tue Jun 10 20:14:17 EDT 2025 Fri Jun 27 04:10:34 EDT 2025 Fri Jun 27 04:17:09 EDT 2025 Mon Jul 21 05:59:09 EDT 2025 Tue Jul 01 02:32:32 EDT 2025 Thu Apr 24 22:54:04 EDT 2025 Fri Feb 21 02:37:10 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7890 |
Language | English |
License | 2021. The Author(s), under exclusive licence to Springer Nature Limited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c714t-e9b13ae07271de526469a40257f11c8c110742bb7f1c95a0436a244132d7e9c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 National Science Foundation (NSF) USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division AC02-05CH11231; N00014-19-1-2503; DMR-1839098; DMR-1926004; ECCS-0939514; N00014-16-1-2921; DGE-11064000; S10OD024998 US Department of the Navy, Office of Naval Research (ONR) National Institutes of Health (NIH) Center for Energy Efficient Electronics Science |
ORCID | 0000-0003-0622-0170 0000-0002-5834-0679 0000-0003-4723-3111 0000000306220170 0000000347233111 0000000258340679 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1900420 |
PMID | 34937899 |
PQID | 2616227945 |
PQPubID | 40569 |
PageCount | 6 |
ParticipantIDs | osti_scitechconnect_1900420 proquest_miscellaneous_2613291195 proquest_journals_2616227945 gale_infotracmisc_A687699786 gale_infotracgeneralonefile_A687699786 gale_infotraccpiq_687699786 gale_infotracacademiconefile_A687699786 gale_incontextgauss_ISR_A687699786 gale_incontextgauss_ATWCN_A687699786 pubmed_primary_34937899 crossref_primary_10_1038_s41586_021_04201_y crossref_citationtrail_10_1038_s41586_021_04201_y springer_journals_10_1038_s41586_021_04201_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-23 |
PublicationDateYYYYMMDD | 2021-12-23 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – sequence: 0 name: Nature Publishing Group – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Lopez-Urias (CR21) 2020; 521 Son, Cohen, Louie (CR2) 2006; 444 Han, Kawakami, Gmitra, Fabian (CR3) 2014; 9 Ruffieux (CR15) 2016; 531 Guo (CR22) 2009; 11 Giannozzi (CR35) 2009; 21 Yang, Park, Son, Cohen, Louie (CR5) 2007; 99 Tao (CR12) 2011; 7 Fujita, Wakabayashi, Nakada, Kusakabe (CR1) 1996; 65 Mandal, Sarkar, Pramanik, Sarkar (CR24) 2014; 4 Deslippe (CR36) 2012; 183 Rizzo (CR6) 2018; 560 Cao, Zhao, Louie (CR8) 2017; 119 CR30 Perdew, Zunger (CR31) 1981; 23 Beyer (CR16) 2019; 141 Bullard, Girao, Owens, Shelton, Meunier (CR4) 2015; 5 Rizzo (CR9) 2020; 369 Dery (CR26) 2012; 59 Zhang, Wei (CR29) 2017; 3 Lee, Cho (CR10) 2009; 79 Luis, Coronado (CR23) 2018; 557 Lieb (CR33) 1989; 62 Ahn, Wong, Pop (CR28) 2018; 3 Wang, Zhu, Blackwell, Fischer (CR34) 2021; 125 Dery, Dalal, Cywinski, Sham (CR25) 2007; 447 Ritter, Lyding (CR11) 2009; 8 Fu (CR17) 2020; 59 Shinde (CR19) 2017; 124 Salemi, Lherbier, Charlier (CR20) 2018; 98 Li, Chen, Weinert, Li (CR13) 2014; 5 Magda (CR14) 2014; 514 Li, Zhou, Cabrera, Chen (CR18) 2013; 3 Lin, Yang, Wang, Zhao (CR27) 2019; 2 Hybertsen, Louie (CR32) 1986; 34 Groning (CR7) 2018; 560 M Fujita (4201_CR1) 1996; 65 J Deslippe (4201_CR36) 2012; 183 Y-W Son (4201_CR2) 2006; 444 P Ruffieux (4201_CR15) 2016; 531 H Dery (4201_CR26) 2012; 59 4201_CR30 G Lee (4201_CR10) 2009; 79 JP Perdew (4201_CR31) 1981; 23 G-P Guo (4201_CR22) 2009; 11 B Mandal (4201_CR24) 2014; 4 MS Hybertsen (4201_CR32) 1986; 34 PP Shinde (4201_CR19) 2017; 124 W Han (4201_CR3) 2014; 9 D-B Zhang (4201_CR29) 2017; 3 O Groning (4201_CR7) 2018; 560 SK Wang (4201_CR34) 2021; 125 P Giannozzi (4201_CR35) 2009; 21 EC Ahn (4201_CR28) 2018; 3 Y Li (4201_CR18) 2013; 3 EH Lieb (4201_CR33) 1989; 62 YY Li (4201_CR13) 2014; 5 GZ Magda (4201_CR14) 2014; 514 L Yang (4201_CR5) 2007; 99 C Tao (4201_CR12) 2011; 7 H Dery (4201_CR25) 2007; 447 DJ Rizzo (4201_CR9) 2020; 369 F Lopez-Urias (4201_CR21) 2020; 521 F Luis (4201_CR23) 2018; 557 D Beyer (4201_CR16) 2019; 141 L Salemi (4201_CR20) 2018; 98 KA Ritter (4201_CR11) 2009; 8 DJ Rizzo (4201_CR6) 2018; 560 T Cao (4201_CR8) 2017; 119 X Lin (4201_CR27) 2019; 2 Z Bullard (4201_CR4) 2015; 5 Y Fu (4201_CR17) 2020; 59 34937891 - Nature. 2021 Dec;600(7890):613-614 |
References_xml | – volume: 23 start-page: 5048 year: 1981 end-page: 5079 ident: CR31 article-title: Self-interaction correction to density-functional approximations for many-electron systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.23.5048 – volume: 99 start-page: 186801 year: 2007 ident: CR5 article-title: Quasiparticle energies and band gaps in graphene nanoribbons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.186801 – volume: 2 start-page: 274 year: 2019 end-page: 283 ident: CR27 article-title: Two-dimensional spintronics for low-power electronics publication-title: Nat. Electron. doi: 10.1038/s41928-019-0273-7 – volume: 560 start-page: 209 year: 2018 end-page: 213 ident: CR7 article-title: Engineering of robust topological quantum phases in graphene nanoribbons publication-title: Nature doi: 10.1038/s41586-018-0375-9 – volume: 8 start-page: 235 year: 2009 end-page: 242 ident: CR11 article-title: The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons publication-title: Nat. Mater. doi: 10.1038/nmat2378 – volume: 59 start-page: 8873 year: 2020 end-page: 8879 ident: CR17 article-title: On-surface synthesis of NBN-doped zigzag-edged graphene nanoribbons publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202000488 – ident: CR30 – volume: 7 start-page: 616 year: 2011 end-page: 620 ident: CR12 article-title: Spatially resolving edge states of chiral graphene nanoribbons publication-title: Nat. Phys. doi: 10.1038/nphys1991 – volume: 98 start-page: 214204 year: 2018 ident: CR20 article-title: Spin-dependent properties in zigzag graphene nanoribbons with phenyl-edge defects publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.214204 – volume: 119 start-page: 076401 year: 2017 ident: CR8 article-title: Topological phases in graphene nanoribbons: junction states, spin centers, and quantum spin chains publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.076401 – volume: 4 start-page: 49946 year: 2014 end-page: 49952 ident: CR24 article-title: Doped defective graphene nanoribbons: a new class of materials with novel spin filtering properties publication-title: RSC Adv. doi: 10.1039/C4RA08677E – volume: 183 start-page: 1269 year: 2012 end-page: 1289 ident: CR36 article-title: BerkeleyGW: a massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2011.12.006 – volume: 62 start-page: 1201 year: 1989 end-page: 1204 ident: CR33 article-title: Two theorems on the Hubbard model publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.62.1201 – volume: 3 start-page: 32 year: 2017 ident: CR29 article-title: Inhomogeneous strain-induced half-metallicity in bent zigzag graphene nanoribbons publication-title: NPJ Comput. Mater. doi: 10.1038/s41524-017-0036-9 – volume: 514 start-page: 608 year: 2014 end-page: 611 ident: CR14 article-title: Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons publication-title: Nature doi: 10.1038/nature13831 – volume: 560 start-page: 204 year: 2018 end-page: 208 ident: CR6 article-title: Topological band engineering of graphene nanoribbons publication-title: Nature doi: 10.1038/s41586-018-0376-8 – volume: 531 start-page: 489 year: 2016 end-page: 492 ident: CR15 article-title: On-surface synthesis of graphene nanoribbons with zigzag edge topology publication-title: Nature doi: 10.1038/nature17151 – volume: 369 start-page: 1597 year: 2020 end-page: 1603 ident: CR9 article-title: Inducing metallicity in graphene nanoribbons via zero-mode superlattices publication-title: Science doi: 10.1126/science.aay3588 – volume: 444 start-page: 347 year: 2006 end-page: 349 ident: CR2 article-title: Half-metallic graphene nanoribbons publication-title: Nature doi: 10.1038/nature05180 – volume: 5 year: 2015 ident: CR4 article-title: Improved all-carbon spintronic device design publication-title: Sci. Rep. doi: 10.1038/srep07634 – volume: 124 start-page: 123 year: 2017 end-page: 132 ident: CR19 article-title: Stability of edge magnetism in functionalized zigzag graphene nanoribbons publication-title: Carbon doi: 10.1016/j.carbon.2017.08.018 – volume: 79 start-page: 165440 year: 2009 ident: CR10 article-title: Electronic structures of zigzag graphene nanoribbons with edge hydrogenation and oxidation publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.165440 – volume: 447 start-page: 573 year: 2007 end-page: 576 ident: CR25 article-title: Spin-based logic in semiconductors for reconfigurable large-scale circuits publication-title: Nature doi: 10.1038/nature05833 – volume: 3 start-page: 18009 year: 2018 ident: CR28 article-title: Carbon nanomaterials for non-volatile memories publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2018.9 – volume: 9 start-page: 794 year: 2014 end-page: 807 ident: CR3 article-title: Graphene spintronics publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.214 – volume: 521 start-page: 146435 year: 2020 ident: CR21 article-title: Spin-dependent band-gap driven by nitrogen and oxygen functional groups in zigzag graphene nanoribbons publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146435 – volume: 65 start-page: 1920 year: 1996 end-page: 1923 ident: CR1 article-title: Peculiar localized state at zigzag graphite edge publication-title: J. Phys. Soc. Japan doi: 10.1143/JPSJ.65.1920 – volume: 59 start-page: 259 year: 2012 end-page: 262 ident: CR26 article-title: Nanospintronics based on magnetologic gates publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2011.2173498 – volume: 141 start-page: 2843 year: 2019 end-page: 2846 ident: CR16 article-title: Graphene nanoribbons derived from zigzag edge-encased poly(para-2,9-dibenzo[bc,kl]coronenylene) polymer chains publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10407 – volume: 5 start-page: 4311 year: 2014 ident: CR13 article-title: Direct experimental determination of onset of electron-electron interactions in gap opening of zigzag graphene nanoribbons publication-title: Nat. Comm. doi: 10.1038/ncomms5311 – volume: 34 start-page: 5390 year: 1986 end-page: 5413 ident: CR32 article-title: Electron correlation in semiconductors and insulators — band gaps and quasiparticle energies publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.34.5390 – volume: 21 start-page: 395502 year: 2009 ident: CR35 article-title: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials publication-title: J. Phys. Condens. Mat. doi: 10.1088/0953-8984/21/39/395502 – volume: 125 start-page: 1384 year: 2021 end-page: 1390 ident: CR34 article-title: Automated tip conditioning for scanning tunnelling spectroscopy publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.0c10731 – volume: 11 start-page: 123005 year: 2009 ident: CR22 article-title: Quantum computation with graphene nanoribbon publication-title: New J. Phys. doi: 10.1088/1367-2630/11/12/123005 – volume: 557 start-page: 645 year: 2018 end-page: 647 ident: CR23 article-title: Spinning on the edge of graphene publication-title: Nature doi: 10.1038/d41586-018-05240-8 – volume: 3 year: 2013 ident: CR18 article-title: Preserving the edge magnetism of zigzag graphene nanoribbons by ethylene termination: insight by Clar’s rule publication-title: Sci. Rep. doi: 10.1038/srep02030 – volume: 59 start-page: 8873 year: 2020 ident: 4201_CR17 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202000488 – volume: 369 start-page: 1597 year: 2020 ident: 4201_CR9 publication-title: Science doi: 10.1126/science.aay3588 – volume: 23 start-page: 5048 year: 1981 ident: 4201_CR31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.23.5048 – volume: 7 start-page: 616 year: 2011 ident: 4201_CR12 publication-title: Nat. Phys. doi: 10.1038/nphys1991 – volume: 444 start-page: 347 year: 2006 ident: 4201_CR2 publication-title: Nature doi: 10.1038/nature05180 – volume: 34 start-page: 5390 year: 1986 ident: 4201_CR32 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.34.5390 – volume: 119 start-page: 076401 year: 2017 ident: 4201_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.076401 – volume: 79 start-page: 165440 year: 2009 ident: 4201_CR10 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.165440 – volume: 2 start-page: 274 year: 2019 ident: 4201_CR27 publication-title: Nat. Electron. doi: 10.1038/s41928-019-0273-7 – volume: 3 start-page: 32 year: 2017 ident: 4201_CR29 publication-title: NPJ Comput. Mater. doi: 10.1038/s41524-017-0036-9 – volume: 62 start-page: 1201 year: 1989 ident: 4201_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.62.1201 – volume: 8 start-page: 235 year: 2009 ident: 4201_CR11 publication-title: Nat. Mater. doi: 10.1038/nmat2378 – volume: 183 start-page: 1269 year: 2012 ident: 4201_CR36 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2011.12.006 – volume: 5 year: 2015 ident: 4201_CR4 publication-title: Sci. Rep. doi: 10.1038/srep07634 – volume: 560 start-page: 209 year: 2018 ident: 4201_CR7 publication-title: Nature doi: 10.1038/s41586-018-0375-9 – ident: 4201_CR30 doi: 10.1021/acsnano.1c00695 – volume: 3 start-page: 18009 year: 2018 ident: 4201_CR28 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2018.9 – volume: 98 start-page: 214204 year: 2018 ident: 4201_CR20 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.214204 – volume: 4 start-page: 49946 year: 2014 ident: 4201_CR24 publication-title: RSC Adv. doi: 10.1039/C4RA08677E – volume: 21 start-page: 395502 year: 2009 ident: 4201_CR35 publication-title: J. Phys. Condens. Mat. doi: 10.1088/0953-8984/21/39/395502 – volume: 531 start-page: 489 year: 2016 ident: 4201_CR15 publication-title: Nature doi: 10.1038/nature17151 – volume: 11 start-page: 123005 year: 2009 ident: 4201_CR22 publication-title: New J. Phys. doi: 10.1088/1367-2630/11/12/123005 – volume: 124 start-page: 123 year: 2017 ident: 4201_CR19 publication-title: Carbon doi: 10.1016/j.carbon.2017.08.018 – volume: 9 start-page: 794 year: 2014 ident: 4201_CR3 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.214 – volume: 560 start-page: 204 year: 2018 ident: 4201_CR6 publication-title: Nature doi: 10.1038/s41586-018-0376-8 – volume: 447 start-page: 573 year: 2007 ident: 4201_CR25 publication-title: Nature doi: 10.1038/nature05833 – volume: 141 start-page: 2843 year: 2019 ident: 4201_CR16 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10407 – volume: 59 start-page: 259 year: 2012 ident: 4201_CR26 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2011.2173498 – volume: 99 start-page: 186801 year: 2007 ident: 4201_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.186801 – volume: 3 year: 2013 ident: 4201_CR18 publication-title: Sci. Rep. doi: 10.1038/srep02030 – volume: 5 start-page: 4311 year: 2014 ident: 4201_CR13 publication-title: Nat. Comm. doi: 10.1038/ncomms5311 – volume: 125 start-page: 1384 year: 2021 ident: 4201_CR34 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.0c10731 – volume: 557 start-page: 645 year: 2018 ident: 4201_CR23 publication-title: Nature doi: 10.1038/d41586-018-05240-8 – volume: 65 start-page: 1920 year: 1996 ident: 4201_CR1 publication-title: J. Phys. Soc. Japan doi: 10.1143/JPSJ.65.1920 – volume: 514 start-page: 608 year: 2014 ident: 4201_CR14 publication-title: Nature doi: 10.1038/nature13831 – volume: 521 start-page: 146435 year: 2020 ident: 4201_CR21 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146435 – reference: 34937891 - Nature. 2021 Dec;600(7890):613-614 |
SSID | ssj0005174 |
Score | 2.6786175 |
Snippet | Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena
1
,
2
that have sparked renewed interest in... Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena that have sparked renewed interest in... Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena.sup.1,2 that have sparked renewed interest in... Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena1,2 that have sparked renewed interest in... Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena that have sparked renewed interest in... |
SourceID | osti proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 647 |
SubjectTerms | 119/118 142/136 639/638/298/920 639/638/542/968 639/766/119/997 639/925/918/1052 Adsorption Analysis Antiferromagnetism Carbon Chemical properties Dopants Electron spin Electron states electronic properties and devices Electronics Ferromagnetism First principles Functional integration Geometry Graphene Graphite - chemistry Humanities and Social Sciences Hybridization Hydrogen magnetic materials Magnetic properties magnetic properties and materials Magnetics MATERIALS SCIENCE Microscopy multidisciplinary Nanoribbons Nanotechnology Nanotubes, Carbon - chemistry Nitrogen Particle spin scanning probe microscopy Science Science (multidisciplinary) Spectroscopy Spectrum analysis Splitting Structure Superlattices Topography |
Title | Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons |
URI | https://link.springer.com/article/10.1038/s41586-021-04201-y https://www.ncbi.nlm.nih.gov/pubmed/34937899 https://www.proquest.com/docview/2616227945 https://www.proquest.com/docview/2613291195 https://www.osti.gov/servlets/purl/1900420 |
Volume | 600 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFD5inZB4Qdu4ZRuVQRMXsWhJnOsTKtXKAFGhXUTfLMdxqkqQdKR92H4957huS6DsJVLkEyc5Plf7-DPAUYJ-QwWFdnXCAzeMg8yVXHquLEMu00QFiYEU-jqMz67Cz6NoZCfcGltWubSJxlAXtaI58hOM9GNCuwuj99Nrl06NotVVe4TGFmz76GmopCsdfFyXePyFwmw3zXg8PWnQcaVUfovJdIhO0L1pOSZrnjs16tmm2POfdVPjjgY78NDGkay3GPhduKerPbhv6jlVswe7Vmcb9sYCS799BF8uppOKNRh2mmJnVpeswJy5mjGaVGNmbxFDip9yXNHeRnY7Gd_KMTOg1tgLq2SFLMlzlNTHcDU4veyfufYwBVclfjhzdZb7XGoP4xW_0BHGQXEmMXmMktL3VaooDwyDPMdblUWSkOklun5MVotEZ8rjT6BT1ZV-Boz7Kix5IfMSs0ulvDxLyyhWecJ16Mk4csBfclIoizROB178EGbFm6diwX2B3BeG--LGgXerZ6YLnI07qY9ogAQBWFRUITOW86YRvcvv_aHoxWjhM8yOYwdebiL7dHHeInpticoav1JJuy8B_5WgsVqUBy1KNZ1ciz9aX7Vax4vR3dTNYYsQ9Vm130JSJzACIhhfRfVOaiYwcKOfx4eXwiistWnEWjcceLFqpn6pgq7S9dzQ8CAjgD8Hni6EeMVoHmKQiom3A8dLqV53_v9R2L_7Ww7gQUD65QduwA-hM_s1188xgpvlXdhKRgle077fNSrbhe0Pp8Nv578BP5c-zQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIAQXRMvLtMCCyktg1d5dvw4IRYWSkDYHmorelvV6HUUCO8WJUPqj-I3M-JFgCL31aO14bc_MzsM78y0huwH4Dc0SY5uAM1v4LLIVV46tUsFVGGgWlJBCR0O_dyI-nXqnG-RX0wuDZZWNTSwNdZJr_Ee-B5G-j2h3wns3PbPx1CjcXW2O0KjUYmAWPyFlK97234N8nzF28GG037PrUwVsHbhiZpsodrkyDjhuNzEeBAR-pCCL8oLUdXWoMSESLI7hUkeeQoh2BT4QsrYkMJF2OMx7hVwVHDw5dqYffFyVlPyF-lw36Tg83CvAUYZY7gvJuwCnay9ajrB2B50c1vW6WPeffdrS_R3cIjfruJV2K0XbJBsm2yLXyvpRXWyRzdpGFPRlDWT96jYZHE8nGS0gzC2Lq2me0gRy9GxG8SceLXuZKFB8V-MMeynp-WR8rsa0BNGGWWimMhBBHMPKuENOLoXNd0knyzNzn1DuapHyRMUpZLNaO3EUpp6v44Ab4Sjfs4jbcFLqGtkcD9j4Jssddh7KivsSuC9L7suFRV4v75lWuB4XUu-igCQCZmRYkTNW86KQ3dGX_aHs-uBRIsjGfYs8XUfWP_7cInpRE6U5vKVWdR8EfCtCcbUot1uUejo5k3-MPm-Njivprptmp0UI9kO3n4JaJyHiQthgjfVVeiYhUMSPh5sbZZS1dSvkai1a5MlyGOfFir3M5POShrMIAQUtcq9S4iWjuYCgGBJ9i7xptHo1-f-l8ODid3lMrvdGR4fysD8cbJMbDNeay2zGd0hn9mNuHkL0OIsflUuWkq-XbSN-A_EqdhU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGEYgXxMYtbIBB4yaImti5PiBUdVQrhQqxTezNOI5TVYKkI61Q99P4dZyTON0CZW97jHziJMfnGp_zmZDdEPyGYqm2dciZ7QUstiWXji0zj8soVCysIIU-jYP9I-_DsX-8QX43vTBYVtnYxMpQp4XCf-RdiPQDRLvz_G5myiI-7w3ezU5sPEEKd1qb4zRqERnp5S9I38q3wz1Y62eMDd4f9vdtc8KArULXm9s6TlwutQNO3E21D8FBEEvIqPwwc10VKUyOPJYkcKliXyJcuwR_CBlcGupYORzmvUKuhjyMUMei_rnykr8QoE3DjsOjbglOM8LSX0jkPXDA9rLlFI1r6BSg4-vi3n_2bCtXOLhFbpoYlvZqodskGzrfIteqWlJVbpFNYy9K-tKAWr-6TUYHs2lOSwh5q0JrWmQ0hXw9n1P8oUerviYKFD_kJMe-Sno6nZzKCa0AtWEWmsscliBJQEvukKNLYfNd0smLXN8nlLvKy3gqkwwyW6WcJI4yP1BJyLXnyMC3iNtwUiiDco6HbXwX1W47j0TNfQHcFxX3xdIir1f3zGqMjwupd3GBBIJn5CiGE7koS9E7_Nofi14A3iWGzDywyNN1ZMODLy2iF4YoK-AtlTQ9EfCtCMvVotxuUarZ9EScG33eGp3Uq7tump0WIdgS1X4KSp2A6AshhBXWWqm5gKARPx5uboRRGEtXijO9tMiT1TDOi9V7uS4WFQ1nMYILWuReLcQrRnMPAmRI-i3yppHqs8n_vwoPLn6Xx-Q6WAfxcTgebZMbDFXNZTbjO6Qz_7nQDyGQnCePKo2l5Ntlm4g_lSt6Fg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spin+splitting+of+dopant+edge+state+in+magnetic+zigzag+graphene+nanoribbons&rft.jtitle=Nature+%28London%29&rft.au=Blackwell%2C+Raymond+E&rft.au=Zhao%2C+Fangzhou&rft.au=Brooks%2C+Erin&rft.au=Zhu%2C+Junmian&rft.date=2021-12-23&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=600&rft.issue=7890&rft.spage=647&rft_id=info:doi/10.1038%2Fs41586-021-04201-y&rft.externalDBID=ISR&rft.externalDocID=A687699786 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |