Analysis of multisource non-linguistic sound recognition among cochlear implant subjects

Naturalistic sounds carry rich information related to situational context or subject/system properties that contribute towards an acoustic awareness of the ambient environment. Sensorineural hearing loss reduces the functionality of the cochlea, auditory nerve, or central auditory pathways leading t...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of the Acoustical Society of America Vol. 150; no. 4; p. A261
Main Authors Chandra-Shekar, Ram-Charan M., Hansen, John H.
Format Journal Article
LanguageEnglish
Published 01.10.2021
Online AccessGet full text

Cover

Loading…
Abstract Naturalistic sounds carry rich information related to situational context or subject/system properties that contribute towards an acoustic awareness of the ambient environment. Sensorineural hearing loss reduces the functionality of the cochlea, auditory nerve, or central auditory pathways leading to degradation in auditory processing. Cochlear Implants (CIs) have been widely used to restore impaired auditory function and research advancements have focused on improving speech recognition and overall hearing-related quality of life. However, relatively few studies have investigated non-linguistic Sound Recognition (SR) among CI subjects. In this study, the recognition of sounds in CI users is assessed in a competing condition involving at least two non-linguistic sound sources. Furthermore, an end-to-end audio source separation neural network, SuDoRM-RF, with negative and permutation invariance training, is used for audio source recovery and comparatively assessed for potential identification improvement of non-linguistic sounds among CI users. Objective metrics such as classification accuracy, scale-invariant signal-to-distortion-ratio, and other audio quality related measures are used for assessment and subjective evaluation and compared against listener testing with CI subjects. The proposed study can model multi-source non-linguistic sound problems, the cocktail party effect and potentially provide an effective simulation for realistic listening test scenarios. [Study supported by NIH DC010494-01A.]
AbstractList Naturalistic sounds carry rich information related to situational context or subject/system properties that contribute towards an acoustic awareness of the ambient environment. Sensorineural hearing loss reduces the functionality of the cochlea, auditory nerve, or central auditory pathways leading to degradation in auditory processing. Cochlear Implants (CIs) have been widely used to restore impaired auditory function and research advancements have focused on improving speech recognition and overall hearing-related quality of life. However, relatively few studies have investigated non-linguistic Sound Recognition (SR) among CI subjects. In this study, the recognition of sounds in CI users is assessed in a competing condition involving at least two non-linguistic sound sources. Furthermore, an end-to-end audio source separation neural network, SuDoRM-RF, with negative and permutation invariance training, is used for audio source recovery and comparatively assessed for potential identification improvement of non-linguistic sounds among CI users. Objective metrics such as classification accuracy, scale-invariant signal-to-distortion-ratio, and other audio quality related measures are used for assessment and subjective evaluation and compared against listener testing with CI subjects. The proposed study can model multi-source non-linguistic sound problems, the cocktail party effect and potentially provide an effective simulation for realistic listening test scenarios. [Study supported by NIH DC010494-01A.]
Author Chandra-Shekar, Ram-Charan M.
Hansen, John H.
Author_xml – sequence: 1
  givenname: Ram-Charan M.
  surname: Chandra-Shekar
  fullname: Chandra-Shekar, Ram-Charan M.
  organization: CRSS-CILab: Ctr. for Robust Speech Systems—Cochlear Implant Processing Lab, Univ. of Texas—Dallas, 800 W Campbell Rd., Richardson, TX 75080, RamCharan.ChandraShekar@utdallas.edu
– sequence: 2
  givenname: John H.
  surname: Hansen
  fullname: Hansen, John H.
  organization: CRSS-CILab: Ctr. for Robust Speech Systems—Cochlear Implant Processing Lab, Univ. of Texas— Dallas, Richardson, TX
BookMark eNp9kD1rwzAYhEVJoU7apb9Ac4tbfViWNYbQLwh0ydDNKPKrVMGWgmQP-feVSeZOD3ccB3dLtPDBA0KPlLxQyuhrJiGkYYzfoIIKRspGsGqBiuzSslJ1fYeWKR2zFA1XBfpZe92fk0s4WDxM_ehSmKIBnIvL3vnD5NLoDM6u73AEEw7ejS54rIfgD9gE89uDjtgNp177EadpfwQzpnt0a3Wf4OHKFdq9v-02n-X2--Nrs96WRlJeqobxrqGUU7WvrSTQaQkZRNEGtFSSglFQCWVEZU3FbWWzrOUehOwYCL5CT5daE0NKEWx7im7Q8dxS0s6XzLxeksPPl3AybtTziv_Sf5-oZCM
CODEN JASMAN
ContentType Journal Article
Copyright Acoustical Society of America
Copyright_xml – notice: Acoustical Society of America
DBID AAYXX
CITATION
DOI 10.1121/10.0008223
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1520-8524
EndPage A261
ExternalDocumentID 10_1121_10_0008223
jasa
GroupedDBID ---
--Z
-~X
.DC
.GJ
123
186
29L
3O-
4.4
41~
5-Q
53G
5RE
5VS
6TJ
85S
AAAAW
AAEUA
AAPUP
AAYIH
ABDNZ
ABEFF
ABEFU
ABJNI
ABNAN
ABPPZ
ABTAH
ABZEH
ACBNA
ACBRY
ACCUC
ACGFO
ACGFS
ACNCT
ACXMS
ACYGS
ADCTM
AEGXH
AENEX
AETEA
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AGVCI
AHPGS
AHSDT
AI.
AIAGR
AIDUJ
AIZTS
ALMA_UNASSIGNED_HOLDINGS
AQWKA
BAUXJ
CS3
D0L
DU5
EBS
EJD
ESX
F5P
G8K
H~9
M71
M73
MVM
NEJ
NHB
OHT
OK1
P2P
RAZ
RIP
RNS
ROL
RQS
S10
SC5
SJN
TN5
TWZ
UCJ
UHB
UPT
UQL
VH1
VOH
VQA
WH7
XFK
XJT
XOL
XSW
YQT
ZCG
ZXP
ZY4
~02
~G0
AAGWI
AAYXX
ABJGX
ADMLS
AEILP
CITATION
ID FETCH-LOGICAL-c713-9823d811319b6f70eda7e70e0918ea7971ec9e459c54fc43f4f9e467be57d2e53
ISSN 0001-4966
IngestDate Tue Jul 01 01:02:27 EDT 2025
Fri Jun 21 00:13:54 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c713-9823d811319b6f70eda7e70e0918ea7971ec9e459c54fc43f4f9e467be57d2e53
PageCount 1
ParticipantIDs crossref_primary_10_1121_10_0008223
scitation_primary_10_1121_10_0008223
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211000
2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 20211000
PublicationDecade 2020
PublicationTitle The Journal of the Acoustical Society of America
PublicationYear 2021
SSID ssj0005839
Score 2.3574522
Snippet Naturalistic sounds carry rich information related to situational context or subject/system properties that contribute towards an acoustic awareness of the...
SourceID crossref
scitation
SourceType Index Database
Publisher
StartPage A261
Title Analysis of multisource non-linguistic sound recognition among cochlear implant subjects
URI http://dx.doi.org/10.1121/10.0008223
Volume 150
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELYqqhV7QewCWtiHLG1vlQtOHDs5ViyoWu1yaZF6Q47tCO1Ci0h74dczfiQxDyHgkjRRakUznyYz429mEBpkOpUQFhSESy0Jy4QkEr4EpKg4xBtMU-1Zvmd8cs5-z7N5rzeNWEvrVTlSd8_WlbxHq3AP9GqrZN-g2XZRuAG_Qb9wBA3D8VU6jjuKOGagT8UPIaQntsx87bowD2s7OmnYUoUs_9iNGAJbeGmnRthSySuQ8LBelzYtU8cea1c7dtXwCcZq6WaA2UYigfRp_Vm_9xPxBRb6VpLppfkfSNzymtjdfbs9NOos3yLkgByHZzKK0xAJbQltnWmFYLTgoa91sKYQm-aZL5Juza1vNBtwxSLjOU58X_bwIW4unxr5hPp8g3NgfLnyo6bZ_2QNTnM_gdgBjF9__Ovvn2nH_MnTEBX5Nw5da2HZw27RB37KJrgjnhkROR-zbbQV5I_HHgKfUM8sPqMPjr2r6h00b4CAlxWOgIAfAgE7IOAICNgBATdAwAEIuAHCLpqdnsyOJySMzCBK0JQUeZLqnFKwqyWvxJHRUhg4gVOYGykKQY0qDMsKlbFKsbRiFVxyUZpM6MRk6R7agDczXxAGW81SzXNa0YKVTJas5EpU0v6dcWX20c9GPhc3vjHKhQsoE2rPQYr7aNCK7oXHDl732Ff0sYPeN7Sxul2b7-ATrsofQcf34WljSg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+multisource+non-linguistic+sound+recognition+among+cochlear+implant+subjects&rft.jtitle=The+Journal+of+the+Acoustical+Society+of+America&rft.au=Chandra-Shekar%2C+Ram-Charan+M.&rft.au=Hansen%2C+John+H.&rft.date=2021-10-01&rft.issn=0001-4966&rft.eissn=1520-8524&rft.volume=150&rft.issue=4&rft.spage=A261&rft.epage=A261&rft_id=info:doi/10.1121%2F10.0008223&rft.externalDocID=jasa
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4966&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4966&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4966&client=summon