Global patterns of leaf mechanical properties

Ecology Letters (2011) 14: 301-312 ABSTRACT: Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize da...

Full description

Saved in:
Bibliographic Details
Published inEcology letters Vol. 14; no. 3; pp. 301 - 312
Main Authors Onoda, Yusuke, Westoby, Mark, Adler, Peter B, Choong, Amy M.F, Clissold, Fiona J, Cornelissen, Johannes H.C, Díaz, Sandra, Dominy, Nathaniel J, Elgart, Alison, Enrico, Lucas, Fine, Paul V.A, Howard, Jerome J, Jalili, Adel, Kitajima, Kaoru, Kurokawa, Hiroko, McArthur, Clare, Lucas, Peter W, Markesteijn, Lars, Pérez-Harguindeguy, Natalia, Poorter, Lourens, Richards, Lora, Santiago, Louis S, Sosinski, Enio E. Jr, Van Bael, Sunshine A, Warton, David I, Wright, Ian J, Joseph Wright, S, Yamashita, Nayuta
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.03.2011
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ecology Letters (2011) 14: 301-312 ABSTRACT: Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe.
AbstractList Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe.
Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe.Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe.
Ecology Letters (2011) 14: 301-312 ABSTRACT: Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe.
Ecology Letters (2011) 14: 301–312 Leaf mechanical properties strongly influence leaf lifespan, plant–herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500–800‐fold among species. Contrary to a long‐standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant–animal interactions and ecosystem functions across the globe.
Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe
Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe. [PUBLICATION ABSTRACT]
Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe.Original Abstract: Ecology Letters (2011) 14: 301-312
Author Adler, Peter B
Yamashita, Nayuta
Elgart, Alison
Poorter, Lourens
Richards, Lora
Wright, Ian J
Jalili, Adel
Cornelissen, Johannes H.C
Fine, Paul V.A
Van Bael, Sunshine A
Choong, Amy M.F
Enrico, Lucas
Dominy, Nathaniel J
Clissold, Fiona J
Díaz, Sandra
McArthur, Clare
Sosinski, Enio E. Jr
Pérez-Harguindeguy, Natalia
Warton, David I
Santiago, Louis S
Onoda, Yusuke
Westoby, Mark
Kurokawa, Hiroko
Lucas, Peter W
Howard, Jerome J
Kitajima, Kaoru
Markesteijn, Lars
Joseph Wright, S
Author_xml – sequence: 1
  fullname: Onoda, Yusuke
– sequence: 2
  fullname: Westoby, Mark
– sequence: 3
  fullname: Adler, Peter B
– sequence: 4
  fullname: Choong, Amy M.F
– sequence: 5
  fullname: Clissold, Fiona J
– sequence: 6
  fullname: Cornelissen, Johannes H.C
– sequence: 7
  fullname: Díaz, Sandra
– sequence: 8
  fullname: Dominy, Nathaniel J
– sequence: 9
  fullname: Elgart, Alison
– sequence: 10
  fullname: Enrico, Lucas
– sequence: 11
  fullname: Fine, Paul V.A
– sequence: 12
  fullname: Howard, Jerome J
– sequence: 13
  fullname: Jalili, Adel
– sequence: 14
  fullname: Kitajima, Kaoru
– sequence: 15
  fullname: Kurokawa, Hiroko
– sequence: 16
  fullname: McArthur, Clare
– sequence: 17
  fullname: Lucas, Peter W
– sequence: 18
  fullname: Markesteijn, Lars
– sequence: 19
  fullname: Pérez-Harguindeguy, Natalia
– sequence: 20
  fullname: Poorter, Lourens
– sequence: 21
  fullname: Richards, Lora
– sequence: 22
  fullname: Santiago, Louis S
– sequence: 23
  fullname: Sosinski, Enio E. Jr
– sequence: 24
  fullname: Van Bael, Sunshine A
– sequence: 25
  fullname: Warton, David I
– sequence: 26
  fullname: Wright, Ian J
– sequence: 27
  fullname: Joseph Wright, S
– sequence: 28
  fullname: Yamashita, Nayuta
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23920282$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21265976$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1vFCEUhiemxn7oX9CNidGbWTnADIyJJqZZt8ZGk2qjdycwC5V1lllhJt3-e8Hd7kUvtFwAged9-TjvcXHge2-KYgJkCqm9Xk6B11ASyuWUkrRKoJJ0unlQHO03DvZz9uOwOI5xSQjQRsCj4pACratG1EdFOe96rbrJWg2DCT5OejvpjLKTlWl_Ku_avBf6tQmDM_Fx8dCqLponu_GkuPww-3Z6Vp5_mX88fX9etgIYLWEhFi1hwtbMCCF1KxRhICutAXQlpaVaCF0tiAYlDG-4Ja3UtjJNxaVdSHZSvNn6Xqsr451PHXoVWhexVw47p4MKN3g9BvRdHtajjsgJB5nFL7fidO_fo4kDrlxsTdcpb_oxohQNF3UD_P9kJTnUss7kq3-SUBFgtRCcJPT5HXTZj8Gn70p-tGGMCZqgpzto1CuzwHVwq_yi28Ik4MUOUDHVwAbl8-v3HGsooTIbvdtybehjDMZi6wY1uN4PQbkOgWBODC4xhwFzMDAnBv8mBjfJQN4xuD3jHtK3uyq5ztzcW4ez81meJX251bs4mM1er8IvrAUTFX7_PMeLM_pJwgXFeeKfbXmrelRXIf3H5dfkzAikiooG2B8oBe2T
CitedBy_id crossref_primary_10_1093_aob_mcac108
crossref_primary_10_24266_0738_2898_41_4_170
crossref_primary_10_1111_j_1365_2745_2011_01937_x
crossref_primary_10_1002_ece3_5969
crossref_primary_10_1098_rspb_2012_0211
crossref_primary_10_1111_1365_2745_12255
crossref_primary_10_1093_aob_mct036
crossref_primary_10_1007_s11829_017_9504_x
crossref_primary_10_1111_fwb_13830
crossref_primary_10_1093_treephys_tpv108
crossref_primary_10_1038_s41598_021_89190_8
crossref_primary_10_1038_s41598_024_67140_4
crossref_primary_10_1111_jvs_12190
crossref_primary_10_1111_ele_14176
crossref_primary_10_1103_RevModPhys_88_035007
crossref_primary_10_1007_s00468_018_1734_8
crossref_primary_10_1111_1365_2745_13454
crossref_primary_10_1007_s11258_014_0359_2
crossref_primary_10_1071_FP18277
crossref_primary_10_1002_eap_2064
crossref_primary_10_1534_genetics_114_169276
crossref_primary_10_3354_meps11717
crossref_primary_10_1111_nph_17686
crossref_primary_10_1111_ele_14262
crossref_primary_10_1111_aec_12214
crossref_primary_10_1093_jpe_rtw090
crossref_primary_10_1111_jvs_13056
crossref_primary_10_1016_j_foreco_2021_119740
crossref_primary_10_1002_ece3_2479
crossref_primary_10_1016_j_tfp_2023_100455
crossref_primary_10_1016_j_jhevol_2016_07_003
crossref_primary_10_1111_1365_2745_13001
crossref_primary_10_1093_aob_mcv113
crossref_primary_10_3354_meps09757
crossref_primary_10_1038_srep20485
crossref_primary_10_1111_nph_19747
crossref_primary_10_3389_ffgc_2021_710658
crossref_primary_10_1016_j_scitotenv_2021_149266
crossref_primary_10_1093_aob_mcac118
crossref_primary_10_1111_j_1365_2486_2011_02451_x
crossref_primary_10_1111_nph_14285
crossref_primary_10_1038_s41597_022_01774_9
crossref_primary_10_3390_f11121301
crossref_primary_10_1093_aob_mcab146
crossref_primary_10_1016_j_fcr_2023_109093
crossref_primary_10_1016_j_scitotenv_2017_11_171
crossref_primary_10_1111_nph_18643
crossref_primary_10_1007_s11258_023_01394_2
crossref_primary_10_1038_s41598_019_40645_z
crossref_primary_10_1071_BT12225
crossref_primary_10_1890_10_2244_1
crossref_primary_10_3390_land10020212
crossref_primary_10_3732_ajb_1300337
crossref_primary_10_1111_pce_12245
crossref_primary_10_1111_een_12648
crossref_primary_10_1038_srep42085
crossref_primary_10_1111_rec_13077
crossref_primary_10_1093_treephys_tpu001
crossref_primary_10_1111_j_1469_8137_2012_04263_x
crossref_primary_10_1111_geb_12704
crossref_primary_10_1111_ele_14009
crossref_primary_10_1242_jeb_245140
crossref_primary_10_21829_abm129_2022_2009
crossref_primary_10_3389_fevo_2022_795015
crossref_primary_10_1016_j_revpalbo_2024_105129
crossref_primary_10_1016_j_jembe_2013_05_020
crossref_primary_10_1007_s10265_021_01289_1
crossref_primary_10_1093_aob_mcaa198
crossref_primary_10_1080_00222933_2015_1006279
crossref_primary_10_1038_s41598_019_46878_2
crossref_primary_10_1093_aob_mcv149
crossref_primary_10_7717_peerj_16350
crossref_primary_10_1071_FP19282
crossref_primary_10_1007_s11104_016_2832_2
crossref_primary_10_3390_f14112253
crossref_primary_10_1111_1365_2664_12874
crossref_primary_10_1111_1365_2745_12160
crossref_primary_10_1093_aob_mcab055
crossref_primary_10_1007_s00442_023_05455_1
crossref_primary_10_1007_s10764_011_9540_9
crossref_primary_10_1007_s00442_013_2863_9
crossref_primary_10_1007_s11829_018_9609_x
crossref_primary_10_1007_s00442_019_04469_y
crossref_primary_10_1111_jbi_13764
crossref_primary_10_1371_journal_pone_0155749
crossref_primary_10_1111_oik_09032
crossref_primary_10_1111_bij_12592
crossref_primary_10_1111_j_1365_2435_2012_02019_x
crossref_primary_10_1016_j_tree_2015_09_006
crossref_primary_10_1093_aob_mcad126
crossref_primary_10_1093_icb_icz152
crossref_primary_10_1038_s41467_020_16839_9
crossref_primary_10_1111_1365_2745_70019
crossref_primary_10_1002_2014JG002709
crossref_primary_10_1007_s00227_022_04166_0
crossref_primary_10_1111_plb_12534
crossref_primary_10_1111_1365_2745_12184
crossref_primary_10_1016_j_foreco_2024_121965
crossref_primary_10_1111_1365_2745_13151
crossref_primary_10_1016_j_envexpbot_2024_105897
crossref_primary_10_1093_aob_mcac040
crossref_primary_10_3759_tropics_MS18_12
crossref_primary_10_1111_geb_12623
crossref_primary_10_1139_cjps_2018_0120
crossref_primary_10_1016_j_ecolind_2022_108799
crossref_primary_10_1007_s00442_014_2964_0
crossref_primary_10_1139_as_2020_0016
crossref_primary_10_1098_rsif_2017_0156
crossref_primary_10_3390_biomimetics8020145
crossref_primary_10_1098_rsos_221066
crossref_primary_10_1111_oik_09054
crossref_primary_10_1371_journal_pone_0077242
crossref_primary_10_1007_s00484_016_1156_5
crossref_primary_10_1093_jxb_erv024
crossref_primary_10_1111_nph_18022
crossref_primary_10_1111_1365_2435_13135
crossref_primary_10_1098_rsif_2021_0676
crossref_primary_10_3109_17435390_2015_1048326
crossref_primary_10_1002_ajb2_16056
crossref_primary_10_1103_PhysRevE_95_042402
crossref_primary_10_1111_1365_2745_14388
crossref_primary_10_1111_ppl_12479
crossref_primary_10_1007_s11442_016_1251_x
crossref_primary_10_1002_ajb2_16290
crossref_primary_10_3389_fpls_2022_996750
crossref_primary_10_1093_aob_mcad030
crossref_primary_10_1111_1365_2435_12059
crossref_primary_10_1002_jsfa_10721
crossref_primary_10_1016_j_foreco_2018_12_008
crossref_primary_10_1111_1365_2435_12176
crossref_primary_10_1111_1365_2435_13023
crossref_primary_10_1155_2020_8792143
crossref_primary_10_1111_geb_12962
crossref_primary_10_1111_pce_14808
crossref_primary_10_1016_j_jcz_2011_12_002
crossref_primary_10_1111_jbi_12503
crossref_primary_10_1002_ecy_3385
crossref_primary_10_1073_pnas_1901118116
crossref_primary_10_1111_nph_13929
crossref_primary_10_1038_nature16489
crossref_primary_10_1111_gcb_12084
crossref_primary_10_1016_j_coal_2018_09_003
crossref_primary_10_1016_j_envexpbot_2021_104557
crossref_primary_10_3390_f15081439
crossref_primary_10_1093_aobpla_plx070
crossref_primary_10_1111_ele_13103
crossref_primary_10_3389_fpls_2018_00583
crossref_primary_10_1111_nph_17151
crossref_primary_10_1038_nature16476
crossref_primary_10_1016_j_catena_2021_105262
crossref_primary_10_1016_j_soilbio_2015_10_021
crossref_primary_10_1093_aob_mcac086
crossref_primary_10_1016_j_pld_2024_04_009
crossref_primary_10_1093_botlinnean_boae035
crossref_primary_10_1016_j_indcrop_2021_114510
crossref_primary_10_1002_ajpa_22903
crossref_primary_10_1111_nph_20037
crossref_primary_10_3732_ajb_1200562
crossref_primary_10_1371_journal_pone_0058878
crossref_primary_10_13102_sociobiology_v60i3_236_241
crossref_primary_10_3390_f9110722
crossref_primary_10_1016_j_jhevol_2022_103199
crossref_primary_10_1111_ppl_13512
crossref_primary_10_1002_ecy_3007
crossref_primary_10_1111_1365_2435_13681
crossref_primary_10_1111_j_1365_2745_2012_02015_x
crossref_primary_10_1111_1365_2435_13205
crossref_primary_10_1111_j_1469_8137_2012_04231_x
crossref_primary_10_1111_nph_15803
crossref_primary_10_3389_ffgc_2023_1106723
crossref_primary_10_1098_rstb_2022_0547
crossref_primary_10_1002_ajp_22661
crossref_primary_10_1007_s00442_019_04453_6
crossref_primary_10_1111_1365_2435_12240
crossref_primary_10_7717_peerj_160
crossref_primary_10_1899_11_103_1
crossref_primary_10_1007_s11104_016_3151_3
crossref_primary_10_1093_treephys_tpz076
crossref_primary_10_1007_s11284_018_1614_0
crossref_primary_10_1007_s10750_019_04159_z
crossref_primary_10_3389_ffgc_2023_1304897
crossref_primary_10_1111_fwb_12158
crossref_primary_10_1007_s00442_015_3416_1
crossref_primary_10_1093_icb_icae070
crossref_primary_10_1007_s11104_023_06244_8
crossref_primary_10_1111_ele_13659
crossref_primary_10_1002_ece3_4859
crossref_primary_10_1071_FP16263
crossref_primary_10_1093_aob_mcx175
crossref_primary_10_1093_biolinnean_blz158
crossref_primary_10_1186_s13595_024_01232_z
crossref_primary_10_1007_s00300_024_03284_3
crossref_primary_10_1016_j_actbio_2019_02_023
crossref_primary_10_1086_724015
crossref_primary_10_1371_journal_pone_0265490
crossref_primary_10_7717_peerj_7798
crossref_primary_10_1890_14_0340
crossref_primary_10_1111_geb_12347
crossref_primary_10_1002_ajb2_16349
crossref_primary_10_1038_s41598_024_51431_x
crossref_primary_10_1002_eap_2636
crossref_primary_10_1007_s00484_014_0822_8
crossref_primary_10_3390_d15020187
crossref_primary_10_1016_j_apsoil_2020_103857
crossref_primary_10_1111_pre_12425
crossref_primary_10_1007_s40725_020_00122_7
crossref_primary_10_1111_j_1469_7580_2012_01519_x
crossref_primary_10_3389_fevo_2018_00064
crossref_primary_10_1002_ecy_2591
crossref_primary_10_1016_j_actao_2020_103673
crossref_primary_10_1111_j_1469_8137_2012_04203_x
crossref_primary_10_1016_j_ecoinf_2013_05_005
crossref_primary_10_1111_geb_12336
crossref_primary_10_1002_lno_11875
crossref_primary_10_1086_681086
crossref_primary_10_1016_j_jaridenv_2017_01_001
crossref_primary_10_1111_jvs_12999
crossref_primary_10_1016_j_jhevol_2016_04_006
crossref_primary_10_1111_maec_12340
crossref_primary_10_1016_j_fecs_2022_100072
crossref_primary_10_1111_1365_2435_12452
crossref_primary_10_3732_ajb_1400559
crossref_primary_10_1007_s00468_018_1796_7
crossref_primary_10_1093_treephys_tpy150
crossref_primary_10_1016_j_ppees_2011_10_002
crossref_primary_10_1111_ele_12760
crossref_primary_10_3390_agronomy12030617
crossref_primary_10_1111_1440_1703_12175
crossref_primary_10_1002_ecy_2692
crossref_primary_10_1111_ele_12527
crossref_primary_10_1007_s11738_022_03435_1
crossref_primary_10_17660_ActaHortic_2023_1368_15
crossref_primary_10_1002_ajp_22640
crossref_primary_10_1038_s41467_020_15014_4
crossref_primary_10_1016_j_jenvman_2018_11_082
crossref_primary_10_1111_1365_2745_12825
crossref_primary_10_1111_j_1365_2435_2012_02013_x
crossref_primary_10_1111_jvs_12893
crossref_primary_10_2478_fsmu_2019_0014
crossref_primary_10_1007_s00442_015_3339_x
crossref_primary_10_1093_aob_mcy073
crossref_primary_10_3390_plants13172378
crossref_primary_10_1007_s10682_024_10298_0
crossref_primary_10_1093_aob_mcy076
crossref_primary_10_1007_s11252_018_0771_9
crossref_primary_10_1142_S0129183114500156
crossref_primary_10_1007_s00468_017_1540_8
crossref_primary_10_1111_nph_12253
crossref_primary_10_1007_s00442_014_2887_9
crossref_primary_10_1016_j_foreco_2019_117569
crossref_primary_10_1111_1365_2745_12734
crossref_primary_10_1016_j_compag_2019_05_006
crossref_primary_10_1038_srep42774
crossref_primary_10_1002_ajpa_24257
crossref_primary_10_1002_ajb2_16260
crossref_primary_10_1093_treephys_tpx042
crossref_primary_10_1016_j_soilbio_2024_109543
crossref_primary_10_1007_s00442_016_3634_1
crossref_primary_10_3389_fpls_2021_773118
crossref_primary_10_1371_journal_pone_0190700
crossref_primary_10_1007_s11104_025_07266_0
crossref_primary_10_1002_ece3_1970
crossref_primary_10_1016_j_flora_2023_152397
crossref_primary_10_1007_s00442_013_2666_z
crossref_primary_10_3389_fpls_2019_00505
crossref_primary_10_1186_s13595_023_01204_9
crossref_primary_10_1007_s00442_018_4144_0
crossref_primary_10_1029_2021WR029618
crossref_primary_10_1111_j_1461_0248_2011_01712_x
crossref_primary_10_1093_jpe_rtu028
crossref_primary_10_1111_1365_2435_12526
crossref_primary_10_3390_plants13060769
crossref_primary_10_1007_s00442_017_4043_9
crossref_primary_10_32615_ps_2020_054
crossref_primary_10_1111_nph_15983
crossref_primary_10_3390_f15111976
crossref_primary_10_1111_plb_13056
crossref_primary_10_1111_1365_2745_12756
crossref_primary_10_1111_1365_2745_13603
crossref_primary_10_1111_j_1095_8339_2012_01227_x
crossref_primary_10_1002_ece3_1860
crossref_primary_10_1007_s40333_023_0102_8
crossref_primary_10_1111_1440_1703_1267
crossref_primary_10_1111_pce_13087
crossref_primary_10_1093_aob_mcz196
crossref_primary_10_1007_s40415_024_01002_1
crossref_primary_10_1242_jeb_076489
crossref_primary_10_1111_nph_16712
crossref_primary_10_59465_ijfr_2023_10_1_1_19
crossref_primary_10_1007_s00442_023_05471_1
crossref_primary_10_1007_s11676_022_01594_y
crossref_primary_10_1093_jpe_rtt070
crossref_primary_10_3389_fpls_2022_994429
crossref_primary_10_1029_2021JG006606
crossref_primary_10_1002_ajb2_16038
crossref_primary_10_1111_pre_12375
crossref_primary_10_3389_fpls_2021_674932
crossref_primary_10_1080_17550874_2013_773103
crossref_primary_10_1111_jvs_12613
crossref_primary_10_1111_ele_12739
crossref_primary_10_1111_nph_14766
crossref_primary_10_1016_j_envexpbot_2016_12_010
crossref_primary_10_1007_s00300_015_1655_6
crossref_primary_10_1007_s11273_021_09853_1
crossref_primary_10_1603_EC11424
crossref_primary_10_1007_s10265_019_01088_9
crossref_primary_10_1016_j_jhevol_2018_02_006
crossref_primary_10_1002_ece3_5328
crossref_primary_10_1038_s41467_022_30888_2
crossref_primary_10_1007_s00300_019_02568_3
crossref_primary_10_1007_s00300_017_2139_7
crossref_primary_10_1016_j_ufug_2020_126705
crossref_primary_10_1111_nph_15206
crossref_primary_10_1016_j_ecolind_2023_110237
crossref_primary_10_1002_advs_201600416
crossref_primary_10_1007_s11120_021_00872_w
crossref_primary_10_1146_annurev_arplant_071221_090809
crossref_primary_10_3390_f10121055
crossref_primary_10_1111_1365_2745_12407
crossref_primary_10_1111_1365_2745_12887
crossref_primary_10_1111_1365_2745_12401
crossref_primary_10_1364_OE_400852
crossref_primary_10_1139_cjfr_2015_0417
crossref_primary_10_1002_ajpa_23337
crossref_primary_10_1038_s41598_024_53406_4
crossref_primary_10_1093_jxb_erac479
crossref_primary_10_1111_nph_16994
crossref_primary_10_1016_j_flora_2022_152023
crossref_primary_10_1111_pre_12168
crossref_primary_10_1002_ecy_2858
crossref_primary_10_1139_cjfr_2018_0270
crossref_primary_10_1111_jvs_13216
crossref_primary_10_1111_pce_13042
crossref_primary_10_48130_FR_2023_0021
crossref_primary_10_1111_geb_12042
crossref_primary_10_1016_j_coal_2023_104263
crossref_primary_10_3390_plants4020167
crossref_primary_10_1016_j_agrformet_2017_12_259
crossref_primary_10_1002_ecy_2745
crossref_primary_10_1007_s00227_012_2159_3
crossref_primary_10_1016_j_scienta_2021_110351
crossref_primary_10_1007_s11104_020_04816_6
crossref_primary_10_1016_j_foreco_2020_118878
crossref_primary_10_1111_nph_13234
crossref_primary_10_1111_nph_15657
crossref_primary_10_1002_jsfa_9112
crossref_primary_10_1007_s00442_011_2175_x
crossref_primary_10_1007_s11829_020_09761_w
crossref_primary_10_1007_s11829_023_09953_0
crossref_primary_10_1093_jxb_ert316
crossref_primary_10_2175_106143016X14733681695320
crossref_primary_10_1002_lno_10611
crossref_primary_10_3390_f6062047
crossref_primary_10_1007_s00442_017_3951_z
crossref_primary_10_1016_j_jplph_2022_153671
crossref_primary_10_1098_rspb_2023_0355
crossref_primary_10_1007_s10265_021_01263_x
crossref_primary_10_1111_1365_2745_12211
crossref_primary_10_1111_pce_14592
crossref_primary_10_1093_jxb_erac004
crossref_primary_10_1093_jxb_ert320
crossref_primary_10_1371_journal_pone_0160715
crossref_primary_10_1111_geb_13062
crossref_primary_10_1111_nph_15116
crossref_primary_10_1111_nph_17416
crossref_primary_10_1002_fes3_70030
crossref_primary_10_3732_ajb_1600110
crossref_primary_10_1111_1365_2435_12920
crossref_primary_10_1016_j_scienta_2015_01_013
crossref_primary_10_1093_treephys_tpac017
crossref_primary_10_1111_nph_14496
crossref_primary_10_1371_journal_pone_0293596
crossref_primary_10_6090_jarq_46_167
crossref_primary_10_1038_s41559_021_01616_8
crossref_primary_10_1111_gcb_14904
crossref_primary_10_32615_ps_2019_128
crossref_primary_10_1111_1365_2745_12598
crossref_primary_10_1098_rsfs_2015_0109
crossref_primary_10_1002_ajb2_16322
crossref_primary_10_1016_j_tree_2022_11_002
crossref_primary_10_3390_plants9080990
crossref_primary_10_3389_ffgc_2024_1342135
crossref_primary_10_3389_fpls_2016_01925
crossref_primary_10_1007_s00035_021_00274_7
crossref_primary_10_1098_rsfs_2015_0100
crossref_primary_10_1111_eea_12321
crossref_primary_10_1111_pce_15307
crossref_primary_10_1111_1365_2745_12588
crossref_primary_10_1007_s11284_012_1025_6
crossref_primary_10_1111_1440_1703_12385
crossref_primary_10_3389_ffgc_2022_1002472
crossref_primary_10_1111_1365_2435_12946
crossref_primary_10_1016_j_foreco_2023_121388
Cites_doi 10.1046/j.1469-8137.2002.00479.x
10.1890/04-1022
10.2307/1942495
10.1146/annurev.ecolsys.39.110707.173430
10.1093/aob/mcn246
10.2307/2389448
10.2307/2390225
10.1093/jee/61.6.1736
10.1146/annurev.es.07.110176.001005
10.1007/BF00317383
10.1111/j.1365-3040.2004.01209.x
10.1046/j.1442-9993.2003.01321.x
10.2307/1935647
10.1071/PP9880063
10.1038/nature02403
10.1146/annurev.es.13.110182.001305
10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2
10.2307/3127
10.1093/oxfordjournals.aob.a083740
10.5962/bhl.title.8099
10.1093/oso/9780199632237.003.0008
10.1146/annurev.ecolsys.27.1.305
10.1007/BF00035537
10.1088/0957-0233/7/6/016
10.1111/j.1469-8137.2010.03212.x
10.1890/0012-9658(2002)083[3369:LVIPOS]2.0.CO;2
10.1007/s004420051001
10.1098/rstb.1991.0099
10.1046/j.1469-8137.1997.00628.x
10.2307/1934037
10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2
10.1016/0305-1978(78)90026-1
10.1146/annurev.ecolsys.33.010802.150452
10.1093/jxb/erp117
10.1111/j.0269-8463.2004.00847.x
10.1111/j.1469-8137.2009.02830.x
10.1016/j.tree.2008.02.006
10.1006/anbo.2001.1391
10.1016/S1360-1385(00)01575-2
10.1111/j.1469-8137.2010.03202.x
10.1111/j.1654-1103.2004.tb02266.x
10.1017/S0266467405002919
10.1023/A:1014981715532
10.1071/BT02124
10.1126/science.1184984
10.2307/2388520
10.2307/2390178
10.3732/ajb.93.10.1531
10.1046/j.1469-8137.2002.00357.x
10.1086/344920
10.1890/05-1051
10.1093/aob/mcn046
10.1016/S0022-5193(05)80637-X
10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2
10.1017/S1464793106007007
10.1111/j.1365-2311.1954.tb00771.x
10.1071/AR9960587
10.1046/j.1365-2435.2001.00522.x
10.1007/978-94-011-1494-3
10.1111/j.1365-2435.2006.01223.x
10.1006/anbo.1993.1043
10.1007/BF00610649
10.1111/j.1469-185X.1996.tb01280.x
10.1093/bioinformatics/btn358
10.1111/j.1365-2745.2009.01523.x
10.1007/978-1-349-04627-0_17
10.1046/j.1469-8137.2003.00855.x
10.1111/j.1469-8137.1992.tb01131.x
10.1073/pnas.94.25.13730
10.3732/ajb.93.10.1546
10.1007/s11104-005-3343-8
10.1086/284325
10.1046/j.1469-8137.1999.00506.x
10.1017/CBO9780511735011
10.1093/aob/mcn013
10.7591/9781501732355
10.2307/2390573
ContentType Journal Article
Copyright 2011 Blackwell Publishing Ltd/CNRS
2015 INIST-CNRS
2011 Blackwell Publishing Ltd/CNRS.
Wageningen University & Research
Copyright_xml – notice: 2011 Blackwell Publishing Ltd/CNRS
– notice: 2015 INIST-CNRS
– notice: 2011 Blackwell Publishing Ltd/CNRS.
– notice: Wageningen University & Research
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7S9
L.6
7X8
7ST
SOI
QVL
DOI 10.1111/j.1461-0248.2010.01582.x
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Environment Abstracts
Environment Abstracts
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Ecology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Environment Abstracts
DatabaseTitleList MEDLINE
MEDLINE - Academic
AGRICOLA


Entomology Abstracts
Ecology Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1461-0248
EndPage 312
ExternalDocumentID oai_library_wur_nl_wurpubs_404188
2272102621
21265976
23920282
10_1111_j_1461_0248_2010_01582_x
ELE1582
ark_67375_WNG_RH2K81R2_G
US201301947791
Genre reviewArticle
Journal Article
Feature
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABTAH
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
N~3
O66
O9-
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7S9
L.6
7X8
7ST
SOI
-
02
0R
1AW
31
3N
AAPBV
GA
HZ
IA
KM
NF
P4A
PQEST
QVL
RIG
UNR
WT
Y3
ID FETCH-LOGICAL-c7132-1d7dc037f63e778bc7a03185bb11b588f2b77b5d0b1a7e494f0c8bf5e9548fd83
IEDL.DBID DR2
ISSN 1461-023X
1461-0248
IngestDate Fri Feb 05 18:08:08 EST 2021
Fri Jul 11 05:55:43 EDT 2025
Fri Jul 11 04:24:00 EDT 2025
Fri Jul 11 09:07:33 EDT 2025
Sun Jul 13 05:27:30 EDT 2025
Mon Jul 21 05:26:12 EDT 2025
Mon Jul 21 09:12:13 EDT 2025
Tue Jul 01 02:29:37 EDT 2025
Thu Apr 24 22:54:13 EDT 2025
Wed Jan 22 16:45:18 EST 2025
Wed Oct 30 09:57:25 EDT 2024
Wed Dec 27 19:21:11 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Biomechanics
global-trend
meta-analysis
Plant leaf
fibre
toughness
Metaanalysis
leaf traits
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
CC BY 4.0
2011 Blackwell Publishing Ltd/CNRS.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c7132-1d7dc037f63e778bc7a03185bb11b588f2b77b5d0b1a7e494f0c8bf5e9548fd83
Notes http://dx.doi.org/10.1111/j.1461-0248.2010.01582.x
ArticleID:ELE1582
istex:36E2810AD94647F1D3182F627BCCD4D1166611AB
ark:/67375/WNG-RH2K81R2-G
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
OpenAccessLink https://hdl.handle.net/2324/19801
PMID 21265976
PQID 852933372
PQPubID 32390
PageCount 12
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_404188
proquest_miscellaneous_879476914
proquest_miscellaneous_858416864
proquest_miscellaneous_1501367740
proquest_journals_852933372
pubmed_primary_21265976
pascalfrancis_primary_23920282
crossref_citationtrail_10_1111_j_1461_0248_2010_01582_x
crossref_primary_10_1111_j_1461_0248_2010_01582_x
wiley_primary_10_1111_j_1461_0248_2010_01582_x_ELE1582
istex_primary_ark_67375_WNG_RH2K81R2_G
fao_agris_US201301947791
ProviderPackageCode CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate March 2011
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: March 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
– name: Paris
PublicationTitle Ecology letters
PublicationTitleAlternate Ecol Lett
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Read, J. & Sanson, G.D. (2003). Characterizing sclerophylly: the mechanical properties of a diverse range of leaf types. New Phytol., 160, 81-99.
Loveless, A.R. (1961). A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves. Ann. Bot., 25, 168-184.
Kitajima, K. & Poorter, L. (2010). Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytol., 186, 708-721.
Niklas, K.J. (1992). Plant Biomechanics: An Engineering Approach to Plant Form and Function. University of Chicago Press, Chicago.
Edwards, C., Read, J. & Sanson, G. (2000). Characterising sclerophylly: some mechanical properties of leaves from heath and forest. Oecologia, 123, 158-167.
Cornelissen, J.H.C. & Thompson, K. (1997). Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol., 135, 109-114.
Lucas, P.W. (2004). Dental Functional Morphology: How Teeth Work. Cambridge University Press, Cambridge.
Pérez-Harguindeguy, N., Díaz, S., Vendramini, F., Cornelissen, J.H.C., Gurvich, D.E. & Cabido, M. (2003). Leaf traits and herbivore selection in the field and in cafeteria experiments. Austral Ecol., 28, 642-650.
Darvell, B.W., Lee, P.K.D., Yuen, T.D.B. & Lucas, P.W. (1996). A portable fracture toughness tester for biological materials. Meas. Sci. Technol., 7, 954-962.
Choong, M.F., Lucas, P.W., Ong, J.S.Y., Pereira, B., Tan, H.T.W. & Turner, I.M. (1992). Leaf fracture toughness and sclerophylly: their correlations and ecological implications. New Phytol., 121, 597-610.
Levin, D.A. (1976). The chemical defenses of plants to pathogens and herbivores. Annu. Rev. Ecol. Syst., 7, 121-159.
Wright, I.J. & Cannon, K. (2001). Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Funct. Ecol., 15, 351-359.
Lusk, C.H., Onoda, Y., Kooyman, R. & Gutiérrez-Giron, A. (2010). Reconciling species-level vs plastic responses of evergreen leaf structure to light gradients: shade leaves punch above their weight. New Phytol., 186, 429-438.
Hallam, A. & Read, J. (2006). Do tropical species invest more in anti-herbivore defence than temperate species? A test in Eucryphia (Cunoniaceae) in eastern Australia. J. Trop. Ecol., 22, 41-51.
Lusk, C.H., Reich, P.B., Montgomery, R.A., Ackerly, D.D. & Cavender-Bares, J. (2008). Why are evergreen leaves so contrary about shade? Trends Ecol. Evol., 23, 299-303.
Poorter, H., Niinemets, L., Poorter, L., Wright, I.J. & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol., 182, 565-588.
Chabot, B.F. & Hicks, D.J. (1982). The ecology of leaf life spans. Annu. Rev. Ecol. Syst., 13, 229-259.
Read, J., Sanson, G.D. & Lamont, B.B. (2005). Leaf mechanical properties in sclerophyll woodland and shrubland on contrasting soils. Plant Soil, 276, 95-113.
Van Soest, P.J. (1994). Nutritional Ecology of the Ruminant. Comstock Publishing, Ithaca.
Atkins, A.Y. & Mai, Y.W. (1985). Elastic and Plastic Fracture: Metals, Polymers, Ceramics, Composites, Biological Materials. Ellis Horwood, Chichester.
Gere, J.M. & Goodno, B.J. (2009). Mechanics of Materials, 7th SI edn. Cengage Learning, Toronto.
Aranwela, N., Sanson, G. & Read, J. (1999). Methods of assessing leaf-fracture properties. New Phytol., 144, 369-383.
Dominy, N.J., Grubb, P.J., Jackson, R.V., Lucas, P.W., Metcalfe, D.J., Svenning, J.-C. et al. (2008). In tropical lowland rain forests monocots have tougher leaves than dicots, and include a new kind of tough leaf. Ann. Bot., 101, 1363-1377.
Wright, I.J. & Westoby, M. (2002). Leaves at low versus high rainfall: coordination of structure, lifespan and physiology. New Phytol., 155, 403-416.
Pennings, S.C. & Silliman, B.R. (2005). Linking biogeography and community ecology: latitudinal variation in plant-herbivore interaction strength. Ecology, 86, 2310-2319.
Read, J. & Stokes, A. (2006). Plant biomechanics in an ecological context. Am. J. Bot., 93, 1546-1565.
Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F. et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
Williams, L.H. (1954). The feeding habits and food preferences of acrididae and the factors which determine them. Trans. R. Entomol. Soc. Lond., 105, 423-454.
Reich, P.B., Uhl, C., Walters, M.B. & Ellsworth, D.S. (1991). Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species. Oecologia (Heidelberg), 86, 16-24.
De Luca, V. & St Pierre, B. (2000). The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci., 5, 168-173.
Cornelissen, J.H.C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D.E. et al. (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot., 51, 335-380.
Onoda, Y., Schieving, F. & Anten, N.P.R. (2008). Effects of light and nutrient availability on leaf mechanical properties of Plantago major: a conceptual approach. Ann. Bot., 101, 727-736.
Sanson, G. (2006). The biomechanics of browsing and grazing. Am. J. Bot., 93, 1531-1545.
Felsenstein, J. (1985). Phylogenies and the comparative method. Am. Nat., 125, 1.
Whittaker, R. (1975). Communities and Ecosystems. Macmillan, New York.
New, M., Hulme, M. & Jones, P. (1999). Representing twentieth-century space-time climate variability. Part I: development of a 1961-90 mean monthly terrestrial climatology. J. Clim., 12, 829-856.
Niinemets, U. (2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82, 453-469.
Turner, I.M. (1994). Sclerophylly: primarily protective? Funct. Ecol., 8, 669-675.
Beadle, N.C.W. (1966). Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly. Ecology, 47, 992-1007.
Lucas, P.W. & Pereira, B. (1990). Estimation of the fracture toughness of leaves. Funct. Ecol., 4, 819-822.
Schimper, A.F.W. (1903). Plant-Geography Upon a Physiological Basis. Clarendon Press, Oxford.
Smith, R.H. (1973). The analysis of intra-generation change in animal populations. J. Anim. Ecol., 42, 611-622.
Warton, D.I., Wright, I.J., Falster, D.S. & Westoby, M. (2006). Bivariate line-fitting methods for allometry. Biol. Rev., 81, 259-291.
Henry, D., Macmillan, R. & Simpson, R. (1996). Measurement of the shear and tensile fracture properties of leaves of pasture grasses. Aust. J. Agric. Res., 47, 587-603.
Peeters, P.J., Sanson, G. & Read, J. (2007). Leaf biomechanical properties and the densities of herbivorous insect guilds. Funct. Ecol., 21, 246-255.
Wright, W. & Vincent, J.F.V. (1996). Herbivory and the mechanics of fracture in plants. Biol. Rev. Camb. Philos. Soc., 71, 401-413.
Hendry, G.A.F. & Grime, J.P. (1993). Methods in Comparative Plant Ecology: A Laboratory Manual. Chapman & Hall, London, UK.
Pérez-Harguindeguy, N., Díaz, S., Cornelissen, J., Vendramini, F., Cabido, M. & Castellanos, A. (2000). Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil, 218, 21-30.
Siska, E.L., Pennings, S.C., Buck, T.L. & Hanisak, M.D. (2002). Latitudinal variation in palatability of salt-marsh plants: which traits are responsible? Ecology, 83, 3369-3381.
Coley, P.D. & Barone, J.A. (1996). Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst., 27, 305-335.
Lucas, P.W., Choong, M.F., Tan, H.T.W., Turner, I.M. & Berrick, A.J. (1991). The fracture toughness of the leaf of the dicotyledon Calophyllum inophyllum L (Guttiferae). Philos. Trans. Biol. Sci., 334, 95-106.
Pagel, M.D. (1992). A method for the analysis of comparative data. J. Theor. Biol., 4, 431-442.
Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A. & Wright, I.J. (2002). Plant ecological strategies: some leading dimensions of variation between species [Review]. Annu. Rev. Ecol. Syst., 33, 125-159.
Wright, I.J., Reich, P.B. & Westoby, M. (2003). Least-cost input mixtures of water and nitrogen for photosynthesis. Am. Nat., 161, 98-111.
Evans, J.R., Kaldenhoff, R., Genty, B. & Terashima, I. (2009). Resistances along the CO2 diffusion pathway inside leaves. J. Exp. Bot, 60, 2235-2248.
Vendramini, F., Dìaz, S., Gurvich, D.E., Wilson, P.J., Thompson, K. & Hodgson, J.G. (2002). Leaf traits as indicators of resource-use strategy in floras with succulent species. New Phytol., 154, 147-157.
Fine, P.V.A., Miller, Z.J., Mesones, I., Irazuzta, S., Appel, H.M., Stevens, M.H.H. et al. (2006). The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology, 87, S150-S162.
Atkins, A.G. & Mai, Y.W. (1979). On the guillotining of materials. J. Mater. Sci., 14, 2747-2754.
Feeny, P. (1970). Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology, 51, 565-581.
Turner, I.M., Choong, M.F., Tan, H.T.W. & Lucas, P.W. (1993). How tough are sclerophylls? Ann. Bot., 71, 343-345.
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N. et al. (2010). Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science, 329, 834-838.
Takashima, T, Hikosaka, K & Hirose, T. (2004). Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ, 27, 1047-1054.
Kursar, T.A. & Coley, P.D. (1992). Delayed greening in tropical leaves: an antiherbivore defense? Biotropica, 24, 256-262.
Onoda, Y., Hikosaka, K. & Hirose, T. (2004). Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Funct. Ecol., 18, 419-425.
Adams, J.M. & Zhang, Y. (2009). Is there more insect folivory in warmer temperate climates? A latitudinal comparison of insect folivory in eastern North America. J. Ecol., 97, 933-940.
Díaz, S., Hodgson, J.G., Thompson, K., Cabido, M., Cor
1982; 13
2009; 40
2000; 5
2002; 154
1992; 121
2004; 27
2000; 218
2002; 155
1983; 53
1975
1996; 71
1985; 125
2010; 186
1968; 61
2008; 101
2003; 51
2007; 34
1979
1978; 6
2001; 87
1997; 94
1973; 42
2009; 97
2002; 83
1993; 71
2006; 22
1991; 86
1986
1999; 12
2003; 161
1985
2008; 23
2003; 160
2008; 24
2001; 15
2000; 123
2007; 21
1996; 27
1903
1992; 4
1996; 7
1988
1997; 135
2006; 93
1995; 9
1991; 334
2010; 329
1979; 14
2005; 276
2009; 60
2009; 182
1988; 15
2002; 33
2009
2005; 86
1994
1970; 51
1993
2004
1999; 144
1992
1991
1992; 31
2004; 428
1954; 105
1996; 10
1976; 7
2006; 81
1994; 8
2001; 82
1966; 47
2004; 18
2006; 87
2004; 15
1992; 24
2003; 28
1996; 47
1961; 25
2009; 103
1990; 4
Felsenstein (10.1111/j.1461-0248.2010.01582.x-BIB24|cit24) 1985; 125
Dominy (10.1111/j.1461-0248.2010.01582.x-BIB20|cit20) 2008; 101
Pérez-Harguindeguy (10.1111/j.1461-0248.2010.01582.x-BIB52|cit52) 2003; 28
Clissold (10.1111/j.1461-0248.2010.01582.x-BIB11|cit11) 2007; 34
Coley (10.1111/j.1461-0248.2010.01582.x-BIB12|cit12) 1983; 53
Choong (10.1111/j.1461-0248.2010.01582.x-BIB9|cit9) 1996; 10
Lusk (10.1111/j.1461-0248.2010.01582.x-BIB42|cit42) 2010; 186
Wright (10.1111/j.1461-0248.2010.01582.x-BIB82|cit83) 2002; 155
Henry (10.1111/j.1461-0248.2010.01582.x-BIB32|cit32) 1996; 47
Read (10.1111/j.1461-0248.2010.01582.x-BIB57|cit57) 2005; 276
Choong (10.1111/j.1461-0248.2010.01582.x-BIB10|cit10) 1992; 121
Cornelissen (10.1111/j.1461-0248.2010.01582.x-BIB15|cit15) 1997; 135
Webb (10.1111/j.1461-0248.2010.01582.x-BIB75|cit76) 2008; 24
Díaz (10.1111/j.1461-0248.2010.01582.x-BIB19|cit19) 2004; 15
Onoda (10.1111/j.1461-0248.2010.01582.x-BIB46|cit46) 2004; 18
Pennings (10.1111/j.1461-0248.2010.01582.x-BIB50|cit50) 2005; 86
Peeters (10.1111/j.1461-0248.2010.01582.x-BIB49|cit49) 2007; 21
Williams (10.1111/j.1461-0248.2010.01582.x-BIB78|cit79) 1954; 105
Poorter (10.1111/j.1461-0248.2010.01582.x-BIB54|cit54) 2009; 182
Niinemets (10.1111/j.1461-0248.2010.01582.x-BIB44|cit44) 2001; 82
Wright (10.1111/j.1461-0248.2010.01582.x-BIB79|cit80) 2001; 15
Coley (10.1111/j.1461-0248.2010.01582.x-BIB14|cit14) 1996; 27
Sanson (10.1111/j.1461-0248.2010.01582.x-BIB62|cit62) 2006; 93
Pagel (10.1111/j.1461-0248.2010.01582.x-BIB48|cit48) 1992; 4
Poorter (10.1111/j.1461-0248.2010.01582.x-BIB53|cit53) 1988
Lusk (10.1111/j.1461-0248.2010.01582.x-BIB41|cit41) 2008; 23
Givnish (10.1111/j.1461-0248.2010.01582.x-BIB28|cit28) 1988; 15
Kursar (10.1111/j.1461-0248.2010.01582.x-BIB34|cit34) 1992; 24
Levin (10.1111/j.1461-0248.2010.01582.x-BIB36|cit36) 1978; 6
Gere (10.1111/j.1461-0248.2010.01582.x-BIB26|cit26) 2009
Wright (10.1111/j.1461-0248.2010.01582.x-BIB80|cit81) 1995; 9
Levin (10.1111/j.1461-0248.2010.01582.x-BIB35|cit35) 1976; 7
Roth-Nebelsick (10.1111/j.1461-0248.2010.01582.x-BIB61|cit61) 2001; 87
Kitajima (10.1111/j.1461-0248.2010.01582.x-BIB33|cit33) 2010; 186
Givnish (10.1111/j.1461-0248.2010.01582.x-BIB27|cit27) 1979
Hallam (10.1111/j.1461-0248.2010.01582.x-BIB30|cit30) 2006; 22
Lucas (10.1111/j.1461-0248.2010.01582.x-BIB39|cit39) 1990; 4
Schemske (10.1111/j.1461-0248.2010.01582.x-BIB63|cit63) 2009; 40
Aranwela (10.1111/j.1461-0248.2010.01582.x-BIB2|cit2) 1999; 144
Wright (10.1111/j.1461-0248.2010.01582.x-BIB84|cit85) 2004; 428
Beadle (10.1111/j.1461-0248.2010.01582.x-BIB5|cit5) 1966; 47
New (10.1111/j.1461-0248.2010.01582.x-BIB43|cit43) 1999; 12
Niklas (10.1111/j.1461-0248.2010.01582.x-BIB45|cit45) 1992
Read (10.1111/j.1461-0248.2010.01582.x-BIB56|cit56) 2006; 93
Turner (10.1111/j.1461-0248.2010.01582.x-BIB69|cit70) 1994; 8
Read (10.1111/j.1461-0248.2010.01582.x-BIB55|cit55) 2003; 160
Westoby (10.1111/j.1461-0248.2010.01582.x-BIB76|cit77) 2002; 33
Beer (10.1111/j.1461-0248.2010.01582.x-BIB6|cit6) 2010; 329
Feeny (10.1111/j.1461-0248.2010.01582.x-BIB23|cit23) 1970; 51
Schimper (10.1111/j.1461-0248.2010.01582.x-BIB64|cit64) 1903
Cherrett (10.1111/j.1461-0248.2010.01582.x-BIB8|cit8) 1968; 61
Pérez-Harguindeguy (10.1111/j.1461-0248.2010.01582.x-BIB51|cit51) 2000; 218
Siska (10.1111/j.1461-0248.2010.01582.x-BIB66|cit66) 2002; 83
Wright (10.1111/j.1461-0248.2010.01582.x-BIB81|cit82) 1996; 71
Wright (10.1111/j.1461-0248.2010.01582.x-BIB83|cit84) 2003; 161
Chabot (10.1111/j.1461-0248.2010.01582.x-BIB7|cit7) 1982; 13
Vincent (10.1111/j.1461-0248.2010.01582.x-BIB73|cit74) 1992
Van Soest (10.1111/j.1461-0248.2010.01582.x-BIB71|cit72) 1994
Lucas (10.1111/j.1461-0248.2010.01582.x-BIB40|cit40) 1991; 334
Smith (10.1111/j.1461-0248.2010.01582.x-BIB67|cit67) 1973; 42
Reich (10.1111/j.1461-0248.2010.01582.x-BIB60|cit60) 1997; 94
Whittaker (10.1111/j.1461-0248.2010.01582.x-BIB77|cit78) 1975
Read (10.1111/j.1461-0248.2010.01582.x-BIB58|cit58) 2009; 103
Warton (10.1111/j.1461-0248.2010.01582.x-BIB74|cit75) 2006; 81
Evans (10.1111/j.1461-0248.2010.01582.x-BIB22|cit22) 2009; 60
Onoda (10.1111/j.1461-0248.2010.01582.x-BIB47|cit47) 2008; 101
Atkins (10.1111/j.1461-0248.2010.01582.x-BIB4|cit4) 1985
Loveless (10.1111/j.1461-0248.2010.01582.x-BIB37|cit37) 1961; 25
Reich (10.1111/j.1461-0248.2010.01582.x-BIB59|cit59) 1991; 86
Turner (10.1111/j.1461-0248.2010.01582.x-BIB70|cit71) 1993; 71
Fine (10.1111/j.1461-0248.2010.01582.x-BIB25|cit25) 2006; 87
De Luca (10.1111/j.1461-0248.2010.01582.x-BIB18|cit18) 2000; 5
Hendry (10.1111/j.1461-0248.2010.01582.x-BIB31|cit31) 1993
Takashima (10.1111/j.1461-0248.2010.01582.x-BIB1001|cit68) 2004; 27
Cornelissen (10.1111/j.1461-0248.2010.01582.x-BIB16|cit16) 2003; 51
Vendramini (10.1111/j.1461-0248.2010.01582.x-BIB72|cit73) 2002; 154
Atkins (10.1111/j.1461-0248.2010.01582.x-BIB3|cit3) 1979; 14
Adams (10.1111/j.1461-0248.2010.01582.x-BIB1|cit1) 2009; 97
Grubb (10.1111/j.1461-0248.2010.01582.x-BIB29|cit29) 1986
Lucas (10.1111/j.1461-0248.2010.01582.x-BIB38|cit38) 2004
Coley (10.1111/j.1461-0248.2010.01582.x-BIB13|cit13) 1991
Shipley (10.1111/j.1461-0248.2010.01582.x-BIB65|cit65) 2006; 87
Edwards (10.1111/j.1461-0248.2010.01582.x-BIB21|cit21) 2000; 123
Darvell (10.1111/j.1461-0248.2010.01582.x-BIB17|cit17) 1996; 7
Terashima (10.1111/j.1461-0248.2010.01582.x-BIB68|cit69) 1992; 31
References_xml – reference: Lucas, P.W. (2004). Dental Functional Morphology: How Teeth Work. Cambridge University Press, Cambridge.
– reference: Niklas, K.J. (1992). Plant Biomechanics: An Engineering Approach to Plant Form and Function. University of Chicago Press, Chicago.
– reference: Kitajima, K. & Poorter, L. (2010). Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytol., 186, 708-721.
– reference: Cherrett, J.M. (1968). A simple penetrometer for measuring leaf toughness in insect feeding studies. Econ. Entomol., 61, 1736-1739.
– reference: Loveless, A.R. (1961). A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves. Ann. Bot., 25, 168-184.
– reference: Lucas, P.W. & Pereira, B. (1990). Estimation of the fracture toughness of leaves. Funct. Ecol., 4, 819-822.
– reference: Pérez-Harguindeguy, N., Díaz, S., Cornelissen, J., Vendramini, F., Cabido, M. & Castellanos, A. (2000). Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil, 218, 21-30.
– reference: Niinemets, U. (2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82, 453-469.
– reference: Read, J. & Sanson, G.D. (2003). Characterizing sclerophylly: the mechanical properties of a diverse range of leaf types. New Phytol., 160, 81-99.
– reference: Read, J. & Stokes, A. (2006). Plant biomechanics in an ecological context. Am. J. Bot., 93, 1546-1565.
– reference: Onoda, Y., Hikosaka, K. & Hirose, T. (2004). Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Funct. Ecol., 18, 419-425.
– reference: Warton, D.I., Wright, I.J., Falster, D.S. & Westoby, M. (2006). Bivariate line-fitting methods for allometry. Biol. Rev., 81, 259-291.
– reference: Levin, D.A. & York, B.M. (1978). The toxicity of plant alkaloids: an Ecogeographic perspective. Biochem. Syst. Ecol., 6, 61-76.
– reference: New, M., Hulme, M. & Jones, P. (1999). Representing twentieth-century space-time climate variability. Part I: development of a 1961-90 mean monthly terrestrial climatology. J. Clim., 12, 829-856.
– reference: Cornelissen, J.H.C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D.E. et al. (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot., 51, 335-380.
– reference: Henry, D., Macmillan, R. & Simpson, R. (1996). Measurement of the shear and tensile fracture properties of leaves of pasture grasses. Aust. J. Agric. Res., 47, 587-603.
– reference: Van Soest, P.J. (1994). Nutritional Ecology of the Ruminant. Comstock Publishing, Ithaca.
– reference: Coley, P.D. & Barone, J.A. (1996). Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst., 27, 305-335.
– reference: Felsenstein, J. (1985). Phylogenies and the comparative method. Am. Nat., 125, 1.
– reference: Fine, P.V.A., Miller, Z.J., Mesones, I., Irazuzta, S., Appel, H.M., Stevens, M.H.H. et al. (2006). The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology, 87, S150-S162.
– reference: Schimper, A.F.W. (1903). Plant-Geography Upon a Physiological Basis. Clarendon Press, Oxford.
– reference: Díaz, S., Hodgson, J.G., Thompson, K., Cabido, M., Cornelissen, J.H.C., Jalili, A. et al. (2004). The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci., 15, 295-304.
– reference: Hallam, A. & Read, J. (2006). Do tropical species invest more in anti-herbivore defence than temperate species? A test in Eucryphia (Cunoniaceae) in eastern Australia. J. Trop. Ecol., 22, 41-51.
– reference: Reich, P.B., Uhl, C., Walters, M.B. & Ellsworth, D.S. (1991). Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species. Oecologia (Heidelberg), 86, 16-24.
– reference: Turner, I.M. (1994). Sclerophylly: primarily protective? Funct. Ecol., 8, 669-675.
– reference: Wright, W. & Illius, A.W. (1995). A comparative study of the fracture properties of 5 grasses. Funct. Ecol., 9, 269-278.
– reference: Choong, M.F., Lucas, P.W., Ong, J.S.Y., Pereira, B., Tan, H.T.W. & Turner, I.M. (1992). Leaf fracture toughness and sclerophylly: their correlations and ecological implications. New Phytol., 121, 597-610.
– reference: Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A. & Wright, I.J. (2002). Plant ecological strategies: some leading dimensions of variation between species [Review]. Annu. Rev. Ecol. Syst., 33, 125-159.
– reference: Read, J., Sanson, G.D., Caldwell, E., Clissold, F.J., Chatain, A., Peeters, P. et al. (2009). Correlations between leaf toughness and phenolics among species in contrasting environments of Australia and New Caledonia. Ann. Bot., 103, 757-767.
– reference: Feeny, P. (1970). Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology, 51, 565-581.
– reference: Pennings, S.C. & Silliman, B.R. (2005). Linking biogeography and community ecology: latitudinal variation in plant-herbivore interaction strength. Ecology, 86, 2310-2319.
– reference: Turner, I.M., Choong, M.F., Tan, H.T.W. & Lucas, P.W. (1993). How tough are sclerophylls? Ann. Bot., 71, 343-345.
– reference: Wright, I.J. & Westoby, M. (2002). Leaves at low versus high rainfall: coordination of structure, lifespan and physiology. New Phytol., 155, 403-416.
– reference: Vendramini, F., Dìaz, S., Gurvich, D.E., Wilson, P.J., Thompson, K. & Hodgson, J.G. (2002). Leaf traits as indicators of resource-use strategy in floras with succulent species. New Phytol., 154, 147-157.
– reference: Shipley, B., Lechoweicz, M.J., Wright, I. & Reich, P.B. (2006). Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology, 87, 535-541.
– reference: Peeters, P.J., Sanson, G. & Read, J. (2007). Leaf biomechanical properties and the densities of herbivorous insect guilds. Funct. Ecol., 21, 246-255.
– reference: Chabot, B.F. & Hicks, D.J. (1982). The ecology of leaf life spans. Annu. Rev. Ecol. Syst., 13, 229-259.
– reference: Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F. et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
– reference: Adams, J.M. & Zhang, Y. (2009). Is there more insect folivory in warmer temperate climates? A latitudinal comparison of insect folivory in eastern North America. J. Ecol., 97, 933-940.
– reference: Darvell, B.W., Lee, P.K.D., Yuen, T.D.B. & Lucas, P.W. (1996). A portable fracture toughness tester for biological materials. Meas. Sci. Technol., 7, 954-962.
– reference: Onoda, Y., Schieving, F. & Anten, N.P.R. (2008). Effects of light and nutrient availability on leaf mechanical properties of Plantago major: a conceptual approach. Ann. Bot., 101, 727-736.
– reference: Smith, R.H. (1973). The analysis of intra-generation change in animal populations. J. Anim. Ecol., 42, 611-622.
– reference: Webb, C.O., Ackerly, D.D. & Kembel, S.W. (2008). Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098-2100.
– reference: Siska, E.L., Pennings, S.C., Buck, T.L. & Hanisak, M.D. (2002). Latitudinal variation in palatability of salt-marsh plants: which traits are responsible? Ecology, 83, 3369-3381.
– reference: Roth-Nebelsick, A., Uhl, D., Mosbrugger, V. & Kerp, H. (2001). Evolution and function of leaf venation architecture: a review. Ann. Bot., 87, 553-566.
– reference: Reich, P.B., Walters, M.B. & Ellsworth, D.S. (1997). From tropics to tundra: global convergence in plant functioning. Proc. Natl. Acad. Sci. USA, 94, 13730-13734.
– reference: Whittaker, R. (1975). Communities and Ecosystems. Macmillan, New York.
– reference: Levin, D.A. (1976). The chemical defenses of plants to pathogens and herbivores. Annu. Rev. Ecol. Syst., 7, 121-159.
– reference: De Luca, V. & St Pierre, B. (2000). The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci., 5, 168-173.
– reference: Atkins, A.Y. & Mai, Y.W. (1985). Elastic and Plastic Fracture: Metals, Polymers, Ceramics, Composites, Biological Materials. Ellis Horwood, Chichester.
– reference: Cornelissen, J.H.C. & Thompson, K. (1997). Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol., 135, 109-114.
– reference: Williams, L.H. (1954). The feeding habits and food preferences of acrididae and the factors which determine them. Trans. R. Entomol. Soc. Lond., 105, 423-454.
– reference: Aranwela, N., Sanson, G. & Read, J. (1999). Methods of assessing leaf-fracture properties. New Phytol., 144, 369-383.
– reference: Choong, M.F. (1996). What makes a leaf tough and how this affects the pattern of Castanopsis fissa leaf consumption by caterpillars. Funct. Ecol., 10, 668-674.
– reference: Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N. et al. (2010). Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science, 329, 834-838.
– reference: Gere, J.M. & Goodno, B.J. (2009). Mechanics of Materials, 7th SI edn. Cengage Learning, Toronto.
– reference: Pagel, M.D. (1992). A method for the analysis of comparative data. J. Theor. Biol., 4, 431-442.
– reference: Lucas, P.W., Choong, M.F., Tan, H.T.W., Turner, I.M. & Berrick, A.J. (1991). The fracture toughness of the leaf of the dicotyledon Calophyllum inophyllum L (Guttiferae). Philos. Trans. Biol. Sci., 334, 95-106.
– reference: Atkins, A.G. & Mai, Y.W. (1979). On the guillotining of materials. J. Mater. Sci., 14, 2747-2754.
– reference: Hendry, G.A.F. & Grime, J.P. (1993). Methods in Comparative Plant Ecology: A Laboratory Manual. Chapman & Hall, London, UK.
– reference: Kursar, T.A. & Coley, P.D. (1992). Delayed greening in tropical leaves: an antiherbivore defense? Biotropica, 24, 256-262.
– reference: Pérez-Harguindeguy, N., Díaz, S., Vendramini, F., Cornelissen, J.H.C., Gurvich, D.E. & Cabido, M. (2003). Leaf traits and herbivore selection in the field and in cafeteria experiments. Austral Ecol., 28, 642-650.
– reference: Read, J., Sanson, G.D. & Lamont, B.B. (2005). Leaf mechanical properties in sclerophyll woodland and shrubland on contrasting soils. Plant Soil, 276, 95-113.
– reference: Lusk, C.H., Onoda, Y., Kooyman, R. & Gutiérrez-Giron, A. (2010). Reconciling species-level vs plastic responses of evergreen leaf structure to light gradients: shade leaves punch above their weight. New Phytol., 186, 429-438.
– reference: Coley, P.D. (1983). Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecol. Monogr., 53, 209-234.
– reference: Wright, I.J., Reich, P.B. & Westoby, M. (2003). Least-cost input mixtures of water and nitrogen for photosynthesis. Am. Nat., 161, 98-111.
– reference: Sanson, G. (2006). The biomechanics of browsing and grazing. Am. J. Bot., 93, 1531-1545.
– reference: Wright, I.J. & Cannon, K. (2001). Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Funct. Ecol., 15, 351-359.
– reference: Edwards, C., Read, J. & Sanson, G. (2000). Characterising sclerophylly: some mechanical properties of leaves from heath and forest. Oecologia, 123, 158-167.
– reference: Dominy, N.J., Grubb, P.J., Jackson, R.V., Lucas, P.W., Metcalfe, D.J., Svenning, J.-C. et al. (2008). In tropical lowland rain forests monocots have tougher leaves than dicots, and include a new kind of tough leaf. Ann. Bot., 101, 1363-1377.
– reference: Takashima, T, Hikosaka, K & Hirose, T. (2004). Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ, 27, 1047-1054.
– reference: Poorter, H., Niinemets, L., Poorter, L., Wright, I.J. & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol., 182, 565-588.
– reference: Wright, W. & Vincent, J.F.V. (1996). Herbivory and the mechanics of fracture in plants. Biol. Rev. Camb. Philos. Soc., 71, 401-413.
– reference: Givnish, T.J. (1988). Adaptation to sun and shade: a whole-plant perspective. Aust. J. Plant Physiol., 15, 63-92.
– reference: Schemske, D.W., Mittelbach, G.G., Cornell, H.V., Sobel, J.M. & Roy, K. (2009). Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst., 40, 245-269.
– reference: Beadle, N.C.W. (1966). Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly. Ecology, 47, 992-1007.
– reference: Evans, J.R., Kaldenhoff, R., Genty, B. & Terashima, I. (2009). Resistances along the CO2 diffusion pathway inside leaves. J. Exp. Bot, 60, 2235-2248.
– reference: Lusk, C.H., Reich, P.B., Montgomery, R.A., Ackerly, D.D. & Cavender-Bares, J. (2008). Why are evergreen leaves so contrary about shade? Trends Ecol. Evol., 23, 299-303.
– reference: Terashima, I. (1992). Anatomy of non-uniform leaf photosynthesis. Photosynth. Res., 31, 195-212.
– year: 1985
– volume: 71
  start-page: 401
  year: 1996
  end-page: 413
  article-title: Herbivory and the mechanics of fracture in plants
  publication-title: Biol. Rev. Camb. Philos. Soc.
– volume: 160
  start-page: 81
  year: 2003
  end-page: 99
  article-title: Characterizing sclerophylly: the mechanical properties of a diverse range of leaf types
  publication-title: New Phytol.
– year: 2009
– volume: 9
  start-page: 269
  year: 1995
  end-page: 278
  article-title: A comparative study of the fracture properties of 5 grasses
  publication-title: Funct. Ecol.
– start-page: 375
  year: 1979
  end-page: 407
– start-page: 25
  year: 1991
  end-page: 49
– volume: 97
  start-page: 933
  year: 2009
  end-page: 940
  article-title: Is there more insect folivory in warmer temperate climates? A latitudinal comparison of insect folivory in eastern North America
  publication-title: J. Ecol.
– volume: 47
  start-page: 992
  year: 1966
  end-page: 1007
  article-title: Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly
  publication-title: Ecology
– volume: 93
  start-page: 1546
  year: 2006
  end-page: 1565
  article-title: Plant biomechanics in an ecological context
  publication-title: Am. J. Bot.
– volume: 135
  start-page: 109
  year: 1997
  end-page: 114
  article-title: Functional leaf attributes predict litter decomposition rate in herbaceous plants
  publication-title: New Phytol.
– volume: 53
  start-page: 209
  year: 1983
  end-page: 234
  article-title: Herbivory and defensive characteristics of tree species in a lowland tropical forest
  publication-title: Ecol. Monogr.
– volume: 334
  start-page: 95
  year: 1991
  end-page: 106
  article-title: The fracture toughness of the leaf of the dicotyledon L (Guttiferae)
  publication-title: Philos. Trans. Biol. Sci.
– start-page: 309
  year: 1988
  end-page: 336
– volume: 40
  start-page: 245
  year: 2009
  end-page: 269
  article-title: Is there a latitudinal gradient in the importance of biotic interactions?
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– volume: 27
  start-page: 1047
  year: 2004
  end-page: 1054
  article-title: Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous species
  publication-title: Plant Cell Environ
– year: 1975
– volume: 276
  start-page: 95
  year: 2005
  end-page: 113
  article-title: Leaf mechanical properties in sclerophyll woodland and shrubland on contrasting soils
  publication-title: Plant Soil
– volume: 155
  start-page: 403
  year: 2002
  end-page: 416
  article-title: Leaves at low versus high rainfall: coordination of structure, lifespan and physiology
  publication-title: New Phytol.
– year: 1994
– volume: 27
  start-page: 305
  year: 1996
  end-page: 335
  article-title: Herbivory and plant defenses in tropical forests
  publication-title: Annu. Rev. Ecol. Syst.
– volume: 51
  start-page: 565
  year: 1970
  end-page: 581
  article-title: Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars
  publication-title: Ecology
– volume: 4
  start-page: 819
  year: 1990
  end-page: 822
  article-title: Estimation of the fracture toughness of leaves
  publication-title: Funct. Ecol.
– volume: 4
  start-page: 431
  year: 1992
  end-page: 442
  article-title: A method for the analysis of comparative data
  publication-title: J. Theor. Biol.
– volume: 13
  start-page: 229
  year: 1982
  end-page: 259
  article-title: The ecology of leaf life spans
  publication-title: Annu. Rev. Ecol. Syst.
– volume: 101
  start-page: 1363
  year: 2008
  end-page: 1377
  article-title: In tropical lowland rain forests monocots have tougher leaves than dicots, and include a new kind of tough leaf
  publication-title: Ann. Bot.
– volume: 101
  start-page: 727
  year: 2008
  end-page: 736
  article-title: Effects of light and nutrient availability on leaf mechanical properties of : a conceptual approach
  publication-title: Ann. Bot.
– volume: 94
  start-page: 13730
  year: 1997
  end-page: 13734
  article-title: From tropics to tundra: global convergence in plant functioning
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 87
  start-page: 535
  year: 2006
  end-page: 541
  article-title: Fundamental trade‐offs generating the worldwide leaf economics spectrum
  publication-title: Ecology
– volume: 25
  start-page: 168
  year: 1961
  end-page: 184
  article-title: A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves
  publication-title: Ann. Bot.
– volume: 42
  start-page: 611
  year: 1973
  end-page: 622
  article-title: The analysis of intra‐generation change in animal populations
  publication-title: J. Anim. Ecol.
– year: 2004
– volume: 123
  start-page: 158
  year: 2000
  end-page: 167
  article-title: Characterising sclerophylly: some mechanical properties of leaves from heath and forest
  publication-title: Oecologia
– volume: 8
  start-page: 669
  year: 1994
  end-page: 675
  article-title: Sclerophylly: primarily protective?
  publication-title: Funct. Ecol.
– volume: 23
  start-page: 299
  year: 2008
  end-page: 303
  article-title: Why are evergreen leaves so contrary about shade?
  publication-title: Trends Ecol. Evol.
– year: 1993
– volume: 12
  start-page: 829
  year: 1999
  end-page: 856
  article-title: Representing twentieth‐century space–time climate variability. Part I: development of a 1961–90 mean monthly terrestrial climatology
  publication-title: J. Clim.
– year: 1903
– volume: 87
  start-page: S150
  year: 2006
  end-page: S162
  article-title: The growth‐defense trade‐off and habitat specialization by plants in Amazonian forests
  publication-title: Ecology
– volume: 121
  start-page: 597
  year: 1992
  end-page: 610
  article-title: Leaf fracture toughness and sclerophylly: their correlations and ecological implications
  publication-title: New Phytol.
– volume: 34
  start-page: 317
  year: 2007
  end-page: 372
– volume: 82
  start-page: 453
  year: 2001
  end-page: 469
  article-title: Global‐scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs
  publication-title: Ecology
– volume: 125
  start-page: 1
  year: 1985
  article-title: Phylogenies and the comparative method
  publication-title: Am. Nat.
– start-page: 137
  year: 1986
  end-page: 150
– volume: 144
  start-page: 369
  year: 1999
  end-page: 383
  article-title: Methods of assessing leaf‐fracture properties
  publication-title: New Phytol.
– volume: 86
  start-page: 2310
  year: 2005
  end-page: 2319
  article-title: Linking biogeography and community ecology: latitudinal variation in plant‐herbivore interaction strength
  publication-title: Ecology
– volume: 15
  start-page: 63
  year: 1988
  end-page: 92
  article-title: Adaptation to sun and shade: a whole‐plant perspective
  publication-title: Aust. J. Plant Physiol.
– volume: 103
  start-page: 757
  year: 2009
  end-page: 767
  article-title: Correlations between leaf toughness and phenolics among species in contrasting environments of Australia and New Caledonia
  publication-title: Ann. Bot.
– volume: 14
  start-page: 2747
  year: 1979
  end-page: 2754
  article-title: On the guillotining of materials
  publication-title: J. Mater. Sci.
– volume: 22
  start-page: 41
  year: 2006
  end-page: 51
  article-title: Do tropical species invest more in anti‐herbivore defence than temperate species? A test in Eucryphia (Cunoniaceae) in eastern Australia
  publication-title: J. Trop. Ecol.
– volume: 21
  start-page: 246
  year: 2007
  end-page: 255
  article-title: Leaf biomechanical properties and the densities of herbivorous insect guilds
  publication-title: Funct. Ecol.
– volume: 7
  start-page: 954
  year: 1996
  end-page: 962
  article-title: A portable fracture toughness tester for biological materials
  publication-title: Meas. Sci. Technol.
– volume: 33
  start-page: 125
  year: 2002
  end-page: 159
  article-title: Plant ecological strategies: some leading dimensions of variation between species [Review]
  publication-title: Annu. Rev. Ecol. Syst.
– year: 1992
– volume: 93
  start-page: 1531
  year: 2006
  end-page: 1545
  article-title: The biomechanics of browsing and grazing
  publication-title: Am. J. Bot.
– volume: 161
  start-page: 98
  year: 2003
  end-page: 111
  article-title: Least‐cost input mixtures of water and nitrogen for photosynthesis
  publication-title: Am. Nat.
– volume: 428
  start-page: 821
  year: 2004
  end-page: 827
  article-title: The worldwide leaf economics spectrum
  publication-title: Nature
– volume: 24
  start-page: 256
  year: 1992
  end-page: 262
  article-title: Delayed greening in tropical leaves: an antiherbivore defense?
  publication-title: Biotropica
– volume: 86
  start-page: 16
  year: 1991
  end-page: 24
  article-title: Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species
  publication-title: Oecologia (Heidelberg)
– volume: 51
  start-page: 335
  year: 2003
  end-page: 380
  article-title: A handbook of protocols for standardised and easy measurement of plant functional traits worldwide
  publication-title: Aust. J. Bot.
– volume: 10
  start-page: 668
  year: 1996
  end-page: 674
  article-title: What makes a leaf tough and how this affects the pattern of leaf consumption by caterpillars
  publication-title: Funct. Ecol.
– volume: 83
  start-page: 3369
  year: 2002
  end-page: 3381
  article-title: Latitudinal variation in palatability of salt‐marsh plants: which traits are responsible?
  publication-title: Ecology
– volume: 60
  start-page: 2235
  year: 2009
  end-page: 2248
  article-title: Resistances along the CO diffusion pathway inside leaves
  publication-title: J. Exp. Bot
– volume: 31
  start-page: 195
  year: 1992
  end-page: 212
  article-title: Anatomy of non‐uniform leaf photosynthesis
  publication-title: Photosynth. Res.
– volume: 61
  start-page: 1736
  year: 1968
  end-page: 1739
  article-title: A simple penetrometer for measuring leaf toughness in insect feeding studies
  publication-title: Econ. Entomol.
– volume: 154
  start-page: 147
  year: 2002
  end-page: 157
  article-title: Leaf traits as indicators of resource‐use strategy in floras with succulent species
  publication-title: New Phytol.
– volume: 105
  start-page: 423
  year: 1954
  end-page: 454
  article-title: The feeding habits and food preferences of acrididae and the factors which determine them
  publication-title: Trans. R. Entomol. Soc. Lond.
– volume: 71
  start-page: 343
  year: 1993
  end-page: 345
  article-title: How tough are sclerophylls?
  publication-title: Ann. Bot.
– volume: 24
  start-page: 2098
  year: 2008
  end-page: 2100
  article-title: Phylocom: software for the analysis of phylogenetic community structure and trait evolution
  publication-title: Bioinformatics
– volume: 182
  start-page: 565
  year: 2009
  end-page: 588
  article-title: Causes and consequences of variation in leaf mass per area (LMA): a meta‐analysis
  publication-title: New Phytol.
– volume: 5
  start-page: 168
  year: 2000
  end-page: 173
  article-title: The cell and developmental biology of alkaloid biosynthesis
  publication-title: Trends Plant Sci.
– volume: 186
  start-page: 708
  year: 2010
  end-page: 721
  article-title: Tissue‐level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species
  publication-title: New Phytol.
– volume: 186
  start-page: 429
  year: 2010
  end-page: 438
  article-title: Reconciling species‐level vs plastic responses of evergreen leaf structure to light gradients: shade leaves punch above their weight
  publication-title: New Phytol.
– volume: 218
  start-page: 21
  year: 2000
  end-page: 30
  article-title: Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina
  publication-title: Plant Soil
– volume: 81
  start-page: 259
  year: 2006
  end-page: 291
  article-title: Bivariate line‐fitting methods for allometry
  publication-title: Biol. Rev.
– volume: 329
  start-page: 834
  year: 2010
  end-page: 838
  article-title: Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate
  publication-title: Science
– volume: 87
  start-page: 553
  year: 2001
  end-page: 566
  article-title: Evolution and function of leaf venation architecture: a review
  publication-title: Ann. Bot.
– volume: 18
  start-page: 419
  year: 2004
  end-page: 425
  article-title: Allocation of nitrogen to cell walls decreases photosynthetic nitrogen‐use efficiency
  publication-title: Funct. Ecol.
– volume: 15
  start-page: 351
  year: 2001
  end-page: 359
  article-title: Relationships between leaf lifespan and structural defences in a low‐nutrient, sclerophyll flora
  publication-title: Funct. Ecol.
– volume: 7
  start-page: 121
  year: 1976
  end-page: 159
  article-title: The chemical defenses of plants to pathogens and herbivores
  publication-title: Annu. Rev. Ecol. Syst.
– volume: 28
  start-page: 642
  year: 2003
  end-page: 650
  article-title: Leaf traits and herbivore selection in the field and in cafeteria experiments
  publication-title: Austral Ecol.
– volume: 6
  start-page: 61
  year: 1978
  end-page: 76
  article-title: The toxicity of plant alkaloids: an Ecogeographic perspective
  publication-title: Biochem. Syst. Ecol.
– start-page: 165
  year: 1992
  end-page: 191
– volume: 15
  start-page: 295
  year: 2004
  end-page: 304
  article-title: The plant traits that drive ecosystems: evidence from three continents
  publication-title: J. Veg. Sci.
– volume: 47
  start-page: 587
  year: 1996
  end-page: 603
  article-title: Measurement of the shear and tensile fracture properties of leaves of pasture grasses
  publication-title: Aust. J. Agric. Res.
– volume: 155
  start-page: 403
  year: 2002
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB82|cit83
  article-title: Leaves at low versus high rainfall: coordination of structure, lifespan and physiology
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.2002.00479.x
– volume: 86
  start-page: 2310
  year: 2005
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB50|cit50
  article-title: Linking biogeography and community ecology: latitudinal variation in plant-herbivore interaction strength
  publication-title: Ecology
  doi: 10.1890/04-1022
– volume: 53
  start-page: 209
  year: 1983
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB12|cit12
  article-title: Herbivory and defensive characteristics of tree species in a lowland tropical forest
  publication-title: Ecol. Monogr.
  doi: 10.2307/1942495
– volume: 40
  start-page: 245
  year: 2009
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB63|cit63
  article-title: Is there a latitudinal gradient in the importance of biotic interactions?
  publication-title: Annu. Rev. Ecol. Evol. Syst.
  doi: 10.1146/annurev.ecolsys.39.110707.173430
– volume: 103
  start-page: 757
  year: 2009
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB58|cit58
  article-title: Correlations between leaf toughness and phenolics among species in contrasting environments of Australia and New Caledonia
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcn246
– volume-title: Mechanics of Materials
  year: 2009
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB26|cit26
– volume: 4
  start-page: 819
  year: 1990
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB39|cit39
  article-title: Estimation of the fracture toughness of leaves
  publication-title: Funct. Ecol.
  doi: 10.2307/2389448
– volume: 8
  start-page: 669
  year: 1994
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB69|cit70
  article-title: Sclerophylly: primarily protective?
  publication-title: Funct. Ecol.
  doi: 10.2307/2390225
– volume: 61
  start-page: 1736
  year: 1968
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB8|cit8
  article-title: A simple penetrometer for measuring leaf toughness in insect feeding studies
  publication-title: Econ. Entomol.
  doi: 10.1093/jee/61.6.1736
– start-page: 137
  volume-title: Insects and the Plant Surface
  year: 1986
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB29|cit29
– volume: 7
  start-page: 121
  year: 1976
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB35|cit35
  article-title: The chemical defenses of plants to pathogens and herbivores
  publication-title: Annu. Rev. Ecol. Syst.
  doi: 10.1146/annurev.es.07.110176.001005
– volume: 86
  start-page: 16
  year: 1991
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB59|cit59
  article-title: Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species
  publication-title: Oecologia (Heidelberg)
  doi: 10.1007/BF00317383
– volume: 27
  start-page: 1047
  year: 2004
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB1001|cit68
  article-title: Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2004.01209.x
– volume: 28
  start-page: 642
  year: 2003
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB52|cit52
  article-title: Leaf traits and herbivore selection in the field and in cafeteria experiments
  publication-title: Austral Ecol.
  doi: 10.1046/j.1442-9993.2003.01321.x
– volume: 47
  start-page: 992
  year: 1966
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB5|cit5
  article-title: Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly
  publication-title: Ecology
  doi: 10.2307/1935647
– volume: 15
  start-page: 63
  year: 1988
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB28|cit28
  article-title: Adaptation to sun and shade: a whole-plant perspective
  publication-title: Aust. J. Plant Physiol.
  doi: 10.1071/PP9880063
– volume: 428
  start-page: 821
  year: 2004
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB84|cit85
  article-title: The worldwide leaf economics spectrum
  publication-title: Nature
  doi: 10.1038/nature02403
– volume: 13
  start-page: 229
  year: 1982
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB7|cit7
  article-title: The ecology of leaf life spans
  publication-title: Annu. Rev. Ecol. Syst.
  doi: 10.1146/annurev.es.13.110182.001305
– volume: 82
  start-page: 453
  year: 2001
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB44|cit44
  article-title: Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs
  publication-title: Ecology
  doi: 10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2
– volume: 42
  start-page: 611
  year: 1973
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB67|cit67
  article-title: The analysis of intra-generation change in animal populations
  publication-title: J. Anim. Ecol.
  doi: 10.2307/3127
– volume: 25
  start-page: 168
  year: 1961
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB37|cit37
  article-title: A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves
  publication-title: Ann. Bot.
  doi: 10.1093/oxfordjournals.aob.a083740
– volume-title: Plant-Geography Upon a Physiological Basis
  year: 1903
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB64|cit64
  doi: 10.5962/bhl.title.8099
– volume-title: Communities and Ecosystems
  year: 1975
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB77|cit78
– start-page: 165
  volume-title: Biomechanics-Materials: A Practical Approach
  year: 1992
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB73|cit74
  doi: 10.1093/oso/9780199632237.003.0008
– volume: 27
  start-page: 305
  year: 1996
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB14|cit14
  article-title: Herbivory and plant defenses in tropical forests
  publication-title: Annu. Rev. Ecol. Syst.
  doi: 10.1146/annurev.ecolsys.27.1.305
– volume: 31
  start-page: 195
  year: 1992
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB68|cit69
  article-title: Anatomy of non-uniform leaf photosynthesis
  publication-title: Photosynth. Res.
  doi: 10.1007/BF00035537
– volume: 7
  start-page: 954
  year: 1996
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB17|cit17
  article-title: A portable fracture toughness tester for biological materials
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/7/6/016
– volume: 186
  start-page: 708
  year: 2010
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB33|cit33
  article-title: Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2010.03212.x
– volume: 83
  start-page: 3369
  year: 2002
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB66|cit66
  article-title: Latitudinal variation in palatability of salt-marsh plants: which traits are responsible?
  publication-title: Ecology
  doi: 10.1890/0012-9658(2002)083[3369:LVIPOS]2.0.CO;2
– volume: 123
  start-page: 158
  year: 2000
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB21|cit21
  article-title: Characterising sclerophylly: some mechanical properties of leaves from heath and forest
  publication-title: Oecologia
  doi: 10.1007/s004420051001
– volume: 334
  start-page: 95
  year: 1991
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB40|cit40
  article-title: The fracture toughness of the leaf of the dicotyledon Calophyllum inophyllum L (Guttiferae)
  publication-title: Philos. Trans. Biol. Sci.
  doi: 10.1098/rstb.1991.0099
– volume: 135
  start-page: 109
  year: 1997
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB15|cit15
  article-title: Functional leaf attributes predict litter decomposition rate in herbaceous plants
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.1997.00628.x
– volume: 51
  start-page: 565
  year: 1970
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB23|cit23
  article-title: Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars
  publication-title: Ecology
  doi: 10.2307/1934037
– volume: 12
  start-page: 829
  year: 1999
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB43|cit43
  article-title: Representing twentieth-century space-time climate variability. Part I: development of a 1961-90 mean monthly terrestrial climatology
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2
– volume: 6
  start-page: 61
  year: 1978
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB36|cit36
  article-title: The toxicity of plant alkaloids: an Ecogeographic perspective
  publication-title: Biochem. Syst. Ecol.
  doi: 10.1016/0305-1978(78)90026-1
– volume: 33
  start-page: 125
  year: 2002
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB76|cit77
  article-title: Plant ecological strategies: some leading dimensions of variation between species [Review]
  publication-title: Annu. Rev. Ecol. Syst.
  doi: 10.1146/annurev.ecolsys.33.010802.150452
– volume: 60
  start-page: 2235
  year: 2009
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB22|cit22
  article-title: Resistances along the CO2 diffusion pathway inside leaves
  publication-title: J. Exp. Bot
  doi: 10.1093/jxb/erp117
– volume: 18
  start-page: 419
  year: 2004
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB46|cit46
  article-title: Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency
  publication-title: Funct. Ecol.
  doi: 10.1111/j.0269-8463.2004.00847.x
– volume: 182
  start-page: 565
  year: 2009
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB54|cit54
  article-title: Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2009.02830.x
– volume: 23
  start-page: 299
  year: 2008
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB41|cit41
  article-title: Why are evergreen leaves so contrary about shade?
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2008.02.006
– volume: 87
  start-page: 553
  year: 2001
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB61|cit61
  article-title: Evolution and function of leaf venation architecture: a review
  publication-title: Ann. Bot.
  doi: 10.1006/anbo.2001.1391
– volume: 5
  start-page: 168
  year: 2000
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB18|cit18
  article-title: The cell and developmental biology of alkaloid biosynthesis
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(00)01575-2
– volume: 186
  start-page: 429
  year: 2010
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB42|cit42
  article-title: Reconciling species-level vs plastic responses of evergreen leaf structure to light gradients: shade leaves punch above their weight
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2010.03202.x
– volume: 15
  start-page: 295
  year: 2004
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB19|cit19
  article-title: The plant traits that drive ecosystems: evidence from three continents
  publication-title: J. Veg. Sci.
  doi: 10.1111/j.1654-1103.2004.tb02266.x
– volume: 22
  start-page: 41
  year: 2006
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB30|cit30
  article-title: Do tropical species invest more in anti-herbivore defence than temperate species? A test in Eucryphia (Cunoniaceae) in eastern Australia
  publication-title: J. Trop. Ecol.
  doi: 10.1017/S0266467405002919
– volume: 218
  start-page: 21
  year: 2000
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB51|cit51
  article-title: Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina
  publication-title: Plant Soil
  doi: 10.1023/A:1014981715532
– volume: 51
  start-page: 335
  year: 2003
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB16|cit16
  article-title: A handbook of protocols for standardised and easy measurement of plant functional traits worldwide
  publication-title: Aust. J. Bot.
  doi: 10.1071/BT02124
– volume: 329
  start-page: 834
  year: 2010
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB6|cit6
  article-title: Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate
  publication-title: Science
  doi: 10.1126/science.1184984
– volume: 24
  start-page: 256
  year: 1992
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB34|cit34
  article-title: Delayed greening in tropical leaves: an antiherbivore defense?
  publication-title: Biotropica
  doi: 10.2307/2388520
– volume: 10
  start-page: 668
  year: 1996
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB9|cit9
  article-title: What makes a leaf tough and how this affects the pattern of Castanopsis fissa leaf consumption by caterpillars
  publication-title: Funct. Ecol.
  doi: 10.2307/2390178
– volume: 93
  start-page: 1531
  year: 2006
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB62|cit62
  article-title: The biomechanics of browsing and grazing
  publication-title: Am. J. Bot.
  doi: 10.3732/ajb.93.10.1531
– volume: 154
  start-page: 147
  year: 2002
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB72|cit73
  article-title: Leaf traits as indicators of resource-use strategy in floras with succulent species
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.2002.00357.x
– volume: 161
  start-page: 98
  year: 2003
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB83|cit84
  article-title: Least-cost input mixtures of water and nitrogen for photosynthesis
  publication-title: Am. Nat.
  doi: 10.1086/344920
– volume: 87
  start-page: 535
  year: 2006
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB65|cit65
  article-title: Fundamental trade-offs generating the worldwide leaf economics spectrum
  publication-title: Ecology
  doi: 10.1890/05-1051
– volume: 101
  start-page: 1363
  year: 2008
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB20|cit20
  article-title: In tropical lowland rain forests monocots have tougher leaves than dicots, and include a new kind of tough leaf
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcn046
– volume: 34
  start-page: 317
  volume-title: Adv. Insect Physiol
  year: 2007
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB11|cit11
– volume: 4
  start-page: 431
  year: 1992
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB48|cit48
  article-title: A method for the analysis of comparative data
  publication-title: J. Theor. Biol.
  doi: 10.1016/S0022-5193(05)80637-X
– volume: 87
  start-page: S150
  year: 2006
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB25|cit25
  article-title: The growth-defense trade-off and habitat specialization by plants in Amazonian forests
  publication-title: Ecology
  doi: 10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2
– volume: 81
  start-page: 259
  year: 2006
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB74|cit75
  article-title: Bivariate line-fitting methods for allometry
  publication-title: Biol. Rev.
  doi: 10.1017/S1464793106007007
– volume: 105
  start-page: 423
  year: 1954
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB78|cit79
  article-title: The feeding habits and food preferences of acrididae and the factors which determine them
  publication-title: Trans. R. Entomol. Soc. Lond.
  doi: 10.1111/j.1365-2311.1954.tb00771.x
– volume: 47
  start-page: 587
  year: 1996
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB32|cit32
  article-title: Measurement of the shear and tensile fracture properties of leaves of pasture grasses
  publication-title: Aust. J. Agric. Res.
  doi: 10.1071/AR9960587
– volume: 15
  start-page: 351
  year: 2001
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB79|cit80
  article-title: Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora
  publication-title: Funct. Ecol.
  doi: 10.1046/j.1365-2435.2001.00522.x
– volume-title: Methods in Comparative Plant Ecology: A Laboratory Manual
  year: 1993
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB31|cit31
  doi: 10.1007/978-94-011-1494-3
– volume: 21
  start-page: 246
  year: 2007
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB49|cit49
  article-title: Leaf biomechanical properties and the densities of herbivorous insect guilds
  publication-title: Funct. Ecol.
  doi: 10.1111/j.1365-2435.2006.01223.x
– volume: 71
  start-page: 343
  year: 1993
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB70|cit71
  article-title: How tough are sclerophylls?
  publication-title: Ann. Bot.
  doi: 10.1006/anbo.1993.1043
– volume: 14
  start-page: 2747
  year: 1979
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB3|cit3
  article-title: On the guillotining of materials
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00610649
– start-page: 309
  volume-title: Inherent Variation in Plant Growth. Physiological Mechanisms and Ecological Consequences
  year: 1988
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB53|cit53
– volume: 71
  start-page: 401
  year: 1996
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB81|cit82
  article-title: Herbivory and the mechanics of fracture in plants
  publication-title: Biol. Rev. Camb. Philos. Soc.
  doi: 10.1111/j.1469-185X.1996.tb01280.x
– volume: 24
  start-page: 2098
  year: 2008
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB75|cit76
  article-title: Phylocom: software for the analysis of phylogenetic community structure and trait evolution
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn358
– volume: 97
  start-page: 933
  year: 2009
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB1|cit1
  article-title: Is there more insect folivory in warmer temperate climates? A latitudinal comparison of insect folivory in eastern North America
  publication-title: J. Ecol.
  doi: 10.1111/j.1365-2745.2009.01523.x
– start-page: 375
  volume-title: Topics in Plant Population Biology
  year: 1979
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB27|cit27
  doi: 10.1007/978-1-349-04627-0_17
– volume: 160
  start-page: 81
  year: 2003
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB55|cit55
  article-title: Characterizing sclerophylly: the mechanical properties of a diverse range of leaf types
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.2003.00855.x
– volume-title: Plant Biomechanics: An Engineering Approach to Plant Form and Function
  year: 1992
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB45|cit45
– volume: 121
  start-page: 597
  year: 1992
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB10|cit10
  article-title: Leaf fracture toughness and sclerophylly: their correlations and ecological implications
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1992.tb01131.x
– volume: 94
  start-page: 13730
  year: 1997
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB60|cit60
  article-title: From tropics to tundra: global convergence in plant functioning
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.25.13730
– volume: 93
  start-page: 1546
  year: 2006
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB56|cit56
  article-title: Plant biomechanics in an ecological context
  publication-title: Am. J. Bot.
  doi: 10.3732/ajb.93.10.1546
– volume: 276
  start-page: 95
  year: 2005
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB57|cit57
  article-title: Leaf mechanical properties in sclerophyll woodland and shrubland on contrasting soils
  publication-title: Plant Soil
  doi: 10.1007/s11104-005-3343-8
– volume: 125
  start-page: 1
  year: 1985
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB24|cit24
  article-title: Phylogenies and the comparative method
  publication-title: Am. Nat.
  doi: 10.1086/284325
– volume: 144
  start-page: 369
  year: 1999
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB2|cit2
  article-title: Methods of assessing leaf-fracture properties
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.1999.00506.x
– start-page: 25
  volume-title: Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions
  year: 1991
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB13|cit13
– volume-title: Dental Functional Morphology: How Teeth Work
  year: 2004
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB38|cit38
  doi: 10.1017/CBO9780511735011
– volume-title: Elastic and Plastic Fracture: Metals, Polymers, Ceramics, Composites, Biological Materials
  year: 1985
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB4|cit4
– volume: 101
  start-page: 727
  year: 2008
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB47|cit47
  article-title: Effects of light and nutrient availability on leaf mechanical properties of Plantago major: a conceptual approach
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcn013
– volume-title: Nutritional Ecology of the Ruminant
  year: 1994
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB71|cit72
  doi: 10.7591/9781501732355
– volume: 9
  start-page: 269
  year: 1995
  ident: 10.1111/j.1461-0248.2010.01582.x-BIB80|cit81
  article-title: A comparative study of the fracture properties of 5 grasses
  publication-title: Funct. Ecol.
  doi: 10.2307/2390573
SSID ssj0012971
Score 2.5304506
SecondaryResourceType review_article
Snippet Ecology Letters (2011) 14: 301-312 ABSTRACT: Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition...
Ecology Letters (2011) 14: 301–312 Leaf mechanical properties strongly influence leaf lifespan, plant–herbivore interactions, litter decomposition and nutrient...
Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in...
SourceID wageningen
proquest
pubmed
pascalfrancis
crossref
wiley
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 301
SubjectTerms anatomy & histology
Animal and plant ecology
Animal, plant and microbial ecology
biogeochemical cycles
Biological and medical sciences
Biomechanical Phenomena
Biomechanics
Data processing
Ecological function
economics spectrum
Ecosystems
fibre
fracture-toughness
Fundamental and applied biological sciences. Psychology
General aspects
global-trend
latitudinal variation
leaf traits
Leaves
Life span
Light
longevity
Mechanical properties
meta-analysis
Nutrient cycles
photosynthesis
physiology
Plant biology
Plant Leaves
Plant Leaves - anatomy & histology
Plant Leaves - physiology
Plant Physiological Phenomena
Plant populations
Plants
Plants - anatomy & histology
Rain
shade
Stress, Mechanical
toughness
traits
Tropical Climate
Understory
Title Global patterns of leaf mechanical properties
URI https://api.istex.fr/ark:/67375/WNG-RH2K81R2-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1461-0248.2010.01582.x
https://www.ncbi.nlm.nih.gov/pubmed/21265976
https://www.proquest.com/docview/852933372
https://www.proquest.com/docview/1501367740
https://www.proquest.com/docview/858416864
https://www.proquest.com/docview/879476914
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F404188
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED62wqB7WPe7brfiwdibQyTLlvw4RtqwH33IFpY3IdnWHpI5IU5ou79-d5bj4tKNMvaSGCwJ5_zp9F10-g7gbW5dbkSZRWmMH8LlLDIxzsfYop_k0kpe0nnnL-fpeCo-zpJZm_9EZ2G8PkT3hxvNjMZf0wQ3tr45yTEU5l2GFksUHxCfpNQt4keTTkkKVzUfe_ku8ayf1HPrQL2V6r4zS-SvZPpLyp80NZrQ-doXt5HTh7B_gQ6hak5I9Ylvs3KdHsB895t9wsp8sN3YQf7rhhzk_zHKY3jUEtzwvUfkE7hXVk_hgS95eYVXo0Ym--oZRL7cQLhqFD6rOly6cFEaF_4s6TQygSdc0VbBmjRfn8P0dPTtwzhqizdEOca9PGKFLPJhLB2CQEplc2nIfyTWMmYTpRy3UtqkGFpmZCky4Ya5si4pSYHOFSp-AXvVsioPIcysYIYJmwqMHXHNVRk3IuUcx00LpG8ByN2L0nmrbE4FNha6F-EwTWbRZBbdmEVfBsC6niuv7nGHPoeIBW1-oBPW06-ctn5ZJqTMWADvGoB0Y5n1nBLnZKK_n5_pyZh_UmzC9VkAJz0EdR040lWKggM43kFKt06l1ipBbhbHEu--6e6iN6AtHlOVy22tkd6TBp8UwwDCP7RRCW01q1T8pQl6aZlmDJu89Hi-fkLGUwxC0wDia4Drigpf1Zq0yluY6ovtWlcL-sIRai3w1SkVQNrA987W1qPPI7o6-teOx7DvtwEobfAV7G3W2_I18siNPWk8xG9b3l1c
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED7BEGI88BsWBiNIiLdUtePEziNC3Qrr-lBW0TfLTmMeVtKqabWNv567OM3UaaAJ8dJGis9qL5_Pd7nzdwAfcutyI4osSmP8EC5nkYlxPcYW7SSXVvKCzjufDNP-WHydJJOmHRCdhfH8EO0LN1oZtb2mBU4vpK-vcoyFeVuixRLFO-hQ3qMG33V8NWq5pHBf89GXl4kn22U9N860tVfddWaOHiwp_4IqKE2FSnS--8VN7ulD2D1Hk1DWZ6S2Xd967zp8DLPNv_YlK2ed9cp28l_XCCH_k1qewKPGxw0_eVA-hTtF-Qzu-66Xl3jVq5myL59D5DsOhIua5LOswrkLZ4Vx4c-CDiQTfsIFZQuWRPv6AsaHvdPP_ajp3xDlGPryiE3lNO_G0iEOpFQ2l4ZMSGItYzZRynErpU2mXcuMLEQmXDdX1iUFkdC5qYpfwk45L4s9CDMrmGHCpgLDR9x2VcaNSDnHedMpenAByM2T0nlDbk49NmZ6K8hhmtSiSS26Vou-CIC1kgtP8HELmT0EgzY_0A7r8TdO2V-WCSkzFsDHGiHtXGZ5RrVzMtHfh0d61OfHio24PgrgYAtCrQBHj5UC4QD2N5jSjV2ptErQPYtjiXfft3fRIFCWx5TFfF1p9PCJhk-KbgDhH8aohLLNKhV_GYKGWqYZwyGvPKCvfiHjKcahaQDxFcJ1Sb2vKk105Q1O9fl6qcsZfeEMlRb46JQKIK3xe2tt696gR1ev_1XwHTzon54M9ODL8Hgfdn1WgKoI38DOarku3qJbubIHtbn4DSr9YXc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgCDQe-DlYGIwgId5S1Y5jO4-ItStsVKhQ0TfLTmIeWtKqabWNv567OM3UaaAJ8dJGis9KL5_Pd73zd4S8zazLDC_SSMTwwV1GIxPDeowt2EkmrWQFnnf-PBSDMf80SSZN_ROehfH8EO0fbrgyanuNC3yRu6uLHEJh1lZo0USxDviTd7joKkT40ailkoJtzQdfXiaebFf1XDvT1lZ125k5OLCo-3MsoDQV6ND55hfXeaf3ye4ZWISyPiK17fnWW1f_IZlufrSvWJl21ivbyX5d4YP8P1p5RB40Hm743kPyMblVlE_IXd_z8gKuejVP9sVTEvl-A-Gipvgsq3DuwllhXPizwOPIiJ5wgbmCJZK-7pFxv_ftwyBqujdEGQS-LKK5zLNuLB2gQEplM2nQgCTWUmoTpRyzUtok71pqZMFT7rqZsi4pkILO5Sp-RnbKeVnskzC1nBrKreAQPMKmq1JmuGAM5hU5-G8BkZsXpbOG2hw7bMz0VohDNapFo1p0rRZ9HhDaSi48vccNZPYBC9r8ACusx18Z5n5pyqVMaUDe1QBp5zLLKVbOyUR_Hx7r0YCdKDpi-jggh1sIagUY-KsYBgfkYAMp3ViVSqsEnLM4lnD3TXsXzAHmeExZzNeVBv8eSfgk7wYk_MMYlWCuWQn-lyFgpqVIKQx57vF8-YSUCYhCRUDiS4DrEjtfVRrJyhuY6rP1Upcz_IIZKs3h1SkVEFHD98ba1r3THl69-FfB1-Tel6O-Pv04PDkguz4lgCWEL8nOarkuXoFPubKHtbH4DbwlYC8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+patterns+of+leaf+mechanical+properties&rft.jtitle=Ecology+letters&rft.au=Onoda%2C+Yusuke&rft.au=Westoby%2C+M&rft.au=Adler%2C+Peter+B&rft.au=Choong%2C+Amy+M.F.&rft.date=2011-03-01&rft.issn=1461-023X&rft.volume=14&rft.issue=3+p.301-312&rft.spage=301&rft.epage=312&rft_id=info:doi/10.1111%2Fj.1461-0248.2010.01582.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon