Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons

Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena 1 , 2 that have sparked renewed interest in carbon-based spintronics 3 , 4 . Zigzag graphene nanoribbons (ZGNRs)—quasi one-dimensional semiconducting strips of graphene bounded by parall...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 600; no. 7890; pp. 647 - 652
Main Authors Blackwell, Raymond E., Zhao, Fangzhou, Brooks, Erin, Zhu, Junmian, Piskun, Ilya, Wang, Shenkai, Delgado, Aidan, Lee, Yea-Lee, Louie, Steven G., Fischer, Felix R.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.12.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena 1 , 2 that have sparked renewed interest in carbon-based spintronics 3 , 4 . Zigzag graphene nanoribbons (ZGNRs)—quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges—host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width 1 , 2 , 5 . Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases 6 – 8 and even metallic zero mode bands 9 , the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support 10 – 15 . Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices 15 – 21 . Decoupling spin-polarized edge states using substitutional N-atom dopants along the edges of a zigzag graphene nanoribbon (ZGNR) reveals giant spin splitting of a N-dopant edge state, and supports the predicted emergent magnetic order in ZGNRs.
AbstractList Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena that have sparked renewed interest in carbon-based spintronics. Zigzag graphene nanoribbons (ZGNRs)-quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges-host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width. Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases and even metallic zero mode bands, the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support. Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Finally, our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices.
Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena.sup.1,2 that have sparked renewed interest in carbon-based spintronics.sup.3,4. Zigzag graphene nanoribbons (ZGNRs)--quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges--host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width.sup.1,2,5. Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases.sup.6-8 and even metallic zero mode bands.sup.9, the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support.sup.10-15. Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices.sup.15-21.
Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena 1 , 2 that have sparked renewed interest in carbon-based spintronics 3 , 4 . Zigzag graphene nanoribbons (ZGNRs)—quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges—host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width 1 , 2 , 5 . Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases 6 – 8 and even metallic zero mode bands 9 , the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support 10 – 15 . Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices 15 – 21 . Decoupling spin-polarized edge states using substitutional N-atom dopants along the edges of a zigzag graphene nanoribbon (ZGNR) reveals giant spin splitting of a N-dopant edge state, and supports the predicted emergent magnetic order in ZGNRs.
Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena that have sparked renewed interest in carbon-based spintronics . Zigzag graphene nanoribbons (ZGNRs)-quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges-host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width . Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases and even metallic zero mode bands , the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support . Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices .
Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena1,2 that have sparked renewed interest in carbon-based spintronics3,4. Zigzag graphene nanoribbons (ZGNRs)-quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges-host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width1,2,5. Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases6-8 and even metallic zero mode bands9, the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support10-15. Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices15-21.
Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena.sup.1,2 that have sparked renewed interest in carbon-based spintronics.sup.3,4. Zigzag graphene nanoribbons (ZGNRs)--quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges--host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width.sup.1,2,5. Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases.sup.6-8 and even metallic zero mode bands.sup.9, the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support.sup.10-15. Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices.sup.15-21. Decoupling spin-polarized edge states using substitutional N-atom dopants along the edges of a zigzag graphene nanoribbon (ZGNR) reveals giant spin splitting of a N-dopant edge state, and supports the predicted emergent magnetic order in ZGNRs.
Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena1,2 that have sparked renewed interest in carbon-based spintronics3,4. Zigzag graphene nanoribbons (ZGNRs)-quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges-host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width1,2,5. Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases6-8 and even metallic zero mode bands9, the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support10-15. Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices15-21.Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena1,2 that have sparked renewed interest in carbon-based spintronics3,4. Zigzag graphene nanoribbons (ZGNRs)-quasi one-dimensional semiconducting strips of graphene bounded by parallel zigzag edges-host intrinsic electronic edge states that are ferromagnetically ordered along the edges of the ribbon and antiferromagnetically coupled across its width1,2,5. Despite recent advances in the bottom-up synthesis of GNRs featuring symmetry protected topological phases6-8 and even metallic zero mode bands9, the unique magnetic edge structure of ZGNRs has long been obscured from direct observation by a strong hybridization of the zigzag edge states with the surface states of the underlying support10-15. Here, we present a general technique to thermodynamically stabilize and electronically decouple the highly reactive spin-polarized edge states by introducing a superlattice of substitutional N-atom dopants along the edges of a ZGNR. First-principles GW calculations and scanning tunnelling spectroscopy reveal a giant spin splitting of low-lying nitrogen lone-pair flat bands by an exchange field (~850 tesla) induced by the ferromagnetically ordered edge states of ZGNRs. Our findings directly corroborate the nature of the predicted emergent magnetic order in ZGNRs and provide a robust platform for their exploration and functional integration into nanoscale sensing and logic devices15-21.
Audience Academic
Author Louie, Steven G.
Delgado, Aidan
Brooks, Erin
Piskun, Ilya
Fischer, Felix R.
Zhao, Fangzhou
Zhu, Junmian
Blackwell, Raymond E.
Wang, Shenkai
Lee, Yea-Lee
Author_xml – sequence: 1
  givenname: Raymond E.
  surname: Blackwell
  fullname: Blackwell, Raymond E.
  organization: Department of Chemistry, University of California
– sequence: 2
  givenname: Fangzhou
  surname: Zhao
  fullname: Zhao, Fangzhou
  organization: Department of Physics, University of California, Materials Sciences Division, Lawrence Berkeley National Laboratory
– sequence: 3
  givenname: Erin
  orcidid: 0000-0002-5834-0679
  surname: Brooks
  fullname: Brooks, Erin
  organization: Department of Chemistry, University of California
– sequence: 4
  givenname: Junmian
  surname: Zhu
  fullname: Zhu, Junmian
  organization: Department of Chemistry, University of California
– sequence: 5
  givenname: Ilya
  surname: Piskun
  fullname: Piskun, Ilya
  organization: Department of Chemistry, University of California
– sequence: 6
  givenname: Shenkai
  surname: Wang
  fullname: Wang, Shenkai
  organization: Department of Chemistry, University of California
– sequence: 7
  givenname: Aidan
  surname: Delgado
  fullname: Delgado, Aidan
  organization: Department of Chemistry, University of California
– sequence: 8
  givenname: Yea-Lee
  surname: Lee
  fullname: Lee, Yea-Lee
  organization: Department of Physics, University of California
– sequence: 9
  givenname: Steven G.
  orcidid: 0000-0003-0622-0170
  surname: Louie
  fullname: Louie, Steven G.
  email: sglouie@berkeley.edu
  organization: Department of Physics, University of California, Materials Sciences Division, Lawrence Berkeley National Laboratory
– sequence: 10
  givenname: Felix R.
  orcidid: 0000-0003-4723-3111
  surname: Fischer
  fullname: Fischer, Felix R.
  email: ffischer@berkeley.edu
  organization: Department of Chemistry, University of California, Materials Sciences Division, Lawrence Berkeley National Laboratory, Kavli Energy NanoScience Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34937899$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1900420$$D View this record in Osti.gov
BookMark eNp90k1v1DAQBmALFdEP-AMcUNReQCjFdhw7Pq5WfFRUINEijpbjTFJXWTu1vRLbX4-XLdCtliqHKNHzjpOZOUR7zjtA6CXBpwRXzbvISN3wElNSYkYxKVdP0AFhgpeMN2IPHWBMmxI3Fd9HhzFeY4xrItgztF8xWYlGygP0-WKyrojTaFOybih8X3R-0i4V0A1QxKQTFFks9OAgWVPc2uFWD8UQ9HQFDgqnnQ-2bb2Lz9HTXo8RXtzdj9D3D-8v55_K868fz-az89IIwlIJsiWVBiyoIB3UlDMuNcO0Fj0hpjGEYMFo2-ZHI2uNWcU1ZYxUtBMgDa6O0PGmro_JqmhsAnNlvHNgkiISr5uR0esNmoK_WUJMamGjgXHUDvwyKspzQUmIrDM9eUCv_TK4_AtrxSkVkt1Tgx5BWdf7FLRZF1Wz3G4upWh4VuUONeROBT3m8fU2v97yxzu8meyNuo9Od6B8dbCwZmfVN1uBbBL8TINexqjOLr5t27f_t7PLH_Mv2_rVXa-W7QI6NQW70GGl_mxUBnQDTPAxBuj_EoLVem3VZm1VXlv1e23VKoeaB6E8VJ1s_pSg7fh4tNpEYz7HDRD-De-R1C8uHfqC
CitedBy_id crossref_primary_10_1021_jacs_2c10711
crossref_primary_10_1038_s41586_024_08296_x
crossref_primary_10_1021_jacs_3c00563
crossref_primary_10_1038_s42004_024_01222_2
crossref_primary_10_1039_D3NH00233K
crossref_primary_10_1016_j_physe_2022_115512
crossref_primary_10_1021_jacs_4c16328
crossref_primary_10_1002_EXP_20210233
crossref_primary_10_1021_prechem_3c00116
crossref_primary_10_1021_acs_nanolett_3c04675
crossref_primary_10_1002_adfm_202408213
crossref_primary_10_1002_ange_202307884
crossref_primary_10_1021_acsnano_3c08089
crossref_primary_10_1016_j_apsusc_2024_160825
crossref_primary_10_1002_pssb_202400250
crossref_primary_10_1103_PhysRevB_108_045401
crossref_primary_10_1038_s44160_025_00743_5
crossref_primary_10_1103_PhysRevB_107_245417
crossref_primary_10_1038_s41598_024_62624_9
crossref_primary_10_1002_cjoc_202300614
crossref_primary_10_1103_PhysRevB_110_195411
crossref_primary_10_1038_s41467_024_50086_6
crossref_primary_10_1039_D4TC05082G
crossref_primary_10_1021_acsnano_4c12313
crossref_primary_10_1016_j_chempr_2023_06_017
crossref_primary_10_1038_s41586_024_08563_x
crossref_primary_10_1002_anie_202307884
crossref_primary_10_1126_science_abq6948
crossref_primary_10_1021_jacs_3c05755
crossref_primary_10_1021_jacs_4c18123
crossref_primary_10_1016_j_carbon_2024_119708
crossref_primary_10_1038_s41427_024_00583_3
crossref_primary_10_1038_s41565_024_01805_z
crossref_primary_10_1021_acs_jpcc_3c02227
crossref_primary_10_1103_PhysRevLett_129_037701
crossref_primary_10_1103_PhysRevB_107_205418
crossref_primary_10_1021_acs_jpcc_4c05949
crossref_primary_10_1038_s41467_023_42436_7
crossref_primary_10_1021_acs_nanolett_3c00771
crossref_primary_10_1002_ange_202312610
crossref_primary_10_1016_j_carbon_2023_118688
crossref_primary_10_1039_D2CP03379H
crossref_primary_10_1002_ejoc_202101428
crossref_primary_10_1002_smtd_202300768
crossref_primary_10_2174_1872210518666230911150337
crossref_primary_10_1002_smll_202308430
crossref_primary_10_1002_smtd_202300401
crossref_primary_10_1016_j_mtquan_2025_100028
crossref_primary_10_1021_acs_jpcc_3c06938
crossref_primary_10_1021_acs_nanolett_4c00920
crossref_primary_10_1039_D2PY00809B
crossref_primary_10_1021_acsnano_3c09825
crossref_primary_10_1002_bio_4334
crossref_primary_10_1007_s43630_022_00235_x
crossref_primary_10_1021_acs_nanolett_3c03534
crossref_primary_10_1103_PhysRevLett_133_036401
crossref_primary_10_1002_aelm_202300733
crossref_primary_10_1364_OE_527710
crossref_primary_10_1039_D2NR05443D
crossref_primary_10_1021_acs_jpclett_3c00344
crossref_primary_10_1039_D4RA00806E
crossref_primary_10_1088_2516_1075_ad159f
crossref_primary_10_1021_jacs_3c01576
crossref_primary_10_1103_PhysRevB_106_155122
crossref_primary_10_7498_aps_71_20220895
crossref_primary_10_1002_anie_202312610
crossref_primary_10_1007_s44214_024_00050_8
crossref_primary_10_1021_acs_jpcc_2c07450
crossref_primary_10_1039_D3CP01436C
crossref_primary_10_1063_5_0086377
crossref_primary_10_1021_acsnano_3c05974
crossref_primary_10_1021_acs_chemmater_3c02783
crossref_primary_10_1039_D5CP00069F
crossref_primary_10_1103_PhysRevB_110_144417
crossref_primary_10_1039_D4NR00058G
crossref_primary_10_1021_acs_chemmater_3c03073
crossref_primary_10_1039_D3NR04656G
crossref_primary_10_1039_D2CP06025F
crossref_primary_10_1021_acs_jpcc_4c08572
crossref_primary_10_1021_acs_nanolett_4c01476
crossref_primary_10_1088_1361_648X_ac8a7f
crossref_primary_10_1039_D3CC01311A
crossref_primary_10_1038_d41586_021_03768_w
crossref_primary_10_1038_s41467_024_53927_6
crossref_primary_10_1088_2752_5724_ac8a63
crossref_primary_10_1002_aenm_202401529
crossref_primary_10_1002_adma_202306311
crossref_primary_10_1039_D4EN00340C
crossref_primary_10_1063_5_0186359
crossref_primary_10_3390_nano13243085
crossref_primary_10_1021_acs_jpclett_2c02810
crossref_primary_10_1038_s41598_023_31573_0
crossref_primary_10_2139_ssrn_4096965
crossref_primary_10_1063_5_0098639
crossref_primary_10_1038_s41557_024_01453_9
crossref_primary_10_1038_s42004_024_01344_7
crossref_primary_10_1002_adma_202110099
crossref_primary_10_1002_ajoc_202400748
crossref_primary_10_1016_j_jmmm_2023_170662
crossref_primary_10_1039_D2CP03001B
crossref_primary_10_1016_j_cej_2023_148438
crossref_primary_10_1016_j_susc_2022_122180
crossref_primary_10_1016_j_revip_2023_100082
crossref_primary_10_1016_j_jallcom_2023_170989
crossref_primary_10_1007_s12274_022_5247_9
crossref_primary_10_1002_ange_202306938
crossref_primary_10_1021_acsnano_3c06006
crossref_primary_10_1021_acsnano_3c06128
crossref_primary_10_1021_acs_nanolett_3c01940
crossref_primary_10_1038_s41467_023_36613_x
crossref_primary_10_1103_PhysRevB_109_075117
crossref_primary_10_1021_acs_jctc_4c00933
crossref_primary_10_1021_acsnano_3c04581
crossref_primary_10_1016_j_apsusc_2022_155999
crossref_primary_10_1063_5_0078234
crossref_primary_10_1021_jacs_2c11799
crossref_primary_10_3390_mi14101889
crossref_primary_10_1039_D4TA05960C
crossref_primary_10_1021_jacs_2c05670
crossref_primary_10_1016_j_jmmm_2024_172118
crossref_primary_10_1002_adom_202500152
crossref_primary_10_1088_1402_4896_ad9a0e
crossref_primary_10_1002_anie_202306938
crossref_primary_10_1021_acsaelm_4c01811
crossref_primary_10_1007_s12274_023_5605_2
crossref_primary_10_1016_j_cclet_2024_110100
crossref_primary_10_1021_jacs_2c09637
crossref_primary_10_1002_chem_202404189
crossref_primary_10_1557_s43577_023_00608_2
Cites_doi 10.1103/PhysRevB.23.5048
10.1103/PhysRevLett.99.186801
10.1038/s41928-019-0273-7
10.1038/s41586-018-0375-9
10.1038/nmat2378
10.1002/anie.202000488
10.1038/nphys1991
10.1103/PhysRevB.98.214204
10.1103/PhysRevLett.119.076401
10.1039/C4RA08677E
10.1016/j.cpc.2011.12.006
10.1103/PhysRevLett.62.1201
10.1038/s41524-017-0036-9
10.1038/nature13831
10.1038/s41586-018-0376-8
10.1038/nature17151
10.1126/science.aay3588
10.1038/nature05180
10.1038/srep07634
10.1016/j.carbon.2017.08.018
10.1103/PhysRevB.79.165440
10.1038/nature05833
10.1038/natrevmats.2018.9
10.1038/nnano.2014.214
10.1016/j.apsusc.2020.146435
10.1143/JPSJ.65.1920
10.1109/TED.2011.2173498
10.1021/jacs.8b10407
10.1038/ncomms5311
10.1103/PhysRevB.34.5390
10.1088/0953-8984/21/39/395502
10.1021/acs.jpca.0c10731
10.1088/1367-2630/11/12/123005
10.1038/d41586-018-05240-8
10.1038/srep02030
10.1021/acsnano.1c00695
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2021
2021. The Author(s), under exclusive licence to Springer Nature Limited.
COPYRIGHT 2021 Nature Publishing Group
Copyright Nature Publishing Group Dec 23-Dec 30, 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021
– notice: 2021. The Author(s), under exclusive licence to Springer Nature Limited.
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: Copyright Nature Publishing Group Dec 23-Dec 30, 2021
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
CorporateAuthor_xml – sequence: 0
  name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
OIOZB
OTOTI
DOI 10.1038/s41586-021-04201-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList





MEDLINE

Agricultural Science Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 652
ExternalDocumentID 1900420
A687699786
34937899
10_1038_s41586_021_04201_y
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIH HHS
  grantid: S10 OD024998
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAVBQ
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
ABAWZ
ABDBF
ABDPE
ABEFU
ABNNU
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADGHP
ADNMO
ADRHT
ADXHL
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AGQPQ
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
CGR
CUY
CVF
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
ECM
EIF
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
ESX
FA8
FAC
I-F
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NEJ
NFIDA
NPM
NXXTH
ODYON
OHT
P-O
PEA
PJZUB
PM3
PPXIY
PQGLB
PV9
QS-
R4F
RHI
SKT
SV3
TH9
TUD
TUS
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZY4
~8M
~G0
AEIIB
PMFND
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
AGEZK
B-7
OIOZB
OTOTI
ID FETCH-LOGICAL-c714t-e9b13ae07271de526469a40257f11c8c110742bb7f1c95a0436a244132d7e9c03
IEDL.DBID 8FG
ISSN 0028-0836
1476-4687
IngestDate Thu Dec 05 06:26:31 EST 2024
Wed Jul 30 11:19:50 EDT 2025
Fri Jul 25 09:02:59 EDT 2025
Tue Jun 17 21:28:50 EDT 2025
Thu Jun 12 23:42:42 EDT 2025
Tue Jun 10 15:32:08 EDT 2025
Tue Jun 10 20:14:17 EDT 2025
Fri Jun 27 04:10:34 EDT 2025
Fri Jun 27 04:17:09 EDT 2025
Mon Jul 21 05:59:09 EDT 2025
Tue Jul 01 02:32:32 EDT 2025
Thu Apr 24 22:54:04 EDT 2025
Fri Feb 21 02:37:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7890
Language English
License 2021. The Author(s), under exclusive licence to Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c714t-e9b13ae07271de526469a40257f11c8c110742bb7f1c95a0436a244132d7e9c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
National Science Foundation (NSF)
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division
AC02-05CH11231; N00014-19-1-2503; DMR-1839098; DMR-1926004; ECCS-0939514; N00014-16-1-2921; DGE-11064000; S10OD024998
US Department of the Navy, Office of Naval Research (ONR)
National Institutes of Health (NIH)
Center for Energy Efficient Electronics Science
ORCID 0000-0003-0622-0170
0000-0002-5834-0679
0000-0003-4723-3111
0000000306220170
0000000347233111
0000000258340679
OpenAccessLink https://www.osti.gov/servlets/purl/1900420
PMID 34937899
PQID 2616227945
PQPubID 40569
PageCount 6
ParticipantIDs osti_scitechconnect_1900420
proquest_miscellaneous_2613291195
proquest_journals_2616227945
gale_infotracmisc_A687699786
gale_infotracgeneralonefile_A687699786
gale_infotraccpiq_687699786
gale_infotracacademiconefile_A687699786
gale_incontextgauss_ISR_A687699786
gale_incontextgauss_ATWCN_A687699786
pubmed_primary_34937899
crossref_primary_10_1038_s41586_021_04201_y
crossref_citationtrail_10_1038_s41586_021_04201_y
springer_journals_10_1038_s41586_021_04201_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-23
PublicationDateYYYYMMDD 2021-12-23
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-23
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – sequence: 0
  name: Nature Publishing Group
– name: Nature Publishing Group UK
– name: Nature Publishing Group
References Lopez-Urias (CR21) 2020; 521
Son, Cohen, Louie (CR2) 2006; 444
Han, Kawakami, Gmitra, Fabian (CR3) 2014; 9
Ruffieux (CR15) 2016; 531
Guo (CR22) 2009; 11
Giannozzi (CR35) 2009; 21
Yang, Park, Son, Cohen, Louie (CR5) 2007; 99
Tao (CR12) 2011; 7
Fujita, Wakabayashi, Nakada, Kusakabe (CR1) 1996; 65
Mandal, Sarkar, Pramanik, Sarkar (CR24) 2014; 4
Deslippe (CR36) 2012; 183
Rizzo (CR6) 2018; 560
Cao, Zhao, Louie (CR8) 2017; 119
CR30
Perdew, Zunger (CR31) 1981; 23
Beyer (CR16) 2019; 141
Bullard, Girao, Owens, Shelton, Meunier (CR4) 2015; 5
Rizzo (CR9) 2020; 369
Dery (CR26) 2012; 59
Zhang, Wei (CR29) 2017; 3
Lee, Cho (CR10) 2009; 79
Luis, Coronado (CR23) 2018; 557
Lieb (CR33) 1989; 62
Ahn, Wong, Pop (CR28) 2018; 3
Wang, Zhu, Blackwell, Fischer (CR34) 2021; 125
Dery, Dalal, Cywinski, Sham (CR25) 2007; 447
Ritter, Lyding (CR11) 2009; 8
Fu (CR17) 2020; 59
Shinde (CR19) 2017; 124
Salemi, Lherbier, Charlier (CR20) 2018; 98
Li, Chen, Weinert, Li (CR13) 2014; 5
Magda (CR14) 2014; 514
Li, Zhou, Cabrera, Chen (CR18) 2013; 3
Lin, Yang, Wang, Zhao (CR27) 2019; 2
Hybertsen, Louie (CR32) 1986; 34
Groning (CR7) 2018; 560
M Fujita (4201_CR1) 1996; 65
J Deslippe (4201_CR36) 2012; 183
Y-W Son (4201_CR2) 2006; 444
P Ruffieux (4201_CR15) 2016; 531
H Dery (4201_CR26) 2012; 59
4201_CR30
G Lee (4201_CR10) 2009; 79
JP Perdew (4201_CR31) 1981; 23
G-P Guo (4201_CR22) 2009; 11
B Mandal (4201_CR24) 2014; 4
MS Hybertsen (4201_CR32) 1986; 34
PP Shinde (4201_CR19) 2017; 124
W Han (4201_CR3) 2014; 9
D-B Zhang (4201_CR29) 2017; 3
O Groning (4201_CR7) 2018; 560
SK Wang (4201_CR34) 2021; 125
P Giannozzi (4201_CR35) 2009; 21
EC Ahn (4201_CR28) 2018; 3
Y Li (4201_CR18) 2013; 3
EH Lieb (4201_CR33) 1989; 62
YY Li (4201_CR13) 2014; 5
GZ Magda (4201_CR14) 2014; 514
L Yang (4201_CR5) 2007; 99
C Tao (4201_CR12) 2011; 7
H Dery (4201_CR25) 2007; 447
DJ Rizzo (4201_CR9) 2020; 369
F Lopez-Urias (4201_CR21) 2020; 521
F Luis (4201_CR23) 2018; 557
D Beyer (4201_CR16) 2019; 141
L Salemi (4201_CR20) 2018; 98
KA Ritter (4201_CR11) 2009; 8
DJ Rizzo (4201_CR6) 2018; 560
T Cao (4201_CR8) 2017; 119
X Lin (4201_CR27) 2019; 2
Z Bullard (4201_CR4) 2015; 5
Y Fu (4201_CR17) 2020; 59
34937891 - Nature. 2021 Dec;600(7890):613-614
References_xml – volume: 23
  start-page: 5048
  year: 1981
  end-page: 5079
  ident: CR31
  article-title: Self-interaction correction to density-functional approximations for many-electron systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.23.5048
– volume: 99
  start-page: 186801
  year: 2007
  ident: CR5
  article-title: Quasiparticle energies and band gaps in graphene nanoribbons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.186801
– volume: 2
  start-page: 274
  year: 2019
  end-page: 283
  ident: CR27
  article-title: Two-dimensional spintronics for low-power electronics
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0273-7
– volume: 560
  start-page: 209
  year: 2018
  end-page: 213
  ident: CR7
  article-title: Engineering of robust topological quantum phases in graphene nanoribbons
  publication-title: Nature
  doi: 10.1038/s41586-018-0375-9
– volume: 8
  start-page: 235
  year: 2009
  end-page: 242
  ident: CR11
  article-title: The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2378
– volume: 59
  start-page: 8873
  year: 2020
  end-page: 8879
  ident: CR17
  article-title: On-surface synthesis of NBN-doped zigzag-edged graphene nanoribbons
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202000488
– ident: CR30
– volume: 7
  start-page: 616
  year: 2011
  end-page: 620
  ident: CR12
  article-title: Spatially resolving edge states of chiral graphene nanoribbons
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1991
– volume: 98
  start-page: 214204
  year: 2018
  ident: CR20
  article-title: Spin-dependent properties in zigzag graphene nanoribbons with phenyl-edge defects
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.214204
– volume: 119
  start-page: 076401
  year: 2017
  ident: CR8
  article-title: Topological phases in graphene nanoribbons: junction states, spin centers, and quantum spin chains
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.076401
– volume: 4
  start-page: 49946
  year: 2014
  end-page: 49952
  ident: CR24
  article-title: Doped defective graphene nanoribbons: a new class of materials with novel spin filtering properties
  publication-title: RSC Adv.
  doi: 10.1039/C4RA08677E
– volume: 183
  start-page: 1269
  year: 2012
  end-page: 1289
  ident: CR36
  article-title: BerkeleyGW: a massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2011.12.006
– volume: 62
  start-page: 1201
  year: 1989
  end-page: 1204
  ident: CR33
  article-title: Two theorems on the Hubbard model
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.1201
– volume: 3
  start-page: 32
  year: 2017
  ident: CR29
  article-title: Inhomogeneous strain-induced half-metallicity in bent zigzag graphene nanoribbons
  publication-title: NPJ Comput. Mater.
  doi: 10.1038/s41524-017-0036-9
– volume: 514
  start-page: 608
  year: 2014
  end-page: 611
  ident: CR14
  article-title: Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons
  publication-title: Nature
  doi: 10.1038/nature13831
– volume: 560
  start-page: 204
  year: 2018
  end-page: 208
  ident: CR6
  article-title: Topological band engineering of graphene nanoribbons
  publication-title: Nature
  doi: 10.1038/s41586-018-0376-8
– volume: 531
  start-page: 489
  year: 2016
  end-page: 492
  ident: CR15
  article-title: On-surface synthesis of graphene nanoribbons with zigzag edge topology
  publication-title: Nature
  doi: 10.1038/nature17151
– volume: 369
  start-page: 1597
  year: 2020
  end-page: 1603
  ident: CR9
  article-title: Inducing metallicity in graphene nanoribbons via zero-mode superlattices
  publication-title: Science
  doi: 10.1126/science.aay3588
– volume: 444
  start-page: 347
  year: 2006
  end-page: 349
  ident: CR2
  article-title: Half-metallic graphene nanoribbons
  publication-title: Nature
  doi: 10.1038/nature05180
– volume: 5
  year: 2015
  ident: CR4
  article-title: Improved all-carbon spintronic device design
  publication-title: Sci. Rep.
  doi: 10.1038/srep07634
– volume: 124
  start-page: 123
  year: 2017
  end-page: 132
  ident: CR19
  article-title: Stability of edge magnetism in functionalized zigzag graphene nanoribbons
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.08.018
– volume: 79
  start-page: 165440
  year: 2009
  ident: CR10
  article-title: Electronic structures of zigzag graphene nanoribbons with edge hydrogenation and oxidation
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.165440
– volume: 447
  start-page: 573
  year: 2007
  end-page: 576
  ident: CR25
  article-title: Spin-based logic in semiconductors for reconfigurable large-scale circuits
  publication-title: Nature
  doi: 10.1038/nature05833
– volume: 3
  start-page: 18009
  year: 2018
  ident: CR28
  article-title: Carbon nanomaterials for non-volatile memories
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2018.9
– volume: 9
  start-page: 794
  year: 2014
  end-page: 807
  ident: CR3
  article-title: Graphene spintronics
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.214
– volume: 521
  start-page: 146435
  year: 2020
  ident: CR21
  article-title: Spin-dependent band-gap driven by nitrogen and oxygen functional groups in zigzag graphene nanoribbons
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.146435
– volume: 65
  start-page: 1920
  year: 1996
  end-page: 1923
  ident: CR1
  article-title: Peculiar localized state at zigzag graphite edge
  publication-title: J. Phys. Soc. Japan
  doi: 10.1143/JPSJ.65.1920
– volume: 59
  start-page: 259
  year: 2012
  end-page: 262
  ident: CR26
  article-title: Nanospintronics based on magnetologic gates
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2011.2173498
– volume: 141
  start-page: 2843
  year: 2019
  end-page: 2846
  ident: CR16
  article-title: Graphene nanoribbons derived from zigzag edge-encased poly(para-2,9-dibenzo[bc,kl]coronenylene) polymer chains
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10407
– volume: 5
  start-page: 4311
  year: 2014
  ident: CR13
  article-title: Direct experimental determination of onset of electron-electron interactions in gap opening of zigzag graphene nanoribbons
  publication-title: Nat. Comm.
  doi: 10.1038/ncomms5311
– volume: 34
  start-page: 5390
  year: 1986
  end-page: 5413
  ident: CR32
  article-title: Electron correlation in semiconductors and insulators — band gaps and quasiparticle energies
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.34.5390
– volume: 21
  start-page: 395502
  year: 2009
  ident: CR35
  article-title: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
  publication-title: J. Phys. Condens. Mat.
  doi: 10.1088/0953-8984/21/39/395502
– volume: 125
  start-page: 1384
  year: 2021
  end-page: 1390
  ident: CR34
  article-title: Automated tip conditioning for scanning tunnelling spectroscopy
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.0c10731
– volume: 11
  start-page: 123005
  year: 2009
  ident: CR22
  article-title: Quantum computation with graphene nanoribbon
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/12/123005
– volume: 557
  start-page: 645
  year: 2018
  end-page: 647
  ident: CR23
  article-title: Spinning on the edge of graphene
  publication-title: Nature
  doi: 10.1038/d41586-018-05240-8
– volume: 3
  year: 2013
  ident: CR18
  article-title: Preserving the edge magnetism of zigzag graphene nanoribbons by ethylene termination: insight by Clar’s rule
  publication-title: Sci. Rep.
  doi: 10.1038/srep02030
– volume: 59
  start-page: 8873
  year: 2020
  ident: 4201_CR17
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202000488
– volume: 369
  start-page: 1597
  year: 2020
  ident: 4201_CR9
  publication-title: Science
  doi: 10.1126/science.aay3588
– volume: 23
  start-page: 5048
  year: 1981
  ident: 4201_CR31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.23.5048
– volume: 7
  start-page: 616
  year: 2011
  ident: 4201_CR12
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1991
– volume: 444
  start-page: 347
  year: 2006
  ident: 4201_CR2
  publication-title: Nature
  doi: 10.1038/nature05180
– volume: 34
  start-page: 5390
  year: 1986
  ident: 4201_CR32
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.34.5390
– volume: 119
  start-page: 076401
  year: 2017
  ident: 4201_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.076401
– volume: 79
  start-page: 165440
  year: 2009
  ident: 4201_CR10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.165440
– volume: 2
  start-page: 274
  year: 2019
  ident: 4201_CR27
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0273-7
– volume: 3
  start-page: 32
  year: 2017
  ident: 4201_CR29
  publication-title: NPJ Comput. Mater.
  doi: 10.1038/s41524-017-0036-9
– volume: 62
  start-page: 1201
  year: 1989
  ident: 4201_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.1201
– volume: 8
  start-page: 235
  year: 2009
  ident: 4201_CR11
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2378
– volume: 183
  start-page: 1269
  year: 2012
  ident: 4201_CR36
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2011.12.006
– volume: 5
  year: 2015
  ident: 4201_CR4
  publication-title: Sci. Rep.
  doi: 10.1038/srep07634
– volume: 560
  start-page: 209
  year: 2018
  ident: 4201_CR7
  publication-title: Nature
  doi: 10.1038/s41586-018-0375-9
– ident: 4201_CR30
  doi: 10.1021/acsnano.1c00695
– volume: 3
  start-page: 18009
  year: 2018
  ident: 4201_CR28
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2018.9
– volume: 98
  start-page: 214204
  year: 2018
  ident: 4201_CR20
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.214204
– volume: 4
  start-page: 49946
  year: 2014
  ident: 4201_CR24
  publication-title: RSC Adv.
  doi: 10.1039/C4RA08677E
– volume: 21
  start-page: 395502
  year: 2009
  ident: 4201_CR35
  publication-title: J. Phys. Condens. Mat.
  doi: 10.1088/0953-8984/21/39/395502
– volume: 531
  start-page: 489
  year: 2016
  ident: 4201_CR15
  publication-title: Nature
  doi: 10.1038/nature17151
– volume: 11
  start-page: 123005
  year: 2009
  ident: 4201_CR22
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/12/123005
– volume: 124
  start-page: 123
  year: 2017
  ident: 4201_CR19
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.08.018
– volume: 9
  start-page: 794
  year: 2014
  ident: 4201_CR3
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.214
– volume: 560
  start-page: 204
  year: 2018
  ident: 4201_CR6
  publication-title: Nature
  doi: 10.1038/s41586-018-0376-8
– volume: 447
  start-page: 573
  year: 2007
  ident: 4201_CR25
  publication-title: Nature
  doi: 10.1038/nature05833
– volume: 141
  start-page: 2843
  year: 2019
  ident: 4201_CR16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10407
– volume: 59
  start-page: 259
  year: 2012
  ident: 4201_CR26
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2011.2173498
– volume: 99
  start-page: 186801
  year: 2007
  ident: 4201_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.186801
– volume: 3
  year: 2013
  ident: 4201_CR18
  publication-title: Sci. Rep.
  doi: 10.1038/srep02030
– volume: 5
  start-page: 4311
  year: 2014
  ident: 4201_CR13
  publication-title: Nat. Comm.
  doi: 10.1038/ncomms5311
– volume: 125
  start-page: 1384
  year: 2021
  ident: 4201_CR34
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.0c10731
– volume: 557
  start-page: 645
  year: 2018
  ident: 4201_CR23
  publication-title: Nature
  doi: 10.1038/d41586-018-05240-8
– volume: 65
  start-page: 1920
  year: 1996
  ident: 4201_CR1
  publication-title: J. Phys. Soc. Japan
  doi: 10.1143/JPSJ.65.1920
– volume: 514
  start-page: 608
  year: 2014
  ident: 4201_CR14
  publication-title: Nature
  doi: 10.1038/nature13831
– volume: 521
  start-page: 146435
  year: 2020
  ident: 4201_CR21
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.146435
– reference: 34937891 - Nature. 2021 Dec;600(7890):613-614
SSID ssj0005174
Score 2.6786175
Snippet Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena 1 , 2 that have sparked renewed interest in...
Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena that have sparked renewed interest in...
Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena.sup.1,2 that have sparked renewed interest in...
Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena1,2 that have sparked renewed interest in...
Spin-ordered electronic states in hydrogen-terminated zigzag nanographene give rise to magnetic quantum phenomena that have sparked renewed interest in...
SourceID osti
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 647
SubjectTerms 119/118
142/136
639/638/298/920
639/638/542/968
639/766/119/997
639/925/918/1052
Adsorption
Analysis
Antiferromagnetism
Carbon
Chemical properties
Dopants
Electron spin
Electron states
electronic properties and devices
Electronics
Ferromagnetism
First principles
Functional integration
Geometry
Graphene
Graphite - chemistry
Humanities and Social Sciences
Hybridization
Hydrogen
magnetic materials
Magnetic properties
magnetic properties and materials
Magnetics
MATERIALS SCIENCE
Microscopy
multidisciplinary
Nanoribbons
Nanotechnology
Nanotubes, Carbon - chemistry
Nitrogen
Particle spin
scanning probe microscopy
Science
Science (multidisciplinary)
Spectroscopy
Spectrum analysis
Splitting
Structure
Superlattices
Topography
Title Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons
URI https://link.springer.com/article/10.1038/s41586-021-04201-y
https://www.ncbi.nlm.nih.gov/pubmed/34937899
https://www.proquest.com/docview/2616227945
https://www.proquest.com/docview/2613291195
https://www.osti.gov/servlets/purl/1900420
Volume 600
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFD5inZB4Qdu4ZRuVQRMXsWhJnOsTKtXKAFGhXUTfLMdxqkqQdKR92H4957huS6DsJVLkEyc5Plf7-DPAUYJ-QwWFdnXCAzeMg8yVXHquLEMu00QFiYEU-jqMz67Cz6NoZCfcGltWubSJxlAXtaI58hOM9GNCuwuj99Nrl06NotVVe4TGFmz76GmopCsdfFyXePyFwmw3zXg8PWnQcaVUfovJdIhO0L1pOSZrnjs16tmm2POfdVPjjgY78NDGkay3GPhduKerPbhv6jlVswe7Vmcb9sYCS799BF8uppOKNRh2mmJnVpeswJy5mjGaVGNmbxFDip9yXNHeRnY7Gd_KMTOg1tgLq2SFLMlzlNTHcDU4veyfufYwBVclfjhzdZb7XGoP4xW_0BHGQXEmMXmMktL3VaooDwyDPMdblUWSkOklun5MVotEZ8rjT6BT1ZV-Boz7Kix5IfMSs0ulvDxLyyhWecJ16Mk4csBfclIoizROB178EGbFm6diwX2B3BeG--LGgXerZ6YLnI07qY9ogAQBWFRUITOW86YRvcvv_aHoxWjhM8yOYwdebiL7dHHeInpticoav1JJuy8B_5WgsVqUBy1KNZ1ciz9aX7Vax4vR3dTNYYsQ9Vm130JSJzACIhhfRfVOaiYwcKOfx4eXwiistWnEWjcceLFqpn6pgq7S9dzQ8CAjgD8Hni6EeMVoHmKQiom3A8dLqV53_v9R2L_7Ww7gQUD65QduwA-hM_s1188xgpvlXdhKRgle077fNSrbhe0Pp8Nv578BP5c-zQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIAQXRMvLtMCCyktg1d5dvw4IRYWSkDYHmorelvV6HUUCO8WJUPqj-I3M-JFgCL31aO14bc_MzsM78y0huwH4Dc0SY5uAM1v4LLIVV46tUsFVGGgWlJBCR0O_dyI-nXqnG-RX0wuDZZWNTSwNdZJr_Ee-B5G-j2h3wns3PbPx1CjcXW2O0KjUYmAWPyFlK97234N8nzF28GG037PrUwVsHbhiZpsodrkyDjhuNzEeBAR-pCCL8oLUdXWoMSESLI7hUkeeQoh2BT4QsrYkMJF2OMx7hVwVHDw5dqYffFyVlPyF-lw36Tg83CvAUYZY7gvJuwCnay9ajrB2B50c1vW6WPeffdrS_R3cIjfruJV2K0XbJBsm2yLXyvpRXWyRzdpGFPRlDWT96jYZHE8nGS0gzC2Lq2me0gRy9GxG8SceLXuZKFB8V-MMeynp-WR8rsa0BNGGWWimMhBBHMPKuENOLoXNd0knyzNzn1DuapHyRMUpZLNaO3EUpp6v44Ab4Sjfs4jbcFLqGtkcD9j4Jssddh7KivsSuC9L7suFRV4v75lWuB4XUu-igCQCZmRYkTNW86KQ3dGX_aHs-uBRIsjGfYs8XUfWP_7cInpRE6U5vKVWdR8EfCtCcbUot1uUejo5k3-MPm-Njivprptmp0UI9kO3n4JaJyHiQthgjfVVeiYhUMSPh5sbZZS1dSvkai1a5MlyGOfFir3M5POShrMIAQUtcq9S4iWjuYCgGBJ9i7xptHo1-f-l8ODid3lMrvdGR4fysD8cbJMbDNeay2zGd0hn9mNuHkL0OIsflUuWkq-XbSN-A_EqdhU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGEYgXxMYtbIBB4yaImti5PiBUdVQrhQqxTezNOI5TVYKkI61Q99P4dZyTON0CZW97jHziJMfnGp_zmZDdEPyGYqm2dciZ7QUstiWXji0zj8soVCysIIU-jYP9I-_DsX-8QX43vTBYVtnYxMpQp4XCf-RdiPQDRLvz_G5myiI-7w3ezU5sPEEKd1qb4zRqERnp5S9I38q3wz1Y62eMDd4f9vdtc8KArULXm9s6TlwutQNO3E21D8FBEEvIqPwwc10VKUyOPJYkcKliXyJcuwR_CBlcGupYORzmvUKuhjyMUMei_rnykr8QoE3DjsOjbglOM8LSX0jkPXDA9rLlFI1r6BSg4-vi3n_2bCtXOLhFbpoYlvZqodskGzrfIteqWlJVbpFNYy9K-tKAWr-6TUYHs2lOSwh5q0JrWmQ0hXw9n1P8oUerviYKFD_kJMe-Sno6nZzKCa0AtWEWmsscliBJQEvukKNLYfNd0smLXN8nlLvKy3gqkwwyW6WcJI4yP1BJyLXnyMC3iNtwUiiDco6HbXwX1W47j0TNfQHcFxX3xdIir1f3zGqMjwupd3GBBIJn5CiGE7koS9E7_Nofi14A3iWGzDywyNN1ZMODLy2iF4YoK-AtlTQ9EfCtCMvVotxuUarZ9EScG33eGp3Uq7tump0WIdgS1X4KSp2A6AshhBXWWqm5gKARPx5uboRRGEtXijO9tMiT1TDOi9V7uS4WFQ1nMYILWuReLcQrRnMPAmRI-i3yppHqs8n_vwoPLn6Xx-Q6WAfxcTgebZMbDFXNZTbjO6Qz_7nQDyGQnCePKo2l5Ntlm4g_lSt6Fg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spin+splitting+of+dopant+edge+state+in+magnetic+zigzag+graphene+nanoribbons&rft.jtitle=Nature+%28London%29&rft.au=Blackwell%2C+Raymond+E&rft.au=Zhao%2C+Fangzhou&rft.au=Brooks%2C+Erin&rft.au=Zhu%2C+Junmian&rft.date=2021-12-23&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=600&rft.issue=7890&rft.spage=647&rft_id=info:doi/10.1038%2Fs41586-021-04201-y&rft.externalDBID=ISR&rft.externalDocID=A687699786
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon