Comparing Natural and Constrained Movements: New Insights into the Visuomotor Control of Grasping

Neurophysiological studies showed that in macaques, grasp-related sensorimotor transformations are accomplished in a circuit connecting the anterior intraparietal sulcus (area AIP) with premotor area F5. Single unit recordings of macaque indicate that activity of neurons in this circuit is not simpl...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 2; no. 10; p. e1108
Main Authors Begliomini, Chiara, Caria, Andrea, Grodd, Wolfgang, Castiello, Umberto
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 31.10.2007
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0001108

Cover

Abstract Neurophysiological studies showed that in macaques, grasp-related sensorimotor transformations are accomplished in a circuit connecting the anterior intraparietal sulcus (area AIP) with premotor area F5. Single unit recordings of macaque indicate that activity of neurons in this circuit is not simply linked to any particular object. Instead, responses correspond to the final hand configuration used to grasp the object. Although a human homologue of such a circuit has been identified, its role in planning and controlling different grasp configurations has not been decisively shown. We used functional magnetic resonance imaging to explicitly test whether activity within this network varies depending on the congruency between the adopted grasp and the grasp called by the stimulus. Subjects were requested to reach towards and grasp a small or a large stimulus naturally (i.e., precision grip, involving the opposition of index finger and thumb, for a small size stimulus and a whole hand grasp for a larger stimulus) or with an constrained grasp (i.e., a precision grip for a large stimulus and a whole hand grasp for a small stimulus). The human anterior intraparietal sulcus (hAIPS) was more active for precise grasping than for whole hand grasp independently of stimulus size. Conversely, both the dorsal premotor cortex (dPMC) and the primary motor cortex (M1) were modulated by the relationship between the type of grasp that was adopted and the size of the stimulus. The demonstration that activity within the hAIPS is modulated according to different types of grasp, together with the evidence in humans that the dorsal premotor cortex is involved in grasp planning and execution offers a substantial contribution to the current debate about the neural substrates of visuomotor grasp in humans.
AbstractList Background Neurophysiological studies showed that in macaques, grasp-related sensorimotor transformations are accomplished in a circuit connecting the anterior intraparietal sulcus (area AIP) with premotor area F5. Single unit recordings of macaque indicate that activity of neurons in this circuit is not simply linked to any particular object. Instead, responses correspond to the final hand configuration used to grasp the object. Although a human homologue of such a circuit has been identified, its role in planning and controlling different grasp configurations has not been decisively shown. We used functional magnetic resonance imaging to explicitly test whether activity within this network varies depending on the congruency between the adopted grasp and the grasp called by the stimulus. Methodology/Principal Findings Subjects were requested to reach towards and grasp a small or a large stimulus naturally (i.e., precision grip, involving the opposition of index finger and thumb, for a small size stimulus and a whole hand grasp for a larger stimulus) or with an constrained grasp (i.e., a precision grip for a large stimulus and a whole hand grasp for a small stimulus). The human anterior intraparietal sulcus (hAIPS) was more active for precise grasping than for whole hand grasp independently of stimulus size. Conversely, both the dorsal premotor cortex (dPMC) and the primary motor cortex (M1) were modulated by the relationship between the type of grasp that was adopted and the size of the stimulus. Conclusions/Significance The demonstration that activity within the hAIPS is modulated according to different types of grasp, together with the evidence in humans that the dorsal premotor cortex is involved in grasp planning and execution offers a substantial contribution to the current debate about the neural substrates of visuomotor grasp in humans.
Neurophysiological studies showed that in macaques, grasp-related sensorimotor transformations are accomplished in a circuit connecting the anterior intraparietal sulcus (area AIP) with premotor area F5. Single unit recordings of macaque indicate that activity of neurons in this circuit is not simply linked to any particular object. Instead, responses correspond to the final hand configuration used to grasp the object. Although a human homologue of such a circuit has been identified, its role in planning and controlling different grasp configurations has not been decisively shown. We used functional magnetic resonance imaging to explicitly test whether activity within this network varies depending on the congruency between the adopted grasp and the grasp called by the stimulus.BACKGROUNDNeurophysiological studies showed that in macaques, grasp-related sensorimotor transformations are accomplished in a circuit connecting the anterior intraparietal sulcus (area AIP) with premotor area F5. Single unit recordings of macaque indicate that activity of neurons in this circuit is not simply linked to any particular object. Instead, responses correspond to the final hand configuration used to grasp the object. Although a human homologue of such a circuit has been identified, its role in planning and controlling different grasp configurations has not been decisively shown. We used functional magnetic resonance imaging to explicitly test whether activity within this network varies depending on the congruency between the adopted grasp and the grasp called by the stimulus.Subjects were requested to reach towards and grasp a small or a large stimulus naturally (i.e., precision grip, involving the opposition of index finger and thumb, for a small size stimulus and a whole hand grasp for a larger stimulus) or with an constrained grasp (i.e., a precision grip for a large stimulus and a whole hand grasp for a small stimulus). The human anterior intraparietal sulcus (hAIPS) was more active for precise grasping than for whole hand grasp independently of stimulus size. Conversely, both the dorsal premotor cortex (dPMC) and the primary motor cortex (M1) were modulated by the relationship between the type of grasp that was adopted and the size of the stimulus.METHODOLOGY/PRINCIPAL FINDINGSSubjects were requested to reach towards and grasp a small or a large stimulus naturally (i.e., precision grip, involving the opposition of index finger and thumb, for a small size stimulus and a whole hand grasp for a larger stimulus) or with an constrained grasp (i.e., a precision grip for a large stimulus and a whole hand grasp for a small stimulus). The human anterior intraparietal sulcus (hAIPS) was more active for precise grasping than for whole hand grasp independently of stimulus size. Conversely, both the dorsal premotor cortex (dPMC) and the primary motor cortex (M1) were modulated by the relationship between the type of grasp that was adopted and the size of the stimulus.The demonstration that activity within the hAIPS is modulated according to different types of grasp, together with the evidence in humans that the dorsal premotor cortex is involved in grasp planning and execution offers a substantial contribution to the current debate about the neural substrates of visuomotor grasp in humans.CONCLUSIONS/SIGNIFICANCEThe demonstration that activity within the hAIPS is modulated according to different types of grasp, together with the evidence in humans that the dorsal premotor cortex is involved in grasp planning and execution offers a substantial contribution to the current debate about the neural substrates of visuomotor grasp in humans.
Background Neurophysiological studies showed that in macaques, grasp-related sensorimotor transformations are accomplished in a circuit connecting the anterior intraparietal sulcus (area AIP) with premotor area F5. Single unit recordings of macaque indicate that activity of neurons in this circuit is not simply linked to any particular object. Instead, responses correspond to the final hand configuration used to grasp the object. Although a human homologue of such a circuit has been identified, its role in planning and controlling different grasp configurations has not been decisively shown. We used functional magnetic resonance imaging to explicitly test whether activity within this network varies depending on the congruency between the adopted grasp and the grasp called by the stimulus. Methodology/Principal Findings Subjects were requested to reach towards and grasp a small or a large stimulus naturally (i.e., precision grip, involving the opposition of index finger and thumb, for a small size stimulus and a whole hand grasp for a larger stimulus) or with an constrained grasp (i.e., a precision grip for a large stimulus and a whole hand grasp for a small stimulus). The human anterior intraparietal sulcus (hAIPS) was more active for precise grasping than for whole hand grasp independently of stimulus size. Conversely, both the dorsal premotor cortex (dPMC) and the primary motor cortex (M1) were modulated by the relationship between the type of grasp that was adopted and the size of the stimulus. Conclusions/Significance The demonstration that activity within the hAIPS is modulated according to different types of grasp, together with the evidence in humans that the dorsal premotor cortex is involved in grasp planning and execution offers a substantial contribution to the current debate about the neural substrates of visuomotor grasp in humans.
Neurophysiological studies showed that in macaques, grasp-related sensorimotor transformations are accomplished in a circuit connecting the anterior intraparietal sulcus (area AIP) with premotor area F5. Single unit recordings of macaque indicate that activity of neurons in this circuit is not simply linked to any particular object. Instead, responses correspond to the final hand configuration used to grasp the object. Although a human homologue of such a circuit has been identified, its role in planning and controlling different grasp configurations has not been decisively shown. We used functional magnetic resonance imaging to explicitly test whether activity within this network varies depending on the congruency between the adopted grasp and the grasp called by the stimulus. Subjects were requested to reach towards and grasp a small or a large stimulus naturally (i.e., precision grip, involving the opposition of index finger and thumb, for a small size stimulus and a whole hand grasp for a larger stimulus) or with an constrained grasp (i.e., a precision grip for a large stimulus and a whole hand grasp for a small stimulus). The human anterior intraparietal sulcus (hAIPS) was more active for precise grasping than for whole hand grasp independently of stimulus size. Conversely, both the dorsal premotor cortex (dPMC) and the primary motor cortex (M1) were modulated by the relationship between the type of grasp that was adopted and the size of the stimulus. The demonstration that activity within the hAIPS is modulated according to different types of grasp, together with the evidence in humans that the dorsal premotor cortex is involved in grasp planning and execution offers a substantial contribution to the current debate about the neural substrates of visuomotor grasp in humans.
Neurophysiological studies showed that in macaques, grasp-related sensorimotor transformations are accomplished in a circuit connecting the anterior intraparietal sulcus (area AIP) with premotor area F5. Single unit recordings of macaque indicate that activity of neurons in this circuit is not simply linked to any particular object. Instead, responses correspond to the final hand configuration used to grasp the object. Although a human homologue of such a circuit has been identified, its role in planning and controlling different grasp configurations has not been decisively shown. We used functional magnetic resonance imaging to explicitly test whether activity within this network varies depending on the congruency between the adopted grasp and the grasp called by the stimulus. Subjects were requested to reach towards and grasp a small or a large stimulus naturally (i.e., precision grip, involving the opposition of index finger and thumb, for a small size stimulus and a whole hand grasp for a larger stimulus) or with an constrained grasp (i.e., a precision grip for a large stimulus and a whole hand grasp for a small stimulus). The human anterior intraparietal sulcus (hAIPS) was more active for precise grasping than for whole hand grasp independently of stimulus size. Conversely, both the dorsal premotor cortex (dPMC) and the primary motor cortex (M1) were modulated by the relationship between the type of grasp that was adopted and the size of the stimulus. The demonstration that activity within the hAIPS is modulated according to different types of grasp, together with the evidence in humans that the dorsal premotor cortex is involved in grasp planning and execution offers a substantial contribution to the current debate about the neural substrates of visuomotor grasp in humans.
Audience Academic
Author Begliomini, Chiara
Castiello, Umberto
Caria, Andrea
Grodd, Wolfgang
AuthorAffiliation 4 Department of General Psychology, University of Padua, Padua, Italy
Harvard Medical School, United States of America
2 Institute for Medical Psychology, Eberhard-Karls University of Tuebingen, Tuebingen, Germany
5 Department of Psychology, Royal Holloway, University of London, Egham, United Kingdom
1 Centre for Mind and Brain Sciences, University of Trento, Rovereto, Italy
3 Section Experimental MRI of the CNS, Department of Neuroradiology, Tuebingen University Hospital, Tuebingen, Germany
AuthorAffiliation_xml – name: 5 Department of Psychology, Royal Holloway, University of London, Egham, United Kingdom
– name: 1 Centre for Mind and Brain Sciences, University of Trento, Rovereto, Italy
– name: 2 Institute for Medical Psychology, Eberhard-Karls University of Tuebingen, Tuebingen, Germany
– name: Harvard Medical School, United States of America
– name: 4 Department of General Psychology, University of Padua, Padua, Italy
– name: 3 Section Experimental MRI of the CNS, Department of Neuroradiology, Tuebingen University Hospital, Tuebingen, Germany
Author_xml – sequence: 1
  givenname: Chiara
  surname: Begliomini
  fullname: Begliomini, Chiara
– sequence: 2
  givenname: Andrea
  surname: Caria
  fullname: Caria, Andrea
– sequence: 3
  givenname: Wolfgang
  surname: Grodd
  fullname: Grodd, Wolfgang
– sequence: 4
  givenname: Umberto
  surname: Castiello
  fullname: Castiello, Umberto
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17971871$$D View this record in MEDLINE/PubMed
BookMark eNqNk11r2zAUhs3oWD-2fzA2w6Cwi2SSbNlyLwYldF2ga2EfvRXHkuwo2FIqyd367ycv6ZaUdQxf2Bw_7yudl3MOkz1jjUqSlxhNcVbid0s7OAPddBXLU4QQxog9SQ5wlZFJQVC2t_W9nxx6v0SIZqwoniX7uKxKzEp8kMDM9itw2rTpJYTBQZeCkenMGh8caKNk-sneql6Z4E_SS_U9nRuv20XwqTbBpmGh0mvtB9vbYN2oC852qW3Scwd-FX2fJ08b6Lx6sXkfJd8-nH2dfZxcXJ3PZ6cXE1HiPEyoIKzGipZN3eACKpnVeYUlkVQKCooxnJFS1AUTlKFG0ULQStZUYQyliHx2lLxe-6466_kmHc9xRVGWY5aRRwnCKlyQAqNIzNeEtLDkK6d7cHfcgua_Cta1HFzQolNcFDUSjAGuschrWTEA0ciSSgDaKCai1_vNaUPdKyligjHdHdPdP0YveGtvOUE5wtXY0PHGwNmbQfnAe-2F6jowyg6eFyynFSI0gm8egH_v_nFqO4HpmmohNqlNY-PdRHyk6rWIo9boWD_NS0Iyxtho-3ZHEJmgfoQWBu_5_Mvn_2evrnfZ4y12oaALC2-7Ieg4mrvgq-2cfwd8P-MRyNeAcNZ7p5o_COLjKt0HwcdV4ptVirKTBzKhA4zHj4vR_Vv8E3y2JP8
CitedBy_id crossref_primary_10_1016_j_neuroimage_2009_03_002
crossref_primary_10_1371_journal_pone_0003388
crossref_primary_10_1152_jn_00016_2009
crossref_primary_10_1177_1073858407312080
crossref_primary_10_3389_fpsyg_2015_00167
crossref_primary_10_1152_jn_00464_2014
crossref_primary_10_3389_fnhum_2014_00676
crossref_primary_10_1016_j_neuropsychologia_2011_06_019
crossref_primary_10_1111_ejn_12786
crossref_primary_10_1523_JNEUROSCI_5270_11_2012
crossref_primary_10_1186_s12993_015_0061_0
crossref_primary_10_1093_cercor_bhy040
crossref_primary_10_1111_ejn_13874
crossref_primary_10_1177_00187208211040914
crossref_primary_10_1152_jn_90785_2008
crossref_primary_10_1007_s00429_019_01970_1
crossref_primary_10_1016_j_neuroimage_2016_10_051
crossref_primary_10_3389_fnint_2024_1324581
crossref_primary_10_1016_j_crneur_2022_100070
crossref_primary_10_1186_1471_2202_14_91
crossref_primary_10_1016_j_cortex_2017_05_018
crossref_primary_10_1093_cercor_bht006
crossref_primary_10_1093_cercor_bhv348
crossref_primary_10_1016_j_cortex_2017_04_004
crossref_primary_10_1016_j_neuropsychologia_2011_02_048
crossref_primary_10_1152_jn_01069_2010
crossref_primary_10_1371_journal_pone_0065508
crossref_primary_10_1007_s00221_019_05672_2
crossref_primary_10_3389_fnimg_2022_1074674
crossref_primary_10_1371_journal_pone_0165882
crossref_primary_10_3389_fnins_2018_00192
crossref_primary_10_1002_hbm_20676
crossref_primary_10_3389_fneur_2014_00255
crossref_primary_10_1002_brb3_412
crossref_primary_10_1088_1741_2552_ab9987
crossref_primary_10_1371_journal_pone_0270366
crossref_primary_10_1523_JNEUROSCI_2023_10_2010
crossref_primary_10_1016_j_neuroimage_2021_117806
crossref_primary_10_1016_j_appet_2010_12_013
crossref_primary_10_1093_cercor_bhq026
crossref_primary_10_1523_JNEUROSCI_2428_16_2017
crossref_primary_10_1007_s00221_012_3367_2
crossref_primary_10_1016_j_robot_2011_07_017
crossref_primary_10_1093_cercor_bhac404
crossref_primary_10_3390_biology11101482
Cites_doi 10.1152/jn.2001.85.6.2613
10.1523/JNEUROSCI.11-05-01182.1991
10.1016/j.neuroimage.2004.12.034
10.1152/jn.01094.2006
10.1146/annurev.neuro.20.1.25
10.1046/j.1460-9568.2000.00209.x
10.1111/j.1460-9568.2007.05365.x
10.1002/hbm.460020402
10.1016/0028-3932(91)90025-4
10.1302/0301-620X.38B4.902
10.1038/382805a0
10.1016/S0926-6410(02)00201-X
10.1113/expphysiol.1993.sp003686
10.1016/S1053-8119(03)00042-9
10.1046/j.1460-9568.2000.00232.x
10.1016/S0959-4388(97)80146-8
10.1006/nimg.2001.0880
10.1016/0006-8993(83)90635-2
10.1097/00001756-199407000-00029
10.1152/jn.1997.78.4.2226
10.1113/jphysiol.1986.sp016341
10.1093/cercor/bhh169
10.1016/j.neuropsychologia.2005.11.003
10.1515/9781400845910
10.1016/j.cogbrainres.2004.11.010
10.1113/jphysiol.1981.sp013602
10.1006/nimg.2001.0858
10.1152/jn.00661.2002
10.1007/BF00230479
10.1097/00001756-199602290-00034
10.1016/S0028-3932(03)00040-X
10.1016/0028-3932(71)90067-4
10.1046/j.1460-9568.1999.00753.x
10.1212/WNL.50.5.1253
10.1007/BF00248742
10.1098/rspb.1976.0083
10.1007/BF00232190
10.1046/j.0953-816x.2001.01639.x
10.1152/jn.00632.2002
10.1152/jn.2000.83.5.2580
10.1038/nrn1744
10.1007/s00221-003-1591-5
10.1152/jn.00154.2004
10.1523/JNEUROSCI.3386-05.2006
10.1152/jn.00463.2005
10.1016/S0896-6273(01)00423-8
ContentType Journal Article
Copyright COPYRIGHT 2007 Public Library of Science
2007 Begliomini et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Begliomini et al. 2007
Copyright_xml – notice: COPYRIGHT 2007 Public Library of Science
– notice: 2007 Begliomini et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Begliomini et al. 2007
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0001108
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Materials Science Database (NC LIVE)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic



MEDLINE
Agricultural Science Database

Agricultural Science Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Natural and Constrained Grasp
EISSN 1932-6203
ExternalDocumentID 1950341832
1289162610
oai_doaj_org_article_c6b0c88a1b1c4bd98aacfd75daa5fe8c
PMC2040199
2896756291
A472238882
17971871
10_1371_journal_pone_0001108
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
RNS
RPM
TR2
UKHRP
WOQ
WOW
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
A8Z
PUEGO
5PM
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c714t-5c28b1e57fbf16a9d3b491d2d5dc5ae881327cb68c580fe56c59db5e11a7c6a93
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:14:14 EST 2021
Fri Nov 26 17:13:23 EST 2021
Wed Aug 27 01:17:19 EDT 2025
Thu Aug 21 18:11:13 EDT 2025
Fri Sep 05 08:36:33 EDT 2025
Fri Jul 25 10:14:05 EDT 2025
Fri Jul 25 10:49:01 EDT 2025
Tue Jun 10 21:27:34 EDT 2025
Fri Jun 27 03:58:21 EDT 2025
Fri Jun 27 03:43:47 EDT 2025
Thu May 22 20:57:14 EDT 2025
Mon Jul 21 06:03:54 EDT 2025
Thu Apr 24 23:02:16 EDT 2025
Tue Jul 01 00:45:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c714t-5c28b1e57fbf16a9d3b491d2d5dc5ae881327cb68c580fe56c59db5e11a7c6a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceived and designed the experiments: WG UC CB. Performed the experiments: UC CB AC. Analyzed the data: UC CB. Wrote the paper: UC CB.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0001108
PMID 17971871
PQID 1289162610
PQPubID 1436336
PageCount e1108
ParticipantIDs plos_journals_1950341832
plos_journals_1289162610
doaj_primary_oai_doaj_org_article_c6b0c88a1b1c4bd98aacfd75daa5fe8c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2040199
proquest_miscellaneous_68459025
proquest_journals_1950341832
proquest_journals_1289162610
gale_infotracacademiconefile_A472238882
gale_incontextgauss_ISR_A472238882
gale_incontextgauss_IOV_A472238882
gale_healthsolutions_A472238882
pubmed_primary_17971871
crossref_primary_10_1371_journal_pone_0001108
crossref_citationtrail_10_1371_journal_pone_0001108
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-10-31
PublicationDateYYYYMMDD 2007-10-31
PublicationDate_xml – month: 10
  year: 2007
  text: 2007-10-31
  day: 31
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2007
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References RN Lemon (ref51) 1981; 31
RN Lemon (ref53) 1986; 38
J Grèzes (ref18) 2003; 18
KJ Friston (ref32) 1995; 2
RC Oldfield (ref24) 1971; 9
JRJ Napier (ref3) 1956; 38B
G Rizzolatti (ref9) 2001; 31
C Begliomini (ref19) 2007; 25
A Murata (ref7) 2000; 83
R Tallis (ref2) 2004
C Cavina-Pratesi (ref25) 2007; 5
J Napier (ref29) 1993
HH Ehrsson (ref16) 2000; 12
JF Kalaska (ref42) 1997; 7
Q-G Fu (ref41); 70
M Davare (ref47) 2006; 26
J Talairach (ref33) 1988
V Gallese (ref26) 1994; 21
RB Muir (ref56) 1983; 261
U Castiello (ref38) 1993; 94
V Raos (ref45) 2004; 92
F Binkofski (ref12) 1998; 50
GE Hagberg (ref30) 2001; 14
M Gentilucci (ref22) 1991; 29
E Hazeltine (ref49) 2003; 41
SH Frey (ref15) 2005; 23
R Caminiti (ref40) 1991; 11
JP Kuhtz-Buschbeck (ref21) 2001; 14
S Manthey (ref48) 2003; 15
V Raos (ref44) 2003; 89
MC Hepp-Reymond (ref50) 1998; 1998
HH Ehrsson (ref17) 2001; 85
CR Mason (ref54) 2002; 140
H Sakata (ref6) 1992
F Binkofski (ref20) 1999; 11
SB Eickhoff (ref35) 2005; 25
U Castiello (ref39) 1996; 7
M Taira (ref5) 1990; 83
G Rizzolatti (ref4) 1988; 71
JC Culham (ref13) 2003; 153
RN Lemon (ref52) 1976; 194
MM Morrow (ref55) 2003; 89
SH Johnson-Frey (ref28) 2005; 15
RN Lemon (ref1) 1993; 78
C Grefkes (ref37) 2001; 14
RNA Henson (ref31) 2001; 13
P Duvernoy (ref34) 1991
SP Wise (ref43) 1997; 20
JC Culham (ref11) 2006; 44
JC Culham (ref14) 2004
U Castiello (ref10) 2005; 6
V Raos (ref8) 2006; 95
JE Gomez (ref46) 2000; 12
A Murata (ref23) 1997; 78
MA Umilta (ref27) 2007; 98
S Geyer (ref36) 1996; 382
15163668 - J Neurophysiol. 2004 Oct;92(4):1990-2002
8733754 - Neuroreport. 1996 Feb 29;7(3):825-9
16251265 - J Neurophysiol. 2006 Feb;95(2):709-29
5146491 - Neuropsychologia. 1971 Mar;9(1):97-113
8329205 - Exp Physiol. 1993 May;78(3):263-301
9056706 - Annu Rev Neurosci. 1997;20:25-42
9464979 - Curr Opin Neurobiol. 1997 Dec;7(6):849-59
1886680 - Neuropsychologia. 1991;29(5):361-78
8294972 - J Neurophysiol. 1993 Nov;70(5):2097-116
12626625 - J Neurophysiol. 2003 Mar;89(3):1503-18
3625543 - J Physiol. 1986 Dec;381:497-527
12961051 - Exp Brain Res. 2003 Nov;153(2):180-9
2027042 - J Neurosci. 1991 May;11(5):1182-97
11492 - Proc R Soc Lond B Biol Sci. 1976 Oct 29;194(1116):341-73
6831213 - Brain Res. 1983 Feb 21;261(2):312-6
15342430 - Cereb Cortex. 2005 Jun;15(6):681-95
11029645 - Eur J Neurosci. 2000 Oct;12(10):3748-60
11697951 - Neuroimage. 2001 Nov;14(5):1193-205
12527103 - Brain Res Cogn Brain Res. 2003 Feb;15(3):296-307
16337974 - Neuropsychologia. 2006;44(13):2668-84
10805659 - J Neurophysiol. 2000 May;83(5):2580-601
12173526 - Arch Ital Biol. 2002 Jul;140(3):229-36
2073947 - Exp Brain Res. 1990;83(1):29-36
17331220 - Eur J Neurosci. 2007 Feb;25(4):1245-52
11387405 - J Neurophysiol. 2001 Jun;85(6):2613-23
11580891 - Neuron. 2001 Sep 27;31(6):889-901
16100518 - Nat Rev Neurosci. 2005 Sep;6(9):726-36
12612022 - J Neurophysiol. 2003 Apr;89(4):2279-88
10510191 - Eur J Neurosci. 1999 Sep;11(9):3276-86
11506535 - Neuroimage. 2001 Sep;14(3):617-31
12753960 - Neuropsychologia. 2003;41(9):1208-17
8752272 - Nature. 1996 Aug 29;382(6594):805-7
13376678 - J Bone Joint Surg Br. 1956 Nov;38-B(4):902-13
17329624 - J Neurophysiol. 2007 Jul;98(1):488-501
15820646 - Brain Res Cogn Brain Res. 2005 May;23(2-3):397-405
17487272 - PLoS One. 2007;2(5):e424
10998121 - Eur J Neurosci. 2000 Sep;12(9):3385-98
8335072 - Exp Brain Res. 1993;94(1):163-78
9325390 - J Neurophysiol. 1997 Oct;78(4):2226-30
12725768 - Neuroimage. 2003 Apr;18(4):928-37
11553288 - Eur J Neurosci. 2001 Jul;14(2):382-90
7264982 - J Physiol. 1981 Feb;311:521-40
9595971 - Neurology. 1998 May;50(5):1253-9
15850749 - Neuroimage. 2005 May 1;25(4):1325-35
16495453 - J Neurosci. 2006 Feb 22;26(8):2260-8
3416965 - Exp Brain Res. 1988;71(3):491-507
7948854 - Neuroreport. 1994 Jul 21;5(12):1525-9
References_xml – volume: 85
  start-page: 2613
  year: 2001
  ident: ref17
  article-title: Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI Study.
  publication-title: Neurophysiol
  doi: 10.1152/jn.2001.85.6.2613
– volume: 11
  start-page: 1182
  year: 1991
  ident: ref40
  article-title: Making arm movements within different parts of space: the premotor and motor cortical representation of a coordinate system for reaching to visual targets.
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.11-05-01182.1991
– start-page: 185
  year: 1992
  ident: ref6
  article-title: Hand-movement related neurons of the posterior parietal cortex of the monkey: their role in visual guidance of hand movements.
– volume: 25
  start-page: 1325
  year: 2005
  ident: ref35
  article-title: A new SPM toolbox for combining cytoarchitectonic maps and functional imaging data.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.12.034
– volume: 98
  start-page: 488
  year: 2007
  ident: ref27
  article-title: Simultaneous recording of macaque premotor and primary motor cortex neuronal populations reveals different functional contributions to visuomotor grasp.
  publication-title: J Neurophysiol
  doi: 10.1152/jn.01094.2006
– volume: 20
  start-page: 25
  year: 1997
  ident: ref43
  article-title: Premotor and parietal cortex: corticocortical connectivity and combinatorial computations.
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.neuro.20.1.25
– volume: 12
  start-page: 3385
  year: 2000
  ident: ref16
  article-title: Simultaneous movements of upper and lower limbs are coordinated by motor representations that are shared by both limbs: a PET Study.
  publication-title: Eur J Neurosci.
  doi: 10.1046/j.1460-9568.2000.00209.x
– volume: 25
  start-page: 1245
  year: 2007
  ident: ref19
  article-title: Differential cortical activity for precision versus whole-hand visually guided grasping.
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2007.05365.x
– volume: 2
  start-page: 189
  year: 1995
  ident: ref32
  article-title: Statistical Parametric Maps in Functional Imaging: A General Linear Approach.
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.460020402
– volume: 29
  start-page: 361
  year: 1991
  ident: ref22
  article-title: Influence of different types of grasping on the transport component of prehension movements.
  publication-title: Neuropsychologia,
  doi: 10.1016/0028-3932(91)90025-4
– volume: 38B
  start-page: 902
  year: 1956
  ident: ref3
  article-title: The prehensile movements of the human hand.
  publication-title: J Bone Joint Surg,
  doi: 10.1302/0301-620X.38B4.902
– volume: 382
  start-page: 805
  year: 1996
  ident: ref36
  article-title: Two different areas within the primary motor cortex of man.
  publication-title: Nature
  doi: 10.1038/382805a0
– volume: 15
  start-page: 296
  year: 2003
  ident: ref48
  article-title: Premotor cortex in observing erroneous action: an fMRI Study.
  publication-title: Brain Res Cogn Brain Res
  doi: 10.1016/S0926-6410(02)00201-X
– year: 1988
  ident: ref33
  article-title: Co-Planar Stereotaxic Atlas of the Human Brain.
– volume: 78
  start-page: 263
  year: 1993
  ident: ref1
  article-title: The G. L. Brown Prize Lecture. Cortical control of the primate hand.
  publication-title: Exp Physiol
  doi: 10.1113/expphysiol.1993.sp003686
– volume: 18
  start-page: 928
  year: 2003
  ident: ref18
  article-title: Activations related to ‘mirror’ and ‘canonical’ neurons in the human brain: an fMRI Study.
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00042-9
– volume: 140
  start-page: 229
  year: 2002
  ident: ref54
  article-title: Primary motor cortex neuronal discharge during reach-to-grasp: controlling the hand as a unit.
  publication-title: Arch Ital Biol
– volume: 12
  start-page: 3748
  year: 2000
  ident: ref46
  article-title: Representation of accuracy in the dorsal premotor cortex.
  publication-title: Eur J Neurosci
  doi: 10.1046/j.1460-9568.2000.00232.x
– volume: 7
  start-page: 849
  year: 1997
  ident: ref42
  article-title: Cortical control of reaching movements.
  publication-title: Curr Opin Neurobiol
  doi: 10.1016/S0959-4388(97)80146-8
– volume: 14
  start-page: 1193
  year: 2001
  ident: ref30
  article-title: Improved detection of event-related functional MRI signals using probability functions.
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0880
– volume: 261
  start-page: 312
  year: 1983
  ident: ref56
  article-title: Corticospinal neurons with a special role in precision grip.
  publication-title: Brain Res
  doi: 10.1016/0006-8993(83)90635-2
– volume: 70
  start-page: 2097
  ident: ref41
  article-title: Neuronal specification of direction and distance during reaching movements in the superior precentral premotor area and primary motor cortex of monkeys.
  publication-title: J Neurophysiol
– volume: 21
  start-page: 1525
  year: 1994
  ident: ref26
  article-title: Deficit of hand preshaping after muscimol injection in monkey parietal cortex.
  publication-title: Neuroreport,
  doi: 10.1097/00001756-199407000-00029
– volume: 78
  start-page: 2226
  year: 1997
  ident: ref23
  article-title: Object representation in the ventral premotor cortex (area F5) of the monkey.
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1997.78.4.2226
– volume: 5
  start-page: 1
  year: 2007
  ident: ref25
  article-title: FMRI reveals a dissociation between grasping and perceiving the size of real 3D objects.
  publication-title: PLoS ONE
– volume: 38
  start-page: 497
  year: 1986
  ident: ref53
  article-title: Corticospinal facilitation of hand muscles during voluntary movement in the conscious monkey.
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1986.sp016341
– volume: 15
  start-page: 681
  year: 2005
  ident: ref28
  article-title: A distributed left hemisphere network active during planning of everyday tool use skills.
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhh169
– volume: 44
  start-page: 2668
  year: 2006
  ident: ref11
  article-title: The role of parietal cortex in visuomotor control: What have we learned from neuroimaging?
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2005.11.003
– year: 1993
  ident: ref29
  article-title: Hands.
  doi: 10.1515/9781400845910
– volume: 23
  start-page: 397
  year: 2005
  ident: ref15
  article-title: Cortical topography of human anterior intraparietal cortex active during visually guided grasping.
  publication-title: Cogn Brain Res
  doi: 10.1016/j.cogbrainres.2004.11.010
– year: 1991
  ident: ref34
  article-title: The Human Brain: Structure, Three-Dimensional Sectional Anatomy and MRI.
– volume: 1998
  year: 1998
  ident: ref50
  article-title: Functional organization of motor cortex and its participation in voluntary movements.
– volume: 31
  start-page: 521
  year: 1981
  ident: ref51
  article-title: Variety of functional organization within the monkey motor cortex.
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1981.sp013602
– volume: 14
  start-page: 617
  year: 2001
  ident: ref37
  article-title: Human somatosensory area 2: observer-independent cytoarchitectonic mapping, interindividual variability, and population map.
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0858
– volume: 89
  start-page: 1503
  year: 2003
  ident: ref44
  article-title: Somatotopic organization of the lateral part of area F2 (dorsal premotor cortex) of the macaque monkey.
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00661.2002
– year: 2004
  ident: ref2
  article-title: The Hand. A Philosophical Enquiry into Human Being.
– volume: 94
  start-page: 163
  year: 1993
  ident: ref38
  article-title: Reach to grasp: the natural response to a perturbation of object size.
  publication-title: Exp Brain Res,
  doi: 10.1007/BF00230479
– volume: 7
  start-page: 825
  year: 1996
  ident: ref39
  article-title: How perceived object dimension influences prehension.
  publication-title: Neuroreport
  doi: 10.1097/00001756-199602290-00034
– volume: 41
  start-page: 1208
  year: 2003
  ident: ref49
  article-title: Material-dependent and material-independent selection processes in the frontal and parietal lobes: an event-related fMRI investigation of response competition.
  publication-title: Neuropsychologia
  doi: 10.1016/S0028-3932(03)00040-X
– start-page: 417
  year: 2004
  ident: ref14
  article-title: Human brain imaging reveals a parietal area specialized for grasping.
– volume: 9
  start-page: 97
  year: 1971
  ident: ref24
  article-title: The assessment and analysis of handedness: the Edinburgh Inventory.
  publication-title: Neuropsychologia
  doi: 10.1016/0028-3932(71)90067-4
– volume: 11
  start-page: 3276
  year: 1999
  ident: ref20
  article-title: A frontoparietal circuit for object manipulation in man: evidence from an fMRI-Study.
  publication-title: Eur J Neurosci
  doi: 10.1046/j.1460-9568.1999.00753.x
– volume: 50
  start-page: 1253
  year: 1998
  ident: ref12
  article-title: Anterior intraparietal area subserves prehension.
  publication-title: Neurology
  doi: 10.1212/WNL.50.5.1253
– volume: 71
  start-page: 491
  year: 1988
  ident: ref4
  article-title: Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements.
  publication-title: Exp Brain Res
  doi: 10.1007/BF00248742
– volume: 194
  start-page: 341
  year: 1976
  ident: ref52
  article-title: Relationship between the activity of precentral neurons during active and passive movements in conscious monkeys.
  publication-title: Proc R Soc Lond B Biol Sci
  doi: 10.1098/rspb.1976.0083
– volume: 83
  start-page: 29
  year: 1990
  ident: ref5
  article-title: Parietal cortex neurons of the monkey related to the visual guidance of hand movement.
  publication-title: Exp Brain Res
  doi: 10.1007/BF00232190
– volume: 14
  start-page: 382
  year: 2001
  ident: ref21
  article-title: Human brain activity in the control of fine static precision grip forces: an fMRI study.
  publication-title: Eur J Neurosci
  doi: 10.1046/j.0953-816x.2001.01639.x
– volume: 13
  start-page: 127
  year: 2001
  ident: ref31
  article-title: The choice of basis functions in event-related fMRI.
  publication-title: NeuroImage,
– volume: 89
  start-page: 2279
  year: 2003
  ident: ref55
  article-title: Prediction of muscle activity by populations of sequentially recorded primary motor cortex neurons.
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00632.2002
– volume: 83
  start-page: 2580
  year: 2000
  ident: ref7
  article-title: Selectivity for the shape, size and orientation of objects for grasping in neurons of monkey parietal area AIP.
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2000.83.5.2580
– volume: 6
  start-page: 726
  year: 2005
  ident: ref10
  article-title: The neuroscience of grasping.
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn1744
– volume: 153
  start-page: 180
  year: 2003
  ident: ref13
  article-title: Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas.
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-003-1591-5
– volume: 92
  start-page: 1990
  year: 2004
  ident: ref45
  article-title: Functional properties of grasping-related neurons in the dorsal premotor area F2 of the macaque monkey.
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00154.2004
– volume: 26
  start-page: 2260
  year: 2006
  ident: ref47
  article-title: Dissociating the role of ventral and dorsal premotor cortex in precision grasping.
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3386-05.2006
– volume: 95
  start-page: 709
  year: 2006
  ident: ref8
  article-title: Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey.
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00463.2005
– volume: 31
  start-page: 889
  year: 2001
  ident: ref9
  article-title: The cortical motor system.
  publication-title: Neuron
  doi: 10.1016/S0896-6273(01)00423-8
– reference: 15820646 - Brain Res Cogn Brain Res. 2005 May;23(2-3):397-405
– reference: 3625543 - J Physiol. 1986 Dec;381:497-527
– reference: 11506535 - Neuroimage. 2001 Sep;14(3):617-31
– reference: 8329205 - Exp Physiol. 1993 May;78(3):263-301
– reference: 1886680 - Neuropsychologia. 1991;29(5):361-78
– reference: 15850749 - Neuroimage. 2005 May 1;25(4):1325-35
– reference: 2027042 - J Neurosci. 1991 May;11(5):1182-97
– reference: 11029645 - Eur J Neurosci. 2000 Oct;12(10):3748-60
– reference: 7264982 - J Physiol. 1981 Feb;311:521-40
– reference: 8294972 - J Neurophysiol. 1993 Nov;70(5):2097-116
– reference: 10998121 - Eur J Neurosci. 2000 Sep;12(9):3385-98
– reference: 2073947 - Exp Brain Res. 1990;83(1):29-36
– reference: 16100518 - Nat Rev Neurosci. 2005 Sep;6(9):726-36
– reference: 17487272 - PLoS One. 2007;2(5):e424
– reference: 9325390 - J Neurophysiol. 1997 Oct;78(4):2226-30
– reference: 11697951 - Neuroimage. 2001 Nov;14(5):1193-205
– reference: 3416965 - Exp Brain Res. 1988;71(3):491-507
– reference: 15342430 - Cereb Cortex. 2005 Jun;15(6):681-95
– reference: 7948854 - Neuroreport. 1994 Jul 21;5(12):1525-9
– reference: 12612022 - J Neurophysiol. 2003 Apr;89(4):2279-88
– reference: 8752272 - Nature. 1996 Aug 29;382(6594):805-7
– reference: 11492 - Proc R Soc Lond B Biol Sci. 1976 Oct 29;194(1116):341-73
– reference: 12173526 - Arch Ital Biol. 2002 Jul;140(3):229-36
– reference: 12753960 - Neuropsychologia. 2003;41(9):1208-17
– reference: 16337974 - Neuropsychologia. 2006;44(13):2668-84
– reference: 11387405 - J Neurophysiol. 2001 Jun;85(6):2613-23
– reference: 16495453 - J Neurosci. 2006 Feb 22;26(8):2260-8
– reference: 11553288 - Eur J Neurosci. 2001 Jul;14(2):382-90
– reference: 13376678 - J Bone Joint Surg Br. 1956 Nov;38-B(4):902-13
– reference: 12626625 - J Neurophysiol. 2003 Mar;89(3):1503-18
– reference: 9595971 - Neurology. 1998 May;50(5):1253-9
– reference: 10510191 - Eur J Neurosci. 1999 Sep;11(9):3276-86
– reference: 16251265 - J Neurophysiol. 2006 Feb;95(2):709-29
– reference: 12725768 - Neuroimage. 2003 Apr;18(4):928-37
– reference: 17329624 - J Neurophysiol. 2007 Jul;98(1):488-501
– reference: 17331220 - Eur J Neurosci. 2007 Feb;25(4):1245-52
– reference: 10805659 - J Neurophysiol. 2000 May;83(5):2580-601
– reference: 11580891 - Neuron. 2001 Sep 27;31(6):889-901
– reference: 12961051 - Exp Brain Res. 2003 Nov;153(2):180-9
– reference: 6831213 - Brain Res. 1983 Feb 21;261(2):312-6
– reference: 9056706 - Annu Rev Neurosci. 1997;20:25-42
– reference: 5146491 - Neuropsychologia. 1971 Mar;9(1):97-113
– reference: 15163668 - J Neurophysiol. 2004 Oct;92(4):1990-2002
– reference: 12527103 - Brain Res Cogn Brain Res. 2003 Feb;15(3):296-307
– reference: 8335072 - Exp Brain Res. 1993;94(1):163-78
– reference: 9464979 - Curr Opin Neurobiol. 1997 Dec;7(6):849-59
– reference: 8733754 - Neuroreport. 1996 Feb 29;7(3):825-9
SSID ssj0053866
Score 2.1205974
Snippet Neurophysiological studies showed that in macaques, grasp-related sensorimotor transformations are accomplished in a circuit connecting the anterior...
Background Neurophysiological studies showed that in macaques, grasp-related sensorimotor transformations are accomplished in a circuit connecting the anterior...
BACKGROUND: Neurophysiological studies showed that in macaques, grasp-related sensorimotor transformations are accomplished in a circuit connecting the...
Background Neurophysiological studies showed that in macaques, grasp-related sensorimotor transformations are accomplished in a circuit connecting the anterior...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1108
SubjectTerms Adult
Biomechanical Phenomena
Brain Mapping - methods
Circuits
Configurations
Cortex (motor)
Cortex (premotor)
Female
Functional magnetic resonance imaging
Grasping
Hand
Hand Strength
Homology
Humans
Intraparietal sulcus
Kinematics
Magnetic resonance
Magnetic Resonance Imaging
Male
Models, Biological
Monkeys & apes
Motor Cortex
Motor Skills
Movement
Muscle function
Neuroimaging
Neurophysiology - methods
Neuroscience
Neuroscience/Motor Systems
Oculomotor integration
Sensorimotor integration
Sensorimotor system
Studies
Substrates
Visual Perception
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQ5dVAoRZCAg5p4ySObW6loiocQAKKerP8XFYqyWq9y-9n7HiXXVipHLhF67G0nhmPv0nG3yD0AiCHM9ZWZa14CwmK0qWuNDzVTrcN077yqUD2Y3dx2X64olcbrb5iTdhIDzwq7sR0ujKcK6KJabUVXCnjLaNWKeodNzH6VqJaJVNjDIZd3HX5olzDyEm2y_Fs6N1xgkGxneTGQZT4-tdReW92PYRdkPPPysmNo-j8LrqTMSQ-Hf_7Prrl-ntoP-_SgF9lKunX95E6G9sM9hOcGDxhluotNhEUxt4QzuIfQ2IMX4Q3GBA2nvYhpusBHhYDBnSIf07DMpbsDXOc69rx4PFkrkK8avUAXZ6_-3p2UeamCqVhpF2U1NRcE0eZ1550SthGt4LY2lJrqHKcQ3rKjO64obzyjnaGCqupI0QxA_LNQ7TXgxoPEK69E54r0dLYt5p5ZVxjXcesrhtlW12gZqVhaTLjeFzctUyf0RhkHqPCZLSLzHYpULmeNRsZN26QfxuNt5aNfNnpB_Aimb1I3uRFBTqKppfj5dP1rpenkUuz4ZCGFOh5koicGX0sypmoZQjy_adv_yD05fOW0Mss5AdQh1H5IgSsKXJxbUkeRE9cLTtIABMA5yHprf4eErQCRAIBukCHK8fdPXPX8Mbso_UwRJr4-Uj1blgG2fE2cv3QAj0aN8Fv8zABEIeRArGt7bFlk-2Rfvo9cZnXcIgQIR7_DyM-QbfTm_eELA7R3mK-dE8BMi70sxQdfgGU_3A6
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegvPCCGF8LDGYhJOAhW5zEscMLGhPdhsSQgE17i_xZKk1Jqdv_H5_jZi1UwFsVn6Xa5zv_zj7_DqFXHnIYpXWW5oKXPkARMpWZ9L9yI8uCSZvZkCB7Xp1elJ-u6FU8cHMxrXLlE4Oj1p2CM_JD70c9kvF4P3s_-5lC1Si4XY0lNG6jO8TvNLDO-fhk5Ym9LVdVfC5XMHIYtXMw61pzEMAQFJVc244Ca__gm0ez685tA56_50-ubUjj--heRJL4qFf9Drpl2gdoJ9qqw28iofTbh0gc98UG2wk-F4FnA4tWY6jVGSpEGI0_d4E3fOHeYe_28FnrIGh3eNouOuwxIr6cuiUk7nVz6AfZ7biz-GQuHDy4eoQuxh-_H5-msbRCqhgpFylVOZfEUGalJZWodSHLmuhcU62oMJz7IJUpWXFFeWYNrRSttaSGEMGUly8eo1Hrp3EX4dya2nJRlxSqVzMrlCm0qZiWeSF0KRNUrGa4UZF3HAZ33YTLNObjj37CGtBLE_WSoHToNet5N_4h_wGUN8gCa3b40M0nTTTCRlUyU5wLIokqpa65EMpqRrUQ1BquErQPqm_6J6iD7TdHwKhZcB-MJOhlkADmjBZScyZi6Vxz9uXyP4S-fd0Qeh2FbOenQ4n4HMKPCRi5NiR3YSWuhu2aG1P4s6mmmccl3k0naG-1cLf33Na81nt_aPb-Bi6RRGu6pWsqXgLjD03Qk94IbtTDag90GEkQ2zCPDZ1strTTH4HRPPdbCanrp3__z8_Q3XCyHpDDHhot5kvz3EPChXwR7P4Xhl1j_A
  priority: 102
  providerName: ProQuest
Title Comparing Natural and Constrained Movements: New Insights into the Visuomotor Control of Grasping
URI https://www.ncbi.nlm.nih.gov/pubmed/17971871
https://www.proquest.com/docview/1289162610
https://www.proquest.com/docview/1950341832
https://www.proquest.com/docview/68459025
https://pubmed.ncbi.nlm.nih.gov/PMC2040199
https://doaj.org/article/c6b0c88a1b1c4bd98aacfd75daa5fe8c
http://dx.doi.org/10.1371/journal.pone.0001108
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG98ILYnwtMDoLIQEPqfLl2EFCaKvabUgraNCpb5G_UipVSWlaCV7427lz07JCEfBiRfE5kn2-8-9i-3eEPAfIYbUxgR9JkUCAIpWvAgVPkVVJzFURFO6A7CA9HybvRmy0R9Y5W5sBrHeGdphPajifdr5--fYWDP6Ny9rAw3WjzqwqbceBHLz9uw9rU4rh2GWy2VcA63a7l4ha_DQK4uYy3Z--srVYOU7_jeduzaZVvQuW_nq68sZy1b9L7jQ4k56sJsYB2bPlPXLQWHJNXzZ006_uE9ldpSIsx3QgHQsHlaWhmMnT5Y-whl5WjlV8Ub-m4BTpRVljSF_TSbmoKCBIej2pl3isr5pjOzz7TquCns1ljdexHpBhv_epe-43iRd8zcNk4TMdCRVaxgtVhKnMTKySLDSRYUYzaYWAEJZrlQrNRFBYlmqWGcVsGEquQT5-SFolDOMhoVFhs0LILGGY25oXUtvY2JQbFcXSJMoj8XqEc92wkmPnprnbauMQnawGLEe95I1ePOJvWs1WrBx_kT9F5W1kkVPbvajm47wx0VynKtBCyFCFOlEmE1LqwnBmpGSFFdojx6j6fHVBdeMZ8hPk24wFhCoeeeYkkFejxIM7Y7ms6_zi_fU_CH282hJ60QgVFQyHls1lCegT8nVtSR7iTFx3u84BcADkh8A4-L0qYwGgFnDiHjlaT9zdLXdV32h9vKkGb4RbTLK01bLOU5EgHxDzyKOVEfxUD88ABvHQI3zLPLZ0sl1TTj47vvMIFpowyx7_p9KfkNvuR7wDGkektZgv7VNAkAvVJrf4iEMpuiGW_bM22T_tDT5ctd0_mbZzGlh-7_0AnJB4Nw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOMAFUV5dKMRCIOCw7b689iIhVAqloQ8kaKvcFr82RKp2QzYR4k_xG5nxbtIEIuDSWxSPo3jGHn9jj78h5AlADquNCfxIigQCFKl8FSj4FFmVxFwVQeESZI_T_dPkQ5_118jP2VsYTKuc-UTnqE2l8Yx8G_woIBnA-8Hr0Tcfq0bh7eqshEYzLQ7sj-8QstWvem_Bvk-jaO_dye6-31YV8DUPk4nPdCRUaBkvVBGmMjOxSrLQRIYZzaQVAuIzrlUqNBNBYVmqWWYUs2EouQb5GH73Crma4Mk4rB_enwd44DvStH2eF_Nwu50NW6OqtFsOfGERy4Xtz1UJmO8FndF5Va8Cur_nay5sgHs3yY0WudKdZqqtkzVb3iLrrW-o6fOWwPrFbSJ3m-KG5YAeS8frQWVpKNYGdRUprKFHleMpn9QvKbhZ2itrPCSo6bCcVBQwKT0b1lNMFKzG2A-z6WlV0PdjWeMDrzvk9FKUfpd0SlDjBqFRYbNCyCxhWC2bF1Lb2NiUGxXF0iTKI_FMw7luec5xcOe5u7zjEO80CsvRLnlrF4_4816jhufjH_Jv0HhzWWTpdl9U40HeLvpcpyrQQshQhTpRJhNS6sJwZqRkhRXaI100fd48eZ37mnwHGTxjAcGPRx47CWTqKDEVaCCndZ33Pp79h9DnT0tCz1qhogJ1aNk-v4AxIQPYkuQGzsTZsOv8Yun92ZSxAHAQbAse2ZxN3NU9VzUv9O7Om8G_4aWVLG01rfNUJMgwxDxyr1kEF-bhGQArHnqELy2PJZsst5TDr45BPYKtK8yy-3__z11ybf_k6DA_7B0fPCDX3am-Qy2bpDMZT-1DgKMT9cj5AEq-XLbT-QU6E6HV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkBAXRHl1oRALgYDDNvvy2ouEUGkJDYWCKK1yW_wMkardkE2E-Gv8Osbe3TSBCLj0FsXjKPaMP39jj2cQegSUQ0ulAj_iLAEHhQtfBAI-RVokMRUmMC5A9ig9OEneDslwA_1s38LYsMoWEx1Qq1LaM_Ie4CgwGeD7Qc80YREf9_svJ998W0HK3rS25TRqEznUP76D-1a9GOyDrh9HUf_1570Dv6kw4EsaJjOfyIiJUBNqhAlTnqlYJFmoIkWUJFwzBr4alSJlkrDAaJJKkilBdBhyKkE-ht-9hC7TGFgVrCU6XDh7gCNp2jzVi2nYayxjZ1IWescRMVvQcmkrdBUDFvtCZ3JWVutI7--xm0ubYf86utawWLxbm90m2tDFDbTZ4ESFnzbJrJ_dRHyvLnRYjPARdzk-MC8UtnVCXXUKrfD70uUsn1XPMUAuHhSVPTCo8LiYlRj4KT4dV3MbNFhObT8bWY9Lg99MeWUfe91CJxcy6bdRp4Bp3EI4MjozjGcJsZWzqeFSx0qnVIko5ioRHorbGc5lk_PcDu4sdxd5FHyfesJyq5e80YuH_EWvSZ3z4x_yr6zyFrI2Y7f7opyO8gYAcpmKQDLGQxHKRKiMcS6NokRxToxm0kNdq_q8fv66wJ1812bzjBk4Qh566CRs1o7C2v-Iz6sqH3w4_Q-h408rQk8aIVPCdEjePMWAMdlsYCuSW9YS22FX-fky_LMpIwFwItgiPLTdGu76nuual3p3F82AdfYCixe6nFd5yhKbbYh46E69CM7VQzMgWTT0EF1ZHis6WW0pxl9dNvUItrEwy-7-_T930RWAm_zd4OjwHrrqDvgdgdlGndl0ru8DM52JBw4CMPpy0ZjzC9KAphQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+Natural+and+Constrained+Movements%3A+New+Insights+into+the+Visuomotor+Control+of+Grasping&rft.jtitle=PloS+one&rft.au=Begliomini%2C+Chiara&rft.au=Caria%2C+Andrea&rft.au=Grodd%2C+Wolfgang&rft.au=Castiello%2C+Umberto&rft.date=2007-10-31&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=2&rft.issue=10&rft.spage=e1108&rft_id=info:doi/10.1371%2Fjournal.pone.0001108&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0001108
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon