GLP-1R Agonist Liraglutide Activates Cytoprotective Pathways and Improves Outcomes After Experimental Myocardial Infarction in Mice
GLP-1R Agonist Liraglutide Activates Cytoprotective Pathways and Improves Outcomes After Experimental Myocardial Infarction in Mice Mohammad Hossein Noyan-Ashraf 1 , M. Abdul Momen 1 , Kiwon Ban 1 , 6 , Al-Muktafi Sadi 1 , Yu-Qing Zhou 2 , Ali M. Riazi 2 , Laurie L. Baggio 3 , R. Mark Henkelman 2 ,...
Saved in:
Published in | Diabetes (New York, N.Y.) Vol. 58; no. 4; pp. 975 - 983 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
American Diabetes Association
01.04.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | GLP-1R Agonist Liraglutide Activates Cytoprotective Pathways and Improves Outcomes After Experimental Myocardial Infarction
in Mice
Mohammad Hossein Noyan-Ashraf 1 ,
M. Abdul Momen 1 ,
Kiwon Ban 1 , 6 ,
Al-Muktafi Sadi 1 ,
Yu-Qing Zhou 2 ,
Ali M. Riazi 2 ,
Laurie L. Baggio 3 ,
R. Mark Henkelman 2 ,
Mansoor Husain 1 , 4 , 5 , 6 and
Daniel J. Drucker 3 , 5
1 Toronto General Hospital, Toronto, Ontario, Canada;
2 Mouse Imaging Centre, Department of Medical Biophysics, Hospital for Sick Children, Toronto, Ontario, Canada;
3 Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada;
4 Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada;
5 Department of Medicine, University of Toronto, Toronto, Ontario, Canada;
6 Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
Corresponding author: Daniel J. Drucker, d.drucker{at}utoronto.ca .
M.H. and D.J.D. contributed equally to this work.
Abstract
OBJECTIVE Glucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat type 2 diabetes, and transient GLP-1 administration
improved cardiac function in humans after acute myocardial infarction (MI) and percutaneous revascularization. However, the
consequences of GLP-1R activation before ischemic myocardial injury remain unclear.
RESEARCH DESIGN AND METHODS We assessed the pathophysiology and outcome of coronary artery occlusion in normal and diabetic mice pretreated with the
GLP-1R agonist liraglutide.
RESULTS Male C57BL/6 mice were treated twice daily for 7 days with liraglutide or saline followed by induction of MI. Survival was
significantly higher in liraglutide-treated mice. Liraglutide reduced cardiac rupture (12 of 60 versus 46 of 60; P = 0.0001) and infarct size (21 ± 2% versus 29 ± 3%, P = 0.02) and improved cardiac output (12.4 ± 0.6 versus 9.7 ± 0.6 ml/min; P = 0.002). Liraglutide also modulated the expression and activity of cardioprotective genes in the mouse heart, including
Akt, GSK3β, PPARβ-δ, Nrf-2, and HO-1. The effects of liraglutide on survival were independent of weight loss. Moreover, liraglutide
conferred cardioprotection and survival advantages over metformin, despite equivalent glycemic control, in diabetic mice with
experimental MI. The cardioprotective effects of liraglutide remained detectable 4 days after cessation of therapy and may
be partly direct, because liraglutide increased cyclic AMP formation and reduced the extent of caspase-3 activation in cardiomyocytes
in a GLP-1R–dependent manner in vitro.
CONCLUSIONS These findings demonstrate that GLP-1R activation engages prosurvival pathways in the normal and diabetic mouse heart, leading
to improved outcomes and enhanced survival after MI in vivo.
Footnotes
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore
be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Received August 28, 2008.
Accepted January 9, 2009.
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work
is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
© 2009 by the American Diabetes Association. |
---|---|
AbstractList | Glucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat type 2 diabetes, and transient GLP-1 administration improved cardiac function in humans after acute myocardial infarction (MI) and percutaneous revascularization. However, the consequences of GLP-1R activation before ischemic myocardial injury remain unclear. We assessed the pathophysiology and outcome of coronary artery occlusion in normal and diabetic mice pretreated with the GLP-1R agonist liraglutide. Male C57BL/6 mice were treated twice daily for 7 days with liraglutide or saline followed by induction of MI. Survival was significantly higher in liraglutide-treated mice. Liraglutide reduced cardiac rupture (12 of 60 versus 46 of 60; P = 0.0001) and infarct size (21 +/- 2% versus 29 +/- 3%, P = 0.02) and improved cardiac output (12.4 +/- 0.6 versus 9.7 +/- 0.6 ml/min; P = 0.002). Liraglutide also modulated the expression and activity of cardioprotective genes in the mouse heart, including Akt, GSK3beta, PPARbeta-delta, Nrf-2, and HO-1. The effects of liraglutide on survival were independent of weight loss. Moreover, liraglutide conferred cardioprotection and survival advantages over metformin, despite equivalent glycemic control, in diabetic mice with experimental MI. The cardioprotective effects of liraglutide remained detectable 4 days after cessation of therapy and may be partly direct, because liraglutide increased cyclic AMP formation and reduced the extent of caspase-3 activation in cardiomyocytes in a GLP-1R-dependent manner in vitro. These findings demonstrate that GLP-1R activation engages prosurvival pathways in the normal and diabetic mouse heart, leading to improved outcomes and enhanced survival after MI in vivo. Glucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat type 2 diabetes, and transient GLP-1 administration improved cardiac function in humans after acute myocardial infarction (MI) and percutaneous revascularization. However, the consequences of GLP-1R activation before ischemic myocardial injury remain unclear.OBJECTIVEGlucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat type 2 diabetes, and transient GLP-1 administration improved cardiac function in humans after acute myocardial infarction (MI) and percutaneous revascularization. However, the consequences of GLP-1R activation before ischemic myocardial injury remain unclear.We assessed the pathophysiology and outcome of coronary artery occlusion in normal and diabetic mice pretreated with the GLP-1R agonist liraglutide.RESEARCH DESIGN AND METHODSWe assessed the pathophysiology and outcome of coronary artery occlusion in normal and diabetic mice pretreated with the GLP-1R agonist liraglutide.Male C57BL/6 mice were treated twice daily for 7 days with liraglutide or saline followed by induction of MI. Survival was significantly higher in liraglutide-treated mice. Liraglutide reduced cardiac rupture (12 of 60 versus 46 of 60; P = 0.0001) and infarct size (21 +/- 2% versus 29 +/- 3%, P = 0.02) and improved cardiac output (12.4 +/- 0.6 versus 9.7 +/- 0.6 ml/min; P = 0.002). Liraglutide also modulated the expression and activity of cardioprotective genes in the mouse heart, including Akt, GSK3beta, PPARbeta-delta, Nrf-2, and HO-1. The effects of liraglutide on survival were independent of weight loss. Moreover, liraglutide conferred cardioprotection and survival advantages over metformin, despite equivalent glycemic control, in diabetic mice with experimental MI. The cardioprotective effects of liraglutide remained detectable 4 days after cessation of therapy and may be partly direct, because liraglutide increased cyclic AMP formation and reduced the extent of caspase-3 activation in cardiomyocytes in a GLP-1R-dependent manner in vitro.RESULTSMale C57BL/6 mice were treated twice daily for 7 days with liraglutide or saline followed by induction of MI. Survival was significantly higher in liraglutide-treated mice. Liraglutide reduced cardiac rupture (12 of 60 versus 46 of 60; P = 0.0001) and infarct size (21 +/- 2% versus 29 +/- 3%, P = 0.02) and improved cardiac output (12.4 +/- 0.6 versus 9.7 +/- 0.6 ml/min; P = 0.002). Liraglutide also modulated the expression and activity of cardioprotective genes in the mouse heart, including Akt, GSK3beta, PPARbeta-delta, Nrf-2, and HO-1. The effects of liraglutide on survival were independent of weight loss. Moreover, liraglutide conferred cardioprotection and survival advantages over metformin, despite equivalent glycemic control, in diabetic mice with experimental MI. The cardioprotective effects of liraglutide remained detectable 4 days after cessation of therapy and may be partly direct, because liraglutide increased cyclic AMP formation and reduced the extent of caspase-3 activation in cardiomyocytes in a GLP-1R-dependent manner in vitro.These findings demonstrate that GLP-1R activation engages prosurvival pathways in the normal and diabetic mouse heart, leading to improved outcomes and enhanced survival after MI in vivo.CONCLUSIONSThese findings demonstrate that GLP-1R activation engages prosurvival pathways in the normal and diabetic mouse heart, leading to improved outcomes and enhanced survival after MI in vivo. GLP-1R Agonist Liraglutide Activates Cytoprotective Pathways and Improves Outcomes After Experimental Myocardial Infarction in Mice Mohammad Hossein Noyan-Ashraf 1 , M. Abdul Momen 1 , Kiwon Ban 1 , 6 , Al-Muktafi Sadi 1 , Yu-Qing Zhou 2 , Ali M. Riazi 2 , Laurie L. Baggio 3 , R. Mark Henkelman 2 , Mansoor Husain 1 , 4 , 5 , 6 and Daniel J. Drucker 3 , 5 1 Toronto General Hospital, Toronto, Ontario, Canada; 2 Mouse Imaging Centre, Department of Medical Biophysics, Hospital for Sick Children, Toronto, Ontario, Canada; 3 Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada; 4 Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada; 5 Department of Medicine, University of Toronto, Toronto, Ontario, Canada; 6 Department of Physiology, University of Toronto, Toronto, Ontario, Canada. Corresponding author: Daniel J. Drucker, d.drucker{at}utoronto.ca . M.H. and D.J.D. contributed equally to this work. Abstract OBJECTIVE Glucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat type 2 diabetes, and transient GLP-1 administration improved cardiac function in humans after acute myocardial infarction (MI) and percutaneous revascularization. However, the consequences of GLP-1R activation before ischemic myocardial injury remain unclear. RESEARCH DESIGN AND METHODS We assessed the pathophysiology and outcome of coronary artery occlusion in normal and diabetic mice pretreated with the GLP-1R agonist liraglutide. RESULTS Male C57BL/6 mice were treated twice daily for 7 days with liraglutide or saline followed by induction of MI. Survival was significantly higher in liraglutide-treated mice. Liraglutide reduced cardiac rupture (12 of 60 versus 46 of 60; P = 0.0001) and infarct size (21 ± 2% versus 29 ± 3%, P = 0.02) and improved cardiac output (12.4 ± 0.6 versus 9.7 ± 0.6 ml/min; P = 0.002). Liraglutide also modulated the expression and activity of cardioprotective genes in the mouse heart, including Akt, GSK3β, PPARβ-δ, Nrf-2, and HO-1. The effects of liraglutide on survival were independent of weight loss. Moreover, liraglutide conferred cardioprotection and survival advantages over metformin, despite equivalent glycemic control, in diabetic mice with experimental MI. The cardioprotective effects of liraglutide remained detectable 4 days after cessation of therapy and may be partly direct, because liraglutide increased cyclic AMP formation and reduced the extent of caspase-3 activation in cardiomyocytes in a GLP-1R–dependent manner in vitro. CONCLUSIONS These findings demonstrate that GLP-1R activation engages prosurvival pathways in the normal and diabetic mouse heart, leading to improved outcomes and enhanced survival after MI in vivo. Footnotes The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Received August 28, 2008. Accepted January 9, 2009. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. © 2009 by the American Diabetes Association. OBJECTIVE--Glucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat type 2 diabetes, and transient GLP-1 administration improved cardiac function in humans after acute myocardial infarction (MI) and percutaneous revascularization. However, the consequences of GLP-1R activation before ischo emic myocardial injury remain unclear. RESEARCH DESIGN AND METHODS--We assessed the pathophysiology and outcome of coronary artery occlusion in normal and diabetic mice pretreated with the GLP-1R agonist liraglutide. RESULTS--Male C57BL/6 mice were treated twice daily for 7 days with liraglutide or saline followed by induction of MI. Survival was significantly higher in liraglutide-treated mice. Liraglutide reduced cardiac rupture (12 of 60 versus 46 of 60; P = 0.0001) and infarct size (21 ± 2% versus 29 ± 3%, P = 0.02) and improved cardiac output (12.4 ± 0.6 versus 9.7 ± 0.6 ml/min; P = 0.002). Liraglutide also modulated the expression and activity of cardioprotective genes in the mouse heart, including Akt, GSK3β, PPARβ-δ, Nrf-2, and HO-1. The effects of liraglutide on survival were independent of weight loss. Moreover, liraglutide conferred cardioprotection and survival advantages over metformin, despite equivalent glycemic control, in diabetic mice with experimental MI. The cardioprotective effects of liraglutide remained detectable 4 days after cessation of therapy and may be partly direct, because liraglutide increased cyclic AMP formation and reduced the extent of caspase-3 activation in cardiomyocytes in a GLP-1R--dependent manner in vitro. CONCLUSIONS--These findings demonstrate that GLP-1R activation engages prosurvival pathways in the normal and diabetic mouse heart, leading to improved outcomes and enhanced survival after MI in vivo. Glucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat type 2 diabetes, and transient GLP-1 administration improved cardiac function in humans after acute myocardial infarction (MI) and percutaneous revascularization. However, the consequences of GLP-1R activation before ischemic myocardial injury remain unclear. We assessed the pathophysiology and outcome of coronary artery occlusion in normal and diabetic mice pretreated with the GLP-1R agonist liraglutide. Male C57BL/6 mice were treated twice daily for 7 days with liraglutide or saline followed by induction of MI. Survival was significantly higher in liraglutide-treated mice. Liraglutide reduced cardiac rupture (12 of 60 versus 46 of 60; P = 0.0001) and infarct size (21 +/- 2% versus 29 +/- 3%, P = 0.02) and improved cardiac output (12.4 +/- 0.6 versus 9.7 +/- 0.6 ml/min; P = 0.002). Liraglutide also modulated the expression and activity of cardioprotective genes in the mouse heart, including Akt, GSK3beta, PPARbeta-delta, Nrf-2, and HO-1. The effects of liraglutide on survival were independent of weight loss. Moreover, liraglutide conferred cardioprotection and survival advantages over metformin, despite equivalent glycemic control, in diabetic mice with experimental MI. The cardioprotective effects of liraglutide remained detectable 4 days after cessation of therapy and may be partly direct, because liraglutide increased cyclic AMP formation and reduced the extent of caspase-3 activation in cardiomyocytes in a GLP-1R-dependent manner in vitro. These findings demonstrate that GLP-1R activation engages prosurvival pathways in the normal and diabetic mouse heart, leading to improved outcomes and enhanced survival after MI in vivo. |
Audience | Professional |
Author | Ali M. Riazi Kiwon Ban Yu-Qing Zhou Laurie L. Baggio Mansoor Husain Mohammad Hossein Noyan-Ashraf M. Abdul Momen R. Mark Henkelman Daniel J. Drucker Al-Muktafi Sadi |
Author_xml | – sequence: 1 givenname: Mohammad Hossein surname: Noyan-Ashraf fullname: Noyan-Ashraf, Mohammad Hossein organization: Toronto General Hospital, Toronto, Ontario, Canada – sequence: 2 givenname: M. Abdul surname: Momen fullname: Momen, M. Abdul organization: Toronto General Hospital, Toronto, Ontario, Canada – sequence: 3 givenname: Kiwon surname: Ban fullname: Ban, Kiwon organization: Toronto General Hospital, Toronto, Ontario, Canada;, Department of Physiology, University of Toronto, Toronto, Ontario, Canada – sequence: 4 givenname: Al-Muktafi surname: Sadi fullname: Sadi, Al-Muktafi organization: Toronto General Hospital, Toronto, Ontario, Canada – sequence: 5 givenname: Yu-Qing surname: Zhou fullname: Zhou, Yu-Qing organization: Mouse Imaging Centre, Department of Medical Biophysics, Hospital for Sick Children, Toronto, Ontario, Canada – sequence: 6 givenname: Ali M. surname: Riazi fullname: Riazi, Ali M. organization: Mouse Imaging Centre, Department of Medical Biophysics, Hospital for Sick Children, Toronto, Ontario, Canada – sequence: 7 givenname: Laurie L. surname: Baggio fullname: Baggio, Laurie L. organization: Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada – sequence: 8 givenname: R. Mark surname: Henkelman fullname: Henkelman, R. Mark organization: Mouse Imaging Centre, Department of Medical Biophysics, Hospital for Sick Children, Toronto, Ontario, Canada – sequence: 9 givenname: Mansoor surname: Husain fullname: Husain, Mansoor organization: Toronto General Hospital, Toronto, Ontario, Canada;, Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada;, Department of Medicine, University of Toronto, Toronto, Ontario, Canada;, Department of Physiology, University of Toronto, Toronto, Ontario, Canada – sequence: 10 givenname: Daniel J. surname: Drucker fullname: Drucker, Daniel J. organization: Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada;, Department of Medicine, University of Toronto, Toronto, Ontario, Canada |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21324515$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19151200$$D View this record in MEDLINE/PubMed |
BookMark | eNp9k21rFDEQxxep2Ad94ReQRVFQ2DYP-5Q3wnHUWrjSIgq-C9ns7F7KXnIm2bb32i_uHD1brxwSyA6T3_wzmZ05TPass5Akryk5ZpxXJ21D6oxSwZ8lB7iLjLPq515yQAhlGa1EtZ8chnBNCClxvUj2qaAFZYQcJL_PZlcZ_ZZOemdNiOnMeNUPYzQtpBMdzY2KENLpKrqldxHWHkivVJzfqlVIlW3T8wWe3CB0OUbtFmhMugg-Pb1bgjcLsFEN6cXKaeVbg-a57ZRHHWdTY9MLo-Fl8rxTQ4BXm-9R8uPL6ffp12x2eXY-ncwyXZE6ZiXrIM_bqlJNLUSLPihrzQkIUTQVKRVnTSsKlbeCN0XeKgaKllTUXVvwJlf8KPl8r7scmwW0GlPzapBLzFL5lXTKyO0Ta-aydzeSlSUt6hIFPmwEvPs1QohyYYKGYVAW3BhkWRFREJYj-PYJeO1Gb_FxktEyr0TOBELv7qFeDSCN7RxeqteKckJFlQvOeIVUtoPqwQJmiG3QGXRv8cc7eFwtLIzeGfBxKwCZCHexV2MIsj6b_S-ZDavdMEAPEv_W9HKbf_NvxR9K_bf_EHi_AVTQaui8stqEB45RzvKCFo9Jau9C8NA9ShG5ngG5ngG5ngFkT56w2kS1bjishBl2Rny6j5ibfn5rPEjs1Aaw8x-Nopa5FFXB_wADPBUA |
CODEN | DIAEAZ |
CitedBy_id | crossref_primary_10_1016_j_metabol_2011_11_011 crossref_primary_10_1080_14017431_2016_1197417 crossref_primary_10_3109_08923973_2011_630398 crossref_primary_10_3390_pharmaceutics16091139 crossref_primary_10_1371_journal_pone_0054518 crossref_primary_10_1016_j_atherosclerosis_2011_12_039 crossref_primary_10_1016_j_amjcard_2012_08_035 crossref_primary_10_1007_s00395_015_0476_7 crossref_primary_10_1093_eurheartj_ehv239 crossref_primary_10_1161_CIRCULATIONAHA_111_064139 crossref_primary_10_1016_j_peptides_2017_04_009 crossref_primary_10_1161_CIRCULATIONAHA_117_032099 crossref_primary_10_1097_FJC_0000000000000557 crossref_primary_10_1021_acsptsci_9b00048 crossref_primary_10_1016_j_phrs_2017_12_001 crossref_primary_10_1186_s12933_015_0178_3 crossref_primary_10_1016_j_nefroe_2023_09_003 crossref_primary_10_2337_dc09_1499 crossref_primary_10_1007_s00125_010_1831_8 crossref_primary_10_1111_bph_12943 crossref_primary_10_1016_j_isci_2021_103382 crossref_primary_10_1016_j_peptides_2013_12_015 crossref_primary_10_2337_db16_1206 crossref_primary_10_4103_0366_6999_170259 crossref_primary_10_1186_1475_2840_12_154 crossref_primary_10_3987_COM_14_S_K_29 crossref_primary_10_17925_USE_2020_16_2_80 crossref_primary_10_1038_nbt_2682 crossref_primary_10_1007_s00210_016_1330_7 crossref_primary_10_18705_2311_4495_2019_6_4_22_34 crossref_primary_10_1007_s00059_010_3340_4 crossref_primary_10_3390_medicina60030357 crossref_primary_10_1007_s12020_015_0798_0 crossref_primary_10_4009_jsdt_45_49 crossref_primary_10_1016_j_amjcard_2012_01_398 crossref_primary_10_1016_j_peptides_2016_02_007 crossref_primary_10_1016_j_omtn_2023_05_021 crossref_primary_10_1016_j_peptides_2017_12_005 crossref_primary_10_1093_cvr_cvs123 crossref_primary_10_1592_phco_31_9_896 crossref_primary_10_3389_fendo_2020_599355 crossref_primary_10_15369_sujms_26_191 crossref_primary_10_33549_physiolres_933558 crossref_primary_10_3390_ijms16024226 crossref_primary_10_1016_j_tem_2024_07_012 crossref_primary_10_1155_2015_606031 crossref_primary_10_25048_tudod_1074076 crossref_primary_10_14341_DM7192 crossref_primary_10_1186_1471_2261_9_31 crossref_primary_10_1177_1479164112440816 crossref_primary_10_1016_j_atherosclerosis_2015_03_026 crossref_primary_10_1186_s12933_017_0643_2 crossref_primary_10_1210_en_2017_00339 crossref_primary_10_1016_j_cpcardiol_2014_09_002 crossref_primary_10_3389_fphar_2020_00432 crossref_primary_10_1016_j_mehy_2011_09_011 crossref_primary_10_1007_s00125_010_1767_z crossref_primary_10_1586_eem_11_6 crossref_primary_10_1089_dia_2010_0165 crossref_primary_10_1007_s00210_017_1414_z crossref_primary_10_1007_s11154_014_9290_z crossref_primary_10_1016_j_yjmcc_2015_09_018 crossref_primary_10_1152_ajpheart_00209_2014 crossref_primary_10_1016_j_lfs_2021_119815 crossref_primary_10_1016_j_peptides_2017_12_021 crossref_primary_10_1210_endrev_bnaa032 crossref_primary_10_1016_j_molmet_2022_101586 crossref_primary_10_1007_s00125_009_1643_x crossref_primary_10_3390_medicina61010017 crossref_primary_10_1007_s13300_022_01217_z crossref_primary_10_1186_s12872_016_0260_0 crossref_primary_10_1007_s11428_017_0267_x crossref_primary_10_14341_2072_0351_5815 crossref_primary_10_1016_j_pharmthera_2022_108270 crossref_primary_10_2174_1574885518666230516150404 crossref_primary_10_1016_j_yjmcc_2014_08_022 crossref_primary_10_1186_s12933_014_0132_9 crossref_primary_10_1016_j_ejphar_2020_173316 crossref_primary_10_3390_ijms25094900 crossref_primary_10_1007_s11883_010_0153_0 crossref_primary_10_1161_CIRCIMAGING_116_005146 crossref_primary_10_1530_JOE_13_0195 crossref_primary_10_1586_eem_13_20 crossref_primary_10_1152_ajpgi_00210_2014 crossref_primary_10_1016_j_acvd_2020_06_006 crossref_primary_10_1038_nm_3128 crossref_primary_10_1007_BF03346698 crossref_primary_10_1016_j_clinthera_2011_04_024 crossref_primary_10_1186_s12933_019_0921_2 crossref_primary_10_1038_jcbfm_2012_133 crossref_primary_10_1111_j_1463_1326_2012_01595_x crossref_primary_10_1007_s10741_017_9666_8 crossref_primary_10_1248_bpb_34_671 crossref_primary_10_2139_ssrn_4161722 crossref_primary_10_1371_journal_pone_0167853 crossref_primary_10_1016_j_ijcard_2015_12_009 crossref_primary_10_1016_S1957_2557_15_30036_5 crossref_primary_10_3390_jcm13185541 crossref_primary_10_1172_JCI99934 crossref_primary_10_1111_j_2040_1124_2010_00022_x crossref_primary_10_1253_jjcsc_20_2_256 crossref_primary_10_1152_ajpendo_00418_2012 crossref_primary_10_24884_1682_6655_2018_17_2_57_63 crossref_primary_10_1016_j_atherosclerosis_2012_12_033 crossref_primary_10_2217_dmt_14_53 crossref_primary_10_1177_1074248420942007 crossref_primary_10_1016_j_molmet_2014_04_009 crossref_primary_10_1111_j_1463_1326_2010_01317_x crossref_primary_10_1002_dmrr_2413 crossref_primary_10_1186_s12933_016_0386_5 crossref_primary_10_1016_j_jacc_2011_09_050 crossref_primary_10_1210_jc_2018_00712 crossref_primary_10_1016_j_tcm_2010_02_012 crossref_primary_10_1371_journal_pone_0078330 crossref_primary_10_1586_eem_13_2 crossref_primary_10_2337_db09_0955 crossref_primary_10_1016_j_metabol_2012_03_002 crossref_primary_10_3390_ph16060836 crossref_primary_10_1016_j_ahj_2015_02_002 crossref_primary_10_1517_14728222_2012_699043 crossref_primary_10_1111_j_1463_1326_2012_01579_x crossref_primary_10_1007_s00011_024_01950_0 crossref_primary_10_3892_mmr_2019_10432 crossref_primary_10_1161_CIRCRESAHA_110_226464 crossref_primary_10_1152_ajpgi_00274_2011 crossref_primary_10_3892_mmr_2017_6618 crossref_primary_10_1016_j_compchemeng_2024_108626 crossref_primary_10_1371_journal_pone_0130894 crossref_primary_10_1016_j_fct_2019_110719 crossref_primary_10_1016_j_numecd_2021_02_003 crossref_primary_10_1016_j_bbrc_2018_03_142 crossref_primary_10_1161_JAHA_113_000433 crossref_primary_10_1371_journal_pone_0130658 crossref_primary_10_1371_journal_pone_0183664 crossref_primary_10_2337_dc11_s223 crossref_primary_10_1038_s41392_024_01931_z crossref_primary_10_1016_j_jsps_2020_03_002 crossref_primary_10_1089_ars_2010_3198 crossref_primary_10_1016_j_jcjd_2013_06_010 crossref_primary_10_1080_14779072_2018_1423962 crossref_primary_10_1111_dom_12998 crossref_primary_10_1016_j_jash_2012_02_003 crossref_primary_10_1210_en_2018_00004 crossref_primary_10_1007_s12020_016_1166_4 crossref_primary_10_1177_1479164118783935 crossref_primary_10_1007_s00395_015_0518_1 crossref_primary_10_1177_1474651411431846 crossref_primary_10_1016_j_regpep_2011_11_008 crossref_primary_10_1002_adbi_202200130 crossref_primary_10_1126_scitranslmed_aay8071 crossref_primary_10_3389_fphar_2019_00537 crossref_primary_10_1097_FJC_0000000000001159 crossref_primary_10_1007_s00395_011_0216_6 crossref_primary_10_1007_s11596_023_2776_8 crossref_primary_10_1007_s00059_010_3333_3 crossref_primary_10_1016_j_biopha_2022_113517 crossref_primary_10_1016_j_diabet_2012_04_003 crossref_primary_10_1016_j_bbrc_2010_12_020 crossref_primary_10_1007_s10557_010_6242_z crossref_primary_10_1161_CIRCEP_118_006740 crossref_primary_10_1186_s13098_021_00635_6 crossref_primary_10_1007_s12020_014_0246_6 crossref_primary_10_1016_j_ando_2010_09_001 crossref_primary_10_1007_s12020_014_0223_0 crossref_primary_10_1186_s12933_017_0553_3 crossref_primary_10_1016_j_ijcard_2017_03_042 crossref_primary_10_2337_db15_1224 crossref_primary_10_1152_ajpheart_00885_2010 crossref_primary_10_1007_s10741_018_9702_3 crossref_primary_10_1016_j_ijcard_2017_02_126 crossref_primary_10_1002_jcb_29639 crossref_primary_10_3803_EnM_2019_34_2_106 crossref_primary_10_1038_s41598_021_86132_2 crossref_primary_10_3390_ph13110410 crossref_primary_10_1007_BF03345744 crossref_primary_10_1016_j_biocel_2020_105793 crossref_primary_10_1161_ATVBAHA_110_206425 crossref_primary_10_1016_j_ijcard_2013_10_005 crossref_primary_10_2165_11201060_000000000_00000 crossref_primary_10_1160_th14_03_0258 crossref_primary_10_1007_s11064_016_1890_4 crossref_primary_10_1093_eurheartj_sus001 crossref_primary_10_1016_j_bbrc_2022_09_018 crossref_primary_10_1016_j_metabol_2013_04_010 crossref_primary_10_1007_s00059_010_3337_z crossref_primary_10_1016_j_coph_2013_09_013 crossref_primary_10_1186_s12933_023_01758_y crossref_primary_10_18632_oncotarget_18570 crossref_primary_10_24884_1682_6655_2018_17_1_90_96 crossref_primary_10_2217_fca_12_68 crossref_primary_10_1111_1755_5922_12000 crossref_primary_10_1111_dom_13888 crossref_primary_10_3390_antiox11061091 crossref_primary_10_1111_j_1753_0407_2011_00167_x crossref_primary_10_1016_j_cmet_2013_04_008 crossref_primary_10_1038_nrendo_2012_140 crossref_primary_10_1111_j_1755_5922_2010_00256_x crossref_primary_10_3389_fphys_2022_904626 crossref_primary_10_1161_CIRCULATIONAHA_112_091215 crossref_primary_10_1155_2013_317120 crossref_primary_10_1586_erc_12_5 crossref_primary_10_1186_s12933_015_0264_6 crossref_primary_10_1111_acel_12763 crossref_primary_10_1097_MOL_0b013e3283590b8f crossref_primary_10_1253_circj_CJ_13_1561 crossref_primary_10_3389_fendo_2021_721198 crossref_primary_10_1007_s12410_018_9444_6 crossref_primary_10_3892_ijmm_2025_5515 crossref_primary_10_1016_j_jacbts_2016_03_011 crossref_primary_10_1111_jdv_12629 crossref_primary_10_1152_ajpcell_00093_2016 crossref_primary_10_1152_ajpheart_00867_2009 crossref_primary_10_1161_CIRCRESAHA_119_313682 crossref_primary_10_1186_1475_2840_9_76 crossref_primary_10_1186_s12933_015_0177_4 crossref_primary_10_3390_biomedicines8030043 crossref_primary_10_3389_fphys_2020_568632 crossref_primary_10_1111_j_1753_0407_2011_00143_x crossref_primary_10_1111_dom_14862 crossref_primary_10_1016_j_molmet_2022_101641 crossref_primary_10_1111_jdi_12065 crossref_primary_10_1172_JCI97233 crossref_primary_10_1177_1479164115605000 crossref_primary_10_3892_etm_2019_7388 crossref_primary_10_1016_j_freeradbiomed_2017_04_027 crossref_primary_10_1185_03007995_2010_549466 crossref_primary_10_1016_j_tem_2016_03_017 crossref_primary_10_31083_j_fbl2811315 crossref_primary_10_1007_s12170_010_0141_5 crossref_primary_10_1016_j_jacbts_2018_09_004 crossref_primary_10_1177_0963689717721234 crossref_primary_10_1371_journal_pone_0023570 crossref_primary_10_1007_s40264_014_0238_8 crossref_primary_10_3109_07853890_2014_949837 crossref_primary_10_1111_dom_12251 crossref_primary_10_1210_en_2012_1937 crossref_primary_10_1016_j_regpep_2011_12_006 crossref_primary_10_1038_s41590_018_0272_2 crossref_primary_10_1093_hmg_ddu553 crossref_primary_10_1016_j_diabres_2012_11_009 crossref_primary_10_2165_11208110_000000000_00000 crossref_primary_10_1002_dmrr_1037 crossref_primary_10_1186_s12933_015_0193_4 crossref_primary_10_3389_fphar_2020_00805 crossref_primary_10_1016_j_yjmcc_2016_01_001 crossref_primary_10_1111_dom_13472 crossref_primary_10_1016_j_regpep_2012_06_007 crossref_primary_10_1161_CIRCHEARTFAILURE_112_000057 crossref_primary_10_1074_jbc_M111_310342 crossref_primary_10_3390_life13112226 crossref_primary_10_1055_a_1971_6965 crossref_primary_10_1007_s13300_011_0002_3 crossref_primary_10_2337_db14_1514 crossref_primary_10_1016_j_endonu_2012_07_007 crossref_primary_10_1186_s12933_018_0704_1 crossref_primary_10_1007_s11154_014_9286_8 crossref_primary_10_1155_2016_7357096 crossref_primary_10_5966_sctm_2012_0064 crossref_primary_10_1089_ars_2021_0100 crossref_primary_10_1016_j_cmet_2017_11_003 crossref_primary_10_3389_fendo_2019_00155 crossref_primary_10_1186_s12968_015_0197_y crossref_primary_10_1038_s41574_022_00783_3 crossref_primary_10_1152_physrev_00013_2024 crossref_primary_10_1016_S1262_3636_17_30067_8 crossref_primary_10_2337_dc09_1902 crossref_primary_10_1186_s12933_016_0416_3 crossref_primary_10_1185_03007995_2012_678940 crossref_primary_10_4158_EP12292_RA crossref_primary_10_1186_s12933_016_0480_8 crossref_primary_10_1007_s11428_016_0083_8 crossref_primary_10_1007_s00592_011_0359_9 crossref_primary_10_1007_s10557_015_6592_7 crossref_primary_10_1152_ajpcell_00248_2012 crossref_primary_10_2337_dc12_1495 crossref_primary_10_3389_fcvm_2021_649785 crossref_primary_10_1007_s11010_016_2678_1 crossref_primary_10_1007_s11897_014_0232_6 crossref_primary_10_1038_s41598_017_06712_z crossref_primary_10_1155_2021_9993229 crossref_primary_10_1016_j_metabol_2019_154044 crossref_primary_10_2337_dbi20_0049 crossref_primary_10_1007_s11886_012_0332_4 crossref_primary_10_1055_a_1162_8196 crossref_primary_10_3390_ijms25084407 crossref_primary_10_2337_dbi18_0008 crossref_primary_10_1016_j_yjmcc_2025_03_007 crossref_primary_10_1155_2016_1379274 crossref_primary_10_1016_j_biopha_2023_115032 crossref_primary_10_1007_s11892_018_1011_7 crossref_primary_10_1111_jdi_13302 crossref_primary_10_3390_biomedicines9111579 crossref_primary_10_1136_bmjopen_2014_005942 crossref_primary_10_1002_jcsm_13025 crossref_primary_10_1186_s12933_015_0206_3 crossref_primary_10_1007_s10557_023_07482_9 crossref_primary_10_1111_dom_12050 crossref_primary_10_1161_CIRCRESAHA_114_301958 crossref_primary_10_1186_1758_5996_5_47 crossref_primary_10_3389_fendo_2018_00672 crossref_primary_10_36290_vnl_2019_049 crossref_primary_10_1186_1475_2840_13_49 crossref_primary_10_1371_journal_pone_0104873 crossref_primary_10_1111_bph_15462 crossref_primary_10_2967_jnumed_112_109413 crossref_primary_10_1155_2012_249827 crossref_primary_10_1155_2018_3123961 crossref_primary_10_1016_j_soard_2016_10_002 crossref_primary_10_1016_j_ijcard_2015_04_086 crossref_primary_10_1097_MED_0b013e3283339051 crossref_primary_10_1016_j_bbrc_2015_09_179 crossref_primary_10_1007_s00380_014_0509_4 crossref_primary_10_1016_j_diabres_2016_04_046 crossref_primary_10_1007_s00125_017_4330_3 crossref_primary_10_1152_ajpheart_00835_2014 crossref_primary_10_15420_cfr_2024_05 crossref_primary_10_1089_dia_2012_0022 crossref_primary_10_1007_s00210_011_0665_3 crossref_primary_10_1016_j_endoen_2012_11_004 crossref_primary_10_1002_oby_21107 crossref_primary_10_1186_s13098_016_0138_4 crossref_primary_10_1038_s41569_023_00849_3 crossref_primary_10_1016_S1262_3636_16_30006_4 crossref_primary_10_5402_2012_625809 crossref_primary_10_3390_ijms23137261 crossref_primary_10_1007_s00395_019_0743_0 crossref_primary_10_1152_ajpheart_00990_2012 crossref_primary_10_1111_1753_0407_13517 crossref_primary_10_1042_CS20171337 crossref_primary_10_1210_en_2009_1197 crossref_primary_10_1136_bmjopen_2014_004885 crossref_primary_10_3390_life13020443 crossref_primary_10_1186_s12933_021_01417_0 crossref_primary_10_1186_1475_2840_12_42 crossref_primary_10_1152_ajpheart_00680_2014 crossref_primary_10_1016_j_cbi_2019_03_012 crossref_primary_10_1093_cvr_cvab120 crossref_primary_10_1038_nrcardio_2011_211 crossref_primary_10_1186_s12933_024_02181_7 crossref_primary_10_1007_s12350_017_1068_8 crossref_primary_10_1161_JAHA_124_037510 crossref_primary_10_3389_fphys_2021_648399 crossref_primary_10_1007_s43440_024_00609_1 crossref_primary_10_1016_j_phrs_2021_105867 crossref_primary_10_1371_journal_pone_0148402 crossref_primary_10_3390_ijms22020660 crossref_primary_10_1016_j_mbplus_2021_100085 crossref_primary_10_2217_clp_13_8 crossref_primary_10_1007_s11886_013_0382_2 crossref_primary_10_1210_er_2011_1052 crossref_primary_10_1007_s00125_023_05906_7 crossref_primary_10_1152_ajpgi_00293_2015 crossref_primary_10_3389_fphys_2017_00015 crossref_primary_10_1007_s00059_018_4748_5 crossref_primary_10_1002_jcb_22981 crossref_primary_10_3389_fphar_2021_702326 crossref_primary_10_1016_j_cmet_2016_06_009 crossref_primary_10_1186_s13063_015_0772_4 crossref_primary_10_1007_s00210_010_0559_9 crossref_primary_10_3928_23258160_20200326_04 crossref_primary_10_1016_j_jjcc_2016_10_009 crossref_primary_10_1016_j_peptides_2017_02_008 crossref_primary_10_2165_11319130_000000000_00000 crossref_primary_10_1093_eurheartj_ehr382 crossref_primary_10_1016_j_mce_2022_111560 crossref_primary_10_1007_s00125_010_1702_3 crossref_primary_10_1124_pr_113_008300 crossref_primary_10_1371_journal_pone_0085634 crossref_primary_10_1111_j_1476_5381_2011_01357_x crossref_primary_10_1111_nyas_12044 crossref_primary_10_1177_1479164112441526 crossref_primary_10_1177_1479164113516134 crossref_primary_10_1111_j_1742_1241_2010_02499_x crossref_primary_10_1007_s10557_013_6463_z crossref_primary_10_1056_NEJMoa1509225 crossref_primary_10_1016_j_diabet_2011_07_001 crossref_primary_10_1111_j_1463_1326_2010_01345_x crossref_primary_10_1016_S1957_2557_10_70085_7 crossref_primary_10_1016_j_jdiacomp_2017_05_013 crossref_primary_10_1016_j_pharmthera_2012_07_012 crossref_primary_10_1093_eurheartj_ehad445 crossref_primary_10_1111_1440_1681_12956 crossref_primary_10_1042_CS20160491 crossref_primary_10_2337_db09_1694 crossref_primary_10_1139_bcb_2021_0365 crossref_primary_10_1038_s41367_020_0015_3 crossref_primary_10_1016_j_pharmthera_2014_01_003 crossref_primary_10_1097_FJC_0b013e3182949673 crossref_primary_10_3390_cells10040922 crossref_primary_10_1111_dom_12085 crossref_primary_10_1002_dmrr_3191 crossref_primary_10_1016_j_ejphar_2014_05_003 crossref_primary_10_1016_j_numecd_2017_09_006 crossref_primary_10_1530_JME_15_0155 crossref_primary_10_1111_1753_0407_12258 crossref_primary_10_4236_pp_2013_49091 crossref_primary_10_1016_j_medcli_2013_05_041 crossref_primary_10_2310_JIM_0b013e3182544f9e crossref_primary_10_3390_biomedicines12061314 crossref_primary_10_1002_pul2_12028 crossref_primary_10_1186_1479_5876_11_84 crossref_primary_10_1042_CS20160061 crossref_primary_10_1111_jnc_12469 crossref_primary_10_1016_j_nefro_2022_07_008 crossref_primary_10_1016_j_jcjd_2019_09_003 crossref_primary_10_1016_j_jacc_2021_02_057 crossref_primary_10_1016_j_peptides_2018_11_007 crossref_primary_10_3390_biom11020286 crossref_primary_10_1177_2042098612454290 crossref_primary_10_1007_s13105_022_00939_9 crossref_primary_10_1002_cph4_7 crossref_primary_10_1097_XCE_0000000000000086 crossref_primary_10_1007_s00125_023_05973_w crossref_primary_10_1016_j_ejim_2009_05_010 crossref_primary_10_1016_j_ahj_2015_07_014 crossref_primary_10_1089_met_2012_0095 crossref_primary_10_1038_s41598_022_24855_6 crossref_primary_10_1152_ajpheart_00609_2012 crossref_primary_10_1111_j_1463_1326_2010_01330_x crossref_primary_10_1210_en_2012_1461 crossref_primary_10_1186_s12902_015_0005_6 crossref_primary_10_1016_j_jss_2013_06_042 crossref_primary_10_1016_j_molmet_2019_09_010 crossref_primary_10_1124_pr_115_011395 crossref_primary_10_1080_20468954_2024_2366693 crossref_primary_10_1007_s11818_018_0159_3 crossref_primary_10_1016_j_neuropharm_2023_109603 crossref_primary_10_1016_S0168_8227_11_70011_0 crossref_primary_10_1007_s00059_012_3599_8 crossref_primary_10_1111_j_1476_5381_2009_00376_x crossref_primary_10_1210_me_2014_1346 crossref_primary_10_1016_j_clinthera_2022_12_006 crossref_primary_10_1016_j_micpath_2020_104645 crossref_primary_10_1186_1471_2369_14_98 crossref_primary_10_1159_000351678 crossref_primary_10_1042_BSR20181995 crossref_primary_10_1016_j_ijcard_2011_12_007 crossref_primary_10_1586_eem_10_20 crossref_primary_10_1016_j_amjcard_2011_03_046 |
Cites_doi | 10.1096/fj.05-4889fje 10.1038/nrm1983 10.1016/S0140-6736(06)69705-5 10.1172/JCI0215595 10.1161/CIRCULATIONAHA.107.739938 10.1016/j.regpep.2007.10.001 10.1523/JNEUROSCI.23-07-02939.2003 10.1161/01.RES.78.2.283 10.1084/jem.20021426 10.1172/JCI19906 10.1161/01.CIR.0000139339.85840.DD 10.1161/01.CIR.0000118495.88442.32 10.1161/01.RES.85.10.940 10.1016/j.cardfail.2006.08.211 10.2337/diabetes.54.1.146 10.1161/01.RES.0000012567.95445.55 10.1161/01.CIR.0000120505.91348.58 10.1038/nm919 10.2337/dc06-2593 10.1074/jbc.M209423200 10.1007/s10557-007-6030-6 10.1152/ajpheart.00027.2005 10.1016/S0008-6363(99)00395-8 10.1152/physiolgenomics.00026.2004 10.1007/s10557-005-6892-4 10.1124/jpet.104.073890 10.1124/jpet.106.100982 10.1096/fj.05-4435com 10.1161/CIRCULATIONAHA.106.643585 10.1038/13459 10.1097/MED.0b013e328013e79e 10.1161/01.RES.87.7.543 10.1161/hh1701.095716 10.2337/diabetes.50.11.2530 10.1161/01.RES.0000124394.01180.BE 10.1016/S0196-9781(03)00108-6 10.1152/ajpheart.00479.2002 10.1152/ajpheart.00831.2007 10.1161/CIRCULATIONAHA.107.735795 10.1161/hh1401.093314 10.2337/diabetes.53.5.1187 10.1152/ajpheart.00347.2005 |
ClassificationCodes | 2834 2834121 |
ContentType | Journal Article |
Copyright | 2009 INIST-CNRS COPYRIGHT 2009 American Diabetes Association Copyright American Diabetes Association Apr 2009 2009 by the American Diabetes Association. |
Copyright_xml | – notice: 2009 INIST-CNRS – notice: COPYRIGHT 2009 American Diabetes Association – notice: Copyright American Diabetes Association Apr 2009 – notice: 2009 by the American Diabetes Association. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 8GL 3V. 7RV 7X7 7XB 88E 88I 8AF 8AO 8C1 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BEC BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH HCIFZ K9- K9. KB0 LK8 M0R M0S M1P M2O M2P M7P MBDVC NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U S0X 7X8 5PM |
DOI | 10.2337/db08-1193 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: High School ProQuest Central (Corporate) Nursing & Allied Health Database ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection eLibrary Curriculum ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection Consumer Health Database (Alumni Edition) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Consumer Health Database ProQuest Health & Medical Collection Medical Database Research Library Science Database Biological Science Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic SIRS Editorial MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Family Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Family Health (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1939-327X |
EndPage | 983 |
ExternalDocumentID | PMC2661586 1685510021 A197493237 19151200 21324515 10_2337_db08_1193 diabetes_58_4_975 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Canada |
GeographicLocations_xml | – name: Canada |
GrantInformation_xml | – fundername: CIHR grantid: 80668 |
GroupedDBID | - 08R 0R 1AW 29F 2WC 3V. 4.4 53G 55 5GY 5RE 5RS 5VS 7RV 7X7 88E 88I 8AF 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8GL 8R4 8R5 AAQQT AAWTL AAYEP AAYJJ ABFLS ABOCM ABPTK ABUWG ACDCL ACGOD ACPRK ADACO ADBBV ADBIT AENEX AFKRA AHMBA ALMA_UNASSIGNED_HOLDINGS AZQEC BAWUL BBAFP BBNVY BCR BCU BEC BENPR BES BHPHI BKEYQ BKNYI BLC BPHCQ BVXVI C1A CS3 DIK DU5 DWQXO E3Z EBS EDB EJD EX3 F5P FRP FYUFA GICCO GJ GNUQQ GUQSH GX1 H13 HCIFZ HZ H~9 IAG IAO IEA IHR INH INR IOF IPO K-O K9- KM KQ8 L7B LK8 M0R M1P M2O M2P M2Q M5 M7P MBDVC O0- O5R O5S O9- OB3 OBH OK1 OVD P2P PADUT PCD PEA PQEST PQQKQ PQUKI PRINS PROAC PSQYO Q2X RHF RHI RPM S0X SJFOW SJN SV3 TDI WH7 WOQ WOW X7M XZ ZA5 ZY1 --- .55 .GJ .XZ 08P 0R~ 18M 354 6PF AAFWJ AAKAS AAYOK AAYXX ACGFO ADGHP ADZCM AEGXH AERZD AIAGR AIZAD ALIPV BTFSW CCPQU CITATION EMOBN HMCUK HZ~ ITC K2M M5~ N4W NAPCQ OHH PHGZM PHGZT TEORI TR2 UKHRP VVN W8F YFH YHG YOC ~KM 1CY 8F7 AFFNX AI. IQODW J5H MVM PJZUB PPXIY PQGLB VH1 XOL YQJ ZGI ZXP CGR CUY CVF ECM EIF NPM PMFND 7XB 8FK K9. PKEHL Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c708t-62fe44d77ab899d708e68c30e995b706a32bd95a4d93b54da2ea16198fd53b4a3 |
IEDL.DBID | 7X7 |
ISSN | 0012-1797 1939-327X |
IngestDate | Thu Aug 21 14:05:04 EDT 2025 Fri Jul 11 09:53:11 EDT 2025 Fri Jul 25 19:38:02 EDT 2025 Tue Jun 17 21:57:39 EDT 2025 Thu Jun 12 23:57:54 EDT 2025 Tue Jun 10 20:58:34 EDT 2025 Fri Jun 27 05:16:43 EDT 2025 Tue Jun 10 19:56:16 EDT 2025 Mon Jul 21 06:06:06 EDT 2025 Mon Jul 21 09:14:03 EDT 2025 Tue Jul 01 03:04:01 EDT 2025 Thu Apr 24 23:00:57 EDT 2025 Fri Jan 15 19:45:49 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Endocrinopathy Myocardial infarction Vertebrata Agonist Mammalia Mouse Animal Diabetes mellitus Rodentia Cardiovascular disease Coronary heart disease Myocardial disease |
Language | English |
License | CC BY 4.0 Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c708t-62fe44d77ab899d708e68c30e995b706a32bd95a4d93b54da2ea16198fd53b4a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 M.H. and D.J.D. contributed equally to this work. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC2661586 |
PMID | 19151200 |
PQID | 216479429 |
PQPubID | 34443 |
PageCount | 9 |
ParticipantIDs | highwire_diabetes_diabetes_58_4_975 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2661586 gale_incontextgauss_8GL_A197493237 proquest_journals_216479429 gale_infotracacademiconefile_A197493237 proquest_miscellaneous_67095024 gale_infotracmisc_A197493237 pascalfrancis_primary_21324515 gale_incontextcollege_GICCO_A197493237 pubmed_primary_19151200 crossref_citationtrail_10_2337_db08_1193 gale_infotracgeneralonefile_A197493237 crossref_primary_10_2337_db08_1193 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-04-01 |
PublicationDateYYYYMMDD | 2009-04-01 |
PublicationDate_xml | – month: 04 year: 2009 text: 2009-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Alexandria, VA |
PublicationPlace_xml | – name: Alexandria, VA – name: United States – name: New York |
PublicationTitle | Diabetes (New York, N.Y.) |
PublicationTitleAlternate | Diabetes |
PublicationYear | 2009 |
Publisher | American Diabetes Association |
Publisher_xml | – name: American Diabetes Association |
References | Zhou (2022051610230912900_B29) 2005; 289 Askari (2022051610230912900_B32) 2003; 197 Zhao (2022051610230912900_B13) 2006; 317 Noyan-Ashraf (2022051610230912900_B26) 2006; 20 Bose (2022051610230912900_B10) 2005; 19 Nikolaidis (2022051610230912900_B12) 2005; 312 Aulinger (2022051610230912900_B44) 2007; 14 Sokos (2022051610230912900_B15) 2006; 12 Yang (2022051610230912900_B21) 2004; 109 Vilsboll (2022051610230912900_B19) 2007; 6 Liu (2022051610230912900_B37) 2006; 20 Juhaszova (2022051610230912900_B36) 2004; 113 Zhou (2022051610230912900_B28) 2004; 18 Song (2022051610230912900_B24) 2000; 45 Heineke (2022051610230912900_B35) 2006; 7 Li (2022051610230912900_B23) 1996; 78 Bose (2022051610230912900_B9) 2005; 54 Cook (2022051610230912900_B25) 1999; 85 Yet (2022051610230912900_B33) 2001; 89 Larsen (2022051610230912900_B18) 2001; 50 Kavianipour (2022051610230912900_B42) 2003; 24 Yamamoto (2022051610230912900_B7) 2002; 110 Vila Petroff (2022051610230912900_B4) 2001; 89 Ban (2022051610230912900_B3) 2008; 117 Nikolaidis (2022051610230912900_B14) 2004; 109 Bose (2022051610230912900_B11) 2007; 21 Barragan (2022051610230912900_B5) 1999; 277 Nikolaidis (2022051610230912900_B41) 2005; 289 Inzucchi (2022051610230912900_B43) 2008; 117 Sonne (2022051610230912900_B16) 2008; 146 Yang (2022051610230912900_B30) 2008; 294 Li (2022051610230912900_B40) 2003; 278 Yamamoto (2022051610230912900_B6) 2003; 23 Sun (2022051610230912900_B22) 2007; 115 Burkart (2022051610230912900_B38) 2007; 117 Heymans (2022051610230912900_B31) 1999; 5 Drucker (2022051610230912900_B2) 2006; 368 Nikolaidis (2022051610230912900_B8) 2004; 110 Degn (2022051610230912900_B17) 2004; 53 Ohta (2022051610230912900_B20) 2004; 287 Shiraishi (2022051610230912900_B34) 2004; 94 Tong (2022051610230912900_B27) 2002; 90 During (2022051610230912900_B39) 2003; 9 Yellon (2022051610230912900_B1) 2000; 87 |
References_xml | – volume: 20 start-page: 371 year: 2006 ident: 2022051610230912900_B26 article-title: Dietary approaches to positively influence fetal determinants of adult health publication-title: FASEB J doi: 10.1096/fj.05-4889fje – volume: 7 start-page: 589 year: 2006 ident: 2022051610230912900_B35 article-title: Regulation of cardiac hypertrophy by intracellular signalling pathways publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm1983 – volume: 368 start-page: 1696 year: 2006 ident: 2022051610230912900_B2 article-title: The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes publication-title: Lancet doi: 10.1016/S0140-6736(06)69705-5 – volume: 110 start-page: 43 year: 2002 ident: 2022051610230912900_B7 article-title: Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons publication-title: J Clin Invest doi: 10.1172/JCI0215595 – volume: 117 start-page: 2340 year: 2008 ident: 2022051610230912900_B3 article-title: Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.739938 – volume: 146 start-page: 243 year: 2008 ident: 2022051610230912900_B16 article-title: Protective effects of GLP-1 analogues exendin-4 and GLP-1(9–36) amide against ischemia-reperfusion injury in rat heart publication-title: Regul Pept doi: 10.1016/j.regpep.2007.10.001 – volume: 23 start-page: 2939 year: 2003 ident: 2022051610230912900_B6 article-title: Glucagon-like peptide-1-responsive catecholamine neurons in the area postrema link peripheral glucagon-like peptide-1 with central autonomic control sites publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-07-02939.2003 – volume: 78 start-page: 283 year: 1996 ident: 2022051610230912900_B23 article-title: In vivo survival and function of transplanted rat cardiomyocytes publication-title: Circ Res doi: 10.1161/01.RES.78.2.283 – volume: 197 start-page: 615 year: 2003 ident: 2022051610230912900_B32 article-title: Myeloperoxidase and plasminogen activator inhibitor 1 play a central role in ventricular remodeling after myocardial infarction publication-title: J Exp Med doi: 10.1084/jem.20021426 – volume: 113 start-page: 1535 year: 2004 ident: 2022051610230912900_B36 article-title: Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore publication-title: J Clin Invest doi: 10.1172/JCI19906 – volume: 110 start-page: 955 year: 2004 ident: 2022051610230912900_B8 article-title: Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy publication-title: Circulation doi: 10.1161/01.CIR.0000139339.85840.DD – volume: 109 start-page: 1161 year: 2004 ident: 2022051610230912900_B21 article-title: Simultaneous evaluation of infarct size and cardiac function in intact mice by contrast-enhanced cardiac magnetic resonance imaging reveals contractile dysfunction in noninfarcted regions early after myocardial infarction publication-title: Circulation doi: 10.1161/01.CIR.0000118495.88442.32 – volume: 85 start-page: 940 year: 1999 ident: 2022051610230912900_B25 article-title: Regulation of bcl-2 family proteins during development and in response to oxidative stress in cardiac myocytes: association with changes in mitochondrial membrane potential publication-title: Circ Res doi: 10.1161/01.RES.85.10.940 – volume: 12 start-page: 694 year: 2006 ident: 2022051610230912900_B15 article-title: Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure publication-title: J Card Fail doi: 10.1016/j.cardfail.2006.08.211 – volume: 54 start-page: 146 year: 2005 ident: 2022051610230912900_B9 article-title: Glucagon-like peptide-1 (GLP-1) can directly protect the heart against ischemia/reperfusion injury publication-title: Diabetes doi: 10.2337/diabetes.54.1.146 – volume: 90 start-page: 377 year: 2002 ident: 2022051610230912900_B27 article-title: Phosphorylation of glycogen synthase kinase-3beta during preconditioning through a phosphatidylinositol-3-kinase–dependent pathway is cardioprotective publication-title: Circ Res doi: 10.1161/01.RES.0000012567.95445.55 – volume: 109 start-page: 962 year: 2004 ident: 2022051610230912900_B14 article-title: Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion publication-title: Circulation doi: 10.1161/01.CIR.0000120505.91348.58 – volume: 9 start-page: 1173 year: 2003 ident: 2022051610230912900_B39 article-title: Glucagon-like peptide-1 receptor is involved in learning and neuroprotection publication-title: Nat Med doi: 10.1038/nm919 – volume: 6 start-page: 1608 year: 2007 ident: 2022051610230912900_B19 article-title: Liraglutide, a long-acting human GLP-1 Analog, given as monotherapy significantly improves glycemic control and lowers body weight without risk of hypoglycemia in patients with type 2 diabetes mellitus publication-title: Diabetes Care doi: 10.2337/dc06-2593 – volume: 278 start-page: 471 year: 2003 ident: 2022051610230912900_B40 article-title: Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis publication-title: J Biol Chem doi: 10.1074/jbc.M209423200 – volume: 21 start-page: 253 year: 2007 ident: 2022051610230912900_B11 article-title: Myocardial ischaemia–reperfusion injury is attenuated by intact glucagon like peptide-1 (GLP-1) in the in vitro rat heart and may involve the p70s6K pathway publication-title: Cardiovasc Drugs Ther doi: 10.1007/s10557-007-6030-6 – volume: 289 start-page: H992 year: 2005 ident: 2022051610230912900_B29 article-title: Abnormal cardiac inflow patterns during postnatal development in a mouse model of Holt-Oram syndrome publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00027.2005 – volume: 45 start-page: 595 year: 2000 ident: 2022051610230912900_B24 article-title: Tumor necrosis factor-alpha induces apoptosis via inducible nitric oxide synthase in neonatal mouse cardiomyocytes publication-title: Cardiovasc Res doi: 10.1016/S0008-6363(99)00395-8 – volume: 18 start-page: 232 year: 2004 ident: 2022051610230912900_B28 article-title: Comprehensive transthoracic cardiac imaging in mice using ultrasound biomicroscopy with anatomical confirmation by magnetic resonance imaging publication-title: Physiol Genomics doi: 10.1152/physiolgenomics.00026.2004 – volume: 277 start-page: E784 year: 1999 ident: 2022051610230912900_B5 article-title: Neural contribution to the effect of glucagon-like peptide-1-(7–36) amide on arterial blood pressure in rats publication-title: Am J Physiol – volume: 19 start-page: 9 year: 2005 ident: 2022051610230912900_B10 article-title: Glucagon like peptide-1 is protective against myocardial ischemia/reperfusion injury when given either as a preconditioning mimetic or at reperfusion in an isolated rat heart model publication-title: Cardiovasc Drugs Ther doi: 10.1007/s10557-005-6892-4 – volume: 312 start-page: 303 year: 2005 ident: 2022051610230912900_B12 article-title: Glucagon-like peptide-1 limits myocardial stunning following brief coronary occlusion and reperfusion in conscious canines publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.104.073890 – volume: 317 start-page: 1106 year: 2006 ident: 2022051610230912900_B13 article-title: Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.106.100982 – volume: 20 start-page: 207 year: 2006 ident: 2022051610230912900_B37 article-title: Heme oxygenase-1 (HO-1) inhibits postmyocardial infarct remodeling and restores ventricular function publication-title: FASEB J doi: 10.1096/fj.05-4435com – volume: 117 start-page: 3930 year: 2007 ident: 2022051610230912900_B38 article-title: Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart publication-title: J Clin Invest – volume: 115 start-page: 1398 year: 2007 ident: 2022051610230912900_B22 article-title: Tumor necrosis factor-alpha mediates cardiac remodeling and ventricular dysfunction after pressure overload state publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.106.643585 – volume: 5 start-page: 1135 year: 1999 ident: 2022051610230912900_B31 article-title: Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure publication-title: Nat Med doi: 10.1038/13459 – volume: 14 start-page: 68 year: 2007 ident: 2022051610230912900_B44 article-title: Glucagon-like peptide 1: continued advances, new targets and expanding promise as a model therapeutic publication-title: Curr Opin Endocrinol Diabetes Obes doi: 10.1097/MED.0b013e328013e79e – volume: 87 start-page: 543 year: 2000 ident: 2022051610230912900_B1 article-title: The preconditioning phenomenon: a tool for the scientist or a clinical reality? publication-title: Circ Res doi: 10.1161/01.RES.87.7.543 – volume: 89 start-page: 445 year: 2001 ident: 2022051610230912900_B4 article-title: Glucagon-like peptide-1 increases cAMP but fails to augment contraction in adult rat cardiac myocytes publication-title: Circ Res doi: 10.1161/hh1701.095716 – volume: 50 start-page: 2530 year: 2001 ident: 2022051610230912900_B18 article-title: Systemic administration of the long-acting GLP-1 derivative NN2211 induces lasting and reversible weight loss in both normal and obese rats publication-title: Diabetes doi: 10.2337/diabetes.50.11.2530 – volume: 94 start-page: 884 year: 2004 ident: 2022051610230912900_B34 article-title: Nuclear targeting of Akt enhances kinase activity and survival of cardiomyocytes publication-title: Circ Res doi: 10.1161/01.RES.0000124394.01180.BE – volume: 24 start-page: 569 year: 2003 ident: 2022051610230912900_B42 article-title: Glucagon-like peptide-1 (7–36) amide prevents the accumulation of pyruvate and lactate in the ischemic and non-ischemic porcine myocardium publication-title: Peptides doi: 10.1016/S0196-9781(03)00108-6 – volume: 287 start-page: H286 year: 2004 ident: 2022051610230912900_B20 article-title: Elafin-overexpressing mice have improved cardiac function after myocardial infarction publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00479.2002 – volume: 294 start-page: H1815 year: 2008 ident: 2022051610230912900_B30 article-title: Age-related differences in postinfarct left ventricular rupture and remodeling publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00831.2007 – volume: 117 start-page: 574 year: 2008 ident: 2022051610230912900_B43 article-title: New drugs for the treatment of diabetes: part II: incretin-based therapy and beyond publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.735795 – volume: 89 start-page: 168 year: 2001 ident: 2022051610230912900_B33 article-title: Cardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice publication-title: Circ Res doi: 10.1161/hh1401.093314 – volume: 53 start-page: 1187 year: 2004 ident: 2022051610230912900_B17 article-title: One week's treatment with the long-acting glucagon-like peptide 1 derivative liraglutide (NN2211) markedly improves 24-h glycemia and alpha- and beta-cell function and reduces endogenous glucose release in patients with type 2 diabetes publication-title: Diabetes doi: 10.2337/diabetes.53.5.1187 – volume: 289 start-page: H2401 year: 2005 ident: 2022051610230912900_B41 article-title: Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00347.2005 |
SSID | ssj0006060 |
Score | 2.4980946 |
Snippet | GLP-1R Agonist Liraglutide Activates Cytoprotective Pathways and Improves Outcomes After Experimental Myocardial Infarction
in Mice
Mohammad Hossein... Glucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat type 2 diabetes, and transient GLP-1 administration improved cardiac function in humans... OBJECTIVE--Glucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat type 2 diabetes, and transient GLP-1 administration improved cardiac function... |
SourceID | pubmedcentral proquest gale pubmed pascalfrancis crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 975 |
SubjectTerms | Animals Biological and medical sciences Blood Glucose - metabolism Body Weight Cardiac function Cardiology. Vascular system Cardiomegaly - pathology Cardiomyocytes Cellular signal transduction Coronary heart disease Coronary vessels Diabetes Diabetes Mellitus, Type 2 - drug therapy Diabetes. Impaired glucose tolerance Diabetic Angiopathies - drug therapy Diet Disease Models, Animal Dosage and administration Drug therapy Endocrine pancreas. Apud cells (diseases) Endocrinopathies Etiopathogenesis. Screening. Investigations. Target tissue resistance Glucagon Glucagon-Like Peptide 1 - analogs & derivatives Glucagon-Like Peptide 1 - therapeutic use Glucagon-Like Peptide-1 Receptor Heart Heart - anatomy & histology Heart attack Heart attacks Heart failure Human subjects Humans Hypoglycemic agents Ischemia Liraglutide Male Medical sciences Mice Mice, Inbred C57BL Myocardial Infarction - drug therapy Myocarditis. Cardiomyopathies Organ Size Original Peptides Receptors, Glucagon - agonists Research design Survival analysis Type 2 diabetes Veins & arteries |
Title | GLP-1R Agonist Liraglutide Activates Cytoprotective Pathways and Improves Outcomes After Experimental Myocardial Infarction in Mice |
URI | http://diabetes.diabetesjournals.org/content/58/4/975.abstract https://www.ncbi.nlm.nih.gov/pubmed/19151200 https://www.proquest.com/docview/216479429 https://www.proquest.com/docview/67095024 https://pubmed.ncbi.nlm.nih.gov/PMC2661586 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BKyEuiHdNS1gBKlys2l7ba59QiNIWlLRRRaXcVvtyiFTZpXaEcuaPMxM_GqOIS2RlPyX2zuzst7vjbwj5iNNIxrR1Ex1KNwwy5UqeRK7vZyzO4jSSCl8Unl7E59fh93k0b3Jzyiatso2Jm0BtCo175CcBCl-lED2_3P5ysWgUHq42FTQekn1ULkOn5vNuveUBN6_fQPEDVOHktbBQwBg_MQpVTTfHzVvTURuUW6VgTJSUJfRVVhe52MVC_02m3JqdTp-SJw2tpMPaD56RBzZ_Th5Nm4PzF-TP2WTm-ld0uChQKpdOlndygU5nLB3qTYkzW9LRuioa4QYIgnQG7PC3XJdU5obWuw8AulxV0GNwMcTy4nS8VSKATtcwNaLL3dBveQZjCM1OlzmdQjx6Sa5Pxz9G525Tf8HV3EsqNw4yG4aGc6lgVWbgOxsnmnk2TSPFvViyQBmwZmhSpqLQyMBKIJBpkpmIqVCyV2QvL3J7QCgLmSejWPuZkbCijFVidag5i5VkUqWxQz63ZhC6ESfHGhk3AhYpaDGBFhNoMYe876C3tSLHLtAx2lKgwkWOKTS63oYR8HyjSzH0YRkFzJVx-LU-cCFXZSmSs0kP9KkBZQXclZbNqwvwbKie1UMe95CLWjt8F_CoB4RBrXvNH1onFO0m_P1FlIhQpDxyyKDnn11_BD7wZGCqDjlsHVY0sakU3UhyyLuuFf8f0-1yW6xKgaJ-EbA3h7yunfu-p1OkiJ7nEN5z-w6AcuX9lnz5cyNbjlQwSuI3_72nQ_K4Pa_z_COyV92t7FugfZUabAY3fCYjf0D2v44vZld_AWRZWyc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgEXxBvT0q54lF6s2t7164BQFNomNGkr1Eq9LftyiFTZpU5U5czv4T8yE9tJjCpuvVneT_baMzs7szv7DSEfcBrJmLZuorl0eZApV8ZJ6Pp-xqIsSkOp8KDw8DjqnfNvF-HFGvnTnIXBtMrGJs4NtSk0rpHvBUh8lYL1_HL1y8WiUbi52lTQqLTiyM5uIGIrP_e_gng_BsHB_lm359ZFBVwde8nEjYLMcm7iWCoINQzcs1GimWfTNFSxF0kWKANd5CZlKuRGBlaCV5QmmQmZ4pLBc--R-5zByMSD6d1lRgnEAtWJFz9A1s-4IjIKALlnFLKozre3V6a_ZhJomIkxMVOWIJusKqpxm9f7b_Lmymx48IQ8rt1Y2qn07ilZs_kz8mBYb9Q_J78PB6eu_512RgVS89LB-FqOUMmNpR09L6lmS9qdTYqaKAKMLj0Fb_RGzkoqc0Or1Q4AnUwnICG46GA5c7q_UpKADmcwFaOKX9J-noF0UM3oOKdDsH8vyPmdiOYlWc-L3L4mlHHmyTDSfmYkRLCRSqzmOmaRkkyqNHLIbiMGoWsydKzJcSkgKEKJCZSYQIk55N0CelUxgNwG2kFZCmTUyDFlR1fLPgK-r3siOj6EbeApsxie1gaO5LQsRXI4aIE-1aCsgF5pWR-VgG9Dtq4WcqeFHFVc5bcBN1tAMCK61fy-UULRLPovL8JEcJHGoUO2Wvq5-B-BD345eMYO2WgUVtS2sBSLkeuQ7UUrvh_T-3JbTEuBJIIheIsOeVUp9_JPp-iSep5D4pbaLwBIj95uycc_5zTp6HqGSfTmv33aJg97Z8OBGPSPjzbIo2av0PM3yfrkemrfgss5UVvzgU7Jj7u2LH8B84aVYw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db5swELe6Tqr2MnXfrF1r7aPbCwpgwPAwTVHatFmTNppWqW-ubUwWqYK2JKryvL9q_93uAiRhivbWN4RPYLifz3f2-XeEfMRpJGXa2JH2pe17qbIljwLbdVMWpmEcSIUHhQdn4cmF__0yuNwgf-qzMJhWWdvEuaFOco1r5C0Pia9isJ6ttMqKGB52v93c2lhACjda62oaJUJOzeweorfia-8QVP3J87pHPzsndlVgwNbciSZ26KXG9xPOpYKwI4F7Jow0c0wcB4o7oWSeSqC7fhIzFfiJ9IwEDymO0iRgypcMnvuIPOaMRzjEos4yuwTigvL0i-shAygvSY08xngrUcioOt_qXpkK6wmhZinGJE1ZgJ7SssDGOg_430TOlZmxu02eVi4tbZcYfEY2TPacbA2qTfsX5Pdxf2i7P2h7lCNNL-2P7-QIAZ8Y2tbz8mqmoJ3ZJK9II8AA0yF4pvdyVlCZJbRc-QCh8-kEtAUXbSxtTo9WyhPQwQymZYT7Ne1lKWgHIUfHGR2ALXxJLh5ENa_IZpZn5g2hzGeODELtpomEaDZUkdG-5ixUkkkVhxb5UqtB6IoYHetzXAsIkFBjAjUmUGMWeb8QvSnZQNYJHaAuBbJrZAhUXS4BCfi-zrlouxDCgdfMODytKTiS06IQ0XG_IfS5Ekpz6JWW1bEJ-DZk7mpIHjQkRyVv-TrB3YYgGBTdaP5Qg1DUGwDLiyASvoh5YJG9Bj4X_8NzwUcHL9kiOzVgRWUXC7EYxRbZX7Ti-zHVLzP5tBBIKBiA52iR1yW4l386RvfUcSzCG7BfCCBVerMlG_-aU6ajGxpE4dv_9mmfbIFNEf3e2ekOeVJvGzruLtmc3E3NO_A-J2pvPs4puXpow_IX8OeZmQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GLP-1R+agonist+liraglutide+activates+cytoprotective+pathways+and+improves+outcomes+after+experimental+myocardial+infarction+in+mice&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Noyan-Ashraf%2C+Mohammad+Hossein&rft.au=Momen%2C+M+Abdul&rft.au=Ban%2C+Kiwon&rft.au=Sadi%2C+Al-Muktafi&rft.date=2009-04-01&rft.eissn=1939-327X&rft.volume=58&rft.issue=4&rft.spage=975&rft_id=info:doi/10.2337%2Fdb08-1193&rft_id=info%3Apmid%2F19151200&rft.externalDocID=19151200 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon |