Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features
Neuroimage measures from magnetic resonance (MR) imaging, such as cortical thickness, have been playing an increasingly important role in searching for biomarkers of Alzheimer's disease (AD). Recent studies show that, AD, mild cognitive impairment (MCI) and normal control (NC) can be distinguis...
Saved in:
Published in | Neurobiology of aging Vol. 33; no. 2; pp. 427.e15 - 427.e30 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.02.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neuroimage measures from magnetic resonance (MR) imaging, such as cortical thickness, have been playing an increasingly important role in searching for biomarkers of Alzheimer's disease (AD). Recent studies show that, AD, mild cognitive impairment (MCI) and normal control (NC) can be distinguished with relatively high accuracy using the baseline cortical thickness. With the increasing availability of large longitudinal datasets, it also becomes possible to study the longitudinal changes of cortical thickness and their correlation with the development of pathology in AD. In this study, the longitudinal cortical thickness changes of 152 subjects from 4 clinical groups (AD, NC, Progressive-MCI and Stable-MCI) selected from Alzheimer's Disease Neuroimaging Initiative (ADNI) are measured by our recently developed 4 D (spatial+temporal) thickness measuring algorithm. It is found that the 4 clinical groups demonstrate very similar spatial distribution of grey matter (GM) loss on cortex. To fully utilize the longitudinal information and better discriminate the subjects from 4 groups, especially between Stable-MCI and Progressive-MCI, 3 different categories of features are extracted for each subject, i.e., (1) static cortical thickness measures computed from the baseline and endline, (2) cortex thinning dynamics, such as the thinning speed (mm/year) and the thinning ratio (endline/baseline), and (3) network features computed from the brain network constructed based on the correlation between the longitudinal thickness changes of different regions of interest (ROIs). By combining the complementary information provided by features from the 3 categories, 2 classifiers are trained to diagnose AD and to predict the conversion to AD in MCI subjects, respectively. In the leave-one-out cross-validation, the proposed method can distinguish AD patients from NC at an accuracy of 96.1%, and can detect 81.7% (AUC = 0.875) of the MCI converters 6 months ahead of their conversions to AD. Also, by analyzing the brain network built via longitudinal cortical thickness changes, a significant decrease (p < 0.02) of the network clustering coefficient (associated with the development of AD pathology) is found in the Progressive-MCI group, which indicates the degenerated wiring efficiency of the brain network due to AD. More interestingly, the decreasing of network clustering coefficient of the olfactory cortex region was also found in the AD patients, which suggests olfactory dysfunction. Although the smell identification test is not performed in ADNI, this finding is consistent with other AD-related olfactory studies. |
---|---|
AbstractList | Neuroimage measures from magnetic resonance (MR) imaging, such as cortical thickness, have been playing an increasingly important role in searching for bio-markers of Alzheimer’s disease (AD). Recent studies show that, AD, mild cognitive impairment (MCI) and normal control (NC) can be distinguished with relatively high accuracy using the baseline cortical thickness. With the increasing availability of large longitudinal datasets, it also becomes possible to study the longitudinal changes of cortical thickness and their correlation with the development of pathology in AD. In this study, the longitudinal cortical thickness changes of 152 subjects from four clinical groups (AD, NC, Progressive-MCI and Stable-MCI) selected from Alzheimer’s Disease Neuroimaging Initiative (ADNI) are measured by our recently-developed 4D (spatial+temporal) thickness measuring algorithm. It is found that the four clinical groups demonstrate very similar spatial distribution of GM loss on cortex. To fully utilizing the longitudinal information and better discriminate the subjects from four groups, especially between Stable-MCI and Progressive-MCI, three different categories of features are extracted for each subject, i.e., (1) static cortical thickness measures computed from the baseline and endline, (2) cortex thinning dynamics, such as the thinning speed (mm/year) and the thinning ratio (endline/baseline), and (3) network features computed from the brain network constructed based on the correlation between the longitudinal thickness changes of different ROIs. By combining the complementary information provided by features from all three different categories, two classifiers are trained to diagnose AD and to predict the conversion to AD in MCI subjects, respectively. In the leave-one-out cross-validation, the proposed method can distinguish AD patients from NC at an accuracy of 96.1%, and can detect 81.7% (AUC=0.875) of the MCI converters at 6-months ahead of their conversions to AD. Also, by analyzing the brain network built via longitudinal cortical thickness changes, a significant decrease (P<0.02) of the network clustering coefficient (associated with the development of AD pathology) is found in the Progressive-MCI group, which indicates the degenerated wiring efficiency of the brain network due to AD. More interestingly, the decreasing of network clustering coefficient of the olfactory cortex region was also found in the AD patients, which suggests the olfactory dysfunction. Although the smell identification test is not performed in ADNI, this finding is consistent with other AD-related olfactory studies. Abstract Neuroimage measures from magnetic resonance (MR) imaging, such as cortical thickness, have been playing an increasingly important role in searching for biomarkers of Alzheimer's disease (AD). Recent studies show that, AD, mild cognitive impairment (MCI) and normal control (NC) can be distinguished with relatively high accuracy using the baseline cortical thickness. With the increasing availability of large longitudinal datasets, it also becomes possible to study the longitudinal changes of cortical thickness and their correlation with the development of pathology in AD. In this study, the longitudinal cortical thickness changes of 152 subjects from 4 clinical groups (AD, NC, Progressive-MCI and Stable-MCI) selected from Alzheimer's Disease Neuroimaging Initiative (ADNI) are measured by our recently developed 4 D (spatial+temporal) thickness measuring algorithm. It is found that the 4 clinical groups demonstrate very similar spatial distribution of grey matter (GM) loss on cortex. To fully utilize the longitudinal information and better discriminate the subjects from 4 groups, especially between Stable-MCI and Progressive-MCI, 3 different categories of features are extracted for each subject, i.e., (1) static cortical thickness measures computed from the baseline and endline, (2) cortex thinning dynamics, such as the thinning speed (mm/year) and the thinning ratio (endline/baseline), and (3) network features computed from the brain network constructed based on the correlation between the longitudinal thickness changes of different regions of interest (ROIs). By combining the complementary information provided by features from the 3 categories, 2 classifiers are trained to diagnose AD and to predict the conversion to AD in MCI subjects, respectively. In the leave-one-out cross-validation, the proposed method can distinguish AD patients from NC at an accuracy of 96.1%, and can detect 81.7% (AUC = 0.875) of the MCI converters 6 months ahead of their conversions to AD. Also, by analyzing the brain network built via longitudinal cortical thickness changes, a significant decrease ( p < 0.02) of the network clustering coefficient (associated with the development of AD pathology) is found in the Progressive-MCI group, which indicates the degenerated wiring efficiency of the brain network due to AD. More interestingly, the decreasing of network clustering coefficient of the olfactory cortex region was also found in the AD patients, which suggests olfactory dysfunction. Although the smell identification test is not performed in ADNI, this finding is consistent with other AD-related olfactory studies. Neuroimage measures from magnetic resonance (MR) imaging, such as cortical thickness, have been playing an increasingly important role in searching for biomarkers of Alzheimer's disease (AD). Recent studies show that, AD, mild cognitive impairment (MCI) and normal control (NC) can be distinguished with relatively high accuracy using the baseline cortical thickness. With the increasing availability of large longitudinal datasets, it also becomes possible to study the longitudinal changes of cortical thickness and their correlation with the development of pathology in AD. In this study, the longitudinal cortical thickness changes of 152 subjects from 4 clinical groups (AD, NC, Progressive-MCI and Stable-MCI) selected from Alzheimer's Disease Neuroimaging Initiative (ADNI) are measured by our recently developed 4 D (spatial+temporal) thickness measuring algorithm. It is found that the 4 clinical groups demonstrate very similar spatial distribution of grey matter (GM) loss on cortex. To fully utilize the longitudinal information and better discriminate the subjects from 4 groups, especially between Stable-MCI and Progressive-MCI, 3 different categories of features are extracted for each subject, i.e., (1) static cortical thickness measures computed from the baseline and endline, (2) cortex thinning dynamics, such as the thinning speed (mm/year) and the thinning ratio (endline/baseline), and (3) network features computed from the brain network constructed based on the correlation between the longitudinal thickness changes of different regions of interest (ROIs). By combining the complementary information provided by features from the 3 categories, 2 classifiers are trained to diagnose AD and to predict the conversion to AD in MCI subjects, respectively. In the leave-one-out cross-validation, the proposed method can distinguish AD patients from NC at an accuracy of 96.1%, and can detect 81.7% (AUC = 0.875) of the MCI converters 6 months ahead of their conversions to AD. Also, by analyzing the brain network built via longitudinal cortical thickness changes, a significant decrease (p < 0.02) of the network clustering coefficient (associated with the development of AD pathology) is found in the Progressive-MCI group, which indicates the degenerated wiring efficiency of the brain network due to AD. More interestingly, the decreasing of network clustering coefficient of the olfactory cortex region was also found in the AD patients, which suggests olfactory dysfunction. Although the smell identification test is not performed in ADNI, this finding is consistent with other AD-related olfactory studies. Neuroimage measures from magnetic resonance (MR) imaging, such as cortical thickness, have been playing an increasingly important role in searching for biomarkers of Alzheimer's disease (AD). Recent studies show that, AD, mild cognitive impairment (MCI) and normal control (NC) can be distinguished with relatively high accuracy using the baseline cortical thickness. With the increasing availability of large longitudinal datasets, it also becomes possible to study the longitudinal changes of cortical thickness and their correlation with the development of pathology in AD. In this study, the longitudinal cortical thickness changes of 152 subjects from 4 clinical groups (AD, NC, Progressive-MCI and Stable-MCI) selected from Alzheimer's Disease Neuroimaging Initiative (ADNI) are measured by our recently developed 4 D (spatial+temporal) thickness measuring algorithm. It is found that the 4 clinical groups demonstrate very similar spatial distribution of grey matter (GM) loss on cortex. To fully utilize the longitudinal information and better discriminate the subjects from 4 groups, especially between Stable-MCI and Progressive-MCI, 3 different categories of features are extracted for each subject, i.e., (1) static cortical thickness measures computed from the baseline and endline, (2) cortex thinning dynamics, such as the thinning speed (mm/year) and the thinning ratio (endline/baseline), and (3) network features computed from the brain network constructed based on the correlation between the longitudinal thickness changes of different regions of interest (ROIs). By combining the complementary information provided by features from the 3 categories, 2 classifiers are trained to diagnose AD and to predict the conversion to AD in MCI subjects, respectively. In the leave-one-out cross-validation, the proposed method can distinguish AD patients from NC at an accuracy of 96.1%, and can detect 81.7% (AUC = 0.875) of the MCI converters 6 months ahead of their conversions to AD. Also, by analyzing the brain network built via longitudinal cortical thickness changes, a significant decrease (p < 0.02) of the network clustering coefficient (associated with the development of AD pathology) is found in the Progressive-MCI group, which indicates the degenerated wiring efficiency of the brain network due to AD. More interestingly, the decreasing of network clustering coefficient of the olfactory cortex region was also found in the AD patients, which suggests olfactory dysfunction. Although the smell identification test is not performed in ADNI, this finding is consistent with other AD-related olfactory studies.Neuroimage measures from magnetic resonance (MR) imaging, such as cortical thickness, have been playing an increasingly important role in searching for biomarkers of Alzheimer's disease (AD). Recent studies show that, AD, mild cognitive impairment (MCI) and normal control (NC) can be distinguished with relatively high accuracy using the baseline cortical thickness. With the increasing availability of large longitudinal datasets, it also becomes possible to study the longitudinal changes of cortical thickness and their correlation with the development of pathology in AD. In this study, the longitudinal cortical thickness changes of 152 subjects from 4 clinical groups (AD, NC, Progressive-MCI and Stable-MCI) selected from Alzheimer's Disease Neuroimaging Initiative (ADNI) are measured by our recently developed 4 D (spatial+temporal) thickness measuring algorithm. It is found that the 4 clinical groups demonstrate very similar spatial distribution of grey matter (GM) loss on cortex. To fully utilize the longitudinal information and better discriminate the subjects from 4 groups, especially between Stable-MCI and Progressive-MCI, 3 different categories of features are extracted for each subject, i.e., (1) static cortical thickness measures computed from the baseline and endline, (2) cortex thinning dynamics, such as the thinning speed (mm/year) and the thinning ratio (endline/baseline), and (3) network features computed from the brain network constructed based on the correlation between the longitudinal thickness changes of different regions of interest (ROIs). By combining the complementary information provided by features from the 3 categories, 2 classifiers are trained to diagnose AD and to predict the conversion to AD in MCI subjects, respectively. In the leave-one-out cross-validation, the proposed method can distinguish AD patients from NC at an accuracy of 96.1%, and can detect 81.7% (AUC = 0.875) of the MCI converters 6 months ahead of their conversions to AD. Also, by analyzing the brain network built via longitudinal cortical thickness changes, a significant decrease (p < 0.02) of the network clustering coefficient (associated with the development of AD pathology) is found in the Progressive-MCI group, which indicates the degenerated wiring efficiency of the brain network due to AD. More interestingly, the decreasing of network clustering coefficient of the olfactory cortex region was also found in the AD patients, which suggests olfactory dysfunction. Although the smell identification test is not performed in ADNI, this finding is consistent with other AD-related olfactory studies. |
Author | Wu, Guorong Shi, Feng Lin, Weili Wang, Yaping Shen, Dinggang Li, Yang Zhou, Luping |
Author_xml | – sequence: 1 givenname: Yang surname: Li fullname: Li, Yang organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA – sequence: 2 givenname: Yaping surname: Wang fullname: Wang, Yaping organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA – sequence: 3 givenname: Guorong surname: Wu fullname: Wu, Guorong organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA – sequence: 4 givenname: Feng surname: Shi fullname: Shi, Feng organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA – sequence: 5 givenname: Luping surname: Zhou fullname: Zhou, Luping organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA – sequence: 6 givenname: Weili surname: Lin fullname: Lin, Weili organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA – sequence: 7 givenname: Dinggang surname: Shen fullname: Shen, Dinggang email: dgshen@med.unc.edu organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21272960$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1rFDEUhgep2G31L0guhF7NejLfA1KorVWh4IV6HbLJmd2zm01qkqlsf70ZthVbEPYqgXPOkzfJc5IdWWcxy95xmHPgzfv13OLo3YKckUuyy3kBU4nPAboX2YzXdZfzqm-Pshnwvs2ruoPj7CSENQC0Vdu8yo4LXrRF38Asu7-ioDxtyUobmbTS7AIF5gZmnF1SHHWqGKacj6TSJq5IbSyGwNRK2iUGRpZdmPsV0hb9WWCaAsqAbAwpG9M7K7ekElgzi_G38xs2oIyjx_A6ezlIE_DNw3qa_bz-9OPyS37z7fPXy4ubXLXQxVz2igO2RYm1LCrseN1pjYu2agq16AvQQ9nU0EDdqqpueskR675s2wGg1J2W5Wl2vufejostaoU2emnEbbq19DvhJImnFUsrsXR3ooSu6bsuAc4eAN79GjFEsU2PhsZIi24MoucNr1JAOKCzrnrYd779N9TfNI8_kxo-7huUdyF4HISiKCO5KSMZwUFMOoi1eKqDmHQQnIukQ4J8eAZ5POfA8ev9OKbvuSP0IihCq1CTRxWFdnQo6PwZSBmyk1Ab3GFYu9Eny4LgIhQCxPdJ3MlbnpStur5JgKv_Aw7P8Qfghgt1 |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2012_01_052 crossref_primary_10_3389_fnagi_2022_912895 crossref_primary_10_3389_fnins_2020_558434 crossref_primary_10_1016_j_neurobiolaging_2015_10_015 crossref_primary_10_1016_j_tics_2013_08_007 crossref_primary_10_1089_brain_2017_0494 crossref_primary_10_1016_j_patcog_2018_02_006 crossref_primary_10_1016_j_neuroimage_2014_05_078 crossref_primary_10_1016_j_cmpb_2016_05_009 crossref_primary_10_1109_ACCESS_2017_2773359 crossref_primary_10_3390_electronics11081288 crossref_primary_10_1016_j_neurobiolaging_2020_03_009 crossref_primary_10_1007_s10742_019_00206_3 crossref_primary_10_1002_hbm_24979 crossref_primary_10_1089_brain_2014_0235 crossref_primary_10_3389_fneur_2017_00739 crossref_primary_10_1016_j_neuroimage_2011_12_029 crossref_primary_10_1007_s12021_014_9221_x crossref_primary_10_1016_j_patcog_2018_12_001 crossref_primary_10_1109_TNSRE_2023_3323432 crossref_primary_10_1371_journal_pone_0060344 crossref_primary_10_1177_09622802211032705 crossref_primary_10_1371_journal_pone_0179804 crossref_primary_10_3389_fnagi_2022_918462 crossref_primary_10_1007_s00138_012_0462_0 crossref_primary_10_1016_j_neuroimage_2021_118206 crossref_primary_10_1016_j_artmed_2020_101940 crossref_primary_10_1016_j_jneumeth_2018_09_007 crossref_primary_10_1016_j_neurobiolaging_2017_09_011 crossref_primary_10_2217_nmt_12_13 crossref_primary_10_3233_JAD_142820 crossref_primary_10_1093_braincomms_fcae357 crossref_primary_10_1016_j_nbd_2013_02_005 crossref_primary_10_3389_fnagi_2020_00099 crossref_primary_10_1016_j_ensci_2021_100309 crossref_primary_10_1016_j_neuroimage_2018_05_051 crossref_primary_10_1002_jmri_24143 crossref_primary_10_1007_s11682_020_00366_8 crossref_primary_10_1016_j_media_2020_101825 crossref_primary_10_1186_s12874_022_01544_6 crossref_primary_10_1186_s13195_021_00900_w crossref_primary_10_5402_2013_627303 crossref_primary_10_1016_j_neuroimage_2011_05_083 crossref_primary_10_1051_e3sconf_202339101047 crossref_primary_10_3389_fnagi_2016_00077 crossref_primary_10_3389_fnagi_2017_00038 crossref_primary_10_1016_j_neulet_2012_09_011 crossref_primary_10_1002_hbm_24478 crossref_primary_10_1186_s40035_018_0115_y crossref_primary_10_1038_srep39880 crossref_primary_10_1007_s11682_015_9408_2 crossref_primary_10_1109_ACCESS_2019_2936415 crossref_primary_10_1038_s41598_017_07846_w crossref_primary_10_1093_cercor_bhw128 crossref_primary_10_1016_j_neuroscience_2017_10_011 crossref_primary_10_1007_s11682_015_9356_x crossref_primary_10_1109_JBHI_2021_3113668 crossref_primary_10_1109_TBME_2016_2549363 crossref_primary_10_1007_s12021_013_9218_x crossref_primary_10_1016_j_neuroimage_2019_116317 crossref_primary_10_1016_j_patcog_2016_09_032 crossref_primary_10_1109_TCYB_2020_3016953 crossref_primary_10_3389_fnagi_2021_688926 crossref_primary_10_3389_fnagi_2014_00260 crossref_primary_10_1016_j_compmedimag_2019_01_005 crossref_primary_10_1155_2014_462765 crossref_primary_10_3389_fnins_2018_00927 crossref_primary_10_1007_s00429_013_0687_3 crossref_primary_10_1109_TCBB_2016_2635144 crossref_primary_10_1038_s41598_018_29927_0 crossref_primary_10_3934_mbe_2023787 crossref_primary_10_1016_j_dadm_2015_11_002 crossref_primary_10_1016_j_neucom_2020_09_012 crossref_primary_10_1016_j_acra_2013_12_001 crossref_primary_10_1017_S0022215117000858 crossref_primary_10_1093_braincomms_fcaa102 crossref_primary_10_1016_j_neuroimage_2014_06_077 crossref_primary_10_1111_cns_14859 crossref_primary_10_1109_TMI_2016_2582386 crossref_primary_10_3389_fnagi_2024_1467054 crossref_primary_10_1007_s42835_022_01317_7 crossref_primary_10_1016_j_neuroimage_2011_07_026 crossref_primary_10_1007_s00429_015_1059_y crossref_primary_10_1007_s11042_024_19425_z crossref_primary_10_3389_fnagi_2017_00146 crossref_primary_10_1016_j_nicl_2019_101929 crossref_primary_10_1016_j_nicl_2019_101809 crossref_primary_10_1002_hbm_22741 crossref_primary_10_3389_fnagi_2017_00309 crossref_primary_10_1016_j_cmpb_2020_105348 crossref_primary_10_1016_j_neuroimage_2014_01_033 crossref_primary_10_1002_ima_22390 crossref_primary_10_1093_alcalc_agaa034 crossref_primary_10_1109_TCBB_2021_3051177 crossref_primary_10_3390_app10051894 crossref_primary_10_1109_TBME_2015_2404809 crossref_primary_10_1080_13682199_2023_2173548 crossref_primary_10_1016_j_neuroimage_2016_01_005 crossref_primary_10_1016_j_neurobiolaging_2014_04_034 crossref_primary_10_1002_hbm_22254 crossref_primary_10_1016_j_neurobiolaging_2019_08_033 crossref_primary_10_3233_JAD_220175 crossref_primary_10_1109_TBME_2013_2284195 crossref_primary_10_1186_s13195_021_00876_7 crossref_primary_10_2478_s13380_013_0108_3 crossref_primary_10_1016_j_nicl_2015_01_007 crossref_primary_10_1093_cercor_bhy197 crossref_primary_10_1002_sim_8568 crossref_primary_10_1016_j_neulet_2013_06_042 crossref_primary_10_1016_j_nicl_2022_103175 crossref_primary_10_1093_cercor_bhs246 crossref_primary_10_1016_j_neurobiolaging_2013_02_020 crossref_primary_10_1016_j_neuroimage_2013_04_056 |
Cites_doi | 10.1073/pnas.0906053106 10.1016/0022-3956(75)90026-6 10.1016/j.neurobiolaging.2007.07.022 10.1093/brain/awp105 10.1109/TPAMI.2005.159 10.1176/appi.ajp.158.9.1533-a 10.1093/brain/awp091 10.1016/j.neuroimage.2008.01.027 10.1093/brain/awl256 10.1093/cercor/bhh200 10.1586/ern.10.33 10.1109/42.963819 10.1109/TMI.2006.886812 10.1093/cercor/bhl149 10.1523/JNEUROSCI.23-03-00994.2003 10.1109/42.668698 10.1016/j.neuroimage.2004.07.045 10.1016/j.neuroimage.2004.07.071 10.1176/jnp.12.1.29 10.1038/337736a0 10.1523/JNEUROSCI.1798-04.2004 10.1523/JNEUROSCI.3874-05.2006 10.1006/nimg.2001.0857 10.1016/j.neulet.2006.04.006 10.1016/j.neuroimage.2005.02.013 10.1016/S1474-4422(07)70178-3 10.1016/j.neuroimage.2009.06.043 10.1093/brain/awm016 10.1159/000256274 10.1212/WNL.38.8.1228 10.1146/annurev.bioeng.5.040202.121611 10.1093/brain/awp123 10.1016/j.neuroimage.2010.08.032 10.1212/WNL.34.7.939 10.1212/WNL.56.9.1133 10.1523/JNEUROSCI.4622-09.2010 10.1111/j.1365-2796.2004.01388.x 10.1002/hbm.10062 10.1002/hbm.20740 10.1523/JNEUROSCI.23-08-03295.2003 10.1016/j.neuroimage.2009.10.003 10.1001/archneur.56.3.303 10.1016/j.neuroimage.2005.09.054 10.1212/WNL.43.11.2412-a 10.1103/PhysRevLett.94.018102 10.1007/s00415-009-5040-7 10.1016/0197-4580(90)90014-Q 10.1016/j.neuroimage.2009.12.007 10.1006/nimg.2001.0978 10.1016/j.neuroimage.2005.05.015 10.1073/pnas.0402680101 10.1016/j.neuroimage.2009.05.097 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Inc. Elsevier Inc. Copyright © 2012 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2012 Elsevier Inc. – notice: Elsevier Inc. – notice: Copyright © 2012 Elsevier Inc. All rights reserved. |
CorporateAuthor | The Alzheimer's Disease Neuroimaging Initiative Alzheimer's Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: The Alzheimer's Disease Neuroimaging Initiative – name: Alzheimer's Disease Neuroimaging Initiative |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1016/j.neurobiolaging.2010.11.008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1558-1497 |
EndPage | 427.e30 |
ExternalDocumentID | PMC3086988 21272960 10_1016_j_neurobiolaging_2010_11_008 S0197458010004896 1_s2_0_S0197458010004896 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB006733 – fundername: NIBIB NIH HHS grantid: 1R01-EB006733 – fundername: NIBIB NIH HHS grantid: R01-EB008374 – fundername: NIBIB NIH HHS grantid: 1R01-EB009634 – fundername: NIMH NIH HHS grantid: 1RC1-MH088520 – fundername: NIA NIH HHS grantid: U19 AG010483 – fundername: NIBIB NIH HHS grantid: R01 EB008374 – fundername: NIMH NIH HHS grantid: RC1 MH088520 |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM 9JO AABNK AADFP AAEDT AAEDW AAGJA AAGUQ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABGSF ABIVO ABJNI ABLJU ABMAC ABMZM ABOYX ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ACXNI ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGWIK AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDW HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LX8 M29 M2V M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OD~ OKEIE OO0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SNS SPCBC SSB SSH SSN SSU SSY SSZ T5K WUQ Z5R ZGI ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AADPK AAIAV ABLVK ABYKQ AFYLN AJBFU DOVZS EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c708t-a9c10e723e5a24e8158ddeb7462cb920df36506057c4569a1ee59377f003d8da3 |
IEDL.DBID | .~1 |
ISSN | 0197-4580 1558-1497 |
IngestDate | Thu Aug 21 17:52:32 EDT 2025 Sun Aug 24 03:41:35 EDT 2025 Fri Jul 11 08:05:20 EDT 2025 Mon Jul 21 05:56:26 EDT 2025 Tue Jul 01 01:28:02 EDT 2025 Thu Apr 24 23:07:40 EDT 2025 Fri Feb 23 02:27:31 EST 2024 Sun Feb 23 10:19:37 EST 2025 Tue Aug 26 16:32:25 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Cortical thickness Mild cognitive impairment Dynamics Classification Longitudinal analysis Alzheimer's disease Brain network |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2012 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c708t-a9c10e723e5a24e8158ddeb7462cb920df36506057c4569a1ee59377f003d8da3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Data used in the preparation of this manuscript were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3086988 |
PMID | 21272960 |
PQID | 915490230 |
PQPubID | 23462 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3086988 proquest_miscellaneous_916147230 proquest_miscellaneous_915490230 pubmed_primary_21272960 crossref_citationtrail_10_1016_j_neurobiolaging_2010_11_008 crossref_primary_10_1016_j_neurobiolaging_2010_11_008 elsevier_sciencedirect_doi_10_1016_j_neurobiolaging_2010_11_008 elsevier_clinicalkeyesjournals_1_s2_0_S0197458010004896 elsevier_clinicalkey_doi_10_1016_j_neurobiolaging_2010_11_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-02-01 |
PublicationDateYYYYMMDD | 2012-02-01 |
PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neurobiology of aging |
PublicationTitleAlternate | Neurobiol Aging |
PublicationYear | 2012 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Wu, Jia, Wang, Shen (bib56) 2010 Talamo, Rudel, Kosik, Lee, Neff, Adelman, Kauer (bib48) 1989; 337 Davatzikos, Xu, An, Fan, Resnick (bib7) 2009; 132 Good, Johnsrude, Ashburner, Henson, Friston, Frackowiak (bib18) 2001; 14 Resnick, Pham, Kraut, Zonderman, Davatzikos (bib40) 2003; 23 Petersen (bib36) 2004; 256 Holland, Brewer, Hagler, Fenema-Notestine, Dale (bib20) 2009; 106 Peng, Long, Ding (bib34) 2005; 27 Stam, Jones, Nolte, Breakspear, Scheltens (bib47) 2007; 1991 Thomas, Marrett, Saad, Ruff, Martin, Bandettini (bib49) 2009; 48 Fan, Shen, Gur, Gur, Davatzikos (bib14) 2007; 26 Chetelat, Landeau, Eustache, Mezenge, Viader, de la Sayette, Desgranges, Baron (bib3) 2005; 27 Petersen, Smith, Waring, Ivnik, Tangalos, Kokmen (bib37) 1999; 56 Toga, Thompson (bib52) 2003; 5 Yushkevich, Avants, Das, Pluta, Altinay, Craige (bib58) 2010; 50 Egúıluz, Chialvo, Cecchi, Baliki, Apkarian (bib13) 2005; 94 Smith (bib45) 2002; 17 Hutton, Draganski, Ashburner, Weiskopf (bib22) 2009; 48 Wechsler (bib5) 1987 Du, Schuff, Kramer, Rosen, Gorno-Tempini, Rankin, Miller, Weiner (bib11) 2007; 130 Rubinov, Sporns (bib41) 2009; 52 Xue, Shen, Davatzikos (bib57) 2006; 30 Querbes, Aubry, Pariente, Lotterie, Démonet, Duret, Puel, Berry (bib38) 2009; 132 Hutton, De Vita, Ashburner, Deichmann, Turner (bib21) 2008; 40 Julkunen, Niskanen, Muehlboeck, Pihlajamäk, MerviKönöen, Hallikainen, Kivipelto (bib24) 2009; 28 Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib53) 2002; 15 Murphy, Gilmore, Seery, Salmon, Lasker (bib33) 1990; 11 Micheloyannis, Pachou, Stam, Vourkas, Erimaki, Tsirka (bib31) 2006; 402 Singh, Chertkow, Lerch, Evans, Dorr, Kabani (bib43) 2006; 129 Crofts, Higham, Bosnell, Jbabdi, Matthews, Behrens, Johansen-Berg (bib4) 2010; 54 Desikan, Cabral, Hess, Dillon, Glastonbury, Weiner, Schmansky, Greve, Salat, Buckner, Fischl (bib8) 2009; 132 Li, Wang, Xue, Shi, Lin, Shen (bib28) 2010 Lerch, Evans (bib27) 2005; 24 Sowell, Thompson, Leonard, Welcome, Kan, Toga (bib46) 2004; 24 Achard, Salvador, Whitcher, Suckling, Bullmore (bib1) 2006; 26 Dickerson, Feczko, Augustinack, Pacheco, Morris, Fischl, Buckner (bib9) 2009; 30 McCaffrey, Duff, Solomon (bib29) 2000; 12 Wesson, Wilson, Nixon (bib55) 2010; 10 Dubois, Feldman, Jacova, DeKosky, Barberger-Gateau, Cummings (bib12) 2007; 6 Morris (bib32) 1993; 42 Regeur (bib39) 2000; 7 Sled, Zijdenbos, Evans (bib44) 1998; 17 Jones, Symms, Cercignani, Howard (bib23) Jun, 2005; 26 Petersen (bib35) 2001; 56 Shattuck, Leahy (bib42) 2001; 20 He, Chen, Evans (bib19) 2007; 17 Gogtay, Giedd, Lusk, Hayashi, Greenstein, Vaituzis, Nugent, Herman, Clasen, Toga, Rapoport, Thompson (bib17) 2004; 101 Lerch, Pruessner, Zijdenbos, Hampel, Teipel, Evans (bib26) 2005; 15 Folstein, Folstein, McHugh (bib15) 1975; 12 McKhann, Drachman, Folstein, Katzman, Price, Stadlan (bib30) 1984; 34 Thompson, Hayashi, Sowell, Gogtay, Giedd, Rapoport, de Zubicaray, Janke, Rose, Semple (bib51) 2004; 23 Doty (bib10) 2001; 158 Thompson, Hayashi, de Zubicaray, Janke, Rose, Semple (bib50) 2003; 23 Wesson, Levy, Nixon, Wilson (bib54) 2010; 30 Frisoni, Prestia, Rasser, Bonetti, Thompson (bib16) 2009; 256 Aganj, Sapiro, Parikshak, Madsen, Thompson (bib2) 2009; 30 Koss, Weiffenbach, Haxby, Friedland (bib25) 1988; 38 Micheloyannis (10.1016/j.neurobiolaging.2010.11.008_bib31) 2006; 402 McKhann (10.1016/j.neurobiolaging.2010.11.008_bib30) 1984; 34 Achard (10.1016/j.neurobiolaging.2010.11.008_bib1) 2006; 26 Wechsler (10.1016/j.neurobiolaging.2010.11.008_bib5) 1987 Fan (10.1016/j.neurobiolaging.2010.11.008_bib14) 2007; 26 Hutton (10.1016/j.neurobiolaging.2010.11.008_bib21) 2008; 40 Xue (10.1016/j.neurobiolaging.2010.11.008_bib57) 2006; 30 Querbes (10.1016/j.neurobiolaging.2010.11.008_bib38) 2009; 132 Yushkevich (10.1016/j.neurobiolaging.2010.11.008_bib58) 2010; 50 Crofts (10.1016/j.neurobiolaging.2010.11.008_bib4) 2010; 54 Stam (10.1016/j.neurobiolaging.2010.11.008_bib47) 2007; 1991 Tzourio-Mazoyer (10.1016/j.neurobiolaging.2010.11.008_bib53) 2002; 15 Wu (10.1016/j.neurobiolaging.2010.11.008_bib56) 2010 He (10.1016/j.neurobiolaging.2010.11.008_bib19) 2007; 17 Peng (10.1016/j.neurobiolaging.2010.11.008_bib34) 2005; 27 Folstein (10.1016/j.neurobiolaging.2010.11.008_bib15) 1975; 12 Thompson (10.1016/j.neurobiolaging.2010.11.008_bib51) 2004; 23 Holland (10.1016/j.neurobiolaging.2010.11.008_bib20) 2009; 106 Murphy (10.1016/j.neurobiolaging.2010.11.008_bib33) 1990; 11 Jones (10.1016/j.neurobiolaging.2010.11.008_bib23) 2005; 26 Shattuck (10.1016/j.neurobiolaging.2010.11.008_bib42) 2001; 20 Davatzikos (10.1016/j.neurobiolaging.2010.11.008_bib7) 2009; 132 Julkunen (10.1016/j.neurobiolaging.2010.11.008_bib24) 2009; 28 Wesson (10.1016/j.neurobiolaging.2010.11.008_bib54) 2010; 30 Gogtay (10.1016/j.neurobiolaging.2010.11.008_bib17) 2004; 101 Wesson (10.1016/j.neurobiolaging.2010.11.008_bib55) 2010; 10 Desikan (10.1016/j.neurobiolaging.2010.11.008_bib8) 2009; 132 Li (10.1016/j.neurobiolaging.2010.11.008_bib28) 2010 Rubinov (10.1016/j.neurobiolaging.2010.11.008_bib41) 2009; 52 Aganj (10.1016/j.neurobiolaging.2010.11.008_bib2) 2009; 30 Doty (10.1016/j.neurobiolaging.2010.11.008_bib10) 2001; 158 Dickerson (10.1016/j.neurobiolaging.2010.11.008_bib9) 2009; 30 Koss (10.1016/j.neurobiolaging.2010.11.008_bib25) 1988; 38 Lerch (10.1016/j.neurobiolaging.2010.11.008_bib26) 2005; 15 Talamo (10.1016/j.neurobiolaging.2010.11.008_bib48) 1989; 337 Egúıluz (10.1016/j.neurobiolaging.2010.11.008_bib13) 2005; 94 Singh (10.1016/j.neurobiolaging.2010.11.008_bib43) 2006; 129 Smith (10.1016/j.neurobiolaging.2010.11.008_bib45) 2002; 17 Frisoni (10.1016/j.neurobiolaging.2010.11.008_bib16) 2009; 256 Thompson (10.1016/j.neurobiolaging.2010.11.008_bib50) 2003; 23 Petersen (10.1016/j.neurobiolaging.2010.11.008_bib35) 2001; 56 Thomas (10.1016/j.neurobiolaging.2010.11.008_bib49) 2009; 48 Regeur (10.1016/j.neurobiolaging.2010.11.008_bib39) 2000; 7 McCaffrey (10.1016/j.neurobiolaging.2010.11.008_bib29) 2000; 12 Petersen (10.1016/j.neurobiolaging.2010.11.008_bib36) 2004; 256 Toga (10.1016/j.neurobiolaging.2010.11.008_bib52) 2003; 5 Hutton (10.1016/j.neurobiolaging.2010.11.008_bib22) 2009; 48 Du (10.1016/j.neurobiolaging.2010.11.008_bib11) 2007; 130 Sowell (10.1016/j.neurobiolaging.2010.11.008_bib46) 2004; 24 Sled (10.1016/j.neurobiolaging.2010.11.008_bib44) 1998; 17 Good (10.1016/j.neurobiolaging.2010.11.008_bib18) 2001; 14 Petersen (10.1016/j.neurobiolaging.2010.11.008_bib37) 1999; 56 Morris (10.1016/j.neurobiolaging.2010.11.008_bib32) 1993; 42 Resnick (10.1016/j.neurobiolaging.2010.11.008_bib40) 2003; 23 Chetelat (10.1016/j.neurobiolaging.2010.11.008_bib3) 2005; 27 Dubois (10.1016/j.neurobiolaging.2010.11.008_bib12) 2007; 6 Lerch (10.1016/j.neurobiolaging.2010.11.008_bib27) 2005; 24 |
References_xml | – volume: 20 start-page: 1167 year: 2001 end-page: 1177 ident: bib42 article-title: Automated graph-based analysis and correction of cortical volume topology publication-title: IEEE Trans. Med. Imaging – volume: 101 start-page: 8174 year: 2004 end-page: 8179 ident: bib17 article-title: Dynamic mapping of human cortical development during childhood through early adulthood publication-title: Proc. Natl. Acad. Sci. USA – volume: 23 start-page: S2 year: 2004 end-page: S18 ident: bib51 article-title: Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia publication-title: Neuroimage – volume: 42 start-page: 2412 year: 1993 end-page: 2414 ident: bib32 article-title: The clinical dementia rating (CDR): Current version and scoring rules publication-title: Neurology – volume: 106 start-page: 20954 year: 2009 end-page: 20959 ident: bib20 article-title: Subregional neuroanatomical change as a biomarker for Alzheimer's disease publication-title: Proc. Natl. Acad. Sci. USA – volume: 38 start-page: 1228 year: 1988 end-page: 1232 ident: bib25 article-title: Olfactory detection and identification performance are dissociated in early Alzheimer's disease publication-title: Neurology – volume: 24 start-page: 8223 year: 2004 end-page: 8231 ident: bib46 article-title: Longitudinal mapping of cortical thickness and brain growth in normal children publication-title: J. Neurosci – volume: 130 start-page: 1159 year: 2007 end-page: 1166 ident: bib11 article-title: Different regional patterns of cortical thinning in Alzheimer's disease and frontotemporal dementia publication-title: Brain – volume: 256 start-page: 16 year: 2009 end-page: 924 ident: bib16 article-title: In vivo mapping of incremental cortical atrophy from incipient to overt Alzheimer's disease publication-title: J. Neurol – volume: 256 start-page: 183 year: 2004 end-page: 194 ident: bib36 article-title: Mild cognitive impairment as a diagnostic entity publication-title: J. Intern. Med – volume: 14 start-page: 685 year: 2001 end-page: 700 ident: bib18 article-title: Cerebral asymmetry and the effects of sex and handedness on brain structure: A voxel-based morphometric analysis of 465 normal adult human brains publication-title: Neuroimage – volume: 30 start-page: 388 year: 2006 end-page: 399 ident: bib57 article-title: CLASSIC: Consistent longitudinal alignment and segmentation for serial image computing publication-title: Neuroimage – volume: 56 start-page: 303 year: 1999 end-page: 308 ident: bib37 article-title: Mild cognitive impairment: clinical characterization and outcome publication-title: Arch. Neurol – volume: 56 start-page: 1133 year: 2001 end-page: 1142 ident: bib35 article-title: Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review) publication-title: Neurology – volume: 26 start-page: 546 year: Jun, 2005 end-page: 554 ident: bib23 article-title: The effect of filter size on VBM analyses of DT-MRI data publication-title: Neuroimage – volume: 12 start-page: 189 year: 1975 end-page: 198 ident: bib15 article-title: Mini-mental state: A practical method for grading the cognitive state of patients for the clinician publication-title: J. Psychiatr. Res – volume: 52 start-page: 1059 year: 2009 end-page: 1069 ident: bib41 article-title: Complex network measures of brain connectivity: Uses and interpretations publication-title: Neuroimage – volume: 129 start-page: 2885 year: 2006 end-page: 2893 ident: bib43 article-title: Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer's disease publication-title: Brain – volume: 30 start-page: 188 year: 2009 end-page: 199 ident: bib2 article-title: Measurement of cortical thickness from MRI by minimum line integrals on soft-classified tissue publication-title: Hum. Brain Mapp – volume: 28 start-page: 404 year: 2009 end-page: 412 ident: bib24 article-title: Cortical thickness analysis to detect progressive mild cognitive impairment: A reference to Alzheimer's disease publication-title: Dementia and Ceriatric Cognitive. Disorders – volume: 1991 start-page: 92 year: 2007 end-page: 99 ident: bib47 article-title: Small-world networks and functional connectivity in Alzheimer's disease publication-title: Cereb. Cortex – volume: 15 start-page: 995 year: 2005 end-page: 1001 ident: bib26 article-title: Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy publication-title: Cereb. Cortex – volume: 132 start-page: 2036 year: 2009 end-page: 2047 ident: bib38 article-title: Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve publication-title: Brain – volume: 132 start-page: 2048 year: 2009 end-page: 2057 ident: bib8 article-title: Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease publication-title: Brain – year: 2010 ident: bib28 article-title: Consistent 4d Cortical Thickness Measurement for Longitudinal Neuroimaging Study – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: bib53 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single subject brain publication-title: Neuroimage – volume: 17 start-page: 2407 year: 2007 end-page: 2419 ident: bib19 article-title: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI publication-title: Cereb. Cortex – volume: 94 start-page: 018102 year: 2005 ident: bib13 article-title: Scale-free brain functional networks publication-title: Phys. Review Lett. – volume: 24 start-page: 163 year: 2005 end-page: 173 ident: bib27 article-title: Cortical thickness analysis examined through power analysis and a population simulation publication-title: Neuroimage – volume: 11 start-page: 465 year: 1990 end-page: 469 ident: bib33 article-title: Olfactory thresholds are associated with degree of dementia in Alzheimer's disease publication-title: Neurobiol. Aging – volume: 27 start-page: 1226 year: 2005 end-page: 1238 ident: bib34 article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Transact. Pattern Anal. Machine Intell – volume: 5 start-page: 119 year: 2003 end-page: 145 ident: bib52 article-title: Temporal dynamics of brain anatomy publication-title: Annu. Rev. Biomed. Eng – volume: 26 start-page: 63 year: 2006 end-page: 72 ident: bib1 article-title: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs publication-title: J. Neurosci – volume: 10 start-page: 633 year: 2010 end-page: 635 ident: bib55 article-title: Should olfactory dysfunction be used as a biomarker of Alzheimer's disease? publication-title: Expert Review Neurother – volume: 54 start-page: 161 year: 2010 end-page: 169 ident: bib4 article-title: Network analysis detects changes in the contralesional hemisphere following stroke publication-title: Neuroimage – volume: 30 start-page: 432 year: 2009 end-page: 440 ident: bib9 article-title: Differential effects of aging and Alzheimer's disease on medial temporal lobe cortical thickness and surface area publication-title: Neurobiol. Aging – volume: 7 start-page: 47 year: 2000 end-page: 54 ident: bib39 article-title: Increasing loss of brain tissue with increasing dementia: a stereological study of post-mortem brains from elderly females publication-title: Eur. J. Neurol. Off. J. Eur. Fed. Neurol. Soc – year: 1987 ident: bib5 article-title: Wechsler Memory Scale-Revised Manual – volume: 48 start-page: 371 year: 2009 end-page: 380 ident: bib22 article-title: A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging publication-title: Neuroimage – volume: 23 start-page: 3295 year: 2003 end-page: 3301 ident: bib40 article-title: Longitudinal magnetic resonance imaging studies of older adults: A shrinking brain publication-title: J. Neurosci – year: 2010 ident: bib56 article-title: Groupwise Registration With Sharp Mean – volume: 50 start-page: 434 year: 2010 end-page: 445 ident: bib58 article-title: Bias in estimation of hippocampal atrophy using deformation-based morphometry arises from asymmetric global normalization: An illustration in ADNI 3T MRI data publication-title: Neuroimage – volume: 12 start-page: 29 year: 2000 end-page: 33 ident: bib29 article-title: Olfactory Dysfunction Discriminates Probable Alzheimer's Dementia From Major Depression: A Cross-Validation and Extension publication-title: J. Neuropsychiatry Clin. Neurosci – volume: 23 start-page: 994 year: 2003 end-page: 1005 ident: bib50 article-title: Dynamics of gray matter loss in Alzheimer's disease publication-title: J. Neurosci – volume: 337 start-page: 736 year: 1989 end-page: 739 ident: bib48 article-title: Pathological changes in olfactory neurons in patients with Alzheimer's disease publication-title: Nature – volume: 48 start-page: 117 year: 2009 end-page: 125 ident: bib49 article-title: Functional but Not Structural Changes Associated with Learning: an Exploration of Longitudinal voxel-Based Morphometry VBM publication-title: Neuroimage – volume: 27 start-page: 934 year: 2005 end-page: 946 ident: bib3 article-title: Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: A longitudinal MRI study publication-title: Neuroimage – volume: 132 start-page: 2026 year: 2009 end-page: 2035 ident: bib7 article-title: Longitudinal progression of Alzheimer's-like patterns of atrophy in normal older adults: the SPARE-AD index publication-title: Brain – volume: 34 start-page: 939 year: 1984 end-page: 944 ident: bib30 article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer's disease publication-title: Neurology – volume: 402 start-page: 273 year: 2006 end-page: 277 ident: bib31 article-title: Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis publication-title: Neurosci. Lett – volume: 17 start-page: 87 year: 1998 end-page: 97 ident: bib44 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans. Med. Imaging – volume: 30 start-page: 505 year: 2010 end-page: 514 ident: bib54 article-title: Olfactory dysfunction correlates with amyloid-beta burden in an Alzheimer's disease mouse model publication-title: J. Neurosci. Off. J. Soc. Neurosci – volume: 6 start-page: 734 year: 2007 end-page: 746 ident: bib12 article-title: Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria publication-title: Lancet Neurol – volume: 40 start-page: 1701 year: 2008 end-page: 1710 ident: bib21 article-title: Voxel-based cortical thickness measurements in MRI publication-title: Neuroimage – volume: 17 start-page: 143 year: 2002 end-page: 155 ident: bib45 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp – volume: 26 start-page: 93 year: 2007 end-page: 105 ident: bib14 article-title: Compare: Classification of morphological patterns using adaptive regional elements publication-title: IEEE Trans Med Imaging – volume: 158 start-page: 1533 year: 2001 end-page: 1534 ident: bib10 article-title: Olfactory Deficit in Alzheimer's Disease? publication-title: Am. J. Psychiatry – volume: 106 start-page: 20954 year: 2009 ident: 10.1016/j.neurobiolaging.2010.11.008_bib20 article-title: Subregional neuroanatomical change as a biomarker for Alzheimer's disease publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0906053106 – volume: 12 start-page: 189 year: 1975 ident: 10.1016/j.neurobiolaging.2010.11.008_bib15 article-title: Mini-mental state: A practical method for grading the cognitive state of patients for the clinician publication-title: J. Psychiatr. Res doi: 10.1016/0022-3956(75)90026-6 – volume: 30 start-page: 432 year: 2009 ident: 10.1016/j.neurobiolaging.2010.11.008_bib9 article-title: Differential effects of aging and Alzheimer's disease on medial temporal lobe cortical thickness and surface area publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2007.07.022 – volume: 132 start-page: 2036 year: 2009 ident: 10.1016/j.neurobiolaging.2010.11.008_bib38 article-title: Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve publication-title: Brain doi: 10.1093/brain/awp105 – volume: 27 start-page: 1226 year: 2005 ident: 10.1016/j.neurobiolaging.2010.11.008_bib34 article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Transact. Pattern Anal. Machine Intell doi: 10.1109/TPAMI.2005.159 – volume: 158 start-page: 1533 year: 2001 ident: 10.1016/j.neurobiolaging.2010.11.008_bib10 article-title: Olfactory Deficit in Alzheimer's Disease? publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.158.9.1533-a – volume: 132 start-page: 2026 year: 2009 ident: 10.1016/j.neurobiolaging.2010.11.008_bib7 article-title: Longitudinal progression of Alzheimer's-like patterns of atrophy in normal older adults: the SPARE-AD index publication-title: Brain doi: 10.1093/brain/awp091 – volume: 40 start-page: 1701 year: 2008 ident: 10.1016/j.neurobiolaging.2010.11.008_bib21 article-title: Voxel-based cortical thickness measurements in MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.01.027 – volume: 129 start-page: 2885 year: 2006 ident: 10.1016/j.neurobiolaging.2010.11.008_bib43 article-title: Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awl256 – volume: 15 start-page: 995 year: 2005 ident: 10.1016/j.neurobiolaging.2010.11.008_bib26 article-title: Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy publication-title: Cereb. Cortex doi: 10.1093/cercor/bhh200 – volume: 10 start-page: 633 year: 2010 ident: 10.1016/j.neurobiolaging.2010.11.008_bib55 article-title: Should olfactory dysfunction be used as a biomarker of Alzheimer's disease? publication-title: Expert Review Neurother doi: 10.1586/ern.10.33 – volume: 20 start-page: 1167 year: 2001 ident: 10.1016/j.neurobiolaging.2010.11.008_bib42 article-title: Automated graph-based analysis and correction of cortical volume topology publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.963819 – volume: 26 start-page: 93 year: 2007 ident: 10.1016/j.neurobiolaging.2010.11.008_bib14 article-title: Compare: Classification of morphological patterns using adaptive regional elements publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2006.886812 – volume: 17 start-page: 2407 year: 2007 ident: 10.1016/j.neurobiolaging.2010.11.008_bib19 article-title: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI publication-title: Cereb. Cortex doi: 10.1093/cercor/bhl149 – volume: 23 start-page: 994 year: 2003 ident: 10.1016/j.neurobiolaging.2010.11.008_bib50 article-title: Dynamics of gray matter loss in Alzheimer's disease publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.23-03-00994.2003 – volume: 17 start-page: 87 year: 1998 ident: 10.1016/j.neurobiolaging.2010.11.008_bib44 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.668698 – volume: 24 start-page: 163 year: 2005 ident: 10.1016/j.neurobiolaging.2010.11.008_bib27 article-title: Cortical thickness analysis examined through power analysis and a population simulation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.045 – year: 2010 ident: 10.1016/j.neurobiolaging.2010.11.008_bib28 – volume: 23 start-page: S2 year: 2004 ident: 10.1016/j.neurobiolaging.2010.11.008_bib51 article-title: Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.071 – volume: 12 start-page: 29 year: 2000 ident: 10.1016/j.neurobiolaging.2010.11.008_bib29 article-title: Olfactory Dysfunction Discriminates Probable Alzheimer's Dementia From Major Depression: A Cross-Validation and Extension publication-title: J. Neuropsychiatry Clin. Neurosci doi: 10.1176/jnp.12.1.29 – volume: 337 start-page: 736 year: 1989 ident: 10.1016/j.neurobiolaging.2010.11.008_bib48 article-title: Pathological changes in olfactory neurons in patients with Alzheimer's disease publication-title: Nature doi: 10.1038/337736a0 – volume: 24 start-page: 8223 year: 2004 ident: 10.1016/j.neurobiolaging.2010.11.008_bib46 article-title: Longitudinal mapping of cortical thickness and brain growth in normal children publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.1798-04.2004 – volume: 26 start-page: 63 year: 2006 ident: 10.1016/j.neurobiolaging.2010.11.008_bib1 article-title: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.3874-05.2006 – volume: 14 start-page: 685 year: 2001 ident: 10.1016/j.neurobiolaging.2010.11.008_bib18 article-title: Cerebral asymmetry and the effects of sex and handedness on brain structure: A voxel-based morphometric analysis of 465 normal adult human brains publication-title: Neuroimage doi: 10.1006/nimg.2001.0857 – volume: 402 start-page: 273 year: 2006 ident: 10.1016/j.neurobiolaging.2010.11.008_bib31 article-title: Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis publication-title: Neurosci. Lett doi: 10.1016/j.neulet.2006.04.006 – volume: 26 start-page: 546 year: 2005 ident: 10.1016/j.neurobiolaging.2010.11.008_bib23 article-title: The effect of filter size on VBM analyses of DT-MRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.02.013 – year: 1987 ident: 10.1016/j.neurobiolaging.2010.11.008_bib5 – volume: 6 start-page: 734 year: 2007 ident: 10.1016/j.neurobiolaging.2010.11.008_bib12 article-title: Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria publication-title: Lancet Neurol doi: 10.1016/S1474-4422(07)70178-3 – volume: 48 start-page: 371 year: 2009 ident: 10.1016/j.neurobiolaging.2010.11.008_bib22 article-title: A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.06.043 – volume: 130 start-page: 1159 year: 2007 ident: 10.1016/j.neurobiolaging.2010.11.008_bib11 article-title: Different regional patterns of cortical thinning in Alzheimer's disease and frontotemporal dementia publication-title: Brain doi: 10.1093/brain/awm016 – volume: 28 start-page: 404 year: 2009 ident: 10.1016/j.neurobiolaging.2010.11.008_bib24 article-title: Cortical thickness analysis to detect progressive mild cognitive impairment: A reference to Alzheimer's disease publication-title: Dementia and Ceriatric Cognitive. Disorders doi: 10.1159/000256274 – volume: 38 start-page: 1228 year: 1988 ident: 10.1016/j.neurobiolaging.2010.11.008_bib25 article-title: Olfactory detection and identification performance are dissociated in early Alzheimer's disease publication-title: Neurology doi: 10.1212/WNL.38.8.1228 – volume: 5 start-page: 119 year: 2003 ident: 10.1016/j.neurobiolaging.2010.11.008_bib52 article-title: Temporal dynamics of brain anatomy publication-title: Annu. Rev. Biomed. Eng doi: 10.1146/annurev.bioeng.5.040202.121611 – volume: 132 start-page: 2048 year: 2009 ident: 10.1016/j.neurobiolaging.2010.11.008_bib8 article-title: Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awp123 – volume: 54 start-page: 161 year: 2010 ident: 10.1016/j.neurobiolaging.2010.11.008_bib4 article-title: Network analysis detects changes in the contralesional hemisphere following stroke publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.032 – volume: 34 start-page: 939 year: 1984 ident: 10.1016/j.neurobiolaging.2010.11.008_bib30 article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer's disease publication-title: Neurology doi: 10.1212/WNL.34.7.939 – volume: 56 start-page: 1133 year: 2001 ident: 10.1016/j.neurobiolaging.2010.11.008_bib35 article-title: Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review) publication-title: Neurology doi: 10.1212/WNL.56.9.1133 – volume: 30 start-page: 505 year: 2010 ident: 10.1016/j.neurobiolaging.2010.11.008_bib54 article-title: Olfactory dysfunction correlates with amyloid-beta burden in an Alzheimer's disease mouse model publication-title: J. Neurosci. Off. J. Soc. Neurosci doi: 10.1523/JNEUROSCI.4622-09.2010 – volume: 256 start-page: 183 year: 2004 ident: 10.1016/j.neurobiolaging.2010.11.008_bib36 article-title: Mild cognitive impairment as a diagnostic entity publication-title: J. Intern. Med doi: 10.1111/j.1365-2796.2004.01388.x – volume: 17 start-page: 143 year: 2002 ident: 10.1016/j.neurobiolaging.2010.11.008_bib45 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp doi: 10.1002/hbm.10062 – volume: 30 start-page: 188 year: 2009 ident: 10.1016/j.neurobiolaging.2010.11.008_bib2 article-title: Measurement of cortical thickness from MRI by minimum line integrals on soft-classified tissue publication-title: Hum. Brain Mapp doi: 10.1002/hbm.20740 – volume: 23 start-page: 3295 year: 2003 ident: 10.1016/j.neurobiolaging.2010.11.008_bib40 article-title: Longitudinal magnetic resonance imaging studies of older adults: A shrinking brain publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.23-08-03295.2003 – volume: 52 start-page: 1059 year: 2009 ident: 10.1016/j.neurobiolaging.2010.11.008_bib41 article-title: Complex network measures of brain connectivity: Uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 56 start-page: 303 year: 1999 ident: 10.1016/j.neurobiolaging.2010.11.008_bib37 article-title: Mild cognitive impairment: clinical characterization and outcome publication-title: Arch. Neurol doi: 10.1001/archneur.56.3.303 – volume: 30 start-page: 388 year: 2006 ident: 10.1016/j.neurobiolaging.2010.11.008_bib57 article-title: CLASSIC: Consistent longitudinal alignment and segmentation for serial image computing publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.09.054 – volume: 42 start-page: 2412 year: 1993 ident: 10.1016/j.neurobiolaging.2010.11.008_bib32 article-title: The clinical dementia rating (CDR): Current version and scoring rules publication-title: Neurology doi: 10.1212/WNL.43.11.2412-a – volume: 94 start-page: 018102 year: 2005 ident: 10.1016/j.neurobiolaging.2010.11.008_bib13 article-title: Scale-free brain functional networks publication-title: Phys. Review Lett. doi: 10.1103/PhysRevLett.94.018102 – volume: 256 start-page: 16 year: 2009 ident: 10.1016/j.neurobiolaging.2010.11.008_bib16 article-title: In vivo mapping of incremental cortical atrophy from incipient to overt Alzheimer's disease publication-title: J. Neurol doi: 10.1007/s00415-009-5040-7 – volume: 1991 start-page: 92 year: 2007 ident: 10.1016/j.neurobiolaging.2010.11.008_bib47 article-title: Small-world networks and functional connectivity in Alzheimer's disease publication-title: Cereb. Cortex – volume: 11 start-page: 465 year: 1990 ident: 10.1016/j.neurobiolaging.2010.11.008_bib33 article-title: Olfactory thresholds are associated with degree of dementia in Alzheimer's disease publication-title: Neurobiol. Aging doi: 10.1016/0197-4580(90)90014-Q – year: 2010 ident: 10.1016/j.neurobiolaging.2010.11.008_bib56 – volume: 50 start-page: 434 year: 2010 ident: 10.1016/j.neurobiolaging.2010.11.008_bib58 article-title: Bias in estimation of hippocampal atrophy using deformation-based morphometry arises from asymmetric global normalization: An illustration in ADNI 3T MRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.12.007 – volume: 15 start-page: 273 year: 2002 ident: 10.1016/j.neurobiolaging.2010.11.008_bib53 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 27 start-page: 934 year: 2005 ident: 10.1016/j.neurobiolaging.2010.11.008_bib3 article-title: Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: A longitudinal MRI study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.05.015 – volume: 101 start-page: 8174 year: 2004 ident: 10.1016/j.neurobiolaging.2010.11.008_bib17 article-title: Dynamic mapping of human cortical development during childhood through early adulthood publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0402680101 – volume: 7 start-page: 47 year: 2000 ident: 10.1016/j.neurobiolaging.2010.11.008_bib39 article-title: Increasing loss of brain tissue with increasing dementia: a stereological study of post-mortem brains from elderly females publication-title: Eur. J. Neurol. Off. J. Eur. Fed. Neurol. Soc – volume: 48 start-page: 117 year: 2009 ident: 10.1016/j.neurobiolaging.2010.11.008_bib49 article-title: Functional but Not Structural Changes Associated with Learning: an Exploration of Longitudinal voxel-Based Morphometry VBM publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.05.097 |
SSID | ssj0007476 |
Score | 2.4431834 |
Snippet | Neuroimage measures from magnetic resonance (MR) imaging, such as cortical thickness, have been playing an increasingly important role in searching for... Abstract Neuroimage measures from magnetic resonance (MR) imaging, such as cortical thickness, have been playing an increasingly important role in searching... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 427.e15 |
SubjectTerms | Aged Aging - pathology Alzheimer Disease - pathology Alzheimer's disease Brain network Cerebral Cortex - pathology Classification Cortical thickness Dynamics Female Humans Image Interpretation, Computer-Assisted - methods Internal Medicine Longitudinal analysis Magnetic Resonance Imaging - methods Male Mild cognitive impairment Neurology Reproducibility of Results Sensitivity and Specificity |
Title | Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0197458010004896 https://www.clinicalkey.es/playcontent/1-s2.0-S0197458010004896 https://dx.doi.org/10.1016/j.neurobiolaging.2010.11.008 https://www.ncbi.nlm.nih.gov/pubmed/21272960 https://www.proquest.com/docview/915490230 https://www.proquest.com/docview/916147230 https://pubmed.ncbi.nlm.nih.gov/PMC3086988 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLamISEuaDB-lMHkwwSn0CSOY1sIoWowFRC7wKTdLCexWaBLp6U9sAN_O-_ZTkfZhIY4NvVrE_vl83vJ975HyB5TtZIlKxMH21lS5KZOVM0g57GCmcxJLhRWI386LKdHxYdjfrxB9odaGKRVRuwPmO7ROh4Zx9kcn7Xt-DMEJ6LggLC-MFqh7HZRCPTylz8vaR4QLpehZBr1vWV6m-xdcry8ZiSqHfmOQIHohZqe2Gzy-m3qahj6J5vyt-3pYIvcjXElnYRTv0c2bHefbE86yKlPf9Dn1DM9_SP0bXLxtkWwCCQYaqIsCZ07Optj-6Jlg62yKOSl_kE3RUr8d4REGsqEe9p2dDK7OLHtqT1_0dP4lociif4rbUKTe_jhhnaBZU6d9QKi_QNydPDuy_40iT0YklqkcpEYVWepFTmz3OSFlRmXAIiVKMq8rlSeNo6VqFHIRQ2hmDKZtRwiHuEALRrZGPaQbHbzzj4mVDGXcmxuzJUtuBBVZhwybF3JM1ll1Yi8GqZc11GgHPtkzPTARPum1xdM44JBDqNhwUaEr6zPglDHDe1eD6urh2JUgE8NO8oN7cV19raPWNDrTPe5TvUVfx2RNyvLNZf_h_-mgztqQAV81WM6O1_2WqHyHqaXfxsCkZnwQx4FB17NG6r-55DawrWtufZqAGqSr3_TtSdem5xBiqykfPLf17ZD7sCnPBDkn5LNxfnSPoP4b1Ht-ht8l9yavP84PfwFxGVhJA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrQRcEFAey9OHCk7R5uXYFkJoVai2tN0LrdSblYdDA9ts1ewe6K9nxnYWllaoiOvGk2zsyeeZ5JtvALYTVSqZJVlQ43YWpHFeBqpMMOcxIsmjWnKhqBr5cJpNjtPPJ_xkA3b6WhiiVXrsd5hu0dr_MvKzOTpvmtEXDE5EyhFhbWG0ym7BJqlT8QFsjvf2J9MVIGPEnLmqaZL4luFt2P5F87KykSR4ZJsCOa4XyXpSv8nrd6qrkeifhMrfdqjd-3DPh5Zs7P79A9gw7UPYGreYVp_9YG-YJXvat-hbcPmxIbxwPBiWe2USNq_ZbE4djJYVdctimJrad92MWPHfCRWZqxTuWNOy8ezy1DRn5uJtx_yHHkY8-q-scn3u8cQVax3RnNXGaoh2j-B499PRziTwbRiCUoRyEeSqjEIj4sTwPE6NjLhETCxEmsVloeKwqpOMZAq5KDEaU3lkDMegR9QIGJWs8uQxDNp5a54CU0kdcupvzJVJuRBFlNdEsq0zHskiKobwrp9yXXqNcmqVMdM9Ge2bXl8wTQuGaYzGBRsCX1mfO62OG9q971dX9_WoiKAaN5Ub2ovr7E3n4aDTke5iHeorLjuEDyvLNa__h2uz3h01AgN97clbM192WpH4HmWYfxuCwZmwQ544B17NGwn_x5jd4r2tufZqAMmSrx9pm1MrT55glqykfPbf9_Ya7kyODg_0wd50_zncxSOx48u_gMHiYmleYji4KF75x_0nmsdj1Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discriminant+analysis+of+longitudinal+cortical+thickness+changes+in+Alzheimer%27s+disease+using+dynamic+and+network+features&rft.jtitle=Neurobiology+of+aging&rft.au=Li%2C+Yang&rft.au=Wang%2C+Yaping&rft.au=Wu%2C+Guorong&rft.au=Shi%2C+Feng&rft.date=2012-02-01&rft.pub=Elsevier+Inc&rft.issn=0197-4580&rft.eissn=1558-1497&rft.volume=33&rft.issue=2&rft.spage=427.e15&rft.epage=427.e30&rft_id=info:doi/10.1016%2Fj.neurobiolaging.2010.11.008&rft.externalDocID=S0197458010004896 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01974580%2FS0197458011X00143%2Fcov150h.gif |