Catalytic asymmetric umpolung reactions of imines

Imines conventionally act as electrophiles towards carbon nucleophiles in the synthesis of amines, but the range of amines could be much extended if the carbon atom of the imine could be rendered electron-rich to allow it to act as a nucleophile toward a carbon electrophile; such a reaction can be p...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 523; no. 7561; pp. 445 - 450
Main Authors Wu, Yongwei, Hu, Lin, Li, Zhe, Deng, Li
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.07.2015
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Imines conventionally act as electrophiles towards carbon nucleophiles in the synthesis of amines, but the range of amines could be much extended if the carbon atom of the imine could be rendered electron-rich to allow it to act as a nucleophile toward a carbon electrophile; such a reaction can be promoted by new phase-transfer catalysts, leading to highly efficient asymmetric reactions of imines with enals. Chital amine synthesis made simpler Imines, carbon–nitrogen double bonds, act as electrophiles towards carbon nucleophiles in the synthesis of amines, but the range of synthesizable amines could be greatly extended if the carbon atom of the imine could be rendered electron-rich to allow it to act as a nucleophile towards a carbon electrophile. Li Deng and colleagues have developed a procedure that achieves just that. They report the discovery and development of new chiral phase transfer catalysts that promote highly efficient asymmetric reactions of imines and enals. The reaction provides a conceptually new and practical approach towards the synthesis of chiral amino compounds. The carbon–nitrogen double bonds in imines are fundamentally important functional groups in organic chemistry. This is largely due to the fact that imines act as electrophiles towards carbon nucleophiles in reactions that form carbon–carbon bonds, thereby serving as one of the most widely used precursors for the formation of amines in both synthetic and biosynthetic settings 1 , 2 , 3 , 4 , 5 . If the carbon atom of the imine could be rendered electron-rich, the imine could react as a nucleophile instead of as an electrophile. Such a reversal in the electronic characteristics of the imine functionality would facilitate the development of new chemical transformations that convert imines into amines via carbon–carbon bond-forming reactions with carbon electrophiles, thereby creating new opportunities for the efficient synthesis of amines. The development of asymmetric umpolung reactions of imines (in which the imines act as nucleophiles) remains uncharted territory, in spite of the far-reaching impact such reactions would have in organic synthesis. Here we report the discovery and development of new chiral phase-transfer catalysts that promote the highly efficient asymmetric umpolung reactions of imines with the carbon electrophile enals. These catalysts mediate the deprotonation of imines and direct the 2-azaallyl anions thus formed to react with enals in a highly chemoselective, regioselective, diastereoselective and enantioselective fashion. The reaction tolerates a broad range of imines and enals, and can be carried out in high yield with as little as 0.01 mole per cent catalyst with a moisture- and air-tolerant operational protocol. These umpolung reactions provide a conceptually new and practical approach to chiral amino compounds.
AbstractList The carbon-nitrogen double bonds in imines are fundamentally important functional groups in organic chemistry. This is largely due to the fact that imines act as electrophiles towards carbon nucleophiles in reactions that form carbon-carbon bonds, thereby serving as one of the most widely used precursors for the formation of amines in both synthetic and biosynthetic settings. If the carbon atom of the imine could be rendered electron-rich, the imine could react as a nucleophile instead of as an electrophile. Such a reversal in the electronic characteristics of the imine functionality would facilitate the development of new chemical transformations that convert imines into amines via carbon-carbon bond-forming reactions with carbon electrophiles, thereby creating new opportunities for the efficient synthesis of amines. The development of asymmetric umpolung reactions of imines (in which the imines act as nucleophiles) remains uncharted territory, in spite of the far-reaching impact such reactions would have in organic synthesis. Here we report the discovery and development of new chiral phase-transfer catalysts that promote the highly efficient asymmetric umpolung reactions of imines with the carbon electrophile enals. These catalysts mediate the deprotonation of imines and direct the 2-azaallyl anions thus formed to react with enals in a highly chemoselective, regioselective, diastereoselective and enantioselective fashion. The reaction tolerates a broad range of imines and enals, and can be carried out in high yield with as little as 0.01 mole per cent catalyst with a moisture- and air-tolerant operational protocol. These umpolung reactions provide a conceptually new and practical approach to chiral amino compounds.The carbon-nitrogen double bonds in imines are fundamentally important functional groups in organic chemistry. This is largely due to the fact that imines act as electrophiles towards carbon nucleophiles in reactions that form carbon-carbon bonds, thereby serving as one of the most widely used precursors for the formation of amines in both synthetic and biosynthetic settings. If the carbon atom of the imine could be rendered electron-rich, the imine could react as a nucleophile instead of as an electrophile. Such a reversal in the electronic characteristics of the imine functionality would facilitate the development of new chemical transformations that convert imines into amines via carbon-carbon bond-forming reactions with carbon electrophiles, thereby creating new opportunities for the efficient synthesis of amines. The development of asymmetric umpolung reactions of imines (in which the imines act as nucleophiles) remains uncharted territory, in spite of the far-reaching impact such reactions would have in organic synthesis. Here we report the discovery and development of new chiral phase-transfer catalysts that promote the highly efficient asymmetric umpolung reactions of imines with the carbon electrophile enals. These catalysts mediate the deprotonation of imines and direct the 2-azaallyl anions thus formed to react with enals in a highly chemoselective, regioselective, diastereoselective and enantioselective fashion. The reaction tolerates a broad range of imines and enals, and can be carried out in high yield with as little as 0.01 mole per cent catalyst with a moisture- and air-tolerant operational protocol. These umpolung reactions provide a conceptually new and practical approach to chiral amino compounds.
Imines conventionally act as electrophiles towards carbon nucleophiles in the synthesis of amines, but the range of amines could be much extended if the carbon atom of the imine could be rendered electron-rich to allow it to act as a nucleophile toward a carbon electrophile; such a reaction can be promoted by new phase-transfer catalysts, leading to highly efficient asymmetric reactions of imines with enals. Chital amine synthesis made simpler Imines, carbon–nitrogen double bonds, act as electrophiles towards carbon nucleophiles in the synthesis of amines, but the range of synthesizable amines could be greatly extended if the carbon atom of the imine could be rendered electron-rich to allow it to act as a nucleophile towards a carbon electrophile. Li Deng and colleagues have developed a procedure that achieves just that. They report the discovery and development of new chiral phase transfer catalysts that promote highly efficient asymmetric reactions of imines and enals. The reaction provides a conceptually new and practical approach towards the synthesis of chiral amino compounds. The carbon–nitrogen double bonds in imines are fundamentally important functional groups in organic chemistry. This is largely due to the fact that imines act as electrophiles towards carbon nucleophiles in reactions that form carbon–carbon bonds, thereby serving as one of the most widely used precursors for the formation of amines in both synthetic and biosynthetic settings 1 , 2 , 3 , 4 , 5 . If the carbon atom of the imine could be rendered electron-rich, the imine could react as a nucleophile instead of as an electrophile. Such a reversal in the electronic characteristics of the imine functionality would facilitate the development of new chemical transformations that convert imines into amines via carbon–carbon bond-forming reactions with carbon electrophiles, thereby creating new opportunities for the efficient synthesis of amines. The development of asymmetric umpolung reactions of imines (in which the imines act as nucleophiles) remains uncharted territory, in spite of the far-reaching impact such reactions would have in organic synthesis. Here we report the discovery and development of new chiral phase-transfer catalysts that promote the highly efficient asymmetric umpolung reactions of imines with the carbon electrophile enals. These catalysts mediate the deprotonation of imines and direct the 2-azaallyl anions thus formed to react with enals in a highly chemoselective, regioselective, diastereoselective and enantioselective fashion. The reaction tolerates a broad range of imines and enals, and can be carried out in high yield with as little as 0.01 mole per cent catalyst with a moisture- and air-tolerant operational protocol. These umpolung reactions provide a conceptually new and practical approach to chiral amino compounds.
The carbon-nitrogen double bonds in imines are fundamentally important functional groups in organic chemistry. This is largely due to the fact that imines act as electrophiles towards carbon nucleophiles in reactions that form carbon-carbon bonds, thereby serving as one of the most widely used precursors for the formation of amines in both synthetic and biosynthetic settings. If the carbon atom of the imine could be rendered electron-rich, the imine could react as a nucleophile instead of as an electrophile. Such a reversal in the electronic characteristics of the imine functionality would facilitate the development of new chemical transformations that convert imines into amines via carbon-carbon bond-forming reactions with carbon electrophiles, thereby creating new opportunities for the efficient synthesis of amines. The development of asymmetric umpolung reactions of imines (in which the imines act as nucleophiles) remains uncharted territory, in spite of the far-reaching impact such reactions would have in organic synthesis. Here we report the discovery and development of new chiral phase-transfer catalysts that promote the highly efficient asymmetric umpolung reactions of imines with the carbon electrophile enals. These catalysts mediate the deprotonation of imines and direct the 2-azaallyl anions thus formed to react with enals in a highly chemoselective, regioselective, diastereoselective and enantioselective fashion. The reaction tolerates a broad range of imines and enals, and can be carried out in high yield with as little as 0.01 mole per cent catalyst with a moisture- and air-tolerant operational protocol. These umpolung reactions provide a conceptually new and practical approach to chiral amino compounds.
The carbon-nitrogen double bonds in imines are fundamentally important functional groups in organic chemistry. This is largely due to the fact that imines act as electrophiles towards carbon nucleophiles in reactions that form carbon-carbon bonds, thereby serving as one of the most widely used precursors for the formation of amines in both synthetic and biosynthetic settings (1-5). If the carbon atom of the imine could be rendered electron-rich, the imine could react as a nucleophile instead of as an electrophile. Such a reversal in the electronic characteristics of the imine functionality would facilitate the development of new chemical transformations that convert imines into amines via carbon-carbon bond-forming reactions with carbon electrophiles, thereby creating new opportunities for the efficient synthesis of amines. The development of asymmetric umpolung reactions of imines (in which the imines act as nucleophiles) remains uncharted territory, in spite of the far-reaching impact such reactions would have in organic synthesis. Here we report the discovery and development of new chiral phase-transfer catalysts that promote the highly efficient asymmetric umpolung reactions of imines with the carbon electrophile enals. These catalysts mediate the deprotonation of imines and direct the 2-azaallyl anions thus formed to react with enals in a highly chemoselective, regioselective, diastereoselective and enantio-selective fashion. The reaction tolerates a broad range of imines and enals, and can be carried out in high yield with as little as 0.01 mole per cent catalyst with a moisture- and air-tolerant operational protocol. These umpolung reactions provide a conceptually new and practical approach to chiral amino compounds.
Imines, carbon-nitrogen double bonds, are fundamentally important functional groups in organic chemistry. This is largely due to the fact that imines act as electrophiles in C–C bond forming reactions towards carbon nucleophiles, thereby serving one of the most widely used precursors for the formation of amines in both synthetic and biosynthetic settings. 1 – 5 If the carbon atom of the imine could be rendered electron-rich, the imine could react as a nucleophile instead of as an electrophile. Such a reversal in the electronic characteristics of the imine functionality would facilitate the development of new chemical transformations that convert imines into amines via C–C bond forming reactions with carbon electrophiles, thereby creating new opportunities for the efficient synthesis of amines. The development of asymmetric ‘umpolung’ reactions of imines remains an uncharted ground, in spite of the far-reaching impact of such reactions in organic synthesis. Here we report the discovery and development of new chiral phase transfer catalysts that promote the highly efficient asymmetric umpolung reactions of imines and enals. These catalysts mediate the deprotonation of imines and direct the 2-azaallylanions thus formed to react in a highly chemoselective, regioselective, diastereoselective and enantioselective fashion with enals. The reaction tolerates a broad range of imines and enals, and can be carried out in high yield with as little as 0.01 mol % catalyst with a moisture and air-tolerant operational protocol. These umpolung reactions provide a conceptually new and practical approach towards chiral amino compounds.
Audience Academic
Author Deng, Li
Hu, Lin
Li, Zhe
Wu, Yongwei
Author_xml – sequence: 1
  givenname: Yongwei
  surname: Wu
  fullname: Wu, Yongwei
  organization: Department of Chemistry, Brandeis University
– sequence: 2
  givenname: Lin
  surname: Hu
  fullname: Hu, Lin
  organization: Department of Chemistry, Brandeis University
– sequence: 3
  givenname: Zhe
  surname: Li
  fullname: Li, Zhe
  organization: Department of Chemistry, Brandeis University
– sequence: 4
  givenname: Li
  surname: Deng
  fullname: Deng, Li
  email: deng@brandeis.edu
  organization: Department of Chemistry, Brandeis University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26201597$$D View this record in MEDLINE/PubMed
BookMark eNp10s-L1DAUB_AgK-7s6sm7DO5F0a5JmjbJRRgGfywsCrriMWTS15qlTWaTVJz_3gyzP2ak0kNK88k3r7x3go6cd4DQc4LPCS7FO6fTGICwmvBHaEYYrwtWC36EZhhTUWBR1sfoJMZrjHFFOHuCjmlNMakknyGy1En3m2TNXMfNMEAK-XUc1r4fXTcPoE2y3sW5b-d2sA7iU_S41X2EZ7frKfrx8cPV8nNx-fXTxXJxWRhOWCpk1ZgVM4xDVbWcUFGtSrlqmFwZznlZNbIxuGIGKipaSVsQrTCGMUFpjRtOy1P0fpe7HlcDNAZcCrpX62AHHTbKa6sOd5z9pTr_W7GKlGUtcsCr24Dgb0aISQ02Guh77cCPUZFaCllTIspMz_6h134MLv_eTnEpavmgOt2Dsq71-V6zDVULRkvMJJUsq2JCdeAgF5k719r8-cC_nPBmbW_UPjqfQPlpYLBmMvX1wYFsEvxJnR5jVBffvx3aN_-3i6ufyy-H-sV-X-4bcjdTGZAdMMHHGKBVxia9naJcs-0VwWo7t2pvbh9KuD9zFzut3-50zMp1EPbaNcH_AjZj-X0
CODEN NATUAS
CitedBy_id crossref_primary_10_1002_chem_201904483
crossref_primary_10_1039_C7OB00820A
crossref_primary_10_1002_ange_201710084
crossref_primary_10_1021_acs_orglett_1c03553
crossref_primary_10_1021_acs_joc_0c00431
crossref_primary_10_1021_acs_joc_7b00352
crossref_primary_10_1002_chem_201604739
crossref_primary_10_1021_jacs_9b10870
crossref_primary_10_1038_s41467_021_24027_6
crossref_primary_10_1039_C6QO00846A
crossref_primary_10_1002_anie_201806249
crossref_primary_10_1002_anie_201611268
crossref_primary_10_1021_acs_orglett_1c00273
crossref_primary_10_1021_jacs_5b11361
crossref_primary_10_1002_ange_201712395
crossref_primary_10_1021_acs_orglett_7b01886
crossref_primary_10_1021_acs_orglett_1c00835
crossref_primary_10_1021_acs_orglett_1c01009
crossref_primary_10_1021_acscatal_8b03999
crossref_primary_10_1021_acs_orglett_2c00140
crossref_primary_10_1021_acscatal_1c01438
crossref_primary_10_1021_acs_joc_2c01372
crossref_primary_10_1002_anie_202001184
crossref_primary_10_1002_anie_201506872
crossref_primary_10_1021_acs_orglett_7b03262
crossref_primary_10_1038_s44160_023_00264_z
crossref_primary_10_1038_s42004_021_00586_z
crossref_primary_10_1002_ange_201700059
crossref_primary_10_1021_jacs_8b06014
crossref_primary_10_1039_C6CC09654A
crossref_primary_10_1021_acs_orglett_8b00778
crossref_primary_10_1016_j_isci_2023_106659
crossref_primary_10_1021_acs_orglett_0c00735
crossref_primary_10_1002_anie_202105721
crossref_primary_10_1002_chem_201703479
crossref_primary_10_1021_acs_joc_7b01468
crossref_primary_10_1016_j_jfluchem_2017_10_003
crossref_primary_10_1016_j_tet_2019_02_040
crossref_primary_10_3390_catal11060712
crossref_primary_10_1039_D3QO00045A
crossref_primary_10_1039_D1CC03075B
crossref_primary_10_1080_10610278_2016_1258118
crossref_primary_10_1021_jacs_3c09155
crossref_primary_10_1002_anie_202413861
crossref_primary_10_1038_523417a
crossref_primary_10_1021_jacs_6b08727
crossref_primary_10_1002_chem_201701290
crossref_primary_10_1002_anie_201700059
crossref_primary_10_1021_acs_orglett_0c01836
crossref_primary_10_1021_jacs_4c04129
crossref_primary_10_1002_adsc_202000455
crossref_primary_10_1002_anie_202424757
crossref_primary_10_1002_chem_201604623
crossref_primary_10_1039_C9QO01074B
crossref_primary_10_1021_acs_joc_2c00621
crossref_primary_10_1021_acs_orglett_3c01521
crossref_primary_10_1016_j_tet_2017_04_028
crossref_primary_10_1002_anie_201712395
crossref_primary_10_1002_anie_201906681
crossref_primary_10_1002_ange_202424757
crossref_primary_10_1002_ange_202206111
crossref_primary_10_1039_D1OB00829C
crossref_primary_10_3390_molecules28114339
crossref_primary_10_1002_anie_202208742
crossref_primary_10_1039_C7QO00124J
crossref_primary_10_1039_C8OB02066C
crossref_primary_10_1007_s11426_023_1744_2
crossref_primary_10_1002_anie_202215714
crossref_primary_10_2174_1570193X19666220510122957
crossref_primary_10_1021_acs_orglett_8b02297
crossref_primary_10_1002_anie_201710084
crossref_primary_10_1039_D1OB00596K
crossref_primary_10_1021_acs_orglett_2c01438
crossref_primary_10_1039_C8CC07599A
crossref_primary_10_1021_jacs_4c01671
crossref_primary_10_1039_C8QO00139A
crossref_primary_10_1039_D3GC04848A
crossref_primary_10_1021_acs_orglett_1c00911
crossref_primary_10_1021_acs_orglett_7b04039
crossref_primary_10_1038_s41467_020_18235_9
crossref_primary_10_1021_acs_joc_8b00873
crossref_primary_10_1002_ange_202413861
crossref_primary_10_1021_acs_orglett_9b01738
crossref_primary_10_1021_acs_joc_9b01036
crossref_primary_10_1039_D0SC07052A
crossref_primary_10_1002_ange_201806249
crossref_primary_10_1021_jacs_3c02567
crossref_primary_10_1021_acscatal_1c04923
crossref_primary_10_1021_acscatal_3c06091
crossref_primary_10_1002_anie_202012251
crossref_primary_10_1002_adsc_201600688
crossref_primary_10_1002_anie_201812585
crossref_primary_10_1002_anie_202017271
crossref_primary_10_1021_jacs_4c09840
crossref_primary_10_1021_jacs_3c14517
crossref_primary_10_1002_ange_201607918
crossref_primary_10_1021_acs_orglett_5b03615
crossref_primary_10_1038_s41557_023_01384_x
crossref_primary_10_1002_ange_201506872
crossref_primary_10_1021_jacs_1c10750
crossref_primary_10_1021_acs_chemrev_8b00349
crossref_primary_10_1021_acscatal_9b00737
crossref_primary_10_1002_ange_201906681
crossref_primary_10_1021_acs_iecr_2c04216
crossref_primary_10_1039_D1QO00639H
crossref_primary_10_1002_chem_201803752
crossref_primary_10_1002_ange_202208742
crossref_primary_10_1007_s11426_016_0478_3
crossref_primary_10_1039_C7OB02259J
crossref_primary_10_1002_ange_202012251
crossref_primary_10_1038_s41467_024_47169_9
crossref_primary_10_1002_ange_202017271
crossref_primary_10_1002_asia_201900764
crossref_primary_10_3390_catal11121545
crossref_primary_10_1002_ange_201812585
crossref_primary_10_1021_jacs_4c11481
crossref_primary_10_1007_s41061_019_0256_1
crossref_primary_10_1016_j_ccr_2020_213329
crossref_primary_10_1038_nchem_2710
crossref_primary_10_1021_acs_orglett_8b03394
crossref_primary_10_1002_ange_202215714
crossref_primary_10_1055_s_0042_1751496
crossref_primary_10_1002_anie_201607918
crossref_primary_10_1021_acs_joc_9b01340
crossref_primary_10_1021_jacs_6b05288
crossref_primary_10_1039_D1CC03830C
crossref_primary_10_1002_anie_202109356
crossref_primary_10_1002_nadc_201590367
crossref_primary_10_1002_adsc_202300381
crossref_primary_10_1021_acs_orglett_8b02536
crossref_primary_10_1021_acs_oprd_9b00280
crossref_primary_10_1021_acs_orglett_7b01471
crossref_primary_10_1039_C7OB02506H
crossref_primary_10_3762_bjoc_12_1
crossref_primary_10_1002_adsc_202301118
crossref_primary_10_1002_ange_201710915
crossref_primary_10_1002_ejoc_201901272
crossref_primary_10_1038_nchem_2760
crossref_primary_10_1021_acs_orglett_0c04162
crossref_primary_10_1002_chem_201901020
crossref_primary_10_1021_jacs_6b09754
crossref_primary_10_1021_acs_joc_8b01000
crossref_primary_10_1021_acsomega_8b02324
crossref_primary_10_1021_acs_orglett_0c01578
crossref_primary_10_1021_acs_orglett_9b02626
crossref_primary_10_1021_jacs_8b09010
crossref_primary_10_1002_ange_202105721
crossref_primary_10_1039_D0QO00348D
crossref_primary_10_1021_jacs_4c09750
crossref_primary_10_3762_bjoc_13_259
crossref_primary_10_1021_acs_orglett_6b02465
crossref_primary_10_1002_adsc_201701035
crossref_primary_10_1021_acs_inorgchem_7b00739
crossref_primary_10_1039_D2SC00500J
crossref_primary_10_1016_j_gresc_2021_01_001
crossref_primary_10_1038_s41467_018_07351_2
crossref_primary_10_1126_science_aat4210
crossref_primary_10_1021_jacs_2c10777
crossref_primary_10_1002_ange_201611268
crossref_primary_10_1038_s41557_024_01479_z
crossref_primary_10_1039_C8OB02000K
crossref_primary_10_1039_D4GC05739B
crossref_primary_10_1080_00397911_2024_2379447
crossref_primary_10_1021_jacs_3c12043
crossref_primary_10_1002_chem_202402259
crossref_primary_10_1002_anie_202206111
crossref_primary_10_1002_ange_202001184
crossref_primary_10_1021_acs_orglett_8b03083
crossref_primary_10_1002_anie_202418910
crossref_primary_10_1021_acs_joc_8b00491
crossref_primary_10_1039_C9OB01134J
crossref_primary_10_1073_pnas_1718474115
crossref_primary_10_1021_acscatal_9b00777
crossref_primary_10_1039_C7CC06144G
crossref_primary_10_1039_D4CC00060A
crossref_primary_10_1021_jacs_1c11408
crossref_primary_10_1039_D1OB00409C
crossref_primary_10_1021_jacs_3c00051
crossref_primary_10_1002_ange_202418910
crossref_primary_10_1055_s_0041_1737563
crossref_primary_10_1021_jacs_4c09789
crossref_primary_10_1021_acsami_2c00311
crossref_primary_10_1021_acs_orglett_2c01385
crossref_primary_10_1021_acs_orglett_9b02550
crossref_primary_10_1039_D4CC05259E
crossref_primary_10_1021_acscatal_0c03569
crossref_primary_10_1002_adsc_202000961
crossref_primary_10_1021_acs_orglett_8b02331
crossref_primary_10_1038_s41557_019_0412_9
crossref_primary_10_1002_anie_201805876
crossref_primary_10_1016_j_comptc_2021_113419
crossref_primary_10_1039_C8OB02907E
crossref_primary_10_1021_acs_joc_8b02893
crossref_primary_10_1002_ange_201802492
crossref_primary_10_1021_acs_orglett_0c00564
crossref_primary_10_1039_D4CC00022F
crossref_primary_10_1021_acs_orglett_1c03221
crossref_primary_10_1021_acs_orglett_9b02543
crossref_primary_10_1021_jacs_4c03333
crossref_primary_10_1038_s41929_024_01230_4
crossref_primary_10_1002_adsc_201800791
crossref_primary_10_1002_anie_201902132
crossref_primary_10_1002_anie_201710915
crossref_primary_10_1021_acs_nanolett_1c01356
crossref_primary_10_1002_chem_201701548
crossref_primary_10_1002_chin_201551025
crossref_primary_10_1002_ange_201805876
crossref_primary_10_1021_acs_orglett_2c01716
crossref_primary_10_1021_acscatal_4c06497
crossref_primary_10_1021_acs_orglett_7b03581
crossref_primary_10_1039_D2OB00133K
crossref_primary_10_1021_acsanm_4c00492
crossref_primary_10_1039_D0SC04685J
crossref_primary_10_1002_cctc_201900494
crossref_primary_10_1039_D0OB00004C
crossref_primary_10_1039_C8SC04330B
crossref_primary_10_1002_ange_201902132
crossref_primary_10_1021_acs_joc_0c01020
crossref_primary_10_1021_acs_joc_7b02630
crossref_primary_10_1021_acs_joc_1c00381
crossref_primary_10_1038_s44160_023_00293_8
crossref_primary_10_1002_ange_202109356
crossref_primary_10_1021_acs_orglett_3c03594
crossref_primary_10_1021_jacs_2c12197
crossref_primary_10_1039_D3OB00083D
crossref_primary_10_1021_jacs_5b09223
crossref_primary_10_1021_acscatal_1c03682
crossref_primary_10_1039_D1SC00972A
crossref_primary_10_1016_j_ijbiomac_2025_141946
crossref_primary_10_1002_slct_201800475
crossref_primary_10_4236_msce_2017_56005
crossref_primary_10_1002_adsc_202201091
crossref_primary_10_1002_anie_201802492
crossref_primary_10_1038_nchem_2677
crossref_primary_10_1039_C6CY00033A
crossref_primary_10_1016_j_cclet_2021_02_026
crossref_primary_10_1039_D1QO01852C
Cites_doi 10.1021/ja501560x
10.1021/ja101256v
10.1021/ol502693r
10.1021/ol500522d
10.1002/9780470742761
10.1039/C4CC06156J
10.1002/anie.201206835
10.1021/ja048600b
10.1021/ja8001343
10.1021/ar100047x
10.1021/ar030245r
10.1002/chem.201000560
10.1038/nature11844
10.1021/jo00430a039
10.1021/jo00890a018
10.1021/cr100204f
10.1002/9783527629541
10.1021/jo035245j
10.1039/c2cc37423d
10.1039/C1CS15206H
10.1002/anie.197902393
10.1021/cr900382t
10.1021/cr100166a
10.1021/ja00538a008
10.1021/ol8012765
10.2174/1570179411310040003
10.1002/ejoc.200700746
10.1021/ja00314a045
10.1021/ja306771n
ContentType Journal Article
Copyright Springer Nature Limited 2015
COPYRIGHT 2015 Nature Publishing Group
Copyright Nature Publishing Group Jul 23, 2015
Copyright_xml – notice: Springer Nature Limited 2015
– notice: COPYRIGHT 2015 Nature Publishing Group
– notice: Copyright Nature Publishing Group Jul 23, 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
DOI 10.1038/nature14617
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database (ProQuest)
Research Library (ProQuest)
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE


Agricultural Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 450
ExternalDocumentID PMC4513368
3758763601
A423049294
26201597
10_1038_nature14617
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM-61591
– fundername: NIGMS NIH HHS
  grantid: R01 GM061591
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
00M
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
4.4
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABAWZ
ABDBF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACUHS
ACWUS
ADBBV
ADFRT
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCU
BDKGC
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
ZKB
~02
~7V
~88
~8M
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADGHP
ADXHL
AETEA
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c714t-95dcb4c47e55f71285b39bd49bc77735d9dc054ce528f92fe8f8cc4482260d723
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 18:14:03 EDT 2025
Fri Jul 11 01:51:19 EDT 2025
Fri Jul 25 09:09:00 EDT 2025
Tue Jun 17 21:43:35 EDT 2025
Thu Jun 12 23:54:44 EDT 2025
Tue Jun 10 15:34:23 EDT 2025
Tue Jun 10 20:33:38 EDT 2025
Fri Jun 27 04:53:42 EDT 2025
Fri Jun 27 04:39:44 EDT 2025
Mon Jul 21 05:59:24 EDT 2025
Thu Apr 24 23:09:44 EDT 2025
Tue Jul 01 03:21:37 EDT 2025
Fri Feb 21 02:38:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7561
Language English
License Reprints and permissions information is available at www.nature.com/reprints.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c714t-95dcb4c47e55f71285b39bd49bc77735d9dc054ce528f92fe8f8cc4482260d723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4513368
PMID 26201597
PQID 1698979869
PQPubID 40569
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4513368
proquest_miscellaneous_1698962183
proquest_journals_1698979869
gale_infotracmisc_A423049294
gale_infotracgeneralonefile_A423049294
gale_infotraccpiq_423049294
gale_infotracacademiconefile_A423049294
gale_incontextgauss_ISR_A423049294
gale_incontextgauss_ATWCN_A423049294
pubmed_primary_26201597
crossref_citationtrail_10_1038_nature14617
crossref_primary_10_1038_nature14617
springer_journals_10_1038_nature14617
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-23
PublicationDateYYYYMMDD 2015-07-23
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-23
  day: 23
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2015
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References BordwellFGAlgrimDVanierNRAcidities of anilines and toluenesJ. Org. Chem.197742181718191:CAS:528:DyaE2sXhvVyqt7k%3D10.1021/jo00430a039
DollingUHDavisPGrabowskiEJJEfficient catalytic asymmetric alkylations. 1. Enantioselective synthesis of (+)-indacrinone via chiral phase-transfer catalysisJ. Am. Chem. Soc.19841064464471:CAS:528:DyaL2cXmsl2muw%3D%3D10.1021/ja00314a045
KobayashiSMoriYFosseyJSSalterMMCatalytic enantioselective formation of C−C bonds by addition to imines and hydrazones: a ten-year updateChem. Rev.2011111262627041:CAS:528:DC%2BC3MXjtFersL8%3D10.1021/cr100204f
SeebachDCoreyEJGeneration and synthetic applications of 2-lithio-1,3-dithianesJ. Org. Chem.1975402312371:CAS:528:DyaE2MXos1aktQ%3D%3D10.1021/jo00890a018
RobakMTHerbageMAEllmanJASynthesis and applications of tert-butanesulfinamideChem. Rev.2010110360037401:CAS:528:DC%2BC3cXltFChsbs%3D10.1021/cr900382t
Brehme, R., Enders, D., Fernandez, R. & Lassaletta, J. M. Aldehyde N-dialkylhydrazones as neutral acyl anion equivalents: umpolung of the imine reactivity. Eur. J. Org. Chem. 5629–5660 (2007)
SmithABAdamsCMEvolution of dithiane-based strategies for the construction of architecturally complex natural productsAcc. Chem. Res.2004373653771:CAS:528:DC%2BD2cXjs1Kht7k%3D10.1021/ar030245r
OoiTOharaDTamuraMMaruokaKDesign of new chiral phase-transfer catalysts with dual functions for highly enantioselective epoxidation of α,β-unsaturated ketonesJ. Am. Chem. Soc.2004126684468451:CAS:528:DC%2BD2cXktVSls7c%3D10.1021/ja048600b
LiuMLiJXiaoXXieYShiYAn efficient synthesis of optically active trifluoromethyl aldimines via asymmetric biomimetic transaminationChem. Commun.201349140414061:CAS:528:DC%2BC3sXhtlGnsbk%3D10.1039/c2cc37423d
DewickPMMedicinal Natural Products: A Biosynthetic Approach200910.1002/9780470742761
NugentTCChiral Amine Synthesis: Methods, Developments and Applications201010.1002/9783527629541
BandiniMBottoniAEichholzerAMiscioneGPStentaMAsymmetric phase-transfer-catalyzed intramolecular N-alkylation of indoles and pyrroles: a combined experimental and theoretical investigationChem. Eur. J.20101612462124731:CAS:528:DC%2BC3cXhtlehtb%2FF10.1002/chem.201000560
FuPSnapperMLHoveydaAHCatalytic asymmetric alkylations of ketoimines. Enantioselective synthesis of N-substituted quaternary carbon stereogenic centers by Zr-catalyzed additions of dialkylzinc reagents to aryl-, alkyl-, and trifluoroalkyl-substituted ketoiminesJ. Am. Chem. Soc.2008130553055411:CAS:528:DC%2BD1cXktVGitbs%3D10.1021/ja8001343
SilverioDLSimple organic molecules as catalysts for enantioselective synthesis of amines and alcoholsNature20134942162211:CAS:528:DC%2BC3sXis1ajtL4%3D2013Natur.494..216S10.1038/nature11844
NieJGuoH-CCahardDMaJ-AAsymmetric construction of stereogenic carbon centers featuring a trifluoromethyl group from prochiral trifluoromethylated substratesChem. Rev.20111114555291:CAS:528:DC%2BC3cXhsV2gtrfO10.1021/cr100166a
KnowlesRRLinSJacobsenENEnantioselective thiourea-catalyzed cationic polycyclizationsJ. Am. Chem. Soc.2010132503050321:CAS:528:DC%2BC3cXktFekuro%3D10.1021/ja101256v
QianXPalladium-catalyzed decarboxylative generation and asymmetric allylation of α-imino anionsOrg. Lett.201416522852311:CAS:528:DC%2BC2cXhsFyrs7nO10.1021/ol502693r
GiacaloneFGruttadauriaMAgrigentoPNotoRLow-loading asymmetric organocatalysisChem. Soc. Rev.201241240624471:CAS:528:DC%2BC38XivFWlsbg%3D10.1039/C1CS15206H
MatsumotoMHaradaMYamashitaYKobayashiSCatalytic imine-imine cross-coupling reactionsChem. Commun.20145013041130441:CAS:528:DC%2BC2cXhsVyhtr3N10.1039/C4CC06156J
OgleJWZhangJReibenspiesJHAbboudKAMillerSASynthesis of electronically diverse tetraarylimidazolylidene carbenes via catalytic aldimine couplingOrg. Lett.200810367736801:CAS:528:DC%2BD1cXptl2hsb4%3D10.1021/ol8012765
ShirakawaSMaruokaKRecent developments in asymmetric phase-transfer reactionsAngew. Chem. Int. Ed. Engl.201352431243481:CAS:528:DC%2BC3sXjtlagtL4%3D10.1002/anie.201206835
VoraHURovisTAsymmetric N-heterocyclic carbene (NHC) catalyzed acyl anion reactionsAldrichim. Acta2011443111:CAS:528:DC%2BC3MXptlWrs74%3D
SeebachDMethods of reactivity umpolungAngew. Chem. Int. Ed. Engl.19791823925810.1002/anie.197902393
ZhuYBuchwaldSLLigand-controlled asymmetric arylation of aliphatic α-amino anion equivalentsJ. Am. Chem. Soc.2014136450045031:CAS:528:DC%2BC2cXktF2ntLs%3D10.1021/ja501560x
ReichBJEJusticeAKBecksteadBTReibenspiesJHMillerSACyanide-catalyzed cyclizations via aldimine couplingJ. Org. Chem.200469135713591:CAS:528:DC%2BD2cXot1Gjtw%3D%3D10.1021/jo035245j
WuYDengLAsymmetric synthesis of trifluoromethylated amines via catalytic enantioselective isomerization of iminesJ. Am. Chem. Soc.201213414334143371:CAS:528:DC%2BC38Xht1ajsrzJ10.1021/ja306771n
JakubowskaAKuligKProgress in the glycine equivalent based α-amino acids synthesisCurr. Org. Synth.2013105475631:CAS:528:DC%2BC3sXhsVaitr7F10.2174/1570179411310040003
HartwigJFStanleyLMMechanistically driven development of iridium catalysts for asymmetric allylic substitutionAcc. Chem. Res.201043146114751:CAS:528:DC%2BC3cXht1ahurjJ10.1021/ar100047x
LiuXGaoADingLXuJZhaoBAminative umpolung synthesis of aryl vicinal diamines from aromatic aldehydesOrg. Lett.201416211821211:CAS:528:DC%2BC2cXlsl2ks78%3D10.1021/ol500522d
JaunBSchwarzJBreslowRDetermination of the basicities of benzyl, allyl, and tert-butylpropargyl anions by anodic oxidation of organolithium compoundsJ. Am. Chem. Soc.1980102574157481:CAS:528:DyaL3cXltl2qu7s%3D10.1021/ja00538a008
D Seebach (BFnature14617_CR7) 1975; 40
JF Hartwig (BFnature14617_CR29) 2010; 43
A Jakubowska (BFnature14617_CR17) 2013; 10
RR Knowles (BFnature14617_CR24) 2010; 132
BJE Reich (BFnature14617_CR11) 2004; 69
M Liu (BFnature14617_CR16) 2013; 49
T Ooi (BFnature14617_CR21) 2004; 126
JW Ogle (BFnature14617_CR12) 2008; 10
PM Dewick (BFnature14617_CR5) 2009
UH Dolling (BFnature14617_CR22) 1984; 106
M Bandini (BFnature14617_CR23) 2010; 16
X Qian (BFnature14617_CR19) 2014; 16
J Nie (BFnature14617_CR26) 2011; 111
D Seebach (BFnature14617_CR6) 1979; 18
Y Zhu (BFnature14617_CR18) 2014; 136
S Shirakawa (BFnature14617_CR20) 2013; 52
MT Robak (BFnature14617_CR2) 2010; 110
TC Nugent (BFnature14617_CR1) 2010
B Jaun (BFnature14617_CR30) 1980; 102
BFnature14617_CR9
HU Vora (BFnature14617_CR10) 2011; 44
M Matsumoto (BFnature14617_CR14) 2014; 50
Y Wu (BFnature14617_CR15) 2012; 134
X Liu (BFnature14617_CR13) 2014; 16
FG Bordwell (BFnature14617_CR28) 1977; 42
P Fu (BFnature14617_CR25) 2008; 130
AB Smith (BFnature14617_CR8) 2004; 37
S Kobayashi (BFnature14617_CR3) 2011; 111
F Giacalone (BFnature14617_CR27) 2012; 41
DL Silverio (BFnature14617_CR4) 2013; 494
23323269 - Chem Commun (Camb). 2013 Feb 18;49(14):1404-6
22167174 - Chem Soc Rev. 2012 Mar 21;41(6):2406-47
15174835 - J Am Chem Soc. 2004 Jun 9;126(22):6844-5
20839181 - Chemistry. 2010 Nov 2;16(41):12462-73
24742159 - Org Lett. 2014 Apr 18;16(8):2118-21
25243507 - Org Lett. 2014 Oct 3;16(19):5228-31
18681447 - Org Lett. 2008 Sep 4;10(17):3677-80
14961691 - J Org Chem. 2004 Feb 20;69(4):1357-9
21117644 - Chem Rev. 2011 Feb 9;111(2):455-529
24621247 - J Am Chem Soc. 2014 Mar 26;136(12):4500-3
25227870 - Chem Commun (Camb). 2014 Nov 7;50(86):13041-4
26201594 - Nature. 2015 Jul 23;523(7561):417-8
20873839 - Acc Chem Res. 2010 Dec 21;43(12):1461-75
23407537 - Nature. 2013 Feb 14;494(7436):216-21
18376838 - J Am Chem Soc. 2008 Apr 23;130(16):5530-41
21405021 - Chem Rev. 2011 Apr 13;111(4):2626-704
15196046 - Acc Chem Res. 2004 Jun;37(6):365-77
23450630 - Angew Chem Int Ed Engl. 2013 Apr 15;52(16):4312-48
20369901 - J Am Chem Soc. 2010 Apr 14;132(14):5030-2
22906148 - J Am Chem Soc. 2012 Sep 5;134(35):14334-7
20420386 - Chem Rev. 2010 Jun 9;110(6):3600-740
25346540 - Aldrichimica Acta. 2011;44(1):3-11
References_xml – reference: ReichBJEJusticeAKBecksteadBTReibenspiesJHMillerSACyanide-catalyzed cyclizations via aldimine couplingJ. Org. Chem.200469135713591:CAS:528:DC%2BD2cXot1Gjtw%3D%3D10.1021/jo035245j
– reference: LiuMLiJXiaoXXieYShiYAn efficient synthesis of optically active trifluoromethyl aldimines via asymmetric biomimetic transaminationChem. Commun.201349140414061:CAS:528:DC%2BC3sXhtlGnsbk%3D10.1039/c2cc37423d
– reference: JakubowskaAKuligKProgress in the glycine equivalent based α-amino acids synthesisCurr. Org. Synth.2013105475631:CAS:528:DC%2BC3sXhsVaitr7F10.2174/1570179411310040003
– reference: DollingUHDavisPGrabowskiEJJEfficient catalytic asymmetric alkylations. 1. Enantioselective synthesis of (+)-indacrinone via chiral phase-transfer catalysisJ. Am. Chem. Soc.19841064464471:CAS:528:DyaL2cXmsl2muw%3D%3D10.1021/ja00314a045
– reference: SilverioDLSimple organic molecules as catalysts for enantioselective synthesis of amines and alcoholsNature20134942162211:CAS:528:DC%2BC3sXis1ajtL4%3D2013Natur.494..216S10.1038/nature11844
– reference: KobayashiSMoriYFosseyJSSalterMMCatalytic enantioselective formation of C−C bonds by addition to imines and hydrazones: a ten-year updateChem. Rev.2011111262627041:CAS:528:DC%2BC3MXjtFersL8%3D10.1021/cr100204f
– reference: SeebachDMethods of reactivity umpolungAngew. Chem. Int. Ed. Engl.19791823925810.1002/anie.197902393
– reference: KnowlesRRLinSJacobsenENEnantioselective thiourea-catalyzed cationic polycyclizationsJ. Am. Chem. Soc.2010132503050321:CAS:528:DC%2BC3cXktFekuro%3D10.1021/ja101256v
– reference: SeebachDCoreyEJGeneration and synthetic applications of 2-lithio-1,3-dithianesJ. Org. Chem.1975402312371:CAS:528:DyaE2MXos1aktQ%3D%3D10.1021/jo00890a018
– reference: BordwellFGAlgrimDVanierNRAcidities of anilines and toluenesJ. Org. Chem.197742181718191:CAS:528:DyaE2sXhvVyqt7k%3D10.1021/jo00430a039
– reference: VoraHURovisTAsymmetric N-heterocyclic carbene (NHC) catalyzed acyl anion reactionsAldrichim. Acta2011443111:CAS:528:DC%2BC3MXptlWrs74%3D
– reference: Brehme, R., Enders, D., Fernandez, R. & Lassaletta, J. M. Aldehyde N-dialkylhydrazones as neutral acyl anion equivalents: umpolung of the imine reactivity. Eur. J. Org. Chem. 5629–5660 (2007)
– reference: MatsumotoMHaradaMYamashitaYKobayashiSCatalytic imine-imine cross-coupling reactionsChem. Commun.20145013041130441:CAS:528:DC%2BC2cXhsVyhtr3N10.1039/C4CC06156J
– reference: ShirakawaSMaruokaKRecent developments in asymmetric phase-transfer reactionsAngew. Chem. Int. Ed. Engl.201352431243481:CAS:528:DC%2BC3sXjtlagtL4%3D10.1002/anie.201206835
– reference: GiacaloneFGruttadauriaMAgrigentoPNotoRLow-loading asymmetric organocatalysisChem. Soc. Rev.201241240624471:CAS:528:DC%2BC38XivFWlsbg%3D10.1039/C1CS15206H
– reference: NugentTCChiral Amine Synthesis: Methods, Developments and Applications201010.1002/9783527629541
– reference: OoiTOharaDTamuraMMaruokaKDesign of new chiral phase-transfer catalysts with dual functions for highly enantioselective epoxidation of α,β-unsaturated ketonesJ. Am. Chem. Soc.2004126684468451:CAS:528:DC%2BD2cXktVSls7c%3D10.1021/ja048600b
– reference: FuPSnapperMLHoveydaAHCatalytic asymmetric alkylations of ketoimines. Enantioselective synthesis of N-substituted quaternary carbon stereogenic centers by Zr-catalyzed additions of dialkylzinc reagents to aryl-, alkyl-, and trifluoroalkyl-substituted ketoiminesJ. Am. Chem. Soc.2008130553055411:CAS:528:DC%2BD1cXktVGitbs%3D10.1021/ja8001343
– reference: RobakMTHerbageMAEllmanJASynthesis and applications of tert-butanesulfinamideChem. Rev.2010110360037401:CAS:528:DC%2BC3cXltFChsbs%3D10.1021/cr900382t
– reference: SmithABAdamsCMEvolution of dithiane-based strategies for the construction of architecturally complex natural productsAcc. Chem. Res.2004373653771:CAS:528:DC%2BD2cXjs1Kht7k%3D10.1021/ar030245r
– reference: HartwigJFStanleyLMMechanistically driven development of iridium catalysts for asymmetric allylic substitutionAcc. Chem. Res.201043146114751:CAS:528:DC%2BC3cXht1ahurjJ10.1021/ar100047x
– reference: LiuXGaoADingLXuJZhaoBAminative umpolung synthesis of aryl vicinal diamines from aromatic aldehydesOrg. Lett.201416211821211:CAS:528:DC%2BC2cXlsl2ks78%3D10.1021/ol500522d
– reference: NieJGuoH-CCahardDMaJ-AAsymmetric construction of stereogenic carbon centers featuring a trifluoromethyl group from prochiral trifluoromethylated substratesChem. Rev.20111114555291:CAS:528:DC%2BC3cXhsV2gtrfO10.1021/cr100166a
– reference: ZhuYBuchwaldSLLigand-controlled asymmetric arylation of aliphatic α-amino anion equivalentsJ. Am. Chem. Soc.2014136450045031:CAS:528:DC%2BC2cXktF2ntLs%3D10.1021/ja501560x
– reference: BandiniMBottoniAEichholzerAMiscioneGPStentaMAsymmetric phase-transfer-catalyzed intramolecular N-alkylation of indoles and pyrroles: a combined experimental and theoretical investigationChem. Eur. J.20101612462124731:CAS:528:DC%2BC3cXhtlehtb%2FF10.1002/chem.201000560
– reference: JaunBSchwarzJBreslowRDetermination of the basicities of benzyl, allyl, and tert-butylpropargyl anions by anodic oxidation of organolithium compoundsJ. Am. Chem. Soc.1980102574157481:CAS:528:DyaL3cXltl2qu7s%3D10.1021/ja00538a008
– reference: OgleJWZhangJReibenspiesJHAbboudKAMillerSASynthesis of electronically diverse tetraarylimidazolylidene carbenes via catalytic aldimine couplingOrg. Lett.200810367736801:CAS:528:DC%2BD1cXptl2hsb4%3D10.1021/ol8012765
– reference: DewickPMMedicinal Natural Products: A Biosynthetic Approach200910.1002/9780470742761
– reference: QianXPalladium-catalyzed decarboxylative generation and asymmetric allylation of α-imino anionsOrg. Lett.201416522852311:CAS:528:DC%2BC2cXhsFyrs7nO10.1021/ol502693r
– reference: WuYDengLAsymmetric synthesis of trifluoromethylated amines via catalytic enantioselective isomerization of iminesJ. Am. Chem. Soc.201213414334143371:CAS:528:DC%2BC38Xht1ajsrzJ10.1021/ja306771n
– volume: 136
  start-page: 4500
  year: 2014
  ident: BFnature14617_CR18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja501560x
– volume: 132
  start-page: 5030
  year: 2010
  ident: BFnature14617_CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja101256v
– volume: 16
  start-page: 5228
  year: 2014
  ident: BFnature14617_CR19
  publication-title: Org. Lett.
  doi: 10.1021/ol502693r
– volume: 16
  start-page: 2118
  year: 2014
  ident: BFnature14617_CR13
  publication-title: Org. Lett.
  doi: 10.1021/ol500522d
– volume-title: Medicinal Natural Products: A Biosynthetic Approach
  year: 2009
  ident: BFnature14617_CR5
  doi: 10.1002/9780470742761
– volume: 50
  start-page: 13041
  year: 2014
  ident: BFnature14617_CR14
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC06156J
– volume: 52
  start-page: 4312
  year: 2013
  ident: BFnature14617_CR20
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201206835
– volume: 126
  start-page: 6844
  year: 2004
  ident: BFnature14617_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja048600b
– volume: 130
  start-page: 5530
  year: 2008
  ident: BFnature14617_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8001343
– volume: 43
  start-page: 1461
  year: 2010
  ident: BFnature14617_CR29
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar100047x
– volume: 37
  start-page: 365
  year: 2004
  ident: BFnature14617_CR8
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar030245r
– volume: 16
  start-page: 12462
  year: 2010
  ident: BFnature14617_CR23
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201000560
– volume: 494
  start-page: 216
  year: 2013
  ident: BFnature14617_CR4
  publication-title: Nature
  doi: 10.1038/nature11844
– volume: 42
  start-page: 1817
  year: 1977
  ident: BFnature14617_CR28
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00430a039
– volume: 40
  start-page: 231
  year: 1975
  ident: BFnature14617_CR7
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00890a018
– volume: 111
  start-page: 2626
  year: 2011
  ident: BFnature14617_CR3
  publication-title: Chem. Rev.
  doi: 10.1021/cr100204f
– volume-title: Chiral Amine Synthesis: Methods, Developments and Applications
  year: 2010
  ident: BFnature14617_CR1
  doi: 10.1002/9783527629541
– volume: 69
  start-page: 1357
  year: 2004
  ident: BFnature14617_CR11
  publication-title: J. Org. Chem.
  doi: 10.1021/jo035245j
– volume: 49
  start-page: 1404
  year: 2013
  ident: BFnature14617_CR16
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc37423d
– volume: 41
  start-page: 2406
  year: 2012
  ident: BFnature14617_CR27
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15206H
– volume: 18
  start-page: 239
  year: 1979
  ident: BFnature14617_CR6
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.197902393
– volume: 110
  start-page: 3600
  year: 2010
  ident: BFnature14617_CR2
  publication-title: Chem. Rev.
  doi: 10.1021/cr900382t
– volume: 44
  start-page: 3
  year: 2011
  ident: BFnature14617_CR10
  publication-title: Aldrichim. Acta
– volume: 111
  start-page: 455
  year: 2011
  ident: BFnature14617_CR26
  publication-title: Chem. Rev.
  doi: 10.1021/cr100166a
– volume: 102
  start-page: 5741
  year: 1980
  ident: BFnature14617_CR30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00538a008
– volume: 10
  start-page: 3677
  year: 2008
  ident: BFnature14617_CR12
  publication-title: Org. Lett.
  doi: 10.1021/ol8012765
– volume: 10
  start-page: 547
  year: 2013
  ident: BFnature14617_CR17
  publication-title: Curr. Org. Synth.
  doi: 10.2174/1570179411310040003
– ident: BFnature14617_CR9
  doi: 10.1002/ejoc.200700746
– volume: 106
  start-page: 446
  year: 1984
  ident: BFnature14617_CR22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00314a045
– volume: 134
  start-page: 14334
  year: 2012
  ident: BFnature14617_CR15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja306771n
– reference: 20839181 - Chemistry. 2010 Nov 2;16(41):12462-73
– reference: 23450630 - Angew Chem Int Ed Engl. 2013 Apr 15;52(16):4312-48
– reference: 24621247 - J Am Chem Soc. 2014 Mar 26;136(12):4500-3
– reference: 26201594 - Nature. 2015 Jul 23;523(7561):417-8
– reference: 23323269 - Chem Commun (Camb). 2013 Feb 18;49(14):1404-6
– reference: 25346540 - Aldrichimica Acta. 2011;44(1):3-11
– reference: 15174835 - J Am Chem Soc. 2004 Jun 9;126(22):6844-5
– reference: 20420386 - Chem Rev. 2010 Jun 9;110(6):3600-740
– reference: 20873839 - Acc Chem Res. 2010 Dec 21;43(12):1461-75
– reference: 21117644 - Chem Rev. 2011 Feb 9;111(2):455-529
– reference: 25243507 - Org Lett. 2014 Oct 3;16(19):5228-31
– reference: 21405021 - Chem Rev. 2011 Apr 13;111(4):2626-704
– reference: 25227870 - Chem Commun (Camb). 2014 Nov 7;50(86):13041-4
– reference: 22906148 - J Am Chem Soc. 2012 Sep 5;134(35):14334-7
– reference: 23407537 - Nature. 2013 Feb 14;494(7436):216-21
– reference: 18376838 - J Am Chem Soc. 2008 Apr 23;130(16):5530-41
– reference: 15196046 - Acc Chem Res. 2004 Jun;37(6):365-77
– reference: 24742159 - Org Lett. 2014 Apr 18;16(8):2118-21
– reference: 14961691 - J Org Chem. 2004 Feb 20;69(4):1357-9
– reference: 22167174 - Chem Soc Rev. 2012 Mar 21;41(6):2406-47
– reference: 18681447 - Org Lett. 2008 Sep 4;10(17):3677-80
– reference: 20369901 - J Am Chem Soc. 2010 Apr 14;132(14):5030-2
SSID ssj0005174
Score 2.583577
Snippet Imines conventionally act as electrophiles towards carbon nucleophiles in the synthesis of amines, but the range of amines could be much extended if the carbon...
The carbon-nitrogen double bonds in imines are fundamentally important functional groups in organic chemistry. This is largely due to the fact that imines act...
Imines, carbon-nitrogen double bonds, are fundamentally important functional groups in organic chemistry. This is largely due to the fact that imines act as...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 445
SubjectTerms 140/131
140/58
639/638/403
639/638/77/883
Acrolein - chemistry
Air
Amines
Amino Alcohols - chemical synthesis
Amino Alcohols - chemistry
Anions
Asymmetry
Carbon
Carbon - chemistry
Catalysis
Chemical compounds
Chemical research
Chemistry Techniques, Synthetic - methods
Electrons
Humanities and Social Sciences
Humidity
Imines - chemistry
letter
multidisciplinary
Nitrogen - chemistry
Organic chemistry
Schiff bases
Science
Title Catalytic asymmetric umpolung reactions of imines
URI https://link.springer.com/article/10.1038/nature14617
https://www.ncbi.nlm.nih.gov/pubmed/26201597
https://www.proquest.com/docview/1698979869
https://www.proquest.com/docview/1698962183
https://pubmed.ncbi.nlm.nih.gov/PMC4513368
Volume 523
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFD6CTUi8IDZuYWMKaFylaIkvsf2ESrUyeKjQ2ETfosSOyySWdKR92L_HJ3G7pgxe8nK-VK7PsX1iH38fwKGQStO4iCNLiYmYjfMo54ZF2ppUy4KQ3LTVFuP05Jx9nfCJ33BrfFnlck5sJ2pTa9wjP0pQ6VAomaqPs6sIVaPwdNVLaNyFbaQuw5IuMRE3JR4bLMz-fl5M5VFHm4mi1qK3Im3Oy2sL02bR5MbJabsgjR7CA59JhoPO9Ttwp6x24V5b0ambXdjxo7YJ33lq6fePIBnibs21eyPMm-vLS5TT0qHzqAvAahq6BLK95tCEtQ1R7qtsHsP56PhseBJ50YRIi4TNI8WNLphmouTcCrf68IKqwjBVaCEE5UYZ7dI0XXIirSK2lFZq7T7SXB4WG0HoE9iq6qp8BiETNCmY--QROWek5Oi5IqbUqNxyY3kAH5Ydl2nPKI7CFr-y9mSbymytlwM4XIFnHZHGP2DogQypKSqsfZnmi6bJBmc_huNswNpTQaJYAK9ug335ftoDvfUgW7t26dzfOHD_Dkmvesi9HlLPLq6yNeubnnXaee22n9nvAd1I1X3zMqwyP1M02U1cB_ByZcY3sfqtKuuFx6SYzAbwtIvCVR-ioIBLSV3HiV58rgDIH963VBc_Wx5xhto-qQzg9TKS15r1t2ue_7_5e3AfW4L73oTuw9b896J84RK2eXHQjkr3lMMEn6PPB7D96Xj87fQPepNCIA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NQwheEBtfYQMC2viSoqWJHccPCFWFqWWjD9BpfQuJP8oklnSkFeo_xd-IL3G6pgze9nyXyj2f7872-fcD2GMxF6Gf-Z4OA-kR7adeSiXxhJaRiLMgSGXVbTGM-ifk05iON-B38xYG2yqbmFgFalkIPCM_6CDTIeNxxN9PLzxkjcLb1YZCo3aLI7X4ZbZs5bvBBzO_-0Fw-HHU63uWVcATrENmHqdSZEQQpijVzIRnmoU8k4RngjEWUsmlMHWMUDSINQ-0inUshNnFmELFlwyBDkzIv2ESr48rio3ZZUvJGuqzfQ_oh_FBDdOJJNqslQHX88BKIlxv0ly7qa0S4OFduGMrV7dbu9oWbKh8G25WHaSi3IYtGyVK97WFsn5zDzo9PB1amC_ctFycnyN9l3CNBxmHzyeuKVirZxWlW2gX6cVUeR9OrsWcD2AzL3L1CFzCwk5GzBaLpZQEiqKnZH4YSp5qKjV14G1juERYBHMk0viRVDfpYZysWNmBvaXytAbu-IcazkCCUBg59tpM0nlZJt3RaW-YdEl1Cxlw4sCLq9QGX7-0lF5ZJV2YcYnUvnAw_w5BtlqaOy1NMT27SFakL1vSST1rV_3MbkvRRAbRFjduldjIVCaX68iB50sxfonddrkq5lYnwuLZgYe1Fy5tiAQGpgQ2hmMt_1wqIF55W5Kffa9wywlyCUWxA_uNJ68M6--pefz_4T-DW_3R5-PkeDA82oHbOCo8cw_CXdic_ZyrJ6ZYnGVPqxXqwrfrDgl_APJne14
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFL2ahkC8IDa-wgYEtPElRU0cu04eEKo6qpWhCsGm9c0kdlwmsaQjrVD_Gr8O38TpmjJ42_M9qVz7-Pravj4XYI9HsQz91Pd0SJRHtZ94CVPUk1p1ZZQSkqgq22LUPTyhH8dsvAG_m7cwmFbZ-MTKUatC4hl5J8BKhzyOunFH27SIzweD99MLDytI4U1rU06jpshRtvhltm_lu-GBGet9QgYfjvuHnq0w4Eke0JkXMyVTKinPGNPcuGqWhnGqaJxKznnIVKykiWlkxkikY6KzSEdSmh2NCVp8xVH0wLj_GwYZ4BzjY36ZXrKmAG3fBvph1KklO7GgNm-thutrwsqiuJ6wuXZrWy2Gg7twx0axbq-m3RZsZPk23KyySWW5DVvWY5Tuaytr_eYeBH08KVqYL9ykXJyfYykv6Ro2GfLnE9cEr9UTi9IttIulxrLyPpxcS3c-gM28yLNH4FIeBik12y2eMEoyhqxJ_TBUcaKZ0syBt03HCWnVzLGoxg9R3aqHkVjpZQf2luBpLeLxDxiOgEBZjBwJNknmZSl6x6f9kejR6kaSxNSBF1fBhl-_tECvLEgXpl0ysa8dzL9Dwa0WcqeFlNOzC7FifdmyTupRu-pndltA4yVk29zQSlgvVYrLOeXA86UZv8TMuzwr5hbTxUDagYc1C5d9iMUMTDhsOo63-LkEoHZ525Kffa80zCnWFepGDuw3TF5p1t9D8_j_zX8Gt4wzEJ-Go6MduI2NwuN3Eu7C5uznPHti4sZZ-rSaoC58u26P8AfMvH-U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalytic+asymmetric+umpolung+reactions+of+imines&rft.jtitle=Nature+%28London%29&rft.au=Wu%2C+Yongwei&rft.au=Hu%2C+Lin&rft.au=Li%2C+Zhe&rft.au=Deng%2C+Li&rft.date=2015-07-23&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=523&rft.issue=7561&rft.spage=445&rft_id=info:doi/10.1038%2Fnature14617&rft.externalDocID=A423049294
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon