Interannual variation in land-use intensity enhances grassland multidiversity
Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 1; pp. 308 - 313 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
07.01.2014
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation. |
---|---|
AbstractList | Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation. Land-use intensification is a major threat to biodiversity. So far, however, studies on biodiversity impacts of land-use intensity (LUI) have been limited to a single or few groups of organisms and have not considered temporal variation in LUI. Therefore, we examined total ecosystem biodiversity in grasslands varying in LUI with a newly developed index called multidiversity, which integrates the species richness of 49 different organism groups ranging from bacteria to birds. Multidiversity declined strongly with increasing LUI, but changing LUI across years increased multidiversity, particularly of rarer species. We conclude that encouraging farmers to change the intensity of their land use over time could be an important strategy to maintain high biodiversity in grasslands. Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation. There is abundant evidence that the probability of successful establishment in novel environments increases with number of individuals in founder groups and with number of repeated introductions. Theory posits that the genotypic and phenotypic variation among individuals should also be important, but few studies have examined whether founder diversity influences establishment independent of propagule pressure, nor whether the effect is model or context dependent. I summarize the results of 18 experimental studies and report on a metaanalysis that provides strong evidence that higher levels of genotypic and phenotypic diversity in founder groups increase establishment success in plants and animals. The effect of diversity is stronger in experiments carried out under natural conditions in the wild than under seminatural or standardized laboratory conditions. The realization that genetic and phenotypic variation is key to successful establishment may improve the outcome of reintroduction and translocation programs used to vitalize or restore declining and extinct populations. Founder diversity may also improve the ability of invasive species to establish and subsequently spread in environments outside of their native community, and enhance the ability of pathogens and parasites to colonize and invade the environment constituted by their hosts. It is argued that exchange of ideas, methodological approaches, and insights of the role of diversity for establishment in different contexts may further our knowledge, vitalize future research, and improve management plans in different disciplines. [PUBLICATION ABSTRACT] There is abundant evidence that the probability of successful establishment in novel environments increases with number of individuals in founder groups and with number of repeated introductions. Theory posits that the genotypic and phenotypic variation among individuals should also be important, but few studies have examined whether founder diversity influences establishment independent of propagule pressure, nor whether the effect is model or context dependent. I summarize the results of 18 experimental studies and report on a metaanalysis that provides strong evidence that higher levels of genotypic and phenotypic diversity in founder groups increase establishment success in plants and animals. The effect of diversity is stronger in experiments carried out under natural conditions in the wild than under seminatural or standardized laboratory conditions. The realization that genetic and phenotypic variation is key to successful establishment may improve the outcome of reintroduction and translocation programs used to vitalize or restore declining and extinct populations. Founder diversity may also improve the ability of invasive species to establish and subsequently spread in environments outside of their native community, and enhance the ability of pathogens and parasites to colonize and invade the environment constituted by their hosts. It is argued that exchange of ideas, methodological approaches, and insights of the role of diversity for establishment in different contexts may further our knowledge, vitalize future research, and improve management plans in different disciplines. Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation. |
Author | Gorke, Martin Morris, E. Kathryn Weisser, Wolfgang W. Steffan-Dewenter, Ingolf Steckel, Juliane Scherber, Christoph Weiner, Christiane N. Bellach, Michaela Hölzel, Norbert Birkhofer, Klaus Nacke, Heiko Lange, Markus Glaser, Karin Schulze, Waltraud Christ, Sabina Fischer, Christiane Allan, Eric Krauss, Jochen König-Ries, Birgitta Wubet, Tesfaye Bossdorf, Oliver Hallmann, Christine Gossner, Martin M. Werner, Michael Börschig, Carmen Pašalić, Esther Jung, Kirsten Böhm, Stefan Socher, Stephanie A. Diekötter, Tim Klein, Alexandra Maria Tscharntke, Teja Friedl, Thomas Gockel, Sonja Fischer, Markus Blüthgen, Nico Dormann, Carsten F. Müller, Jörg Westphal, Catrin Hemp, Andreas Renner, Swen C. Türke, Manfred Pfeiffer, Simone Buscot, François Schulzet, Ernst-Detlef Chatzinotas, Antonis Rillig, Matthias C. Klaus, Valentin H. Daniel, Rolf Schöningt, Ingo Rothenwöhrer, Christoph Hodac, Ladislav Boch, Steffen Wolters, Volkmar Kleinebecker, Till Linsenmair, Karl Eduard Prati, Daniel Schally, Peter |
Author_xml | – sequence: 1 givenname: Eric surname: Allan fullname: Allan, Eric – sequence: 2 givenname: Oliver surname: Bossdorf fullname: Bossdorf, Oliver – sequence: 3 givenname: Carsten F. surname: Dormann fullname: Dormann, Carsten F. – sequence: 4 givenname: Daniel surname: Prati fullname: Prati, Daniel – sequence: 5 givenname: Martin M. surname: Gossner fullname: Gossner, Martin M. – sequence: 6 givenname: Teja surname: Tscharntke fullname: Tscharntke, Teja – sequence: 7 givenname: Nico surname: Blüthgen fullname: Blüthgen, Nico – sequence: 8 givenname: Michaela surname: Bellach fullname: Bellach, Michaela – sequence: 9 givenname: Klaus surname: Birkhofer fullname: Birkhofer, Klaus – sequence: 10 givenname: Steffen surname: Boch fullname: Boch, Steffen – sequence: 11 givenname: Stefan surname: Böhm fullname: Böhm, Stefan – sequence: 12 givenname: Carmen surname: Börschig fullname: Börschig, Carmen – sequence: 13 givenname: Antonis surname: Chatzinotas fullname: Chatzinotas, Antonis – sequence: 14 givenname: Sabina surname: Christ fullname: Christ, Sabina – sequence: 15 givenname: Rolf surname: Daniel fullname: Daniel, Rolf – sequence: 16 givenname: Tim surname: Diekötter fullname: Diekötter, Tim – sequence: 17 givenname: Christiane surname: Fischer fullname: Fischer, Christiane – sequence: 18 givenname: Thomas surname: Friedl fullname: Friedl, Thomas – sequence: 19 givenname: Karin surname: Glaser fullname: Glaser, Karin – sequence: 20 givenname: Christine surname: Hallmann fullname: Hallmann, Christine – sequence: 21 givenname: Ladislav surname: Hodac fullname: Hodac, Ladislav – sequence: 22 givenname: Norbert surname: Hölzel fullname: Hölzel, Norbert – sequence: 23 givenname: Kirsten surname: Jung fullname: Jung, Kirsten – sequence: 24 givenname: Alexandra Maria surname: Klein fullname: Klein, Alexandra Maria – sequence: 25 givenname: Valentin H. surname: Klaus fullname: Klaus, Valentin H. – sequence: 26 givenname: Till surname: Kleinebecker fullname: Kleinebecker, Till – sequence: 27 givenname: Jochen surname: Krauss fullname: Krauss, Jochen – sequence: 28 givenname: Markus surname: Lange fullname: Lange, Markus – sequence: 29 givenname: E. Kathryn surname: Morris fullname: Morris, E. Kathryn – sequence: 30 givenname: Jörg surname: Müller fullname: Müller, Jörg – sequence: 31 givenname: Heiko surname: Nacke fullname: Nacke, Heiko – sequence: 32 givenname: Esther surname: Pašalić fullname: Pašalić, Esther – sequence: 33 givenname: Matthias C. surname: Rillig fullname: Rillig, Matthias C. – sequence: 34 givenname: Christoph surname: Rothenwöhrer fullname: Rothenwöhrer, Christoph – sequence: 35 givenname: Peter surname: Schally fullname: Schally, Peter – sequence: 36 givenname: Christoph surname: Scherber fullname: Scherber, Christoph – sequence: 37 givenname: Waltraud surname: Schulze fullname: Schulze, Waltraud – sequence: 38 givenname: Stephanie A. surname: Socher fullname: Socher, Stephanie A. – sequence: 39 givenname: Juliane surname: Steckel fullname: Steckel, Juliane – sequence: 40 givenname: Ingolf surname: Steffan-Dewenter fullname: Steffan-Dewenter, Ingolf – sequence: 41 givenname: Manfred surname: Türke fullname: Türke, Manfred – sequence: 42 givenname: Christiane N. surname: Weiner fullname: Weiner, Christiane N. – sequence: 43 givenname: Michael surname: Werner fullname: Werner, Michael – sequence: 44 givenname: Catrin surname: Westphal fullname: Westphal, Catrin – sequence: 45 givenname: Volkmar surname: Wolters fullname: Wolters, Volkmar – sequence: 46 givenname: Tesfaye surname: Wubet fullname: Wubet, Tesfaye – sequence: 47 givenname: Sonja surname: Gockel fullname: Gockel, Sonja – sequence: 48 givenname: Martin surname: Gorke fullname: Gorke, Martin – sequence: 49 givenname: Andreas surname: Hemp fullname: Hemp, Andreas – sequence: 50 givenname: Swen C. surname: Renner fullname: Renner, Swen C. – sequence: 51 givenname: Ingo surname: Schöningt fullname: Schöningt, Ingo – sequence: 52 givenname: Simone surname: Pfeiffer fullname: Pfeiffer, Simone – sequence: 53 givenname: Birgitta surname: König-Ries fullname: König-Ries, Birgitta – sequence: 54 givenname: François surname: Buscot fullname: Buscot, François – sequence: 55 givenname: Karl Eduard surname: Linsenmair fullname: Linsenmair, Karl Eduard – sequence: 56 givenname: Ernst-Detlef surname: Schulzet fullname: Schulzet, Ernst-Detlef – sequence: 57 givenname: Wolfgang W. surname: Weisser fullname: Weisser, Wolfgang W. – sequence: 58 givenname: Markus surname: Fischer fullname: Fischer, Markus |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24368852$$D View this record in MEDLINE/PubMed https://lup.lub.lu.se/record/4319033$$DView record from Swedish Publication Index oai:portal.research.lu.se:publications/bb88f180-17e5-47e6-80ea-74e6c4807341$$DView record from Swedish Publication Index |
BookMark | eNqNkk1vEzEQhleoiKaFMydgJS5cth1_rO29IKGKj0pBHKBny-uME0cbb7B3g_rvcZq0oZUqevB6pXnm9cw7c1IchT5gUbwmcEZAsvN1MOmMMEJp_hDyrJgQaEgleANHxQSAykpxyo-Lk5SWANDUCl4Ux5QzoVRNJ8X3yzBgNCGMpis3Jnoz-D6UPpSdCbNqTJj_BwzJD9clhoUJFlM5jyalLVCuxm7wM7_BuCVeFs-d6RK-2t-nxdWXz78uvlXTH18vLz5NKysJHyoUSggpmVQCBXO14sxxVdemtVQ5KlAp4DUQ5xpJjGu5BCTWWQezRrWtYaeF2emmP7geW72OfmXite6N1-s-DqbTEROaaBe6G3VCnanO25vmkm5bpRxRoInEWnOJQitAoyVHYbnKxnKS35g--kY3rvNp99pPlPu4k8taK5xZDEPMZd6r_F4k-IWe9xvNVAOqUVngw14g9r9HTINe-WSxy2PAfkw6F8BAZsP4_1He5PEzReApKEiRB7Dt4P0DdNmPMeQ5Z0rKWlJJWabe_tvnXYO3K5eBegfY2KcU0Wnrh5vB5LZ9p0n2MVumt6utD6ud884f5N1KP57xZl_KNnBHE6KJZqAO8WUa-niolEkJNd96824Xd6bXZh590lc_KRABkE1WVLG_sGIYPw |
CitedBy_id | crossref_primary_10_1016_j_envres_2024_118517 crossref_primary_10_1002_ece3_70907 crossref_primary_10_1007_s11442_017_1383_7 crossref_primary_10_1098_rstb_2015_0269 crossref_primary_10_1111_ele_14161 crossref_primary_10_1016_j_gecco_2022_e02062 crossref_primary_10_1038_s41467_018_05421_z crossref_primary_10_1016_j_scitotenv_2023_166805 crossref_primary_10_1016_j_baae_2017_06_002 crossref_primary_10_1016_j_agee_2021_107845 crossref_primary_10_1016_j_tree_2023_06_004 crossref_primary_10_1038_s41467_021_23931_1 crossref_primary_10_1186_s40663_021_00280_5 crossref_primary_10_1111_1365_2664_13635 crossref_primary_10_1111_gcb_16024 crossref_primary_10_1111_gcb_16387 crossref_primary_10_1093_femsec_fiaf002 crossref_primary_10_1111_jvs_12749 crossref_primary_10_1111_nph_14634 crossref_primary_10_1093_ee_nvz074 crossref_primary_10_1016_j_scitotenv_2018_06_323 crossref_primary_10_1016_j_scitotenv_2021_148159 crossref_primary_10_1111_ele_13769 crossref_primary_10_1111_oik_06290 crossref_primary_10_3390_insects10120421 crossref_primary_10_1002_rse2_372 crossref_primary_10_1016_j_agee_2015_05_014 crossref_primary_10_1073_pnas_2016038118 crossref_primary_10_1016_j_agee_2016_07_026 crossref_primary_10_1016_j_gecco_2024_e03154 crossref_primary_10_1016_j_geoderma_2024_116801 crossref_primary_10_3390_su13073590 crossref_primary_10_1073_pnas_2016210117 crossref_primary_10_1007_s00035_022_00285_y crossref_primary_10_1016_j_jclepro_2016_06_079 crossref_primary_10_1016_j_jhazmat_2022_129727 crossref_primary_10_1371_journal_pone_0107033 crossref_primary_10_1038_s41396_019_0574_x crossref_primary_10_1016_j_jenvman_2022_116562 crossref_primary_10_1016_j_apsoil_2019_02_005 crossref_primary_10_1016_j_baae_2017_03_004 crossref_primary_10_1016_j_ecolind_2023_109866 crossref_primary_10_1098_rstb_2015_0284 crossref_primary_10_1111_jvs_13055 crossref_primary_10_1038_s41598_019_46024_y crossref_primary_10_3390_ani14182646 crossref_primary_10_12688_cobot_17707_1 crossref_primary_10_1111_1365_2664_14025 crossref_primary_10_1111_brv_12346 crossref_primary_10_1016_j_biocon_2017_12_027 crossref_primary_10_3390_rs15010181 crossref_primary_10_1007_s00035_024_00320_0 crossref_primary_10_1007_s11104_015_2788_7 crossref_primary_10_1016_j_apsoil_2023_104881 crossref_primary_10_1111_ele_13182 crossref_primary_10_1016_j_rama_2018_04_005 crossref_primary_10_1073_pnas_1906419116 crossref_primary_10_1016_j_scitotenv_2023_164722 crossref_primary_10_1038_nature20575 crossref_primary_10_1002_ecy_1498 crossref_primary_10_1890_14_1307_1 crossref_primary_10_1016_j_ecolind_2018_04_018 crossref_primary_10_1002_ecs2_2303 crossref_primary_10_1038_s41559_019_1084_y crossref_primary_10_1016_j_ecolind_2023_110721 crossref_primary_10_1016_j_agee_2023_108860 crossref_primary_10_1007_s10980_019_00829_4 crossref_primary_10_1073_pnas_1910023117 crossref_primary_10_1016_j_agee_2018_10_015 crossref_primary_10_3390_agronomy13051263 crossref_primary_10_1016_j_ecolind_2017_12_031 crossref_primary_10_1016_j_agee_2016_01_050 crossref_primary_10_1016_j_agee_2016_09_002 crossref_primary_10_1016_j_agee_2016_12_022 crossref_primary_10_1007_s00442_015_3336_0 crossref_primary_10_1016_j_ecolind_2019_105902 crossref_primary_10_1007_s10668_024_04961_3 crossref_primary_10_1016_j_agrformet_2018_03_008 crossref_primary_10_1007_s00442_024_05611_1 crossref_primary_10_1126_science_abq4062 crossref_primary_10_12688_f1000research_157160_1 crossref_primary_10_1016_j_catena_2023_107059 crossref_primary_10_1002_ecs2_1545 crossref_primary_10_1002_eap_1853 crossref_primary_10_1002_eap_1973 crossref_primary_10_1002_eap_2820 crossref_primary_10_1016_j_envexpbot_2021_104372 crossref_primary_10_1007_s00442_023_05345_6 crossref_primary_10_1007_s11104_018_3855_7 crossref_primary_10_1016_j_rhisph_2022_100512 crossref_primary_10_1038_s41467_020_15013_5 crossref_primary_10_1007_s10980_024_01992_z crossref_primary_10_1007_s00442_017_4031_0 crossref_primary_10_1111_1365_2745_14106 crossref_primary_10_1016_j_flora_2019_151444 crossref_primary_10_1016_j_jhazmat_2018_04_012 crossref_primary_10_1007_s11104_020_04516_1 crossref_primary_10_3389_fmicb_2021_611339 crossref_primary_10_1016_j_catena_2025_108714 crossref_primary_10_1007_s10980_021_01392_7 crossref_primary_10_1111_gcb_16697 crossref_primary_10_1111_ele_14104 crossref_primary_10_1111_gcb_14503 crossref_primary_10_1016_j_scitotenv_2024_176913 crossref_primary_10_1002_glr2_12060 crossref_primary_10_1093_forestry_cpz046 crossref_primary_10_3390_insects15121021 crossref_primary_10_1088_1748_9326_10_1_014004 crossref_primary_10_1002_ecm_1571 crossref_primary_10_1007_s10841_019_00146_w crossref_primary_10_7717_peerj_1740 crossref_primary_10_1002_ppp3_10405 crossref_primary_10_1016_j_protis_2017_03_005 crossref_primary_10_1016_j_rse_2021_112795 crossref_primary_10_3390_agronomy12051080 crossref_primary_10_1111_1365_2435_13758 crossref_primary_10_1128_mbio_00449_22 crossref_primary_10_1002_ece3_2160 crossref_primary_10_3390_f15101701 crossref_primary_10_1002_ecs2_4914 crossref_primary_10_3934_agrfood_2016_2_157 crossref_primary_10_1016_j_gecco_2018_e00490 crossref_primary_10_3897_natureconservation_55_114385 crossref_primary_10_1016_j_foreco_2021_119552 crossref_primary_10_4081_ija_2015_656 crossref_primary_10_1016_j_soilbio_2023_108968 crossref_primary_10_1111_1365_2656_12641 crossref_primary_10_1038_s41598_018_27017_9 crossref_primary_10_1007_s10531_017_1411_z crossref_primary_10_1007_s00442_021_04880_4 crossref_primary_10_1088_1748_9326_aacc7a crossref_primary_10_1002_biuz_201510562 crossref_primary_10_1016_j_agee_2016_11_001 crossref_primary_10_1016_j_agee_2023_108768 crossref_primary_10_3897_BDJ_7_e36387 crossref_primary_10_1016_j_geoderma_2023_116474 crossref_primary_10_1016_j_agee_2016_05_029 crossref_primary_10_1016_j_geoderma_2025_117201 crossref_primary_10_1002_ecs2_1997 crossref_primary_10_1016_j_scitotenv_2016_05_008 crossref_primary_10_1111_jvs_13316 crossref_primary_10_1016_j_catena_2022_106282 crossref_primary_10_1186_1478_811X_12_30 crossref_primary_10_1111_1365_2664_14568 crossref_primary_10_1016_j_agee_2023_108673 crossref_primary_10_1038_nature19092 crossref_primary_10_4236_ajps_2015_617273 crossref_primary_10_1038_s44284_024_00126_5 crossref_primary_10_1111_avsc_12647 crossref_primary_10_3897_natureconservation_55_108688 crossref_primary_10_1002_ece3_3395 crossref_primary_10_1002_jwmg_22357 crossref_primary_10_1002_ece3_70511 crossref_primary_10_1186_s13750_024_00343_4 crossref_primary_10_1016_j_agee_2018_08_016 crossref_primary_10_1038_ncomms10697 crossref_primary_10_1016_j_baae_2021_02_011 crossref_primary_10_1016_j_cub_2024_06_062 crossref_primary_10_1016_j_jenvman_2024_124003 crossref_primary_10_1038_s41559_024_02517_2 crossref_primary_10_1007_s00442_022_05288_4 crossref_primary_10_3389_ffunb_2022_805225 crossref_primary_10_1111_ejss_13154 crossref_primary_10_1002_ece3_6675 crossref_primary_10_1073_pnas_1807354116 crossref_primary_10_1016_j_biocon_2019_02_032 crossref_primary_10_1111_gcb_15917 crossref_primary_10_3390_data2020012 crossref_primary_10_1016_j_chemosphere_2022_135403 crossref_primary_10_1038_s41598_020_80499_4 crossref_primary_10_3390_agriculture12070921 crossref_primary_10_1016_j_jenvman_2020_111629 crossref_primary_10_1111_njb_03007 crossref_primary_10_3390_rs13030348 crossref_primary_10_1038_s41559_017_0227_2 crossref_primary_10_1007_s13592_024_01056_w crossref_primary_10_1002_pan3_10421 crossref_primary_10_1038_s41559_020_1245_z crossref_primary_10_1016_j_agee_2020_107023 crossref_primary_10_1111_1365_2656_13373 crossref_primary_10_1016_j_foreco_2024_122328 crossref_primary_10_5194_we_20_95_2020 crossref_primary_10_1016_j_biocon_2017_01_019 crossref_primary_10_1007_s10531_015_1037_y crossref_primary_10_1007_s10980_021_01391_8 crossref_primary_10_1111_sum_13004 crossref_primary_10_1016_j_ecolind_2025_113078 crossref_primary_10_1038_srep13308 crossref_primary_10_1007_s10980_017_0607_7 crossref_primary_10_1016_j_agee_2022_108061 crossref_primary_10_1016_j_cub_2024_11_040 crossref_primary_10_1016_j_jenvman_2023_119416 crossref_primary_10_1111_ele_12469 crossref_primary_10_1639_0007_2745_117_3_313 crossref_primary_10_2139_ssrn_4127311 crossref_primary_10_1016_j_jenvman_2023_117358 crossref_primary_10_1038_s41467_024_48830_z crossref_primary_10_1002_eap_1900 crossref_primary_10_1016_j_wroa_2024_100251 crossref_primary_10_1016_j_foreco_2018_10_019 crossref_primary_10_1038_s41559_022_01827_7 crossref_primary_10_1038_s41559_022_01842_8 crossref_primary_10_1016_j_ecolind_2020_106201 crossref_primary_10_3389_fevo_2023_1154787 crossref_primary_10_1007_s10661_023_11618_7 crossref_primary_10_1016_j_agee_2023_108474 crossref_primary_10_1016_j_tree_2016_09_007 crossref_primary_10_1111_een_13400 crossref_primary_10_3390_rs12060969 crossref_primary_10_1007_s10980_023_01729_4 crossref_primary_10_3390_f10010073 crossref_primary_10_1007_s10340_023_01698_2 crossref_primary_10_1890_15_0616_1 crossref_primary_10_1016_j_ecoleng_2019_04_017 crossref_primary_10_1016_j_foreco_2020_118532 crossref_primary_10_1002_ece3_4726 crossref_primary_10_1038_s42003_022_03372_2 crossref_primary_10_1016_j_apgeog_2015_12_003 crossref_primary_10_1016_j_biocon_2024_110815 crossref_primary_10_1111_1365_2435_13575 crossref_primary_10_1038_s41559_023_02049_1 crossref_primary_10_1016_j_apsoil_2023_105027 crossref_primary_10_1111_1365_2664_13537 crossref_primary_10_1007_s10980_023_01739_2 crossref_primary_10_1016_j_ppees_2018_01_004 crossref_primary_10_1016_j_apsoil_2024_105304 crossref_primary_10_1111_1365_2745_12236 crossref_primary_10_1007_s10531_016_1070_5 crossref_primary_10_1016_j_apsoil_2024_105308 crossref_primary_10_1038_s41467_020_14541_4 crossref_primary_10_1371_journal_pone_0152878 crossref_primary_10_1016_j_agee_2019_03_004 crossref_primary_10_1016_j_scitotenv_2023_166437 crossref_primary_10_1016_j_scitotenv_2019_01_063 crossref_primary_10_1016_j_agee_2019_03_007 crossref_primary_10_1016_j_scitotenv_2015_07_158 crossref_primary_10_3389_fsufs_2021_614348 crossref_primary_10_7554_eLife_52787 crossref_primary_10_1016_j_envpol_2021_117501 crossref_primary_10_1088_1748_9326_ad545a crossref_primary_10_1002_2688_8319_12320 crossref_primary_10_1186_1472_6785_14_1 crossref_primary_10_3389_fevo_2022_864470 crossref_primary_10_1111_ele_12456 crossref_primary_10_1007_s42832_020_0046_2 crossref_primary_10_1002_ece3_5030 crossref_primary_10_1007_s10021_020_00530_7 crossref_primary_10_1038_s41467_024_45113_5 crossref_primary_10_1016_j_baae_2022_05_007 crossref_primary_10_1016_j_biocon_2018_10_013 crossref_primary_10_1016_j_agee_2019_106698 crossref_primary_10_1111_1365_2745_13555 crossref_primary_10_1038_s41467_023_43760_8 crossref_primary_10_1890_15_1234 |
Cites_doi | 10.1126/science.1208742 10.2307/2344517 10.1073/pnas.1220608110 10.1016/S0169-5347(99)01679-1 10.1146/annurev.ecolsys.31.1.343 10.1046/j.1523-1739.1997.96082.x 10.1073/pnas.1310880110 10.1111/j.1365-2664.2007.01393.x 10.1890/04-0394 10.1111/j.1466-8238.2007.00344.x 10.1038/nature10282 10.1641/0006-3568(2001)051[0625:RHOREM]2.0.CO;2 10.1111/j.1461-0248.2009.01403.x 10.1073/pnas.1016799108 10.1111/j.1365-2699.2005.01207.x 10.1098/rstb.2004.1584 10.1111/j.1469-185X.2011.00216.x 10.1073/pnas.262413599 10.1016/j.tree.2005.08.009 10.1111/j.1461-0248.2010.01457.x 10.1111/j.1461-0248.2008.01255.x 10.1038/nature09492 10.1098/rspb.2008.1509 10.1126/science.1111772 10.1016/j.tree.2005.08.005 10.1111/ele.12066 10.1016/j.agee.2007.12.011 10.1126/science.1215442 10.1016/j.baae.2009.12.001 10.1016/j.baae.2010.07.009 10.1073/pnas.0600599103 10.1016/S0169-5347(03)00011-9 10.1016/j.baae.2012.04.001 |
ContentType | Journal Article |
Copyright | copyright © 1993—2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jan 7, 2014 |
Copyright_xml | – notice: copyright © 1993—2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jan 7, 2014 |
CorporateAuthor | Strategiska forskningsområden (SFO) Strategic research areas (SRA) Profile areas and other strong research environments Lunds universitet BECC: Biodiversity and Ecosystem services in a Changing Climate Lund University Profilområden och andra starka forskningsmiljöer |
CorporateAuthor_xml | – name: Strategiska forskningsområden (SFO) – name: Profilområden och andra starka forskningsmiljöer – name: Lund University – name: BECC: Biodiversity and Ecosystem services in a Changing Climate – name: Profile areas and other strong research environments – name: Strategic research areas (SRA) – name: Lunds universitet |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7ST 7U6 7S9 L.6 5PM ADTPV AOWAS D95 |
DOI | 10.1073/pnas.1312213111 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Lunds universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Virology and AIDS Abstracts MEDLINE Environment Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Ecology |
DocumentTitleAlternate | Land use and multidiversity |
EISSN | 1091-6490 |
EndPage | 313 |
ExternalDocumentID | oai_portal_research_lu_se_publications_bb88f180_17e5_47e6_80ea_74e6c4807341 oai_lup_lub_lu_se_bb88f180_17e5_47e6_80ea_74e6c4807341 PMC3890898 3182329231 24368852 10_1073_pnas_1312213111 111_1_308 23770540 US201600143828 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7ST 7U6 7S9 L.6 5PM ADTPV AFHIN AFQQW AOWAS D95 |
ID | FETCH-LOGICAL-c714t-e6866773786e63f5843f4855abc28f26e8804501ff971afb470e1cfcf0d98bba3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Wed Aug 27 04:11:51 EDT 2025 Thu Jul 03 05:23:42 EDT 2025 Thu Aug 21 18:40:12 EDT 2025 Thu Jul 10 22:45:09 EDT 2025 Fri Jul 11 14:31:50 EDT 2025 Fri Jul 11 03:43:55 EDT 2025 Mon Jun 30 08:29:13 EDT 2025 Thu Apr 03 07:08:38 EDT 2025 Tue Jul 01 01:52:57 EDT 2025 Thu Apr 24 22:51:44 EDT 2025 Wed Nov 11 00:30:33 EST 2020 Thu May 29 08:40:53 EDT 2025 Wed Dec 27 19:20:09 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Biodiversity Exploratories biodiversity loss agricultural grasslands |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c714t-e6866773786e63f5843f4855abc28f26e8804501ff971afb470e1cfcf0d98bba3 |
Notes | http://dx.doi.org/10.1073/pnas.1312213111 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: E.A., O.B., and M.F. designed research; D.P., M.M.G., T.T., N.B., M.B., K.B., S. Boch, S. Böhm, C.B., A.C., S.C., R.D., T.D., C.F., T.F., K.G., C.H., L.H., N.H., K.J., A.M.K., V.H.K., T.K., J.K., M.L., E.K.M., J.M., H.N., E.P., M.C.R., C.R., P.S., C.S., W.S., S.A.S., J.S., I.S.-D., M.T., C.N.W., M.W., C.W., V.W., T.W., S.C.R., F.B., W.W.W., and M.F. contributed data; E.A. analyzed data; E.A., O.B., C.F.D., D.P., M.M.G., T.T., N.B., and M.F. wrote the paper; F.B., K.E.L., E.-D.S., W.W.W., and M.F. designed and established the Biodiversity Exploratories; and S.G., M.G., A.H., S.C.R., I.S., S.P., and B.K.-R. maintained the infrastructure of the Biodiversity Exploratories. Edited by Osvaldo E. Sala, Arizona State University, Tempe, AZ, and accepted by the Editorial Board November 20, 2013 (received for review July 2, 2013) |
OpenAccessLink | https://www.pnas.org/content/pnas/111/1/308.full.pdf |
PMID | 24368852 |
PQID | 1477572723 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1803079714 pubmed_primary_24368852 fao_agris_US201600143828 proquest_miscellaneous_1490764701 proquest_journals_1477572723 swepub_primary_oai_lup_lub_lu_se_bb88f180_17e5_47e6_80ea_74e6c4807341 proquest_miscellaneous_1496883810 pnas_primary_111_1_308 jstor_primary_23770540 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3890898 swepub_primary_oai_portal_research_lu_se_publications_bb88f180_17e5_47e6_80ea_74e6c4807341 crossref_citationtrail_10_1073_pnas_1312213111 crossref_primary_10_1073_pnas_1312213111 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-07 |
PublicationDateYYYYMMDD | 2014-01-07 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Bartoń K (e_1_3_3_37_2) 2012 Pinheiro J (e_1_3_3_34_2) 2012 Burnham K (e_1_3_3_35_2) 2002 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 R Core Team (e_1_3_3_33_2) 2012 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 20337698 - Ecol Lett. 2010 May;13(5):597-605 15814346 - Philos Trans R Soc Lond B Biol Sci. 2005 Feb 28;360(1454):289-95 23271810 - Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):988-93 23818582 - Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11911-6 12486221 - Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16812-6 10511724 - Trends Ecol Evol. 1999 Nov;14(11):450-453 23301631 - Ecol Lett. 2013 Apr;16(4):454-60 16908862 - Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12793-8 21832994 - Nature. 2011 Sep 8;477(7363):199-202 19019785 - Proc Biol Sci. 2009 Mar 7;276(1658):903-9 19087109 - Ecol Lett. 2009 Jan;12(1):22-33 16040698 - Science. 2005 Jul 22;309(5734):570-4 21536873 - Proc Natl Acad Sci U S A. 2011 May 17;108(20):8311-6 16701447 - Trends Ecol Evol. 2005 Nov;20(11):634-41 20981010 - Nature. 2010 Nov 25;468(7323):553-6 21885781 - Science. 2011 Sep 2;333(6047):1289-91 16701446 - Trends Ecol Evol. 2005 Nov;20(11):625-33 22246775 - Science. 2012 Jan 13;335(6065):214-8 22272640 - Biol Rev Camb Philos Soc. 2012 Aug;87(3):661-85 19917052 - Ecol Lett. 2010 Jan;13(1):76-86 |
References_xml | – ident: e_1_3_3_25_2 doi: 10.1126/science.1208742 – ident: e_1_3_3_36_2 doi: 10.2307/2344517 – ident: e_1_3_3_27_2 doi: 10.1073/pnas.1220608110 – ident: e_1_3_3_13_2 doi: 10.1016/S0169-5347(99)01679-1 – ident: e_1_3_3_2_2 doi: 10.1146/annurev.ecolsys.31.1.343 – ident: e_1_3_3_14_2 doi: 10.1046/j.1523-1739.1997.96082.x – ident: e_1_3_3_31_2 doi: 10.1073/pnas.1310880110 – ident: e_1_3_3_28_2 doi: 10.1111/j.1365-2664.2007.01393.x – ident: e_1_3_3_22_2 doi: 10.1890/04-0394 – ident: e_1_3_3_29_2 doi: 10.1111/j.1466-8238.2007.00344.x – ident: e_1_3_3_6_2 doi: 10.1038/nature10282 – ident: e_1_3_3_12_2 doi: 10.1641/0006-3568(2001)051[0625:RHOREM]2.0.CO;2 – ident: e_1_3_3_5_2 doi: 10.1111/j.1461-0248.2009.01403.x – ident: e_1_3_3_7_2 doi: 10.1073/pnas.1016799108 – ident: e_1_3_3_15_2 doi: 10.1111/j.1365-2699.2005.01207.x – ident: e_1_3_3_20_2 doi: 10.1098/rstb.2004.1584 – ident: e_1_3_3_26_2 doi: 10.1111/j.1469-185X.2011.00216.x – ident: e_1_3_3_32_2 doi: 10.1073/pnas.262413599 – ident: e_1_3_3_17_2 doi: 10.1016/j.tree.2005.08.009 – ident: e_1_3_3_30_2 doi: 10.1111/j.1461-0248.2010.01457.x – year: 2012 ident: e_1_3_3_37_2 publication-title: MuMIn: Multi-Model Inference. R Package Version 1 – ident: e_1_3_3_4_2 doi: 10.1111/j.1461-0248.2008.01255.x – ident: e_1_3_3_16_2 doi: 10.1038/nature09492 – ident: e_1_3_3_9_2 doi: 10.1098/rspb.2008.1509 – ident: e_1_3_3_3_2 doi: 10.1126/science.1111772 – ident: e_1_3_3_18_2 doi: 10.1016/j.tree.2005.08.005 – ident: e_1_3_3_24_2 doi: 10.1111/ele.12066 – ident: e_1_3_3_23_2 doi: 10.1016/j.agee.2007.12.011 – ident: e_1_3_3_19_2 doi: 10.1126/science.1215442 – volume-title: R: A Language and Environment for Statistical Computing year: 2012 ident: e_1_3_3_33_2 – ident: e_1_3_3_8_2 doi: 10.1016/j.baae.2009.12.001 – ident: e_1_3_3_21_2 doi: 10.1016/j.baae.2010.07.009 – year: 2012 ident: e_1_3_3_34_2 publication-title: nlme: Linear and Nonlinear Mixed Effects Models – ident: e_1_3_3_1_2 doi: 10.1073/pnas.0600599103 – ident: e_1_3_3_11_2 doi: 10.1016/S0169-5347(03)00011-9 – ident: e_1_3_3_10_2 doi: 10.1016/j.baae.2012.04.001 – volume-title: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach year: 2002 ident: e_1_3_3_35_2 – reference: 19019785 - Proc Biol Sci. 2009 Mar 7;276(1658):903-9 – reference: 23301631 - Ecol Lett. 2013 Apr;16(4):454-60 – reference: 16701446 - Trends Ecol Evol. 2005 Nov;20(11):625-33 – reference: 23271810 - Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):988-93 – reference: 16908862 - Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12793-8 – reference: 20337698 - Ecol Lett. 2010 May;13(5):597-605 – reference: 21832994 - Nature. 2011 Sep 8;477(7363):199-202 – reference: 12486221 - Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16812-6 – reference: 21536873 - Proc Natl Acad Sci U S A. 2011 May 17;108(20):8311-6 – reference: 22246775 - Science. 2012 Jan 13;335(6065):214-8 – reference: 23818582 - Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11911-6 – reference: 15814346 - Philos Trans R Soc Lond B Biol Sci. 2005 Feb 28;360(1454):289-95 – reference: 21885781 - Science. 2011 Sep 2;333(6047):1289-91 – reference: 22272640 - Biol Rev Camb Philos Soc. 2012 Aug;87(3):661-85 – reference: 16040698 - Science. 2005 Jul 22;309(5734):570-4 – reference: 19917052 - Ecol Lett. 2010 Jan;13(1):76-86 – reference: 19087109 - Ecol Lett. 2009 Jan;12(1):22-33 – reference: 20981010 - Nature. 2010 Nov 25;468(7323):553-6 – reference: 10511724 - Trends Ecol Evol. 1999 Nov;14(11):450-453 – reference: 16701447 - Trends Ecol Evol. 2005 Nov;20(11):634-41 |
SSID | ssj0009580 |
Score | 2.5661805 |
Snippet | Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed... Land-use intensification is a major threat to biodiversity. So far, however, studies on biodiversity impacts of land-use intensity (LUI) have been limited to a... There is abundant evidence that the probability of successful establishment in novel environments increases with number of individuals in founder groups and... |
SourceID | swepub pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 308 |
SubjectTerms | agricultural grasslands Agriculture - methods animals Area Under Curve bacteria Biodiversity Biodiversity conservation Biodiversity Exploratories biodiversity loss Biologi Biological Sciences Biological taxonomies Conservation Conservation of Natural Resources Ecology Ecology (including Biodiversity Conservation) Ekologi Epidemiology fungi Genetic diversity Genotype & phenotype Germany Grasses Grasslands grazing Grazing intensity Infections Invasive species Land use Models, Biological Mowing Natural Sciences Naturvetenskap Parasites Phenotypic variations Phylogeny Plant biodiversity Plants plants (botany) Poaceae - physiology Probability rare species Reintroduction Species Species diversity Species Specificity Time Factors Translocation |
Title | Interannual variation in land-use intensity enhances grassland multidiversity |
URI | https://www.jstor.org/stable/23770540 http://www.pnas.org/content/111/1/308.abstract https://www.ncbi.nlm.nih.gov/pubmed/24368852 https://www.proquest.com/docview/1477572723 https://www.proquest.com/docview/1490764701 https://www.proquest.com/docview/1496883810 https://www.proquest.com/docview/1803079714 https://pubmed.ncbi.nlm.nih.gov/PMC3890898 https://lup.lub.lu.se/record/4319033 oai:portal.research.lu.se:publications/bb88f180-17e5-47e6-80ea-74e6c4807341 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa68cILYsBYxkBB4mGoSkkcJ3YfK7QxIa1MYpUmXqwktddJVVr1Bw_8B_zX3Dmxk7KuGjw0qhLHcXxf7nz23WdCPoCPkFOlkwDXbAImWB6IPMdVdh4prhXVJivtcphejNjXm-Sm0_ndilpar_Je8WtrXsn_SBXOgVwxS_YfJOsqhRPwH-QLR5AwHB8lYzOdV7GKdn-C05vZyEUMVwzWS2XYIEoTdqHKCQp42b1dwHgZC1TBhGMbmNEepl45s7a0QQRDO2s4aHJQasWw7Abdq2Gzo_EAoFVaJev8fbDG49nCcEB-m-JD3RjaJC6UdfgJoK7snvecykaENrnw7UmKiJlJCt7EcOxoYls7U7CYrMqpdtq51sVtGFa6Ng5Fy2zHVUrrPYsAKgy3MS6zZS-KI0qRXihqjJ8LSaQx5zh83SNPKHgcuBnGl5uoxd8sqmymuomWJYrHn_6qe2OAs6ezmY10RfpcKLrNlbkfkbvBW2vGOtfPybPaSfEHFeIOSEeVL8iB7Ur_tOYq__iSXLYg6DsI-nelbyHoOwj6FoK-g6C_CcFXZHR-dv35Iqh36AgKHrFVoFKRppzHXKQqjTUMZmONbENZXlChaarAOrAkjLSGTz_TOeOhigpd6HDcB5WQxYdkv5yV6oj40HV9gWvaObj4fdAZQjMO9iThqhB5OPZIz3arLGr6etxFZSpNGAWPJXaubOTgkVN3w7xibnm46BHISWa3YFfl6DtF1kXkvRRUeOTQCM9VYXECF0wtrmpwpCMJmPTIiZWvrHUFPItxeBPKaeyR9-4yaHJcnstKNVtjmX7IU-iiaGeZVAhk5dtRRqDhhg5nHnldwappPW44IRLqEb4BOFcA2eY3r5R3E8M6D55NKPrwemcVNDduma7n8MvhJ5dKgrIXGpohI64SybhKpQhVJjlTaYEcFjB09siPLfVUcw6yJjqb1PXNWysYj6r8-CGpvSFPG_V0QvZXi7V6C17FKn9nvvc_7LUivA |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interannual+variation+in+land-use+intensity+enhances+grassland+multidiversity&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Allan%2C+Eric&rft.au=Bossdorf%2C+Oliver&rft.au=Dormann%2C+Carsten+F.&rft.au=Prati%2C+Daniel&rft.date=2014-01-07&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=111&rft.issue=1&rft.spage=308&rft.epage=313&rft_id=info:doi/10.1073%2Fpnas.1312213111&rft.externalDocID=23770540 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F1.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F1.cover.gif |