Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features

Neuroimage measures from magnetic resonance (MR) imaging, such as cortical thickness, have been playing an increasingly important role in searching for biomarkers of Alzheimer's disease (AD). Recent studies show that, AD, mild cognitive impairment (MCI) and normal control (NC) can be distinguis...

Full description

Saved in:
Bibliographic Details
Published inNeurobiology of aging Vol. 33; no. 2; pp. 427.e15 - 427.e30
Main Authors Li, Yang, Wang, Yaping, Wu, Guorong, Shi, Feng, Zhou, Luping, Lin, Weili, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neuroimage measures from magnetic resonance (MR) imaging, such as cortical thickness, have been playing an increasingly important role in searching for biomarkers of Alzheimer's disease (AD). Recent studies show that, AD, mild cognitive impairment (MCI) and normal control (NC) can be distinguished with relatively high accuracy using the baseline cortical thickness. With the increasing availability of large longitudinal datasets, it also becomes possible to study the longitudinal changes of cortical thickness and their correlation with the development of pathology in AD. In this study, the longitudinal cortical thickness changes of 152 subjects from 4 clinical groups (AD, NC, Progressive-MCI and Stable-MCI) selected from Alzheimer's Disease Neuroimaging Initiative (ADNI) are measured by our recently developed 4 D (spatial+temporal) thickness measuring algorithm. It is found that the 4 clinical groups demonstrate very similar spatial distribution of grey matter (GM) loss on cortex. To fully utilize the longitudinal information and better discriminate the subjects from 4 groups, especially between Stable-MCI and Progressive-MCI, 3 different categories of features are extracted for each subject, i.e., (1) static cortical thickness measures computed from the baseline and endline, (2) cortex thinning dynamics, such as the thinning speed (mm/year) and the thinning ratio (endline/baseline), and (3) network features computed from the brain network constructed based on the correlation between the longitudinal thickness changes of different regions of interest (ROIs). By combining the complementary information provided by features from the 3 categories, 2 classifiers are trained to diagnose AD and to predict the conversion to AD in MCI subjects, respectively. In the leave-one-out cross-validation, the proposed method can distinguish AD patients from NC at an accuracy of 96.1%, and can detect 81.7% (AUC = 0.875) of the MCI converters 6 months ahead of their conversions to AD. Also, by analyzing the brain network built via longitudinal cortical thickness changes, a significant decrease (p < 0.02) of the network clustering coefficient (associated with the development of AD pathology) is found in the Progressive-MCI group, which indicates the degenerated wiring efficiency of the brain network due to AD. More interestingly, the decreasing of network clustering coefficient of the olfactory cortex region was also found in the AD patients, which suggests olfactory dysfunction. Although the smell identification test is not performed in ADNI, this finding is consistent with other AD-related olfactory studies.
AbstractList Neuroimage measures from magnetic resonance (MR) imaging, such as cortical thickness, have been playing an increasingly important role in searching for bio-markers of Alzheimer’s disease (AD). Recent studies show that, AD, mild cognitive impairment (MCI) and normal control (NC) can be distinguished with relatively high accuracy using the baseline cortical thickness. With the increasing availability of large longitudinal datasets, it also becomes possible to study the longitudinal changes of cortical thickness and their correlation with the development of pathology in AD. In this study, the longitudinal cortical thickness changes of 152 subjects from four clinical groups (AD, NC, Progressive-MCI and Stable-MCI) selected from Alzheimer’s Disease Neuroimaging Initiative (ADNI) are measured by our recently-developed 4D (spatial+temporal) thickness measuring algorithm. It is found that the four clinical groups demonstrate very similar spatial distribution of GM loss on cortex. To fully utilizing the longitudinal information and better discriminate the subjects from four groups, especially between Stable-MCI and Progressive-MCI, three different categories of features are extracted for each subject, i.e., (1) static cortical thickness measures computed from the baseline and endline, (2) cortex thinning dynamics, such as the thinning speed (mm/year) and the thinning ratio (endline/baseline), and (3) network features computed from the brain network constructed based on the correlation between the longitudinal thickness changes of different ROIs. By combining the complementary information provided by features from all three different categories, two classifiers are trained to diagnose AD and to predict the conversion to AD in MCI subjects, respectively. In the leave-one-out cross-validation, the proposed method can distinguish AD patients from NC at an accuracy of 96.1%, and can detect 81.7% (AUC=0.875) of the MCI converters at 6-months ahead of their conversions to AD. Also, by analyzing the brain network built via longitudinal cortical thickness changes, a significant decrease (P<0.02) of the network clustering coefficient (associated with the development of AD pathology) is found in the Progressive-MCI group, which indicates the degenerated wiring efficiency of the brain network due to AD. More interestingly, the decreasing of network clustering coefficient of the olfactory cortex region was also found in the AD patients, which suggests the olfactory dysfunction. Although the smell identification test is not performed in ADNI, this finding is consistent with other AD-related olfactory studies.
Abstract Neuroimage measures from magnetic resonance (MR) imaging, such as cortical thickness, have been playing an increasingly important role in searching for biomarkers of Alzheimer's disease (AD). Recent studies show that, AD, mild cognitive impairment (MCI) and normal control (NC) can be distinguished with relatively high accuracy using the baseline cortical thickness. With the increasing availability of large longitudinal datasets, it also becomes possible to study the longitudinal changes of cortical thickness and their correlation with the development of pathology in AD. In this study, the longitudinal cortical thickness changes of 152 subjects from 4 clinical groups (AD, NC, Progressive-MCI and Stable-MCI) selected from Alzheimer's Disease Neuroimaging Initiative (ADNI) are measured by our recently developed 4 D (spatial+temporal) thickness measuring algorithm. It is found that the 4 clinical groups demonstrate very similar spatial distribution of grey matter (GM) loss on cortex. To fully utilize the longitudinal information and better discriminate the subjects from 4 groups, especially between Stable-MCI and Progressive-MCI, 3 different categories of features are extracted for each subject, i.e., (1) static cortical thickness measures computed from the baseline and endline, (2) cortex thinning dynamics, such as the thinning speed (mm/year) and the thinning ratio (endline/baseline), and (3) network features computed from the brain network constructed based on the correlation between the longitudinal thickness changes of different regions of interest (ROIs). By combining the complementary information provided by features from the 3 categories, 2 classifiers are trained to diagnose AD and to predict the conversion to AD in MCI subjects, respectively. In the leave-one-out cross-validation, the proposed method can distinguish AD patients from NC at an accuracy of 96.1%, and can detect 81.7% (AUC = 0.875) of the MCI converters 6 months ahead of their conversions to AD. Also, by analyzing the brain network built via longitudinal cortical thickness changes, a significant decrease ( p < 0.02) of the network clustering coefficient (associated with the development of AD pathology) is found in the Progressive-MCI group, which indicates the degenerated wiring efficiency of the brain network due to AD. More interestingly, the decreasing of network clustering coefficient of the olfactory cortex region was also found in the AD patients, which suggests olfactory dysfunction. Although the smell identification test is not performed in ADNI, this finding is consistent with other AD-related olfactory studies.
Neuroimage measures from magnetic resonance (MR) imaging, such as cortical thickness, have been playing an increasingly important role in searching for biomarkers of Alzheimer's disease (AD). Recent studies show that, AD, mild cognitive impairment (MCI) and normal control (NC) can be distinguished with relatively high accuracy using the baseline cortical thickness. With the increasing availability of large longitudinal datasets, it also becomes possible to study the longitudinal changes of cortical thickness and their correlation with the development of pathology in AD. In this study, the longitudinal cortical thickness changes of 152 subjects from 4 clinical groups (AD, NC, Progressive-MCI and Stable-MCI) selected from Alzheimer's Disease Neuroimaging Initiative (ADNI) are measured by our recently developed 4 D (spatial+temporal) thickness measuring algorithm. It is found that the 4 clinical groups demonstrate very similar spatial distribution of grey matter (GM) loss on cortex. To fully utilize the longitudinal information and better discriminate the subjects from 4 groups, especially between Stable-MCI and Progressive-MCI, 3 different categories of features are extracted for each subject, i.e., (1) static cortical thickness measures computed from the baseline and endline, (2) cortex thinning dynamics, such as the thinning speed (mm/year) and the thinning ratio (endline/baseline), and (3) network features computed from the brain network constructed based on the correlation between the longitudinal thickness changes of different regions of interest (ROIs). By combining the complementary information provided by features from the 3 categories, 2 classifiers are trained to diagnose AD and to predict the conversion to AD in MCI subjects, respectively. In the leave-one-out cross-validation, the proposed method can distinguish AD patients from NC at an accuracy of 96.1%, and can detect 81.7% (AUC = 0.875) of the MCI converters 6 months ahead of their conversions to AD. Also, by analyzing the brain network built via longitudinal cortical thickness changes, a significant decrease (p < 0.02) of the network clustering coefficient (associated with the development of AD pathology) is found in the Progressive-MCI group, which indicates the degenerated wiring efficiency of the brain network due to AD. More interestingly, the decreasing of network clustering coefficient of the olfactory cortex region was also found in the AD patients, which suggests olfactory dysfunction. Although the smell identification test is not performed in ADNI, this finding is consistent with other AD-related olfactory studies.
Neuroimage measures from magnetic resonance (MR) imaging, such as cortical thickness, have been playing an increasingly important role in searching for biomarkers of Alzheimer's disease (AD). Recent studies show that, AD, mild cognitive impairment (MCI) and normal control (NC) can be distinguished with relatively high accuracy using the baseline cortical thickness. With the increasing availability of large longitudinal datasets, it also becomes possible to study the longitudinal changes of cortical thickness and their correlation with the development of pathology in AD. In this study, the longitudinal cortical thickness changes of 152 subjects from 4 clinical groups (AD, NC, Progressive-MCI and Stable-MCI) selected from Alzheimer's Disease Neuroimaging Initiative (ADNI) are measured by our recently developed 4 D (spatial+temporal) thickness measuring algorithm. It is found that the 4 clinical groups demonstrate very similar spatial distribution of grey matter (GM) loss on cortex. To fully utilize the longitudinal information and better discriminate the subjects from 4 groups, especially between Stable-MCI and Progressive-MCI, 3 different categories of features are extracted for each subject, i.e., (1) static cortical thickness measures computed from the baseline and endline, (2) cortex thinning dynamics, such as the thinning speed (mm/year) and the thinning ratio (endline/baseline), and (3) network features computed from the brain network constructed based on the correlation between the longitudinal thickness changes of different regions of interest (ROIs). By combining the complementary information provided by features from the 3 categories, 2 classifiers are trained to diagnose AD and to predict the conversion to AD in MCI subjects, respectively. In the leave-one-out cross-validation, the proposed method can distinguish AD patients from NC at an accuracy of 96.1%, and can detect 81.7% (AUC = 0.875) of the MCI converters 6 months ahead of their conversions to AD. Also, by analyzing the brain network built via longitudinal cortical thickness changes, a significant decrease (p < 0.02) of the network clustering coefficient (associated with the development of AD pathology) is found in the Progressive-MCI group, which indicates the degenerated wiring efficiency of the brain network due to AD. More interestingly, the decreasing of network clustering coefficient of the olfactory cortex region was also found in the AD patients, which suggests olfactory dysfunction. Although the smell identification test is not performed in ADNI, this finding is consistent with other AD-related olfactory studies.Neuroimage measures from magnetic resonance (MR) imaging, such as cortical thickness, have been playing an increasingly important role in searching for biomarkers of Alzheimer's disease (AD). Recent studies show that, AD, mild cognitive impairment (MCI) and normal control (NC) can be distinguished with relatively high accuracy using the baseline cortical thickness. With the increasing availability of large longitudinal datasets, it also becomes possible to study the longitudinal changes of cortical thickness and their correlation with the development of pathology in AD. In this study, the longitudinal cortical thickness changes of 152 subjects from 4 clinical groups (AD, NC, Progressive-MCI and Stable-MCI) selected from Alzheimer's Disease Neuroimaging Initiative (ADNI) are measured by our recently developed 4 D (spatial+temporal) thickness measuring algorithm. It is found that the 4 clinical groups demonstrate very similar spatial distribution of grey matter (GM) loss on cortex. To fully utilize the longitudinal information and better discriminate the subjects from 4 groups, especially between Stable-MCI and Progressive-MCI, 3 different categories of features are extracted for each subject, i.e., (1) static cortical thickness measures computed from the baseline and endline, (2) cortex thinning dynamics, such as the thinning speed (mm/year) and the thinning ratio (endline/baseline), and (3) network features computed from the brain network constructed based on the correlation between the longitudinal thickness changes of different regions of interest (ROIs). By combining the complementary information provided by features from the 3 categories, 2 classifiers are trained to diagnose AD and to predict the conversion to AD in MCI subjects, respectively. In the leave-one-out cross-validation, the proposed method can distinguish AD patients from NC at an accuracy of 96.1%, and can detect 81.7% (AUC = 0.875) of the MCI converters 6 months ahead of their conversions to AD. Also, by analyzing the brain network built via longitudinal cortical thickness changes, a significant decrease (p < 0.02) of the network clustering coefficient (associated with the development of AD pathology) is found in the Progressive-MCI group, which indicates the degenerated wiring efficiency of the brain network due to AD. More interestingly, the decreasing of network clustering coefficient of the olfactory cortex region was also found in the AD patients, which suggests olfactory dysfunction. Although the smell identification test is not performed in ADNI, this finding is consistent with other AD-related olfactory studies.
Author Wu, Guorong
Shi, Feng
Lin, Weili
Wang, Yaping
Shen, Dinggang
Li, Yang
Zhou, Luping
Author_xml – sequence: 1
  givenname: Yang
  surname: Li
  fullname: Li, Yang
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
– sequence: 2
  givenname: Yaping
  surname: Wang
  fullname: Wang, Yaping
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
– sequence: 3
  givenname: Guorong
  surname: Wu
  fullname: Wu, Guorong
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
– sequence: 4
  givenname: Feng
  surname: Shi
  fullname: Shi, Feng
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
– sequence: 5
  givenname: Luping
  surname: Zhou
  fullname: Zhou, Luping
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
– sequence: 6
  givenname: Weili
  surname: Lin
  fullname: Lin, Weili
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
– sequence: 7
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
  email: dgshen@med.unc.edu
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21272960$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEUhgep2G31L0guhF7NejLfA1KorVWh4IV6HbLJmd2zm01qkqlsf70ZthVbEPYqgXPOkzfJc5IdWWcxy95xmHPgzfv13OLo3YKckUuyy3kBU4nPAboX2YzXdZfzqm-Pshnwvs2ruoPj7CSENQC0Vdu8yo4LXrRF38Asu7-ioDxtyUobmbTS7AIF5gZmnF1SHHWqGKacj6TSJq5IbSyGwNRK2iUGRpZdmPsV0hb9WWCaAsqAbAwpG9M7K7ekElgzi_G38xs2oIyjx_A6ezlIE_DNw3qa_bz-9OPyS37z7fPXy4ubXLXQxVz2igO2RYm1LCrseN1pjYu2agq16AvQQ9nU0EDdqqpueskR675s2wGg1J2W5Wl2vufejostaoU2emnEbbq19DvhJImnFUsrsXR3ooSu6bsuAc4eAN79GjFEsU2PhsZIi24MoucNr1JAOKCzrnrYd779N9TfNI8_kxo-7huUdyF4HISiKCO5KSMZwUFMOoi1eKqDmHQQnIukQ4J8eAZ5POfA8ev9OKbvuSP0IihCq1CTRxWFdnQo6PwZSBmyk1Ab3GFYu9Eny4LgIhQCxPdJ3MlbnpStur5JgKv_Aw7P8Qfghgt1
CitedBy_id crossref_primary_10_1016_j_neuroimage_2012_01_052
crossref_primary_10_3389_fnagi_2022_912895
crossref_primary_10_3389_fnins_2020_558434
crossref_primary_10_1016_j_neurobiolaging_2015_10_015
crossref_primary_10_1016_j_tics_2013_08_007
crossref_primary_10_1089_brain_2017_0494
crossref_primary_10_1016_j_patcog_2018_02_006
crossref_primary_10_1016_j_neuroimage_2014_05_078
crossref_primary_10_1016_j_cmpb_2016_05_009
crossref_primary_10_1109_ACCESS_2017_2773359
crossref_primary_10_3390_electronics11081288
crossref_primary_10_1016_j_neurobiolaging_2020_03_009
crossref_primary_10_1007_s10742_019_00206_3
crossref_primary_10_1002_hbm_24979
crossref_primary_10_1089_brain_2014_0235
crossref_primary_10_3389_fneur_2017_00739
crossref_primary_10_1016_j_neuroimage_2011_12_029
crossref_primary_10_1007_s12021_014_9221_x
crossref_primary_10_1016_j_patcog_2018_12_001
crossref_primary_10_1109_TNSRE_2023_3323432
crossref_primary_10_1371_journal_pone_0060344
crossref_primary_10_1177_09622802211032705
crossref_primary_10_1371_journal_pone_0179804
crossref_primary_10_3389_fnagi_2022_918462
crossref_primary_10_1007_s00138_012_0462_0
crossref_primary_10_1016_j_neuroimage_2021_118206
crossref_primary_10_1016_j_artmed_2020_101940
crossref_primary_10_1016_j_jneumeth_2018_09_007
crossref_primary_10_1016_j_neurobiolaging_2017_09_011
crossref_primary_10_2217_nmt_12_13
crossref_primary_10_3233_JAD_142820
crossref_primary_10_1093_braincomms_fcae357
crossref_primary_10_1016_j_nbd_2013_02_005
crossref_primary_10_3389_fnagi_2020_00099
crossref_primary_10_1016_j_ensci_2021_100309
crossref_primary_10_1016_j_neuroimage_2018_05_051
crossref_primary_10_1002_jmri_24143
crossref_primary_10_1007_s11682_020_00366_8
crossref_primary_10_1016_j_media_2020_101825
crossref_primary_10_1186_s12874_022_01544_6
crossref_primary_10_1186_s13195_021_00900_w
crossref_primary_10_5402_2013_627303
crossref_primary_10_1016_j_neuroimage_2011_05_083
crossref_primary_10_1051_e3sconf_202339101047
crossref_primary_10_3389_fnagi_2016_00077
crossref_primary_10_3389_fnagi_2017_00038
crossref_primary_10_1016_j_neulet_2012_09_011
crossref_primary_10_1002_hbm_24478
crossref_primary_10_1186_s40035_018_0115_y
crossref_primary_10_1038_srep39880
crossref_primary_10_1007_s11682_015_9408_2
crossref_primary_10_1109_ACCESS_2019_2936415
crossref_primary_10_1038_s41598_017_07846_w
crossref_primary_10_1093_cercor_bhw128
crossref_primary_10_1016_j_neuroscience_2017_10_011
crossref_primary_10_1007_s11682_015_9356_x
crossref_primary_10_1109_JBHI_2021_3113668
crossref_primary_10_1109_TBME_2016_2549363
crossref_primary_10_1007_s12021_013_9218_x
crossref_primary_10_1016_j_neuroimage_2019_116317
crossref_primary_10_1016_j_patcog_2016_09_032
crossref_primary_10_1109_TCYB_2020_3016953
crossref_primary_10_3389_fnagi_2021_688926
crossref_primary_10_3389_fnagi_2014_00260
crossref_primary_10_1016_j_compmedimag_2019_01_005
crossref_primary_10_1155_2014_462765
crossref_primary_10_3389_fnins_2018_00927
crossref_primary_10_1007_s00429_013_0687_3
crossref_primary_10_1109_TCBB_2016_2635144
crossref_primary_10_1038_s41598_018_29927_0
crossref_primary_10_3934_mbe_2023787
crossref_primary_10_1016_j_dadm_2015_11_002
crossref_primary_10_1016_j_neucom_2020_09_012
crossref_primary_10_1016_j_acra_2013_12_001
crossref_primary_10_1017_S0022215117000858
crossref_primary_10_1093_braincomms_fcaa102
crossref_primary_10_1016_j_neuroimage_2014_06_077
crossref_primary_10_1111_cns_14859
crossref_primary_10_1109_TMI_2016_2582386
crossref_primary_10_3389_fnagi_2024_1467054
crossref_primary_10_1007_s42835_022_01317_7
crossref_primary_10_1016_j_neuroimage_2011_07_026
crossref_primary_10_1007_s00429_015_1059_y
crossref_primary_10_1007_s11042_024_19425_z
crossref_primary_10_3389_fnagi_2017_00146
crossref_primary_10_1016_j_nicl_2019_101929
crossref_primary_10_1016_j_nicl_2019_101809
crossref_primary_10_1002_hbm_22741
crossref_primary_10_3389_fnagi_2017_00309
crossref_primary_10_1016_j_cmpb_2020_105348
crossref_primary_10_1016_j_neuroimage_2014_01_033
crossref_primary_10_1002_ima_22390
crossref_primary_10_1093_alcalc_agaa034
crossref_primary_10_1109_TCBB_2021_3051177
crossref_primary_10_3390_app10051894
crossref_primary_10_1109_TBME_2015_2404809
crossref_primary_10_1080_13682199_2023_2173548
crossref_primary_10_1016_j_neuroimage_2016_01_005
crossref_primary_10_1016_j_neurobiolaging_2014_04_034
crossref_primary_10_1002_hbm_22254
crossref_primary_10_1016_j_neurobiolaging_2019_08_033
crossref_primary_10_3233_JAD_220175
crossref_primary_10_1109_TBME_2013_2284195
crossref_primary_10_1186_s13195_021_00876_7
crossref_primary_10_2478_s13380_013_0108_3
crossref_primary_10_1016_j_nicl_2015_01_007
crossref_primary_10_1093_cercor_bhy197
crossref_primary_10_1002_sim_8568
crossref_primary_10_1016_j_neulet_2013_06_042
crossref_primary_10_1016_j_nicl_2022_103175
crossref_primary_10_1093_cercor_bhs246
crossref_primary_10_1016_j_neurobiolaging_2013_02_020
crossref_primary_10_1016_j_neuroimage_2013_04_056
Cites_doi 10.1073/pnas.0906053106
10.1016/0022-3956(75)90026-6
10.1016/j.neurobiolaging.2007.07.022
10.1093/brain/awp105
10.1109/TPAMI.2005.159
10.1176/appi.ajp.158.9.1533-a
10.1093/brain/awp091
10.1016/j.neuroimage.2008.01.027
10.1093/brain/awl256
10.1093/cercor/bhh200
10.1586/ern.10.33
10.1109/42.963819
10.1109/TMI.2006.886812
10.1093/cercor/bhl149
10.1523/JNEUROSCI.23-03-00994.2003
10.1109/42.668698
10.1016/j.neuroimage.2004.07.045
10.1016/j.neuroimage.2004.07.071
10.1176/jnp.12.1.29
10.1038/337736a0
10.1523/JNEUROSCI.1798-04.2004
10.1523/JNEUROSCI.3874-05.2006
10.1006/nimg.2001.0857
10.1016/j.neulet.2006.04.006
10.1016/j.neuroimage.2005.02.013
10.1016/S1474-4422(07)70178-3
10.1016/j.neuroimage.2009.06.043
10.1093/brain/awm016
10.1159/000256274
10.1212/WNL.38.8.1228
10.1146/annurev.bioeng.5.040202.121611
10.1093/brain/awp123
10.1016/j.neuroimage.2010.08.032
10.1212/WNL.34.7.939
10.1212/WNL.56.9.1133
10.1523/JNEUROSCI.4622-09.2010
10.1111/j.1365-2796.2004.01388.x
10.1002/hbm.10062
10.1002/hbm.20740
10.1523/JNEUROSCI.23-08-03295.2003
10.1016/j.neuroimage.2009.10.003
10.1001/archneur.56.3.303
10.1016/j.neuroimage.2005.09.054
10.1212/WNL.43.11.2412-a
10.1103/PhysRevLett.94.018102
10.1007/s00415-009-5040-7
10.1016/0197-4580(90)90014-Q
10.1016/j.neuroimage.2009.12.007
10.1006/nimg.2001.0978
10.1016/j.neuroimage.2005.05.015
10.1073/pnas.0402680101
10.1016/j.neuroimage.2009.05.097
ContentType Journal Article
Copyright 2012 Elsevier Inc.
Elsevier Inc.
Copyright © 2012 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: Elsevier Inc.
– notice: Copyright © 2012 Elsevier Inc. All rights reserved.
CorporateAuthor The Alzheimer's Disease Neuroimaging Initiative
Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: The Alzheimer's Disease Neuroimaging Initiative
– name: Alzheimer's Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1016/j.neurobiolaging.2010.11.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic

Neurosciences Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1558-1497
EndPage 427.e30
ExternalDocumentID PMC3086988
21272960
10_1016_j_neurobiolaging_2010_11_008
S0197458010004896
1_s2_0_S0197458010004896
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB006733
– fundername: NIBIB NIH HHS
  grantid: 1R01-EB006733
– fundername: NIBIB NIH HHS
  grantid: R01-EB008374
– fundername: NIBIB NIH HHS
  grantid: 1R01-EB009634
– fundername: NIMH NIH HHS
  grantid: 1RC1-MH088520
– fundername: NIA NIH HHS
  grantid: U19 AG010483
– fundername: NIBIB NIH HHS
  grantid: R01 EB008374
– fundername: NIMH NIH HHS
  grantid: RC1 MH088520
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
9JO
AABNK
AADFP
AAEDT
AAEDW
AAGJA
AAGUQ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABGSF
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ABOYX
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ACXNI
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDW
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LX8
M29
M2V
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OD~
OKEIE
OO0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SNS
SPCBC
SSB
SSH
SSN
SSU
SSY
SSZ
T5K
WUQ
Z5R
ZGI
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AADPK
AAIAV
ABLVK
ABYKQ
AFYLN
AJBFU
DOVZS
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c708t-a9c10e723e5a24e8158ddeb7462cb920df36506057c4569a1ee59377f003d8da3
IEDL.DBID .~1
ISSN 0197-4580
1558-1497
IngestDate Thu Aug 21 17:52:32 EDT 2025
Sun Aug 24 03:41:35 EDT 2025
Fri Jul 11 08:05:20 EDT 2025
Mon Jul 21 05:56:26 EDT 2025
Tue Jul 01 01:28:02 EDT 2025
Thu Apr 24 23:07:40 EDT 2025
Fri Feb 23 02:27:31 EST 2024
Sun Feb 23 10:19:37 EST 2025
Tue Aug 26 16:32:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Cortical thickness
Mild cognitive impairment
Dynamics
Classification
Longitudinal analysis
Alzheimer's disease
Brain network
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2012 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c708t-a9c10e723e5a24e8158ddeb7462cb920df36506057c4569a1ee59377f003d8da3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Data used in the preparation of this manuscript were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3086988
PMID 21272960
PQID 915490230
PQPubID 23462
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3086988
proquest_miscellaneous_916147230
proquest_miscellaneous_915490230
pubmed_primary_21272960
crossref_citationtrail_10_1016_j_neurobiolaging_2010_11_008
crossref_primary_10_1016_j_neurobiolaging_2010_11_008
elsevier_sciencedirect_doi_10_1016_j_neurobiolaging_2010_11_008
elsevier_clinicalkeyesjournals_1_s2_0_S0197458010004896
elsevier_clinicalkey_doi_10_1016_j_neurobiolaging_2010_11_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02-01
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neurobiology of aging
PublicationTitleAlternate Neurobiol Aging
PublicationYear 2012
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Wu, Jia, Wang, Shen (bib56) 2010
Talamo, Rudel, Kosik, Lee, Neff, Adelman, Kauer (bib48) 1989; 337
Davatzikos, Xu, An, Fan, Resnick (bib7) 2009; 132
Good, Johnsrude, Ashburner, Henson, Friston, Frackowiak (bib18) 2001; 14
Resnick, Pham, Kraut, Zonderman, Davatzikos (bib40) 2003; 23
Petersen (bib36) 2004; 256
Holland, Brewer, Hagler, Fenema-Notestine, Dale (bib20) 2009; 106
Peng, Long, Ding (bib34) 2005; 27
Stam, Jones, Nolte, Breakspear, Scheltens (bib47) 2007; 1991
Thomas, Marrett, Saad, Ruff, Martin, Bandettini (bib49) 2009; 48
Fan, Shen, Gur, Gur, Davatzikos (bib14) 2007; 26
Chetelat, Landeau, Eustache, Mezenge, Viader, de la Sayette, Desgranges, Baron (bib3) 2005; 27
Petersen, Smith, Waring, Ivnik, Tangalos, Kokmen (bib37) 1999; 56
Toga, Thompson (bib52) 2003; 5
Yushkevich, Avants, Das, Pluta, Altinay, Craige (bib58) 2010; 50
Egúıluz, Chialvo, Cecchi, Baliki, Apkarian (bib13) 2005; 94
Smith (bib45) 2002; 17
Hutton, Draganski, Ashburner, Weiskopf (bib22) 2009; 48
Wechsler (bib5) 1987
Du, Schuff, Kramer, Rosen, Gorno-Tempini, Rankin, Miller, Weiner (bib11) 2007; 130
Rubinov, Sporns (bib41) 2009; 52
Xue, Shen, Davatzikos (bib57) 2006; 30
Querbes, Aubry, Pariente, Lotterie, Démonet, Duret, Puel, Berry (bib38) 2009; 132
Hutton, De Vita, Ashburner, Deichmann, Turner (bib21) 2008; 40
Julkunen, Niskanen, Muehlboeck, Pihlajamäk, MerviKönöen, Hallikainen, Kivipelto (bib24) 2009; 28
Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix, Mazoyer, Joliot (bib53) 2002; 15
Murphy, Gilmore, Seery, Salmon, Lasker (bib33) 1990; 11
Micheloyannis, Pachou, Stam, Vourkas, Erimaki, Tsirka (bib31) 2006; 402
Singh, Chertkow, Lerch, Evans, Dorr, Kabani (bib43) 2006; 129
Crofts, Higham, Bosnell, Jbabdi, Matthews, Behrens, Johansen-Berg (bib4) 2010; 54
Desikan, Cabral, Hess, Dillon, Glastonbury, Weiner, Schmansky, Greve, Salat, Buckner, Fischl (bib8) 2009; 132
Li, Wang, Xue, Shi, Lin, Shen (bib28) 2010
Lerch, Evans (bib27) 2005; 24
Sowell, Thompson, Leonard, Welcome, Kan, Toga (bib46) 2004; 24
Achard, Salvador, Whitcher, Suckling, Bullmore (bib1) 2006; 26
Dickerson, Feczko, Augustinack, Pacheco, Morris, Fischl, Buckner (bib9) 2009; 30
McCaffrey, Duff, Solomon (bib29) 2000; 12
Wesson, Wilson, Nixon (bib55) 2010; 10
Dubois, Feldman, Jacova, DeKosky, Barberger-Gateau, Cummings (bib12) 2007; 6
Morris (bib32) 1993; 42
Regeur (bib39) 2000; 7
Sled, Zijdenbos, Evans (bib44) 1998; 17
Jones, Symms, Cercignani, Howard (bib23) Jun, 2005; 26
Petersen (bib35) 2001; 56
Shattuck, Leahy (bib42) 2001; 20
He, Chen, Evans (bib19) 2007; 17
Gogtay, Giedd, Lusk, Hayashi, Greenstein, Vaituzis, Nugent, Herman, Clasen, Toga, Rapoport, Thompson (bib17) 2004; 101
Lerch, Pruessner, Zijdenbos, Hampel, Teipel, Evans (bib26) 2005; 15
Folstein, Folstein, McHugh (bib15) 1975; 12
McKhann, Drachman, Folstein, Katzman, Price, Stadlan (bib30) 1984; 34
Thompson, Hayashi, Sowell, Gogtay, Giedd, Rapoport, de Zubicaray, Janke, Rose, Semple (bib51) 2004; 23
Doty (bib10) 2001; 158
Thompson, Hayashi, de Zubicaray, Janke, Rose, Semple (bib50) 2003; 23
Wesson, Levy, Nixon, Wilson (bib54) 2010; 30
Frisoni, Prestia, Rasser, Bonetti, Thompson (bib16) 2009; 256
Aganj, Sapiro, Parikshak, Madsen, Thompson (bib2) 2009; 30
Koss, Weiffenbach, Haxby, Friedland (bib25) 1988; 38
Micheloyannis (10.1016/j.neurobiolaging.2010.11.008_bib31) 2006; 402
McKhann (10.1016/j.neurobiolaging.2010.11.008_bib30) 1984; 34
Achard (10.1016/j.neurobiolaging.2010.11.008_bib1) 2006; 26
Wechsler (10.1016/j.neurobiolaging.2010.11.008_bib5) 1987
Fan (10.1016/j.neurobiolaging.2010.11.008_bib14) 2007; 26
Hutton (10.1016/j.neurobiolaging.2010.11.008_bib21) 2008; 40
Xue (10.1016/j.neurobiolaging.2010.11.008_bib57) 2006; 30
Querbes (10.1016/j.neurobiolaging.2010.11.008_bib38) 2009; 132
Yushkevich (10.1016/j.neurobiolaging.2010.11.008_bib58) 2010; 50
Crofts (10.1016/j.neurobiolaging.2010.11.008_bib4) 2010; 54
Stam (10.1016/j.neurobiolaging.2010.11.008_bib47) 2007; 1991
Tzourio-Mazoyer (10.1016/j.neurobiolaging.2010.11.008_bib53) 2002; 15
Wu (10.1016/j.neurobiolaging.2010.11.008_bib56) 2010
He (10.1016/j.neurobiolaging.2010.11.008_bib19) 2007; 17
Peng (10.1016/j.neurobiolaging.2010.11.008_bib34) 2005; 27
Folstein (10.1016/j.neurobiolaging.2010.11.008_bib15) 1975; 12
Thompson (10.1016/j.neurobiolaging.2010.11.008_bib51) 2004; 23
Holland (10.1016/j.neurobiolaging.2010.11.008_bib20) 2009; 106
Murphy (10.1016/j.neurobiolaging.2010.11.008_bib33) 1990; 11
Jones (10.1016/j.neurobiolaging.2010.11.008_bib23) 2005; 26
Shattuck (10.1016/j.neurobiolaging.2010.11.008_bib42) 2001; 20
Davatzikos (10.1016/j.neurobiolaging.2010.11.008_bib7) 2009; 132
Julkunen (10.1016/j.neurobiolaging.2010.11.008_bib24) 2009; 28
Wesson (10.1016/j.neurobiolaging.2010.11.008_bib54) 2010; 30
Gogtay (10.1016/j.neurobiolaging.2010.11.008_bib17) 2004; 101
Wesson (10.1016/j.neurobiolaging.2010.11.008_bib55) 2010; 10
Desikan (10.1016/j.neurobiolaging.2010.11.008_bib8) 2009; 132
Li (10.1016/j.neurobiolaging.2010.11.008_bib28) 2010
Rubinov (10.1016/j.neurobiolaging.2010.11.008_bib41) 2009; 52
Aganj (10.1016/j.neurobiolaging.2010.11.008_bib2) 2009; 30
Doty (10.1016/j.neurobiolaging.2010.11.008_bib10) 2001; 158
Dickerson (10.1016/j.neurobiolaging.2010.11.008_bib9) 2009; 30
Koss (10.1016/j.neurobiolaging.2010.11.008_bib25) 1988; 38
Lerch (10.1016/j.neurobiolaging.2010.11.008_bib26) 2005; 15
Talamo (10.1016/j.neurobiolaging.2010.11.008_bib48) 1989; 337
Egúıluz (10.1016/j.neurobiolaging.2010.11.008_bib13) 2005; 94
Singh (10.1016/j.neurobiolaging.2010.11.008_bib43) 2006; 129
Smith (10.1016/j.neurobiolaging.2010.11.008_bib45) 2002; 17
Frisoni (10.1016/j.neurobiolaging.2010.11.008_bib16) 2009; 256
Thompson (10.1016/j.neurobiolaging.2010.11.008_bib50) 2003; 23
Petersen (10.1016/j.neurobiolaging.2010.11.008_bib35) 2001; 56
Thomas (10.1016/j.neurobiolaging.2010.11.008_bib49) 2009; 48
Regeur (10.1016/j.neurobiolaging.2010.11.008_bib39) 2000; 7
McCaffrey (10.1016/j.neurobiolaging.2010.11.008_bib29) 2000; 12
Petersen (10.1016/j.neurobiolaging.2010.11.008_bib36) 2004; 256
Toga (10.1016/j.neurobiolaging.2010.11.008_bib52) 2003; 5
Hutton (10.1016/j.neurobiolaging.2010.11.008_bib22) 2009; 48
Du (10.1016/j.neurobiolaging.2010.11.008_bib11) 2007; 130
Sowell (10.1016/j.neurobiolaging.2010.11.008_bib46) 2004; 24
Sled (10.1016/j.neurobiolaging.2010.11.008_bib44) 1998; 17
Good (10.1016/j.neurobiolaging.2010.11.008_bib18) 2001; 14
Petersen (10.1016/j.neurobiolaging.2010.11.008_bib37) 1999; 56
Morris (10.1016/j.neurobiolaging.2010.11.008_bib32) 1993; 42
Resnick (10.1016/j.neurobiolaging.2010.11.008_bib40) 2003; 23
Chetelat (10.1016/j.neurobiolaging.2010.11.008_bib3) 2005; 27
Dubois (10.1016/j.neurobiolaging.2010.11.008_bib12) 2007; 6
Lerch (10.1016/j.neurobiolaging.2010.11.008_bib27) 2005; 24
References_xml – volume: 20
  start-page: 1167
  year: 2001
  end-page: 1177
  ident: bib42
  article-title: Automated graph-based analysis and correction of cortical volume topology
  publication-title: IEEE Trans. Med. Imaging
– volume: 101
  start-page: 8174
  year: 2004
  end-page: 8179
  ident: bib17
  article-title: Dynamic mapping of human cortical development during childhood through early adulthood
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 23
  start-page: S2
  year: 2004
  end-page: S18
  ident: bib51
  article-title: Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia
  publication-title: Neuroimage
– volume: 42
  start-page: 2412
  year: 1993
  end-page: 2414
  ident: bib32
  article-title: The clinical dementia rating (CDR): Current version and scoring rules
  publication-title: Neurology
– volume: 106
  start-page: 20954
  year: 2009
  end-page: 20959
  ident: bib20
  article-title: Subregional neuroanatomical change as a biomarker for Alzheimer's disease
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 38
  start-page: 1228
  year: 1988
  end-page: 1232
  ident: bib25
  article-title: Olfactory detection and identification performance are dissociated in early Alzheimer's disease
  publication-title: Neurology
– volume: 24
  start-page: 8223
  year: 2004
  end-page: 8231
  ident: bib46
  article-title: Longitudinal mapping of cortical thickness and brain growth in normal children
  publication-title: J. Neurosci
– volume: 130
  start-page: 1159
  year: 2007
  end-page: 1166
  ident: bib11
  article-title: Different regional patterns of cortical thinning in Alzheimer's disease and frontotemporal dementia
  publication-title: Brain
– volume: 256
  start-page: 16
  year: 2009
  end-page: 924
  ident: bib16
  article-title: In vivo mapping of incremental cortical atrophy from incipient to overt Alzheimer's disease
  publication-title: J. Neurol
– volume: 256
  start-page: 183
  year: 2004
  end-page: 194
  ident: bib36
  article-title: Mild cognitive impairment as a diagnostic entity
  publication-title: J. Intern. Med
– volume: 14
  start-page: 685
  year: 2001
  end-page: 700
  ident: bib18
  article-title: Cerebral asymmetry and the effects of sex and handedness on brain structure: A voxel-based morphometric analysis of 465 normal adult human brains
  publication-title: Neuroimage
– volume: 30
  start-page: 388
  year: 2006
  end-page: 399
  ident: bib57
  article-title: CLASSIC: Consistent longitudinal alignment and segmentation for serial image computing
  publication-title: Neuroimage
– volume: 56
  start-page: 303
  year: 1999
  end-page: 308
  ident: bib37
  article-title: Mild cognitive impairment: clinical characterization and outcome
  publication-title: Arch. Neurol
– volume: 56
  start-page: 1133
  year: 2001
  end-page: 1142
  ident: bib35
  article-title: Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review)
  publication-title: Neurology
– volume: 26
  start-page: 546
  year: Jun, 2005
  end-page: 554
  ident: bib23
  article-title: The effect of filter size on VBM analyses of DT-MRI data
  publication-title: Neuroimage
– volume: 12
  start-page: 189
  year: 1975
  end-page: 198
  ident: bib15
  article-title: Mini-mental state: A practical method for grading the cognitive state of patients for the clinician
  publication-title: J. Psychiatr. Res
– volume: 52
  start-page: 1059
  year: 2009
  end-page: 1069
  ident: bib41
  article-title: Complex network measures of brain connectivity: Uses and interpretations
  publication-title: Neuroimage
– volume: 129
  start-page: 2885
  year: 2006
  end-page: 2893
  ident: bib43
  article-title: Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer's disease
  publication-title: Brain
– volume: 30
  start-page: 188
  year: 2009
  end-page: 199
  ident: bib2
  article-title: Measurement of cortical thickness from MRI by minimum line integrals on soft-classified tissue
  publication-title: Hum. Brain Mapp
– volume: 28
  start-page: 404
  year: 2009
  end-page: 412
  ident: bib24
  article-title: Cortical thickness analysis to detect progressive mild cognitive impairment: A reference to Alzheimer's disease
  publication-title: Dementia and Ceriatric Cognitive. Disorders
– volume: 1991
  start-page: 92
  year: 2007
  end-page: 99
  ident: bib47
  article-title: Small-world networks and functional connectivity in Alzheimer's disease
  publication-title: Cereb. Cortex
– volume: 15
  start-page: 995
  year: 2005
  end-page: 1001
  ident: bib26
  article-title: Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy
  publication-title: Cereb. Cortex
– volume: 132
  start-page: 2036
  year: 2009
  end-page: 2047
  ident: bib38
  article-title: Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve
  publication-title: Brain
– volume: 132
  start-page: 2048
  year: 2009
  end-page: 2057
  ident: bib8
  article-title: Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease
  publication-title: Brain
– year: 2010
  ident: bib28
  article-title: Consistent 4d Cortical Thickness Measurement for Longitudinal Neuroimaging Study
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  ident: bib53
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single subject brain
  publication-title: Neuroimage
– volume: 17
  start-page: 2407
  year: 2007
  end-page: 2419
  ident: bib19
  article-title: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI
  publication-title: Cereb. Cortex
– volume: 94
  start-page: 018102
  year: 2005
  ident: bib13
  article-title: Scale-free brain functional networks
  publication-title: Phys. Review Lett.
– volume: 24
  start-page: 163
  year: 2005
  end-page: 173
  ident: bib27
  article-title: Cortical thickness analysis examined through power analysis and a population simulation
  publication-title: Neuroimage
– volume: 11
  start-page: 465
  year: 1990
  end-page: 469
  ident: bib33
  article-title: Olfactory thresholds are associated with degree of dementia in Alzheimer's disease
  publication-title: Neurobiol. Aging
– volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  ident: bib34
  article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Transact. Pattern Anal. Machine Intell
– volume: 5
  start-page: 119
  year: 2003
  end-page: 145
  ident: bib52
  article-title: Temporal dynamics of brain anatomy
  publication-title: Annu. Rev. Biomed. Eng
– volume: 26
  start-page: 63
  year: 2006
  end-page: 72
  ident: bib1
  article-title: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs
  publication-title: J. Neurosci
– volume: 10
  start-page: 633
  year: 2010
  end-page: 635
  ident: bib55
  article-title: Should olfactory dysfunction be used as a biomarker of Alzheimer's disease?
  publication-title: Expert Review Neurother
– volume: 54
  start-page: 161
  year: 2010
  end-page: 169
  ident: bib4
  article-title: Network analysis detects changes in the contralesional hemisphere following stroke
  publication-title: Neuroimage
– volume: 30
  start-page: 432
  year: 2009
  end-page: 440
  ident: bib9
  article-title: Differential effects of aging and Alzheimer's disease on medial temporal lobe cortical thickness and surface area
  publication-title: Neurobiol. Aging
– volume: 7
  start-page: 47
  year: 2000
  end-page: 54
  ident: bib39
  article-title: Increasing loss of brain tissue with increasing dementia: a stereological study of post-mortem brains from elderly females
  publication-title: Eur. J. Neurol. Off. J. Eur. Fed. Neurol. Soc
– year: 1987
  ident: bib5
  article-title: Wechsler Memory Scale-Revised Manual
– volume: 48
  start-page: 371
  year: 2009
  end-page: 380
  ident: bib22
  article-title: A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging
  publication-title: Neuroimage
– volume: 23
  start-page: 3295
  year: 2003
  end-page: 3301
  ident: bib40
  article-title: Longitudinal magnetic resonance imaging studies of older adults: A shrinking brain
  publication-title: J. Neurosci
– year: 2010
  ident: bib56
  article-title: Groupwise Registration With Sharp Mean
– volume: 50
  start-page: 434
  year: 2010
  end-page: 445
  ident: bib58
  article-title: Bias in estimation of hippocampal atrophy using deformation-based morphometry arises from asymmetric global normalization: An illustration in ADNI 3T MRI data
  publication-title: Neuroimage
– volume: 12
  start-page: 29
  year: 2000
  end-page: 33
  ident: bib29
  article-title: Olfactory Dysfunction Discriminates Probable Alzheimer's Dementia From Major Depression: A Cross-Validation and Extension
  publication-title: J. Neuropsychiatry Clin. Neurosci
– volume: 23
  start-page: 994
  year: 2003
  end-page: 1005
  ident: bib50
  article-title: Dynamics of gray matter loss in Alzheimer's disease
  publication-title: J. Neurosci
– volume: 337
  start-page: 736
  year: 1989
  end-page: 739
  ident: bib48
  article-title: Pathological changes in olfactory neurons in patients with Alzheimer's disease
  publication-title: Nature
– volume: 48
  start-page: 117
  year: 2009
  end-page: 125
  ident: bib49
  article-title: Functional but Not Structural Changes Associated with Learning: an Exploration of Longitudinal voxel-Based Morphometry VBM
  publication-title: Neuroimage
– volume: 27
  start-page: 934
  year: 2005
  end-page: 946
  ident: bib3
  article-title: Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: A longitudinal MRI study
  publication-title: Neuroimage
– volume: 132
  start-page: 2026
  year: 2009
  end-page: 2035
  ident: bib7
  article-title: Longitudinal progression of Alzheimer's-like patterns of atrophy in normal older adults: the SPARE-AD index
  publication-title: Brain
– volume: 34
  start-page: 939
  year: 1984
  end-page: 944
  ident: bib30
  article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer's disease
  publication-title: Neurology
– volume: 402
  start-page: 273
  year: 2006
  end-page: 277
  ident: bib31
  article-title: Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis
  publication-title: Neurosci. Lett
– volume: 17
  start-page: 87
  year: 1998
  end-page: 97
  ident: bib44
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans. Med. Imaging
– volume: 30
  start-page: 505
  year: 2010
  end-page: 514
  ident: bib54
  article-title: Olfactory dysfunction correlates with amyloid-beta burden in an Alzheimer's disease mouse model
  publication-title: J. Neurosci. Off. J. Soc. Neurosci
– volume: 6
  start-page: 734
  year: 2007
  end-page: 746
  ident: bib12
  article-title: Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria
  publication-title: Lancet Neurol
– volume: 40
  start-page: 1701
  year: 2008
  end-page: 1710
  ident: bib21
  article-title: Voxel-based cortical thickness measurements in MRI
  publication-title: Neuroimage
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  ident: bib45
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp
– volume: 26
  start-page: 93
  year: 2007
  end-page: 105
  ident: bib14
  article-title: Compare: Classification of morphological patterns using adaptive regional elements
  publication-title: IEEE Trans Med Imaging
– volume: 158
  start-page: 1533
  year: 2001
  end-page: 1534
  ident: bib10
  article-title: Olfactory Deficit in Alzheimer's Disease?
  publication-title: Am. J. Psychiatry
– volume: 106
  start-page: 20954
  year: 2009
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib20
  article-title: Subregional neuroanatomical change as a biomarker for Alzheimer's disease
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0906053106
– volume: 12
  start-page: 189
  year: 1975
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib15
  article-title: Mini-mental state: A practical method for grading the cognitive state of patients for the clinician
  publication-title: J. Psychiatr. Res
  doi: 10.1016/0022-3956(75)90026-6
– volume: 30
  start-page: 432
  year: 2009
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib9
  article-title: Differential effects of aging and Alzheimer's disease on medial temporal lobe cortical thickness and surface area
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2007.07.022
– volume: 132
  start-page: 2036
  year: 2009
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib38
  article-title: Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve
  publication-title: Brain
  doi: 10.1093/brain/awp105
– volume: 27
  start-page: 1226
  year: 2005
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib34
  article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Transact. Pattern Anal. Machine Intell
  doi: 10.1109/TPAMI.2005.159
– volume: 158
  start-page: 1533
  year: 2001
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib10
  article-title: Olfactory Deficit in Alzheimer's Disease?
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.158.9.1533-a
– volume: 132
  start-page: 2026
  year: 2009
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib7
  article-title: Longitudinal progression of Alzheimer's-like patterns of atrophy in normal older adults: the SPARE-AD index
  publication-title: Brain
  doi: 10.1093/brain/awp091
– volume: 40
  start-page: 1701
  year: 2008
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib21
  article-title: Voxel-based cortical thickness measurements in MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.01.027
– volume: 129
  start-page: 2885
  year: 2006
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib43
  article-title: Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awl256
– volume: 15
  start-page: 995
  year: 2005
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib26
  article-title: Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhh200
– volume: 10
  start-page: 633
  year: 2010
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib55
  article-title: Should olfactory dysfunction be used as a biomarker of Alzheimer's disease?
  publication-title: Expert Review Neurother
  doi: 10.1586/ern.10.33
– volume: 20
  start-page: 1167
  year: 2001
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib42
  article-title: Automated graph-based analysis and correction of cortical volume topology
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.963819
– volume: 26
  start-page: 93
  year: 2007
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib14
  article-title: Compare: Classification of morphological patterns using adaptive regional elements
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2006.886812
– volume: 17
  start-page: 2407
  year: 2007
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib19
  article-title: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhl149
– volume: 23
  start-page: 994
  year: 2003
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib50
  article-title: Dynamics of gray matter loss in Alzheimer's disease
  publication-title: J. Neurosci
  doi: 10.1523/JNEUROSCI.23-03-00994.2003
– volume: 17
  start-page: 87
  year: 1998
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib44
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.668698
– volume: 24
  start-page: 163
  year: 2005
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib27
  article-title: Cortical thickness analysis examined through power analysis and a population simulation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.045
– year: 2010
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib28
– volume: 23
  start-page: S2
  year: 2004
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib51
  article-title: Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.071
– volume: 12
  start-page: 29
  year: 2000
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib29
  article-title: Olfactory Dysfunction Discriminates Probable Alzheimer's Dementia From Major Depression: A Cross-Validation and Extension
  publication-title: J. Neuropsychiatry Clin. Neurosci
  doi: 10.1176/jnp.12.1.29
– volume: 337
  start-page: 736
  year: 1989
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib48
  article-title: Pathological changes in olfactory neurons in patients with Alzheimer's disease
  publication-title: Nature
  doi: 10.1038/337736a0
– volume: 24
  start-page: 8223
  year: 2004
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib46
  article-title: Longitudinal mapping of cortical thickness and brain growth in normal children
  publication-title: J. Neurosci
  doi: 10.1523/JNEUROSCI.1798-04.2004
– volume: 26
  start-page: 63
  year: 2006
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib1
  article-title: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs
  publication-title: J. Neurosci
  doi: 10.1523/JNEUROSCI.3874-05.2006
– volume: 14
  start-page: 685
  year: 2001
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib18
  article-title: Cerebral asymmetry and the effects of sex and handedness on brain structure: A voxel-based morphometric analysis of 465 normal adult human brains
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0857
– volume: 402
  start-page: 273
  year: 2006
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib31
  article-title: Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis
  publication-title: Neurosci. Lett
  doi: 10.1016/j.neulet.2006.04.006
– volume: 26
  start-page: 546
  year: 2005
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib23
  article-title: The effect of filter size on VBM analyses of DT-MRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.02.013
– year: 1987
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib5
– volume: 6
  start-page: 734
  year: 2007
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib12
  article-title: Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(07)70178-3
– volume: 48
  start-page: 371
  year: 2009
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib22
  article-title: A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.06.043
– volume: 130
  start-page: 1159
  year: 2007
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib11
  article-title: Different regional patterns of cortical thinning in Alzheimer's disease and frontotemporal dementia
  publication-title: Brain
  doi: 10.1093/brain/awm016
– volume: 28
  start-page: 404
  year: 2009
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib24
  article-title: Cortical thickness analysis to detect progressive mild cognitive impairment: A reference to Alzheimer's disease
  publication-title: Dementia and Ceriatric Cognitive. Disorders
  doi: 10.1159/000256274
– volume: 38
  start-page: 1228
  year: 1988
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib25
  article-title: Olfactory detection and identification performance are dissociated in early Alzheimer's disease
  publication-title: Neurology
  doi: 10.1212/WNL.38.8.1228
– volume: 5
  start-page: 119
  year: 2003
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib52
  article-title: Temporal dynamics of brain anatomy
  publication-title: Annu. Rev. Biomed. Eng
  doi: 10.1146/annurev.bioeng.5.040202.121611
– volume: 132
  start-page: 2048
  year: 2009
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib8
  article-title: Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awp123
– volume: 54
  start-page: 161
  year: 2010
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib4
  article-title: Network analysis detects changes in the contralesional hemisphere following stroke
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.032
– volume: 34
  start-page: 939
  year: 1984
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib30
  article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer's disease
  publication-title: Neurology
  doi: 10.1212/WNL.34.7.939
– volume: 56
  start-page: 1133
  year: 2001
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib35
  article-title: Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review)
  publication-title: Neurology
  doi: 10.1212/WNL.56.9.1133
– volume: 30
  start-page: 505
  year: 2010
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib54
  article-title: Olfactory dysfunction correlates with amyloid-beta burden in an Alzheimer's disease mouse model
  publication-title: J. Neurosci. Off. J. Soc. Neurosci
  doi: 10.1523/JNEUROSCI.4622-09.2010
– volume: 256
  start-page: 183
  year: 2004
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib36
  article-title: Mild cognitive impairment as a diagnostic entity
  publication-title: J. Intern. Med
  doi: 10.1111/j.1365-2796.2004.01388.x
– volume: 17
  start-page: 143
  year: 2002
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib45
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp
  doi: 10.1002/hbm.10062
– volume: 30
  start-page: 188
  year: 2009
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib2
  article-title: Measurement of cortical thickness from MRI by minimum line integrals on soft-classified tissue
  publication-title: Hum. Brain Mapp
  doi: 10.1002/hbm.20740
– volume: 23
  start-page: 3295
  year: 2003
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib40
  article-title: Longitudinal magnetic resonance imaging studies of older adults: A shrinking brain
  publication-title: J. Neurosci
  doi: 10.1523/JNEUROSCI.23-08-03295.2003
– volume: 52
  start-page: 1059
  year: 2009
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib41
  article-title: Complex network measures of brain connectivity: Uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 56
  start-page: 303
  year: 1999
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib37
  article-title: Mild cognitive impairment: clinical characterization and outcome
  publication-title: Arch. Neurol
  doi: 10.1001/archneur.56.3.303
– volume: 30
  start-page: 388
  year: 2006
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib57
  article-title: CLASSIC: Consistent longitudinal alignment and segmentation for serial image computing
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.09.054
– volume: 42
  start-page: 2412
  year: 1993
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib32
  article-title: The clinical dementia rating (CDR): Current version and scoring rules
  publication-title: Neurology
  doi: 10.1212/WNL.43.11.2412-a
– volume: 94
  start-page: 018102
  year: 2005
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib13
  article-title: Scale-free brain functional networks
  publication-title: Phys. Review Lett.
  doi: 10.1103/PhysRevLett.94.018102
– volume: 256
  start-page: 16
  year: 2009
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib16
  article-title: In vivo mapping of incremental cortical atrophy from incipient to overt Alzheimer's disease
  publication-title: J. Neurol
  doi: 10.1007/s00415-009-5040-7
– volume: 1991
  start-page: 92
  year: 2007
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib47
  article-title: Small-world networks and functional connectivity in Alzheimer's disease
  publication-title: Cereb. Cortex
– volume: 11
  start-page: 465
  year: 1990
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib33
  article-title: Olfactory thresholds are associated with degree of dementia in Alzheimer's disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/0197-4580(90)90014-Q
– year: 2010
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib56
– volume: 50
  start-page: 434
  year: 2010
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib58
  article-title: Bias in estimation of hippocampal atrophy using deformation-based morphometry arises from asymmetric global normalization: An illustration in ADNI 3T MRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.007
– volume: 15
  start-page: 273
  year: 2002
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib53
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 27
  start-page: 934
  year: 2005
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib3
  article-title: Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: A longitudinal MRI study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.05.015
– volume: 101
  start-page: 8174
  year: 2004
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib17
  article-title: Dynamic mapping of human cortical development during childhood through early adulthood
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0402680101
– volume: 7
  start-page: 47
  year: 2000
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib39
  article-title: Increasing loss of brain tissue with increasing dementia: a stereological study of post-mortem brains from elderly females
  publication-title: Eur. J. Neurol. Off. J. Eur. Fed. Neurol. Soc
– volume: 48
  start-page: 117
  year: 2009
  ident: 10.1016/j.neurobiolaging.2010.11.008_bib49
  article-title: Functional but Not Structural Changes Associated with Learning: an Exploration of Longitudinal voxel-Based Morphometry VBM
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.05.097
SSID ssj0007476
Score 2.4431834
Snippet Neuroimage measures from magnetic resonance (MR) imaging, such as cortical thickness, have been playing an increasingly important role in searching for...
Abstract Neuroimage measures from magnetic resonance (MR) imaging, such as cortical thickness, have been playing an increasingly important role in searching...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 427.e15
SubjectTerms Aged
Aging - pathology
Alzheimer Disease - pathology
Alzheimer's disease
Brain network
Cerebral Cortex - pathology
Classification
Cortical thickness
Dynamics
Female
Humans
Image Interpretation, Computer-Assisted - methods
Internal Medicine
Longitudinal analysis
Magnetic Resonance Imaging - methods
Male
Mild cognitive impairment
Neurology
Reproducibility of Results
Sensitivity and Specificity
Title Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0197458010004896
https://www.clinicalkey.es/playcontent/1-s2.0-S0197458010004896
https://dx.doi.org/10.1016/j.neurobiolaging.2010.11.008
https://www.ncbi.nlm.nih.gov/pubmed/21272960
https://www.proquest.com/docview/915490230
https://www.proquest.com/docview/916147230
https://pubmed.ncbi.nlm.nih.gov/PMC3086988
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLamISEuaDB-lMHkwwSn0CSOY1sIoWowFRC7wKTdLCexWaBLp6U9sAN_O-_ZTkfZhIY4NvVrE_vl83vJ975HyB5TtZIlKxMH21lS5KZOVM0g57GCmcxJLhRWI386LKdHxYdjfrxB9odaGKRVRuwPmO7ROh4Zx9kcn7Xt-DMEJ6LggLC-MFqh7HZRCPTylz8vaR4QLpehZBr1vWV6m-xdcry8ZiSqHfmOQIHohZqe2Gzy-m3qahj6J5vyt-3pYIvcjXElnYRTv0c2bHefbE86yKlPf9Dn1DM9_SP0bXLxtkWwCCQYaqIsCZ07Optj-6Jlg62yKOSl_kE3RUr8d4REGsqEe9p2dDK7OLHtqT1_0dP4lociif4rbUKTe_jhhnaBZU6d9QKi_QNydPDuy_40iT0YklqkcpEYVWepFTmz3OSFlRmXAIiVKMq8rlSeNo6VqFHIRQ2hmDKZtRwiHuEALRrZGPaQbHbzzj4mVDGXcmxuzJUtuBBVZhwybF3JM1ll1Yi8GqZc11GgHPtkzPTARPum1xdM44JBDqNhwUaEr6zPglDHDe1eD6urh2JUgE8NO8oN7cV19raPWNDrTPe5TvUVfx2RNyvLNZf_h_-mgztqQAV81WM6O1_2WqHyHqaXfxsCkZnwQx4FB17NG6r-55DawrWtufZqAGqSr3_TtSdem5xBiqykfPLf17ZD7sCnPBDkn5LNxfnSPoP4b1Ht-ht8l9yavP84PfwFxGVhJA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrQRcEFAey9OHCk7R5uXYFkJoVai2tN0LrdSblYdDA9ts1ewe6K9nxnYWllaoiOvGk2zsyeeZ5JtvALYTVSqZJVlQ43YWpHFeBqpMMOcxIsmjWnKhqBr5cJpNjtPPJ_xkA3b6WhiiVXrsd5hu0dr_MvKzOTpvmtEXDE5EyhFhbWG0ym7BJqlT8QFsjvf2J9MVIGPEnLmqaZL4luFt2P5F87KykSR4ZJsCOa4XyXpSv8nrd6qrkeifhMrfdqjd-3DPh5Zs7P79A9gw7UPYGreYVp_9YG-YJXvat-hbcPmxIbxwPBiWe2USNq_ZbE4djJYVdctimJrad92MWPHfCRWZqxTuWNOy8ezy1DRn5uJtx_yHHkY8-q-scn3u8cQVax3RnNXGaoh2j-B499PRziTwbRiCUoRyEeSqjEIj4sTwPE6NjLhETCxEmsVloeKwqpOMZAq5KDEaU3lkDMegR9QIGJWs8uQxDNp5a54CU0kdcupvzJVJuRBFlNdEsq0zHskiKobwrp9yXXqNcmqVMdM9Ge2bXl8wTQuGaYzGBRsCX1mfO62OG9q971dX9_WoiKAaN5Ub2ovr7E3n4aDTke5iHeorLjuEDyvLNa__h2uz3h01AgN97clbM192WpH4HmWYfxuCwZmwQ544B17NGwn_x5jd4r2tufZqAMmSrx9pm1MrT55glqykfPbf9_Ya7kyODg_0wd50_zncxSOx48u_gMHiYmleYji4KF75x_0nmsdj1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discriminant+analysis+of+longitudinal+cortical+thickness+changes+in+Alzheimer%27s+disease+using+dynamic+and+network+features&rft.jtitle=Neurobiology+of+aging&rft.au=Li%2C+Yang&rft.au=Wang%2C+Yaping&rft.au=Wu%2C+Guorong&rft.au=Shi%2C+Feng&rft.date=2012-02-01&rft.pub=Elsevier+Inc&rft.issn=0197-4580&rft.eissn=1558-1497&rft.volume=33&rft.issue=2&rft.spage=427.e15&rft.epage=427.e30&rft_id=info:doi/10.1016%2Fj.neurobiolaging.2010.11.008&rft.externalDocID=S0197458010004896
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01974580%2FS0197458011X00143%2Fcov150h.gif