GLP-1R Agonist Liraglutide Activates Cytoprotective Pathways and Improves Outcomes After Experimental Myocardial Infarction in Mice

GLP-1R Agonist Liraglutide Activates Cytoprotective Pathways and Improves Outcomes After Experimental Myocardial Infarction in Mice Mohammad Hossein Noyan-Ashraf 1 , M. Abdul Momen 1 , Kiwon Ban 1 , 6 , Al-Muktafi Sadi 1 , Yu-Qing Zhou 2 , Ali M. Riazi 2 , Laurie L. Baggio 3 , R. Mark Henkelman 2 ,...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 58; no. 4; pp. 975 - 983
Main Authors Noyan-Ashraf, Mohammad Hossein, Momen, M. Abdul, Ban, Kiwon, Sadi, Al-Muktafi, Zhou, Yu-Qing, Riazi, Ali M., Baggio, Laurie L., Henkelman, R. Mark, Husain, Mansoor, Drucker, Daniel J.
Format Journal Article
LanguageEnglish
Published Alexandria, VA American Diabetes Association 01.04.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract GLP-1R Agonist Liraglutide Activates Cytoprotective Pathways and Improves Outcomes After Experimental Myocardial Infarction in Mice Mohammad Hossein Noyan-Ashraf 1 , M. Abdul Momen 1 , Kiwon Ban 1 , 6 , Al-Muktafi Sadi 1 , Yu-Qing Zhou 2 , Ali M. Riazi 2 , Laurie L. Baggio 3 , R. Mark Henkelman 2 , Mansoor Husain 1 , 4 , 5 , 6 and Daniel J. Drucker 3 , 5 1 Toronto General Hospital, Toronto, Ontario, Canada; 2 Mouse Imaging Centre, Department of Medical Biophysics, Hospital for Sick Children, Toronto, Ontario, Canada; 3 Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada; 4 Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada; 5 Department of Medicine, University of Toronto, Toronto, Ontario, Canada; 6 Department of Physiology, University of Toronto, Toronto, Ontario, Canada. Corresponding author: Daniel J. Drucker, d.drucker{at}utoronto.ca . M.H. and D.J.D. contributed equally to this work. Abstract OBJECTIVE Glucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat type 2 diabetes, and transient GLP-1 administration improved cardiac function in humans after acute myocardial infarction (MI) and percutaneous revascularization. However, the consequences of GLP-1R activation before ischemic myocardial injury remain unclear. RESEARCH DESIGN AND METHODS We assessed the pathophysiology and outcome of coronary artery occlusion in normal and diabetic mice pretreated with the GLP-1R agonist liraglutide. RESULTS Male C57BL/6 mice were treated twice daily for 7 days with liraglutide or saline followed by induction of MI. Survival was significantly higher in liraglutide-treated mice. Liraglutide reduced cardiac rupture (12 of 60 versus 46 of 60; P = 0.0001) and infarct size (21 ± 2% versus 29 ± 3%, P = 0.02) and improved cardiac output (12.4 ± 0.6 versus 9.7 ± 0.6 ml/min; P = 0.002). Liraglutide also modulated the expression and activity of cardioprotective genes in the mouse heart, including Akt, GSK3β, PPARβ-δ, Nrf-2, and HO-1. The effects of liraglutide on survival were independent of weight loss. Moreover, liraglutide conferred cardioprotection and survival advantages over metformin, despite equivalent glycemic control, in diabetic mice with experimental MI. The cardioprotective effects of liraglutide remained detectable 4 days after cessation of therapy and may be partly direct, because liraglutide increased cyclic AMP formation and reduced the extent of caspase-3 activation in cardiomyocytes in a GLP-1R–dependent manner in vitro. CONCLUSIONS These findings demonstrate that GLP-1R activation engages prosurvival pathways in the normal and diabetic mouse heart, leading to improved outcomes and enhanced survival after MI in vivo. Footnotes The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Received August 28, 2008. Accepted January 9, 2009. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. © 2009 by the American Diabetes Association.
AbstractList Glucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat type 2 diabetes, and transient GLP-1 administration improved cardiac function in humans after acute myocardial infarction (MI) and percutaneous revascularization. However, the consequences of GLP-1R activation before ischemic myocardial injury remain unclear. We assessed the pathophysiology and outcome of coronary artery occlusion in normal and diabetic mice pretreated with the GLP-1R agonist liraglutide. Male C57BL/6 mice were treated twice daily for 7 days with liraglutide or saline followed by induction of MI. Survival was significantly higher in liraglutide-treated mice. Liraglutide reduced cardiac rupture (12 of 60 versus 46 of 60; P = 0.0001) and infarct size (21 +/- 2% versus 29 +/- 3%, P = 0.02) and improved cardiac output (12.4 +/- 0.6 versus 9.7 +/- 0.6 ml/min; P = 0.002). Liraglutide also modulated the expression and activity of cardioprotective genes in the mouse heart, including Akt, GSK3beta, PPARbeta-delta, Nrf-2, and HO-1. The effects of liraglutide on survival were independent of weight loss. Moreover, liraglutide conferred cardioprotection and survival advantages over metformin, despite equivalent glycemic control, in diabetic mice with experimental MI. The cardioprotective effects of liraglutide remained detectable 4 days after cessation of therapy and may be partly direct, because liraglutide increased cyclic AMP formation and reduced the extent of caspase-3 activation in cardiomyocytes in a GLP-1R-dependent manner in vitro. These findings demonstrate that GLP-1R activation engages prosurvival pathways in the normal and diabetic mouse heart, leading to improved outcomes and enhanced survival after MI in vivo.
Glucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat type 2 diabetes, and transient GLP-1 administration improved cardiac function in humans after acute myocardial infarction (MI) and percutaneous revascularization. However, the consequences of GLP-1R activation before ischemic myocardial injury remain unclear.OBJECTIVEGlucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat type 2 diabetes, and transient GLP-1 administration improved cardiac function in humans after acute myocardial infarction (MI) and percutaneous revascularization. However, the consequences of GLP-1R activation before ischemic myocardial injury remain unclear.We assessed the pathophysiology and outcome of coronary artery occlusion in normal and diabetic mice pretreated with the GLP-1R agonist liraglutide.RESEARCH DESIGN AND METHODSWe assessed the pathophysiology and outcome of coronary artery occlusion in normal and diabetic mice pretreated with the GLP-1R agonist liraglutide.Male C57BL/6 mice were treated twice daily for 7 days with liraglutide or saline followed by induction of MI. Survival was significantly higher in liraglutide-treated mice. Liraglutide reduced cardiac rupture (12 of 60 versus 46 of 60; P = 0.0001) and infarct size (21 +/- 2% versus 29 +/- 3%, P = 0.02) and improved cardiac output (12.4 +/- 0.6 versus 9.7 +/- 0.6 ml/min; P = 0.002). Liraglutide also modulated the expression and activity of cardioprotective genes in the mouse heart, including Akt, GSK3beta, PPARbeta-delta, Nrf-2, and HO-1. The effects of liraglutide on survival were independent of weight loss. Moreover, liraglutide conferred cardioprotection and survival advantages over metformin, despite equivalent glycemic control, in diabetic mice with experimental MI. The cardioprotective effects of liraglutide remained detectable 4 days after cessation of therapy and may be partly direct, because liraglutide increased cyclic AMP formation and reduced the extent of caspase-3 activation in cardiomyocytes in a GLP-1R-dependent manner in vitro.RESULTSMale C57BL/6 mice were treated twice daily for 7 days with liraglutide or saline followed by induction of MI. Survival was significantly higher in liraglutide-treated mice. Liraglutide reduced cardiac rupture (12 of 60 versus 46 of 60; P = 0.0001) and infarct size (21 +/- 2% versus 29 +/- 3%, P = 0.02) and improved cardiac output (12.4 +/- 0.6 versus 9.7 +/- 0.6 ml/min; P = 0.002). Liraglutide also modulated the expression and activity of cardioprotective genes in the mouse heart, including Akt, GSK3beta, PPARbeta-delta, Nrf-2, and HO-1. The effects of liraglutide on survival were independent of weight loss. Moreover, liraglutide conferred cardioprotection and survival advantages over metformin, despite equivalent glycemic control, in diabetic mice with experimental MI. The cardioprotective effects of liraglutide remained detectable 4 days after cessation of therapy and may be partly direct, because liraglutide increased cyclic AMP formation and reduced the extent of caspase-3 activation in cardiomyocytes in a GLP-1R-dependent manner in vitro.These findings demonstrate that GLP-1R activation engages prosurvival pathways in the normal and diabetic mouse heart, leading to improved outcomes and enhanced survival after MI in vivo.CONCLUSIONSThese findings demonstrate that GLP-1R activation engages prosurvival pathways in the normal and diabetic mouse heart, leading to improved outcomes and enhanced survival after MI in vivo.
GLP-1R Agonist Liraglutide Activates Cytoprotective Pathways and Improves Outcomes After Experimental Myocardial Infarction in Mice Mohammad Hossein Noyan-Ashraf 1 , M. Abdul Momen 1 , Kiwon Ban 1 , 6 , Al-Muktafi Sadi 1 , Yu-Qing Zhou 2 , Ali M. Riazi 2 , Laurie L. Baggio 3 , R. Mark Henkelman 2 , Mansoor Husain 1 , 4 , 5 , 6 and Daniel J. Drucker 3 , 5 1 Toronto General Hospital, Toronto, Ontario, Canada; 2 Mouse Imaging Centre, Department of Medical Biophysics, Hospital for Sick Children, Toronto, Ontario, Canada; 3 Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada; 4 Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada; 5 Department of Medicine, University of Toronto, Toronto, Ontario, Canada; 6 Department of Physiology, University of Toronto, Toronto, Ontario, Canada. Corresponding author: Daniel J. Drucker, d.drucker{at}utoronto.ca . M.H. and D.J.D. contributed equally to this work. Abstract OBJECTIVE Glucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat type 2 diabetes, and transient GLP-1 administration improved cardiac function in humans after acute myocardial infarction (MI) and percutaneous revascularization. However, the consequences of GLP-1R activation before ischemic myocardial injury remain unclear. RESEARCH DESIGN AND METHODS We assessed the pathophysiology and outcome of coronary artery occlusion in normal and diabetic mice pretreated with the GLP-1R agonist liraglutide. RESULTS Male C57BL/6 mice were treated twice daily for 7 days with liraglutide or saline followed by induction of MI. Survival was significantly higher in liraglutide-treated mice. Liraglutide reduced cardiac rupture (12 of 60 versus 46 of 60; P = 0.0001) and infarct size (21 ± 2% versus 29 ± 3%, P = 0.02) and improved cardiac output (12.4 ± 0.6 versus 9.7 ± 0.6 ml/min; P = 0.002). Liraglutide also modulated the expression and activity of cardioprotective genes in the mouse heart, including Akt, GSK3β, PPARβ-δ, Nrf-2, and HO-1. The effects of liraglutide on survival were independent of weight loss. Moreover, liraglutide conferred cardioprotection and survival advantages over metformin, despite equivalent glycemic control, in diabetic mice with experimental MI. The cardioprotective effects of liraglutide remained detectable 4 days after cessation of therapy and may be partly direct, because liraglutide increased cyclic AMP formation and reduced the extent of caspase-3 activation in cardiomyocytes in a GLP-1R–dependent manner in vitro. CONCLUSIONS These findings demonstrate that GLP-1R activation engages prosurvival pathways in the normal and diabetic mouse heart, leading to improved outcomes and enhanced survival after MI in vivo. Footnotes The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Received August 28, 2008. Accepted January 9, 2009. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. © 2009 by the American Diabetes Association.
OBJECTIVE--Glucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat type 2 diabetes, and transient GLP-1 administration improved cardiac function in humans after acute myocardial infarction (MI) and percutaneous revascularization. However, the consequences of GLP-1R activation before ischo emic myocardial injury remain unclear. RESEARCH DESIGN AND METHODS--We assessed the pathophysiology and outcome of coronary artery occlusion in normal and diabetic mice pretreated with the GLP-1R agonist liraglutide. RESULTS--Male C57BL/6 mice were treated twice daily for 7 days with liraglutide or saline followed by induction of MI. Survival was significantly higher in liraglutide-treated mice. Liraglutide reduced cardiac rupture (12 of 60 versus 46 of 60; P = 0.0001) and infarct size (21 ± 2% versus 29 ± 3%, P = 0.02) and improved cardiac output (12.4 ± 0.6 versus 9.7 ± 0.6 ml/min; P = 0.002). Liraglutide also modulated the expression and activity of cardioprotective genes in the mouse heart, including Akt, GSK3β, PPARβ-δ, Nrf-2, and HO-1. The effects of liraglutide on survival were independent of weight loss. Moreover, liraglutide conferred cardioprotection and survival advantages over metformin, despite equivalent glycemic control, in diabetic mice with experimental MI. The cardioprotective effects of liraglutide remained detectable 4 days after cessation of therapy and may be partly direct, because liraglutide increased cyclic AMP formation and reduced the extent of caspase-3 activation in cardiomyocytes in a GLP-1R--dependent manner in vitro. CONCLUSIONS--These findings demonstrate that GLP-1R activation engages prosurvival pathways in the normal and diabetic mouse heart, leading to improved outcomes and enhanced survival after MI in vivo.
Glucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat type 2 diabetes, and transient GLP-1 administration improved cardiac function in humans after acute myocardial infarction (MI) and percutaneous revascularization. However, the consequences of GLP-1R activation before ischemic myocardial injury remain unclear. We assessed the pathophysiology and outcome of coronary artery occlusion in normal and diabetic mice pretreated with the GLP-1R agonist liraglutide. Male C57BL/6 mice were treated twice daily for 7 days with liraglutide or saline followed by induction of MI. Survival was significantly higher in liraglutide-treated mice. Liraglutide reduced cardiac rupture (12 of 60 versus 46 of 60; P = 0.0001) and infarct size (21 +/- 2% versus 29 +/- 3%, P = 0.02) and improved cardiac output (12.4 +/- 0.6 versus 9.7 +/- 0.6 ml/min; P = 0.002). Liraglutide also modulated the expression and activity of cardioprotective genes in the mouse heart, including Akt, GSK3beta, PPARbeta-delta, Nrf-2, and HO-1. The effects of liraglutide on survival were independent of weight loss. Moreover, liraglutide conferred cardioprotection and survival advantages over metformin, despite equivalent glycemic control, in diabetic mice with experimental MI. The cardioprotective effects of liraglutide remained detectable 4 days after cessation of therapy and may be partly direct, because liraglutide increased cyclic AMP formation and reduced the extent of caspase-3 activation in cardiomyocytes in a GLP-1R-dependent manner in vitro. These findings demonstrate that GLP-1R activation engages prosurvival pathways in the normal and diabetic mouse heart, leading to improved outcomes and enhanced survival after MI in vivo.
Audience Professional
Author Ali M. Riazi
Kiwon Ban
Yu-Qing Zhou
Laurie L. Baggio
Mansoor Husain
Mohammad Hossein Noyan-Ashraf
M. Abdul Momen
R. Mark Henkelman
Daniel J. Drucker
Al-Muktafi Sadi
Author_xml – sequence: 1
  givenname: Mohammad Hossein
  surname: Noyan-Ashraf
  fullname: Noyan-Ashraf, Mohammad Hossein
  organization: Toronto General Hospital, Toronto, Ontario, Canada
– sequence: 2
  givenname: M. Abdul
  surname: Momen
  fullname: Momen, M. Abdul
  organization: Toronto General Hospital, Toronto, Ontario, Canada
– sequence: 3
  givenname: Kiwon
  surname: Ban
  fullname: Ban, Kiwon
  organization: Toronto General Hospital, Toronto, Ontario, Canada;, Department of Physiology, University of Toronto, Toronto, Ontario, Canada
– sequence: 4
  givenname: Al-Muktafi
  surname: Sadi
  fullname: Sadi, Al-Muktafi
  organization: Toronto General Hospital, Toronto, Ontario, Canada
– sequence: 5
  givenname: Yu-Qing
  surname: Zhou
  fullname: Zhou, Yu-Qing
  organization: Mouse Imaging Centre, Department of Medical Biophysics, Hospital for Sick Children, Toronto, Ontario, Canada
– sequence: 6
  givenname: Ali M.
  surname: Riazi
  fullname: Riazi, Ali M.
  organization: Mouse Imaging Centre, Department of Medical Biophysics, Hospital for Sick Children, Toronto, Ontario, Canada
– sequence: 7
  givenname: Laurie L.
  surname: Baggio
  fullname: Baggio, Laurie L.
  organization: Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
– sequence: 8
  givenname: R. Mark
  surname: Henkelman
  fullname: Henkelman, R. Mark
  organization: Mouse Imaging Centre, Department of Medical Biophysics, Hospital for Sick Children, Toronto, Ontario, Canada
– sequence: 9
  givenname: Mansoor
  surname: Husain
  fullname: Husain, Mansoor
  organization: Toronto General Hospital, Toronto, Ontario, Canada;, Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada;, Department of Medicine, University of Toronto, Toronto, Ontario, Canada;, Department of Physiology, University of Toronto, Toronto, Ontario, Canada
– sequence: 10
  givenname: Daniel J.
  surname: Drucker
  fullname: Drucker, Daniel J.
  organization: Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada;, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21324515$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19151200$$D View this record in MEDLINE/PubMed
BookMark eNp9k21rFDEQxxep2Ad94ReQRVFQ2DYP-5Q3wnHUWrjSIgq-C9ns7F7KXnIm2bb32i_uHD1brxwSyA6T3_wzmZ05TPass5Akryk5ZpxXJ21D6oxSwZ8lB7iLjLPq515yQAhlGa1EtZ8chnBNCClxvUj2qaAFZYQcJL_PZlcZ_ZZOemdNiOnMeNUPYzQtpBMdzY2KENLpKrqldxHWHkivVJzfqlVIlW3T8wWe3CB0OUbtFmhMugg-Pb1bgjcLsFEN6cXKaeVbg-a57ZRHHWdTY9MLo-Fl8rxTQ4BXm-9R8uPL6ffp12x2eXY-ncwyXZE6ZiXrIM_bqlJNLUSLPihrzQkIUTQVKRVnTSsKlbeCN0XeKgaKllTUXVvwJlf8KPl8r7scmwW0GlPzapBLzFL5lXTKyO0Ta-aydzeSlSUt6hIFPmwEvPs1QohyYYKGYVAW3BhkWRFREJYj-PYJeO1Gb_FxktEyr0TOBELv7qFeDSCN7RxeqteKckJFlQvOeIVUtoPqwQJmiG3QGXRv8cc7eFwtLIzeGfBxKwCZCHexV2MIsj6b_S-ZDavdMEAPEv_W9HKbf_NvxR9K_bf_EHi_AVTQaui8stqEB45RzvKCFo9Jau9C8NA9ShG5ngG5ngG5ngFkT56w2kS1bjishBl2Rny6j5ibfn5rPEjs1Aaw8x-Nopa5FFXB_wADPBUA
CODEN DIAEAZ
CitedBy_id crossref_primary_10_1016_j_metabol_2011_11_011
crossref_primary_10_1080_14017431_2016_1197417
crossref_primary_10_3109_08923973_2011_630398
crossref_primary_10_3390_pharmaceutics16091139
crossref_primary_10_1371_journal_pone_0054518
crossref_primary_10_1016_j_atherosclerosis_2011_12_039
crossref_primary_10_1016_j_amjcard_2012_08_035
crossref_primary_10_1007_s00395_015_0476_7
crossref_primary_10_1093_eurheartj_ehv239
crossref_primary_10_1161_CIRCULATIONAHA_111_064139
crossref_primary_10_1016_j_peptides_2017_04_009
crossref_primary_10_1161_CIRCULATIONAHA_117_032099
crossref_primary_10_1097_FJC_0000000000000557
crossref_primary_10_1021_acsptsci_9b00048
crossref_primary_10_1016_j_phrs_2017_12_001
crossref_primary_10_1186_s12933_015_0178_3
crossref_primary_10_1016_j_nefroe_2023_09_003
crossref_primary_10_2337_dc09_1499
crossref_primary_10_1007_s00125_010_1831_8
crossref_primary_10_1111_bph_12943
crossref_primary_10_1016_j_isci_2021_103382
crossref_primary_10_1016_j_peptides_2013_12_015
crossref_primary_10_2337_db16_1206
crossref_primary_10_4103_0366_6999_170259
crossref_primary_10_1186_1475_2840_12_154
crossref_primary_10_3987_COM_14_S_K_29
crossref_primary_10_17925_USE_2020_16_2_80
crossref_primary_10_1038_nbt_2682
crossref_primary_10_1007_s00210_016_1330_7
crossref_primary_10_18705_2311_4495_2019_6_4_22_34
crossref_primary_10_1007_s00059_010_3340_4
crossref_primary_10_3390_medicina60030357
crossref_primary_10_1007_s12020_015_0798_0
crossref_primary_10_4009_jsdt_45_49
crossref_primary_10_1016_j_amjcard_2012_01_398
crossref_primary_10_1016_j_peptides_2016_02_007
crossref_primary_10_1016_j_omtn_2023_05_021
crossref_primary_10_1016_j_peptides_2017_12_005
crossref_primary_10_1093_cvr_cvs123
crossref_primary_10_1592_phco_31_9_896
crossref_primary_10_3389_fendo_2020_599355
crossref_primary_10_15369_sujms_26_191
crossref_primary_10_33549_physiolres_933558
crossref_primary_10_3390_ijms16024226
crossref_primary_10_1016_j_tem_2024_07_012
crossref_primary_10_1155_2015_606031
crossref_primary_10_25048_tudod_1074076
crossref_primary_10_14341_DM7192
crossref_primary_10_1186_1471_2261_9_31
crossref_primary_10_1177_1479164112440816
crossref_primary_10_1016_j_atherosclerosis_2015_03_026
crossref_primary_10_1186_s12933_017_0643_2
crossref_primary_10_1210_en_2017_00339
crossref_primary_10_1016_j_cpcardiol_2014_09_002
crossref_primary_10_3389_fphar_2020_00432
crossref_primary_10_1016_j_mehy_2011_09_011
crossref_primary_10_1007_s00125_010_1767_z
crossref_primary_10_1586_eem_11_6
crossref_primary_10_1089_dia_2010_0165
crossref_primary_10_1007_s00210_017_1414_z
crossref_primary_10_1007_s11154_014_9290_z
crossref_primary_10_1016_j_yjmcc_2015_09_018
crossref_primary_10_1152_ajpheart_00209_2014
crossref_primary_10_1016_j_lfs_2021_119815
crossref_primary_10_1016_j_peptides_2017_12_021
crossref_primary_10_1210_endrev_bnaa032
crossref_primary_10_1016_j_molmet_2022_101586
crossref_primary_10_1007_s00125_009_1643_x
crossref_primary_10_3390_medicina61010017
crossref_primary_10_1007_s13300_022_01217_z
crossref_primary_10_1186_s12872_016_0260_0
crossref_primary_10_1007_s11428_017_0267_x
crossref_primary_10_14341_2072_0351_5815
crossref_primary_10_1016_j_pharmthera_2022_108270
crossref_primary_10_2174_1574885518666230516150404
crossref_primary_10_1016_j_yjmcc_2014_08_022
crossref_primary_10_1186_s12933_014_0132_9
crossref_primary_10_1016_j_ejphar_2020_173316
crossref_primary_10_3390_ijms25094900
crossref_primary_10_1007_s11883_010_0153_0
crossref_primary_10_1161_CIRCIMAGING_116_005146
crossref_primary_10_1530_JOE_13_0195
crossref_primary_10_1586_eem_13_20
crossref_primary_10_1152_ajpgi_00210_2014
crossref_primary_10_1016_j_acvd_2020_06_006
crossref_primary_10_1038_nm_3128
crossref_primary_10_1007_BF03346698
crossref_primary_10_1016_j_clinthera_2011_04_024
crossref_primary_10_1186_s12933_019_0921_2
crossref_primary_10_1038_jcbfm_2012_133
crossref_primary_10_1111_j_1463_1326_2012_01595_x
crossref_primary_10_1007_s10741_017_9666_8
crossref_primary_10_1248_bpb_34_671
crossref_primary_10_2139_ssrn_4161722
crossref_primary_10_1371_journal_pone_0167853
crossref_primary_10_1016_j_ijcard_2015_12_009
crossref_primary_10_1016_S1957_2557_15_30036_5
crossref_primary_10_3390_jcm13185541
crossref_primary_10_1172_JCI99934
crossref_primary_10_1111_j_2040_1124_2010_00022_x
crossref_primary_10_1253_jjcsc_20_2_256
crossref_primary_10_1152_ajpendo_00418_2012
crossref_primary_10_24884_1682_6655_2018_17_2_57_63
crossref_primary_10_1016_j_atherosclerosis_2012_12_033
crossref_primary_10_2217_dmt_14_53
crossref_primary_10_1177_1074248420942007
crossref_primary_10_1016_j_molmet_2014_04_009
crossref_primary_10_1111_j_1463_1326_2010_01317_x
crossref_primary_10_1002_dmrr_2413
crossref_primary_10_1186_s12933_016_0386_5
crossref_primary_10_1016_j_jacc_2011_09_050
crossref_primary_10_1210_jc_2018_00712
crossref_primary_10_1016_j_tcm_2010_02_012
crossref_primary_10_1371_journal_pone_0078330
crossref_primary_10_1586_eem_13_2
crossref_primary_10_2337_db09_0955
crossref_primary_10_1016_j_metabol_2012_03_002
crossref_primary_10_3390_ph16060836
crossref_primary_10_1016_j_ahj_2015_02_002
crossref_primary_10_1517_14728222_2012_699043
crossref_primary_10_1111_j_1463_1326_2012_01579_x
crossref_primary_10_1007_s00011_024_01950_0
crossref_primary_10_3892_mmr_2019_10432
crossref_primary_10_1161_CIRCRESAHA_110_226464
crossref_primary_10_1152_ajpgi_00274_2011
crossref_primary_10_3892_mmr_2017_6618
crossref_primary_10_1016_j_compchemeng_2024_108626
crossref_primary_10_1371_journal_pone_0130894
crossref_primary_10_1016_j_fct_2019_110719
crossref_primary_10_1016_j_numecd_2021_02_003
crossref_primary_10_1016_j_bbrc_2018_03_142
crossref_primary_10_1161_JAHA_113_000433
crossref_primary_10_1371_journal_pone_0130658
crossref_primary_10_1371_journal_pone_0183664
crossref_primary_10_2337_dc11_s223
crossref_primary_10_1038_s41392_024_01931_z
crossref_primary_10_1016_j_jsps_2020_03_002
crossref_primary_10_1089_ars_2010_3198
crossref_primary_10_1016_j_jcjd_2013_06_010
crossref_primary_10_1080_14779072_2018_1423962
crossref_primary_10_1111_dom_12998
crossref_primary_10_1016_j_jash_2012_02_003
crossref_primary_10_1210_en_2018_00004
crossref_primary_10_1007_s12020_016_1166_4
crossref_primary_10_1177_1479164118783935
crossref_primary_10_1007_s00395_015_0518_1
crossref_primary_10_1177_1474651411431846
crossref_primary_10_1016_j_regpep_2011_11_008
crossref_primary_10_1002_adbi_202200130
crossref_primary_10_1126_scitranslmed_aay8071
crossref_primary_10_3389_fphar_2019_00537
crossref_primary_10_1097_FJC_0000000000001159
crossref_primary_10_1007_s00395_011_0216_6
crossref_primary_10_1007_s11596_023_2776_8
crossref_primary_10_1007_s00059_010_3333_3
crossref_primary_10_1016_j_biopha_2022_113517
crossref_primary_10_1016_j_diabet_2012_04_003
crossref_primary_10_1016_j_bbrc_2010_12_020
crossref_primary_10_1007_s10557_010_6242_z
crossref_primary_10_1161_CIRCEP_118_006740
crossref_primary_10_1186_s13098_021_00635_6
crossref_primary_10_1007_s12020_014_0246_6
crossref_primary_10_1016_j_ando_2010_09_001
crossref_primary_10_1007_s12020_014_0223_0
crossref_primary_10_1186_s12933_017_0553_3
crossref_primary_10_1016_j_ijcard_2017_03_042
crossref_primary_10_2337_db15_1224
crossref_primary_10_1152_ajpheart_00885_2010
crossref_primary_10_1007_s10741_018_9702_3
crossref_primary_10_1016_j_ijcard_2017_02_126
crossref_primary_10_1002_jcb_29639
crossref_primary_10_3803_EnM_2019_34_2_106
crossref_primary_10_1038_s41598_021_86132_2
crossref_primary_10_3390_ph13110410
crossref_primary_10_1007_BF03345744
crossref_primary_10_1016_j_biocel_2020_105793
crossref_primary_10_1161_ATVBAHA_110_206425
crossref_primary_10_1016_j_ijcard_2013_10_005
crossref_primary_10_2165_11201060_000000000_00000
crossref_primary_10_1160_th14_03_0258
crossref_primary_10_1007_s11064_016_1890_4
crossref_primary_10_1093_eurheartj_sus001
crossref_primary_10_1016_j_bbrc_2022_09_018
crossref_primary_10_1016_j_metabol_2013_04_010
crossref_primary_10_1007_s00059_010_3337_z
crossref_primary_10_1016_j_coph_2013_09_013
crossref_primary_10_1186_s12933_023_01758_y
crossref_primary_10_18632_oncotarget_18570
crossref_primary_10_24884_1682_6655_2018_17_1_90_96
crossref_primary_10_2217_fca_12_68
crossref_primary_10_1111_1755_5922_12000
crossref_primary_10_1111_dom_13888
crossref_primary_10_3390_antiox11061091
crossref_primary_10_1111_j_1753_0407_2011_00167_x
crossref_primary_10_1016_j_cmet_2013_04_008
crossref_primary_10_1038_nrendo_2012_140
crossref_primary_10_1111_j_1755_5922_2010_00256_x
crossref_primary_10_3389_fphys_2022_904626
crossref_primary_10_1161_CIRCULATIONAHA_112_091215
crossref_primary_10_1155_2013_317120
crossref_primary_10_1586_erc_12_5
crossref_primary_10_1186_s12933_015_0264_6
crossref_primary_10_1111_acel_12763
crossref_primary_10_1097_MOL_0b013e3283590b8f
crossref_primary_10_1253_circj_CJ_13_1561
crossref_primary_10_3389_fendo_2021_721198
crossref_primary_10_1007_s12410_018_9444_6
crossref_primary_10_3892_ijmm_2025_5515
crossref_primary_10_1016_j_jacbts_2016_03_011
crossref_primary_10_1111_jdv_12629
crossref_primary_10_1152_ajpcell_00093_2016
crossref_primary_10_1152_ajpheart_00867_2009
crossref_primary_10_1161_CIRCRESAHA_119_313682
crossref_primary_10_1186_1475_2840_9_76
crossref_primary_10_1186_s12933_015_0177_4
crossref_primary_10_3390_biomedicines8030043
crossref_primary_10_3389_fphys_2020_568632
crossref_primary_10_1111_j_1753_0407_2011_00143_x
crossref_primary_10_1111_dom_14862
crossref_primary_10_1016_j_molmet_2022_101641
crossref_primary_10_1111_jdi_12065
crossref_primary_10_1172_JCI97233
crossref_primary_10_1177_1479164115605000
crossref_primary_10_3892_etm_2019_7388
crossref_primary_10_1016_j_freeradbiomed_2017_04_027
crossref_primary_10_1185_03007995_2010_549466
crossref_primary_10_1016_j_tem_2016_03_017
crossref_primary_10_31083_j_fbl2811315
crossref_primary_10_1007_s12170_010_0141_5
crossref_primary_10_1016_j_jacbts_2018_09_004
crossref_primary_10_1177_0963689717721234
crossref_primary_10_1371_journal_pone_0023570
crossref_primary_10_1007_s40264_014_0238_8
crossref_primary_10_3109_07853890_2014_949837
crossref_primary_10_1111_dom_12251
crossref_primary_10_1210_en_2012_1937
crossref_primary_10_1016_j_regpep_2011_12_006
crossref_primary_10_1038_s41590_018_0272_2
crossref_primary_10_1093_hmg_ddu553
crossref_primary_10_1016_j_diabres_2012_11_009
crossref_primary_10_2165_11208110_000000000_00000
crossref_primary_10_1002_dmrr_1037
crossref_primary_10_1186_s12933_015_0193_4
crossref_primary_10_3389_fphar_2020_00805
crossref_primary_10_1016_j_yjmcc_2016_01_001
crossref_primary_10_1111_dom_13472
crossref_primary_10_1016_j_regpep_2012_06_007
crossref_primary_10_1161_CIRCHEARTFAILURE_112_000057
crossref_primary_10_1074_jbc_M111_310342
crossref_primary_10_3390_life13112226
crossref_primary_10_1055_a_1971_6965
crossref_primary_10_1007_s13300_011_0002_3
crossref_primary_10_2337_db14_1514
crossref_primary_10_1016_j_endonu_2012_07_007
crossref_primary_10_1186_s12933_018_0704_1
crossref_primary_10_1007_s11154_014_9286_8
crossref_primary_10_1155_2016_7357096
crossref_primary_10_5966_sctm_2012_0064
crossref_primary_10_1089_ars_2021_0100
crossref_primary_10_1016_j_cmet_2017_11_003
crossref_primary_10_3389_fendo_2019_00155
crossref_primary_10_1186_s12968_015_0197_y
crossref_primary_10_1038_s41574_022_00783_3
crossref_primary_10_1152_physrev_00013_2024
crossref_primary_10_1016_S1262_3636_17_30067_8
crossref_primary_10_2337_dc09_1902
crossref_primary_10_1186_s12933_016_0416_3
crossref_primary_10_1185_03007995_2012_678940
crossref_primary_10_4158_EP12292_RA
crossref_primary_10_1186_s12933_016_0480_8
crossref_primary_10_1007_s11428_016_0083_8
crossref_primary_10_1007_s00592_011_0359_9
crossref_primary_10_1007_s10557_015_6592_7
crossref_primary_10_1152_ajpcell_00248_2012
crossref_primary_10_2337_dc12_1495
crossref_primary_10_3389_fcvm_2021_649785
crossref_primary_10_1007_s11010_016_2678_1
crossref_primary_10_1007_s11897_014_0232_6
crossref_primary_10_1038_s41598_017_06712_z
crossref_primary_10_1155_2021_9993229
crossref_primary_10_1016_j_metabol_2019_154044
crossref_primary_10_2337_dbi20_0049
crossref_primary_10_1007_s11886_012_0332_4
crossref_primary_10_1055_a_1162_8196
crossref_primary_10_3390_ijms25084407
crossref_primary_10_2337_dbi18_0008
crossref_primary_10_1016_j_yjmcc_2025_03_007
crossref_primary_10_1155_2016_1379274
crossref_primary_10_1016_j_biopha_2023_115032
crossref_primary_10_1007_s11892_018_1011_7
crossref_primary_10_1111_jdi_13302
crossref_primary_10_3390_biomedicines9111579
crossref_primary_10_1136_bmjopen_2014_005942
crossref_primary_10_1002_jcsm_13025
crossref_primary_10_1186_s12933_015_0206_3
crossref_primary_10_1007_s10557_023_07482_9
crossref_primary_10_1111_dom_12050
crossref_primary_10_1161_CIRCRESAHA_114_301958
crossref_primary_10_1186_1758_5996_5_47
crossref_primary_10_3389_fendo_2018_00672
crossref_primary_10_36290_vnl_2019_049
crossref_primary_10_1186_1475_2840_13_49
crossref_primary_10_1371_journal_pone_0104873
crossref_primary_10_1111_bph_15462
crossref_primary_10_2967_jnumed_112_109413
crossref_primary_10_1155_2012_249827
crossref_primary_10_1155_2018_3123961
crossref_primary_10_1016_j_soard_2016_10_002
crossref_primary_10_1016_j_ijcard_2015_04_086
crossref_primary_10_1097_MED_0b013e3283339051
crossref_primary_10_1016_j_bbrc_2015_09_179
crossref_primary_10_1007_s00380_014_0509_4
crossref_primary_10_1016_j_diabres_2016_04_046
crossref_primary_10_1007_s00125_017_4330_3
crossref_primary_10_1152_ajpheart_00835_2014
crossref_primary_10_15420_cfr_2024_05
crossref_primary_10_1089_dia_2012_0022
crossref_primary_10_1007_s00210_011_0665_3
crossref_primary_10_1016_j_endoen_2012_11_004
crossref_primary_10_1002_oby_21107
crossref_primary_10_1186_s13098_016_0138_4
crossref_primary_10_1038_s41569_023_00849_3
crossref_primary_10_1016_S1262_3636_16_30006_4
crossref_primary_10_5402_2012_625809
crossref_primary_10_3390_ijms23137261
crossref_primary_10_1007_s00395_019_0743_0
crossref_primary_10_1152_ajpheart_00990_2012
crossref_primary_10_1111_1753_0407_13517
crossref_primary_10_1042_CS20171337
crossref_primary_10_1210_en_2009_1197
crossref_primary_10_1136_bmjopen_2014_004885
crossref_primary_10_3390_life13020443
crossref_primary_10_1186_s12933_021_01417_0
crossref_primary_10_1186_1475_2840_12_42
crossref_primary_10_1152_ajpheart_00680_2014
crossref_primary_10_1016_j_cbi_2019_03_012
crossref_primary_10_1093_cvr_cvab120
crossref_primary_10_1038_nrcardio_2011_211
crossref_primary_10_1186_s12933_024_02181_7
crossref_primary_10_1007_s12350_017_1068_8
crossref_primary_10_1161_JAHA_124_037510
crossref_primary_10_3389_fphys_2021_648399
crossref_primary_10_1007_s43440_024_00609_1
crossref_primary_10_1016_j_phrs_2021_105867
crossref_primary_10_1371_journal_pone_0148402
crossref_primary_10_3390_ijms22020660
crossref_primary_10_1016_j_mbplus_2021_100085
crossref_primary_10_2217_clp_13_8
crossref_primary_10_1007_s11886_013_0382_2
crossref_primary_10_1210_er_2011_1052
crossref_primary_10_1007_s00125_023_05906_7
crossref_primary_10_1152_ajpgi_00293_2015
crossref_primary_10_3389_fphys_2017_00015
crossref_primary_10_1007_s00059_018_4748_5
crossref_primary_10_1002_jcb_22981
crossref_primary_10_3389_fphar_2021_702326
crossref_primary_10_1016_j_cmet_2016_06_009
crossref_primary_10_1186_s13063_015_0772_4
crossref_primary_10_1007_s00210_010_0559_9
crossref_primary_10_3928_23258160_20200326_04
crossref_primary_10_1016_j_jjcc_2016_10_009
crossref_primary_10_1016_j_peptides_2017_02_008
crossref_primary_10_2165_11319130_000000000_00000
crossref_primary_10_1093_eurheartj_ehr382
crossref_primary_10_1016_j_mce_2022_111560
crossref_primary_10_1007_s00125_010_1702_3
crossref_primary_10_1124_pr_113_008300
crossref_primary_10_1371_journal_pone_0085634
crossref_primary_10_1111_j_1476_5381_2011_01357_x
crossref_primary_10_1111_nyas_12044
crossref_primary_10_1177_1479164112441526
crossref_primary_10_1177_1479164113516134
crossref_primary_10_1111_j_1742_1241_2010_02499_x
crossref_primary_10_1007_s10557_013_6463_z
crossref_primary_10_1056_NEJMoa1509225
crossref_primary_10_1016_j_diabet_2011_07_001
crossref_primary_10_1111_j_1463_1326_2010_01345_x
crossref_primary_10_1016_S1957_2557_10_70085_7
crossref_primary_10_1016_j_jdiacomp_2017_05_013
crossref_primary_10_1016_j_pharmthera_2012_07_012
crossref_primary_10_1093_eurheartj_ehad445
crossref_primary_10_1111_1440_1681_12956
crossref_primary_10_1042_CS20160491
crossref_primary_10_2337_db09_1694
crossref_primary_10_1139_bcb_2021_0365
crossref_primary_10_1038_s41367_020_0015_3
crossref_primary_10_1016_j_pharmthera_2014_01_003
crossref_primary_10_1097_FJC_0b013e3182949673
crossref_primary_10_3390_cells10040922
crossref_primary_10_1111_dom_12085
crossref_primary_10_1002_dmrr_3191
crossref_primary_10_1016_j_ejphar_2014_05_003
crossref_primary_10_1016_j_numecd_2017_09_006
crossref_primary_10_1530_JME_15_0155
crossref_primary_10_1111_1753_0407_12258
crossref_primary_10_4236_pp_2013_49091
crossref_primary_10_1016_j_medcli_2013_05_041
crossref_primary_10_2310_JIM_0b013e3182544f9e
crossref_primary_10_3390_biomedicines12061314
crossref_primary_10_1002_pul2_12028
crossref_primary_10_1186_1479_5876_11_84
crossref_primary_10_1042_CS20160061
crossref_primary_10_1111_jnc_12469
crossref_primary_10_1016_j_nefro_2022_07_008
crossref_primary_10_1016_j_jcjd_2019_09_003
crossref_primary_10_1016_j_jacc_2021_02_057
crossref_primary_10_1016_j_peptides_2018_11_007
crossref_primary_10_3390_biom11020286
crossref_primary_10_1177_2042098612454290
crossref_primary_10_1007_s13105_022_00939_9
crossref_primary_10_1002_cph4_7
crossref_primary_10_1097_XCE_0000000000000086
crossref_primary_10_1007_s00125_023_05973_w
crossref_primary_10_1016_j_ejim_2009_05_010
crossref_primary_10_1016_j_ahj_2015_07_014
crossref_primary_10_1089_met_2012_0095
crossref_primary_10_1038_s41598_022_24855_6
crossref_primary_10_1152_ajpheart_00609_2012
crossref_primary_10_1111_j_1463_1326_2010_01330_x
crossref_primary_10_1210_en_2012_1461
crossref_primary_10_1186_s12902_015_0005_6
crossref_primary_10_1016_j_jss_2013_06_042
crossref_primary_10_1016_j_molmet_2019_09_010
crossref_primary_10_1124_pr_115_011395
crossref_primary_10_1080_20468954_2024_2366693
crossref_primary_10_1007_s11818_018_0159_3
crossref_primary_10_1016_j_neuropharm_2023_109603
crossref_primary_10_1016_S0168_8227_11_70011_0
crossref_primary_10_1007_s00059_012_3599_8
crossref_primary_10_1111_j_1476_5381_2009_00376_x
crossref_primary_10_1210_me_2014_1346
crossref_primary_10_1016_j_clinthera_2022_12_006
crossref_primary_10_1016_j_micpath_2020_104645
crossref_primary_10_1186_1471_2369_14_98
crossref_primary_10_1159_000351678
crossref_primary_10_1042_BSR20181995
crossref_primary_10_1016_j_ijcard_2011_12_007
crossref_primary_10_1586_eem_10_20
crossref_primary_10_1016_j_amjcard_2011_03_046
Cites_doi 10.1096/fj.05-4889fje
10.1038/nrm1983
10.1016/S0140-6736(06)69705-5
10.1172/JCI0215595
10.1161/CIRCULATIONAHA.107.739938
10.1016/j.regpep.2007.10.001
10.1523/JNEUROSCI.23-07-02939.2003
10.1161/01.RES.78.2.283
10.1084/jem.20021426
10.1172/JCI19906
10.1161/01.CIR.0000139339.85840.DD
10.1161/01.CIR.0000118495.88442.32
10.1161/01.RES.85.10.940
10.1016/j.cardfail.2006.08.211
10.2337/diabetes.54.1.146
10.1161/01.RES.0000012567.95445.55
10.1161/01.CIR.0000120505.91348.58
10.1038/nm919
10.2337/dc06-2593
10.1074/jbc.M209423200
10.1007/s10557-007-6030-6
10.1152/ajpheart.00027.2005
10.1016/S0008-6363(99)00395-8
10.1152/physiolgenomics.00026.2004
10.1007/s10557-005-6892-4
10.1124/jpet.104.073890
10.1124/jpet.106.100982
10.1096/fj.05-4435com
10.1161/CIRCULATIONAHA.106.643585
10.1038/13459
10.1097/MED.0b013e328013e79e
10.1161/01.RES.87.7.543
10.1161/hh1701.095716
10.2337/diabetes.50.11.2530
10.1161/01.RES.0000124394.01180.BE
10.1016/S0196-9781(03)00108-6
10.1152/ajpheart.00479.2002
10.1152/ajpheart.00831.2007
10.1161/CIRCULATIONAHA.107.735795
10.1161/hh1401.093314
10.2337/diabetes.53.5.1187
10.1152/ajpheart.00347.2005
ClassificationCodes 2834
2834121
ContentType Journal Article
Copyright 2009 INIST-CNRS
COPYRIGHT 2009 American Diabetes Association
Copyright American Diabetes Association Apr 2009
2009 by the American Diabetes Association.
Copyright_xml – notice: 2009 INIST-CNRS
– notice: COPYRIGHT 2009 American Diabetes Association
– notice: Copyright American Diabetes Association Apr 2009
– notice: 2009 by the American Diabetes Association.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
8GL
3V.
7RV
7X7
7XB
88E
88I
8AF
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BEC
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9-
K9.
KB0
LK8
M0R
M0S
M1P
M2O
M2P
M7P
MBDVC
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
S0X
7X8
5PM
DOI 10.2337/db08-1193
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: High School
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
eLibrary Curriculum
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Consumer Health Database (Alumni Edition)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Consumer Health Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Science Database
Biological Science Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SIRS Editorial
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Family Health (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep
MEDLINE - Academic



MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1939-327X
EndPage 983
ExternalDocumentID PMC2661586
1685510021
A197493237
19151200
21324515
10_2337_db08_1193
diabetes_58_4_975
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GrantInformation_xml – fundername: CIHR
  grantid: 80668
GroupedDBID -
08R
0R
1AW
29F
2WC
3V.
4.4
53G
55
5GY
5RE
5RS
5VS
7RV
7X7
88E
88I
8AF
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8GL
8R4
8R5
AAQQT
AAWTL
AAYEP
AAYJJ
ABFLS
ABOCM
ABPTK
ABUWG
ACDCL
ACGOD
ACPRK
ADACO
ADBBV
ADBIT
AENEX
AFKRA
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BAWUL
BBAFP
BBNVY
BCR
BCU
BEC
BENPR
BES
BHPHI
BKEYQ
BKNYI
BLC
BPHCQ
BVXVI
C1A
CS3
DIK
DU5
DWQXO
E3Z
EBS
EDB
EJD
EX3
F5P
FRP
FYUFA
GICCO
GJ
GNUQQ
GUQSH
GX1
H13
HCIFZ
HZ
H~9
IAG
IAO
IEA
IHR
INH
INR
IOF
IPO
K-O
K9-
KM
KQ8
L7B
LK8
M0R
M1P
M2O
M2P
M2Q
M5
M7P
MBDVC
O0-
O5R
O5S
O9-
OB3
OBH
OK1
OVD
P2P
PADUT
PCD
PEA
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PSQYO
Q2X
RHF
RHI
RPM
S0X
SJFOW
SJN
SV3
TDI
WH7
WOQ
WOW
X7M
XZ
ZA5
ZY1
---
.55
.GJ
.XZ
08P
0R~
18M
354
6PF
AAFWJ
AAKAS
AAYOK
AAYXX
ACGFO
ADGHP
ADZCM
AEGXH
AERZD
AIAGR
AIZAD
ALIPV
BTFSW
CCPQU
CITATION
EMOBN
HMCUK
HZ~
ITC
K2M
M5~
N4W
NAPCQ
OHH
PHGZM
PHGZT
TEORI
TR2
UKHRP
VVN
W8F
YFH
YHG
YOC
~KM
1CY
8F7
AFFNX
AI.
IQODW
J5H
MVM
PJZUB
PPXIY
PQGLB
VH1
XOL
YQJ
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7XB
8FK
K9.
PKEHL
Q9U
7X8
5PM
ID FETCH-LOGICAL-c708t-62fe44d77ab899d708e68c30e995b706a32bd95a4d93b54da2ea16198fd53b4a3
IEDL.DBID 7X7
ISSN 0012-1797
1939-327X
IngestDate Thu Aug 21 14:05:04 EDT 2025
Fri Jul 11 09:53:11 EDT 2025
Fri Jul 25 19:38:02 EDT 2025
Tue Jun 17 21:57:39 EDT 2025
Thu Jun 12 23:57:54 EDT 2025
Tue Jun 10 20:58:34 EDT 2025
Fri Jun 27 05:16:43 EDT 2025
Tue Jun 10 19:56:16 EDT 2025
Mon Jul 21 06:06:06 EDT 2025
Mon Jul 21 09:14:03 EDT 2025
Tue Jul 01 03:04:01 EDT 2025
Thu Apr 24 23:00:57 EDT 2025
Fri Jan 15 19:45:49 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Endocrinopathy
Myocardial infarction
Vertebrata
Agonist
Mammalia
Mouse
Animal
Diabetes mellitus
Rodentia
Cardiovascular disease
Coronary heart disease
Myocardial disease
Language English
License CC BY 4.0
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c708t-62fe44d77ab899d708e68c30e995b706a32bd95a4d93b54da2ea16198fd53b4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
M.H. and D.J.D. contributed equally to this work.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC2661586
PMID 19151200
PQID 216479429
PQPubID 34443
PageCount 9
ParticipantIDs highwire_diabetes_diabetes_58_4_975
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2661586
gale_incontextgauss_8GL_A197493237
proquest_journals_216479429
gale_infotracacademiconefile_A197493237
proquest_miscellaneous_67095024
gale_infotracmisc_A197493237
pascalfrancis_primary_21324515
gale_incontextcollege_GICCO_A197493237
pubmed_primary_19151200
crossref_citationtrail_10_2337_db08_1193
gale_infotracgeneralonefile_A197493237
crossref_primary_10_2337_db08_1193
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-04-01
PublicationDateYYYYMMDD 2009-04-01
PublicationDate_xml – month: 04
  year: 2009
  text: 2009-04-01
  day: 01
PublicationDecade 2000
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: United States
– name: New York
PublicationTitle Diabetes (New York, N.Y.)
PublicationTitleAlternate Diabetes
PublicationYear 2009
Publisher American Diabetes Association
Publisher_xml – name: American Diabetes Association
References Zhou (2022051610230912900_B29) 2005; 289
Askari (2022051610230912900_B32) 2003; 197
Zhao (2022051610230912900_B13) 2006; 317
Noyan-Ashraf (2022051610230912900_B26) 2006; 20
Bose (2022051610230912900_B10) 2005; 19
Nikolaidis (2022051610230912900_B12) 2005; 312
Aulinger (2022051610230912900_B44) 2007; 14
Sokos (2022051610230912900_B15) 2006; 12
Yang (2022051610230912900_B21) 2004; 109
Vilsboll (2022051610230912900_B19) 2007; 6
Liu (2022051610230912900_B37) 2006; 20
Juhaszova (2022051610230912900_B36) 2004; 113
Zhou (2022051610230912900_B28) 2004; 18
Song (2022051610230912900_B24) 2000; 45
Heineke (2022051610230912900_B35) 2006; 7
Li (2022051610230912900_B23) 1996; 78
Bose (2022051610230912900_B9) 2005; 54
Cook (2022051610230912900_B25) 1999; 85
Yet (2022051610230912900_B33) 2001; 89
Larsen (2022051610230912900_B18) 2001; 50
Kavianipour (2022051610230912900_B42) 2003; 24
Yamamoto (2022051610230912900_B7) 2002; 110
Vila Petroff (2022051610230912900_B4) 2001; 89
Ban (2022051610230912900_B3) 2008; 117
Nikolaidis (2022051610230912900_B14) 2004; 109
Bose (2022051610230912900_B11) 2007; 21
Barragan (2022051610230912900_B5) 1999; 277
Nikolaidis (2022051610230912900_B41) 2005; 289
Inzucchi (2022051610230912900_B43) 2008; 117
Sonne (2022051610230912900_B16) 2008; 146
Yang (2022051610230912900_B30) 2008; 294
Li (2022051610230912900_B40) 2003; 278
Yamamoto (2022051610230912900_B6) 2003; 23
Sun (2022051610230912900_B22) 2007; 115
Burkart (2022051610230912900_B38) 2007; 117
Heymans (2022051610230912900_B31) 1999; 5
Drucker (2022051610230912900_B2) 2006; 368
Nikolaidis (2022051610230912900_B8) 2004; 110
Degn (2022051610230912900_B17) 2004; 53
Ohta (2022051610230912900_B20) 2004; 287
Shiraishi (2022051610230912900_B34) 2004; 94
Tong (2022051610230912900_B27) 2002; 90
During (2022051610230912900_B39) 2003; 9
Yellon (2022051610230912900_B1) 2000; 87
References_xml – volume: 20
  start-page: 371
  year: 2006
  ident: 2022051610230912900_B26
  article-title: Dietary approaches to positively influence fetal determinants of adult health
  publication-title: FASEB J
  doi: 10.1096/fj.05-4889fje
– volume: 7
  start-page: 589
  year: 2006
  ident: 2022051610230912900_B35
  article-title: Regulation of cardiac hypertrophy by intracellular signalling pathways
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm1983
– volume: 368
  start-page: 1696
  year: 2006
  ident: 2022051610230912900_B2
  article-title: The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)69705-5
– volume: 110
  start-page: 43
  year: 2002
  ident: 2022051610230912900_B7
  article-title: Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons
  publication-title: J Clin Invest
  doi: 10.1172/JCI0215595
– volume: 117
  start-page: 2340
  year: 2008
  ident: 2022051610230912900_B3
  article-title: Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.739938
– volume: 146
  start-page: 243
  year: 2008
  ident: 2022051610230912900_B16
  article-title: Protective effects of GLP-1 analogues exendin-4 and GLP-1(9–36) amide against ischemia-reperfusion injury in rat heart
  publication-title: Regul Pept
  doi: 10.1016/j.regpep.2007.10.001
– volume: 23
  start-page: 2939
  year: 2003
  ident: 2022051610230912900_B6
  article-title: Glucagon-like peptide-1-responsive catecholamine neurons in the area postrema link peripheral glucagon-like peptide-1 with central autonomic control sites
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-07-02939.2003
– volume: 78
  start-page: 283
  year: 1996
  ident: 2022051610230912900_B23
  article-title: In vivo survival and function of transplanted rat cardiomyocytes
  publication-title: Circ Res
  doi: 10.1161/01.RES.78.2.283
– volume: 197
  start-page: 615
  year: 2003
  ident: 2022051610230912900_B32
  article-title: Myeloperoxidase and plasminogen activator inhibitor 1 play a central role in ventricular remodeling after myocardial infarction
  publication-title: J Exp Med
  doi: 10.1084/jem.20021426
– volume: 113
  start-page: 1535
  year: 2004
  ident: 2022051610230912900_B36
  article-title: Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore
  publication-title: J Clin Invest
  doi: 10.1172/JCI19906
– volume: 110
  start-page: 955
  year: 2004
  ident: 2022051610230912900_B8
  article-title: Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000139339.85840.DD
– volume: 109
  start-page: 1161
  year: 2004
  ident: 2022051610230912900_B21
  article-title: Simultaneous evaluation of infarct size and cardiac function in intact mice by contrast-enhanced cardiac magnetic resonance imaging reveals contractile dysfunction in noninfarcted regions early after myocardial infarction
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000118495.88442.32
– volume: 85
  start-page: 940
  year: 1999
  ident: 2022051610230912900_B25
  article-title: Regulation of bcl-2 family proteins during development and in response to oxidative stress in cardiac myocytes: association with changes in mitochondrial membrane potential
  publication-title: Circ Res
  doi: 10.1161/01.RES.85.10.940
– volume: 12
  start-page: 694
  year: 2006
  ident: 2022051610230912900_B15
  article-title: Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure
  publication-title: J Card Fail
  doi: 10.1016/j.cardfail.2006.08.211
– volume: 54
  start-page: 146
  year: 2005
  ident: 2022051610230912900_B9
  article-title: Glucagon-like peptide-1 (GLP-1) can directly protect the heart against ischemia/reperfusion injury
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.1.146
– volume: 90
  start-page: 377
  year: 2002
  ident: 2022051610230912900_B27
  article-title: Phosphorylation of glycogen synthase kinase-3beta during preconditioning through a phosphatidylinositol-3-kinase–dependent pathway is cardioprotective
  publication-title: Circ Res
  doi: 10.1161/01.RES.0000012567.95445.55
– volume: 109
  start-page: 962
  year: 2004
  ident: 2022051610230912900_B14
  article-title: Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000120505.91348.58
– volume: 9
  start-page: 1173
  year: 2003
  ident: 2022051610230912900_B39
  article-title: Glucagon-like peptide-1 receptor is involved in learning and neuroprotection
  publication-title: Nat Med
  doi: 10.1038/nm919
– volume: 6
  start-page: 1608
  year: 2007
  ident: 2022051610230912900_B19
  article-title: Liraglutide, a long-acting human GLP-1 Analog, given as monotherapy significantly improves glycemic control and lowers body weight without risk of hypoglycemia in patients with type 2 diabetes mellitus
  publication-title: Diabetes Care
  doi: 10.2337/dc06-2593
– volume: 278
  start-page: 471
  year: 2003
  ident: 2022051610230912900_B40
  article-title: Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M209423200
– volume: 21
  start-page: 253
  year: 2007
  ident: 2022051610230912900_B11
  article-title: Myocardial ischaemia–reperfusion injury is attenuated by intact glucagon like peptide-1 (GLP-1) in the in vitro rat heart and may involve the p70s6K pathway
  publication-title: Cardiovasc Drugs Ther
  doi: 10.1007/s10557-007-6030-6
– volume: 289
  start-page: H992
  year: 2005
  ident: 2022051610230912900_B29
  article-title: Abnormal cardiac inflow patterns during postnatal development in a mouse model of Holt-Oram syndrome
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00027.2005
– volume: 45
  start-page: 595
  year: 2000
  ident: 2022051610230912900_B24
  article-title: Tumor necrosis factor-alpha induces apoptosis via inducible nitric oxide synthase in neonatal mouse cardiomyocytes
  publication-title: Cardiovasc Res
  doi: 10.1016/S0008-6363(99)00395-8
– volume: 18
  start-page: 232
  year: 2004
  ident: 2022051610230912900_B28
  article-title: Comprehensive transthoracic cardiac imaging in mice using ultrasound biomicroscopy with anatomical confirmation by magnetic resonance imaging
  publication-title: Physiol Genomics
  doi: 10.1152/physiolgenomics.00026.2004
– volume: 277
  start-page: E784
  year: 1999
  ident: 2022051610230912900_B5
  article-title: Neural contribution to the effect of glucagon-like peptide-1-(7–36) amide on arterial blood pressure in rats
  publication-title: Am J Physiol
– volume: 19
  start-page: 9
  year: 2005
  ident: 2022051610230912900_B10
  article-title: Glucagon like peptide-1 is protective against myocardial ischemia/reperfusion injury when given either as a preconditioning mimetic or at reperfusion in an isolated rat heart model
  publication-title: Cardiovasc Drugs Ther
  doi: 10.1007/s10557-005-6892-4
– volume: 312
  start-page: 303
  year: 2005
  ident: 2022051610230912900_B12
  article-title: Glucagon-like peptide-1 limits myocardial stunning following brief coronary occlusion and reperfusion in conscious canines
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.104.073890
– volume: 317
  start-page: 1106
  year: 2006
  ident: 2022051610230912900_B13
  article-title: Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.106.100982
– volume: 20
  start-page: 207
  year: 2006
  ident: 2022051610230912900_B37
  article-title: Heme oxygenase-1 (HO-1) inhibits postmyocardial infarct remodeling and restores ventricular function
  publication-title: FASEB J
  doi: 10.1096/fj.05-4435com
– volume: 117
  start-page: 3930
  year: 2007
  ident: 2022051610230912900_B38
  article-title: Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart
  publication-title: J Clin Invest
– volume: 115
  start-page: 1398
  year: 2007
  ident: 2022051610230912900_B22
  article-title: Tumor necrosis factor-alpha mediates cardiac remodeling and ventricular dysfunction after pressure overload state
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.106.643585
– volume: 5
  start-page: 1135
  year: 1999
  ident: 2022051610230912900_B31
  article-title: Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure
  publication-title: Nat Med
  doi: 10.1038/13459
– volume: 14
  start-page: 68
  year: 2007
  ident: 2022051610230912900_B44
  article-title: Glucagon-like peptide 1: continued advances, new targets and expanding promise as a model therapeutic
  publication-title: Curr Opin Endocrinol Diabetes Obes
  doi: 10.1097/MED.0b013e328013e79e
– volume: 87
  start-page: 543
  year: 2000
  ident: 2022051610230912900_B1
  article-title: The preconditioning phenomenon: a tool for the scientist or a clinical reality?
  publication-title: Circ Res
  doi: 10.1161/01.RES.87.7.543
– volume: 89
  start-page: 445
  year: 2001
  ident: 2022051610230912900_B4
  article-title: Glucagon-like peptide-1 increases cAMP but fails to augment contraction in adult rat cardiac myocytes
  publication-title: Circ Res
  doi: 10.1161/hh1701.095716
– volume: 50
  start-page: 2530
  year: 2001
  ident: 2022051610230912900_B18
  article-title: Systemic administration of the long-acting GLP-1 derivative NN2211 induces lasting and reversible weight loss in both normal and obese rats
  publication-title: Diabetes
  doi: 10.2337/diabetes.50.11.2530
– volume: 94
  start-page: 884
  year: 2004
  ident: 2022051610230912900_B34
  article-title: Nuclear targeting of Akt enhances kinase activity and survival of cardiomyocytes
  publication-title: Circ Res
  doi: 10.1161/01.RES.0000124394.01180.BE
– volume: 24
  start-page: 569
  year: 2003
  ident: 2022051610230912900_B42
  article-title: Glucagon-like peptide-1 (7–36) amide prevents the accumulation of pyruvate and lactate in the ischemic and non-ischemic porcine myocardium
  publication-title: Peptides
  doi: 10.1016/S0196-9781(03)00108-6
– volume: 287
  start-page: H286
  year: 2004
  ident: 2022051610230912900_B20
  article-title: Elafin-overexpressing mice have improved cardiac function after myocardial infarction
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00479.2002
– volume: 294
  start-page: H1815
  year: 2008
  ident: 2022051610230912900_B30
  article-title: Age-related differences in postinfarct left ventricular rupture and remodeling
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00831.2007
– volume: 117
  start-page: 574
  year: 2008
  ident: 2022051610230912900_B43
  article-title: New drugs for the treatment of diabetes: part II: incretin-based therapy and beyond
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.735795
– volume: 89
  start-page: 168
  year: 2001
  ident: 2022051610230912900_B33
  article-title: Cardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice
  publication-title: Circ Res
  doi: 10.1161/hh1401.093314
– volume: 53
  start-page: 1187
  year: 2004
  ident: 2022051610230912900_B17
  article-title: One week's treatment with the long-acting glucagon-like peptide 1 derivative liraglutide (NN2211) markedly improves 24-h glycemia and alpha- and beta-cell function and reduces endogenous glucose release in patients with type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.53.5.1187
– volume: 289
  start-page: H2401
  year: 2005
  ident: 2022051610230912900_B41
  article-title: Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00347.2005
SSID ssj0006060
Score 2.4980946
Snippet GLP-1R Agonist Liraglutide Activates Cytoprotective Pathways and Improves Outcomes After Experimental Myocardial Infarction in Mice Mohammad Hossein...
Glucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat type 2 diabetes, and transient GLP-1 administration improved cardiac function in humans...
OBJECTIVE--Glucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat type 2 diabetes, and transient GLP-1 administration improved cardiac function...
SourceID pubmedcentral
proquest
gale
pubmed
pascalfrancis
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 975
SubjectTerms Animals
Biological and medical sciences
Blood Glucose - metabolism
Body Weight
Cardiac function
Cardiology. Vascular system
Cardiomegaly - pathology
Cardiomyocytes
Cellular signal transduction
Coronary heart disease
Coronary vessels
Diabetes
Diabetes Mellitus, Type 2 - drug therapy
Diabetes. Impaired glucose tolerance
Diabetic Angiopathies - drug therapy
Diet
Disease Models, Animal
Dosage and administration
Drug therapy
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Glucagon
Glucagon-Like Peptide 1 - analogs & derivatives
Glucagon-Like Peptide 1 - therapeutic use
Glucagon-Like Peptide-1 Receptor
Heart
Heart - anatomy & histology
Heart attack
Heart attacks
Heart failure
Human subjects
Humans
Hypoglycemic agents
Ischemia
Liraglutide
Male
Medical sciences
Mice
Mice, Inbred C57BL
Myocardial Infarction - drug therapy
Myocarditis. Cardiomyopathies
Organ Size
Original
Peptides
Receptors, Glucagon - agonists
Research design
Survival analysis
Type 2 diabetes
Veins & arteries
Title GLP-1R Agonist Liraglutide Activates Cytoprotective Pathways and Improves Outcomes After Experimental Myocardial Infarction in Mice
URI http://diabetes.diabetesjournals.org/content/58/4/975.abstract
https://www.ncbi.nlm.nih.gov/pubmed/19151200
https://www.proquest.com/docview/216479429
https://www.proquest.com/docview/67095024
https://pubmed.ncbi.nlm.nih.gov/PMC2661586
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BKyEuiHdNS1gBKlys2l7ba59QiNIWlLRRRaXcVvtyiFTZpXaEcuaPMxM_GqOIS2RlPyX2zuzst7vjbwj5iNNIxrR1Ex1KNwwy5UqeRK7vZyzO4jSSCl8Unl7E59fh93k0b3Jzyiatso2Jm0BtCo175CcBCl-lED2_3P5ysWgUHq42FTQekn1ULkOn5vNuveUBN6_fQPEDVOHktbBQwBg_MQpVTTfHzVvTURuUW6VgTJSUJfRVVhe52MVC_02m3JqdTp-SJw2tpMPaD56RBzZ_Th5Nm4PzF-TP2WTm-ld0uChQKpdOlndygU5nLB3qTYkzW9LRuioa4QYIgnQG7PC3XJdU5obWuw8AulxV0GNwMcTy4nS8VSKATtcwNaLL3dBveQZjCM1OlzmdQjx6Sa5Pxz9G525Tf8HV3EsqNw4yG4aGc6lgVWbgOxsnmnk2TSPFvViyQBmwZmhSpqLQyMBKIJBpkpmIqVCyV2QvL3J7QCgLmSejWPuZkbCijFVidag5i5VkUqWxQz63ZhC6ESfHGhk3AhYpaDGBFhNoMYe876C3tSLHLtAx2lKgwkWOKTS63oYR8HyjSzH0YRkFzJVx-LU-cCFXZSmSs0kP9KkBZQXclZbNqwvwbKie1UMe95CLWjt8F_CoB4RBrXvNH1onFO0m_P1FlIhQpDxyyKDnn11_BD7wZGCqDjlsHVY0sakU3UhyyLuuFf8f0-1yW6xKgaJ-EbA3h7yunfu-p1OkiJ7nEN5z-w6AcuX9lnz5cyNbjlQwSuI3_72nQ_K4Pa_z_COyV92t7FugfZUabAY3fCYjf0D2v44vZld_AWRZWyc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgEXxBvT0q54lF6s2t7164BQFNomNGkr1Eq9LftyiFTZpU5U5czv4T8yE9tJjCpuvVneT_baMzs7szv7DSEfcBrJmLZuorl0eZApV8ZJ6Pp-xqIsSkOp8KDw8DjqnfNvF-HFGvnTnIXBtMrGJs4NtSk0rpHvBUh8lYL1_HL1y8WiUbi52lTQqLTiyM5uIGIrP_e_gng_BsHB_lm359ZFBVwde8nEjYLMcm7iWCoINQzcs1GimWfTNFSxF0kWKANd5CZlKuRGBlaCV5QmmQmZ4pLBc--R-5zByMSD6d1lRgnEAtWJFz9A1s-4IjIKALlnFLKozre3V6a_ZhJomIkxMVOWIJusKqpxm9f7b_Lmymx48IQ8rt1Y2qn07ilZs_kz8mBYb9Q_J78PB6eu_512RgVS89LB-FqOUMmNpR09L6lmS9qdTYqaKAKMLj0Fb_RGzkoqc0Or1Q4AnUwnICG46GA5c7q_UpKADmcwFaOKX9J-noF0UM3oOKdDsH8vyPmdiOYlWc-L3L4mlHHmyTDSfmYkRLCRSqzmOmaRkkyqNHLIbiMGoWsydKzJcSkgKEKJCZSYQIk55N0CelUxgNwG2kFZCmTUyDFlR1fLPgK-r3siOj6EbeApsxie1gaO5LQsRXI4aIE-1aCsgF5pWR-VgG9Dtq4WcqeFHFVc5bcBN1tAMCK61fy-UULRLPovL8JEcJHGoUO2Wvq5-B-BD345eMYO2WgUVtS2sBSLkeuQ7UUrvh_T-3JbTEuBJIIheIsOeVUp9_JPp-iSep5D4pbaLwBIj95uycc_5zTp6HqGSfTmv33aJg97Z8OBGPSPjzbIo2av0PM3yfrkemrfgss5UVvzgU7Jj7u2LH8B84aVYw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db5swELe6Tqr2MnXfrF1r7aPbCwpgwPAwTVHatFmTNppWqW-ubUwWqYK2JKryvL9q_93uAiRhivbWN4RPYLifz3f2-XeEfMRpJGXa2JH2pe17qbIljwLbdVMWpmEcSIUHhQdn4cmF__0yuNwgf-qzMJhWWdvEuaFOco1r5C0Pia9isJ6ttMqKGB52v93c2lhACjda62oaJUJOzeweorfia-8QVP3J87pHPzsndlVgwNbciSZ26KXG9xPOpYKwI4F7Jow0c0wcB4o7oWSeSqC7fhIzFfiJ9IwEDymO0iRgypcMnvuIPOaMRzjEos4yuwTigvL0i-shAygvSY08xngrUcioOt_qXpkK6wmhZinGJE1ZgJ7SssDGOg_430TOlZmxu02eVi4tbZcYfEY2TPacbA2qTfsX5Pdxf2i7P2h7lCNNL-2P7-QIAZ8Y2tbz8mqmoJ3ZJK9II8AA0yF4pvdyVlCZJbRc-QCh8-kEtAUXbSxtTo9WyhPQwQymZYT7Ne1lKWgHIUfHGR2ALXxJLh5ENa_IZpZn5g2hzGeODELtpomEaDZUkdG-5ixUkkkVhxb5UqtB6IoYHetzXAsIkFBjAjUmUGMWeb8QvSnZQNYJHaAuBbJrZAhUXS4BCfi-zrlouxDCgdfMODytKTiS06IQ0XG_IfS5Ekpz6JWW1bEJ-DZk7mpIHjQkRyVv-TrB3YYgGBTdaP5Qg1DUGwDLiyASvoh5YJG9Bj4X_8NzwUcHL9kiOzVgRWUXC7EYxRbZX7Ti-zHVLzP5tBBIKBiA52iR1yW4l386RvfUcSzCG7BfCCBVerMlG_-aU6ajGxpE4dv_9mmfbIFNEf3e2ekOeVJvGzruLtmc3E3NO_A-J2pvPs4puXpow_IX8OeZmQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GLP-1R+agonist+liraglutide+activates+cytoprotective+pathways+and+improves+outcomes+after+experimental+myocardial+infarction+in+mice&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Noyan-Ashraf%2C+Mohammad+Hossein&rft.au=Momen%2C+M+Abdul&rft.au=Ban%2C+Kiwon&rft.au=Sadi%2C+Al-Muktafi&rft.date=2009-04-01&rft.eissn=1939-327X&rft.volume=58&rft.issue=4&rft.spage=975&rft_id=info:doi/10.2337%2Fdb08-1193&rft_id=info%3Apmid%2F19151200&rft.externalDocID=19151200
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon