Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest

To determine the abundance and distribution of bacterial and archaeal ammonia oxidizers in alpine and permafrost soils, 12 soils at altitudes of 4000-6550 m above sea level (m a.s.l.) were collected from the northern slope of the Mount Everest (Tibetan Plateau), where the permanent snow line is at 5...

Full description

Saved in:
Bibliographic Details
Published inFEMS microbiology ecology Vol. 70; no. 2; pp. 208 - 217
Main Authors Zhang, Li-Mei, Wang, Mu, Prosser, James I, Zheng, Yuan-Ming, He, Ji-Zheng
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.11.2009
Blackwell Publishing Ltd
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To determine the abundance and distribution of bacterial and archaeal ammonia oxidizers in alpine and permafrost soils, 12 soils at altitudes of 4000-6550 m above sea level (m a.s.l.) were collected from the northern slope of the Mount Everest (Tibetan Plateau), where the permanent snow line is at 5800-6000 m a.s.l. Communities were characterized by real-time PCR and clone sequencing by targeting on amoA genes, which putatively encode ammonia monooxygenase subunit A. Archaeal amoA abundance was greater than bacterial amoA abundance in lower altitude soils ([less-than or equal to]5400 m a.s.l.), but this situation was reversed in higher altitude soils (≥5700 m a.s.l.). Both archaeal and bacterial amoA abundance decreased abruptly in higher altitude soils. Communities shifted from a Nitrosospira amoA cluster 3a-dominated ammonia-oxidizing bacteria community in lower altitude soils to communities dominated by a newly designated Nitrosospira ME and cluster 2-related groups and Nitrosomonas cluster 6 in higher altitude soils. All archaeal amoA sequences fell within soil and sediment clusters, and the proportions of the major archaeal amoA clusters changed between the lower altitude and the higher altitude soils. These findings imply that the shift in the relative abundance and community structure of archaeal and bacterial ammonia oxidizers may result from selection of organisms adapted to altitude-dependent environmental factors in elevated soils.
AbstractList AbstractTo determine the abundance and distribution of bacterial and archaeal ammonia oxidizers in alpine and permafrost soils, 12 soils at altitudes of 4000-6550 m above sea level (m a.s.l.) were collected from the northern slope of the Mount Everest (Tibetan Plateau), where the permanent snow line is at 5800-6000 m a.s.l. Communities were characterized by real-time PCR and clone sequencing by targeting on amoA genes, which putatively encode ammonia monooxygenase subunit A. Archaeal amoA abundance was greater than bacterial amoA abundance in lower altitude soils (,5400 m a.s.l.), but this situation was reversed in higher altitude soils (.5700 m a.s.l.). Both archaeal and bacterial amoA abundance decreased abruptly in higher altitude soils. Communities shifted from a Nitrosospira amoA cluster 3a-dominated ammonia-oxidizing bacteria community in lower altitude soils to communities dominated by a newly designated Nitrosospira ME and cluster 2-related groups and Nitrosomonas cluster 6 in higher altitude soils. All archaeal amoA sequences fell within soil and sediment clusters, and the proportions of the major archaeal amoA clusters changed between the lower altitude and the higher altitude soils. These findings imply that the shift in the relative abundance and community structure of archaeal and bacterial ammonia oxidizers may result from selection of organisms adapted to altitude-dependent environmental factors in elevated soils.
Abstract To determine the abundance and distribution of bacterial and archaeal ammonia oxidizers in alpine and permafrost soils, 12 soils at altitudes of 4000–6550 m above sea level (m a.s.l.) were collected from the northern slope of the Mount Everest (Tibetan Plateau), where the permanent snow line is at 5800–6000 m a.s.l. Communities were characterized by real-time PCR and clone sequencing by targeting on amoA genes, which putatively encode ammonia monooxygenase subunit A. Archaeal amoA abundance was greater than bacterial amoA abundance in lower altitude soils (≤5400 m a.s.l.), but this situation was reversed in higher altitude soils (≥5700 m a.s.l.). Both archaeal and bacterial amoA abundance decreased abruptly in higher altitude soils. Communities shifted from a Nitrosospira amoA cluster 3a-dominated ammonia-oxidizing bacteria community in lower altitude soils to communities dominated by a newly designated Nitrosospira ME and cluster 2-related groups and Nitrosomonas cluster 6 in higher altitude soils. All archaeal amoA sequences fell within soil and sediment clusters, and the proportions of the major archaeal amoA clusters changed between the lower altitude and the higher altitude soils. These findings imply that the shift in the relative abundance and community structure of archaeal and bacterial ammonia oxidizers may result from selection of organisms adapted to altitude-dependent environmental factors in elevated soils.
To determine the abundance and distribution of bacterial and archaeal ammonia oxidizers in alpine and permafrost soils, 12 soils at altitudes of 4000-6550 m above sea level (m a.s.l.) were collected from the northern slope of the Mount Everest (Tibetan Plateau), where the permanent snow line is at 5800-6000 m a.s.l. Communities were characterized by real-time PCR and clone sequencing by targeting on amoA genes, which putatively encode ammonia monooxygenase subunit A. Archaeal amoA abundance was greater than bacterial amoA abundance in lower altitude soils (<or=5400 m a.s.l.), but this situation was reversed in higher altitude soils (>or=5700 m a.s.l.). Both archaeal and bacterial amoA abundance decreased abruptly in higher altitude soils. Communities shifted from a Nitrosospira amoA cluster 3a-dominated ammonia-oxidizing bacteria community in lower altitude soils to communities dominated by a newly designated Nitrosospira ME and cluster 2-related groups and Nitrosomonas cluster 6 in higher altitude soils. All archaeal amoA sequences fell within soil and sediment clusters, and the proportions of the major archaeal amoA clusters changed between the lower altitude and the higher altitude soils. These findings imply that the shift in the relative abundance and community structure of archaeal and bacterial ammonia oxidizers may result from selection of organisms adapted to altitude-dependent environmental factors in elevated soils.To determine the abundance and distribution of bacterial and archaeal ammonia oxidizers in alpine and permafrost soils, 12 soils at altitudes of 4000-6550 m above sea level (m a.s.l.) were collected from the northern slope of the Mount Everest (Tibetan Plateau), where the permanent snow line is at 5800-6000 m a.s.l. Communities were characterized by real-time PCR and clone sequencing by targeting on amoA genes, which putatively encode ammonia monooxygenase subunit A. Archaeal amoA abundance was greater than bacterial amoA abundance in lower altitude soils (<or=5400 m a.s.l.), but this situation was reversed in higher altitude soils (>or=5700 m a.s.l.). Both archaeal and bacterial amoA abundance decreased abruptly in higher altitude soils. Communities shifted from a Nitrosospira amoA cluster 3a-dominated ammonia-oxidizing bacteria community in lower altitude soils to communities dominated by a newly designated Nitrosospira ME and cluster 2-related groups and Nitrosomonas cluster 6 in higher altitude soils. All archaeal amoA sequences fell within soil and sediment clusters, and the proportions of the major archaeal amoA clusters changed between the lower altitude and the higher altitude soils. These findings imply that the shift in the relative abundance and community structure of archaeal and bacterial ammonia oxidizers may result from selection of organisms adapted to altitude-dependent environmental factors in elevated soils.
To determine the abundance and distribution of bacterial and archaeal ammonia oxidizers in alpine and permafrost soils, 12 soils at altitudes of 4000-6550 m above sea level (m a.s.l.) were collected from the northern slope of the Mount Everest (Tibetan Plateau), where the permanent snow line is at 5800-6000 m a.s.l. Communities were characterized by real-time PCR and clone sequencing by targeting on amoA genes, which putatively encode ammonia monooxygenase subunit A. Archaeal amoA abundance was greater than bacterial amoA abundance in lower altitude soils ([less-than or equal to]5400 m a.s.l.), but this situation was reversed in higher altitude soils (≥5700 m a.s.l.). Both archaeal and bacterial amoA abundance decreased abruptly in higher altitude soils. Communities shifted from a Nitrosospira amoA cluster 3a-dominated ammonia-oxidizing bacteria community in lower altitude soils to communities dominated by a newly designated Nitrosospira ME and cluster 2-related groups and Nitrosomonas cluster 6 in higher altitude soils. All archaeal amoA sequences fell within soil and sediment clusters, and the proportions of the major archaeal amoA clusters changed between the lower altitude and the higher altitude soils. These findings imply that the shift in the relative abundance and community structure of archaeal and bacterial ammonia oxidizers may result from selection of organisms adapted to altitude-dependent environmental factors in elevated soils.
To determine the abundance and distribution of bacterial and archaeal ammonia oxidizers in alpine and permafrost soils, 12 soils at altitudes of 4000–6550 m above sea level (m a.s.l.) were collected from the northern slope of the Mount Everest (Tibetan Plateau), where the permanent snow line is at 5800–6000 m a.s.l. Communities were characterized by real-time PCR and clone sequencing by targeting on amoA genes, which putatively encode ammonia monooxygenase subunit A. Archaeal amoA abundance was greater than bacterial amoA abundance in lower altitude soils (≤5400 m a.s.l.), but this situation was reversed in higher altitude soils (≥5700 m a.s.l.). Both archaeal and bacterial amoA abundance decreased abruptly in higher altitude soils. Communities shifted from a Nitrosospira amoA cluster 3a-dominated ammonia-oxidizing bacteria community in lower altitude soils to communities dominated by a newly designated Nitrosospira ME and cluster 2-related groups and Nitrosomonas cluster 6 in higher altitude soils. All archaeal amoA sequences fell within soil and sediment clusters, and the proportions of the major archaeal amoA clusters changed between the lower altitude and the higher altitude soils. These findings imply that the shift in the relative abundance and community structure of archaeal and bacterial ammonia oxidizers may result from selection of organisms adapted to altitude-dependent environmental factors in elevated soils.
To determine the abundance and distribution of bacterial and archaeal ammonia oxidizers in alpine and permafrost soils, 12 soils at altitudes of 4000-6550 m above sea level (m a.s.l.) were collected from the northern slope of the Mount Everest (Tibetan Plateau), where the permanent snow line is at 5800-6000 m a.s.l. Communities were characterized by real-time PCR and clone sequencing by targeting on amoA genes, which putatively encode ammonia monooxygenase subunit A. Archaeal amoA abundance was greater than bacterial amoA abundance in lower altitude soils (<or=5400 m a.s.l.), but this situation was reversed in higher altitude soils (>or=5700 m a.s.l.). Both archaeal and bacterial amoA abundance decreased abruptly in higher altitude soils. Communities shifted from a Nitrosospira amoA cluster 3a-dominated ammonia-oxidizing bacteria community in lower altitude soils to communities dominated by a newly designated Nitrosospira ME and cluster 2-related groups and Nitrosomonas cluster 6 in higher altitude soils. All archaeal amoA sequences fell within soil and sediment clusters, and the proportions of the major archaeal amoA clusters changed between the lower altitude and the higher altitude soils. These findings imply that the shift in the relative abundance and community structure of archaeal and bacterial ammonia oxidizers may result from selection of organisms adapted to altitude-dependent environmental factors in elevated soils.
Author Wang, Mu
He, Ji-Zheng
Zhang, Li-Mei
Zheng, Yuan-Ming
Prosser, James I
Author_xml – sequence: 1
  fullname: Zhang, Li-Mei
– sequence: 2
  fullname: Wang, Mu
– sequence: 3
  fullname: Prosser, James I
– sequence: 4
  fullname: Zheng, Yuan-Ming
– sequence: 5
  fullname: He, Ji-Zheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19780828$$D View this record in MEDLINE/PubMed
BookMark eNqNkltrFDEcxYNU7Lb6FTQg6NOMuV9AhFK2WmjxQfscMjOZmmU2WZMZ3frpzThVoXhpXhLI75zDPydH4CDE4ACAGNW4rFebGnPJKqEZrglCukZISl7vH4DVr4sDsEJYqEowLQ7BUc4bhDCnDD0Ch1hLhRRRK3B-Mox-nDoH7XYbg7dV3PvOf_PhGja2HV3yFtrQQZvaT9ZZ6APM0Q8Zxh5eximMcP3FJZfHx-Bhb4fsntzux-DqbP3x9F118f7t-enJRdVKjHkltaWcSs5V32FGhMJdo5mlQjTYUal7YjutUd9JplvdNpZYRXtKWNthpXVLj8HLxXeX4uepBJutz60bBhtcnLKRZURFlRCFfPFPkgmmhFT8vyDBSHGOZ8fnd8BNnFIo4xpCkeCMcK0K9fSWmpqt68wu-a1NN-bnqxdALUCbYs7J9b8RZOaCzcbMPZq5RzMXbH4UbPZF-uaOtPWjHX0MY7J-uI_B68Xgqx_czb2Dzdn6shyKnC7yOO3-Iq7-FPpsUfU2GnudfDZXHwjCFGFJWPkW9Dsi0tRL
CitedBy_id crossref_primary_10_1007_s10646_014_1333_4
crossref_primary_10_1111_1574_6941_12361
crossref_primary_10_1007_s12275_015_4660_0
crossref_primary_10_2166_wst_2017_215
crossref_primary_10_1111_j_1574_6941_2009_00781_x
crossref_primary_10_1016_j_soilbio_2018_05_028
crossref_primary_10_1134_S106741361604010X
crossref_primary_10_1007_s11368_012_0532_y
crossref_primary_10_1093_femsec_fiz003
crossref_primary_10_1016_j_pedobi_2021_150746
crossref_primary_10_1007_s11368_014_0867_7
crossref_primary_10_5194_bg_16_4113_2019
crossref_primary_10_1016_j_soilbio_2012_03_006
crossref_primary_10_1007_s00253_013_5213_2
crossref_primary_10_1038_ismej_2010_171
crossref_primary_10_1128_AEM_00543_13
crossref_primary_10_1093_femsec_fiz197
crossref_primary_10_5004_dwt_2019_24061
crossref_primary_10_1111_1574_6941_12197
crossref_primary_10_1016_j_orggeochem_2015_02_009
crossref_primary_10_1093_femsec_fiv033
crossref_primary_10_1111_1462_2920_12071
crossref_primary_10_3389_fmicb_2014_00515
crossref_primary_10_1016_j_anifeedsci_2016_04_005
crossref_primary_10_3389_fmicb_2016_01353
crossref_primary_10_1007_s11356_016_6396_8
crossref_primary_10_1007_s00300_015_1829_2
crossref_primary_10_1016_j_apsoil_2014_09_015
crossref_primary_10_1007_s11783_014_0635_3
crossref_primary_10_1016_j_soilbio_2013_09_027
crossref_primary_10_1016_j_soilbio_2017_05_001
crossref_primary_10_1016_j_soilbio_2012_07_013
crossref_primary_10_1016_j_orggeochem_2013_01_011
crossref_primary_10_1080_00380768_2022_2125789
crossref_primary_10_3389_fmicb_2017_02226
crossref_primary_10_1007_s00253_017_8435_x
crossref_primary_10_1371_journal_pone_0051542
crossref_primary_10_3389_fmicb_2015_00582
crossref_primary_10_1016_j_scitotenv_2018_12_144
crossref_primary_10_1007_s11368_016_1422_5
crossref_primary_10_1186_s40529_016_0123_0
crossref_primary_10_1111_1758_2229_12259
crossref_primary_10_1007_s00248_014_0465_7
crossref_primary_10_1002_jobm_201200671
crossref_primary_10_3389_fmicb_2022_984925
crossref_primary_10_1007_s11756_021_00915_6
crossref_primary_10_1016_j_scitotenv_2022_155568
crossref_primary_10_1071_SR13160
crossref_primary_10_1016_S1001_0742_13_60443_X
crossref_primary_10_1016_j_jbiosc_2020_06_001
crossref_primary_10_1111_oik_10299
crossref_primary_10_1007_s10482_015_0627_8
crossref_primary_10_1007_s11356_010_0302_6
crossref_primary_10_1007_s11368_011_0375_y
crossref_primary_10_1128_aem_00070_24
crossref_primary_10_1128_AEM_01842_15
crossref_primary_10_3389_feart_2020_586248
crossref_primary_10_1139_w2012_032
crossref_primary_10_1128_AEM_01701_19
crossref_primary_10_1080_03650340_2019_1632437
crossref_primary_10_1007_s00374_016_1121_9
crossref_primary_10_1111_1462_2920_14238
crossref_primary_10_3389_fmicb_2018_02794
crossref_primary_10_1080_10643389_2012_672072
crossref_primary_10_1128_AEM_00376_11
crossref_primary_10_1016_j_chnaes_2011_03_009
crossref_primary_10_1016_j_jenvman_2023_117871
crossref_primary_10_1111_1574_6941_12163
crossref_primary_10_1128_AEM_01031_18
crossref_primary_10_1016_j_envint_2023_108055
crossref_primary_10_1890_14_0310_1
crossref_primary_10_1007_s11368_013_0726_y
crossref_primary_10_1007_s00248_016_0803_z
crossref_primary_10_1080_09064710_2015_1025823
crossref_primary_10_1089_ast_2018_2012
crossref_primary_10_1016_j_gsf_2011_11_015
crossref_primary_10_1007_s11274_013_1559_y
crossref_primary_10_1016_j_jes_2022_02_038
crossref_primary_10_1007_s11274_020_02910_6
crossref_primary_10_1016_j_fbio_2023_102834
crossref_primary_10_1111_1462_2920_13114
crossref_primary_10_1007_s13213_018_1336_0
crossref_primary_10_3389_fmicb_2019_01429
crossref_primary_10_1016_j_apsoil_2014_01_011
crossref_primary_10_1016_j_bcab_2021_102009
crossref_primary_10_1016_j_ejsobi_2021_103316
crossref_primary_10_1631_jzus_B1200013
crossref_primary_10_1111_1462_2920_16596
crossref_primary_10_1264_jsme2_ME19126
crossref_primary_10_1007_s11368_019_02540_y
crossref_primary_10_1093_femsec_fiaa122
crossref_primary_10_1111_j_1365_2427_2010_02454_x
crossref_primary_10_1007_s13213_016_1192_8
crossref_primary_10_1038_s41396_019_0409_9
crossref_primary_10_1128_AEM_01617_14
crossref_primary_10_1016_j_watres_2021_117774
crossref_primary_10_1128_aem_00813_24
crossref_primary_10_1007_s11368_016_1485_3
crossref_primary_10_1016_j_ejsobi_2016_03_012
crossref_primary_10_1007_s00248_015_0681_9
crossref_primary_10_7717_peerj_8256
crossref_primary_10_1007_s00374_011_0542_8
crossref_primary_10_1007_s11368_010_0256_9
crossref_primary_10_3390_f9050239
crossref_primary_10_4238_2012_January_27_6
crossref_primary_10_1007_s13762_021_03287_1
crossref_primary_10_1080_15230430_2023_2164999
crossref_primary_10_1016_j_tree_2023_04_015
crossref_primary_10_1016_j_ecoleng_2017_07_022
crossref_primary_10_1111_j_1574_6941_2011_01280_x
crossref_primary_10_1016_j_resmic_2010_12_004
crossref_primary_10_3390_agronomy12102515
crossref_primary_10_1007_s00253_015_6723_x
crossref_primary_10_1128_AEM_00136_11
crossref_primary_10_1016_j_ecoleng_2016_12_029
crossref_primary_10_1007_s12275_014_4114_0
crossref_primary_10_1007_s11368_015_1070_1
crossref_primary_10_1016_j_tim_2012_08_001
crossref_primary_10_3389_fbioe_2020_00483
crossref_primary_10_1080_01490451_2013_875298
crossref_primary_10_1007_s10482_016_0685_6
crossref_primary_10_1016_j_chnaes_2016_12_004
crossref_primary_10_1002_jobm_201800581
crossref_primary_10_1111_j_1365_2699_2010_02423_x
crossref_primary_10_3390_microorganisms11122871
Cites_doi 10.1038/ismej.2007.79
10.1128/AEM.01570-06
10.1126/science.1093857
10.1038/ngeo613
10.1111/j.1462-2920.2008.01775.x
10.1128/AEM.68.12.6435-6438.2002
10.1111/j.1462-2920.2007.01358.x
10.1128/AEM.00402-06
10.1038/361140a0
10.1111/j.1462-2920.2008.01613.x
10.1073/pnas.0600756103
10.1111/j.1574-6941.2008.00466.x
10.1007/s11368-009-0060-6
10.1111/j.1461-0248.2005.00802.x
10.1111/j.1462-2920.2008.01578.x
10.1038/nature07535
10.1128/AEM.01787-07
10.1073/pnas.0406616101
10.1111/j.1462-2920.2008.01764.x
10.1093/molbev/msm092
10.1175/1520-0442(1997)010<0288:EDOTSC>2.0.CO;2
10.1128/AEM.63.12.4704-4712.1997
10.1073/pnas.0708857105
10.1128/AEM.69.10.6152-6164.2003
10.1111/j.1462-2920.2008.01701.x
10.1139/w05-045
10.1007/BF00000354
10.1111/j.1462-2920.2007.01239.x
10.1111/j.1462-2920.2005.00906.x
10.1073/pnas.0506625102
10.1038/nature03911
10.1890/0012-9658(1999)080[1623:LBMPDA]2.0.CO;2
10.1111/j.1462-2920.2007.01547.x
10.1038/nature04983
10.1080/01490450902744004
10.1128/AEM.68.11.5685-5692.2002
10.1139/m88-198
10.1111/j.1462-2920.2007.01563.x
10.1073/pnas.0611081104
10.1016/0038-0717(95)00044-F
10.1046/j.1462-2920.2003.00457.x
ContentType Journal Article
Copyright 2009 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved 2009
2009 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved
Copyright_xml – notice: 2009 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved 2009
– notice: 2009 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7T7
7TK
7TM
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
RC3
7S9
L.6
7X8
DOI 10.1111/j.1574-6941.2009.00775.x
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Technology Research Database

MEDLINE - Academic
AGRICOLA
ProQuest Central Student

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Environmental Sciences
Ecology
DocumentTitleAlternate Chinese Microbial Ecology
EISSN 1574-6941
EndPage 217
ExternalDocumentID 19780828
10_1111_j_1574_6941_2009_00775_x
FEM775
10.1111/j.1574-6941.2009.00775.x
US201301724115
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Mount Everest
China
GeographicLocations_xml – name: Mount Everest
– name: China
GroupedDBID ---
--K
.3N
.GA
.Y3
05W
0R~
10A
1B1
1OC
1TH
1~5
29H
2XV
31~
36B
4.4
48X
4G.
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5HH
5LA
5VS
66C
7-5
702
7PT
7X7
7XC
8-0
8-1
8-3
8-4
8-5
88E
8CJ
8FE
8FH
8FI
8FJ
8UM
930
A03
AACTN
AAEDT
AAHBH
AAHHS
AAIMJ
AAJQQ
AALRI
AAMDB
AAMVS
AANHP
AAOGV
AAONW
AAPQZ
AAPXW
AAQFI
AAQXK
AARHZ
AAUQX
AAVAP
AAWDT
AAXUO
ABCQN
ABEJV
ABEML
ABEUO
ABGNP
ABIME
ABIXL
ABMAC
ABPIB
ABPTD
ABQLI
ABSMQ
ABUWG
ABWVN
ABXVV
ABXZS
ACBWZ
ACCFJ
ACFRR
ACGFO
ACIUM
ACIWK
ACPRK
ACRPL
ACSCC
ACUFI
ACUTJ
ACXQS
ACYXJ
ADBBV
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADMUD
ADNMO
ADPDF
ADQBN
ADRTK
ADVEK
ADYVW
AEEZP
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AEUYN
AEWNT
AFBPY
AFFZL
AFGWE
AFIYH
AFKRA
AFOFC
AFRAH
AFYAG
AFZJQ
AGINJ
AGSYK
AHEFC
AHMBA
AI.
AIWBW
AJAOE
AJBDE
AJEEA
AKRWK
AKWXX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
AMNDL
ANFBD
APIBT
APJGH
APWMN
ARIXL
ASAOO
ATCPS
ATDFG
AVWKF
AXUDD
AYOIW
AZBYB
BAFTC
BAYMD
BBNVY
BDRZF
BENPR
BEYMZ
BHONS
BHPHI
BPHCQ
BQDIO
BSWAC
BVXVI
BY8
CAG
CCPQU
CDBKE
COF
CS3
CXTWN
D-E
D-F
D1J
DAKXR
DC6
DCZOG
DFGAJ
DILTD
DR2
DU5
EBS
EDH
EJD
EMB
EMOBN
F00
F01
F04
F5P
FBQ
FDB
FEDTE
FGOYB
FHSFR
FLUFQ
FOEOM
FYUFA
FZ0
G-S
G.N
GAUVT
GJXCC
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HAR
HCIFZ
HF~
HMCUK
HOLLA
HVGLF
HZI
HZ~
I-F
IAG
IAO
IEP
IHE
IHR
ITC
IX1
J0M
J21
JXSIZ
K48
KAQDR
KBUDW
KOP
KSI
KSN
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M1P
M41
M49
M7P
MK4
MM.
N04
N05
N9A
NF~
NLBLG
NOMLY
NQ-
NU-
NVLIB
O9-
OAWHX
ODMLO
OIG
OJQWA
OK1
OVD
OVEED
P2P
P2X
P4D
PAFKI
PATMY
PEELM
PHGZT
PQQKQ
PROAC
PSQYO
PYCSY
Q.N
Q11
Q5Y
QB0
R.K
R2-
RIG
ROL
ROZ
RPM
RPZ
RUSNO
RX1
RXO
SEW
SSZ
SUPJJ
SV3
TCN
TEORI
TLC
TOX
UB1
UKHRP
V8K
VH1
W8V
W99
WH7
WQJ
WYUIH
XG1
YAYTL
YKOAZ
YXANX
ZCN
ZXP
~02
~IA
~KM
~WT
AASNB
ADRIX
AFXEN
BCRHZ
ROX
WRC
AGQPQ
AHGBF
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
CITATION
PHGZM
3V.
ABSAR
AFULF
AHHHB
CGR
CUY
CVF
ECM
EIF
HMC
NPM
SIN
7QL
7QP
7QR
7SN
7T7
7TK
7TM
7XB
8FD
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
WIN
7S9
L.6
7X8
ID FETCH-LOGICAL-c7115-79a3537558fd142681db94a366b1e379f2ad990fd749c9cba2a83f324cd1899c3
IEDL.DBID DR2
ISSN 0168-6496
1574-6941
IngestDate Fri Jul 11 16:13:05 EDT 2025
Fri Jul 11 02:45:31 EDT 2025
Fri Jul 11 10:54:52 EDT 2025
Wed Aug 13 11:27:31 EDT 2025
Wed Feb 19 01:56:51 EST 2025
Tue Jul 01 00:55:28 EDT 2025
Thu Apr 24 22:58:00 EDT 2025
Fri Apr 25 07:47:30 EDT 2025
Wed Sep 11 04:52:19 EDT 2024
Thu Apr 03 09:47:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Tibetan Plateau
community shift
A gene
alpine soil
ammonia oxidizer
relative abundance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c7115-79a3537558fd142681db94a366b1e379f2ad990fd749c9cba2a83f324cd1899c3
Notes http://dx.doi.org/10.1111/j.1574-6941.2009.00775.x
Editor: Christoph Tebbe
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://academic.oup.com/femsec/article-pdf/70/2/208/19529053/70-2-208.pdf
PMID 19780828
PQID 2306542598
PQPubID 986353
PageCount 10
ParticipantIDs proquest_miscellaneous_734083866
proquest_miscellaneous_46486785
proquest_miscellaneous_21085516
proquest_journals_2306542598
pubmed_primary_19780828
crossref_primary_10_1111_j_1574_6941_2009_00775_x
crossref_citationtrail_10_1111_j_1574_6941_2009_00775_x
wiley_primary_10_1111_j_1574_6941_2009_00775_x_FEM775
oup_primary_10_1111_j_1574-6941_2009_00775_x
fao_agris_US201301724115
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2009
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: November 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Delft
PublicationTitle FEMS microbiology ecology
PublicationTitleAlternate FEMS Microbiol Ecol
PublicationYear 2009
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Oxford University Press
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Oxford University Press
References 2004; 101
2007; 104
2006; 72
1997; 63
2005; 437
1988; 34
1993; 361
2007; 70
2008; 10
2008; 105
2008; 74
2007; 73
1999; 80
1996; 37
2004; 304
1996; 32
2009; 26
1995; 27
1997; 10
2005; 102
2002; 68
2005; 8
2005; 51
2003; 69
2007; 9
2005; 7
2009; 9
2003; 5
2008; 456
2008; 64
2007; 1
2009; 2
2006; 442
2007; 24
2006; 103
Bremner (10.1111/j.1574-6941.2009.00775.x-BIB6) 1996
10.1111/j.1574-6941.2009.00775.x-BIB28
10.1111/j.1574-6941.2009.00775.x-BIB29
10.1111/j.1574-6941.2009.00775.x-BIB26
10.1111/j.1574-6941.2009.00775.x-BIB27
10.1111/j.1574-6941.2009.00775.x-BIB1
10.1111/j.1574-6941.2009.00775.x-BIB2
10.1111/j.1574-6941.2009.00775.x-BIB3
10.1111/j.1574-6941.2009.00775.x-BIB4
10.1111/j.1574-6941.2009.00775.x-BIB24
10.1111/j.1574-6941.2009.00775.x-BIB5
10.1111/j.1574-6941.2009.00775.x-BIB25
10.1111/j.1574-6941.2009.00775.x-BIB44
10.1111/j.1574-6941.2009.00775.x-BIB22
10.1111/j.1574-6941.2009.00775.x-BIB7
10.1111/j.1574-6941.2009.00775.x-BIB23
10.1111/j.1574-6941.2009.00775.x-BIB8
10.1111/j.1574-6941.2009.00775.x-BIB42
10.1111/j.1574-6941.2009.00775.x-BIB9
10.1111/j.1574-6941.2009.00775.x-BIB21
10.1111/j.1574-6941.2009.00775.x-BIB43
10.1111/j.1574-6941.2009.00775.x-BIB40
10.1111/j.1574-6941.2009.00775.x-BIB41
10.1111/j.1574-6941.2009.00775.x-BIB19
10.1111/j.1574-6941.2009.00775.x-BIB17
10.1111/j.1574-6941.2009.00775.x-BIB39
10.1111/j.1574-6941.2009.00775.x-BIB18
10.1111/j.1574-6941.2009.00775.x-BIB15
10.1111/j.1574-6941.2009.00775.x-BIB37
10.1111/j.1574-6941.2009.00775.x-BIB16
10.1111/j.1574-6941.2009.00775.x-BIB38
10.1111/j.1574-6941.2009.00775.x-BIB13
10.1111/j.1574-6941.2009.00775.x-BIB35
10.1111/j.1574-6941.2009.00775.x-BIB14
10.1111/j.1574-6941.2009.00775.x-BIB36
10.1111/j.1574-6941.2009.00775.x-BIB11
10.1111/j.1574-6941.2009.00775.x-BIB33
10.1111/j.1574-6941.2009.00775.x-BIB12
10.1111/j.1574-6941.2009.00775.x-BIB34
10.1111/j.1574-6941.2009.00775.x-BIB31
10.1111/j.1574-6941.2009.00775.x-BIB10
10.1111/j.1574-6941.2009.00775.x-BIB32
10.1111/j.1574-6941.2009.00775.x-BIB30
References_xml – volume: 9
  start-page: 1162
  year: 2007
  end-page: 1175
  article-title: Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre
  publication-title: Environ Microbiol
– volume: 64
  start-page: 167
  year: 2008
  end-page: 174
  article-title: Nitrification in terrestrial hot springs of Iceland and Kamchatka
  publication-title: FEMS Microbiol Ecol
– volume: 7
  start-page: 1985
  year: 2005
  end-page: 1995
  article-title: Novel genes for nitrite reductase and Amo‐related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling
  publication-title: Environ Microbiol
– volume: 10
  start-page: 288
  year: 1997
  end-page: 296
  article-title: Elevation dependency of the surface climate change signal
  publication-title: a model study
– volume: 74
  start-page: 1620
  year: 2008
  end-page: 1633
  article-title: Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile
  publication-title: Appl Environ Microb
– volume: 9
  start-page: 2364
  year: 2007
  end-page: 2374
  article-title: Quantitative analyses of the abundance and composition of ammonia‐oxidizing bacteria and ammonia‐oxidizing archaea of a Chinese upland red soil under long‐term fertilization practices
  publication-title: Environ Microbiol
– volume: 26
  start-page: 199
  year: 2009
  end-page: 211
  article-title: Diversity and abundance of ammonia‐oxidizing archaea and bacteria in Qinghai Lake, northwestern China
  publication-title: Geomicrobiol J
– volume: 304
  start-page: 66
  year: 2004
  end-page: 74
  article-title: Environmental genome shotgun sequencing of the Sargasso Sea
  publication-title: Science
– volume: 68
  start-page: 6435
  year: 2002
  end-page: 6438
  article-title: Incorporation of DNA and protein precursors into macromolecules by bacteria at −15 degrees C
  publication-title: Appl Environ Microb
– volume: 10
  start-page: 1978
  year: 2008
  end-page: 1987
  article-title: Ammonia‐oxidizing archaea
  publication-title: important players in paddy rhizosphere soil?
– volume: 32
  start-page: 93
  year: 1996
  end-page: 113
  article-title: Microbial activity under alpine snow packs, Niwot Ridge, Colorado
  publication-title: Biogeochemistry
– volume: 10
  start-page: 1357
  year: 2008
  end-page: 1364
  article-title: Growth, activity and temperature responses of ammonia‐oxidizing archaea and bacteria in soil microcosms
  publication-title: Environ Microbiol
– volume: 10
  start-page: 2966
  year: 2008
  end-page: 2978
  article-title: The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria
  publication-title: Environ Microbiol
– volume: 34
  start-page: 1122
  year: 1988
  end-page: 1128
  article-title: A new marine ammonium‐oxidizing bacterium, Sp‐Nov
  publication-title: Can J Microbiol
– volume: 9
  start-page: 83
  year: 2009
  end-page: 88
  article-title: Trends and challenges in soil research 2009
  publication-title: linking global climate change to local long-term forest productivity
– volume: 10
  start-page: 3002
  year: 2008
  end-page: 3016
  article-title: Relative abundance and diversity of ammonia‐oxidizing archaea and bacteria in the San Francisco Bay estuary
  publication-title: Environ Microbiol
– volume: 1
  start-page: 660
  year: 2007
  end-page: 662
  article-title: Ammonia oxidation and ammonia‐oxidizing bacteria and archaea from estuaries with differing histories of hypoxia
  publication-title: ISME J
– volume: 69
  start-page: 6152
  year: 2003
  end-page: 6164
  article-title: Patterns of community change among ammonia oxidizers in meadow soils upon long‐term incubation at different temperatures
  publication-title: Appl Environ Microb
– volume: 72
  start-page: 5643
  year: 2006
  end-page: 5647
  article-title: Occurrence of ammonia‐oxidizing archaea in wastewater treatment plant bioreactors
  publication-title: Appl Environ Microb
– volume: 103
  start-page: 12317
  year: 2006
  end-page: 12322
  article-title: Archaeal nitrification in the ocean
  publication-title: P Natl Acad Sci USA
– volume: 102
  start-page: 14683
  year: 2005
  end-page: 14688
  article-title: Ubiquity and diversity of ammonia‐oxidizing archaea in water columns and sediments of the ocean
  publication-title: P Natl Acad Sci USA
– volume: 68
  start-page: 5685
  year: 2002
  end-page: 5692
  article-title: Effect of soil ammonium concentration on N O release and on the community structure of ammonia oxidizers and denitrifiers
  publication-title: Appl Environ Microb
– volume: 37
  start-page: 1085
  year: 1996
  end-page: 1121
– volume: 361
  start-page: 140
  year: 1993
  end-page: 142
  article-title: CO , CH and N O flux through a Wyoming snowpack and implications for global budgets
  publication-title: Nature
– volume: 24
  start-page: 1596
  year: 2007
  end-page: 1599
  article-title: MEGA4
  publication-title: molecular evolutionary genetics analysis (MEGA) software version 4.0
– volume: 437
  start-page: 543
  year: 2005
  end-page: 546
  article-title: Isolation of an autotrophic ammonia‐oxidizing marine archaeon
  publication-title: Nature
– volume: 10
  start-page: 1068
  year: 2008
  end-page: 1079
  article-title: Shifts in the relative abundance of ammonia‐oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary
  publication-title: Environ Microbiol
– volume: 80
  start-page: 1623
  year: 1999
  end-page: 1631
  article-title: Links between microbial population dynamics and nitrogen availability in an alpine ecosystem
  publication-title: Ecology
– volume: 27
  start-page: 1231
  year: 1995
  end-page: 1234
  article-title: Microbial activity of tundra and taiga soils at subzero temperatures
  publication-title: Soil Biol Biochem
– volume: 8
  start-page: 976
  year: 2005
  end-page: 985
  article-title: Plant invasion alters nitrogen cycling by modifying the soil nitrifying community
  publication-title: Ecol Lett
– volume: 104
  start-page: 7104
  year: 2007
  end-page: 7109
  article-title: Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea
  publication-title: P Natl Acad Sci USA
– volume: 10
  start-page: 1601
  year: 2008
  end-page: 1611
  article-title: Abundance and composition of ammonia‐oxidizing bacteria and ammonia‐oxidizing archaea communities of an alkaline sandy loam
  publication-title: Environ Microbiol
– volume: 5
  start-page: 691
  year: 2003
  end-page: 705
  article-title: Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers
  publication-title: Environ Microbiol
– volume: 442
  start-page: 806
  year: 2006
  end-page: 809
  article-title: Archaea predominate among ammonia‐oxidizing prokaryotes in soils
  publication-title: Nature
– volume: 70
  start-page: 141
  year: 2007
  end-page: 151
  article-title: Climatic trends over the Tibetan Plateau during 1971–2000
  publication-title: J Geographical Sciences
– volume: 51
  start-page: 709
  year: 2005
  end-page: 714
  article-title: Cold‐temperate climate
  publication-title: a factor for selection of ammonia oxidizers in upland soil?
– volume: 2
  start-page: 621
  year: 2009
  end-page: 624
  article-title: Nitrification driven by bacteria and not archaea in nitrogen‐rich grassland soils
  publication-title: Nature Geoscience
– volume: 105
  start-page: 2134
  year: 2008
  end-page: 2139
  article-title: A moderately thermophilic ammonia‐oxidizing crenarchaeote from a hot spring
  publication-title: P Natl Acad Sci USA
– volume: 63
  start-page: 4704
  year: 1997
  end-page: 4712
  article-title: The ammonia monooxygenase structural gene amoA as a functional marker
  publication-title: molecular fine-scale analysis of natural ammonia-oxidizing populations
– volume: 456
  start-page: 788
  year: 2008
  end-page: 791
  article-title: Major gradients in putatively nitrifying and non‐nitrifying Archaea in the deep North Atlantic
  publication-title: Nature
– volume: 101
  start-page: 15136
  year: 2004
  end-page: 15141
  article-title: Ammonia‐oxidizing bacteria respond to multifactorial global change
  publication-title: P Natl Acad Sci USA
– volume: 73
  start-page: 259
  year: 2007
  end-page: 270
  article-title: Communities of Archaea and Bacteria in a subsurface radioactive thermal spring in the Austrian Central Alps, and evidence of ammonia‐oxidizing Crenarchaeota
  publication-title: Appl Environ Microb
– volume: 10
  start-page: 2931
  year: 2008
  end-page: 2941
  article-title: Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment
  publication-title: Environ Microbiol
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB8
  doi: 10.1038/ismej.2007.79
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB40
  doi: 10.1128/AEM.01570-06
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB39
  doi: 10.1126/science.1093857
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB44
  doi: 10.1038/ngeo613
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB30
  doi: 10.1111/j.1462-2920.2008.01775.x
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB10
  doi: 10.1128/AEM.68.12.6435-6438.2002
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB17
  doi: 10.1111/j.1462-2920.2007.01358.x
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB29
  doi: 10.1128/AEM.00402-06
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB35
  doi: 10.1038/361140a0
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB9
  doi: 10.1111/j.1462-2920.2008.01613.x
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB42
  doi: 10.1073/pnas.0600756103
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB31
  doi: 10.1111/j.1574-6941.2008.00466.x
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB43
  doi: 10.1007/s11368-009-0060-6
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB16
  doi: 10.1111/j.1461-0248.2005.00802.x
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB34
  doi: 10.1111/j.1462-2920.2008.01578.x
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB1
  doi: 10.1038/nature07535
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB41
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB14
  doi: 10.1128/AEM.01787-07
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB18
  doi: 10.1073/pnas.0406616101
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB27
  doi: 10.1111/j.1462-2920.2008.01764.x
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB36
  doi: 10.1093/molbev/msm092
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB13
  doi: 10.1175/1520-0442(1997)010<0288:EDOTSC>2.0.CO;2
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB32
  doi: 10.1128/AEM.63.12.4704-4712.1997
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB15
  doi: 10.1073/pnas.0708857105
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB4
  doi: 10.1128/AEM.69.10.6152-6164.2003
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB28
  doi: 10.1111/j.1462-2920.2008.01701.x
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB5
  doi: 10.1139/w05-045
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB7
  doi: 10.1007/BF00000354
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB26
  doi: 10.1111/j.1462-2920.2007.01239.x
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB38
  doi: 10.1111/j.1462-2920.2005.00906.x
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB12
  doi: 10.1073/pnas.0506625102
– start-page: 1085
  volume-title: Methods of Soil Analysis: Part 3 - Chemical Methods
  year: 1996
  ident: 10.1111/j.1574-6941.2009.00775.x-BIB6
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB22
  doi: 10.1038/nature03911
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB25
  doi: 10.1890/0012-9658(1999)080[1623:LBMPDA]2.0.CO;2
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB33
  doi: 10.1111/j.1462-2920.2007.01547.x
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB24
  doi: 10.1038/nature04983
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB19
  doi: 10.1080/01490450902744004
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB2
  doi: 10.1128/AEM.68.11.5685-5692.2002
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB21
  doi: 10.1139/m88-198
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB37
  doi: 10.1111/j.1462-2920.2007.01563.x
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB23
  doi: 10.1073/pnas.0611081104
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB11
  doi: 10.1016/0038-0717(95)00044-F
– ident: 10.1111/j.1574-6941.2009.00775.x-BIB3
  doi: 10.1046/j.1462-2920.2003.00457.x
SSID ssj0015340
Score 2.3523295
Snippet To determine the abundance and distribution of bacterial and archaeal ammonia oxidizers in alpine and permafrost soils, 12 soils at altitudes of 4000-6550 m...
Abstract To determine the abundance and distribution of bacterial and archaeal ammonia oxidizers in alpine and permafrost soils, 12 soils at altitudes of...
To determine the abundance and distribution of bacterial and archaeal ammonia oxidizers in alpine and permafrost soils, 12 soils at altitudes of 4000–6550 m...
To determine the abundance and distribution of bacterial and archaeal ammonia oxidizers in alpine and permafrost soils, 12 soils at altitudes of 4000–6550 m...
AbstractTo determine the abundance and distribution of bacterial and archaeal ammonia oxidizers in alpine and permafrost soils, 12 soils at altitudes of...
SourceID proquest
pubmed
crossref
wiley
oup
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 208
SubjectTerms Abundance
alpine soil
Altitude
Ammonia
Ammonia - metabolism
Ammonia monooxygenase
ammonia oxidizer
Ammonia-oxidizing bacteria
amoA gene
Archaea
Archaea - classification
Archaea - genetics
Bacteria
Bacteria - classification
Bacteria - genetics
bacterial communities
Biodiversity
China
Cloning, Molecular
Clusters
Communities
community shift
Community structure
DNA, Archaeal - genetics
DNA, Bacterial - genetics
Ecology
Ecosystem
Environmental factors
Gene sequencing
genes
Genes, Archaeal
Genes, Bacterial
Microbiology
Nitrosomonas
Nitrosospira
Oxidation
Oxidizing agents
Oxidoreductases - genetics
Permafrost
quantitative polymerase chain reaction
Relative abundance
Sea level
sediments
Sequence Analysis, DNA
snow
Soil - analysis
Soil bacteria
Soil Microbiology
Soils
Tibetan Plateau
topographic slope
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA-2IvgiVq1dbTUPPhpkb_P5JEX2qML5ogf3FrJJVhbKbuv2oPrXO7ObvWulV_oW2CQkOzOZ32QyM4R8ADM6VJyjazBqxmXwTBdeMmOCNqDya1GhR3fxXZ4t-beVWKULtz49q5zOxOGgDp3HO_JPY4lzAOv688Ulw6pR6F1NJTT2yGNMXYZPutRqY3CBMA8BkYBqNJPcyNsveYTiDMM4p6SVSokpAVJST3u16_4LfLuBP2_D2UEfzZ-TZwlI0tOR8gfkUWxfkCdjack_0Cp9ah2W21g2GJCEuX9Jvp5i7O06ROpwd41j3XUTmr-gzGg1JnF21LWBDvmUoqNNS_uuOe9pV9MF1pigJQgCLPYVWc7Ln1_OWKqswLwCCMiUcYUolBC6DjnoaACtleGukLLKY6FMPXMB1FQdFDfe-MrNHJANsJcPORhovjgk-23XxiNCufL1LLoqz6PgAWzSKijntYto6vA6z4iafqj1Ke04Vr84tzfMDyCFRVJgUUxjB1LY64zkm5EXY-qNB4w5AppZ9wtOSLv8MUO_LEA0DpvOyEcg5I6Z2B0zHU8Ut0mse7tlwoy833wGgUQvi2tjt4Y-GM8hcrm7B5eY5lDDiuiOHgoYVxdawiSvR2bbrhtTRoGZnBExcN-Df42dlwtovLl_X2_J08FfNkRbHpP9q9_reAKw66p6N8jWP7JvHco
  priority: 102
  providerName: ProQuest
Title Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1574-6941.2009.00775.x
https://www.ncbi.nlm.nih.gov/pubmed/19780828
https://www.proquest.com/docview/2306542598
https://www.proquest.com/docview/21085516
https://www.proquest.com/docview/46486785
https://www.proquest.com/docview/734083866
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF7RIiQuPAqlhhL2wBFHcrzPY0GOKlAKKo2Um7UvI6uVjXAitT31J_Ab-SXM2E7aVI1UIS5RpOyuvJOZ2W88O98Q8h7CaG8Zw9RgUDET3sUqdSLW2isNR37BLWZ0J0ficMo-z_isv_-EtTAdP8TqhRtaRuuv0cCNbdaNnEsWYyHmknZSSj5EPIlXtxAfHa-YpMCu29pIADgqFkyL9Us9dy60dlJtFaa-VQN3A4quI9v2aBo_JafLTXU3Uk6Hi7kdustbfI__Z9fPyJMewdKDTuWekweh2iGPup6WFztkN7sunYNhve9oXpAvB1jqu_CBGtT90vy5-l2fl768hNOT2o412lBTedoSOAVDy4o2dXnW0LqgE2xqQTOwPBDJSzIdZyefDuO-lUPsJGDOWGqT8lRyrgqfACgAlGw1M6kQNgmp1MXIeDgXCy-ZdtpZMzKgJwD2nE8gInTpLtmu6irsEcqkK0bB2CQJnHkIgq2XxikTMLZiRRIRufzbctfznGO7jbP8RrwDMsxRhtiFU-etDPPziCSrmT87ro97zNkDzcjND3DJ-fT7CBPBgAkZbDoiH0BdNqwU37HS_lKv8t6PNDkGiBzcqlYRebf6GTwApnVMFeoFjMECEp6IzSOYQF5FBU9EN4yQYB4qVQIWedWp9PVzI0cVxOUR4a1i3ls0-TibwJfX_zjvDXncZu7aus99sj3_tQhvAQDO7YBsyZkckIcfs6Nvx4PW0OHz5OvsL-vISTk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61WyG4IF6lgUJ9gBsWSmLHzgGhAlnt0u4KQVfqzTi2gyJVSWG7ouVH8RsZ57HbIhb10pul2JbtGc98k_HMALxAM9rmjHnXoJOUJdZQGZuEpqmVKar8gufeozuZJqMZ-3jMjzfgdx8L459V9jKxEdS2Nv4f-eu2xDmCdfn29Dv1VaO8d7UvodGyxYG7-Ikm2_zN-APS92UUDbOj9yPaVRWgRiD8oSLVMY8F57KwIeonBGx5ynScJHnoYpEWkbYoogsrWGpSk-tI45IRdxgbonFiYpx3E7ZYjKbMALbeZdNPn5d-Cx43IZiIoyRNWJpcfTvEBaM-cLRPkykE71MudQpxs9D1X6F2lxDvVQDdaMDhPbjbQVey3_Lafdhw1QO41RazvMBWZrrWdraKnsMBnfiYP4Txvo_2XVhHtD_PUtP6vLTlL1SfJG_TRmuiK0uaDE5Ok7Ii87o8mZO6IBNf1YJkePVwsY9gdiOnvg2Dqq7cDhAmTBE5nYeh48yiFZxboY3UzhtXrAgDEP2BKtMlOvf1Nk7UJYMHSaE8KXwZzlQ1pFDnAYTLkadtso9rjNlBmin9DWWymn2JvCcYQSHDTQfwCgm5Zib6j5l2e4qrTpDM1YrtA9hbfkYR4P06unL1Avv4CBIeJut7sMQnVpS4IrKmh0DGlbFMcJLHLbOt1u2TVKFhHgBvuO_aR6OG2QQbT_6_rz24PTqaHKrD8fTgKdxpvHVNrOcuDM5-LNwzBH1n-fPuphH4etOX-w_yUlrJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEF5BEYhLgUKpodA9cMQRjvf3WNFEhZIKAZF6W-2fK6uVXZFEKj31EXhGnoQZ20mbqpEqxM2Sd1feyczsN5mdbwh5B2F0cIxhajCqlIngU5V7kWodlIYjv-AOM7qjQ7E_Zp-P-FF3_wlrYVp-iMUfbmgZjb9GAz8LxbKRc8lSLMSc005KyXuAJx8w8UGhhu99W1BJgWE3xZGAcFQqmBbLt3puXWnpqLpf2PpGEdw1LLoMbZuzafiEnMx31V5JOenNpq7nL24QPv6fbT8l6x2Epbutzj0j92K1QR62TS1_bZDNwVXtHAzrnMfkOTnYxVrfWYjUovKX9s_l7_q8DOUFHJ_UtbTRltoq0IbBKVpaVnRSl6cTWhd0hF0t6ABMD0TygoyHgx8f99Oul0PqJYDOVGqb81xyroqQASoAmOw0s7kQLou51EXfBjgYiyCZ9to727egKID2fMggJPT5Jlmr6ipuEcqkL_rRuiyLnAWIgl2Q1isbMbhiRZYQOf_ZjO-IzrHfxqm5FvCADA3KENtwatPI0JwnJFvMPGvJPu4wZws0w9hj8Mlm_L2PmWAAhQw2nZD3oC4rVkpvWWl7rlemcyQTgxEiB7-qVUJ2Fq_BBWBex1axnsEYrCDhmVg9ggkkVlTwRXTFCAnmoXIlYJGXrUpffTeSVEFgnhDeKOadRWOGgxE8vPrHeTvk0de9ofny6fDgNXncZPGaGtBtsjb9OYtvAAxO3dvGyv8Cn-BIbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Altitude+ammonia-oxidizing+bacteria+and+archaea+in+soils+of+Mount+Everest&rft.jtitle=FEMS+microbiology+ecology&rft.au=Zhang%2C+Li-Mei&rft.au=Wang%2C+Mu&rft.au=Prosser%2C+James+I.&rft.au=Zheng%2C+Yuan-Ming&rft.date=2009-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0168-6496&rft.eissn=1574-6941&rft.volume=70&rft.issue=2&rft.spage=208&rft.epage=217&rft_id=info:doi/10.1111%2Fj.1574-6941.2009.00775.x&rft.externalDocID=10.1111%2Fj.1574-6941.2009.00775.x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-6496&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-6496&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-6496&client=summon