Interannual variation in land-use intensity enhances grassland multidiversity

Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 111; no. 1; pp. 308 - 313
Main Authors Allan, Eric, Bossdorf, Oliver, Dormann, Carsten F., Prati, Daniel, Gossner, Martin M., Tscharntke, Teja, Blüthgen, Nico, Bellach, Michaela, Birkhofer, Klaus, Boch, Steffen, Böhm, Stefan, Börschig, Carmen, Chatzinotas, Antonis, Christ, Sabina, Daniel, Rolf, Diekötter, Tim, Fischer, Christiane, Friedl, Thomas, Glaser, Karin, Hallmann, Christine, Hodac, Ladislav, Hölzel, Norbert, Jung, Kirsten, Klein, Alexandra Maria, Klaus, Valentin H., Kleinebecker, Till, Krauss, Jochen, Lange, Markus, Morris, E. Kathryn, Müller, Jörg, Nacke, Heiko, Pašalić, Esther, Rillig, Matthias C., Rothenwöhrer, Christoph, Schally, Peter, Scherber, Christoph, Schulze, Waltraud, Socher, Stephanie A., Steckel, Juliane, Steffan-Dewenter, Ingolf, Türke, Manfred, Weiner, Christiane N., Werner, Michael, Westphal, Catrin, Wolters, Volkmar, Wubet, Tesfaye, Gockel, Sonja, Gorke, Martin, Hemp, Andreas, Renner, Swen C., Schöningt, Ingo, Pfeiffer, Simone, König-Ries, Birgitta, Buscot, François, Linsenmair, Karl Eduard, Schulzet, Ernst-Detlef, Weisser, Wolfgang W., Fischer, Markus
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 07.01.2014
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.
AbstractList Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.
Land-use intensification is a major threat to biodiversity. So far, however, studies on biodiversity impacts of land-use intensity (LUI) have been limited to a single or few groups of organisms and have not considered temporal variation in LUI. Therefore, we examined total ecosystem biodiversity in grasslands varying in LUI with a newly developed index called multidiversity, which integrates the species richness of 49 different organism groups ranging from bacteria to birds. Multidiversity declined strongly with increasing LUI, but changing LUI across years increased multidiversity, particularly of rarer species. We conclude that encouraging farmers to change the intensity of their land use over time could be an important strategy to maintain high biodiversity in grasslands. Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.
There is abundant evidence that the probability of successful establishment in novel environments increases with number of individuals in founder groups and with number of repeated introductions. Theory posits that the genotypic and phenotypic variation among individuals should also be important, but few studies have examined whether founder diversity influences establishment independent of propagule pressure, nor whether the effect is model or context dependent. I summarize the results of 18 experimental studies and report on a metaanalysis that provides strong evidence that higher levels of genotypic and phenotypic diversity in founder groups increase establishment success in plants and animals. The effect of diversity is stronger in experiments carried out under natural conditions in the wild than under seminatural or standardized laboratory conditions. The realization that genetic and phenotypic variation is key to successful establishment may improve the outcome of reintroduction and translocation programs used to vitalize or restore declining and extinct populations. Founder diversity may also improve the ability of invasive species to establish and subsequently spread in environments outside of their native community, and enhance the ability of pathogens and parasites to colonize and invade the environment constituted by their hosts. It is argued that exchange of ideas, methodological approaches, and insights of the role of diversity for establishment in different contexts may further our knowledge, vitalize future research, and improve management plans in different disciplines. [PUBLICATION ABSTRACT]
There is abundant evidence that the probability of successful establishment in novel environments increases with number of individuals in founder groups and with number of repeated introductions. Theory posits that the genotypic and phenotypic variation among individuals should also be important, but few studies have examined whether founder diversity influences establishment independent of propagule pressure, nor whether the effect is model or context dependent. I summarize the results of 18 experimental studies and report on a metaanalysis that provides strong evidence that higher levels of genotypic and phenotypic diversity in founder groups increase establishment success in plants and animals. The effect of diversity is stronger in experiments carried out under natural conditions in the wild than under seminatural or standardized laboratory conditions. The realization that genetic and phenotypic variation is key to successful establishment may improve the outcome of reintroduction and translocation programs used to vitalize or restore declining and extinct populations. Founder diversity may also improve the ability of invasive species to establish and subsequently spread in environments outside of their native community, and enhance the ability of pathogens and parasites to colonize and invade the environment constituted by their hosts. It is argued that exchange of ideas, methodological approaches, and insights of the role of diversity for establishment in different contexts may further our knowledge, vitalize future research, and improve management plans in different disciplines.
Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.
Author Gorke, Martin
Morris, E. Kathryn
Weisser, Wolfgang W.
Steffan-Dewenter, Ingolf
Steckel, Juliane
Scherber, Christoph
Weiner, Christiane N.
Bellach, Michaela
Hölzel, Norbert
Birkhofer, Klaus
Nacke, Heiko
Lange, Markus
Glaser, Karin
Schulze, Waltraud
Christ, Sabina
Fischer, Christiane
Allan, Eric
Krauss, Jochen
König-Ries, Birgitta
Wubet, Tesfaye
Bossdorf, Oliver
Hallmann, Christine
Gossner, Martin M.
Werner, Michael
Börschig, Carmen
Pašalić, Esther
Jung, Kirsten
Böhm, Stefan
Socher, Stephanie A.
Diekötter, Tim
Klein, Alexandra Maria
Tscharntke, Teja
Friedl, Thomas
Gockel, Sonja
Fischer, Markus
Blüthgen, Nico
Dormann, Carsten F.
Müller, Jörg
Westphal, Catrin
Hemp, Andreas
Renner, Swen C.
Türke, Manfred
Pfeiffer, Simone
Buscot, François
Schulzet, Ernst-Detlef
Chatzinotas, Antonis
Rillig, Matthias C.
Klaus, Valentin H.
Daniel, Rolf
Schöningt, Ingo
Rothenwöhrer, Christoph
Hodac, Ladislav
Boch, Steffen
Wolters, Volkmar
Kleinebecker, Till
Linsenmair, Karl Eduard
Prati, Daniel
Schally, Peter
Author_xml – sequence: 1
  givenname: Eric
  surname: Allan
  fullname: Allan, Eric
– sequence: 2
  givenname: Oliver
  surname: Bossdorf
  fullname: Bossdorf, Oliver
– sequence: 3
  givenname: Carsten F.
  surname: Dormann
  fullname: Dormann, Carsten F.
– sequence: 4
  givenname: Daniel
  surname: Prati
  fullname: Prati, Daniel
– sequence: 5
  givenname: Martin M.
  surname: Gossner
  fullname: Gossner, Martin M.
– sequence: 6
  givenname: Teja
  surname: Tscharntke
  fullname: Tscharntke, Teja
– sequence: 7
  givenname: Nico
  surname: Blüthgen
  fullname: Blüthgen, Nico
– sequence: 8
  givenname: Michaela
  surname: Bellach
  fullname: Bellach, Michaela
– sequence: 9
  givenname: Klaus
  surname: Birkhofer
  fullname: Birkhofer, Klaus
– sequence: 10
  givenname: Steffen
  surname: Boch
  fullname: Boch, Steffen
– sequence: 11
  givenname: Stefan
  surname: Böhm
  fullname: Böhm, Stefan
– sequence: 12
  givenname: Carmen
  surname: Börschig
  fullname: Börschig, Carmen
– sequence: 13
  givenname: Antonis
  surname: Chatzinotas
  fullname: Chatzinotas, Antonis
– sequence: 14
  givenname: Sabina
  surname: Christ
  fullname: Christ, Sabina
– sequence: 15
  givenname: Rolf
  surname: Daniel
  fullname: Daniel, Rolf
– sequence: 16
  givenname: Tim
  surname: Diekötter
  fullname: Diekötter, Tim
– sequence: 17
  givenname: Christiane
  surname: Fischer
  fullname: Fischer, Christiane
– sequence: 18
  givenname: Thomas
  surname: Friedl
  fullname: Friedl, Thomas
– sequence: 19
  givenname: Karin
  surname: Glaser
  fullname: Glaser, Karin
– sequence: 20
  givenname: Christine
  surname: Hallmann
  fullname: Hallmann, Christine
– sequence: 21
  givenname: Ladislav
  surname: Hodac
  fullname: Hodac, Ladislav
– sequence: 22
  givenname: Norbert
  surname: Hölzel
  fullname: Hölzel, Norbert
– sequence: 23
  givenname: Kirsten
  surname: Jung
  fullname: Jung, Kirsten
– sequence: 24
  givenname: Alexandra Maria
  surname: Klein
  fullname: Klein, Alexandra Maria
– sequence: 25
  givenname: Valentin H.
  surname: Klaus
  fullname: Klaus, Valentin H.
– sequence: 26
  givenname: Till
  surname: Kleinebecker
  fullname: Kleinebecker, Till
– sequence: 27
  givenname: Jochen
  surname: Krauss
  fullname: Krauss, Jochen
– sequence: 28
  givenname: Markus
  surname: Lange
  fullname: Lange, Markus
– sequence: 29
  givenname: E. Kathryn
  surname: Morris
  fullname: Morris, E. Kathryn
– sequence: 30
  givenname: Jörg
  surname: Müller
  fullname: Müller, Jörg
– sequence: 31
  givenname: Heiko
  surname: Nacke
  fullname: Nacke, Heiko
– sequence: 32
  givenname: Esther
  surname: Pašalić
  fullname: Pašalić, Esther
– sequence: 33
  givenname: Matthias C.
  surname: Rillig
  fullname: Rillig, Matthias C.
– sequence: 34
  givenname: Christoph
  surname: Rothenwöhrer
  fullname: Rothenwöhrer, Christoph
– sequence: 35
  givenname: Peter
  surname: Schally
  fullname: Schally, Peter
– sequence: 36
  givenname: Christoph
  surname: Scherber
  fullname: Scherber, Christoph
– sequence: 37
  givenname: Waltraud
  surname: Schulze
  fullname: Schulze, Waltraud
– sequence: 38
  givenname: Stephanie A.
  surname: Socher
  fullname: Socher, Stephanie A.
– sequence: 39
  givenname: Juliane
  surname: Steckel
  fullname: Steckel, Juliane
– sequence: 40
  givenname: Ingolf
  surname: Steffan-Dewenter
  fullname: Steffan-Dewenter, Ingolf
– sequence: 41
  givenname: Manfred
  surname: Türke
  fullname: Türke, Manfred
– sequence: 42
  givenname: Christiane N.
  surname: Weiner
  fullname: Weiner, Christiane N.
– sequence: 43
  givenname: Michael
  surname: Werner
  fullname: Werner, Michael
– sequence: 44
  givenname: Catrin
  surname: Westphal
  fullname: Westphal, Catrin
– sequence: 45
  givenname: Volkmar
  surname: Wolters
  fullname: Wolters, Volkmar
– sequence: 46
  givenname: Tesfaye
  surname: Wubet
  fullname: Wubet, Tesfaye
– sequence: 47
  givenname: Sonja
  surname: Gockel
  fullname: Gockel, Sonja
– sequence: 48
  givenname: Martin
  surname: Gorke
  fullname: Gorke, Martin
– sequence: 49
  givenname: Andreas
  surname: Hemp
  fullname: Hemp, Andreas
– sequence: 50
  givenname: Swen C.
  surname: Renner
  fullname: Renner, Swen C.
– sequence: 51
  givenname: Ingo
  surname: Schöningt
  fullname: Schöningt, Ingo
– sequence: 52
  givenname: Simone
  surname: Pfeiffer
  fullname: Pfeiffer, Simone
– sequence: 53
  givenname: Birgitta
  surname: König-Ries
  fullname: König-Ries, Birgitta
– sequence: 54
  givenname: François
  surname: Buscot
  fullname: Buscot, François
– sequence: 55
  givenname: Karl Eduard
  surname: Linsenmair
  fullname: Linsenmair, Karl Eduard
– sequence: 56
  givenname: Ernst-Detlef
  surname: Schulzet
  fullname: Schulzet, Ernst-Detlef
– sequence: 57
  givenname: Wolfgang W.
  surname: Weisser
  fullname: Weisser, Wolfgang W.
– sequence: 58
  givenname: Markus
  surname: Fischer
  fullname: Fischer, Markus
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24368852$$D View this record in MEDLINE/PubMed
https://lup.lub.lu.se/record/4319033$$DView record from Swedish Publication Index
oai:portal.research.lu.se:publications/bb88f180-17e5-47e6-80ea-74e6c4807341$$DView record from Swedish Publication Index
BookMark eNqNkk1vEzEQhleoiKaFMydgJS5cth1_rO29IKGKj0pBHKBny-uME0cbb7B3g_rvcZq0oZUqevB6pXnm9cw7c1IchT5gUbwmcEZAsvN1MOmMMEJp_hDyrJgQaEgleANHxQSAykpxyo-Lk5SWANDUCl4Ux5QzoVRNJ8X3yzBgNCGMpis3Jnoz-D6UPpSdCbNqTJj_BwzJD9clhoUJFlM5jyalLVCuxm7wM7_BuCVeFs-d6RK-2t-nxdWXz78uvlXTH18vLz5NKysJHyoUSggpmVQCBXO14sxxVdemtVQ5KlAp4DUQ5xpJjGu5BCTWWQezRrWtYaeF2emmP7geW72OfmXite6N1-s-DqbTEROaaBe6G3VCnanO25vmkm5bpRxRoInEWnOJQitAoyVHYbnKxnKS35g--kY3rvNp99pPlPu4k8taK5xZDEPMZd6r_F4k-IWe9xvNVAOqUVngw14g9r9HTINe-WSxy2PAfkw6F8BAZsP4_1He5PEzReApKEiRB7Dt4P0DdNmPMeQ5Z0rKWlJJWabe_tvnXYO3K5eBegfY2KcU0Wnrh5vB5LZ9p0n2MVumt6utD6ud884f5N1KP57xZl_KNnBHE6KJZqAO8WUa-niolEkJNd96824Xd6bXZh590lc_KRABkE1WVLG_sGIYPw
CitedBy_id crossref_primary_10_1016_j_envres_2024_118517
crossref_primary_10_1002_ece3_70907
crossref_primary_10_1007_s11442_017_1383_7
crossref_primary_10_1098_rstb_2015_0269
crossref_primary_10_1111_ele_14161
crossref_primary_10_1016_j_gecco_2022_e02062
crossref_primary_10_1038_s41467_018_05421_z
crossref_primary_10_1016_j_scitotenv_2023_166805
crossref_primary_10_1016_j_baae_2017_06_002
crossref_primary_10_1016_j_agee_2021_107845
crossref_primary_10_1016_j_tree_2023_06_004
crossref_primary_10_1038_s41467_021_23931_1
crossref_primary_10_1186_s40663_021_00280_5
crossref_primary_10_1111_1365_2664_13635
crossref_primary_10_1111_gcb_16024
crossref_primary_10_1111_gcb_16387
crossref_primary_10_1093_femsec_fiaf002
crossref_primary_10_1111_jvs_12749
crossref_primary_10_1111_nph_14634
crossref_primary_10_1093_ee_nvz074
crossref_primary_10_1016_j_scitotenv_2018_06_323
crossref_primary_10_1016_j_scitotenv_2021_148159
crossref_primary_10_1111_ele_13769
crossref_primary_10_1111_oik_06290
crossref_primary_10_3390_insects10120421
crossref_primary_10_1002_rse2_372
crossref_primary_10_1016_j_agee_2015_05_014
crossref_primary_10_1073_pnas_2016038118
crossref_primary_10_1016_j_agee_2016_07_026
crossref_primary_10_1016_j_gecco_2024_e03154
crossref_primary_10_1016_j_geoderma_2024_116801
crossref_primary_10_3390_su13073590
crossref_primary_10_1073_pnas_2016210117
crossref_primary_10_1007_s00035_022_00285_y
crossref_primary_10_1016_j_jclepro_2016_06_079
crossref_primary_10_1016_j_jhazmat_2022_129727
crossref_primary_10_1371_journal_pone_0107033
crossref_primary_10_1038_s41396_019_0574_x
crossref_primary_10_1016_j_jenvman_2022_116562
crossref_primary_10_1016_j_apsoil_2019_02_005
crossref_primary_10_1016_j_baae_2017_03_004
crossref_primary_10_1016_j_ecolind_2023_109866
crossref_primary_10_1098_rstb_2015_0284
crossref_primary_10_1111_jvs_13055
crossref_primary_10_1038_s41598_019_46024_y
crossref_primary_10_3390_ani14182646
crossref_primary_10_12688_cobot_17707_1
crossref_primary_10_1111_1365_2664_14025
crossref_primary_10_1111_brv_12346
crossref_primary_10_1016_j_biocon_2017_12_027
crossref_primary_10_3390_rs15010181
crossref_primary_10_1007_s00035_024_00320_0
crossref_primary_10_1007_s11104_015_2788_7
crossref_primary_10_1016_j_apsoil_2023_104881
crossref_primary_10_1111_ele_13182
crossref_primary_10_1016_j_rama_2018_04_005
crossref_primary_10_1073_pnas_1906419116
crossref_primary_10_1016_j_scitotenv_2023_164722
crossref_primary_10_1038_nature20575
crossref_primary_10_1002_ecy_1498
crossref_primary_10_1890_14_1307_1
crossref_primary_10_1016_j_ecolind_2018_04_018
crossref_primary_10_1002_ecs2_2303
crossref_primary_10_1038_s41559_019_1084_y
crossref_primary_10_1016_j_ecolind_2023_110721
crossref_primary_10_1016_j_agee_2023_108860
crossref_primary_10_1007_s10980_019_00829_4
crossref_primary_10_1073_pnas_1910023117
crossref_primary_10_1016_j_agee_2018_10_015
crossref_primary_10_3390_agronomy13051263
crossref_primary_10_1016_j_ecolind_2017_12_031
crossref_primary_10_1016_j_agee_2016_01_050
crossref_primary_10_1016_j_agee_2016_09_002
crossref_primary_10_1016_j_agee_2016_12_022
crossref_primary_10_1007_s00442_015_3336_0
crossref_primary_10_1016_j_ecolind_2019_105902
crossref_primary_10_1007_s10668_024_04961_3
crossref_primary_10_1016_j_agrformet_2018_03_008
crossref_primary_10_1007_s00442_024_05611_1
crossref_primary_10_1126_science_abq4062
crossref_primary_10_12688_f1000research_157160_1
crossref_primary_10_1016_j_catena_2023_107059
crossref_primary_10_1002_ecs2_1545
crossref_primary_10_1002_eap_1853
crossref_primary_10_1002_eap_1973
crossref_primary_10_1002_eap_2820
crossref_primary_10_1016_j_envexpbot_2021_104372
crossref_primary_10_1007_s00442_023_05345_6
crossref_primary_10_1007_s11104_018_3855_7
crossref_primary_10_1016_j_rhisph_2022_100512
crossref_primary_10_1038_s41467_020_15013_5
crossref_primary_10_1007_s10980_024_01992_z
crossref_primary_10_1007_s00442_017_4031_0
crossref_primary_10_1111_1365_2745_14106
crossref_primary_10_1016_j_flora_2019_151444
crossref_primary_10_1016_j_jhazmat_2018_04_012
crossref_primary_10_1007_s11104_020_04516_1
crossref_primary_10_3389_fmicb_2021_611339
crossref_primary_10_1016_j_catena_2025_108714
crossref_primary_10_1007_s10980_021_01392_7
crossref_primary_10_1111_gcb_16697
crossref_primary_10_1111_ele_14104
crossref_primary_10_1111_gcb_14503
crossref_primary_10_1016_j_scitotenv_2024_176913
crossref_primary_10_1002_glr2_12060
crossref_primary_10_1093_forestry_cpz046
crossref_primary_10_3390_insects15121021
crossref_primary_10_1088_1748_9326_10_1_014004
crossref_primary_10_1002_ecm_1571
crossref_primary_10_1007_s10841_019_00146_w
crossref_primary_10_7717_peerj_1740
crossref_primary_10_1002_ppp3_10405
crossref_primary_10_1016_j_protis_2017_03_005
crossref_primary_10_1016_j_rse_2021_112795
crossref_primary_10_3390_agronomy12051080
crossref_primary_10_1111_1365_2435_13758
crossref_primary_10_1128_mbio_00449_22
crossref_primary_10_1002_ece3_2160
crossref_primary_10_3390_f15101701
crossref_primary_10_1002_ecs2_4914
crossref_primary_10_3934_agrfood_2016_2_157
crossref_primary_10_1016_j_gecco_2018_e00490
crossref_primary_10_3897_natureconservation_55_114385
crossref_primary_10_1016_j_foreco_2021_119552
crossref_primary_10_4081_ija_2015_656
crossref_primary_10_1016_j_soilbio_2023_108968
crossref_primary_10_1111_1365_2656_12641
crossref_primary_10_1038_s41598_018_27017_9
crossref_primary_10_1007_s10531_017_1411_z
crossref_primary_10_1007_s00442_021_04880_4
crossref_primary_10_1088_1748_9326_aacc7a
crossref_primary_10_1002_biuz_201510562
crossref_primary_10_1016_j_agee_2016_11_001
crossref_primary_10_1016_j_agee_2023_108768
crossref_primary_10_3897_BDJ_7_e36387
crossref_primary_10_1016_j_geoderma_2023_116474
crossref_primary_10_1016_j_agee_2016_05_029
crossref_primary_10_1016_j_geoderma_2025_117201
crossref_primary_10_1002_ecs2_1997
crossref_primary_10_1016_j_scitotenv_2016_05_008
crossref_primary_10_1111_jvs_13316
crossref_primary_10_1016_j_catena_2022_106282
crossref_primary_10_1186_1478_811X_12_30
crossref_primary_10_1111_1365_2664_14568
crossref_primary_10_1016_j_agee_2023_108673
crossref_primary_10_1038_nature19092
crossref_primary_10_4236_ajps_2015_617273
crossref_primary_10_1038_s44284_024_00126_5
crossref_primary_10_1111_avsc_12647
crossref_primary_10_3897_natureconservation_55_108688
crossref_primary_10_1002_ece3_3395
crossref_primary_10_1002_jwmg_22357
crossref_primary_10_1002_ece3_70511
crossref_primary_10_1186_s13750_024_00343_4
crossref_primary_10_1016_j_agee_2018_08_016
crossref_primary_10_1038_ncomms10697
crossref_primary_10_1016_j_baae_2021_02_011
crossref_primary_10_1016_j_cub_2024_06_062
crossref_primary_10_1016_j_jenvman_2024_124003
crossref_primary_10_1038_s41559_024_02517_2
crossref_primary_10_1007_s00442_022_05288_4
crossref_primary_10_3389_ffunb_2022_805225
crossref_primary_10_1111_ejss_13154
crossref_primary_10_1002_ece3_6675
crossref_primary_10_1073_pnas_1807354116
crossref_primary_10_1016_j_biocon_2019_02_032
crossref_primary_10_1111_gcb_15917
crossref_primary_10_3390_data2020012
crossref_primary_10_1016_j_chemosphere_2022_135403
crossref_primary_10_1038_s41598_020_80499_4
crossref_primary_10_3390_agriculture12070921
crossref_primary_10_1016_j_jenvman_2020_111629
crossref_primary_10_1111_njb_03007
crossref_primary_10_3390_rs13030348
crossref_primary_10_1038_s41559_017_0227_2
crossref_primary_10_1007_s13592_024_01056_w
crossref_primary_10_1002_pan3_10421
crossref_primary_10_1038_s41559_020_1245_z
crossref_primary_10_1016_j_agee_2020_107023
crossref_primary_10_1111_1365_2656_13373
crossref_primary_10_1016_j_foreco_2024_122328
crossref_primary_10_5194_we_20_95_2020
crossref_primary_10_1016_j_biocon_2017_01_019
crossref_primary_10_1007_s10531_015_1037_y
crossref_primary_10_1007_s10980_021_01391_8
crossref_primary_10_1111_sum_13004
crossref_primary_10_1016_j_ecolind_2025_113078
crossref_primary_10_1038_srep13308
crossref_primary_10_1007_s10980_017_0607_7
crossref_primary_10_1016_j_agee_2022_108061
crossref_primary_10_1016_j_cub_2024_11_040
crossref_primary_10_1016_j_jenvman_2023_119416
crossref_primary_10_1111_ele_12469
crossref_primary_10_1639_0007_2745_117_3_313
crossref_primary_10_2139_ssrn_4127311
crossref_primary_10_1016_j_jenvman_2023_117358
crossref_primary_10_1038_s41467_024_48830_z
crossref_primary_10_1002_eap_1900
crossref_primary_10_1016_j_wroa_2024_100251
crossref_primary_10_1016_j_foreco_2018_10_019
crossref_primary_10_1038_s41559_022_01827_7
crossref_primary_10_1038_s41559_022_01842_8
crossref_primary_10_1016_j_ecolind_2020_106201
crossref_primary_10_3389_fevo_2023_1154787
crossref_primary_10_1007_s10661_023_11618_7
crossref_primary_10_1016_j_agee_2023_108474
crossref_primary_10_1016_j_tree_2016_09_007
crossref_primary_10_1111_een_13400
crossref_primary_10_3390_rs12060969
crossref_primary_10_1007_s10980_023_01729_4
crossref_primary_10_3390_f10010073
crossref_primary_10_1007_s10340_023_01698_2
crossref_primary_10_1890_15_0616_1
crossref_primary_10_1016_j_ecoleng_2019_04_017
crossref_primary_10_1016_j_foreco_2020_118532
crossref_primary_10_1002_ece3_4726
crossref_primary_10_1038_s42003_022_03372_2
crossref_primary_10_1016_j_apgeog_2015_12_003
crossref_primary_10_1016_j_biocon_2024_110815
crossref_primary_10_1111_1365_2435_13575
crossref_primary_10_1038_s41559_023_02049_1
crossref_primary_10_1016_j_apsoil_2023_105027
crossref_primary_10_1111_1365_2664_13537
crossref_primary_10_1007_s10980_023_01739_2
crossref_primary_10_1016_j_ppees_2018_01_004
crossref_primary_10_1016_j_apsoil_2024_105304
crossref_primary_10_1111_1365_2745_12236
crossref_primary_10_1007_s10531_016_1070_5
crossref_primary_10_1016_j_apsoil_2024_105308
crossref_primary_10_1038_s41467_020_14541_4
crossref_primary_10_1371_journal_pone_0152878
crossref_primary_10_1016_j_agee_2019_03_004
crossref_primary_10_1016_j_scitotenv_2023_166437
crossref_primary_10_1016_j_scitotenv_2019_01_063
crossref_primary_10_1016_j_agee_2019_03_007
crossref_primary_10_1016_j_scitotenv_2015_07_158
crossref_primary_10_3389_fsufs_2021_614348
crossref_primary_10_7554_eLife_52787
crossref_primary_10_1016_j_envpol_2021_117501
crossref_primary_10_1088_1748_9326_ad545a
crossref_primary_10_1002_2688_8319_12320
crossref_primary_10_1186_1472_6785_14_1
crossref_primary_10_3389_fevo_2022_864470
crossref_primary_10_1111_ele_12456
crossref_primary_10_1007_s42832_020_0046_2
crossref_primary_10_1002_ece3_5030
crossref_primary_10_1007_s10021_020_00530_7
crossref_primary_10_1038_s41467_024_45113_5
crossref_primary_10_1016_j_baae_2022_05_007
crossref_primary_10_1016_j_biocon_2018_10_013
crossref_primary_10_1016_j_agee_2019_106698
crossref_primary_10_1111_1365_2745_13555
crossref_primary_10_1038_s41467_023_43760_8
crossref_primary_10_1890_15_1234
Cites_doi 10.1126/science.1208742
10.2307/2344517
10.1073/pnas.1220608110
10.1016/S0169-5347(99)01679-1
10.1146/annurev.ecolsys.31.1.343
10.1046/j.1523-1739.1997.96082.x
10.1073/pnas.1310880110
10.1111/j.1365-2664.2007.01393.x
10.1890/04-0394
10.1111/j.1466-8238.2007.00344.x
10.1038/nature10282
10.1641/0006-3568(2001)051[0625:RHOREM]2.0.CO;2
10.1111/j.1461-0248.2009.01403.x
10.1073/pnas.1016799108
10.1111/j.1365-2699.2005.01207.x
10.1098/rstb.2004.1584
10.1111/j.1469-185X.2011.00216.x
10.1073/pnas.262413599
10.1016/j.tree.2005.08.009
10.1111/j.1461-0248.2010.01457.x
10.1111/j.1461-0248.2008.01255.x
10.1038/nature09492
10.1098/rspb.2008.1509
10.1126/science.1111772
10.1016/j.tree.2005.08.005
10.1111/ele.12066
10.1016/j.agee.2007.12.011
10.1126/science.1215442
10.1016/j.baae.2009.12.001
10.1016/j.baae.2010.07.009
10.1073/pnas.0600599103
10.1016/S0169-5347(03)00011-9
10.1016/j.baae.2012.04.001
ContentType Journal Article
Copyright copyright © 1993—2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jan 7, 2014
Copyright_xml – notice: copyright © 1993—2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jan 7, 2014
CorporateAuthor Strategiska forskningsområden (SFO)
Strategic research areas (SRA)
Profile areas and other strong research environments
Lunds universitet
BECC: Biodiversity and Ecosystem services in a Changing Climate
Lund University
Profilområden och andra starka forskningsmiljöer
CorporateAuthor_xml – name: Strategiska forskningsområden (SFO)
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: BECC: Biodiversity and Ecosystem services in a Changing Climate
– name: Profile areas and other strong research environments
– name: Strategic research areas (SRA)
– name: Lunds universitet
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7ST
7U6
7S9
L.6
5PM
ADTPV
AOWAS
D95
DOI 10.1073/pnas.1312213111
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Lunds universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
AGRICOLA

Virology and AIDS Abstracts
MEDLINE


Environment Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Ecology
DocumentTitleAlternate Land use and multidiversity
EISSN 1091-6490
EndPage 313
ExternalDocumentID oai_portal_research_lu_se_publications_bb88f180_17e5_47e6_80ea_74e6c4807341
oai_lup_lub_lu_se_bb88f180_17e5_47e6_80ea_74e6c4807341
PMC3890898
3182329231
24368852
10_1073_pnas_1312213111
111_1_308
23770540
US201600143828
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7ST
7U6
7S9
L.6
5PM
ADTPV
AFHIN
AFQQW
AOWAS
D95
ID FETCH-LOGICAL-c714t-e6866773786e63f5843f4855abc28f26e8804501ff971afb470e1cfcf0d98bba3
ISSN 0027-8424
1091-6490
IngestDate Wed Aug 27 04:11:51 EDT 2025
Thu Jul 03 05:23:42 EDT 2025
Thu Aug 21 18:40:12 EDT 2025
Thu Jul 10 22:45:09 EDT 2025
Fri Jul 11 14:31:50 EDT 2025
Fri Jul 11 03:43:55 EDT 2025
Mon Jun 30 08:29:13 EDT 2025
Thu Apr 03 07:08:38 EDT 2025
Tue Jul 01 01:52:57 EDT 2025
Thu Apr 24 22:51:44 EDT 2025
Wed Nov 11 00:30:33 EST 2020
Thu May 29 08:40:53 EDT 2025
Wed Dec 27 19:20:09 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Biodiversity Exploratories
biodiversity loss
agricultural grasslands
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c714t-e6866773786e63f5843f4855abc28f26e8804501ff971afb470e1cfcf0d98bba3
Notes http://dx.doi.org/10.1073/pnas.1312213111
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: E.A., O.B., and M.F. designed research; D.P., M.M.G., T.T., N.B., M.B., K.B., S. Boch, S. Böhm, C.B., A.C., S.C., R.D., T.D., C.F., T.F., K.G., C.H., L.H., N.H., K.J., A.M.K., V.H.K., T.K., J.K., M.L., E.K.M., J.M., H.N., E.P., M.C.R., C.R., P.S., C.S., W.S., S.A.S., J.S., I.S.-D., M.T., C.N.W., M.W., C.W., V.W., T.W., S.C.R., F.B., W.W.W., and M.F. contributed data; E.A. analyzed data; E.A., O.B., C.F.D., D.P., M.M.G., T.T., N.B., and M.F. wrote the paper; F.B., K.E.L., E.-D.S., W.W.W., and M.F. designed and established the Biodiversity Exploratories; and S.G., M.G., A.H., S.C.R., I.S., S.P., and B.K.-R. maintained the infrastructure of the Biodiversity Exploratories.
Edited by Osvaldo E. Sala, Arizona State University, Tempe, AZ, and accepted by the Editorial Board November 20, 2013 (received for review July 2, 2013)
OpenAccessLink https://www.pnas.org/content/pnas/111/1/308.full.pdf
PMID 24368852
PQID 1477572723
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_1803079714
pubmed_primary_24368852
fao_agris_US201600143828
proquest_miscellaneous_1490764701
proquest_journals_1477572723
swepub_primary_oai_lup_lub_lu_se_bb88f180_17e5_47e6_80ea_74e6c4807341
proquest_miscellaneous_1496883810
pnas_primary_111_1_308
jstor_primary_23770540
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3890898
swepub_primary_oai_portal_research_lu_se_publications_bb88f180_17e5_47e6_80ea_74e6c4807341
crossref_citationtrail_10_1073_pnas_1312213111
crossref_primary_10_1073_pnas_1312213111
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-07
PublicationDateYYYYMMDD 2014-01-07
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Bartoń K (e_1_3_3_37_2) 2012
Pinheiro J (e_1_3_3_34_2) 2012
Burnham K (e_1_3_3_35_2) 2002
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
R Core Team (e_1_3_3_33_2) 2012
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
20337698 - Ecol Lett. 2010 May;13(5):597-605
15814346 - Philos Trans R Soc Lond B Biol Sci. 2005 Feb 28;360(1454):289-95
23271810 - Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):988-93
23818582 - Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11911-6
12486221 - Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16812-6
10511724 - Trends Ecol Evol. 1999 Nov;14(11):450-453
23301631 - Ecol Lett. 2013 Apr;16(4):454-60
16908862 - Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12793-8
21832994 - Nature. 2011 Sep 8;477(7363):199-202
19019785 - Proc Biol Sci. 2009 Mar 7;276(1658):903-9
19087109 - Ecol Lett. 2009 Jan;12(1):22-33
16040698 - Science. 2005 Jul 22;309(5734):570-4
21536873 - Proc Natl Acad Sci U S A. 2011 May 17;108(20):8311-6
16701447 - Trends Ecol Evol. 2005 Nov;20(11):634-41
20981010 - Nature. 2010 Nov 25;468(7323):553-6
21885781 - Science. 2011 Sep 2;333(6047):1289-91
16701446 - Trends Ecol Evol. 2005 Nov;20(11):625-33
22246775 - Science. 2012 Jan 13;335(6065):214-8
22272640 - Biol Rev Camb Philos Soc. 2012 Aug;87(3):661-85
19917052 - Ecol Lett. 2010 Jan;13(1):76-86
References_xml – ident: e_1_3_3_25_2
  doi: 10.1126/science.1208742
– ident: e_1_3_3_36_2
  doi: 10.2307/2344517
– ident: e_1_3_3_27_2
  doi: 10.1073/pnas.1220608110
– ident: e_1_3_3_13_2
  doi: 10.1016/S0169-5347(99)01679-1
– ident: e_1_3_3_2_2
  doi: 10.1146/annurev.ecolsys.31.1.343
– ident: e_1_3_3_14_2
  doi: 10.1046/j.1523-1739.1997.96082.x
– ident: e_1_3_3_31_2
  doi: 10.1073/pnas.1310880110
– ident: e_1_3_3_28_2
  doi: 10.1111/j.1365-2664.2007.01393.x
– ident: e_1_3_3_22_2
  doi: 10.1890/04-0394
– ident: e_1_3_3_29_2
  doi: 10.1111/j.1466-8238.2007.00344.x
– ident: e_1_3_3_6_2
  doi: 10.1038/nature10282
– ident: e_1_3_3_12_2
  doi: 10.1641/0006-3568(2001)051[0625:RHOREM]2.0.CO;2
– ident: e_1_3_3_5_2
  doi: 10.1111/j.1461-0248.2009.01403.x
– ident: e_1_3_3_7_2
  doi: 10.1073/pnas.1016799108
– ident: e_1_3_3_15_2
  doi: 10.1111/j.1365-2699.2005.01207.x
– ident: e_1_3_3_20_2
  doi: 10.1098/rstb.2004.1584
– ident: e_1_3_3_26_2
  doi: 10.1111/j.1469-185X.2011.00216.x
– ident: e_1_3_3_32_2
  doi: 10.1073/pnas.262413599
– ident: e_1_3_3_17_2
  doi: 10.1016/j.tree.2005.08.009
– ident: e_1_3_3_30_2
  doi: 10.1111/j.1461-0248.2010.01457.x
– year: 2012
  ident: e_1_3_3_37_2
  publication-title: MuMIn: Multi-Model Inference. R Package Version 1
– ident: e_1_3_3_4_2
  doi: 10.1111/j.1461-0248.2008.01255.x
– ident: e_1_3_3_16_2
  doi: 10.1038/nature09492
– ident: e_1_3_3_9_2
  doi: 10.1098/rspb.2008.1509
– ident: e_1_3_3_3_2
  doi: 10.1126/science.1111772
– ident: e_1_3_3_18_2
  doi: 10.1016/j.tree.2005.08.005
– ident: e_1_3_3_24_2
  doi: 10.1111/ele.12066
– ident: e_1_3_3_23_2
  doi: 10.1016/j.agee.2007.12.011
– ident: e_1_3_3_19_2
  doi: 10.1126/science.1215442
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2012
  ident: e_1_3_3_33_2
– ident: e_1_3_3_8_2
  doi: 10.1016/j.baae.2009.12.001
– ident: e_1_3_3_21_2
  doi: 10.1016/j.baae.2010.07.009
– year: 2012
  ident: e_1_3_3_34_2
  publication-title: nlme: Linear and Nonlinear Mixed Effects Models
– ident: e_1_3_3_1_2
  doi: 10.1073/pnas.0600599103
– ident: e_1_3_3_11_2
  doi: 10.1016/S0169-5347(03)00011-9
– ident: e_1_3_3_10_2
  doi: 10.1016/j.baae.2012.04.001
– volume-title: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach
  year: 2002
  ident: e_1_3_3_35_2
– reference: 19019785 - Proc Biol Sci. 2009 Mar 7;276(1658):903-9
– reference: 23301631 - Ecol Lett. 2013 Apr;16(4):454-60
– reference: 16701446 - Trends Ecol Evol. 2005 Nov;20(11):625-33
– reference: 23271810 - Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):988-93
– reference: 16908862 - Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12793-8
– reference: 20337698 - Ecol Lett. 2010 May;13(5):597-605
– reference: 21832994 - Nature. 2011 Sep 8;477(7363):199-202
– reference: 12486221 - Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16812-6
– reference: 21536873 - Proc Natl Acad Sci U S A. 2011 May 17;108(20):8311-6
– reference: 22246775 - Science. 2012 Jan 13;335(6065):214-8
– reference: 23818582 - Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11911-6
– reference: 15814346 - Philos Trans R Soc Lond B Biol Sci. 2005 Feb 28;360(1454):289-95
– reference: 21885781 - Science. 2011 Sep 2;333(6047):1289-91
– reference: 22272640 - Biol Rev Camb Philos Soc. 2012 Aug;87(3):661-85
– reference: 16040698 - Science. 2005 Jul 22;309(5734):570-4
– reference: 19917052 - Ecol Lett. 2010 Jan;13(1):76-86
– reference: 19087109 - Ecol Lett. 2009 Jan;12(1):22-33
– reference: 20981010 - Nature. 2010 Nov 25;468(7323):553-6
– reference: 10511724 - Trends Ecol Evol. 1999 Nov;14(11):450-453
– reference: 16701447 - Trends Ecol Evol. 2005 Nov;20(11):634-41
SSID ssj0009580
Score 2.5661805
Snippet Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed...
Land-use intensification is a major threat to biodiversity. So far, however, studies on biodiversity impacts of land-use intensity (LUI) have been limited to a...
There is abundant evidence that the probability of successful establishment in novel environments increases with number of individuals in founder groups and...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 308
SubjectTerms agricultural grasslands
Agriculture - methods
animals
Area Under Curve
bacteria
Biodiversity
Biodiversity conservation
Biodiversity Exploratories
biodiversity loss
Biologi
Biological Sciences
Biological taxonomies
Conservation
Conservation of Natural Resources
Ecology
Ecology (including Biodiversity Conservation)
Ekologi
Epidemiology
fungi
Genetic diversity
Genotype & phenotype
Germany
Grasses
Grasslands
grazing
Grazing intensity
Infections
Invasive species
Land use
Models, Biological
Mowing
Natural Sciences
Naturvetenskap
Parasites
Phenotypic variations
Phylogeny
Plant biodiversity
Plants
plants (botany)
Poaceae - physiology
Probability
rare species
Reintroduction
Species
Species diversity
Species Specificity
Time Factors
Translocation
Title Interannual variation in land-use intensity enhances grassland multidiversity
URI https://www.jstor.org/stable/23770540
http://www.pnas.org/content/111/1/308.abstract
https://www.ncbi.nlm.nih.gov/pubmed/24368852
https://www.proquest.com/docview/1477572723
https://www.proquest.com/docview/1490764701
https://www.proquest.com/docview/1496883810
https://www.proquest.com/docview/1803079714
https://pubmed.ncbi.nlm.nih.gov/PMC3890898
https://lup.lub.lu.se/record/4319033
oai:portal.research.lu.se:publications/bb88f180-17e5-47e6-80ea-74e6c4807341
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa68cILYsBYxkBB4mGoSkkcJ3YfK7QxIa1MYpUmXqwktddJVVr1Bw_8B_zX3Dmxk7KuGjw0qhLHcXxf7nz23WdCPoCPkFOlkwDXbAImWB6IPMdVdh4prhXVJivtcphejNjXm-Sm0_ndilpar_Je8WtrXsn_SBXOgVwxS_YfJOsqhRPwH-QLR5AwHB8lYzOdV7GKdn-C05vZyEUMVwzWS2XYIEoTdqHKCQp42b1dwHgZC1TBhGMbmNEepl45s7a0QQRDO2s4aHJQasWw7Abdq2Gzo_EAoFVaJev8fbDG49nCcEB-m-JD3RjaJC6UdfgJoK7snvecykaENrnw7UmKiJlJCt7EcOxoYls7U7CYrMqpdtq51sVtGFa6Ng5Fy2zHVUrrPYsAKgy3MS6zZS-KI0qRXihqjJ8LSaQx5zh83SNPKHgcuBnGl5uoxd8sqmymuomWJYrHn_6qe2OAs6ezmY10RfpcKLrNlbkfkbvBW2vGOtfPybPaSfEHFeIOSEeVL8iB7Ur_tOYq__iSXLYg6DsI-nelbyHoOwj6FoK-g6C_CcFXZHR-dv35Iqh36AgKHrFVoFKRppzHXKQqjTUMZmONbENZXlChaarAOrAkjLSGTz_TOeOhigpd6HDcB5WQxYdkv5yV6oj40HV9gWvaObj4fdAZQjMO9iThqhB5OPZIz3arLGr6etxFZSpNGAWPJXaubOTgkVN3w7xibnm46BHISWa3YFfl6DtF1kXkvRRUeOTQCM9VYXECF0wtrmpwpCMJmPTIiZWvrHUFPItxeBPKaeyR9-4yaHJcnstKNVtjmX7IU-iiaGeZVAhk5dtRRqDhhg5nHnldwappPW44IRLqEb4BOFcA2eY3r5R3E8M6D55NKPrwemcVNDduma7n8MvhJ5dKgrIXGpohI64SybhKpQhVJjlTaYEcFjB09siPLfVUcw6yJjqb1PXNWysYj6r8-CGpvSFPG_V0QvZXi7V6C17FKn9nvvc_7LUivA
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interannual+variation+in+land-use+intensity+enhances+grassland+multidiversity&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Allan%2C+Eric&rft.au=Bossdorf%2C+Oliver&rft.au=Dormann%2C+Carsten+F.&rft.au=Prati%2C+Daniel&rft.date=2014-01-07&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=111&rft.issue=1&rft.spage=308&rft.epage=313&rft_id=info:doi/10.1073%2Fpnas.1312213111&rft.externalDocID=23770540
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F1.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F1.cover.gif