Exploring the high-dimensional structure of muscle redundancy via subject-specific and generic musculoskeletal models
Subject-specific and generic musculoskeletal models are the computational instantiation of hypotheses, and stochastic techniques help explore their validity. We present two such examples to explore the hypothesis of muscle redundancy. The first addresses the effect of anatomical variability on stati...
Saved in:
Published in | Journal of biomechanics Vol. 48; no. 11; pp. 2887 - 2896 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
20.08.2015
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9290 1873-2380 |
DOI | 10.1016/j.jbiomech.2015.04.026 |
Cover
Loading…
Abstract | Subject-specific and generic musculoskeletal models are the computational instantiation of hypotheses, and stochastic techniques help explore their validity. We present two such examples to explore the hypothesis of muscle redundancy. The first addresses the effect of anatomical variability on static force capabilities for three individual cat hindlimbs, each with seven kinematic degrees of freedom (DoFs) and 31 muscles. We present novel methods to characterize the structure of the 31-dimensional set of feasible muscle activations for static force production in every 3-D direction. We find that task requirements strongly define the set of feasible muscle activations and limb forces, with few differences comparing individual vs. species-average results. Moreover, muscle activity is not smoothly distributed across 3-D directions. The second example explores parameter uncertainty during a flying disc throwing motion by using a generic human arm with five DoFs and 17 muscles to predict muscle fiber velocities. We show that the measured joint kinematics fully constrain the eccentric and concentric fiber velocities of all muscles via their moment arms. Thus muscle activation for limb movements is likely not redundant: there is little, if any, latitude in synchronizing alpha–gamma motoneuron excitation–inhibition for muscles to adhere to the time-critical fiber velocities dictated by joint kinematics. Importantly, several muscles inevitably exhibit fiber velocities higher than thought tenable, even for conservative throwing speeds. These techniques and results, respectively, enable and compel us to continue to revise the classical notion of muscle redundancy for increasingly more realistic models and tasks. |
---|---|
AbstractList | Abstract Subject-specific and generic musculoskeletal models are the computational instantiation of hypotheses, and stochastic techniques help explore their validity. We present two such examples to explore the hypothesis of muscle redundancy. The first addresses the effect of anatomical variability on static force capabilities for three individual cat hindlimbs, each with seven kinematic degrees of freedom (DoFs) and 31 muscles. We present novel methods to characterize the structure of the 31-dimensional set of feasible muscle activations for static force production in every 3-D direction. We find that task requirements strongly define the set of feasible muscle activations and limb forces, with few differences comparing individual vs. species-average results. Moreover, muscle activity is not smoothly distributed across 3-D directions. The second example explores parameter uncertainty during a flying disc throwing motion by using a generic human arm with five DoFs and 17 muscles to predict muscle fiber velocities. We show that the measured joint kinematics fully constrain the eccentric and concentric fiber velocities of all muscles via their moment arms. Thus muscle activation for limb movements is likely not redundant: there is little, if any, latitude in synchronizing alpha–gamma motoneuron excitation–inhibition for muscles to adhere to the time-critical fiber velocities dictated by joint kinematics. Importantly, several muscles inevitably exhibit fiber velocities higher than thought tenable, even for conservative throwing speeds. These techniques and results, respectively, enable and compel us to continue to revise the classical notion of muscle redundancy for increasingly more realistic models and tasks. Subject-specific and generic musculoskeletal models are the computational instantiation of hypotheses, and stochastic techniques help explore their validity. We present two such examples to explore the hypothesis of muscle redundancy. The first addresses the effect of anatomical variability on static force capabilities for three individual cat hindlimbs, each with seven kinematic degrees of freedom (DoFs) and 31 muscles. We present novel methods to characterize the structure of the 31-dimensional set of feasible muscle activations for static force production in every 3-D direction. We find that task requirements strongly define the set of feasible muscle activations and limb forces, with few differences comparing individual vs. species-average results. Moreover, muscle activity is not smoothly distributed across 3-D directions. The second example explores parameter uncertainty during a flying disc throwing motion by using a generic human arm with five DoFs and 17 muscles to predict muscle fiber velocities. We show that the measured joint kinematics fully constrain the eccentric and concentric fiber velocities of all muscles via their moment arms. Thus muscle activation for limb movements is likely not redundant: there is little, if any, latitude in synchronizing alpha-gamma motoneuron excitation-inhibition for muscles to adhere to the time-critical fiber velocities dictated by joint kinematics. Importantly, several muscles inevitably exhibit fiber velocities higher than thought tenable, even for conservative throwing speeds. These techniques and results, respectively, enable and compel us to continue to revise the classical notion of muscle redundancy for increasingly more realistic models and tasks. |
Author | Valero-Cuevas, F.J. Yngvason, H.F. Cohn, B.A. Lawrence, E.L. |
AuthorAffiliation | 3 Swiss Federal Institute of Technology-Zurich, Zurich, Switzerland 2 Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA 1 Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA |
AuthorAffiliation_xml | – name: 3 Swiss Federal Institute of Technology-Zurich, Zurich, Switzerland – name: 1 Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA – name: 2 Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA |
Author_xml | – sequence: 1 givenname: F.J. surname: Valero-Cuevas fullname: Valero-Cuevas, F.J. email: valero@usc.edu organization: Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA – sequence: 2 givenname: B.A. surname: Cohn fullname: Cohn, B.A. organization: Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA – sequence: 3 givenname: H.F. surname: Yngvason fullname: Yngvason, H.F. organization: Department of Computer Science, ETH Zurich, Switzerland – sequence: 4 givenname: E.L. surname: Lawrence fullname: Lawrence, E.L. organization: Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25980557$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk2P0zAQhiO0iO0u_IVVJC5cUsaOHScSWrFaLR_SShyAs-U4k9Zdxy52UtF_j0u3fPRAOXkkv-_j8cx7kZ057zDLrgjMCZDq9Wq-ao0fUC_nFAifA5sDrZ5kM1KLsqBlDWfZDICSoqENnGcXMa4AQDDRPMvOKW9q4FzMsunu-9r6YNwiH5eYL81iWXRmQBeNd8rmcQyTHqeAue_zYYraYh6wm1ynnN7mG6PyOLUr1GMR16hNb3SuXJcv0GFI9c4yWR8f0OKYeIPv0Mbn2dNe2YgvHs_L7Ou7uy-3H4r7T-8_3t7cF1oQOhasVbTlHJWgDFpGeAWqLfuy5j1vseEMsGtaVhFoSk6aTrSiE7RivG91p3pVXmbXe-56agfsNLoxKCvXwQwqbKVXRv5948xSLvxG8sSuqioBXj0Cgv82YRzlYKJGa5VDP0VJBKkbDiIN_bQUWMlqXtdJ-vJIuvJTSOP-qaICoBEkqa7-bP5X14flJcGbvUAHH2PAXmozqjEtLv3FWElA7rIiV_KQFbnLigQmU1aSvTqyH144aXy7N6ZN4sZgkFEbdBo7E1IQZOfNacT1EUJb44xW9gG3GH-PQ0YqQX7eJXkXZMJTxar634D_6eAHDZ0Jow |
CitedBy_id | crossref_primary_10_1016_j_jbiomech_2019_01_017 crossref_primary_10_1016_j_jelekin_2017_09_006 crossref_primary_10_1162_neco_a_01166 crossref_primary_10_3389_fresc_2023_1248269 crossref_primary_10_1038_s41598_018_31136_8 crossref_primary_10_1186_s12984_017_0305_3 crossref_primary_10_1007_s00221_018_5445_6 crossref_primary_10_1088_1741_2552_aa59bd crossref_primary_10_1371_journal_pone_0219779 crossref_primary_10_1371_journal_pcbi_1004737 crossref_primary_10_3389_fncom_2018_00062 crossref_primary_10_3389_fncom_2016_00007 crossref_primary_10_1088_2516_1091_ac12c4 crossref_primary_10_1038_srep17830 crossref_primary_10_1371_journal_pone_0164050 crossref_primary_10_3389_fncom_2017_00030 crossref_primary_10_1126_sciadv_adr2722 crossref_primary_10_1016_j_jbiomech_2017_05_019 crossref_primary_10_1073_pnas_2321659121 crossref_primary_10_3390_biomimetics4010010 crossref_primary_10_1016_j_jbiomech_2015_07_037 crossref_primary_10_1021_acs_jpcb_9b06428 crossref_primary_10_1007_s11044_017_9587_2 crossref_primary_10_1109_TBME_2023_3324485 |
Cites_doi | 10.1016/S0301-0082(98)00081-1 10.1152/jn.90324.2008 10.1371/journal.pcbi.1003944 10.1007/978-0-387-77064-2_33 10.1016/j.pneurobio.2006.04.001 10.1038/nn1007-1227 10.1162/089976602753712918 10.1114/1.1540105 10.3389/fncom.2013.00155 10.1016/0021-9290(83)90074-X 10.1016/j.jbiomech.2011.02.014 10.1123/mcj.4.1.97 10.2466/pms.101.1.317-334 10.1523/JNEUROSCI.0853-09.2009 10.1016/j.jbiomech.2007.09.012 10.3389/fncom.2013.00051 10.1152/jn.00577.2007 10.1523/JNEUROSCI.4993-07.2008 10.1016/S0021-9290(97)00015-8 10.1016/j.jbiomech.2013.01.020 10.1016/j.conb.2009.09.002 10.1016/0021-9290(93)90085-S 10.1108/01439910510573309 10.1371/journal.pcbi.1000856 10.1109/TBME.2007.906494 10.1371/journal.pcbi.1002434 10.1007/s10439-005-3320-7 10.1115/1.3426207 10.1098/rsif.2009.0240 10.1109/TBME.2006.889200 10.1017/S0140525X00023360 10.1016/S0021-9290(98)00082-7 10.1007/s00422-012-0514-6 10.1123/mcj.4.1.81 10.1016/S0021-9290(01)00173-7 10.1109/TRO.2012.2196189 10.1109/RBME.2009.2034981 10.1098/rspb.1938.0050 10.1002/mds.23088 10.1038/nrn1427 10.1016/j.jbiomech.2006.10.013 10.1542/peds.2005-3016 |
ContentType | Journal Article |
Copyright | 2015 Copyright © 2015. Published by Elsevier Ltd. Copyright Elsevier Limited 2015 |
Copyright_xml | – notice: 2015 – notice: Copyright © 2015. Published by Elsevier Ltd. – notice: Copyright Elsevier Limited 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1016/j.jbiomech.2015.04.026 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep Technology Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
EndPage | 2896 |
ExternalDocumentID | PMC5540666 3773029221 25980557 10_1016_j_jbiomech_2015_04_026 S0021929015002468 1_s2_0_S0021929015002468 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: R01 AR050520 – fundername: NIAMS NIH HHS grantid: R01AR050520 – fundername: NIAMS NIH HHS grantid: R01AR052345 – fundername: NIAMS NIH HHS grantid: R01 AR052345 |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK I-F IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- .GJ 29J 3V. 53G AACTN AAQQT AAQXK ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFCTW AFFDN AFJKZ AFKWA AI. AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EBD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 ML~ MVM OHT PKN R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP YCJ ZGI AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR AAYXX AGQPQ AGRNS AIGII APXCP CITATION CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c712t-4ba2b55ea7240b41560ab3f385f5be9540ed9b461093519d7b7d72645fbcdafa3 |
IEDL.DBID | .~1 |
ISSN | 0021-9290 |
IngestDate | Thu Aug 21 14:10:23 EDT 2025 Tue Aug 05 10:29:21 EDT 2025 Fri Jul 11 05:40:58 EDT 2025 Wed Aug 13 11:32:43 EDT 2025 Mon Jul 21 06:05:44 EDT 2025 Thu Apr 24 22:59:10 EDT 2025 Tue Jul 01 01:14:08 EDT 2025 Fri Feb 23 02:34:49 EST 2024 Sun Feb 23 10:20:47 EST 2025 Tue Aug 26 17:10:22 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Stochastic modeling Computational models Muscle redundancy Monte Carlo simulation |
Language | English |
License | Copyright © 2015. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c712t-4ba2b55ea7240b41560ab3f385f5be9540ed9b461093519d7b7d72645fbcdafa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://doi.org/10.1016/j.jbiomech.2015.04.026 |
PMID | 25980557 |
PQID | 1702700971 |
PQPubID | 1226346 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5540666 proquest_miscellaneous_1718950787 proquest_miscellaneous_1704348588 proquest_journals_1702700971 pubmed_primary_25980557 crossref_citationtrail_10_1016_j_jbiomech_2015_04_026 crossref_primary_10_1016_j_jbiomech_2015_04_026 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2015_04_026 elsevier_clinicalkeyesjournals_1_s2_0_S0021929015002468 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2015_04_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-08-20 |
PublicationDateYYYYMMDD | 2015-08-20 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2015 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Rieffel, Valero-Cuevas, Lipson (bib32) 2010; 7 Holzbaur, Murray, Delp (bib13) 2005; 33 Keenan, Santos, Venkadesan, Valero-Cuevas (bib17) 2009; 29 An, Ueba, Chao, Cooney, Linscheid (bib1) 1983; 16 Bizzi, Cheung (bib5) 2013; 7 Miller, Allen, Santos, Valero-Cuevas (bib26) 2005; 32 Valero-Cuevas, Anand, Saxena, Lipson (bib42) 2007; 54 Kutch, Valero-Cuevas (bib21) 2012; 8 Cliff (bib7) 1990 Sanger, Chen, Fehlings, Hallett, Lang, Mink, Singer, Alter, Ben-Pazi, Butler, Chen, Collins, Dayanidhi, Forssberg, Fowler, Gilbert, Gorman, Gormley, Jinnah, Kornblau, Krosschell, Lehman, MacKinnon, Malanga, Mesterman, Michaels, Pearson, Rose, Russman, Sternad, Swoboda, Valero-Cuevas (bib34) 2010; 25 Zehr, Stein (bib49) 1999; 58 Elias, Watanabe, Kohn (bib9) 2014; 10 Racz, Valero-Cuevas (bib31) 2013; 7 Murray, Buchanan, Delp (bib28) 2002; 35 Valero-Cuevas, Zajac, Burgar (bib46) 1998; 31 Pierrot-Desseilligny, Burke (bib29) 2005 Scott (bib35) 2004; 5 Zajac (bib48) 1989; 17 Garner, Pandy (bib10) 2003; 31 Tresch (bib39) 2007; 10 Chao, An (bib6) 1978; 100 Venkadesan, Valero-Cuevas (bib47) 2008; 28 Hultborn (bib14) 2006; 78 Beer (bib3) 1990 Valero-Cuevas, Venkadesan, Todorov (bib44) 2009; 102 Murray, Li, Sastry (bib27) 1994 McKay, Ting (bib25) 2008; 41 Valero-Cuevas, Hoffmann, Kurse, Kutch, Theodorou (bib43) 2009; 2 Hummel (bib15) 2003 Loeb (bib23) 2012; 106 Kutch, Valero-Cuevas (bib20) 2011; 44 Prilutsky (bib30) 2000; 4 Todorov (bib38) 2002; 14 Gonzalez, Buchanan, Delp (bib11) 1997; 30 Kuo, Zajac (bib19) 1993; 26 Bernstein (bib4) 1967 Sohn, McKay, Ting (bib36) 2013; 46 Valero-Cuevas, Yi, Brown, McNamara, Paul, Lipson (bib45) 2007; 54 Dingwell, John, Cusumano (bib8) 2010; 6 Talati, Valero-Cuevas, Hirsch (bib37) 2005; 101 Keenan, Valero-Cuevas (bib18) 2007; 98 Valero-Cuevas (bib41) 2009; 629 Loeb (bib22) 2000; 4 Sanger, Chen, Delgado, Gaebler-Spira, Hallett, Mink (bib33) 2006; 118 Hill (bib12) 1938; 126 McKay, Burkholder, Ting (bib24) 2007; 40 Tresch, Jarc (bib40) 2009; 19 Arbib (bib2) 1987; 10 Inouye, Kutch, Valero-Cuevas (bib16) 2012; 28 An (10.1016/j.jbiomech.2015.04.026_bib1) 1983; 16 Bizzi (10.1016/j.jbiomech.2015.04.026_bib5) 2013; 7 Murray (10.1016/j.jbiomech.2015.04.026_bib27) 1994 Gonzalez (10.1016/j.jbiomech.2015.04.026_bib11) 1997; 30 Todorov (10.1016/j.jbiomech.2015.04.026_bib38) 2002; 14 Dingwell (10.1016/j.jbiomech.2015.04.026_bib8) 2010; 6 McKay (10.1016/j.jbiomech.2015.04.026_bib24) 2007; 40 Inouye (10.1016/j.jbiomech.2015.04.026_bib16) 2012; 28 Elias (10.1016/j.jbiomech.2015.04.026_bib9) 2014; 10 Valero-Cuevas (10.1016/j.jbiomech.2015.04.026_bib44) 2009; 102 Hummel (10.1016/j.jbiomech.2015.04.026_bib15) 2003 Valero-Cuevas (10.1016/j.jbiomech.2015.04.026_bib46) 1998; 31 Prilutsky (10.1016/j.jbiomech.2015.04.026_bib30) 2000; 4 Arbib (10.1016/j.jbiomech.2015.04.026_bib2) 1987; 10 Cliff (10.1016/j.jbiomech.2015.04.026_bib7) 1990 McKay (10.1016/j.jbiomech.2015.04.026_bib25) 2008; 41 Valero-Cuevas (10.1016/j.jbiomech.2015.04.026_bib45) 2007; 54 Holzbaur (10.1016/j.jbiomech.2015.04.026_bib13) 2005; 33 Racz (10.1016/j.jbiomech.2015.04.026_bib31) 2013; 7 Hultborn (10.1016/j.jbiomech.2015.04.026_bib14) 2006; 78 Valero-Cuevas (10.1016/j.jbiomech.2015.04.026_bib42) 2007; 54 Zajac (10.1016/j.jbiomech.2015.04.026_bib48) 1989; 17 Kuo (10.1016/j.jbiomech.2015.04.026_bib19) 1993; 26 Pierrot-Desseilligny (10.1016/j.jbiomech.2015.04.026_bib29) 2005 Bernstein (10.1016/j.jbiomech.2015.04.026_bib4) 1967 Loeb (10.1016/j.jbiomech.2015.04.026_bib22) 2000; 4 Murray (10.1016/j.jbiomech.2015.04.026_bib28) 2002; 35 Miller (10.1016/j.jbiomech.2015.04.026_bib26) 2005; 32 Tresch (10.1016/j.jbiomech.2015.04.026_bib40) 2009; 19 Hill (10.1016/j.jbiomech.2015.04.026_bib12) 1938; 126 Sohn (10.1016/j.jbiomech.2015.04.026_bib36) 2013; 46 Talati (10.1016/j.jbiomech.2015.04.026_bib37) 2005; 101 Keenan (10.1016/j.jbiomech.2015.04.026_bib18) 2007; 98 Zehr (10.1016/j.jbiomech.2015.04.026_bib49) 1999; 58 Venkadesan (10.1016/j.jbiomech.2015.04.026_bib47) 2008; 28 Kutch (10.1016/j.jbiomech.2015.04.026_bib21) 2012; 8 Sanger (10.1016/j.jbiomech.2015.04.026_bib33) 2006; 118 Rieffel (10.1016/j.jbiomech.2015.04.026_bib32) 2010; 7 Beer (10.1016/j.jbiomech.2015.04.026_bib3) 1990 Tresch (10.1016/j.jbiomech.2015.04.026_bib39) 2007; 10 Sanger (10.1016/j.jbiomech.2015.04.026_bib34) 2010; 25 Chao (10.1016/j.jbiomech.2015.04.026_bib6) 1978; 100 Loeb (10.1016/j.jbiomech.2015.04.026_bib23) 2012; 106 Scott (10.1016/j.jbiomech.2015.04.026_bib35) 2004; 5 Valero-Cuevas (10.1016/j.jbiomech.2015.04.026_bib41) 2009; 629 Garner (10.1016/j.jbiomech.2015.04.026_bib10) 2003; 31 Keenan (10.1016/j.jbiomech.2015.04.026_bib17) 2009; 29 Kutch (10.1016/j.jbiomech.2015.04.026_bib20) 2011; 44 Valero-Cuevas (10.1016/j.jbiomech.2015.04.026_bib43) 2009; 2 |
References_xml | – volume: 5 start-page: 532 year: 2004 end-page: 546 ident: bib35 article-title: Optimal feedback control and the neural basis of volitional motor control publication-title: Nat. Reviews. Neurosci. – volume: 4 start-page: 81 year: 2000 end-page: 83 ident: bib22 article-title: Overcomplete musculature or underspecified tasks? publication-title: Motor Control – volume: 28 start-page: 958 year: 2012 end-page: 966 ident: bib16 article-title: A novel synthesis of computational approaches enables optimization of grasp quality of tendon-driven hands publication-title: IEEE Trans. Robot. – volume: 8 start-page: e1002434 year: 2012 ident: bib21 article-title: Challenges and new approaches to proving the existence of muscle synergies of neural origin publication-title: PLoS Comput. Biol. – volume: 31 start-page: 207 year: 2003 end-page: 220 ident: bib10 article-title: Estimation of musculotendon properties in the human upper limb publication-title: Ann. Biomed. Eng. – volume: 28 start-page: 1366 year: 2008 end-page: 1373 ident: bib47 article-title: Neural control of motion-to-force transitions with the fingertip publication-title: J. Neurosci. – year: 2005 ident: bib29 article-title: The Circuitry of the Human Spinal Cord: Its Role in Motor Control and Movement Disorders – volume: 10 start-page: 1227 year: 2007 end-page: 1228 ident: bib39 article-title: A balanced view of motor control publication-title: Nat. Neurosci. – volume: 118 start-page: 2159 year: 2006 end-page: 2167 ident: bib33 article-title: Definition and classification of negative motor signs in childhood publication-title: Pediatrics – volume: 31 start-page: 693 year: 1998 end-page: 703 ident: bib46 article-title: Large index-fingertip forces are produced by subject-independent patterns of muscle excitation publication-title: J. Biomech. – year: 1967 ident: bib4 article-title: The Co-ordination and Regulation of Movements – volume: 7 start-page: 155 year: 2013 ident: bib31 article-title: Spatio-temporal analysis reveals active control of both task-relevant and task-irrelevant variables publication-title: Front. Comput. Neurosci. – volume: 25 start-page: 1538 year: 2010 end-page: 1549 ident: bib34 article-title: Definition and classification of hyperkinetic movements in childhood publication-title: Mov. Disord. – volume: 2 start-page: 110 year: 2009 end-page: 135 ident: bib43 article-title: Computational models for neuromuscular function publication-title: IEEE Rev. Biomed. Eng. – volume: 6 start-page: e1000856 year: 2010 ident: bib8 article-title: Do humans optimally exploit redundancy to control step variability in walking? publication-title: PLoS Comput. Biol. – volume: 10 start-page: e1003944 year: 2014 ident: bib9 article-title: Spinal mechanisms may provide a combination of intermittent and continuous control of human posture: predictions from a biologically based neuromusculoskeletal model publication-title: PLoS Comput. Biol. – year: 2003 ident: bib15 article-title: Frisbee Flight Simulation and Throw Biomechanics – volume: 30 start-page: 705 year: 1997 end-page: 712 ident: bib11 article-title: How muscle architecture and moment arms affect wrist flexion–extension moments publication-title: J. Biomech. – volume: 629 start-page: 619 year: 2009 end-page: 633 ident: bib41 article-title: A mathematical approach to the mechanical capabilities of limbs and fingers publication-title: Adv. Exp. Med. Biol. – volume: 126 start-page: 136 year: 1938 end-page: 195 ident: bib12 article-title: The heat of shortening and the dynamic constants of muscle publication-title: Proc. R. Soc. Lond. – volume: 7 start-page: 51 year: 2013 ident: bib5 article-title: The neural origin of muscle synergies publication-title: Front. Comput. Neurosci. – volume: 17 start-page: 359 year: 1989 end-page: 411 ident: bib48 article-title: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control publication-title: Crit. Rev. Biomed. Eng. – volume: 98 start-page: 1581 year: 2007 end-page: 1590 ident: bib18 article-title: Experimentally valid predictions of muscle force and EMG in models of motor-unit function are most sensitive to neural properties publication-title: J. Neurophysiol. – volume: 26 start-page: S137 year: 1993 end-page: S150 ident: bib19 article-title: A biomechanical analysis of muscle strength as a limiting factor in standing posture publication-title: J. Biomech. – volume: 32 start-page: 55 year: 2005 end-page: 63 ident: bib26 article-title: From robotic hands to human hands: a visualization and simulation engine for grasping research publication-title: Ind. Robot: Int. J. – volume: 46 start-page: 1363 year: 2013 end-page: 1368 ident: bib36 article-title: Defining feasible bounds on muscle activation in a redundant biomechanical task: practical implications of redundancy publication-title: J. Biomech. – volume: 44 start-page: 1264 year: 2011 end-page: 1270 ident: bib20 article-title: Muscle redundancy does not imply robustness to muscle dysfunction publication-title: J. Biomech. – volume: 16 start-page: 419 year: 1983 end-page: 425 ident: bib1 article-title: Tendon excursion and moment arm of index finger muscles publication-title: J. Biomech. – volume: 14 start-page: 1233 year: 2002 end-page: 1260 ident: bib38 article-title: Cosine tuning minimizes motor errors publication-title: Neural Comput. – volume: 4 start-page: 97 year: 2000 end-page: 116 ident: bib30 article-title: Muscle coordination: the discussion continues publication-title: Motor Control – volume: 33 start-page: 829 year: 2005 end-page: 840 ident: bib13 article-title: A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control publication-title: Ann. Biomed. Eng. – volume: 10 start-page: 407 year: 1987 end-page: 465 ident: bib2 article-title: Levels of modeling of mechanisms of visually guided behavior publication-title: Behav. Brain Sci. – volume: 78 start-page: 215 year: 2006 end-page: 232 ident: bib14 article-title: Spinal reflexes, mechanisms and concepts: from Eccles to Lundberg and beyond publication-title: Prog. Neurobiol. – year: 1994 ident: bib27 article-title: A Mathematical Introduction to Robotic Manipulation – volume: 58 start-page: 185 year: 1999 end-page: 205 ident: bib49 article-title: What functions do reflexes serve during human locomotion? publication-title: Prog. Neurobiol. – start-page: 29 year: 1990 end-page: 39 ident: bib7 article-title: Computational neuroethology: a provisional manifesto publication-title: From Animals to Animats: Proceedings of the First International Conference on the Simulation of Adaptive Behaviour (SAB90) – volume: 19 start-page: 601 year: 2009 end-page: 607 ident: bib40 article-title: The case for and against muscle synergies publication-title: Curr. Opinion Neurobiol. – volume: 41 start-page: 299 year: 2008 end-page: 306 ident: bib25 article-title: Functional muscle synergies constrain force production during postural tasks publication-title: J. Biomech. – volume: 101 start-page: 317 year: 2005 end-page: 334 ident: bib37 article-title: Visual and tactile guidance of dexterous manipulation tasks: an fMRI study publication-title: Percept. Motor Sk. – volume: 40 start-page: 2254 year: 2007 end-page: 2260 ident: bib24 article-title: Biomechanical capabilities influence postural control strategies in the cat hindlimb publication-title: J. Biomech. – volume: 106 start-page: 757 year: 2012 end-page: 765 ident: bib23 article-title: Optimal isn't good enough publication-title: Biol. Cybern. – year: 1990 ident: bib3 article-title: Intelligence as Adaptive Behavior : An Experiment in Computational Neuroethology – volume: 7 start-page: 613 year: 2010 end-page: 621 ident: bib32 article-title: Morphological communication: exploiting coupled dynamics in a complex mechanical structure to achieve locomotion publication-title: J. R. Soc. Interface – volume: 102 start-page: 59 year: 2009 end-page: 68 ident: bib44 article-title: Structured variability of muscle activations supports the minimal intervention principle of motor control publication-title: J. Neurophysiol. – volume: 54 start-page: 1951 year: 2007 end-page: 1964 ident: bib42 article-title: Beyond parameter estimation: extending biomechanical modeling by the explicit exploration of model topology publication-title: IEEE Trans. Biomed. Eng. – volume: 29 start-page: 8784 year: 2009 end-page: 8789 ident: bib17 article-title: Maximal voluntary fingertip force production is not limited by movement speed in combined motion and force tasks publication-title: J. Neurosci. – volume: 54 start-page: 1161 year: 2007 end-page: 1166 ident: bib45 article-title: The tendon network of the fingers performs anatomical computation at a macroscopic scale publication-title: IEEE Trans. Biomed. Eng. – volume: 100 start-page: 159 year: 1978 end-page: 167 ident: bib6 article-title: Graphical interpretation of the solution to the redundant problem in biomechanics publication-title: J. Biomech. Eng. – volume: 35 start-page: 19 year: 2002 end-page: 26 ident: bib28 article-title: Scaling of peak moment arms of elbow muscles with upper extremity bone dimensions publication-title: J. Biomech. – volume: 58 start-page: 185 year: 1999 ident: 10.1016/j.jbiomech.2015.04.026_bib49 article-title: What functions do reflexes serve during human locomotion? publication-title: Prog. Neurobiol. doi: 10.1016/S0301-0082(98)00081-1 – volume: 102 start-page: 59 year: 2009 ident: 10.1016/j.jbiomech.2015.04.026_bib44 article-title: Structured variability of muscle activations supports the minimal intervention principle of motor control publication-title: J. Neurophysiol. doi: 10.1152/jn.90324.2008 – volume: 10 start-page: e1003944 year: 2014 ident: 10.1016/j.jbiomech.2015.04.026_bib9 article-title: Spinal mechanisms may provide a combination of intermittent and continuous control of human posture: predictions from a biologically based neuromusculoskeletal model publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003944 – volume: 629 start-page: 619 year: 2009 ident: 10.1016/j.jbiomech.2015.04.026_bib41 article-title: A mathematical approach to the mechanical capabilities of limbs and fingers publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-0-387-77064-2_33 – volume: 78 start-page: 215 year: 2006 ident: 10.1016/j.jbiomech.2015.04.026_bib14 article-title: Spinal reflexes, mechanisms and concepts: from Eccles to Lundberg and beyond publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2006.04.001 – year: 1990 ident: 10.1016/j.jbiomech.2015.04.026_bib3 – volume: 10 start-page: 1227 year: 2007 ident: 10.1016/j.jbiomech.2015.04.026_bib39 article-title: A balanced view of motor control publication-title: Nat. Neurosci. doi: 10.1038/nn1007-1227 – volume: 14 start-page: 1233 year: 2002 ident: 10.1016/j.jbiomech.2015.04.026_bib38 article-title: Cosine tuning minimizes motor errors publication-title: Neural Comput. doi: 10.1162/089976602753712918 – volume: 31 start-page: 207 year: 2003 ident: 10.1016/j.jbiomech.2015.04.026_bib10 article-title: Estimation of musculotendon properties in the human upper limb publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1540105 – volume: 7 start-page: 155 year: 2013 ident: 10.1016/j.jbiomech.2015.04.026_bib31 article-title: Spatio-temporal analysis reveals active control of both task-relevant and task-irrelevant variables publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2013.00155 – year: 2003 ident: 10.1016/j.jbiomech.2015.04.026_bib15 – volume: 16 start-page: 419 year: 1983 ident: 10.1016/j.jbiomech.2015.04.026_bib1 article-title: Tendon excursion and moment arm of index finger muscles publication-title: J. Biomech. doi: 10.1016/0021-9290(83)90074-X – year: 1967 ident: 10.1016/j.jbiomech.2015.04.026_bib4 – volume: 44 start-page: 1264 year: 2011 ident: 10.1016/j.jbiomech.2015.04.026_bib20 article-title: Muscle redundancy does not imply robustness to muscle dysfunction publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.02.014 – volume: 4 start-page: 97 year: 2000 ident: 10.1016/j.jbiomech.2015.04.026_bib30 article-title: Muscle coordination: the discussion continues publication-title: Motor Control doi: 10.1123/mcj.4.1.97 – year: 1994 ident: 10.1016/j.jbiomech.2015.04.026_bib27 – volume: 101 start-page: 317 year: 2005 ident: 10.1016/j.jbiomech.2015.04.026_bib37 article-title: Visual and tactile guidance of dexterous manipulation tasks: an fMRI study publication-title: Percept. Motor Sk. doi: 10.2466/pms.101.1.317-334 – volume: 29 start-page: 8784 year: 2009 ident: 10.1016/j.jbiomech.2015.04.026_bib17 article-title: Maximal voluntary fingertip force production is not limited by movement speed in combined motion and force tasks publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0853-09.2009 – volume: 41 start-page: 299 year: 2008 ident: 10.1016/j.jbiomech.2015.04.026_bib25 article-title: Functional muscle synergies constrain force production during postural tasks publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2007.09.012 – volume: 7 start-page: 51 year: 2013 ident: 10.1016/j.jbiomech.2015.04.026_bib5 article-title: The neural origin of muscle synergies publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2013.00051 – volume: 98 start-page: 1581 year: 2007 ident: 10.1016/j.jbiomech.2015.04.026_bib18 article-title: Experimentally valid predictions of muscle force and EMG in models of motor-unit function are most sensitive to neural properties publication-title: J. Neurophysiol. doi: 10.1152/jn.00577.2007 – volume: 28 start-page: 1366 year: 2008 ident: 10.1016/j.jbiomech.2015.04.026_bib47 article-title: Neural control of motion-to-force transitions with the fingertip publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4993-07.2008 – volume: 30 start-page: 705 year: 1997 ident: 10.1016/j.jbiomech.2015.04.026_bib11 article-title: How muscle architecture and moment arms affect wrist flexion–extension moments publication-title: J. Biomech. doi: 10.1016/S0021-9290(97)00015-8 – volume: 46 start-page: 1363 year: 2013 ident: 10.1016/j.jbiomech.2015.04.026_bib36 article-title: Defining feasible bounds on muscle activation in a redundant biomechanical task: practical implications of redundancy publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.01.020 – volume: 19 start-page: 601 year: 2009 ident: 10.1016/j.jbiomech.2015.04.026_bib40 article-title: The case for and against muscle synergies publication-title: Curr. Opinion Neurobiol. doi: 10.1016/j.conb.2009.09.002 – volume: 26 start-page: S137 issue: Suppl. 1 year: 1993 ident: 10.1016/j.jbiomech.2015.04.026_bib19 article-title: A biomechanical analysis of muscle strength as a limiting factor in standing posture publication-title: J. Biomech. doi: 10.1016/0021-9290(93)90085-S – volume: 32 start-page: 55 year: 2005 ident: 10.1016/j.jbiomech.2015.04.026_bib26 article-title: From robotic hands to human hands: a visualization and simulation engine for grasping research publication-title: Ind. Robot: Int. J. doi: 10.1108/01439910510573309 – volume: 6 start-page: e1000856 year: 2010 ident: 10.1016/j.jbiomech.2015.04.026_bib8 article-title: Do humans optimally exploit redundancy to control step variability in walking? publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000856 – volume: 17 start-page: 359 year: 1989 ident: 10.1016/j.jbiomech.2015.04.026_bib48 article-title: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control publication-title: Crit. Rev. Biomed. Eng. – volume: 54 start-page: 1951 year: 2007 ident: 10.1016/j.jbiomech.2015.04.026_bib42 article-title: Beyond parameter estimation: extending biomechanical modeling by the explicit exploration of model topology publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.906494 – volume: 8 start-page: e1002434 year: 2012 ident: 10.1016/j.jbiomech.2015.04.026_bib21 article-title: Challenges and new approaches to proving the existence of muscle synergies of neural origin publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002434 – volume: 33 start-page: 829 year: 2005 ident: 10.1016/j.jbiomech.2015.04.026_bib13 article-title: A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-005-3320-7 – volume: 100 start-page: 159 year: 1978 ident: 10.1016/j.jbiomech.2015.04.026_bib6 article-title: Graphical interpretation of the solution to the redundant problem in biomechanics publication-title: J. Biomech. Eng. doi: 10.1115/1.3426207 – volume: 7 start-page: 613 year: 2010 ident: 10.1016/j.jbiomech.2015.04.026_bib32 article-title: Morphological communication: exploiting coupled dynamics in a complex mechanical structure to achieve locomotion publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2009.0240 – volume: 54 start-page: 1161 year: 2007 ident: 10.1016/j.jbiomech.2015.04.026_bib45 article-title: The tendon network of the fingers performs anatomical computation at a macroscopic scale publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.889200 – volume: 10 start-page: 407 year: 1987 ident: 10.1016/j.jbiomech.2015.04.026_bib2 article-title: Levels of modeling of mechanisms of visually guided behavior publication-title: Behav. Brain Sci. doi: 10.1017/S0140525X00023360 – volume: 31 start-page: 693 year: 1998 ident: 10.1016/j.jbiomech.2015.04.026_bib46 article-title: Large index-fingertip forces are produced by subject-independent patterns of muscle excitation publication-title: J. Biomech. doi: 10.1016/S0021-9290(98)00082-7 – volume: 106 start-page: 757 year: 2012 ident: 10.1016/j.jbiomech.2015.04.026_bib23 article-title: Optimal isn't good enough publication-title: Biol. Cybern. doi: 10.1007/s00422-012-0514-6 – year: 2005 ident: 10.1016/j.jbiomech.2015.04.026_bib29 – start-page: 29 year: 1990 ident: 10.1016/j.jbiomech.2015.04.026_bib7 article-title: Computational neuroethology: a provisional manifesto – volume: 4 start-page: 81 year: 2000 ident: 10.1016/j.jbiomech.2015.04.026_bib22 article-title: Overcomplete musculature or underspecified tasks? publication-title: Motor Control doi: 10.1123/mcj.4.1.81 – volume: 35 start-page: 19 year: 2002 ident: 10.1016/j.jbiomech.2015.04.026_bib28 article-title: Scaling of peak moment arms of elbow muscles with upper extremity bone dimensions publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00173-7 – volume: 28 start-page: 958 year: 2012 ident: 10.1016/j.jbiomech.2015.04.026_bib16 article-title: A novel synthesis of computational approaches enables optimization of grasp quality of tendon-driven hands publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2012.2196189 – volume: 2 start-page: 110 year: 2009 ident: 10.1016/j.jbiomech.2015.04.026_bib43 article-title: Computational models for neuromuscular function publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2009.2034981 – volume: 126 start-page: 136 year: 1938 ident: 10.1016/j.jbiomech.2015.04.026_bib12 article-title: The heat of shortening and the dynamic constants of muscle publication-title: Proc. R. Soc. Lond. doi: 10.1098/rspb.1938.0050 – volume: 25 start-page: 1538 year: 2010 ident: 10.1016/j.jbiomech.2015.04.026_bib34 article-title: Definition and classification of hyperkinetic movements in childhood publication-title: Mov. Disord. doi: 10.1002/mds.23088 – volume: 5 start-page: 532 year: 2004 ident: 10.1016/j.jbiomech.2015.04.026_bib35 article-title: Optimal feedback control and the neural basis of volitional motor control publication-title: Nat. Reviews. Neurosci. doi: 10.1038/nrn1427 – volume: 40 start-page: 2254 year: 2007 ident: 10.1016/j.jbiomech.2015.04.026_bib24 article-title: Biomechanical capabilities influence postural control strategies in the cat hindlimb publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2006.10.013 – volume: 118 start-page: 2159 year: 2006 ident: 10.1016/j.jbiomech.2015.04.026_bib33 article-title: Definition and classification of negative motor signs in childhood publication-title: Pediatrics doi: 10.1542/peds.2005-3016 |
SSID | ssj0007479 |
Score | 2.337779 |
Snippet | Subject-specific and generic musculoskeletal models are the computational instantiation of hypotheses, and stochastic techniques help explore their validity.... Abstract Subject-specific and generic musculoskeletal models are the computational instantiation of hypotheses, and stochastic techniques help explore their... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2887 |
SubjectTerms | Activation Animals Arm - physiology Biomechanical Phenomena Cats Computational models Computer Simulation Fibers Hindlimb - physiology Humans Hypotheses Kinematics Mathematical models Methods Models, Biological Monte Carlo simulation Movement - physiology Muscle redundancy Muscle, Skeletal - physiology Muscles Nervous system Physical Medicine and Rehabilitation Redundancy Stochastic modeling Three dimensional Throwing Vertebrates |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgSAgOCLZ8LBRkJMTNNE7iOD6hClFVSOVEpb1ZtmNDt21SmgaJf8-M44QtoIK4rRRbXmcm4zeemTeEvKoq73NlOPNGOFYalzHj8pJVlRLKONuECuudDz9WB0flh5VYpQu3PqVVTjYxGuqmc3hHvstlhjFSJfnb868Mu0ZhdDW10LhJbiF1GaZ0ydXscCE3fErx4AxgQLZRIbx-s4717TEgwUWkO0WChT8fTr-Dz19zKDcOpf375F5Ck3RvFP8DcsO3C7K914InffadvqYxvzNenC_I3Q3qwQW5fZiC6ttkmPPwKKBBigTGrEHS_5Gwg44Us8OFp12gZ0MPK9ELj9VnaJnpt2ND-8HifQ7Duk3MPaKmbehnZLSG3zhlOO36EzjhAOrT2Hynf0iO9t9_enfAUjcG5iTPL1lpTW6F8EYCCLDo92XGFqGoRRDWK0B-vlE20rdj079GWtlIgFsiWNeYYIpHZKvtWv-EUG5yXggr8qAUqoexjSodACsRAhiYeknEJAbtElU5dsw41VNO2lpP4tMoPp2VGsS3JLvzvPORrOOvM-QkZT2VooLx1HCe_N9M3ycb0Guu-1xnGsPhHLUPoDcAogp2p-aZCeaM8OWfVt2ZVFH_XGj-NJbk5fwYzATGfkzruyGOKYuyFnV93RheK_AParkkj0ftnl8jeMk10rXBtq_o_TwAacqvPmmPv0S6cgCs6CQ_vf6vPyN3cJ94XZ9nO2QLVNs_B7x3aV_Ej_oHvSNYVw priority: 102 providerName: ProQuest |
Title | Exploring the high-dimensional structure of muscle redundancy via subject-specific and generic musculoskeletal models |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929015002468 https://www.clinicalkey.es/playcontent/1-s2.0-S0021929015002468 https://dx.doi.org/10.1016/j.jbiomech.2015.04.026 https://www.ncbi.nlm.nih.gov/pubmed/25980557 https://www.proquest.com/docview/1702700971 https://www.proquest.com/docview/1704348588 https://www.proquest.com/docview/1718950787 https://pubmed.ncbi.nlm.nih.gov/PMC5540666 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemISF4QNDxERiTkRBvXvNhx_FjmTYV0CqEmNQ3y04caNnSaVmQ9rK_nTvnYy1DgOClaROf3MSXu9_Zdz8T8jpNnYuViZgzImfc5CEzecxZmiqhTG6LMsV65-NZOj3h7-divkUO-loYTKvsbH9r07217s6Mu6c5Pl8ssMYX3rbYh-zgaFIs-OVcopbvX9-keQBc7tI8Ioat16qEl_tLX-PuFyUi4SlPkWTh1w7qNgD9OY9yzTEdPSQPOkRJJ-2ffkS2XDUiO5MKoumzK_qG-hxPP3k-IvfX6AdH5O5xt7C-Q5ohF48CIqRIYswKJP5vSTtoSzPbXDi6KulZU0NP9MJhBRpaZ_p9YWjdWJzTYVi7iflH1FQF_YKs1vAdRZrTVf0NvBzAfeo34Kkfk5Ojw88HU9btyMByGcWXjFsTWyGckQAELMZ-obFJmWSiFNYpQH-uUNZTuOPGf4W0spAAuURp88KUJnlCtqtV5Z4RGpk4SoQVcakUqoixheI5gCtRlmBksoCIfhh03tGV464Zp7rPS1vqfvg0Dp8OuYbhC8h4kDtvCTv-KCH7UdZ9OSoYUA0-5d8kXd3ZgVpHuo51qG_pakDUILmh7n_V626vivqmIxliCoGSUUBeDZfBVOD6j6ncqvFteMIzkWW_axNlCmKETAbkaavdw2OESDlDyja47Q29HxogVfnmlWrx1VOWA2jFQPn5f9z2C3IPf-F8fhzukm3Qe_cSAOGl3fNvPHzKudwjdybvPkxncHx7OPv46QfIfmbi |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrcTjgKDlsVDASMDNNE7iJD4gVKDVlnZXCLVSb8ZOHOjSZkvTgPqn-I3M5MUWUEFIva0Ue73emYy_8cx8A_AkipzzlRHcGZny0KQeN6kf8ihSUpnUZnlE9c7jSTTaDd_uyb0F-N7VwlBaZWcTa0OdzVK6I18VsUcxUhWLl0dfOHWNouhq10KjUYstd_oNXbbyxeYblO9T399Y33k94m1XAZ7Gwj_hoTW-ldKZGA8zS_6LZ2yQB4nMpXUKEYzLlK1pyKl5XRbbOIsRNsjcppnJTYDfewkWwwBdmQEsvlqfvHvf234E521SieAIPLy5muTp82ldUV-HQISsCVaJ0uHPx-HvcPfXrM25Y3DjBlxv8StbaxTuJiy4YgmW1wr03Q9P2TNWZ5TWV_VLcG2O7HAJLo_bMP4yVH3mH0P8yYgymWfUZqChCGENqW117NgsZ4dViSuxY0f1bnQWsK_7hpWVpRskTpWilO3ETJGxj8ShjZ9pSnUwKz_jmYrOBavb_ZS3YPdCJHUbBsWscHeBCeOLQFrp50qRQhqbqTBFKCfzHE1aMgTZiUGnLTk69eg40F0W3FR34tMkPu2FGsU3hNV-3lFDD_LXGXEnZd0Vv6K51niC_d9MV7ZWp9RCl772NAXgBWkfgn2EYBHuTvUzW2DVAKZ_WnWlU0X9c6H-ZRzC4_4xGiaKNpnCzap6TBiEiUyS88aIRKFHksRDuNNod_83ol-eEEEcbvuM3vcDiBj97JNi_1NNkI4Qmdzye-f_9EdwZbQz3tbbm5Ot-3CV9kzBAt9bgQGquXuAaPPEPmxfcQYfLtqq_ACbCpak |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKkSo4INhCWShgJOBmNk7iOD4gVFFWLaUVByrtzdiJA13apDQNqH-NX8eM88EWUEFIva2UeLPemcy88cy8IeRJkjgXKsOZMyJjsckCZrIwZkmihDKZzYsE-51395Kt_fjNTMyWyPe-FwbLKnub6A11XmV4Rj7hMsAcqZJ8UnRlEe82py-PvzCcIIWZ1n6cRqsiO-7sG4Rv9YvtTZD10zCcvn7_aot1EwZYJnl4ymJrQiuEMxIcm8VYJjA2KqJUFMI6BWjG5cp6SnIcZJdLK3MJEEIUNstNYSL43ivkqoSL-I7J2RDsIS99V17CGUCQYKE7ef587nvrfTKEC0-1iuQOf3aMvwPfX-s3Fxzi9Ca50SFZutGq3i2y5MoRWd0oIYo_OqPPqK8t9Yf2I3J9gfZwRFZ2u4T-KmmGGkAKSJQieTLLceBASxZCW3rb5sTRqqBHTQ1PoicOO9_QK9CvB4bWjcWzJIY9o1j3RE2Z04_Ipg2fcUlzWNWfwbtCmEH94J_6Ntm_FDndIctlVbq7hHIT8khYERZKoWoam6s4A1AnigKMWzomoheDzjqadJzWcaj7eri57sWnUXw6iDWIb0wmw7rjlijkrytkL2Xdt8GC4dbgy_5vpas7-1NrrutQBxpT8Ry1D2A_gLEEdqeGlR3EaqHTPz11vVdF_fNBw2s5Jo-Hy2CiMO9kSlc1_p44ilORphfdw1MFsUkqx2St1e7hb4QIPUWqONj2Ob0fbkCK9PNXyoNPniodwDIG6Pcu_umPyArYEv12e2_nPrmGW8asQRisk2XQcvcAYOepfejfb0o-XLZB-QG2Tpl0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+high-dimensional+structure+of+muscle+redundancy+via+subject-specific+and+generic+musculoskeletal+models&rft.jtitle=Journal+of+biomechanics&rft.au=Valero-Cuevas%2C+F.J.&rft.au=Cohn%2C+B.A.&rft.au=Yngvason%2C+H.F.&rft.au=Lawrence%2C+E.L.&rft.date=2015-08-20&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.volume=48&rft.issue=11&rft.spage=2887&rft.epage=2896&rft_id=info:doi/10.1016%2Fj.jbiomech.2015.04.026&rft.externalDocID=S0021929015002468 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929015X00108%2Fcov150h.gif |