Catalytic asymmetric umpolung reactions of imines
Imines conventionally act as electrophiles towards carbon nucleophiles in the synthesis of amines, but the range of amines could be much extended if the carbon atom of the imine could be rendered electron-rich to allow it to act as a nucleophile toward a carbon electrophile; such a reaction can be p...
Saved in:
Published in | Nature (London) Vol. 523; no. 7561; pp. 445 - 450 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.07.2015
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Imines conventionally act as electrophiles towards carbon nucleophiles in the synthesis of amines, but the range of amines could be much extended if the carbon atom of the imine could be rendered electron-rich to allow it to act as a nucleophile toward a carbon electrophile; such a reaction can be promoted by new phase-transfer catalysts, leading to highly efficient asymmetric reactions of imines with enals.
Chital amine synthesis made simpler
Imines, carbon–nitrogen double bonds, act as electrophiles towards carbon nucleophiles in the synthesis of amines, but the range of synthesizable amines could be greatly extended if the carbon atom of the imine could be rendered electron-rich to allow it to act as a nucleophile towards a carbon electrophile. Li Deng and colleagues have developed a procedure that achieves just that. They report the discovery and development of new chiral phase transfer catalysts that promote highly efficient asymmetric reactions of imines and enals. The reaction provides a conceptually new and practical approach towards the synthesis of chiral amino compounds.
The carbon–nitrogen double bonds in imines are fundamentally important functional groups in organic chemistry. This is largely due to the fact that imines act as electrophiles towards carbon nucleophiles in reactions that form carbon–carbon bonds, thereby serving as one of the most widely used precursors for the formation of amines in both synthetic and biosynthetic settings
1
,
2
,
3
,
4
,
5
. If the carbon atom of the imine could be rendered electron-rich, the imine could react as a nucleophile instead of as an electrophile. Such a reversal in the electronic characteristics of the imine functionality would facilitate the development of new chemical transformations that convert imines into amines via carbon–carbon bond-forming reactions with carbon electrophiles, thereby creating new opportunities for the efficient synthesis of amines. The development of asymmetric umpolung reactions of imines (in which the imines act as nucleophiles) remains uncharted territory, in spite of the far-reaching impact such reactions would have in organic synthesis. Here we report the discovery and development of new chiral phase-transfer catalysts that promote the highly efficient asymmetric umpolung reactions of imines with the carbon electrophile enals. These catalysts mediate the deprotonation of imines and direct the 2-azaallyl anions thus formed to react with enals in a highly chemoselective, regioselective, diastereoselective and enantioselective fashion. The reaction tolerates a broad range of imines and enals, and can be carried out in high yield with as little as 0.01 mole per cent catalyst with a moisture- and air-tolerant operational protocol. These umpolung reactions provide a conceptually new and practical approach to chiral amino compounds. |
---|---|
AbstractList | The carbon-nitrogen double bonds in imines are fundamentally important functional groups in organic chemistry. This is largely due to the fact that imines act as electrophiles towards carbon nucleophiles in reactions that form carbon-carbon bonds, thereby serving as one of the most widely used precursors for the formation of amines in both synthetic and biosynthetic settings. If the carbon atom of the imine could be rendered electron-rich, the imine could react as a nucleophile instead of as an electrophile. Such a reversal in the electronic characteristics of the imine functionality would facilitate the development of new chemical transformations that convert imines into amines via carbon-carbon bond-forming reactions with carbon electrophiles, thereby creating new opportunities for the efficient synthesis of amines. The development of asymmetric umpolung reactions of imines (in which the imines act as nucleophiles) remains uncharted territory, in spite of the far-reaching impact such reactions would have in organic synthesis. Here we report the discovery and development of new chiral phase-transfer catalysts that promote the highly efficient asymmetric umpolung reactions of imines with the carbon electrophile enals. These catalysts mediate the deprotonation of imines and direct the 2-azaallyl anions thus formed to react with enals in a highly chemoselective, regioselective, diastereoselective and enantioselective fashion. The reaction tolerates a broad range of imines and enals, and can be carried out in high yield with as little as 0.01 mole per cent catalyst with a moisture- and air-tolerant operational protocol. These umpolung reactions provide a conceptually new and practical approach to chiral amino compounds.The carbon-nitrogen double bonds in imines are fundamentally important functional groups in organic chemistry. This is largely due to the fact that imines act as electrophiles towards carbon nucleophiles in reactions that form carbon-carbon bonds, thereby serving as one of the most widely used precursors for the formation of amines in both synthetic and biosynthetic settings. If the carbon atom of the imine could be rendered electron-rich, the imine could react as a nucleophile instead of as an electrophile. Such a reversal in the electronic characteristics of the imine functionality would facilitate the development of new chemical transformations that convert imines into amines via carbon-carbon bond-forming reactions with carbon electrophiles, thereby creating new opportunities for the efficient synthesis of amines. The development of asymmetric umpolung reactions of imines (in which the imines act as nucleophiles) remains uncharted territory, in spite of the far-reaching impact such reactions would have in organic synthesis. Here we report the discovery and development of new chiral phase-transfer catalysts that promote the highly efficient asymmetric umpolung reactions of imines with the carbon electrophile enals. These catalysts mediate the deprotonation of imines and direct the 2-azaallyl anions thus formed to react with enals in a highly chemoselective, regioselective, diastereoselective and enantioselective fashion. The reaction tolerates a broad range of imines and enals, and can be carried out in high yield with as little as 0.01 mole per cent catalyst with a moisture- and air-tolerant operational protocol. These umpolung reactions provide a conceptually new and practical approach to chiral amino compounds. Imines conventionally act as electrophiles towards carbon nucleophiles in the synthesis of amines, but the range of amines could be much extended if the carbon atom of the imine could be rendered electron-rich to allow it to act as a nucleophile toward a carbon electrophile; such a reaction can be promoted by new phase-transfer catalysts, leading to highly efficient asymmetric reactions of imines with enals. Chital amine synthesis made simpler Imines, carbon–nitrogen double bonds, act as electrophiles towards carbon nucleophiles in the synthesis of amines, but the range of synthesizable amines could be greatly extended if the carbon atom of the imine could be rendered electron-rich to allow it to act as a nucleophile towards a carbon electrophile. Li Deng and colleagues have developed a procedure that achieves just that. They report the discovery and development of new chiral phase transfer catalysts that promote highly efficient asymmetric reactions of imines and enals. The reaction provides a conceptually new and practical approach towards the synthesis of chiral amino compounds. The carbon–nitrogen double bonds in imines are fundamentally important functional groups in organic chemistry. This is largely due to the fact that imines act as electrophiles towards carbon nucleophiles in reactions that form carbon–carbon bonds, thereby serving as one of the most widely used precursors for the formation of amines in both synthetic and biosynthetic settings 1 , 2 , 3 , 4 , 5 . If the carbon atom of the imine could be rendered electron-rich, the imine could react as a nucleophile instead of as an electrophile. Such a reversal in the electronic characteristics of the imine functionality would facilitate the development of new chemical transformations that convert imines into amines via carbon–carbon bond-forming reactions with carbon electrophiles, thereby creating new opportunities for the efficient synthesis of amines. The development of asymmetric umpolung reactions of imines (in which the imines act as nucleophiles) remains uncharted territory, in spite of the far-reaching impact such reactions would have in organic synthesis. Here we report the discovery and development of new chiral phase-transfer catalysts that promote the highly efficient asymmetric umpolung reactions of imines with the carbon electrophile enals. These catalysts mediate the deprotonation of imines and direct the 2-azaallyl anions thus formed to react with enals in a highly chemoselective, regioselective, diastereoselective and enantioselective fashion. The reaction tolerates a broad range of imines and enals, and can be carried out in high yield with as little as 0.01 mole per cent catalyst with a moisture- and air-tolerant operational protocol. These umpolung reactions provide a conceptually new and practical approach to chiral amino compounds. The carbon-nitrogen double bonds in imines are fundamentally important functional groups in organic chemistry. This is largely due to the fact that imines act as electrophiles towards carbon nucleophiles in reactions that form carbon-carbon bonds, thereby serving as one of the most widely used precursors for the formation of amines in both synthetic and biosynthetic settings. If the carbon atom of the imine could be rendered electron-rich, the imine could react as a nucleophile instead of as an electrophile. Such a reversal in the electronic characteristics of the imine functionality would facilitate the development of new chemical transformations that convert imines into amines via carbon-carbon bond-forming reactions with carbon electrophiles, thereby creating new opportunities for the efficient synthesis of amines. The development of asymmetric umpolung reactions of imines (in which the imines act as nucleophiles) remains uncharted territory, in spite of the far-reaching impact such reactions would have in organic synthesis. Here we report the discovery and development of new chiral phase-transfer catalysts that promote the highly efficient asymmetric umpolung reactions of imines with the carbon electrophile enals. These catalysts mediate the deprotonation of imines and direct the 2-azaallyl anions thus formed to react with enals in a highly chemoselective, regioselective, diastereoselective and enantioselective fashion. The reaction tolerates a broad range of imines and enals, and can be carried out in high yield with as little as 0.01 mole per cent catalyst with a moisture- and air-tolerant operational protocol. These umpolung reactions provide a conceptually new and practical approach to chiral amino compounds. The carbon-nitrogen double bonds in imines are fundamentally important functional groups in organic chemistry. This is largely due to the fact that imines act as electrophiles towards carbon nucleophiles in reactions that form carbon-carbon bonds, thereby serving as one of the most widely used precursors for the formation of amines in both synthetic and biosynthetic settings (1-5). If the carbon atom of the imine could be rendered electron-rich, the imine could react as a nucleophile instead of as an electrophile. Such a reversal in the electronic characteristics of the imine functionality would facilitate the development of new chemical transformations that convert imines into amines via carbon-carbon bond-forming reactions with carbon electrophiles, thereby creating new opportunities for the efficient synthesis of amines. The development of asymmetric umpolung reactions of imines (in which the imines act as nucleophiles) remains uncharted territory, in spite of the far-reaching impact such reactions would have in organic synthesis. Here we report the discovery and development of new chiral phase-transfer catalysts that promote the highly efficient asymmetric umpolung reactions of imines with the carbon electrophile enals. These catalysts mediate the deprotonation of imines and direct the 2-azaallyl anions thus formed to react with enals in a highly chemoselective, regioselective, diastereoselective and enantio-selective fashion. The reaction tolerates a broad range of imines and enals, and can be carried out in high yield with as little as 0.01 mole per cent catalyst with a moisture- and air-tolerant operational protocol. These umpolung reactions provide a conceptually new and practical approach to chiral amino compounds. Imines, carbon-nitrogen double bonds, are fundamentally important functional groups in organic chemistry. This is largely due to the fact that imines act as electrophiles in C–C bond forming reactions towards carbon nucleophiles, thereby serving one of the most widely used precursors for the formation of amines in both synthetic and biosynthetic settings. 1 – 5 If the carbon atom of the imine could be rendered electron-rich, the imine could react as a nucleophile instead of as an electrophile. Such a reversal in the electronic characteristics of the imine functionality would facilitate the development of new chemical transformations that convert imines into amines via C–C bond forming reactions with carbon electrophiles, thereby creating new opportunities for the efficient synthesis of amines. The development of asymmetric ‘umpolung’ reactions of imines remains an uncharted ground, in spite of the far-reaching impact of such reactions in organic synthesis. Here we report the discovery and development of new chiral phase transfer catalysts that promote the highly efficient asymmetric umpolung reactions of imines and enals. These catalysts mediate the deprotonation of imines and direct the 2-azaallylanions thus formed to react in a highly chemoselective, regioselective, diastereoselective and enantioselective fashion with enals. The reaction tolerates a broad range of imines and enals, and can be carried out in high yield with as little as 0.01 mol % catalyst with a moisture and air-tolerant operational protocol. These umpolung reactions provide a conceptually new and practical approach towards chiral amino compounds. |
Audience | Academic |
Author | Deng, Li Hu, Lin Li, Zhe Wu, Yongwei |
Author_xml | – sequence: 1 givenname: Yongwei surname: Wu fullname: Wu, Yongwei organization: Department of Chemistry, Brandeis University – sequence: 2 givenname: Lin surname: Hu fullname: Hu, Lin organization: Department of Chemistry, Brandeis University – sequence: 3 givenname: Zhe surname: Li fullname: Li, Zhe organization: Department of Chemistry, Brandeis University – sequence: 4 givenname: Li surname: Deng fullname: Deng, Li email: deng@brandeis.edu organization: Department of Chemistry, Brandeis University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26201597$$D View this record in MEDLINE/PubMed |
BookMark | eNp10s-L1DAUB_AgK-7s6sm7DO5F0a5JmjbJRRgGfywsCrriMWTS15qlTWaTVJz_3gyzP2ak0kNK88k3r7x3go6cd4DQc4LPCS7FO6fTGICwmvBHaEYYrwtWC36EZhhTUWBR1sfoJMZrjHFFOHuCjmlNMakknyGy1En3m2TNXMfNMEAK-XUc1r4fXTcPoE2y3sW5b-d2sA7iU_S41X2EZ7frKfrx8cPV8nNx-fXTxXJxWRhOWCpk1ZgVM4xDVbWcUFGtSrlqmFwZznlZNbIxuGIGKipaSVsQrTCGMUFpjRtOy1P0fpe7HlcDNAZcCrpX62AHHTbKa6sOd5z9pTr_W7GKlGUtcsCr24Dgb0aISQ02Guh77cCPUZFaCllTIspMz_6h134MLv_eTnEpavmgOt2Dsq71-V6zDVULRkvMJJUsq2JCdeAgF5k719r8-cC_nPBmbW_UPjqfQPlpYLBmMvX1wYFsEvxJnR5jVBffvx3aN_-3i6ufyy-H-sV-X-4bcjdTGZAdMMHHGKBVxia9naJcs-0VwWo7t2pvbh9KuD9zFzut3-50zMp1EPbaNcH_AjZj-X0 |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1002_chem_201904483 crossref_primary_10_1039_C7OB00820A crossref_primary_10_1002_ange_201710084 crossref_primary_10_1021_acs_orglett_1c03553 crossref_primary_10_1021_acs_joc_0c00431 crossref_primary_10_1021_acs_joc_7b00352 crossref_primary_10_1002_chem_201604739 crossref_primary_10_1021_jacs_9b10870 crossref_primary_10_1038_s41467_021_24027_6 crossref_primary_10_1039_C6QO00846A crossref_primary_10_1002_anie_201806249 crossref_primary_10_1002_anie_201611268 crossref_primary_10_1021_acs_orglett_1c00273 crossref_primary_10_1021_jacs_5b11361 crossref_primary_10_1002_ange_201712395 crossref_primary_10_1021_acs_orglett_7b01886 crossref_primary_10_1021_acs_orglett_1c00835 crossref_primary_10_1021_acs_orglett_1c01009 crossref_primary_10_1021_acscatal_8b03999 crossref_primary_10_1021_acs_orglett_2c00140 crossref_primary_10_1021_acscatal_1c01438 crossref_primary_10_1021_acs_joc_2c01372 crossref_primary_10_1002_anie_202001184 crossref_primary_10_1002_anie_201506872 crossref_primary_10_1021_acs_orglett_7b03262 crossref_primary_10_1038_s44160_023_00264_z crossref_primary_10_1038_s42004_021_00586_z crossref_primary_10_1002_ange_201700059 crossref_primary_10_1021_jacs_8b06014 crossref_primary_10_1039_C6CC09654A crossref_primary_10_1021_acs_orglett_8b00778 crossref_primary_10_1016_j_isci_2023_106659 crossref_primary_10_1021_acs_orglett_0c00735 crossref_primary_10_1002_anie_202105721 crossref_primary_10_1002_chem_201703479 crossref_primary_10_1021_acs_joc_7b01468 crossref_primary_10_1016_j_jfluchem_2017_10_003 crossref_primary_10_1016_j_tet_2019_02_040 crossref_primary_10_3390_catal11060712 crossref_primary_10_1039_D3QO00045A crossref_primary_10_1039_D1CC03075B crossref_primary_10_1080_10610278_2016_1258118 crossref_primary_10_1021_jacs_3c09155 crossref_primary_10_1002_anie_202413861 crossref_primary_10_1038_523417a crossref_primary_10_1021_jacs_6b08727 crossref_primary_10_1002_chem_201701290 crossref_primary_10_1002_anie_201700059 crossref_primary_10_1021_acs_orglett_0c01836 crossref_primary_10_1021_jacs_4c04129 crossref_primary_10_1002_adsc_202000455 crossref_primary_10_1002_anie_202424757 crossref_primary_10_1002_chem_201604623 crossref_primary_10_1039_C9QO01074B crossref_primary_10_1021_acs_joc_2c00621 crossref_primary_10_1021_acs_orglett_3c01521 crossref_primary_10_1016_j_tet_2017_04_028 crossref_primary_10_1002_anie_201712395 crossref_primary_10_1002_anie_201906681 crossref_primary_10_1002_ange_202424757 crossref_primary_10_1002_ange_202206111 crossref_primary_10_1039_D1OB00829C crossref_primary_10_3390_molecules28114339 crossref_primary_10_1002_anie_202208742 crossref_primary_10_1039_C7QO00124J crossref_primary_10_1039_C8OB02066C crossref_primary_10_1007_s11426_023_1744_2 crossref_primary_10_1002_anie_202215714 crossref_primary_10_2174_1570193X19666220510122957 crossref_primary_10_1021_acs_orglett_8b02297 crossref_primary_10_1002_anie_201710084 crossref_primary_10_1039_D1OB00596K crossref_primary_10_1021_acs_orglett_2c01438 crossref_primary_10_1039_C8CC07599A crossref_primary_10_1021_jacs_4c01671 crossref_primary_10_1039_C8QO00139A crossref_primary_10_1039_D3GC04848A crossref_primary_10_1021_acs_orglett_1c00911 crossref_primary_10_1021_acs_orglett_7b04039 crossref_primary_10_1038_s41467_020_18235_9 crossref_primary_10_1021_acs_joc_8b00873 crossref_primary_10_1002_ange_202413861 crossref_primary_10_1021_acs_orglett_9b01738 crossref_primary_10_1021_acs_joc_9b01036 crossref_primary_10_1039_D0SC07052A crossref_primary_10_1002_ange_201806249 crossref_primary_10_1021_jacs_3c02567 crossref_primary_10_1021_acscatal_1c04923 crossref_primary_10_1021_acscatal_3c06091 crossref_primary_10_1002_anie_202012251 crossref_primary_10_1002_adsc_201600688 crossref_primary_10_1002_anie_201812585 crossref_primary_10_1002_anie_202017271 crossref_primary_10_1021_jacs_4c09840 crossref_primary_10_1021_jacs_3c14517 crossref_primary_10_1002_ange_201607918 crossref_primary_10_1021_acs_orglett_5b03615 crossref_primary_10_1038_s41557_023_01384_x crossref_primary_10_1002_ange_201506872 crossref_primary_10_1021_jacs_1c10750 crossref_primary_10_1021_acs_chemrev_8b00349 crossref_primary_10_1021_acscatal_9b00737 crossref_primary_10_1002_ange_201906681 crossref_primary_10_1021_acs_iecr_2c04216 crossref_primary_10_1039_D1QO00639H crossref_primary_10_1002_chem_201803752 crossref_primary_10_1002_ange_202208742 crossref_primary_10_1007_s11426_016_0478_3 crossref_primary_10_1039_C7OB02259J crossref_primary_10_1002_ange_202012251 crossref_primary_10_1038_s41467_024_47169_9 crossref_primary_10_1002_ange_202017271 crossref_primary_10_1002_asia_201900764 crossref_primary_10_3390_catal11121545 crossref_primary_10_1002_ange_201812585 crossref_primary_10_1021_jacs_4c11481 crossref_primary_10_1007_s41061_019_0256_1 crossref_primary_10_1016_j_ccr_2020_213329 crossref_primary_10_1038_nchem_2710 crossref_primary_10_1021_acs_orglett_8b03394 crossref_primary_10_1002_ange_202215714 crossref_primary_10_1055_s_0042_1751496 crossref_primary_10_1002_anie_201607918 crossref_primary_10_1021_acs_joc_9b01340 crossref_primary_10_1021_jacs_6b05288 crossref_primary_10_1039_D1CC03830C crossref_primary_10_1002_anie_202109356 crossref_primary_10_1002_nadc_201590367 crossref_primary_10_1002_adsc_202300381 crossref_primary_10_1021_acs_orglett_8b02536 crossref_primary_10_1021_acs_oprd_9b00280 crossref_primary_10_1021_acs_orglett_7b01471 crossref_primary_10_1039_C7OB02506H crossref_primary_10_3762_bjoc_12_1 crossref_primary_10_1002_adsc_202301118 crossref_primary_10_1002_ange_201710915 crossref_primary_10_1002_ejoc_201901272 crossref_primary_10_1038_nchem_2760 crossref_primary_10_1021_acs_orglett_0c04162 crossref_primary_10_1002_chem_201901020 crossref_primary_10_1021_jacs_6b09754 crossref_primary_10_1021_acs_joc_8b01000 crossref_primary_10_1021_acsomega_8b02324 crossref_primary_10_1021_acs_orglett_0c01578 crossref_primary_10_1021_acs_orglett_9b02626 crossref_primary_10_1021_jacs_8b09010 crossref_primary_10_1002_ange_202105721 crossref_primary_10_1039_D0QO00348D crossref_primary_10_1021_jacs_4c09750 crossref_primary_10_3762_bjoc_13_259 crossref_primary_10_1021_acs_orglett_6b02465 crossref_primary_10_1002_adsc_201701035 crossref_primary_10_1021_acs_inorgchem_7b00739 crossref_primary_10_1039_D2SC00500J crossref_primary_10_1016_j_gresc_2021_01_001 crossref_primary_10_1038_s41467_018_07351_2 crossref_primary_10_1126_science_aat4210 crossref_primary_10_1021_jacs_2c10777 crossref_primary_10_1002_ange_201611268 crossref_primary_10_1038_s41557_024_01479_z crossref_primary_10_1039_C8OB02000K crossref_primary_10_1039_D4GC05739B crossref_primary_10_1080_00397911_2024_2379447 crossref_primary_10_1021_jacs_3c12043 crossref_primary_10_1002_chem_202402259 crossref_primary_10_1002_anie_202206111 crossref_primary_10_1002_ange_202001184 crossref_primary_10_1021_acs_orglett_8b03083 crossref_primary_10_1002_anie_202418910 crossref_primary_10_1021_acs_joc_8b00491 crossref_primary_10_1039_C9OB01134J crossref_primary_10_1073_pnas_1718474115 crossref_primary_10_1021_acscatal_9b00777 crossref_primary_10_1039_C7CC06144G crossref_primary_10_1039_D4CC00060A crossref_primary_10_1021_jacs_1c11408 crossref_primary_10_1039_D1OB00409C crossref_primary_10_1021_jacs_3c00051 crossref_primary_10_1002_ange_202418910 crossref_primary_10_1055_s_0041_1737563 crossref_primary_10_1021_jacs_4c09789 crossref_primary_10_1021_acsami_2c00311 crossref_primary_10_1021_acs_orglett_2c01385 crossref_primary_10_1021_acs_orglett_9b02550 crossref_primary_10_1039_D4CC05259E crossref_primary_10_1021_acscatal_0c03569 crossref_primary_10_1002_adsc_202000961 crossref_primary_10_1021_acs_orglett_8b02331 crossref_primary_10_1038_s41557_019_0412_9 crossref_primary_10_1002_anie_201805876 crossref_primary_10_1016_j_comptc_2021_113419 crossref_primary_10_1039_C8OB02907E crossref_primary_10_1021_acs_joc_8b02893 crossref_primary_10_1002_ange_201802492 crossref_primary_10_1021_acs_orglett_0c00564 crossref_primary_10_1039_D4CC00022F crossref_primary_10_1021_acs_orglett_1c03221 crossref_primary_10_1021_acs_orglett_9b02543 crossref_primary_10_1021_jacs_4c03333 crossref_primary_10_1038_s41929_024_01230_4 crossref_primary_10_1002_adsc_201800791 crossref_primary_10_1002_anie_201902132 crossref_primary_10_1002_anie_201710915 crossref_primary_10_1021_acs_nanolett_1c01356 crossref_primary_10_1002_chem_201701548 crossref_primary_10_1002_chin_201551025 crossref_primary_10_1002_ange_201805876 crossref_primary_10_1021_acs_orglett_2c01716 crossref_primary_10_1021_acscatal_4c06497 crossref_primary_10_1021_acs_orglett_7b03581 crossref_primary_10_1039_D2OB00133K crossref_primary_10_1021_acsanm_4c00492 crossref_primary_10_1039_D0SC04685J crossref_primary_10_1002_cctc_201900494 crossref_primary_10_1039_D0OB00004C crossref_primary_10_1039_C8SC04330B crossref_primary_10_1002_ange_201902132 crossref_primary_10_1021_acs_joc_0c01020 crossref_primary_10_1021_acs_joc_7b02630 crossref_primary_10_1021_acs_joc_1c00381 crossref_primary_10_1038_s44160_023_00293_8 crossref_primary_10_1002_ange_202109356 crossref_primary_10_1021_acs_orglett_3c03594 crossref_primary_10_1021_jacs_2c12197 crossref_primary_10_1039_D3OB00083D crossref_primary_10_1021_jacs_5b09223 crossref_primary_10_1021_acscatal_1c03682 crossref_primary_10_1039_D1SC00972A crossref_primary_10_1016_j_ijbiomac_2025_141946 crossref_primary_10_1002_slct_201800475 crossref_primary_10_4236_msce_2017_56005 crossref_primary_10_1002_adsc_202201091 crossref_primary_10_1002_anie_201802492 crossref_primary_10_1038_nchem_2677 crossref_primary_10_1039_C6CY00033A crossref_primary_10_1016_j_cclet_2021_02_026 crossref_primary_10_1039_D1QO01852C |
Cites_doi | 10.1021/ja501560x 10.1021/ja101256v 10.1021/ol502693r 10.1021/ol500522d 10.1002/9780470742761 10.1039/C4CC06156J 10.1002/anie.201206835 10.1021/ja048600b 10.1021/ja8001343 10.1021/ar100047x 10.1021/ar030245r 10.1002/chem.201000560 10.1038/nature11844 10.1021/jo00430a039 10.1021/jo00890a018 10.1021/cr100204f 10.1002/9783527629541 10.1021/jo035245j 10.1039/c2cc37423d 10.1039/C1CS15206H 10.1002/anie.197902393 10.1021/cr900382t 10.1021/cr100166a 10.1021/ja00538a008 10.1021/ol8012765 10.2174/1570179411310040003 10.1002/ejoc.200700746 10.1021/ja00314a045 10.1021/ja306771n |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2015 COPYRIGHT 2015 Nature Publishing Group Copyright Nature Publishing Group Jul 23, 2015 |
Copyright_xml | – notice: Springer Nature Limited 2015 – notice: COPYRIGHT 2015 Nature Publishing Group – notice: Copyright Nature Publishing Group Jul 23, 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM |
DOI | 10.1038/nature14617 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection Medical Database Psychology Database (ProQuest) Research Library (ProQuest) Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Agricultural Science Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 450 |
ExternalDocumentID | PMC4513368 3758763601 A423049294 26201597 10_1038_nature14617 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM-61591 – fundername: NIGMS NIH HHS grantid: R01 GM061591 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 00M 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH AAZLF ABAWZ ABDBF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACUHS ACWUS ADBBV ADFRT ADUKH ADYSU ADZCM AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCU BDKGC BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADGHP ADXHL AETEA AFANA ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c714t-95dcb4c47e55f71285b39bd49bc77735d9dc054ce528f92fe8f8cc4482260d723 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 18:14:03 EDT 2025 Fri Jul 11 01:51:19 EDT 2025 Fri Jul 25 09:09:00 EDT 2025 Tue Jun 17 21:43:35 EDT 2025 Thu Jun 12 23:54:44 EDT 2025 Tue Jun 10 15:34:23 EDT 2025 Tue Jun 10 20:33:38 EDT 2025 Fri Jun 27 04:53:42 EDT 2025 Fri Jun 27 04:39:44 EDT 2025 Mon Jul 21 05:59:24 EDT 2025 Thu Apr 24 23:09:44 EDT 2025 Tue Jul 01 03:21:37 EDT 2025 Fri Feb 21 02:38:05 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7561 |
Language | English |
License | Reprints and permissions information is available at www.nature.com/reprints. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c714t-95dcb4c47e55f71285b39bd49bc77735d9dc054ce528f92fe8f8cc4482260d723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4513368 |
PMID | 26201597 |
PQID | 1698979869 |
PQPubID | 40569 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4513368 proquest_miscellaneous_1698962183 proquest_journals_1698979869 gale_infotracmisc_A423049294 gale_infotracgeneralonefile_A423049294 gale_infotraccpiq_423049294 gale_infotracacademiconefile_A423049294 gale_incontextgauss_ISR_A423049294 gale_incontextgauss_ATWCN_A423049294 pubmed_primary_26201597 crossref_citationtrail_10_1038_nature14617 crossref_primary_10_1038_nature14617 springer_journals_10_1038_nature14617 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-07-23 |
PublicationDateYYYYMMDD | 2015-07-23 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2015 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | BordwellFGAlgrimDVanierNRAcidities of anilines and toluenesJ. Org. Chem.197742181718191:CAS:528:DyaE2sXhvVyqt7k%3D10.1021/jo00430a039 DollingUHDavisPGrabowskiEJJEfficient catalytic asymmetric alkylations. 1. Enantioselective synthesis of (+)-indacrinone via chiral phase-transfer catalysisJ. Am. Chem. Soc.19841064464471:CAS:528:DyaL2cXmsl2muw%3D%3D10.1021/ja00314a045 KobayashiSMoriYFosseyJSSalterMMCatalytic enantioselective formation of C−C bonds by addition to imines and hydrazones: a ten-year updateChem. Rev.2011111262627041:CAS:528:DC%2BC3MXjtFersL8%3D10.1021/cr100204f SeebachDCoreyEJGeneration and synthetic applications of 2-lithio-1,3-dithianesJ. Org. Chem.1975402312371:CAS:528:DyaE2MXos1aktQ%3D%3D10.1021/jo00890a018 RobakMTHerbageMAEllmanJASynthesis and applications of tert-butanesulfinamideChem. Rev.2010110360037401:CAS:528:DC%2BC3cXltFChsbs%3D10.1021/cr900382t Brehme, R., Enders, D., Fernandez, R. & Lassaletta, J. M. Aldehyde N-dialkylhydrazones as neutral acyl anion equivalents: umpolung of the imine reactivity. Eur. J. Org. Chem. 5629–5660 (2007) SmithABAdamsCMEvolution of dithiane-based strategies for the construction of architecturally complex natural productsAcc. Chem. Res.2004373653771:CAS:528:DC%2BD2cXjs1Kht7k%3D10.1021/ar030245r OoiTOharaDTamuraMMaruokaKDesign of new chiral phase-transfer catalysts with dual functions for highly enantioselective epoxidation of α,β-unsaturated ketonesJ. Am. Chem. Soc.2004126684468451:CAS:528:DC%2BD2cXktVSls7c%3D10.1021/ja048600b LiuMLiJXiaoXXieYShiYAn efficient synthesis of optically active trifluoromethyl aldimines via asymmetric biomimetic transaminationChem. Commun.201349140414061:CAS:528:DC%2BC3sXhtlGnsbk%3D10.1039/c2cc37423d DewickPMMedicinal Natural Products: A Biosynthetic Approach200910.1002/9780470742761 NugentTCChiral Amine Synthesis: Methods, Developments and Applications201010.1002/9783527629541 BandiniMBottoniAEichholzerAMiscioneGPStentaMAsymmetric phase-transfer-catalyzed intramolecular N-alkylation of indoles and pyrroles: a combined experimental and theoretical investigationChem. Eur. J.20101612462124731:CAS:528:DC%2BC3cXhtlehtb%2FF10.1002/chem.201000560 FuPSnapperMLHoveydaAHCatalytic asymmetric alkylations of ketoimines. Enantioselective synthesis of N-substituted quaternary carbon stereogenic centers by Zr-catalyzed additions of dialkylzinc reagents to aryl-, alkyl-, and trifluoroalkyl-substituted ketoiminesJ. Am. Chem. Soc.2008130553055411:CAS:528:DC%2BD1cXktVGitbs%3D10.1021/ja8001343 SilverioDLSimple organic molecules as catalysts for enantioselective synthesis of amines and alcoholsNature20134942162211:CAS:528:DC%2BC3sXis1ajtL4%3D2013Natur.494..216S10.1038/nature11844 NieJGuoH-CCahardDMaJ-AAsymmetric construction of stereogenic carbon centers featuring a trifluoromethyl group from prochiral trifluoromethylated substratesChem. Rev.20111114555291:CAS:528:DC%2BC3cXhsV2gtrfO10.1021/cr100166a KnowlesRRLinSJacobsenENEnantioselective thiourea-catalyzed cationic polycyclizationsJ. Am. Chem. Soc.2010132503050321:CAS:528:DC%2BC3cXktFekuro%3D10.1021/ja101256v QianXPalladium-catalyzed decarboxylative generation and asymmetric allylation of α-imino anionsOrg. Lett.201416522852311:CAS:528:DC%2BC2cXhsFyrs7nO10.1021/ol502693r GiacaloneFGruttadauriaMAgrigentoPNotoRLow-loading asymmetric organocatalysisChem. Soc. Rev.201241240624471:CAS:528:DC%2BC38XivFWlsbg%3D10.1039/C1CS15206H MatsumotoMHaradaMYamashitaYKobayashiSCatalytic imine-imine cross-coupling reactionsChem. Commun.20145013041130441:CAS:528:DC%2BC2cXhsVyhtr3N10.1039/C4CC06156J OgleJWZhangJReibenspiesJHAbboudKAMillerSASynthesis of electronically diverse tetraarylimidazolylidene carbenes via catalytic aldimine couplingOrg. Lett.200810367736801:CAS:528:DC%2BD1cXptl2hsb4%3D10.1021/ol8012765 ShirakawaSMaruokaKRecent developments in asymmetric phase-transfer reactionsAngew. Chem. Int. Ed. Engl.201352431243481:CAS:528:DC%2BC3sXjtlagtL4%3D10.1002/anie.201206835 VoraHURovisTAsymmetric N-heterocyclic carbene (NHC) catalyzed acyl anion reactionsAldrichim. Acta2011443111:CAS:528:DC%2BC3MXptlWrs74%3D SeebachDMethods of reactivity umpolungAngew. Chem. Int. Ed. Engl.19791823925810.1002/anie.197902393 ZhuYBuchwaldSLLigand-controlled asymmetric arylation of aliphatic α-amino anion equivalentsJ. Am. Chem. Soc.2014136450045031:CAS:528:DC%2BC2cXktF2ntLs%3D10.1021/ja501560x ReichBJEJusticeAKBecksteadBTReibenspiesJHMillerSACyanide-catalyzed cyclizations via aldimine couplingJ. Org. Chem.200469135713591:CAS:528:DC%2BD2cXot1Gjtw%3D%3D10.1021/jo035245j WuYDengLAsymmetric synthesis of trifluoromethylated amines via catalytic enantioselective isomerization of iminesJ. Am. Chem. Soc.201213414334143371:CAS:528:DC%2BC38Xht1ajsrzJ10.1021/ja306771n JakubowskaAKuligKProgress in the glycine equivalent based α-amino acids synthesisCurr. Org. Synth.2013105475631:CAS:528:DC%2BC3sXhsVaitr7F10.2174/1570179411310040003 HartwigJFStanleyLMMechanistically driven development of iridium catalysts for asymmetric allylic substitutionAcc. Chem. Res.201043146114751:CAS:528:DC%2BC3cXht1ahurjJ10.1021/ar100047x LiuXGaoADingLXuJZhaoBAminative umpolung synthesis of aryl vicinal diamines from aromatic aldehydesOrg. Lett.201416211821211:CAS:528:DC%2BC2cXlsl2ks78%3D10.1021/ol500522d JaunBSchwarzJBreslowRDetermination of the basicities of benzyl, allyl, and tert-butylpropargyl anions by anodic oxidation of organolithium compoundsJ. Am. Chem. Soc.1980102574157481:CAS:528:DyaL3cXltl2qu7s%3D10.1021/ja00538a008 D Seebach (BFnature14617_CR7) 1975; 40 JF Hartwig (BFnature14617_CR29) 2010; 43 A Jakubowska (BFnature14617_CR17) 2013; 10 RR Knowles (BFnature14617_CR24) 2010; 132 BJE Reich (BFnature14617_CR11) 2004; 69 M Liu (BFnature14617_CR16) 2013; 49 T Ooi (BFnature14617_CR21) 2004; 126 JW Ogle (BFnature14617_CR12) 2008; 10 PM Dewick (BFnature14617_CR5) 2009 UH Dolling (BFnature14617_CR22) 1984; 106 M Bandini (BFnature14617_CR23) 2010; 16 X Qian (BFnature14617_CR19) 2014; 16 J Nie (BFnature14617_CR26) 2011; 111 D Seebach (BFnature14617_CR6) 1979; 18 Y Zhu (BFnature14617_CR18) 2014; 136 S Shirakawa (BFnature14617_CR20) 2013; 52 MT Robak (BFnature14617_CR2) 2010; 110 TC Nugent (BFnature14617_CR1) 2010 B Jaun (BFnature14617_CR30) 1980; 102 BFnature14617_CR9 HU Vora (BFnature14617_CR10) 2011; 44 M Matsumoto (BFnature14617_CR14) 2014; 50 Y Wu (BFnature14617_CR15) 2012; 134 X Liu (BFnature14617_CR13) 2014; 16 FG Bordwell (BFnature14617_CR28) 1977; 42 P Fu (BFnature14617_CR25) 2008; 130 AB Smith (BFnature14617_CR8) 2004; 37 S Kobayashi (BFnature14617_CR3) 2011; 111 F Giacalone (BFnature14617_CR27) 2012; 41 DL Silverio (BFnature14617_CR4) 2013; 494 23323269 - Chem Commun (Camb). 2013 Feb 18;49(14):1404-6 22167174 - Chem Soc Rev. 2012 Mar 21;41(6):2406-47 15174835 - J Am Chem Soc. 2004 Jun 9;126(22):6844-5 20839181 - Chemistry. 2010 Nov 2;16(41):12462-73 24742159 - Org Lett. 2014 Apr 18;16(8):2118-21 25243507 - Org Lett. 2014 Oct 3;16(19):5228-31 18681447 - Org Lett. 2008 Sep 4;10(17):3677-80 14961691 - J Org Chem. 2004 Feb 20;69(4):1357-9 21117644 - Chem Rev. 2011 Feb 9;111(2):455-529 24621247 - J Am Chem Soc. 2014 Mar 26;136(12):4500-3 25227870 - Chem Commun (Camb). 2014 Nov 7;50(86):13041-4 26201594 - Nature. 2015 Jul 23;523(7561):417-8 20873839 - Acc Chem Res. 2010 Dec 21;43(12):1461-75 23407537 - Nature. 2013 Feb 14;494(7436):216-21 18376838 - J Am Chem Soc. 2008 Apr 23;130(16):5530-41 21405021 - Chem Rev. 2011 Apr 13;111(4):2626-704 15196046 - Acc Chem Res. 2004 Jun;37(6):365-77 23450630 - Angew Chem Int Ed Engl. 2013 Apr 15;52(16):4312-48 20369901 - J Am Chem Soc. 2010 Apr 14;132(14):5030-2 22906148 - J Am Chem Soc. 2012 Sep 5;134(35):14334-7 20420386 - Chem Rev. 2010 Jun 9;110(6):3600-740 25346540 - Aldrichimica Acta. 2011;44(1):3-11 |
References_xml | – reference: ReichBJEJusticeAKBecksteadBTReibenspiesJHMillerSACyanide-catalyzed cyclizations via aldimine couplingJ. Org. Chem.200469135713591:CAS:528:DC%2BD2cXot1Gjtw%3D%3D10.1021/jo035245j – reference: LiuMLiJXiaoXXieYShiYAn efficient synthesis of optically active trifluoromethyl aldimines via asymmetric biomimetic transaminationChem. Commun.201349140414061:CAS:528:DC%2BC3sXhtlGnsbk%3D10.1039/c2cc37423d – reference: JakubowskaAKuligKProgress in the glycine equivalent based α-amino acids synthesisCurr. Org. Synth.2013105475631:CAS:528:DC%2BC3sXhsVaitr7F10.2174/1570179411310040003 – reference: DollingUHDavisPGrabowskiEJJEfficient catalytic asymmetric alkylations. 1. Enantioselective synthesis of (+)-indacrinone via chiral phase-transfer catalysisJ. Am. Chem. Soc.19841064464471:CAS:528:DyaL2cXmsl2muw%3D%3D10.1021/ja00314a045 – reference: SilverioDLSimple organic molecules as catalysts for enantioselective synthesis of amines and alcoholsNature20134942162211:CAS:528:DC%2BC3sXis1ajtL4%3D2013Natur.494..216S10.1038/nature11844 – reference: KobayashiSMoriYFosseyJSSalterMMCatalytic enantioselective formation of C−C bonds by addition to imines and hydrazones: a ten-year updateChem. Rev.2011111262627041:CAS:528:DC%2BC3MXjtFersL8%3D10.1021/cr100204f – reference: SeebachDMethods of reactivity umpolungAngew. Chem. Int. Ed. Engl.19791823925810.1002/anie.197902393 – reference: KnowlesRRLinSJacobsenENEnantioselective thiourea-catalyzed cationic polycyclizationsJ. Am. Chem. Soc.2010132503050321:CAS:528:DC%2BC3cXktFekuro%3D10.1021/ja101256v – reference: SeebachDCoreyEJGeneration and synthetic applications of 2-lithio-1,3-dithianesJ. Org. Chem.1975402312371:CAS:528:DyaE2MXos1aktQ%3D%3D10.1021/jo00890a018 – reference: BordwellFGAlgrimDVanierNRAcidities of anilines and toluenesJ. Org. Chem.197742181718191:CAS:528:DyaE2sXhvVyqt7k%3D10.1021/jo00430a039 – reference: VoraHURovisTAsymmetric N-heterocyclic carbene (NHC) catalyzed acyl anion reactionsAldrichim. Acta2011443111:CAS:528:DC%2BC3MXptlWrs74%3D – reference: Brehme, R., Enders, D., Fernandez, R. & Lassaletta, J. M. Aldehyde N-dialkylhydrazones as neutral acyl anion equivalents: umpolung of the imine reactivity. Eur. J. Org. Chem. 5629–5660 (2007) – reference: MatsumotoMHaradaMYamashitaYKobayashiSCatalytic imine-imine cross-coupling reactionsChem. Commun.20145013041130441:CAS:528:DC%2BC2cXhsVyhtr3N10.1039/C4CC06156J – reference: ShirakawaSMaruokaKRecent developments in asymmetric phase-transfer reactionsAngew. Chem. Int. Ed. Engl.201352431243481:CAS:528:DC%2BC3sXjtlagtL4%3D10.1002/anie.201206835 – reference: GiacaloneFGruttadauriaMAgrigentoPNotoRLow-loading asymmetric organocatalysisChem. Soc. Rev.201241240624471:CAS:528:DC%2BC38XivFWlsbg%3D10.1039/C1CS15206H – reference: NugentTCChiral Amine Synthesis: Methods, Developments and Applications201010.1002/9783527629541 – reference: OoiTOharaDTamuraMMaruokaKDesign of new chiral phase-transfer catalysts with dual functions for highly enantioselective epoxidation of α,β-unsaturated ketonesJ. Am. Chem. Soc.2004126684468451:CAS:528:DC%2BD2cXktVSls7c%3D10.1021/ja048600b – reference: FuPSnapperMLHoveydaAHCatalytic asymmetric alkylations of ketoimines. Enantioselective synthesis of N-substituted quaternary carbon stereogenic centers by Zr-catalyzed additions of dialkylzinc reagents to aryl-, alkyl-, and trifluoroalkyl-substituted ketoiminesJ. Am. Chem. Soc.2008130553055411:CAS:528:DC%2BD1cXktVGitbs%3D10.1021/ja8001343 – reference: RobakMTHerbageMAEllmanJASynthesis and applications of tert-butanesulfinamideChem. Rev.2010110360037401:CAS:528:DC%2BC3cXltFChsbs%3D10.1021/cr900382t – reference: SmithABAdamsCMEvolution of dithiane-based strategies for the construction of architecturally complex natural productsAcc. Chem. Res.2004373653771:CAS:528:DC%2BD2cXjs1Kht7k%3D10.1021/ar030245r – reference: HartwigJFStanleyLMMechanistically driven development of iridium catalysts for asymmetric allylic substitutionAcc. Chem. Res.201043146114751:CAS:528:DC%2BC3cXht1ahurjJ10.1021/ar100047x – reference: LiuXGaoADingLXuJZhaoBAminative umpolung synthesis of aryl vicinal diamines from aromatic aldehydesOrg. Lett.201416211821211:CAS:528:DC%2BC2cXlsl2ks78%3D10.1021/ol500522d – reference: NieJGuoH-CCahardDMaJ-AAsymmetric construction of stereogenic carbon centers featuring a trifluoromethyl group from prochiral trifluoromethylated substratesChem. Rev.20111114555291:CAS:528:DC%2BC3cXhsV2gtrfO10.1021/cr100166a – reference: ZhuYBuchwaldSLLigand-controlled asymmetric arylation of aliphatic α-amino anion equivalentsJ. Am. Chem. Soc.2014136450045031:CAS:528:DC%2BC2cXktF2ntLs%3D10.1021/ja501560x – reference: BandiniMBottoniAEichholzerAMiscioneGPStentaMAsymmetric phase-transfer-catalyzed intramolecular N-alkylation of indoles and pyrroles: a combined experimental and theoretical investigationChem. Eur. J.20101612462124731:CAS:528:DC%2BC3cXhtlehtb%2FF10.1002/chem.201000560 – reference: JaunBSchwarzJBreslowRDetermination of the basicities of benzyl, allyl, and tert-butylpropargyl anions by anodic oxidation of organolithium compoundsJ. Am. Chem. Soc.1980102574157481:CAS:528:DyaL3cXltl2qu7s%3D10.1021/ja00538a008 – reference: OgleJWZhangJReibenspiesJHAbboudKAMillerSASynthesis of electronically diverse tetraarylimidazolylidene carbenes via catalytic aldimine couplingOrg. Lett.200810367736801:CAS:528:DC%2BD1cXptl2hsb4%3D10.1021/ol8012765 – reference: DewickPMMedicinal Natural Products: A Biosynthetic Approach200910.1002/9780470742761 – reference: QianXPalladium-catalyzed decarboxylative generation and asymmetric allylation of α-imino anionsOrg. Lett.201416522852311:CAS:528:DC%2BC2cXhsFyrs7nO10.1021/ol502693r – reference: WuYDengLAsymmetric synthesis of trifluoromethylated amines via catalytic enantioselective isomerization of iminesJ. Am. Chem. Soc.201213414334143371:CAS:528:DC%2BC38Xht1ajsrzJ10.1021/ja306771n – volume: 136 start-page: 4500 year: 2014 ident: BFnature14617_CR18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja501560x – volume: 132 start-page: 5030 year: 2010 ident: BFnature14617_CR24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja101256v – volume: 16 start-page: 5228 year: 2014 ident: BFnature14617_CR19 publication-title: Org. Lett. doi: 10.1021/ol502693r – volume: 16 start-page: 2118 year: 2014 ident: BFnature14617_CR13 publication-title: Org. Lett. doi: 10.1021/ol500522d – volume-title: Medicinal Natural Products: A Biosynthetic Approach year: 2009 ident: BFnature14617_CR5 doi: 10.1002/9780470742761 – volume: 50 start-page: 13041 year: 2014 ident: BFnature14617_CR14 publication-title: Chem. Commun. doi: 10.1039/C4CC06156J – volume: 52 start-page: 4312 year: 2013 ident: BFnature14617_CR20 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201206835 – volume: 126 start-page: 6844 year: 2004 ident: BFnature14617_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja048600b – volume: 130 start-page: 5530 year: 2008 ident: BFnature14617_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8001343 – volume: 43 start-page: 1461 year: 2010 ident: BFnature14617_CR29 publication-title: Acc. Chem. Res. doi: 10.1021/ar100047x – volume: 37 start-page: 365 year: 2004 ident: BFnature14617_CR8 publication-title: Acc. Chem. Res. doi: 10.1021/ar030245r – volume: 16 start-page: 12462 year: 2010 ident: BFnature14617_CR23 publication-title: Chem. Eur. J. doi: 10.1002/chem.201000560 – volume: 494 start-page: 216 year: 2013 ident: BFnature14617_CR4 publication-title: Nature doi: 10.1038/nature11844 – volume: 42 start-page: 1817 year: 1977 ident: BFnature14617_CR28 publication-title: J. Org. Chem. doi: 10.1021/jo00430a039 – volume: 40 start-page: 231 year: 1975 ident: BFnature14617_CR7 publication-title: J. Org. Chem. doi: 10.1021/jo00890a018 – volume: 111 start-page: 2626 year: 2011 ident: BFnature14617_CR3 publication-title: Chem. Rev. doi: 10.1021/cr100204f – volume-title: Chiral Amine Synthesis: Methods, Developments and Applications year: 2010 ident: BFnature14617_CR1 doi: 10.1002/9783527629541 – volume: 69 start-page: 1357 year: 2004 ident: BFnature14617_CR11 publication-title: J. Org. Chem. doi: 10.1021/jo035245j – volume: 49 start-page: 1404 year: 2013 ident: BFnature14617_CR16 publication-title: Chem. Commun. doi: 10.1039/c2cc37423d – volume: 41 start-page: 2406 year: 2012 ident: BFnature14617_CR27 publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15206H – volume: 18 start-page: 239 year: 1979 ident: BFnature14617_CR6 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.197902393 – volume: 110 start-page: 3600 year: 2010 ident: BFnature14617_CR2 publication-title: Chem. Rev. doi: 10.1021/cr900382t – volume: 44 start-page: 3 year: 2011 ident: BFnature14617_CR10 publication-title: Aldrichim. Acta – volume: 111 start-page: 455 year: 2011 ident: BFnature14617_CR26 publication-title: Chem. Rev. doi: 10.1021/cr100166a – volume: 102 start-page: 5741 year: 1980 ident: BFnature14617_CR30 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00538a008 – volume: 10 start-page: 3677 year: 2008 ident: BFnature14617_CR12 publication-title: Org. Lett. doi: 10.1021/ol8012765 – volume: 10 start-page: 547 year: 2013 ident: BFnature14617_CR17 publication-title: Curr. Org. Synth. doi: 10.2174/1570179411310040003 – ident: BFnature14617_CR9 doi: 10.1002/ejoc.200700746 – volume: 106 start-page: 446 year: 1984 ident: BFnature14617_CR22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00314a045 – volume: 134 start-page: 14334 year: 2012 ident: BFnature14617_CR15 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja306771n – reference: 20839181 - Chemistry. 2010 Nov 2;16(41):12462-73 – reference: 23450630 - Angew Chem Int Ed Engl. 2013 Apr 15;52(16):4312-48 – reference: 24621247 - J Am Chem Soc. 2014 Mar 26;136(12):4500-3 – reference: 26201594 - Nature. 2015 Jul 23;523(7561):417-8 – reference: 23323269 - Chem Commun (Camb). 2013 Feb 18;49(14):1404-6 – reference: 25346540 - Aldrichimica Acta. 2011;44(1):3-11 – reference: 15174835 - J Am Chem Soc. 2004 Jun 9;126(22):6844-5 – reference: 20420386 - Chem Rev. 2010 Jun 9;110(6):3600-740 – reference: 20873839 - Acc Chem Res. 2010 Dec 21;43(12):1461-75 – reference: 21117644 - Chem Rev. 2011 Feb 9;111(2):455-529 – reference: 25243507 - Org Lett. 2014 Oct 3;16(19):5228-31 – reference: 21405021 - Chem Rev. 2011 Apr 13;111(4):2626-704 – reference: 25227870 - Chem Commun (Camb). 2014 Nov 7;50(86):13041-4 – reference: 22906148 - J Am Chem Soc. 2012 Sep 5;134(35):14334-7 – reference: 23407537 - Nature. 2013 Feb 14;494(7436):216-21 – reference: 18376838 - J Am Chem Soc. 2008 Apr 23;130(16):5530-41 – reference: 15196046 - Acc Chem Res. 2004 Jun;37(6):365-77 – reference: 24742159 - Org Lett. 2014 Apr 18;16(8):2118-21 – reference: 14961691 - J Org Chem. 2004 Feb 20;69(4):1357-9 – reference: 22167174 - Chem Soc Rev. 2012 Mar 21;41(6):2406-47 – reference: 18681447 - Org Lett. 2008 Sep 4;10(17):3677-80 – reference: 20369901 - J Am Chem Soc. 2010 Apr 14;132(14):5030-2 |
SSID | ssj0005174 |
Score | 2.583577 |
Snippet | Imines conventionally act as electrophiles towards carbon nucleophiles in the synthesis of amines, but the range of amines could be much extended if the carbon... The carbon-nitrogen double bonds in imines are fundamentally important functional groups in organic chemistry. This is largely due to the fact that imines act... Imines, carbon-nitrogen double bonds, are fundamentally important functional groups in organic chemistry. This is largely due to the fact that imines act as... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 445 |
SubjectTerms | 140/131 140/58 639/638/403 639/638/77/883 Acrolein - chemistry Air Amines Amino Alcohols - chemical synthesis Amino Alcohols - chemistry Anions Asymmetry Carbon Carbon - chemistry Catalysis Chemical compounds Chemical research Chemistry Techniques, Synthetic - methods Electrons Humanities and Social Sciences Humidity Imines - chemistry letter multidisciplinary Nitrogen - chemistry Organic chemistry Schiff bases Science |
Title | Catalytic asymmetric umpolung reactions of imines |
URI | https://link.springer.com/article/10.1038/nature14617 https://www.ncbi.nlm.nih.gov/pubmed/26201597 https://www.proquest.com/docview/1698979869 https://www.proquest.com/docview/1698962183 https://pubmed.ncbi.nlm.nih.gov/PMC4513368 |
Volume | 523 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFD6CTUi8IDZuYWMKaFylaIkvsf2ESrUyeKjQ2ETfosSOyySWdKR92L_HJ3G7pgxe8nK-VK7PsX1iH38fwKGQStO4iCNLiYmYjfMo54ZF2ppUy4KQ3LTVFuP05Jx9nfCJ33BrfFnlck5sJ2pTa9wjP0pQ6VAomaqPs6sIVaPwdNVLaNyFbaQuw5IuMRE3JR4bLMz-fl5M5VFHm4mi1qK3Im3Oy2sL02bR5MbJabsgjR7CA59JhoPO9Ttwp6x24V5b0ambXdjxo7YJ33lq6fePIBnibs21eyPMm-vLS5TT0qHzqAvAahq6BLK95tCEtQ1R7qtsHsP56PhseBJ50YRIi4TNI8WNLphmouTcCrf68IKqwjBVaCEE5UYZ7dI0XXIirSK2lFZq7T7SXB4WG0HoE9iq6qp8BiETNCmY--QROWek5Oi5IqbUqNxyY3kAH5Ydl2nPKI7CFr-y9mSbymytlwM4XIFnHZHGP2DogQypKSqsfZnmi6bJBmc_huNswNpTQaJYAK9ug335ftoDvfUgW7t26dzfOHD_Dkmvesi9HlLPLq6yNeubnnXaee22n9nvAd1I1X3zMqwyP1M02U1cB_ByZcY3sfqtKuuFx6SYzAbwtIvCVR-ioIBLSV3HiV58rgDIH963VBc_Wx5xhto-qQzg9TKS15r1t2ue_7_5e3AfW4L73oTuw9b896J84RK2eXHQjkr3lMMEn6PPB7D96Xj87fQPepNCIA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NQwheEBtfYQMC2viSoqWJHccPCFWFqWWjD9BpfQuJP8oklnSkFeo_xd-IL3G6pgze9nyXyj2f7872-fcD2GMxF6Gf-Z4OA-kR7adeSiXxhJaRiLMgSGXVbTGM-ifk05iON-B38xYG2yqbmFgFalkIPCM_6CDTIeNxxN9PLzxkjcLb1YZCo3aLI7X4ZbZs5bvBBzO_-0Fw-HHU63uWVcATrENmHqdSZEQQpijVzIRnmoU8k4RngjEWUsmlMHWMUDSINQ-0inUshNnFmELFlwyBDkzIv2ESr48rio3ZZUvJGuqzfQ_oh_FBDdOJJNqslQHX88BKIlxv0ly7qa0S4OFduGMrV7dbu9oWbKh8G25WHaSi3IYtGyVK97WFsn5zDzo9PB1amC_ctFycnyN9l3CNBxmHzyeuKVirZxWlW2gX6cVUeR9OrsWcD2AzL3L1CFzCwk5GzBaLpZQEiqKnZH4YSp5qKjV14G1juERYBHMk0viRVDfpYZysWNmBvaXytAbu-IcazkCCUBg59tpM0nlZJt3RaW-YdEl1Cxlw4sCLq9QGX7-0lF5ZJV2YcYnUvnAw_w5BtlqaOy1NMT27SFakL1vSST1rV_3MbkvRRAbRFjduldjIVCaX68iB50sxfonddrkq5lYnwuLZgYe1Fy5tiAQGpgQ2hmMt_1wqIF55W5Kffa9wywlyCUWxA_uNJ68M6--pefz_4T-DW_3R5-PkeDA82oHbOCo8cw_CXdic_ZyrJ6ZYnGVPqxXqwrfrDgl_APJne14 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFL2ahkC8IDa-wgYEtPElRU0cu04eEKo6qpWhCsGm9c0kdlwmsaQjrVD_Gr8O38TpmjJ42_M9qVz7-Pravj4XYI9HsQz91Pd0SJRHtZ94CVPUk1p1ZZQSkqgq22LUPTyhH8dsvAG_m7cwmFbZ-MTKUatC4hl5J8BKhzyOunFH27SIzweD99MLDytI4U1rU06jpshRtvhltm_lu-GBGet9QgYfjvuHnq0w4Eke0JkXMyVTKinPGNPcuGqWhnGqaJxKznnIVKykiWlkxkikY6KzSEdSmh2NCVp8xVH0wLj_GwYZ4BzjY36ZXrKmAG3fBvph1KklO7GgNm-thutrwsqiuJ6wuXZrWy2Gg7twx0axbq-m3RZsZPk23KyySWW5DVvWY5Tuaytr_eYeBH08KVqYL9ykXJyfYykv6Ro2GfLnE9cEr9UTi9IttIulxrLyPpxcS3c-gM28yLNH4FIeBik12y2eMEoyhqxJ_TBUcaKZ0syBt03HCWnVzLGoxg9R3aqHkVjpZQf2luBpLeLxDxiOgEBZjBwJNknmZSl6x6f9kejR6kaSxNSBF1fBhl-_tECvLEgXpl0ysa8dzL9Dwa0WcqeFlNOzC7FifdmyTupRu-pndltA4yVk29zQSlgvVYrLOeXA86UZv8TMuzwr5hbTxUDagYc1C5d9iMUMTDhsOo63-LkEoHZ525Kffa80zCnWFepGDuw3TF5p1t9D8_j_zX8Gt4wzEJ-Go6MduI2NwuN3Eu7C5uznPHti4sZZ-rSaoC58u26P8AfMvH-U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalytic+asymmetric+umpolung+reactions+of+imines&rft.jtitle=Nature+%28London%29&rft.au=Wu%2C+Yongwei&rft.au=Hu%2C+Lin&rft.au=Li%2C+Zhe&rft.au=Deng%2C+Li&rft.date=2015-07-23&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=523&rft.issue=7561&rft.spage=445&rft_id=info:doi/10.1038%2Fnature14617&rft.externalDocID=A423049294 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |