Global patterns of leaf mechanical properties
Ecology Letters (2011) 14: 301-312 ABSTRACT: Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize da...
Saved in:
Published in | Ecology letters Vol. 14; no. 3; pp. 301 - 312 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.03.2011
Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ecology Letters (2011) 14: 301-312 ABSTRACT: Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe. |
---|---|
AbstractList | Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe. Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe.Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe. Ecology Letters (2011) 14: 301-312 ABSTRACT: Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe. Ecology Letters (2011) 14: 301–312 Leaf mechanical properties strongly influence leaf lifespan, plant–herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500–800‐fold among species. Contrary to a long‐standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant–animal interactions and ecosystem functions across the globe. Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe. [PUBLICATION ABSTRACT] Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe.Original Abstract: Ecology Letters (2011) 14: 301-312 |
Author | Adler, Peter B Yamashita, Nayuta Elgart, Alison Poorter, Lourens Richards, Lora Wright, Ian J Jalili, Adel Cornelissen, Johannes H.C Fine, Paul V.A Van Bael, Sunshine A Choong, Amy M.F Enrico, Lucas Dominy, Nathaniel J Clissold, Fiona J Díaz, Sandra McArthur, Clare Sosinski, Enio E. Jr Pérez-Harguindeguy, Natalia Warton, David I Santiago, Louis S Onoda, Yusuke Westoby, Mark Kurokawa, Hiroko Lucas, Peter W Howard, Jerome J Kitajima, Kaoru Markesteijn, Lars Joseph Wright, S |
Author_xml | – sequence: 1 fullname: Onoda, Yusuke – sequence: 2 fullname: Westoby, Mark – sequence: 3 fullname: Adler, Peter B – sequence: 4 fullname: Choong, Amy M.F – sequence: 5 fullname: Clissold, Fiona J – sequence: 6 fullname: Cornelissen, Johannes H.C – sequence: 7 fullname: Díaz, Sandra – sequence: 8 fullname: Dominy, Nathaniel J – sequence: 9 fullname: Elgart, Alison – sequence: 10 fullname: Enrico, Lucas – sequence: 11 fullname: Fine, Paul V.A – sequence: 12 fullname: Howard, Jerome J – sequence: 13 fullname: Jalili, Adel – sequence: 14 fullname: Kitajima, Kaoru – sequence: 15 fullname: Kurokawa, Hiroko – sequence: 16 fullname: McArthur, Clare – sequence: 17 fullname: Lucas, Peter W – sequence: 18 fullname: Markesteijn, Lars – sequence: 19 fullname: Pérez-Harguindeguy, Natalia – sequence: 20 fullname: Poorter, Lourens – sequence: 21 fullname: Richards, Lora – sequence: 22 fullname: Santiago, Louis S – sequence: 23 fullname: Sosinski, Enio E. Jr – sequence: 24 fullname: Van Bael, Sunshine A – sequence: 25 fullname: Warton, David I – sequence: 26 fullname: Wright, Ian J – sequence: 27 fullname: Joseph Wright, S – sequence: 28 fullname: Yamashita, Nayuta |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23920282$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21265976$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1vFCEUhiemxn7oX9CNidGbWTnADIyJJqZZt8ZGk2qjdycwC5V1lllhJt3-e8Hd7kUvtFwAged9-TjvcXHge2-KYgJkCqm9Xk6B11ASyuWUkrRKoJJ0unlQHO03DvZz9uOwOI5xSQjQRsCj4pACratG1EdFOe96rbrJWg2DCT5OejvpjLKTlWl_Ku_avBf6tQmDM_Fx8dCqLponu_GkuPww-3Z6Vp5_mX88fX9etgIYLWEhFi1hwtbMCCF1KxRhICutAXQlpaVaCF0tiAYlDG-4Ja3UtjJNxaVdSHZSvNn6Xqsr451PHXoVWhexVw47p4MKN3g9BvRdHtajjsgJB5nFL7fidO_fo4kDrlxsTdcpb_oxohQNF3UD_P9kJTnUss7kq3-SUBFgtRCcJPT5HXTZj8Gn70p-tGGMCZqgpzto1CuzwHVwq_yi28Ik4MUOUDHVwAbl8-v3HGsooTIbvdtybehjDMZi6wY1uN4PQbkOgWBODC4xhwFzMDAnBv8mBjfJQN4xuD3jHtK3uyq5ztzcW4ez81meJX251bs4mM1er8IvrAUTFX7_PMeLM_pJwgXFeeKfbXmrelRXIf3H5dfkzAikiooG2B8oBe2T |
CitedBy_id | crossref_primary_10_1093_aob_mcac108 crossref_primary_10_24266_0738_2898_41_4_170 crossref_primary_10_1111_j_1365_2745_2011_01937_x crossref_primary_10_1002_ece3_5969 crossref_primary_10_1098_rspb_2012_0211 crossref_primary_10_1111_1365_2745_12255 crossref_primary_10_1093_aob_mct036 crossref_primary_10_1007_s11829_017_9504_x crossref_primary_10_1111_fwb_13830 crossref_primary_10_1093_treephys_tpv108 crossref_primary_10_1038_s41598_021_89190_8 crossref_primary_10_1038_s41598_024_67140_4 crossref_primary_10_1111_jvs_12190 crossref_primary_10_1111_ele_14176 crossref_primary_10_1103_RevModPhys_88_035007 crossref_primary_10_1007_s00468_018_1734_8 crossref_primary_10_1111_1365_2745_13454 crossref_primary_10_1007_s11258_014_0359_2 crossref_primary_10_1071_FP18277 crossref_primary_10_1002_eap_2064 crossref_primary_10_1534_genetics_114_169276 crossref_primary_10_3354_meps11717 crossref_primary_10_1111_nph_17686 crossref_primary_10_1111_ele_14262 crossref_primary_10_1111_aec_12214 crossref_primary_10_1093_jpe_rtw090 crossref_primary_10_1111_jvs_13056 crossref_primary_10_1016_j_foreco_2021_119740 crossref_primary_10_1002_ece3_2479 crossref_primary_10_1016_j_tfp_2023_100455 crossref_primary_10_1016_j_jhevol_2016_07_003 crossref_primary_10_1111_1365_2745_13001 crossref_primary_10_1093_aob_mcv113 crossref_primary_10_3354_meps09757 crossref_primary_10_1038_srep20485 crossref_primary_10_1111_nph_19747 crossref_primary_10_3389_ffgc_2021_710658 crossref_primary_10_1016_j_scitotenv_2021_149266 crossref_primary_10_1093_aob_mcac118 crossref_primary_10_1111_j_1365_2486_2011_02451_x crossref_primary_10_1111_nph_14285 crossref_primary_10_1038_s41597_022_01774_9 crossref_primary_10_3390_f11121301 crossref_primary_10_1093_aob_mcab146 crossref_primary_10_1016_j_fcr_2023_109093 crossref_primary_10_1016_j_scitotenv_2017_11_171 crossref_primary_10_1111_nph_18643 crossref_primary_10_1007_s11258_023_01394_2 crossref_primary_10_1038_s41598_019_40645_z crossref_primary_10_1071_BT12225 crossref_primary_10_1890_10_2244_1 crossref_primary_10_3390_land10020212 crossref_primary_10_3732_ajb_1300337 crossref_primary_10_1111_pce_12245 crossref_primary_10_1111_een_12648 crossref_primary_10_1038_srep42085 crossref_primary_10_1111_rec_13077 crossref_primary_10_1093_treephys_tpu001 crossref_primary_10_1111_j_1469_8137_2012_04263_x crossref_primary_10_1111_geb_12704 crossref_primary_10_1111_ele_14009 crossref_primary_10_1242_jeb_245140 crossref_primary_10_21829_abm129_2022_2009 crossref_primary_10_3389_fevo_2022_795015 crossref_primary_10_1016_j_revpalbo_2024_105129 crossref_primary_10_1016_j_jembe_2013_05_020 crossref_primary_10_1007_s10265_021_01289_1 crossref_primary_10_1093_aob_mcaa198 crossref_primary_10_1080_00222933_2015_1006279 crossref_primary_10_1038_s41598_019_46878_2 crossref_primary_10_1093_aob_mcv149 crossref_primary_10_7717_peerj_16350 crossref_primary_10_1071_FP19282 crossref_primary_10_1007_s11104_016_2832_2 crossref_primary_10_3390_f14112253 crossref_primary_10_1111_1365_2664_12874 crossref_primary_10_1111_1365_2745_12160 crossref_primary_10_1093_aob_mcab055 crossref_primary_10_1007_s00442_023_05455_1 crossref_primary_10_1007_s10764_011_9540_9 crossref_primary_10_1007_s00442_013_2863_9 crossref_primary_10_1007_s11829_018_9609_x crossref_primary_10_1007_s00442_019_04469_y crossref_primary_10_1111_jbi_13764 crossref_primary_10_1371_journal_pone_0155749 crossref_primary_10_1111_oik_09032 crossref_primary_10_1111_bij_12592 crossref_primary_10_1111_j_1365_2435_2012_02019_x crossref_primary_10_1016_j_tree_2015_09_006 crossref_primary_10_1093_aob_mcad126 crossref_primary_10_1093_icb_icz152 crossref_primary_10_1038_s41467_020_16839_9 crossref_primary_10_1111_1365_2745_70019 crossref_primary_10_1002_2014JG002709 crossref_primary_10_1007_s00227_022_04166_0 crossref_primary_10_1111_plb_12534 crossref_primary_10_1111_1365_2745_12184 crossref_primary_10_1016_j_foreco_2024_121965 crossref_primary_10_1111_1365_2745_13151 crossref_primary_10_1016_j_envexpbot_2024_105897 crossref_primary_10_1093_aob_mcac040 crossref_primary_10_3759_tropics_MS18_12 crossref_primary_10_1111_geb_12623 crossref_primary_10_1139_cjps_2018_0120 crossref_primary_10_1016_j_ecolind_2022_108799 crossref_primary_10_1007_s00442_014_2964_0 crossref_primary_10_1139_as_2020_0016 crossref_primary_10_1098_rsif_2017_0156 crossref_primary_10_3390_biomimetics8020145 crossref_primary_10_1098_rsos_221066 crossref_primary_10_1111_oik_09054 crossref_primary_10_1371_journal_pone_0077242 crossref_primary_10_1007_s00484_016_1156_5 crossref_primary_10_1093_jxb_erv024 crossref_primary_10_1111_nph_18022 crossref_primary_10_1111_1365_2435_13135 crossref_primary_10_1098_rsif_2021_0676 crossref_primary_10_3109_17435390_2015_1048326 crossref_primary_10_1002_ajb2_16056 crossref_primary_10_1103_PhysRevE_95_042402 crossref_primary_10_1111_1365_2745_14388 crossref_primary_10_1111_ppl_12479 crossref_primary_10_1007_s11442_016_1251_x crossref_primary_10_1002_ajb2_16290 crossref_primary_10_3389_fpls_2022_996750 crossref_primary_10_1093_aob_mcad030 crossref_primary_10_1111_1365_2435_12059 crossref_primary_10_1002_jsfa_10721 crossref_primary_10_1016_j_foreco_2018_12_008 crossref_primary_10_1111_1365_2435_12176 crossref_primary_10_1111_1365_2435_13023 crossref_primary_10_1155_2020_8792143 crossref_primary_10_1111_geb_12962 crossref_primary_10_1111_pce_14808 crossref_primary_10_1016_j_jcz_2011_12_002 crossref_primary_10_1111_jbi_12503 crossref_primary_10_1002_ecy_3385 crossref_primary_10_1073_pnas_1901118116 crossref_primary_10_1111_nph_13929 crossref_primary_10_1038_nature16489 crossref_primary_10_1111_gcb_12084 crossref_primary_10_1016_j_coal_2018_09_003 crossref_primary_10_1016_j_envexpbot_2021_104557 crossref_primary_10_3390_f15081439 crossref_primary_10_1093_aobpla_plx070 crossref_primary_10_1111_ele_13103 crossref_primary_10_3389_fpls_2018_00583 crossref_primary_10_1111_nph_17151 crossref_primary_10_1038_nature16476 crossref_primary_10_1016_j_catena_2021_105262 crossref_primary_10_1016_j_soilbio_2015_10_021 crossref_primary_10_1093_aob_mcac086 crossref_primary_10_1016_j_pld_2024_04_009 crossref_primary_10_1093_botlinnean_boae035 crossref_primary_10_1016_j_indcrop_2021_114510 crossref_primary_10_1002_ajpa_22903 crossref_primary_10_1111_nph_20037 crossref_primary_10_3732_ajb_1200562 crossref_primary_10_1371_journal_pone_0058878 crossref_primary_10_13102_sociobiology_v60i3_236_241 crossref_primary_10_3390_f9110722 crossref_primary_10_1016_j_jhevol_2022_103199 crossref_primary_10_1111_ppl_13512 crossref_primary_10_1002_ecy_3007 crossref_primary_10_1111_1365_2435_13681 crossref_primary_10_1111_j_1365_2745_2012_02015_x crossref_primary_10_1111_1365_2435_13205 crossref_primary_10_1111_j_1469_8137_2012_04231_x crossref_primary_10_1111_nph_15803 crossref_primary_10_3389_ffgc_2023_1106723 crossref_primary_10_1098_rstb_2022_0547 crossref_primary_10_1002_ajp_22661 crossref_primary_10_1007_s00442_019_04453_6 crossref_primary_10_1111_1365_2435_12240 crossref_primary_10_7717_peerj_160 crossref_primary_10_1899_11_103_1 crossref_primary_10_1007_s11104_016_3151_3 crossref_primary_10_1093_treephys_tpz076 crossref_primary_10_1007_s11284_018_1614_0 crossref_primary_10_1007_s10750_019_04159_z crossref_primary_10_3389_ffgc_2023_1304897 crossref_primary_10_1111_fwb_12158 crossref_primary_10_1007_s00442_015_3416_1 crossref_primary_10_1093_icb_icae070 crossref_primary_10_1007_s11104_023_06244_8 crossref_primary_10_1111_ele_13659 crossref_primary_10_1002_ece3_4859 crossref_primary_10_1071_FP16263 crossref_primary_10_1093_aob_mcx175 crossref_primary_10_1093_biolinnean_blz158 crossref_primary_10_1186_s13595_024_01232_z crossref_primary_10_1007_s00300_024_03284_3 crossref_primary_10_1016_j_actbio_2019_02_023 crossref_primary_10_1086_724015 crossref_primary_10_1371_journal_pone_0265490 crossref_primary_10_7717_peerj_7798 crossref_primary_10_1890_14_0340 crossref_primary_10_1111_geb_12347 crossref_primary_10_1002_ajb2_16349 crossref_primary_10_1038_s41598_024_51431_x crossref_primary_10_1002_eap_2636 crossref_primary_10_1007_s00484_014_0822_8 crossref_primary_10_3390_d15020187 crossref_primary_10_1016_j_apsoil_2020_103857 crossref_primary_10_1111_pre_12425 crossref_primary_10_1007_s40725_020_00122_7 crossref_primary_10_1111_j_1469_7580_2012_01519_x crossref_primary_10_3389_fevo_2018_00064 crossref_primary_10_1002_ecy_2591 crossref_primary_10_1016_j_actao_2020_103673 crossref_primary_10_1111_j_1469_8137_2012_04203_x crossref_primary_10_1016_j_ecoinf_2013_05_005 crossref_primary_10_1111_geb_12336 crossref_primary_10_1002_lno_11875 crossref_primary_10_1086_681086 crossref_primary_10_1016_j_jaridenv_2017_01_001 crossref_primary_10_1111_jvs_12999 crossref_primary_10_1016_j_jhevol_2016_04_006 crossref_primary_10_1111_maec_12340 crossref_primary_10_1016_j_fecs_2022_100072 crossref_primary_10_1111_1365_2435_12452 crossref_primary_10_3732_ajb_1400559 crossref_primary_10_1007_s00468_018_1796_7 crossref_primary_10_1093_treephys_tpy150 crossref_primary_10_1016_j_ppees_2011_10_002 crossref_primary_10_1111_ele_12760 crossref_primary_10_3390_agronomy12030617 crossref_primary_10_1111_1440_1703_12175 crossref_primary_10_1002_ecy_2692 crossref_primary_10_1111_ele_12527 crossref_primary_10_1007_s11738_022_03435_1 crossref_primary_10_17660_ActaHortic_2023_1368_15 crossref_primary_10_1002_ajp_22640 crossref_primary_10_1038_s41467_020_15014_4 crossref_primary_10_1016_j_jenvman_2018_11_082 crossref_primary_10_1111_1365_2745_12825 crossref_primary_10_1111_j_1365_2435_2012_02013_x crossref_primary_10_1111_jvs_12893 crossref_primary_10_2478_fsmu_2019_0014 crossref_primary_10_1007_s00442_015_3339_x crossref_primary_10_1093_aob_mcy073 crossref_primary_10_3390_plants13172378 crossref_primary_10_1007_s10682_024_10298_0 crossref_primary_10_1093_aob_mcy076 crossref_primary_10_1007_s11252_018_0771_9 crossref_primary_10_1142_S0129183114500156 crossref_primary_10_1007_s00468_017_1540_8 crossref_primary_10_1111_nph_12253 crossref_primary_10_1007_s00442_014_2887_9 crossref_primary_10_1016_j_foreco_2019_117569 crossref_primary_10_1111_1365_2745_12734 crossref_primary_10_1016_j_compag_2019_05_006 crossref_primary_10_1038_srep42774 crossref_primary_10_1002_ajpa_24257 crossref_primary_10_1002_ajb2_16260 crossref_primary_10_1093_treephys_tpx042 crossref_primary_10_1016_j_soilbio_2024_109543 crossref_primary_10_1007_s00442_016_3634_1 crossref_primary_10_3389_fpls_2021_773118 crossref_primary_10_1371_journal_pone_0190700 crossref_primary_10_1007_s11104_025_07266_0 crossref_primary_10_1002_ece3_1970 crossref_primary_10_1016_j_flora_2023_152397 crossref_primary_10_1007_s00442_013_2666_z crossref_primary_10_3389_fpls_2019_00505 crossref_primary_10_1186_s13595_023_01204_9 crossref_primary_10_1007_s00442_018_4144_0 crossref_primary_10_1029_2021WR029618 crossref_primary_10_1111_j_1461_0248_2011_01712_x crossref_primary_10_1093_jpe_rtu028 crossref_primary_10_1111_1365_2435_12526 crossref_primary_10_3390_plants13060769 crossref_primary_10_1007_s00442_017_4043_9 crossref_primary_10_32615_ps_2020_054 crossref_primary_10_1111_nph_15983 crossref_primary_10_3390_f15111976 crossref_primary_10_1111_plb_13056 crossref_primary_10_1111_1365_2745_12756 crossref_primary_10_1111_1365_2745_13603 crossref_primary_10_1111_j_1095_8339_2012_01227_x crossref_primary_10_1002_ece3_1860 crossref_primary_10_1007_s40333_023_0102_8 crossref_primary_10_1111_1440_1703_1267 crossref_primary_10_1111_pce_13087 crossref_primary_10_1093_aob_mcz196 crossref_primary_10_1007_s40415_024_01002_1 crossref_primary_10_1242_jeb_076489 crossref_primary_10_1111_nph_16712 crossref_primary_10_59465_ijfr_2023_10_1_1_19 crossref_primary_10_1007_s00442_023_05471_1 crossref_primary_10_1007_s11676_022_01594_y crossref_primary_10_1093_jpe_rtt070 crossref_primary_10_3389_fpls_2022_994429 crossref_primary_10_1029_2021JG006606 crossref_primary_10_1002_ajb2_16038 crossref_primary_10_1111_pre_12375 crossref_primary_10_3389_fpls_2021_674932 crossref_primary_10_1080_17550874_2013_773103 crossref_primary_10_1111_jvs_12613 crossref_primary_10_1111_ele_12739 crossref_primary_10_1111_nph_14766 crossref_primary_10_1016_j_envexpbot_2016_12_010 crossref_primary_10_1007_s00300_015_1655_6 crossref_primary_10_1007_s11273_021_09853_1 crossref_primary_10_1603_EC11424 crossref_primary_10_1007_s10265_019_01088_9 crossref_primary_10_1016_j_jhevol_2018_02_006 crossref_primary_10_1002_ece3_5328 crossref_primary_10_1038_s41467_022_30888_2 crossref_primary_10_1007_s00300_019_02568_3 crossref_primary_10_1007_s00300_017_2139_7 crossref_primary_10_1016_j_ufug_2020_126705 crossref_primary_10_1111_nph_15206 crossref_primary_10_1016_j_ecolind_2023_110237 crossref_primary_10_1002_advs_201600416 crossref_primary_10_1007_s11120_021_00872_w crossref_primary_10_1146_annurev_arplant_071221_090809 crossref_primary_10_3390_f10121055 crossref_primary_10_1111_1365_2745_12407 crossref_primary_10_1111_1365_2745_12887 crossref_primary_10_1111_1365_2745_12401 crossref_primary_10_1364_OE_400852 crossref_primary_10_1139_cjfr_2015_0417 crossref_primary_10_1002_ajpa_23337 crossref_primary_10_1038_s41598_024_53406_4 crossref_primary_10_1093_jxb_erac479 crossref_primary_10_1111_nph_16994 crossref_primary_10_1016_j_flora_2022_152023 crossref_primary_10_1111_pre_12168 crossref_primary_10_1002_ecy_2858 crossref_primary_10_1139_cjfr_2018_0270 crossref_primary_10_1111_jvs_13216 crossref_primary_10_1111_pce_13042 crossref_primary_10_48130_FR_2023_0021 crossref_primary_10_1111_geb_12042 crossref_primary_10_1016_j_coal_2023_104263 crossref_primary_10_3390_plants4020167 crossref_primary_10_1016_j_agrformet_2017_12_259 crossref_primary_10_1002_ecy_2745 crossref_primary_10_1007_s00227_012_2159_3 crossref_primary_10_1016_j_scienta_2021_110351 crossref_primary_10_1007_s11104_020_04816_6 crossref_primary_10_1016_j_foreco_2020_118878 crossref_primary_10_1111_nph_13234 crossref_primary_10_1111_nph_15657 crossref_primary_10_1002_jsfa_9112 crossref_primary_10_1007_s00442_011_2175_x crossref_primary_10_1007_s11829_020_09761_w crossref_primary_10_1007_s11829_023_09953_0 crossref_primary_10_1093_jxb_ert316 crossref_primary_10_2175_106143016X14733681695320 crossref_primary_10_1002_lno_10611 crossref_primary_10_3390_f6062047 crossref_primary_10_1007_s00442_017_3951_z crossref_primary_10_1016_j_jplph_2022_153671 crossref_primary_10_1098_rspb_2023_0355 crossref_primary_10_1007_s10265_021_01263_x crossref_primary_10_1111_1365_2745_12211 crossref_primary_10_1111_pce_14592 crossref_primary_10_1093_jxb_erac004 crossref_primary_10_1093_jxb_ert320 crossref_primary_10_1371_journal_pone_0160715 crossref_primary_10_1111_geb_13062 crossref_primary_10_1111_nph_15116 crossref_primary_10_1111_nph_17416 crossref_primary_10_1002_fes3_70030 crossref_primary_10_3732_ajb_1600110 crossref_primary_10_1111_1365_2435_12920 crossref_primary_10_1016_j_scienta_2015_01_013 crossref_primary_10_1093_treephys_tpac017 crossref_primary_10_1111_nph_14496 crossref_primary_10_1371_journal_pone_0293596 crossref_primary_10_6090_jarq_46_167 crossref_primary_10_1038_s41559_021_01616_8 crossref_primary_10_1111_gcb_14904 crossref_primary_10_32615_ps_2019_128 crossref_primary_10_1111_1365_2745_12598 crossref_primary_10_1098_rsfs_2015_0109 crossref_primary_10_1002_ajb2_16322 crossref_primary_10_1016_j_tree_2022_11_002 crossref_primary_10_3390_plants9080990 crossref_primary_10_3389_ffgc_2024_1342135 crossref_primary_10_3389_fpls_2016_01925 crossref_primary_10_1007_s00035_021_00274_7 crossref_primary_10_1098_rsfs_2015_0100 crossref_primary_10_1111_eea_12321 crossref_primary_10_1111_pce_15307 crossref_primary_10_1111_1365_2745_12588 crossref_primary_10_1007_s11284_012_1025_6 crossref_primary_10_1111_1440_1703_12385 crossref_primary_10_3389_ffgc_2022_1002472 crossref_primary_10_1111_1365_2435_12946 crossref_primary_10_1016_j_foreco_2023_121388 |
Cites_doi | 10.1046/j.1469-8137.2002.00479.x 10.1890/04-1022 10.2307/1942495 10.1146/annurev.ecolsys.39.110707.173430 10.1093/aob/mcn246 10.2307/2389448 10.2307/2390225 10.1093/jee/61.6.1736 10.1146/annurev.es.07.110176.001005 10.1007/BF00317383 10.1111/j.1365-3040.2004.01209.x 10.1046/j.1442-9993.2003.01321.x 10.2307/1935647 10.1071/PP9880063 10.1038/nature02403 10.1146/annurev.es.13.110182.001305 10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2 10.2307/3127 10.1093/oxfordjournals.aob.a083740 10.5962/bhl.title.8099 10.1093/oso/9780199632237.003.0008 10.1146/annurev.ecolsys.27.1.305 10.1007/BF00035537 10.1088/0957-0233/7/6/016 10.1111/j.1469-8137.2010.03212.x 10.1890/0012-9658(2002)083[3369:LVIPOS]2.0.CO;2 10.1007/s004420051001 10.1098/rstb.1991.0099 10.1046/j.1469-8137.1997.00628.x 10.2307/1934037 10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2 10.1016/0305-1978(78)90026-1 10.1146/annurev.ecolsys.33.010802.150452 10.1093/jxb/erp117 10.1111/j.0269-8463.2004.00847.x 10.1111/j.1469-8137.2009.02830.x 10.1016/j.tree.2008.02.006 10.1006/anbo.2001.1391 10.1016/S1360-1385(00)01575-2 10.1111/j.1469-8137.2010.03202.x 10.1111/j.1654-1103.2004.tb02266.x 10.1017/S0266467405002919 10.1023/A:1014981715532 10.1071/BT02124 10.1126/science.1184984 10.2307/2388520 10.2307/2390178 10.3732/ajb.93.10.1531 10.1046/j.1469-8137.2002.00357.x 10.1086/344920 10.1890/05-1051 10.1093/aob/mcn046 10.1016/S0022-5193(05)80637-X 10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2 10.1017/S1464793106007007 10.1111/j.1365-2311.1954.tb00771.x 10.1071/AR9960587 10.1046/j.1365-2435.2001.00522.x 10.1007/978-94-011-1494-3 10.1111/j.1365-2435.2006.01223.x 10.1006/anbo.1993.1043 10.1007/BF00610649 10.1111/j.1469-185X.1996.tb01280.x 10.1093/bioinformatics/btn358 10.1111/j.1365-2745.2009.01523.x 10.1007/978-1-349-04627-0_17 10.1046/j.1469-8137.2003.00855.x 10.1111/j.1469-8137.1992.tb01131.x 10.1073/pnas.94.25.13730 10.3732/ajb.93.10.1546 10.1007/s11104-005-3343-8 10.1086/284325 10.1046/j.1469-8137.1999.00506.x 10.1017/CBO9780511735011 10.1093/aob/mcn013 10.7591/9781501732355 10.2307/2390573 |
ContentType | Journal Article |
Copyright | 2011 Blackwell Publishing Ltd/CNRS 2015 INIST-CNRS 2011 Blackwell Publishing Ltd/CNRS. Wageningen University & Research |
Copyright_xml | – notice: 2011 Blackwell Publishing Ltd/CNRS – notice: 2015 INIST-CNRS – notice: 2011 Blackwell Publishing Ltd/CNRS. – notice: Wageningen University & Research |
DBID | FBQ BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7S9 L.6 7X8 7ST SOI QVL |
DOI | 10.1111/j.1461-0248.2010.01582.x |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA AGRICOLA - Academic MEDLINE - Academic Environment Abstracts Environment Abstracts NARCIS:Publications |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Ecology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic Environment Abstracts |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA Entomology Abstracts Ecology Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1461-0248 |
EndPage | 312 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_404188 2272102621 21265976 23920282 10_1111_j_1461_0248_2010_01582_x ELE1582 ark_67375_WNG_RH2K81R2_G US201301947791 |
Genre | reviewArticle Journal Article Feature |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABJNI ABPTK ABPVW ABTAH ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ N~3 O66 O9- P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7S9 L.6 7X8 7ST SOI - 02 0R 1AW 31 3N AAPBV GA HZ IA KM NF P4A PQEST QVL RIG UNR WT Y3 |
ID | FETCH-LOGICAL-c7132-1d7dc037f63e778bc7a03185bb11b588f2b77b5d0b1a7e494f0c8bf5e9548fd83 |
IEDL.DBID | DR2 |
ISSN | 1461-023X 1461-0248 |
IngestDate | Fri Feb 05 18:08:08 EST 2021 Fri Jul 11 05:55:43 EDT 2025 Fri Jul 11 04:24:00 EDT 2025 Fri Jul 11 09:07:33 EDT 2025 Sun Jul 13 05:27:30 EDT 2025 Mon Jul 21 05:26:12 EDT 2025 Mon Jul 21 09:12:13 EDT 2025 Tue Jul 01 02:29:37 EDT 2025 Thu Apr 24 22:54:13 EDT 2025 Wed Jan 22 16:45:18 EST 2025 Wed Oct 30 09:57:25 EDT 2024 Wed Dec 27 19:21:11 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Biomechanics global-trend meta-analysis Plant leaf fibre toughness Metaanalysis leaf traits |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 CC BY 4.0 2011 Blackwell Publishing Ltd/CNRS. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c7132-1d7dc037f63e778bc7a03185bb11b588f2b77b5d0b1a7e494f0c8bf5e9548fd83 |
Notes | http://dx.doi.org/10.1111/j.1461-0248.2010.01582.x ArticleID:ELE1582 istex:36E2810AD94647F1D3182F627BCCD4D1166611AB ark:/67375/WNG-RH2K81R2-G SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
OpenAccessLink | https://hdl.handle.net/2324/19801 |
PMID | 21265976 |
PQID | 852933372 |
PQPubID | 32390 |
PageCount | 12 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_404188 proquest_miscellaneous_879476914 proquest_miscellaneous_858416864 proquest_miscellaneous_1501367740 proquest_journals_852933372 pubmed_primary_21265976 pascalfrancis_primary_23920282 crossref_citationtrail_10_1111_j_1461_0248_2010_01582_x crossref_primary_10_1111_j_1461_0248_2010_01582_x wiley_primary_10_1111_j_1461_0248_2010_01582_x_ELE1582 istex_primary_ark_67375_WNG_RH2K81R2_G fao_agris_US201301947791 |
ProviderPackageCode | CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | March 2011 |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: March 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England – name: Paris |
PublicationTitle | Ecology letters |
PublicationTitleAlternate | Ecol Lett |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | Read, J. & Sanson, G.D. (2003). Characterizing sclerophylly: the mechanical properties of a diverse range of leaf types. New Phytol., 160, 81-99. Loveless, A.R. (1961). A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves. Ann. Bot., 25, 168-184. Kitajima, K. & Poorter, L. (2010). Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytol., 186, 708-721. Niklas, K.J. (1992). Plant Biomechanics: An Engineering Approach to Plant Form and Function. University of Chicago Press, Chicago. Edwards, C., Read, J. & Sanson, G. (2000). Characterising sclerophylly: some mechanical properties of leaves from heath and forest. Oecologia, 123, 158-167. Cornelissen, J.H.C. & Thompson, K. (1997). Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol., 135, 109-114. Lucas, P.W. (2004). Dental Functional Morphology: How Teeth Work. Cambridge University Press, Cambridge. Pérez-Harguindeguy, N., Díaz, S., Vendramini, F., Cornelissen, J.H.C., Gurvich, D.E. & Cabido, M. (2003). Leaf traits and herbivore selection in the field and in cafeteria experiments. Austral Ecol., 28, 642-650. Darvell, B.W., Lee, P.K.D., Yuen, T.D.B. & Lucas, P.W. (1996). A portable fracture toughness tester for biological materials. Meas. Sci. Technol., 7, 954-962. Choong, M.F., Lucas, P.W., Ong, J.S.Y., Pereira, B., Tan, H.T.W. & Turner, I.M. (1992). Leaf fracture toughness and sclerophylly: their correlations and ecological implications. New Phytol., 121, 597-610. Levin, D.A. (1976). The chemical defenses of plants to pathogens and herbivores. Annu. Rev. Ecol. Syst., 7, 121-159. Wright, I.J. & Cannon, K. (2001). Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Funct. Ecol., 15, 351-359. Lusk, C.H., Onoda, Y., Kooyman, R. & Gutiérrez-Giron, A. (2010). Reconciling species-level vs plastic responses of evergreen leaf structure to light gradients: shade leaves punch above their weight. New Phytol., 186, 429-438. Hallam, A. & Read, J. (2006). Do tropical species invest more in anti-herbivore defence than temperate species? A test in Eucryphia (Cunoniaceae) in eastern Australia. J. Trop. Ecol., 22, 41-51. Lusk, C.H., Reich, P.B., Montgomery, R.A., Ackerly, D.D. & Cavender-Bares, J. (2008). Why are evergreen leaves so contrary about shade? Trends Ecol. Evol., 23, 299-303. Poorter, H., Niinemets, L., Poorter, L., Wright, I.J. & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol., 182, 565-588. Chabot, B.F. & Hicks, D.J. (1982). The ecology of leaf life spans. Annu. Rev. Ecol. Syst., 13, 229-259. Read, J., Sanson, G.D. & Lamont, B.B. (2005). Leaf mechanical properties in sclerophyll woodland and shrubland on contrasting soils. Plant Soil, 276, 95-113. Van Soest, P.J. (1994). Nutritional Ecology of the Ruminant. Comstock Publishing, Ithaca. Atkins, A.Y. & Mai, Y.W. (1985). Elastic and Plastic Fracture: Metals, Polymers, Ceramics, Composites, Biological Materials. Ellis Horwood, Chichester. Gere, J.M. & Goodno, B.J. (2009). Mechanics of Materials, 7th SI edn. Cengage Learning, Toronto. Aranwela, N., Sanson, G. & Read, J. (1999). Methods of assessing leaf-fracture properties. New Phytol., 144, 369-383. Dominy, N.J., Grubb, P.J., Jackson, R.V., Lucas, P.W., Metcalfe, D.J., Svenning, J.-C. et al. (2008). In tropical lowland rain forests monocots have tougher leaves than dicots, and include a new kind of tough leaf. Ann. Bot., 101, 1363-1377. Wright, I.J. & Westoby, M. (2002). Leaves at low versus high rainfall: coordination of structure, lifespan and physiology. New Phytol., 155, 403-416. Pennings, S.C. & Silliman, B.R. (2005). Linking biogeography and community ecology: latitudinal variation in plant-herbivore interaction strength. Ecology, 86, 2310-2319. Read, J. & Stokes, A. (2006). Plant biomechanics in an ecological context. Am. J. Bot., 93, 1546-1565. Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F. et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. Williams, L.H. (1954). The feeding habits and food preferences of acrididae and the factors which determine them. Trans. R. Entomol. Soc. Lond., 105, 423-454. Reich, P.B., Uhl, C., Walters, M.B. & Ellsworth, D.S. (1991). Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species. Oecologia (Heidelberg), 86, 16-24. De Luca, V. & St Pierre, B. (2000). The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci., 5, 168-173. Cornelissen, J.H.C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D.E. et al. (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot., 51, 335-380. Onoda, Y., Schieving, F. & Anten, N.P.R. (2008). Effects of light and nutrient availability on leaf mechanical properties of Plantago major: a conceptual approach. Ann. Bot., 101, 727-736. Sanson, G. (2006). The biomechanics of browsing and grazing. Am. J. Bot., 93, 1531-1545. Felsenstein, J. (1985). Phylogenies and the comparative method. Am. Nat., 125, 1. Whittaker, R. (1975). Communities and Ecosystems. Macmillan, New York. New, M., Hulme, M. & Jones, P. (1999). Representing twentieth-century space-time climate variability. Part I: development of a 1961-90 mean monthly terrestrial climatology. J. Clim., 12, 829-856. Niinemets, U. (2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82, 453-469. Turner, I.M. (1994). Sclerophylly: primarily protective? Funct. Ecol., 8, 669-675. Beadle, N.C.W. (1966). Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly. Ecology, 47, 992-1007. Lucas, P.W. & Pereira, B. (1990). Estimation of the fracture toughness of leaves. Funct. Ecol., 4, 819-822. Schimper, A.F.W. (1903). Plant-Geography Upon a Physiological Basis. Clarendon Press, Oxford. Smith, R.H. (1973). The analysis of intra-generation change in animal populations. J. Anim. Ecol., 42, 611-622. Warton, D.I., Wright, I.J., Falster, D.S. & Westoby, M. (2006). Bivariate line-fitting methods for allometry. Biol. Rev., 81, 259-291. Henry, D., Macmillan, R. & Simpson, R. (1996). Measurement of the shear and tensile fracture properties of leaves of pasture grasses. Aust. J. Agric. Res., 47, 587-603. Peeters, P.J., Sanson, G. & Read, J. (2007). Leaf biomechanical properties and the densities of herbivorous insect guilds. Funct. Ecol., 21, 246-255. Wright, W. & Vincent, J.F.V. (1996). Herbivory and the mechanics of fracture in plants. Biol. Rev. Camb. Philos. Soc., 71, 401-413. Hendry, G.A.F. & Grime, J.P. (1993). Methods in Comparative Plant Ecology: A Laboratory Manual. Chapman & Hall, London, UK. Pérez-Harguindeguy, N., Díaz, S., Cornelissen, J., Vendramini, F., Cabido, M. & Castellanos, A. (2000). Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil, 218, 21-30. Siska, E.L., Pennings, S.C., Buck, T.L. & Hanisak, M.D. (2002). Latitudinal variation in palatability of salt-marsh plants: which traits are responsible? Ecology, 83, 3369-3381. Coley, P.D. & Barone, J.A. (1996). Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst., 27, 305-335. Lucas, P.W., Choong, M.F., Tan, H.T.W., Turner, I.M. & Berrick, A.J. (1991). The fracture toughness of the leaf of the dicotyledon Calophyllum inophyllum L (Guttiferae). Philos. Trans. Biol. Sci., 334, 95-106. Pagel, M.D. (1992). A method for the analysis of comparative data. J. Theor. Biol., 4, 431-442. Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A. & Wright, I.J. (2002). Plant ecological strategies: some leading dimensions of variation between species [Review]. Annu. Rev. Ecol. Syst., 33, 125-159. Wright, I.J., Reich, P.B. & Westoby, M. (2003). Least-cost input mixtures of water and nitrogen for photosynthesis. Am. Nat., 161, 98-111. Evans, J.R., Kaldenhoff, R., Genty, B. & Terashima, I. (2009). Resistances along the CO2 diffusion pathway inside leaves. J. Exp. Bot, 60, 2235-2248. Vendramini, F., Dìaz, S., Gurvich, D.E., Wilson, P.J., Thompson, K. & Hodgson, J.G. (2002). Leaf traits as indicators of resource-use strategy in floras with succulent species. New Phytol., 154, 147-157. Fine, P.V.A., Miller, Z.J., Mesones, I., Irazuzta, S., Appel, H.M., Stevens, M.H.H. et al. (2006). The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology, 87, S150-S162. Atkins, A.G. & Mai, Y.W. (1979). On the guillotining of materials. J. Mater. Sci., 14, 2747-2754. Feeny, P. (1970). Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology, 51, 565-581. Turner, I.M., Choong, M.F., Tan, H.T.W. & Lucas, P.W. (1993). How tough are sclerophylls? Ann. Bot., 71, 343-345. Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N. et al. (2010). Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science, 329, 834-838. Takashima, T, Hikosaka, K & Hirose, T. (2004). Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ, 27, 1047-1054. Kursar, T.A. & Coley, P.D. (1992). Delayed greening in tropical leaves: an antiherbivore defense? Biotropica, 24, 256-262. Onoda, Y., Hikosaka, K. & Hirose, T. (2004). Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Funct. Ecol., 18, 419-425. Adams, J.M. & Zhang, Y. (2009). Is there more insect folivory in warmer temperate climates? A latitudinal comparison of insect folivory in eastern North America. J. Ecol., 97, 933-940. Díaz, S., Hodgson, J.G., Thompson, K., Cabido, M., Cor 1982; 13 2009; 40 2000; 5 2002; 154 1992; 121 2004; 27 2000; 218 2002; 155 1983; 53 1975 1996; 71 1985; 125 2010; 186 1968; 61 2008; 101 2003; 51 2007; 34 1979 1978; 6 2001; 87 1997; 94 1973; 42 2009; 97 2002; 83 1993; 71 2006; 22 1991; 86 1986 1999; 12 2003; 161 1985 2008; 23 2003; 160 2008; 24 2001; 15 2000; 123 2007; 21 1996; 27 1903 1992; 4 1996; 7 1988 1997; 135 2006; 93 1995; 9 1991; 334 2010; 329 1979; 14 2005; 276 2009; 60 2009; 182 1988; 15 2002; 33 2009 2005; 86 1994 1970; 51 1993 2004 1999; 144 1992 1991 1992; 31 2004; 428 1954; 105 1996; 10 1976; 7 2006; 81 1994; 8 2001; 82 1966; 47 2004; 18 2006; 87 2004; 15 1992; 24 2003; 28 1996; 47 1961; 25 2009; 103 1990; 4 Felsenstein (10.1111/j.1461-0248.2010.01582.x-BIB24|cit24) 1985; 125 Dominy (10.1111/j.1461-0248.2010.01582.x-BIB20|cit20) 2008; 101 Pérez-Harguindeguy (10.1111/j.1461-0248.2010.01582.x-BIB52|cit52) 2003; 28 Clissold (10.1111/j.1461-0248.2010.01582.x-BIB11|cit11) 2007; 34 Coley (10.1111/j.1461-0248.2010.01582.x-BIB12|cit12) 1983; 53 Choong (10.1111/j.1461-0248.2010.01582.x-BIB9|cit9) 1996; 10 Lusk (10.1111/j.1461-0248.2010.01582.x-BIB42|cit42) 2010; 186 Wright (10.1111/j.1461-0248.2010.01582.x-BIB82|cit83) 2002; 155 Henry (10.1111/j.1461-0248.2010.01582.x-BIB32|cit32) 1996; 47 Read (10.1111/j.1461-0248.2010.01582.x-BIB57|cit57) 2005; 276 Choong (10.1111/j.1461-0248.2010.01582.x-BIB10|cit10) 1992; 121 Cornelissen (10.1111/j.1461-0248.2010.01582.x-BIB15|cit15) 1997; 135 Webb (10.1111/j.1461-0248.2010.01582.x-BIB75|cit76) 2008; 24 Díaz (10.1111/j.1461-0248.2010.01582.x-BIB19|cit19) 2004; 15 Onoda (10.1111/j.1461-0248.2010.01582.x-BIB46|cit46) 2004; 18 Pennings (10.1111/j.1461-0248.2010.01582.x-BIB50|cit50) 2005; 86 Peeters (10.1111/j.1461-0248.2010.01582.x-BIB49|cit49) 2007; 21 Williams (10.1111/j.1461-0248.2010.01582.x-BIB78|cit79) 1954; 105 Poorter (10.1111/j.1461-0248.2010.01582.x-BIB54|cit54) 2009; 182 Niinemets (10.1111/j.1461-0248.2010.01582.x-BIB44|cit44) 2001; 82 Wright (10.1111/j.1461-0248.2010.01582.x-BIB79|cit80) 2001; 15 Coley (10.1111/j.1461-0248.2010.01582.x-BIB14|cit14) 1996; 27 Sanson (10.1111/j.1461-0248.2010.01582.x-BIB62|cit62) 2006; 93 Pagel (10.1111/j.1461-0248.2010.01582.x-BIB48|cit48) 1992; 4 Poorter (10.1111/j.1461-0248.2010.01582.x-BIB53|cit53) 1988 Lusk (10.1111/j.1461-0248.2010.01582.x-BIB41|cit41) 2008; 23 Givnish (10.1111/j.1461-0248.2010.01582.x-BIB28|cit28) 1988; 15 Kursar (10.1111/j.1461-0248.2010.01582.x-BIB34|cit34) 1992; 24 Levin (10.1111/j.1461-0248.2010.01582.x-BIB36|cit36) 1978; 6 Gere (10.1111/j.1461-0248.2010.01582.x-BIB26|cit26) 2009 Wright (10.1111/j.1461-0248.2010.01582.x-BIB80|cit81) 1995; 9 Levin (10.1111/j.1461-0248.2010.01582.x-BIB35|cit35) 1976; 7 Roth-Nebelsick (10.1111/j.1461-0248.2010.01582.x-BIB61|cit61) 2001; 87 Kitajima (10.1111/j.1461-0248.2010.01582.x-BIB33|cit33) 2010; 186 Givnish (10.1111/j.1461-0248.2010.01582.x-BIB27|cit27) 1979 Hallam (10.1111/j.1461-0248.2010.01582.x-BIB30|cit30) 2006; 22 Lucas (10.1111/j.1461-0248.2010.01582.x-BIB39|cit39) 1990; 4 Schemske (10.1111/j.1461-0248.2010.01582.x-BIB63|cit63) 2009; 40 Aranwela (10.1111/j.1461-0248.2010.01582.x-BIB2|cit2) 1999; 144 Wright (10.1111/j.1461-0248.2010.01582.x-BIB84|cit85) 2004; 428 Beadle (10.1111/j.1461-0248.2010.01582.x-BIB5|cit5) 1966; 47 New (10.1111/j.1461-0248.2010.01582.x-BIB43|cit43) 1999; 12 Niklas (10.1111/j.1461-0248.2010.01582.x-BIB45|cit45) 1992 Read (10.1111/j.1461-0248.2010.01582.x-BIB56|cit56) 2006; 93 Turner (10.1111/j.1461-0248.2010.01582.x-BIB69|cit70) 1994; 8 Read (10.1111/j.1461-0248.2010.01582.x-BIB55|cit55) 2003; 160 Westoby (10.1111/j.1461-0248.2010.01582.x-BIB76|cit77) 2002; 33 Beer (10.1111/j.1461-0248.2010.01582.x-BIB6|cit6) 2010; 329 Feeny (10.1111/j.1461-0248.2010.01582.x-BIB23|cit23) 1970; 51 Schimper (10.1111/j.1461-0248.2010.01582.x-BIB64|cit64) 1903 Cherrett (10.1111/j.1461-0248.2010.01582.x-BIB8|cit8) 1968; 61 Pérez-Harguindeguy (10.1111/j.1461-0248.2010.01582.x-BIB51|cit51) 2000; 218 Siska (10.1111/j.1461-0248.2010.01582.x-BIB66|cit66) 2002; 83 Wright (10.1111/j.1461-0248.2010.01582.x-BIB81|cit82) 1996; 71 Wright (10.1111/j.1461-0248.2010.01582.x-BIB83|cit84) 2003; 161 Chabot (10.1111/j.1461-0248.2010.01582.x-BIB7|cit7) 1982; 13 Vincent (10.1111/j.1461-0248.2010.01582.x-BIB73|cit74) 1992 Van Soest (10.1111/j.1461-0248.2010.01582.x-BIB71|cit72) 1994 Lucas (10.1111/j.1461-0248.2010.01582.x-BIB40|cit40) 1991; 334 Smith (10.1111/j.1461-0248.2010.01582.x-BIB67|cit67) 1973; 42 Reich (10.1111/j.1461-0248.2010.01582.x-BIB60|cit60) 1997; 94 Whittaker (10.1111/j.1461-0248.2010.01582.x-BIB77|cit78) 1975 Read (10.1111/j.1461-0248.2010.01582.x-BIB58|cit58) 2009; 103 Warton (10.1111/j.1461-0248.2010.01582.x-BIB74|cit75) 2006; 81 Evans (10.1111/j.1461-0248.2010.01582.x-BIB22|cit22) 2009; 60 Onoda (10.1111/j.1461-0248.2010.01582.x-BIB47|cit47) 2008; 101 Atkins (10.1111/j.1461-0248.2010.01582.x-BIB4|cit4) 1985 Loveless (10.1111/j.1461-0248.2010.01582.x-BIB37|cit37) 1961; 25 Reich (10.1111/j.1461-0248.2010.01582.x-BIB59|cit59) 1991; 86 Turner (10.1111/j.1461-0248.2010.01582.x-BIB70|cit71) 1993; 71 Fine (10.1111/j.1461-0248.2010.01582.x-BIB25|cit25) 2006; 87 De Luca (10.1111/j.1461-0248.2010.01582.x-BIB18|cit18) 2000; 5 Hendry (10.1111/j.1461-0248.2010.01582.x-BIB31|cit31) 1993 Takashima (10.1111/j.1461-0248.2010.01582.x-BIB1001|cit68) 2004; 27 Cornelissen (10.1111/j.1461-0248.2010.01582.x-BIB16|cit16) 2003; 51 Vendramini (10.1111/j.1461-0248.2010.01582.x-BIB72|cit73) 2002; 154 Atkins (10.1111/j.1461-0248.2010.01582.x-BIB3|cit3) 1979; 14 Adams (10.1111/j.1461-0248.2010.01582.x-BIB1|cit1) 2009; 97 Grubb (10.1111/j.1461-0248.2010.01582.x-BIB29|cit29) 1986 Lucas (10.1111/j.1461-0248.2010.01582.x-BIB38|cit38) 2004 Coley (10.1111/j.1461-0248.2010.01582.x-BIB13|cit13) 1991 Shipley (10.1111/j.1461-0248.2010.01582.x-BIB65|cit65) 2006; 87 Edwards (10.1111/j.1461-0248.2010.01582.x-BIB21|cit21) 2000; 123 Darvell (10.1111/j.1461-0248.2010.01582.x-BIB17|cit17) 1996; 7 Terashima (10.1111/j.1461-0248.2010.01582.x-BIB68|cit69) 1992; 31 |
References_xml | – reference: Lucas, P.W. (2004). Dental Functional Morphology: How Teeth Work. Cambridge University Press, Cambridge. – reference: Niklas, K.J. (1992). Plant Biomechanics: An Engineering Approach to Plant Form and Function. University of Chicago Press, Chicago. – reference: Kitajima, K. & Poorter, L. (2010). Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytol., 186, 708-721. – reference: Cherrett, J.M. (1968). A simple penetrometer for measuring leaf toughness in insect feeding studies. Econ. Entomol., 61, 1736-1739. – reference: Loveless, A.R. (1961). A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves. Ann. Bot., 25, 168-184. – reference: Lucas, P.W. & Pereira, B. (1990). Estimation of the fracture toughness of leaves. Funct. Ecol., 4, 819-822. – reference: Pérez-Harguindeguy, N., Díaz, S., Cornelissen, J., Vendramini, F., Cabido, M. & Castellanos, A. (2000). Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil, 218, 21-30. – reference: Niinemets, U. (2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82, 453-469. – reference: Read, J. & Sanson, G.D. (2003). Characterizing sclerophylly: the mechanical properties of a diverse range of leaf types. New Phytol., 160, 81-99. – reference: Read, J. & Stokes, A. (2006). Plant biomechanics in an ecological context. Am. J. Bot., 93, 1546-1565. – reference: Onoda, Y., Hikosaka, K. & Hirose, T. (2004). Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Funct. Ecol., 18, 419-425. – reference: Warton, D.I., Wright, I.J., Falster, D.S. & Westoby, M. (2006). Bivariate line-fitting methods for allometry. Biol. Rev., 81, 259-291. – reference: Levin, D.A. & York, B.M. (1978). The toxicity of plant alkaloids: an Ecogeographic perspective. Biochem. Syst. Ecol., 6, 61-76. – reference: New, M., Hulme, M. & Jones, P. (1999). Representing twentieth-century space-time climate variability. Part I: development of a 1961-90 mean monthly terrestrial climatology. J. Clim., 12, 829-856. – reference: Cornelissen, J.H.C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D.E. et al. (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot., 51, 335-380. – reference: Henry, D., Macmillan, R. & Simpson, R. (1996). Measurement of the shear and tensile fracture properties of leaves of pasture grasses. Aust. J. Agric. Res., 47, 587-603. – reference: Van Soest, P.J. (1994). Nutritional Ecology of the Ruminant. Comstock Publishing, Ithaca. – reference: Coley, P.D. & Barone, J.A. (1996). Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst., 27, 305-335. – reference: Felsenstein, J. (1985). Phylogenies and the comparative method. Am. Nat., 125, 1. – reference: Fine, P.V.A., Miller, Z.J., Mesones, I., Irazuzta, S., Appel, H.M., Stevens, M.H.H. et al. (2006). The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology, 87, S150-S162. – reference: Schimper, A.F.W. (1903). Plant-Geography Upon a Physiological Basis. Clarendon Press, Oxford. – reference: Díaz, S., Hodgson, J.G., Thompson, K., Cabido, M., Cornelissen, J.H.C., Jalili, A. et al. (2004). The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci., 15, 295-304. – reference: Hallam, A. & Read, J. (2006). Do tropical species invest more in anti-herbivore defence than temperate species? A test in Eucryphia (Cunoniaceae) in eastern Australia. J. Trop. Ecol., 22, 41-51. – reference: Reich, P.B., Uhl, C., Walters, M.B. & Ellsworth, D.S. (1991). Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species. Oecologia (Heidelberg), 86, 16-24. – reference: Turner, I.M. (1994). Sclerophylly: primarily protective? Funct. Ecol., 8, 669-675. – reference: Wright, W. & Illius, A.W. (1995). A comparative study of the fracture properties of 5 grasses. Funct. Ecol., 9, 269-278. – reference: Choong, M.F., Lucas, P.W., Ong, J.S.Y., Pereira, B., Tan, H.T.W. & Turner, I.M. (1992). Leaf fracture toughness and sclerophylly: their correlations and ecological implications. New Phytol., 121, 597-610. – reference: Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A. & Wright, I.J. (2002). Plant ecological strategies: some leading dimensions of variation between species [Review]. Annu. Rev. Ecol. Syst., 33, 125-159. – reference: Read, J., Sanson, G.D., Caldwell, E., Clissold, F.J., Chatain, A., Peeters, P. et al. (2009). Correlations between leaf toughness and phenolics among species in contrasting environments of Australia and New Caledonia. Ann. Bot., 103, 757-767. – reference: Feeny, P. (1970). Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology, 51, 565-581. – reference: Pennings, S.C. & Silliman, B.R. (2005). Linking biogeography and community ecology: latitudinal variation in plant-herbivore interaction strength. Ecology, 86, 2310-2319. – reference: Turner, I.M., Choong, M.F., Tan, H.T.W. & Lucas, P.W. (1993). How tough are sclerophylls? Ann. Bot., 71, 343-345. – reference: Wright, I.J. & Westoby, M. (2002). Leaves at low versus high rainfall: coordination of structure, lifespan and physiology. New Phytol., 155, 403-416. – reference: Vendramini, F., Dìaz, S., Gurvich, D.E., Wilson, P.J., Thompson, K. & Hodgson, J.G. (2002). Leaf traits as indicators of resource-use strategy in floras with succulent species. New Phytol., 154, 147-157. – reference: Shipley, B., Lechoweicz, M.J., Wright, I. & Reich, P.B. (2006). Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology, 87, 535-541. – reference: Peeters, P.J., Sanson, G. & Read, J. (2007). Leaf biomechanical properties and the densities of herbivorous insect guilds. Funct. Ecol., 21, 246-255. – reference: Chabot, B.F. & Hicks, D.J. (1982). The ecology of leaf life spans. Annu. Rev. Ecol. Syst., 13, 229-259. – reference: Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F. et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. – reference: Adams, J.M. & Zhang, Y. (2009). Is there more insect folivory in warmer temperate climates? A latitudinal comparison of insect folivory in eastern North America. J. Ecol., 97, 933-940. – reference: Darvell, B.W., Lee, P.K.D., Yuen, T.D.B. & Lucas, P.W. (1996). A portable fracture toughness tester for biological materials. Meas. Sci. Technol., 7, 954-962. – reference: Onoda, Y., Schieving, F. & Anten, N.P.R. (2008). Effects of light and nutrient availability on leaf mechanical properties of Plantago major: a conceptual approach. Ann. Bot., 101, 727-736. – reference: Smith, R.H. (1973). The analysis of intra-generation change in animal populations. J. Anim. Ecol., 42, 611-622. – reference: Webb, C.O., Ackerly, D.D. & Kembel, S.W. (2008). Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098-2100. – reference: Siska, E.L., Pennings, S.C., Buck, T.L. & Hanisak, M.D. (2002). Latitudinal variation in palatability of salt-marsh plants: which traits are responsible? Ecology, 83, 3369-3381. – reference: Roth-Nebelsick, A., Uhl, D., Mosbrugger, V. & Kerp, H. (2001). Evolution and function of leaf venation architecture: a review. Ann. Bot., 87, 553-566. – reference: Reich, P.B., Walters, M.B. & Ellsworth, D.S. (1997). From tropics to tundra: global convergence in plant functioning. Proc. Natl. Acad. Sci. USA, 94, 13730-13734. – reference: Whittaker, R. (1975). Communities and Ecosystems. Macmillan, New York. – reference: Levin, D.A. (1976). The chemical defenses of plants to pathogens and herbivores. Annu. Rev. Ecol. Syst., 7, 121-159. – reference: De Luca, V. & St Pierre, B. (2000). The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci., 5, 168-173. – reference: Atkins, A.Y. & Mai, Y.W. (1985). Elastic and Plastic Fracture: Metals, Polymers, Ceramics, Composites, Biological Materials. Ellis Horwood, Chichester. – reference: Cornelissen, J.H.C. & Thompson, K. (1997). Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol., 135, 109-114. – reference: Williams, L.H. (1954). The feeding habits and food preferences of acrididae and the factors which determine them. Trans. R. Entomol. Soc. Lond., 105, 423-454. – reference: Aranwela, N., Sanson, G. & Read, J. (1999). Methods of assessing leaf-fracture properties. New Phytol., 144, 369-383. – reference: Choong, M.F. (1996). What makes a leaf tough and how this affects the pattern of Castanopsis fissa leaf consumption by caterpillars. Funct. Ecol., 10, 668-674. – reference: Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N. et al. (2010). Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science, 329, 834-838. – reference: Gere, J.M. & Goodno, B.J. (2009). Mechanics of Materials, 7th SI edn. Cengage Learning, Toronto. – reference: Pagel, M.D. (1992). A method for the analysis of comparative data. J. Theor. Biol., 4, 431-442. – reference: Lucas, P.W., Choong, M.F., Tan, H.T.W., Turner, I.M. & Berrick, A.J. (1991). The fracture toughness of the leaf of the dicotyledon Calophyllum inophyllum L (Guttiferae). Philos. Trans. Biol. Sci., 334, 95-106. – reference: Atkins, A.G. & Mai, Y.W. (1979). On the guillotining of materials. J. Mater. Sci., 14, 2747-2754. – reference: Hendry, G.A.F. & Grime, J.P. (1993). Methods in Comparative Plant Ecology: A Laboratory Manual. Chapman & Hall, London, UK. – reference: Kursar, T.A. & Coley, P.D. (1992). Delayed greening in tropical leaves: an antiherbivore defense? Biotropica, 24, 256-262. – reference: Pérez-Harguindeguy, N., Díaz, S., Vendramini, F., Cornelissen, J.H.C., Gurvich, D.E. & Cabido, M. (2003). Leaf traits and herbivore selection in the field and in cafeteria experiments. Austral Ecol., 28, 642-650. – reference: Read, J., Sanson, G.D. & Lamont, B.B. (2005). Leaf mechanical properties in sclerophyll woodland and shrubland on contrasting soils. Plant Soil, 276, 95-113. – reference: Lusk, C.H., Onoda, Y., Kooyman, R. & Gutiérrez-Giron, A. (2010). Reconciling species-level vs plastic responses of evergreen leaf structure to light gradients: shade leaves punch above their weight. New Phytol., 186, 429-438. – reference: Coley, P.D. (1983). Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecol. Monogr., 53, 209-234. – reference: Wright, I.J., Reich, P.B. & Westoby, M. (2003). Least-cost input mixtures of water and nitrogen for photosynthesis. Am. Nat., 161, 98-111. – reference: Sanson, G. (2006). The biomechanics of browsing and grazing. Am. J. Bot., 93, 1531-1545. – reference: Wright, I.J. & Cannon, K. (2001). Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Funct. Ecol., 15, 351-359. – reference: Edwards, C., Read, J. & Sanson, G. (2000). Characterising sclerophylly: some mechanical properties of leaves from heath and forest. Oecologia, 123, 158-167. – reference: Dominy, N.J., Grubb, P.J., Jackson, R.V., Lucas, P.W., Metcalfe, D.J., Svenning, J.-C. et al. (2008). In tropical lowland rain forests monocots have tougher leaves than dicots, and include a new kind of tough leaf. Ann. Bot., 101, 1363-1377. – reference: Takashima, T, Hikosaka, K & Hirose, T. (2004). Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ, 27, 1047-1054. – reference: Poorter, H., Niinemets, L., Poorter, L., Wright, I.J. & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol., 182, 565-588. – reference: Wright, W. & Vincent, J.F.V. (1996). Herbivory and the mechanics of fracture in plants. Biol. Rev. Camb. Philos. Soc., 71, 401-413. – reference: Givnish, T.J. (1988). Adaptation to sun and shade: a whole-plant perspective. Aust. J. Plant Physiol., 15, 63-92. – reference: Schemske, D.W., Mittelbach, G.G., Cornell, H.V., Sobel, J.M. & Roy, K. (2009). Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst., 40, 245-269. – reference: Beadle, N.C.W. (1966). Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly. Ecology, 47, 992-1007. – reference: Evans, J.R., Kaldenhoff, R., Genty, B. & Terashima, I. (2009). Resistances along the CO2 diffusion pathway inside leaves. J. Exp. Bot, 60, 2235-2248. – reference: Lusk, C.H., Reich, P.B., Montgomery, R.A., Ackerly, D.D. & Cavender-Bares, J. (2008). Why are evergreen leaves so contrary about shade? Trends Ecol. Evol., 23, 299-303. – reference: Terashima, I. (1992). Anatomy of non-uniform leaf photosynthesis. Photosynth. Res., 31, 195-212. – year: 1985 – volume: 71 start-page: 401 year: 1996 end-page: 413 article-title: Herbivory and the mechanics of fracture in plants publication-title: Biol. Rev. Camb. Philos. Soc. – volume: 160 start-page: 81 year: 2003 end-page: 99 article-title: Characterizing sclerophylly: the mechanical properties of a diverse range of leaf types publication-title: New Phytol. – year: 2009 – volume: 9 start-page: 269 year: 1995 end-page: 278 article-title: A comparative study of the fracture properties of 5 grasses publication-title: Funct. Ecol. – start-page: 375 year: 1979 end-page: 407 – start-page: 25 year: 1991 end-page: 49 – volume: 97 start-page: 933 year: 2009 end-page: 940 article-title: Is there more insect folivory in warmer temperate climates? A latitudinal comparison of insect folivory in eastern North America publication-title: J. Ecol. – volume: 47 start-page: 992 year: 1966 end-page: 1007 article-title: Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly publication-title: Ecology – volume: 93 start-page: 1546 year: 2006 end-page: 1565 article-title: Plant biomechanics in an ecological context publication-title: Am. J. Bot. – volume: 135 start-page: 109 year: 1997 end-page: 114 article-title: Functional leaf attributes predict litter decomposition rate in herbaceous plants publication-title: New Phytol. – volume: 53 start-page: 209 year: 1983 end-page: 234 article-title: Herbivory and defensive characteristics of tree species in a lowland tropical forest publication-title: Ecol. Monogr. – volume: 334 start-page: 95 year: 1991 end-page: 106 article-title: The fracture toughness of the leaf of the dicotyledon L (Guttiferae) publication-title: Philos. Trans. Biol. Sci. – start-page: 309 year: 1988 end-page: 336 – volume: 40 start-page: 245 year: 2009 end-page: 269 article-title: Is there a latitudinal gradient in the importance of biotic interactions? publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 27 start-page: 1047 year: 2004 end-page: 1054 article-title: Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous species publication-title: Plant Cell Environ – year: 1975 – volume: 276 start-page: 95 year: 2005 end-page: 113 article-title: Leaf mechanical properties in sclerophyll woodland and shrubland on contrasting soils publication-title: Plant Soil – volume: 155 start-page: 403 year: 2002 end-page: 416 article-title: Leaves at low versus high rainfall: coordination of structure, lifespan and physiology publication-title: New Phytol. – year: 1994 – volume: 27 start-page: 305 year: 1996 end-page: 335 article-title: Herbivory and plant defenses in tropical forests publication-title: Annu. Rev. Ecol. Syst. – volume: 51 start-page: 565 year: 1970 end-page: 581 article-title: Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars publication-title: Ecology – volume: 4 start-page: 819 year: 1990 end-page: 822 article-title: Estimation of the fracture toughness of leaves publication-title: Funct. Ecol. – volume: 4 start-page: 431 year: 1992 end-page: 442 article-title: A method for the analysis of comparative data publication-title: J. Theor. Biol. – volume: 13 start-page: 229 year: 1982 end-page: 259 article-title: The ecology of leaf life spans publication-title: Annu. Rev. Ecol. Syst. – volume: 101 start-page: 1363 year: 2008 end-page: 1377 article-title: In tropical lowland rain forests monocots have tougher leaves than dicots, and include a new kind of tough leaf publication-title: Ann. Bot. – volume: 101 start-page: 727 year: 2008 end-page: 736 article-title: Effects of light and nutrient availability on leaf mechanical properties of : a conceptual approach publication-title: Ann. Bot. – volume: 94 start-page: 13730 year: 1997 end-page: 13734 article-title: From tropics to tundra: global convergence in plant functioning publication-title: Proc. Natl. Acad. Sci. USA – volume: 87 start-page: 535 year: 2006 end-page: 541 article-title: Fundamental trade‐offs generating the worldwide leaf economics spectrum publication-title: Ecology – volume: 25 start-page: 168 year: 1961 end-page: 184 article-title: A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves publication-title: Ann. Bot. – volume: 42 start-page: 611 year: 1973 end-page: 622 article-title: The analysis of intra‐generation change in animal populations publication-title: J. Anim. Ecol. – year: 2004 – volume: 123 start-page: 158 year: 2000 end-page: 167 article-title: Characterising sclerophylly: some mechanical properties of leaves from heath and forest publication-title: Oecologia – volume: 8 start-page: 669 year: 1994 end-page: 675 article-title: Sclerophylly: primarily protective? publication-title: Funct. Ecol. – volume: 23 start-page: 299 year: 2008 end-page: 303 article-title: Why are evergreen leaves so contrary about shade? publication-title: Trends Ecol. Evol. – year: 1993 – volume: 12 start-page: 829 year: 1999 end-page: 856 article-title: Representing twentieth‐century space–time climate variability. Part I: development of a 1961–90 mean monthly terrestrial climatology publication-title: J. Clim. – year: 1903 – volume: 87 start-page: S150 year: 2006 end-page: S162 article-title: The growth‐defense trade‐off and habitat specialization by plants in Amazonian forests publication-title: Ecology – volume: 121 start-page: 597 year: 1992 end-page: 610 article-title: Leaf fracture toughness and sclerophylly: their correlations and ecological implications publication-title: New Phytol. – volume: 34 start-page: 317 year: 2007 end-page: 372 – volume: 82 start-page: 453 year: 2001 end-page: 469 article-title: Global‐scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs publication-title: Ecology – volume: 125 start-page: 1 year: 1985 article-title: Phylogenies and the comparative method publication-title: Am. Nat. – start-page: 137 year: 1986 end-page: 150 – volume: 144 start-page: 369 year: 1999 end-page: 383 article-title: Methods of assessing leaf‐fracture properties publication-title: New Phytol. – volume: 86 start-page: 2310 year: 2005 end-page: 2319 article-title: Linking biogeography and community ecology: latitudinal variation in plant‐herbivore interaction strength publication-title: Ecology – volume: 15 start-page: 63 year: 1988 end-page: 92 article-title: Adaptation to sun and shade: a whole‐plant perspective publication-title: Aust. J. Plant Physiol. – volume: 103 start-page: 757 year: 2009 end-page: 767 article-title: Correlations between leaf toughness and phenolics among species in contrasting environments of Australia and New Caledonia publication-title: Ann. Bot. – volume: 14 start-page: 2747 year: 1979 end-page: 2754 article-title: On the guillotining of materials publication-title: J. Mater. Sci. – volume: 22 start-page: 41 year: 2006 end-page: 51 article-title: Do tropical species invest more in anti‐herbivore defence than temperate species? A test in Eucryphia (Cunoniaceae) in eastern Australia publication-title: J. Trop. Ecol. – volume: 21 start-page: 246 year: 2007 end-page: 255 article-title: Leaf biomechanical properties and the densities of herbivorous insect guilds publication-title: Funct. Ecol. – volume: 7 start-page: 954 year: 1996 end-page: 962 article-title: A portable fracture toughness tester for biological materials publication-title: Meas. Sci. Technol. – volume: 33 start-page: 125 year: 2002 end-page: 159 article-title: Plant ecological strategies: some leading dimensions of variation between species [Review] publication-title: Annu. Rev. Ecol. Syst. – year: 1992 – volume: 93 start-page: 1531 year: 2006 end-page: 1545 article-title: The biomechanics of browsing and grazing publication-title: Am. J. Bot. – volume: 161 start-page: 98 year: 2003 end-page: 111 article-title: Least‐cost input mixtures of water and nitrogen for photosynthesis publication-title: Am. Nat. – volume: 428 start-page: 821 year: 2004 end-page: 827 article-title: The worldwide leaf economics spectrum publication-title: Nature – volume: 24 start-page: 256 year: 1992 end-page: 262 article-title: Delayed greening in tropical leaves: an antiherbivore defense? publication-title: Biotropica – volume: 86 start-page: 16 year: 1991 end-page: 24 article-title: Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species publication-title: Oecologia (Heidelberg) – volume: 51 start-page: 335 year: 2003 end-page: 380 article-title: A handbook of protocols for standardised and easy measurement of plant functional traits worldwide publication-title: Aust. J. Bot. – volume: 10 start-page: 668 year: 1996 end-page: 674 article-title: What makes a leaf tough and how this affects the pattern of leaf consumption by caterpillars publication-title: Funct. Ecol. – volume: 83 start-page: 3369 year: 2002 end-page: 3381 article-title: Latitudinal variation in palatability of salt‐marsh plants: which traits are responsible? publication-title: Ecology – volume: 60 start-page: 2235 year: 2009 end-page: 2248 article-title: Resistances along the CO diffusion pathway inside leaves publication-title: J. Exp. Bot – volume: 31 start-page: 195 year: 1992 end-page: 212 article-title: Anatomy of non‐uniform leaf photosynthesis publication-title: Photosynth. Res. – volume: 61 start-page: 1736 year: 1968 end-page: 1739 article-title: A simple penetrometer for measuring leaf toughness in insect feeding studies publication-title: Econ. Entomol. – volume: 154 start-page: 147 year: 2002 end-page: 157 article-title: Leaf traits as indicators of resource‐use strategy in floras with succulent species publication-title: New Phytol. – volume: 105 start-page: 423 year: 1954 end-page: 454 article-title: The feeding habits and food preferences of acrididae and the factors which determine them publication-title: Trans. R. Entomol. Soc. Lond. – volume: 71 start-page: 343 year: 1993 end-page: 345 article-title: How tough are sclerophylls? publication-title: Ann. Bot. – volume: 24 start-page: 2098 year: 2008 end-page: 2100 article-title: Phylocom: software for the analysis of phylogenetic community structure and trait evolution publication-title: Bioinformatics – volume: 182 start-page: 565 year: 2009 end-page: 588 article-title: Causes and consequences of variation in leaf mass per area (LMA): a meta‐analysis publication-title: New Phytol. – volume: 5 start-page: 168 year: 2000 end-page: 173 article-title: The cell and developmental biology of alkaloid biosynthesis publication-title: Trends Plant Sci. – volume: 186 start-page: 708 year: 2010 end-page: 721 article-title: Tissue‐level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species publication-title: New Phytol. – volume: 186 start-page: 429 year: 2010 end-page: 438 article-title: Reconciling species‐level vs plastic responses of evergreen leaf structure to light gradients: shade leaves punch above their weight publication-title: New Phytol. – volume: 218 start-page: 21 year: 2000 end-page: 30 article-title: Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina publication-title: Plant Soil – volume: 81 start-page: 259 year: 2006 end-page: 291 article-title: Bivariate line‐fitting methods for allometry publication-title: Biol. Rev. – volume: 329 start-page: 834 year: 2010 end-page: 838 article-title: Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate publication-title: Science – volume: 87 start-page: 553 year: 2001 end-page: 566 article-title: Evolution and function of leaf venation architecture: a review publication-title: Ann. Bot. – volume: 18 start-page: 419 year: 2004 end-page: 425 article-title: Allocation of nitrogen to cell walls decreases photosynthetic nitrogen‐use efficiency publication-title: Funct. Ecol. – volume: 15 start-page: 351 year: 2001 end-page: 359 article-title: Relationships between leaf lifespan and structural defences in a low‐nutrient, sclerophyll flora publication-title: Funct. Ecol. – volume: 7 start-page: 121 year: 1976 end-page: 159 article-title: The chemical defenses of plants to pathogens and herbivores publication-title: Annu. Rev. Ecol. Syst. – volume: 28 start-page: 642 year: 2003 end-page: 650 article-title: Leaf traits and herbivore selection in the field and in cafeteria experiments publication-title: Austral Ecol. – volume: 6 start-page: 61 year: 1978 end-page: 76 article-title: The toxicity of plant alkaloids: an Ecogeographic perspective publication-title: Biochem. Syst. Ecol. – start-page: 165 year: 1992 end-page: 191 – volume: 15 start-page: 295 year: 2004 end-page: 304 article-title: The plant traits that drive ecosystems: evidence from three continents publication-title: J. Veg. Sci. – volume: 47 start-page: 587 year: 1996 end-page: 603 article-title: Measurement of the shear and tensile fracture properties of leaves of pasture grasses publication-title: Aust. J. Agric. Res. – volume: 155 start-page: 403 year: 2002 ident: 10.1111/j.1461-0248.2010.01582.x-BIB82|cit83 article-title: Leaves at low versus high rainfall: coordination of structure, lifespan and physiology publication-title: New Phytol. doi: 10.1046/j.1469-8137.2002.00479.x – volume: 86 start-page: 2310 year: 2005 ident: 10.1111/j.1461-0248.2010.01582.x-BIB50|cit50 article-title: Linking biogeography and community ecology: latitudinal variation in plant-herbivore interaction strength publication-title: Ecology doi: 10.1890/04-1022 – volume: 53 start-page: 209 year: 1983 ident: 10.1111/j.1461-0248.2010.01582.x-BIB12|cit12 article-title: Herbivory and defensive characteristics of tree species in a lowland tropical forest publication-title: Ecol. Monogr. doi: 10.2307/1942495 – volume: 40 start-page: 245 year: 2009 ident: 10.1111/j.1461-0248.2010.01582.x-BIB63|cit63 article-title: Is there a latitudinal gradient in the importance of biotic interactions? publication-title: Annu. Rev. Ecol. Evol. Syst. doi: 10.1146/annurev.ecolsys.39.110707.173430 – volume: 103 start-page: 757 year: 2009 ident: 10.1111/j.1461-0248.2010.01582.x-BIB58|cit58 article-title: Correlations between leaf toughness and phenolics among species in contrasting environments of Australia and New Caledonia publication-title: Ann. Bot. doi: 10.1093/aob/mcn246 – volume-title: Mechanics of Materials year: 2009 ident: 10.1111/j.1461-0248.2010.01582.x-BIB26|cit26 – volume: 4 start-page: 819 year: 1990 ident: 10.1111/j.1461-0248.2010.01582.x-BIB39|cit39 article-title: Estimation of the fracture toughness of leaves publication-title: Funct. Ecol. doi: 10.2307/2389448 – volume: 8 start-page: 669 year: 1994 ident: 10.1111/j.1461-0248.2010.01582.x-BIB69|cit70 article-title: Sclerophylly: primarily protective? publication-title: Funct. Ecol. doi: 10.2307/2390225 – volume: 61 start-page: 1736 year: 1968 ident: 10.1111/j.1461-0248.2010.01582.x-BIB8|cit8 article-title: A simple penetrometer for measuring leaf toughness in insect feeding studies publication-title: Econ. Entomol. doi: 10.1093/jee/61.6.1736 – start-page: 137 volume-title: Insects and the Plant Surface year: 1986 ident: 10.1111/j.1461-0248.2010.01582.x-BIB29|cit29 – volume: 7 start-page: 121 year: 1976 ident: 10.1111/j.1461-0248.2010.01582.x-BIB35|cit35 article-title: The chemical defenses of plants to pathogens and herbivores publication-title: Annu. Rev. Ecol. Syst. doi: 10.1146/annurev.es.07.110176.001005 – volume: 86 start-page: 16 year: 1991 ident: 10.1111/j.1461-0248.2010.01582.x-BIB59|cit59 article-title: Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species publication-title: Oecologia (Heidelberg) doi: 10.1007/BF00317383 – volume: 27 start-page: 1047 year: 2004 ident: 10.1111/j.1461-0248.2010.01582.x-BIB1001|cit68 article-title: Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2004.01209.x – volume: 28 start-page: 642 year: 2003 ident: 10.1111/j.1461-0248.2010.01582.x-BIB52|cit52 article-title: Leaf traits and herbivore selection in the field and in cafeteria experiments publication-title: Austral Ecol. doi: 10.1046/j.1442-9993.2003.01321.x – volume: 47 start-page: 992 year: 1966 ident: 10.1111/j.1461-0248.2010.01582.x-BIB5|cit5 article-title: Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly publication-title: Ecology doi: 10.2307/1935647 – volume: 15 start-page: 63 year: 1988 ident: 10.1111/j.1461-0248.2010.01582.x-BIB28|cit28 article-title: Adaptation to sun and shade: a whole-plant perspective publication-title: Aust. J. Plant Physiol. doi: 10.1071/PP9880063 – volume: 428 start-page: 821 year: 2004 ident: 10.1111/j.1461-0248.2010.01582.x-BIB84|cit85 article-title: The worldwide leaf economics spectrum publication-title: Nature doi: 10.1038/nature02403 – volume: 13 start-page: 229 year: 1982 ident: 10.1111/j.1461-0248.2010.01582.x-BIB7|cit7 article-title: The ecology of leaf life spans publication-title: Annu. Rev. Ecol. Syst. doi: 10.1146/annurev.es.13.110182.001305 – volume: 82 start-page: 453 year: 2001 ident: 10.1111/j.1461-0248.2010.01582.x-BIB44|cit44 article-title: Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs publication-title: Ecology doi: 10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2 – volume: 42 start-page: 611 year: 1973 ident: 10.1111/j.1461-0248.2010.01582.x-BIB67|cit67 article-title: The analysis of intra-generation change in animal populations publication-title: J. Anim. Ecol. doi: 10.2307/3127 – volume: 25 start-page: 168 year: 1961 ident: 10.1111/j.1461-0248.2010.01582.x-BIB37|cit37 article-title: A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves publication-title: Ann. Bot. doi: 10.1093/oxfordjournals.aob.a083740 – volume-title: Plant-Geography Upon a Physiological Basis year: 1903 ident: 10.1111/j.1461-0248.2010.01582.x-BIB64|cit64 doi: 10.5962/bhl.title.8099 – volume-title: Communities and Ecosystems year: 1975 ident: 10.1111/j.1461-0248.2010.01582.x-BIB77|cit78 – start-page: 165 volume-title: Biomechanics-Materials: A Practical Approach year: 1992 ident: 10.1111/j.1461-0248.2010.01582.x-BIB73|cit74 doi: 10.1093/oso/9780199632237.003.0008 – volume: 27 start-page: 305 year: 1996 ident: 10.1111/j.1461-0248.2010.01582.x-BIB14|cit14 article-title: Herbivory and plant defenses in tropical forests publication-title: Annu. Rev. Ecol. Syst. doi: 10.1146/annurev.ecolsys.27.1.305 – volume: 31 start-page: 195 year: 1992 ident: 10.1111/j.1461-0248.2010.01582.x-BIB68|cit69 article-title: Anatomy of non-uniform leaf photosynthesis publication-title: Photosynth. Res. doi: 10.1007/BF00035537 – volume: 7 start-page: 954 year: 1996 ident: 10.1111/j.1461-0248.2010.01582.x-BIB17|cit17 article-title: A portable fracture toughness tester for biological materials publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/7/6/016 – volume: 186 start-page: 708 year: 2010 ident: 10.1111/j.1461-0248.2010.01582.x-BIB33|cit33 article-title: Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03212.x – volume: 83 start-page: 3369 year: 2002 ident: 10.1111/j.1461-0248.2010.01582.x-BIB66|cit66 article-title: Latitudinal variation in palatability of salt-marsh plants: which traits are responsible? publication-title: Ecology doi: 10.1890/0012-9658(2002)083[3369:LVIPOS]2.0.CO;2 – volume: 123 start-page: 158 year: 2000 ident: 10.1111/j.1461-0248.2010.01582.x-BIB21|cit21 article-title: Characterising sclerophylly: some mechanical properties of leaves from heath and forest publication-title: Oecologia doi: 10.1007/s004420051001 – volume: 334 start-page: 95 year: 1991 ident: 10.1111/j.1461-0248.2010.01582.x-BIB40|cit40 article-title: The fracture toughness of the leaf of the dicotyledon Calophyllum inophyllum L (Guttiferae) publication-title: Philos. Trans. Biol. Sci. doi: 10.1098/rstb.1991.0099 – volume: 135 start-page: 109 year: 1997 ident: 10.1111/j.1461-0248.2010.01582.x-BIB15|cit15 article-title: Functional leaf attributes predict litter decomposition rate in herbaceous plants publication-title: New Phytol. doi: 10.1046/j.1469-8137.1997.00628.x – volume: 51 start-page: 565 year: 1970 ident: 10.1111/j.1461-0248.2010.01582.x-BIB23|cit23 article-title: Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars publication-title: Ecology doi: 10.2307/1934037 – volume: 12 start-page: 829 year: 1999 ident: 10.1111/j.1461-0248.2010.01582.x-BIB43|cit43 article-title: Representing twentieth-century space-time climate variability. Part I: development of a 1961-90 mean monthly terrestrial climatology publication-title: J. Clim. doi: 10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2 – volume: 6 start-page: 61 year: 1978 ident: 10.1111/j.1461-0248.2010.01582.x-BIB36|cit36 article-title: The toxicity of plant alkaloids: an Ecogeographic perspective publication-title: Biochem. Syst. Ecol. doi: 10.1016/0305-1978(78)90026-1 – volume: 33 start-page: 125 year: 2002 ident: 10.1111/j.1461-0248.2010.01582.x-BIB76|cit77 article-title: Plant ecological strategies: some leading dimensions of variation between species [Review] publication-title: Annu. Rev. Ecol. Syst. doi: 10.1146/annurev.ecolsys.33.010802.150452 – volume: 60 start-page: 2235 year: 2009 ident: 10.1111/j.1461-0248.2010.01582.x-BIB22|cit22 article-title: Resistances along the CO2 diffusion pathway inside leaves publication-title: J. Exp. Bot doi: 10.1093/jxb/erp117 – volume: 18 start-page: 419 year: 2004 ident: 10.1111/j.1461-0248.2010.01582.x-BIB46|cit46 article-title: Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency publication-title: Funct. Ecol. doi: 10.1111/j.0269-8463.2004.00847.x – volume: 182 start-page: 565 year: 2009 ident: 10.1111/j.1461-0248.2010.01582.x-BIB54|cit54 article-title: Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis publication-title: New Phytol. doi: 10.1111/j.1469-8137.2009.02830.x – volume: 23 start-page: 299 year: 2008 ident: 10.1111/j.1461-0248.2010.01582.x-BIB41|cit41 article-title: Why are evergreen leaves so contrary about shade? publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2008.02.006 – volume: 87 start-page: 553 year: 2001 ident: 10.1111/j.1461-0248.2010.01582.x-BIB61|cit61 article-title: Evolution and function of leaf venation architecture: a review publication-title: Ann. Bot. doi: 10.1006/anbo.2001.1391 – volume: 5 start-page: 168 year: 2000 ident: 10.1111/j.1461-0248.2010.01582.x-BIB18|cit18 article-title: The cell and developmental biology of alkaloid biosynthesis publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(00)01575-2 – volume: 186 start-page: 429 year: 2010 ident: 10.1111/j.1461-0248.2010.01582.x-BIB42|cit42 article-title: Reconciling species-level vs plastic responses of evergreen leaf structure to light gradients: shade leaves punch above their weight publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03202.x – volume: 15 start-page: 295 year: 2004 ident: 10.1111/j.1461-0248.2010.01582.x-BIB19|cit19 article-title: The plant traits that drive ecosystems: evidence from three continents publication-title: J. Veg. Sci. doi: 10.1111/j.1654-1103.2004.tb02266.x – volume: 22 start-page: 41 year: 2006 ident: 10.1111/j.1461-0248.2010.01582.x-BIB30|cit30 article-title: Do tropical species invest more in anti-herbivore defence than temperate species? A test in Eucryphia (Cunoniaceae) in eastern Australia publication-title: J. Trop. Ecol. doi: 10.1017/S0266467405002919 – volume: 218 start-page: 21 year: 2000 ident: 10.1111/j.1461-0248.2010.01582.x-BIB51|cit51 article-title: Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina publication-title: Plant Soil doi: 10.1023/A:1014981715532 – volume: 51 start-page: 335 year: 2003 ident: 10.1111/j.1461-0248.2010.01582.x-BIB16|cit16 article-title: A handbook of protocols for standardised and easy measurement of plant functional traits worldwide publication-title: Aust. J. Bot. doi: 10.1071/BT02124 – volume: 329 start-page: 834 year: 2010 ident: 10.1111/j.1461-0248.2010.01582.x-BIB6|cit6 article-title: Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate publication-title: Science doi: 10.1126/science.1184984 – volume: 24 start-page: 256 year: 1992 ident: 10.1111/j.1461-0248.2010.01582.x-BIB34|cit34 article-title: Delayed greening in tropical leaves: an antiherbivore defense? publication-title: Biotropica doi: 10.2307/2388520 – volume: 10 start-page: 668 year: 1996 ident: 10.1111/j.1461-0248.2010.01582.x-BIB9|cit9 article-title: What makes a leaf tough and how this affects the pattern of Castanopsis fissa leaf consumption by caterpillars publication-title: Funct. Ecol. doi: 10.2307/2390178 – volume: 93 start-page: 1531 year: 2006 ident: 10.1111/j.1461-0248.2010.01582.x-BIB62|cit62 article-title: The biomechanics of browsing and grazing publication-title: Am. J. Bot. doi: 10.3732/ajb.93.10.1531 – volume: 154 start-page: 147 year: 2002 ident: 10.1111/j.1461-0248.2010.01582.x-BIB72|cit73 article-title: Leaf traits as indicators of resource-use strategy in floras with succulent species publication-title: New Phytol. doi: 10.1046/j.1469-8137.2002.00357.x – volume: 161 start-page: 98 year: 2003 ident: 10.1111/j.1461-0248.2010.01582.x-BIB83|cit84 article-title: Least-cost input mixtures of water and nitrogen for photosynthesis publication-title: Am. Nat. doi: 10.1086/344920 – volume: 87 start-page: 535 year: 2006 ident: 10.1111/j.1461-0248.2010.01582.x-BIB65|cit65 article-title: Fundamental trade-offs generating the worldwide leaf economics spectrum publication-title: Ecology doi: 10.1890/05-1051 – volume: 101 start-page: 1363 year: 2008 ident: 10.1111/j.1461-0248.2010.01582.x-BIB20|cit20 article-title: In tropical lowland rain forests monocots have tougher leaves than dicots, and include a new kind of tough leaf publication-title: Ann. Bot. doi: 10.1093/aob/mcn046 – volume: 34 start-page: 317 volume-title: Adv. Insect Physiol year: 2007 ident: 10.1111/j.1461-0248.2010.01582.x-BIB11|cit11 – volume: 4 start-page: 431 year: 1992 ident: 10.1111/j.1461-0248.2010.01582.x-BIB48|cit48 article-title: A method for the analysis of comparative data publication-title: J. Theor. Biol. doi: 10.1016/S0022-5193(05)80637-X – volume: 87 start-page: S150 year: 2006 ident: 10.1111/j.1461-0248.2010.01582.x-BIB25|cit25 article-title: The growth-defense trade-off and habitat specialization by plants in Amazonian forests publication-title: Ecology doi: 10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2 – volume: 81 start-page: 259 year: 2006 ident: 10.1111/j.1461-0248.2010.01582.x-BIB74|cit75 article-title: Bivariate line-fitting methods for allometry publication-title: Biol. Rev. doi: 10.1017/S1464793106007007 – volume: 105 start-page: 423 year: 1954 ident: 10.1111/j.1461-0248.2010.01582.x-BIB78|cit79 article-title: The feeding habits and food preferences of acrididae and the factors which determine them publication-title: Trans. R. Entomol. Soc. Lond. doi: 10.1111/j.1365-2311.1954.tb00771.x – volume: 47 start-page: 587 year: 1996 ident: 10.1111/j.1461-0248.2010.01582.x-BIB32|cit32 article-title: Measurement of the shear and tensile fracture properties of leaves of pasture grasses publication-title: Aust. J. Agric. Res. doi: 10.1071/AR9960587 – volume: 15 start-page: 351 year: 2001 ident: 10.1111/j.1461-0248.2010.01582.x-BIB79|cit80 article-title: Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora publication-title: Funct. Ecol. doi: 10.1046/j.1365-2435.2001.00522.x – volume-title: Methods in Comparative Plant Ecology: A Laboratory Manual year: 1993 ident: 10.1111/j.1461-0248.2010.01582.x-BIB31|cit31 doi: 10.1007/978-94-011-1494-3 – volume: 21 start-page: 246 year: 2007 ident: 10.1111/j.1461-0248.2010.01582.x-BIB49|cit49 article-title: Leaf biomechanical properties and the densities of herbivorous insect guilds publication-title: Funct. Ecol. doi: 10.1111/j.1365-2435.2006.01223.x – volume: 71 start-page: 343 year: 1993 ident: 10.1111/j.1461-0248.2010.01582.x-BIB70|cit71 article-title: How tough are sclerophylls? publication-title: Ann. Bot. doi: 10.1006/anbo.1993.1043 – volume: 14 start-page: 2747 year: 1979 ident: 10.1111/j.1461-0248.2010.01582.x-BIB3|cit3 article-title: On the guillotining of materials publication-title: J. Mater. Sci. doi: 10.1007/BF00610649 – start-page: 309 volume-title: Inherent Variation in Plant Growth. Physiological Mechanisms and Ecological Consequences year: 1988 ident: 10.1111/j.1461-0248.2010.01582.x-BIB53|cit53 – volume: 71 start-page: 401 year: 1996 ident: 10.1111/j.1461-0248.2010.01582.x-BIB81|cit82 article-title: Herbivory and the mechanics of fracture in plants publication-title: Biol. Rev. Camb. Philos. Soc. doi: 10.1111/j.1469-185X.1996.tb01280.x – volume: 24 start-page: 2098 year: 2008 ident: 10.1111/j.1461-0248.2010.01582.x-BIB75|cit76 article-title: Phylocom: software for the analysis of phylogenetic community structure and trait evolution publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn358 – volume: 97 start-page: 933 year: 2009 ident: 10.1111/j.1461-0248.2010.01582.x-BIB1|cit1 article-title: Is there more insect folivory in warmer temperate climates? A latitudinal comparison of insect folivory in eastern North America publication-title: J. Ecol. doi: 10.1111/j.1365-2745.2009.01523.x – start-page: 375 volume-title: Topics in Plant Population Biology year: 1979 ident: 10.1111/j.1461-0248.2010.01582.x-BIB27|cit27 doi: 10.1007/978-1-349-04627-0_17 – volume: 160 start-page: 81 year: 2003 ident: 10.1111/j.1461-0248.2010.01582.x-BIB55|cit55 article-title: Characterizing sclerophylly: the mechanical properties of a diverse range of leaf types publication-title: New Phytol. doi: 10.1046/j.1469-8137.2003.00855.x – volume-title: Plant Biomechanics: An Engineering Approach to Plant Form and Function year: 1992 ident: 10.1111/j.1461-0248.2010.01582.x-BIB45|cit45 – volume: 121 start-page: 597 year: 1992 ident: 10.1111/j.1461-0248.2010.01582.x-BIB10|cit10 article-title: Leaf fracture toughness and sclerophylly: their correlations and ecological implications publication-title: New Phytol. doi: 10.1111/j.1469-8137.1992.tb01131.x – volume: 94 start-page: 13730 year: 1997 ident: 10.1111/j.1461-0248.2010.01582.x-BIB60|cit60 article-title: From tropics to tundra: global convergence in plant functioning publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.25.13730 – volume: 93 start-page: 1546 year: 2006 ident: 10.1111/j.1461-0248.2010.01582.x-BIB56|cit56 article-title: Plant biomechanics in an ecological context publication-title: Am. J. Bot. doi: 10.3732/ajb.93.10.1546 – volume: 276 start-page: 95 year: 2005 ident: 10.1111/j.1461-0248.2010.01582.x-BIB57|cit57 article-title: Leaf mechanical properties in sclerophyll woodland and shrubland on contrasting soils publication-title: Plant Soil doi: 10.1007/s11104-005-3343-8 – volume: 125 start-page: 1 year: 1985 ident: 10.1111/j.1461-0248.2010.01582.x-BIB24|cit24 article-title: Phylogenies and the comparative method publication-title: Am. Nat. doi: 10.1086/284325 – volume: 144 start-page: 369 year: 1999 ident: 10.1111/j.1461-0248.2010.01582.x-BIB2|cit2 article-title: Methods of assessing leaf-fracture properties publication-title: New Phytol. doi: 10.1046/j.1469-8137.1999.00506.x – start-page: 25 volume-title: Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions year: 1991 ident: 10.1111/j.1461-0248.2010.01582.x-BIB13|cit13 – volume-title: Dental Functional Morphology: How Teeth Work year: 2004 ident: 10.1111/j.1461-0248.2010.01582.x-BIB38|cit38 doi: 10.1017/CBO9780511735011 – volume-title: Elastic and Plastic Fracture: Metals, Polymers, Ceramics, Composites, Biological Materials year: 1985 ident: 10.1111/j.1461-0248.2010.01582.x-BIB4|cit4 – volume: 101 start-page: 727 year: 2008 ident: 10.1111/j.1461-0248.2010.01582.x-BIB47|cit47 article-title: Effects of light and nutrient availability on leaf mechanical properties of Plantago major: a conceptual approach publication-title: Ann. Bot. doi: 10.1093/aob/mcn013 – volume-title: Nutritional Ecology of the Ruminant year: 1994 ident: 10.1111/j.1461-0248.2010.01582.x-BIB71|cit72 doi: 10.7591/9781501732355 – volume: 9 start-page: 269 year: 1995 ident: 10.1111/j.1461-0248.2010.01582.x-BIB80|cit81 article-title: A comparative study of the fracture properties of 5 grasses publication-title: Funct. Ecol. doi: 10.2307/2390573 |
SSID | ssj0012971 |
Score | 2.5304506 |
SecondaryResourceType | review_article |
Snippet | Ecology Letters (2011) 14: 301-312 ABSTRACT: Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition... Ecology Letters (2011) 14: 301–312 Leaf mechanical properties strongly influence leaf lifespan, plant–herbivore interactions, litter decomposition and nutrient... Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in... |
SourceID | wageningen proquest pubmed pascalfrancis crossref wiley istex fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 301 |
SubjectTerms | anatomy & histology Animal and plant ecology Animal, plant and microbial ecology biogeochemical cycles Biological and medical sciences Biomechanical Phenomena Biomechanics Data processing Ecological function economics spectrum Ecosystems fibre fracture-toughness Fundamental and applied biological sciences. Psychology General aspects global-trend latitudinal variation leaf traits Leaves Life span Light longevity Mechanical properties meta-analysis Nutrient cycles photosynthesis physiology Plant biology Plant Leaves Plant Leaves - anatomy & histology Plant Leaves - physiology Plant Physiological Phenomena Plant populations Plants Plants - anatomy & histology Rain shade Stress, Mechanical toughness traits Tropical Climate Understory |
Title | Global patterns of leaf mechanical properties |
URI | https://api.istex.fr/ark:/67375/WNG-RH2K81R2-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1461-0248.2010.01582.x https://www.ncbi.nlm.nih.gov/pubmed/21265976 https://www.proquest.com/docview/852933372 https://www.proquest.com/docview/1501367740 https://www.proquest.com/docview/858416864 https://www.proquest.com/docview/879476914 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F404188 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED62wqB7WPe7brfiwdibQyTLlvw4RtqwH33IFpY3IdnWHpI5IU5ou79-d5bj4tKNMvaSGCwJ5_zp9F10-g7gbW5dbkSZRWmMH8LlLDIxzsfYop_k0kpe0nnnL-fpeCo-zpJZm_9EZ2G8PkT3hxvNjMZf0wQ3tr45yTEU5l2GFksUHxCfpNQt4keTTkkKVzUfe_ku8ayf1HPrQL2V6r4zS-SvZPpLyp80NZrQ-doXt5HTh7B_gQ6hak5I9Ylvs3KdHsB895t9wsp8sN3YQf7rhhzk_zHKY3jUEtzwvUfkE7hXVk_hgS95eYVXo0Ym--oZRL7cQLhqFD6rOly6cFEaF_4s6TQygSdc0VbBmjRfn8P0dPTtwzhqizdEOca9PGKFLPJhLB2CQEplc2nIfyTWMmYTpRy3UtqkGFpmZCky4Ya5si4pSYHOFSp-AXvVsioPIcysYIYJmwqMHXHNVRk3IuUcx00LpG8ByN2L0nmrbE4FNha6F-EwTWbRZBbdmEVfBsC6niuv7nGHPoeIBW1-oBPW06-ctn5ZJqTMWADvGoB0Y5n1nBLnZKK_n5_pyZh_UmzC9VkAJz0EdR040lWKggM43kFKt06l1ipBbhbHEu--6e6iN6AtHlOVy22tkd6TBp8UwwDCP7RRCW01q1T8pQl6aZlmDJu89Hi-fkLGUwxC0wDia4Drigpf1Zq0yluY6ovtWlcL-sIRai3w1SkVQNrA987W1qPPI7o6-teOx7DvtwEobfAV7G3W2_I18siNPWk8xG9b3l1c |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED7BEGI88BsWBiNIiLdUtePEziNC3Qrr-lBW0TfLTmMeVtKqabWNv567OM3UaaAJ8dJGis9qL5_Pd7nzdwAfcutyI4osSmP8EC5nkYlxPcYW7SSXVvKCzjufDNP-WHydJJOmHRCdhfH8EO0LN1oZtb2mBU4vpK-vcoyFeVuixRLFO-hQ3qMG33V8NWq5pHBf89GXl4kn22U9N860tVfddWaOHiwp_4IqKE2FSnS--8VN7ulD2D1Hk1DWZ6S2Xd967zp8DLPNv_YlK2ed9cp28l_XCCH_k1qewKPGxw0_eVA-hTtF-Qzu-66Xl3jVq5myL59D5DsOhIua5LOswrkLZ4Vx4c-CDiQTfsIFZQuWRPv6AsaHvdPP_ajp3xDlGPryiE3lNO_G0iEOpFQ2l4ZMSGItYzZRynErpU2mXcuMLEQmXDdX1iUFkdC5qYpfwk45L4s9CDMrmGHCpgLDR9x2VcaNSDnHedMpenAByM2T0nlDbk49NmZ6K8hhmtSiSS26Vou-CIC1kgtP8HELmT0EgzY_0A7r8TdO2V-WCSkzFsDHGiHtXGZ5RrVzMtHfh0d61OfHio24PgrgYAtCrQBHj5UC4QD2N5jSjV2ptErQPYtjiXfft3fRIFCWx5TFfF1p9PCJhk-KbgDhH8aohLLNKhV_GYKGWqYZwyGvPKCvfiHjKcahaQDxFcJ1Sb2vKk105Q1O9fl6qcsZfeEMlRb46JQKIK3xe2tt696gR1ev_1XwHTzon54M9ODL8Hgfdn1WgKoI38DOarku3qJbubIHtbn4DSr9YXc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgCDQe-DlYGIwgId5S1Y5jO4-ItStsVKhQ0TfLTmIeWtKqabWNv567OM3UaaAJ8dJGis9KL5_Pd73zd4S8zazLDC_SSMTwwV1GIxPDeowt2EkmrWQFnnf-PBSDMf80SSZN_ROehfH8EO0fbrgyanuNC3yRu6uLHEJh1lZo0USxDviTd7joKkT40ailkoJtzQdfXiaebFf1XDvT1lZ125k5OLCo-3MsoDQV6ND55hfXeaf3ye4ZWISyPiK17fnWW1f_IZlufrSvWJl21ivbyX5d4YP8P1p5RB40Hm743kPyMblVlE_IXd_z8gKuejVP9sVTEvl-A-Gipvgsq3DuwllhXPizwOPIiJ5wgbmCJZK-7pFxv_ftwyBqujdEGQS-LKK5zLNuLB2gQEplM2nQgCTWUmoTpRyzUtok71pqZMFT7rqZsi4pkILO5Sp-RnbKeVnskzC1nBrKreAQPMKmq1JmuGAM5hU5-G8BkZsXpbOG2hw7bMz0VohDNapFo1p0rRZ9HhDaSi48vccNZPYBC9r8ACusx18Z5n5pyqVMaUDe1QBp5zLLKVbOyUR_Hx7r0YCdKDpi-jggh1sIagUY-KsYBgfkYAMp3ViVSqsEnLM4lnD3TXsXzAHmeExZzNeVBv8eSfgk7wYk_MMYlWCuWQn-lyFgpqVIKQx57vF8-YSUCYhCRUDiS4DrEjtfVRrJyhuY6rP1Upcz_IIZKs3h1SkVEFHD98ba1r3THl69-FfB1-Tel6O-Pv04PDkguz4lgCWEL8nOarkuXoFPubKHtbH4DbwlYC8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+patterns+of+leaf+mechanical+properties&rft.jtitle=Ecology+letters&rft.au=Onoda%2C+Yusuke&rft.au=Westoby%2C+M&rft.au=Adler%2C+Peter+B&rft.au=Choong%2C+Amy+M.F.&rft.date=2011-03-01&rft.issn=1461-023X&rft.volume=14&rft.issue=3+p.301-312&rft.spage=301&rft.epage=312&rft_id=info:doi/10.1111%2Fj.1461-0248.2010.01582.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon |