Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes
The male-specific region of rhesus macaque and human Y chromosome (MSY) are sequenced and compared to the human MSY, showing that during the last 25 million years MSY gene loss in the rhesus and human lineages was limited to the youngest stratum (stratum 5), whereas gene loss in the older strata cea...
Saved in:
Published in | Nature (London) Vol. 483; no. 7387; pp. 82 - 86 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2012
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The male-specific region of rhesus macaque and human Y chromosome (MSY) are sequenced and compared to the human MSY, showing that during the last 25 million years MSY gene loss in the rhesus and human lineages was limited to the youngest stratum (stratum 5), whereas gene loss in the older strata ceased more than 25 million years ago.
The fate of the Y chromosome
The mammal sex-determining X and Y chromosomes evolved from a pair of autosomes ('normal' non-sex chromosomes), but as a result of genetic decay, the male-specific region of the human Y chromosome retains only 3% of the ancestral autosomal genes. Here, the authors have sequenced the corresponding region of the rhesus macaque Y, and reconstructed the trajectory of its evolution through an analysis of the rhesus, human and chimpanzee Y chromosomes. The results show that initial rapid loss of genes is followed by strict conservation through purifying selection. This runs counter to the view that the human Y chromosome is destined inevitably for extinction.
The human X and Y chromosomes evolved from an ordinary pair of autosomes during the past 200–300 million years
1
,
2
,
3
. The human MSY (male-specific region of Y chromosome) retains only three percent of the ancestral autosomes’ genes owing to genetic decay
4
,
5
. This evolutionary decay was driven by a series of five ‘stratification’ events. Each event suppressed X–Y crossing over within a chromosome segment or ‘stratum’, incorporated that segment into the MSY and subjected its genes to the erosive forces that attend the absence of crossing over
2
,
6
. The last of these events occurred 30 million years ago, 5 million years before the human and Old World monkey lineages diverged. Although speculation abounds regarding ongoing decay and looming extinction of the human Y chromosome
7
,
8
,
9
,
10
, remarkably little is known about how many MSY genes were lost in the human lineage in the 25 million years that have followed its separation from the Old World monkey lineage. To investigate this question, we sequenced the MSY of the rhesus macaque, an Old World monkey, and compared it to the human MSY. We discovered that during the last 25 million years MSY gene loss in the human lineage was limited to the youngest stratum (stratum 5), which comprises three percent of the human MSY. In the older strata, which collectively comprise the bulk of the human MSY, gene loss evidently ceased more than 25 million years ago. Likewise, the rhesus MSY has not lost any older genes (from strata 1–4) during the past 25 million years, despite its major structural differences to the human MSY. The rhesus MSY is simpler, with few amplified gene families or palindromes that might enable intrachromosomal recombination and repair. We present an empirical reconstruction of human MSY evolution in which each stratum transitioned from rapid, exponential loss of ancestral genes to strict conservation through purifying selection. |
---|---|
AbstractList | The human X and Y chromosomes evolved from an ordinary pair of autosomes during the past 200–300 million years
1
–
3
. Due to genetic decay, the human MSY (male-specific region of Y chromosome) retains only three percent of the ancestral autosomes’ genes
4
,
5
. This evolutionary decay was driven by a series of five “stratification” events. Each event suppressed X-Y crossing over within a chromosome segment or “stratum”, incorporated that segment into the MSY, and subjected its genes to the erosive forces that attend the absence of crossing over
2
,
6
. The last of these events occurred 30 million years ago (mya), or 5 million years before the human and Old World monkey (OWM) lineages diverged. Although speculation abounds regarding ongoing decay and looming extinction of the human Y chromosome
7
–
10
, remarkably little is known about how many MSY genes were lost in the human lineage in the 25 million years that have followed its separation from the OWM lineage. To explore this question, we sequenced the MSY of the rhesus macaque, an OWM, and compared it to the human MSY. We discovered that, during the last 25 million years, MSY gene loss in the human lineage was limited to the youngest stratum (stratum 5), which comprises three percent of the human MSY. Within the older strata, which collectively comprise the bulk of the human MSY, gene loss evidently ceased more than 25 mya. Likewise, the rhesus MSY has not lost any older genes (from strata 1–4) during the past 25 million years, despite major structural differences from the human MSY. The rhesus MSY is simpler, with few amplified gene families or palindromes that might enable intrachromosomal recombination and repair. We present an empirical reconstruction of human MSY evolution in which each stratum transitioned from rapid, exponential loss of ancestral genes to strict conservation through purifying selection. [...] we searched for homologues of all known human X-linked genes, to identify any X-Y shared genes that had been lost in both the human and chimpanzee MSY but retained in the rhesus MSY. [...] we searched for additional rhesus-specific MSY genes using electronic prediction tools and high-throughput sequencing of rhesus testis complementary DNA (245 Mb in total). The human X and Y chromosomes evolved from an ordinary pair of autosomes during the past 200-300 million years. The human MSY (male-specific region of Y chromosome) retains only three percent of the ancestral autosomes' genes owing to genetic decay. This evolutionary decay was driven by a series of five 'stratification' events. Each event suppressed X-Y crossing over within a chromosome segment or 'stratum', incorporated that segment into the MSY and subjected its genes to the erosive forces that attend the absence of crossing over. The last of these events occurred 30 million years ago, 5 million years before the human and Old World monkey lineages diverged. Although speculation abounds regarding ongoing decay and looming extinction of the human Y chromosome, remarkably little is known about how many MSY genes were lost in the human lineage in the 25 million years that have followed its separation from the Old World monkey lineage. To investigate this question, we sequenced the MSY of the rhesus macaque, an Old World monkey, and compared it to the human MSY. We discovered that during the last 25 million years MSY gene loss in the human lineage was limited to the youngest stratum (stratum 5), which comprises three percent of the human MSY. In the older strata, which collectively comprise the bulk of the human MSY, gene loss evidently ceased more than 25 million years ago. Likewise, the rhesus MSY has not lost any older genes (from strata 1-4) during the past 25 million years, despite its major structural differences to the human MSY. The rhesus MSY is simpler, with few amplified gene families or palindromes that might enable intrachromosomal recombination and repair. We present an empirical reconstruction of human MSY evolution in which each stratum transitioned from rapid, exponential loss of ancestral genes to strict conservation through purifying selection. The male-specific region of rhesus macaque and human Y chromosome (MSY) are sequenced and compared to the human MSY, showing that during the last 25 million years MSY gene loss in the rhesus and human lineages was limited to the youngest stratum (stratum 5), whereas gene loss in the older strata ceased more than 25 million years ago. The fate of the Y chromosome The mammal sex-determining X and Y chromosomes evolved from a pair of autosomes ('normal' non-sex chromosomes), but as a result of genetic decay, the male-specific region of the human Y chromosome retains only 3% of the ancestral autosomal genes. Here, the authors have sequenced the corresponding region of the rhesus macaque Y, and reconstructed the trajectory of its evolution through an analysis of the rhesus, human and chimpanzee Y chromosomes. The results show that initial rapid loss of genes is followed by strict conservation through purifying selection. This runs counter to the view that the human Y chromosome is destined inevitably for extinction. The human X and Y chromosomes evolved from an ordinary pair of autosomes during the past 200–300 million years 1 , 2 , 3 . The human MSY (male-specific region of Y chromosome) retains only three percent of the ancestral autosomes’ genes owing to genetic decay 4 , 5 . This evolutionary decay was driven by a series of five ‘stratification’ events. Each event suppressed X–Y crossing over within a chromosome segment or ‘stratum’, incorporated that segment into the MSY and subjected its genes to the erosive forces that attend the absence of crossing over 2 , 6 . The last of these events occurred 30 million years ago, 5 million years before the human and Old World monkey lineages diverged. Although speculation abounds regarding ongoing decay and looming extinction of the human Y chromosome 7 , 8 , 9 , 10 , remarkably little is known about how many MSY genes were lost in the human lineage in the 25 million years that have followed its separation from the Old World monkey lineage. To investigate this question, we sequenced the MSY of the rhesus macaque, an Old World monkey, and compared it to the human MSY. We discovered that during the last 25 million years MSY gene loss in the human lineage was limited to the youngest stratum (stratum 5), which comprises three percent of the human MSY. In the older strata, which collectively comprise the bulk of the human MSY, gene loss evidently ceased more than 25 million years ago. Likewise, the rhesus MSY has not lost any older genes (from strata 1–4) during the past 25 million years, despite its major structural differences to the human MSY. The rhesus MSY is simpler, with few amplified gene families or palindromes that might enable intrachromosomal recombination and repair. We present an empirical reconstruction of human MSY evolution in which each stratum transitioned from rapid, exponential loss of ancestral genes to strict conservation through purifying selection. The human X and Y chromosomes evolved from an ordinary pair of autosomes during the past 200-300 million years (1-3). The human MSY (male-specific region of Y chromosome) retains only three percent of the ancestral autosomes' genes owing to genetic decay (4,5). This evolutionary decay was driven by a series of five 'stratification' events. Each event suppressed X-Y crossing over within a chromosome segment or 'stratum', incorporated that segment into the MSY and subjected its genes to the erosive forces that attend the absence of crossing over (2,6). The last of these events occurred 30 million years ago, 5 million years before the human and Old World monkey lineages diverged. Although speculation abounds regarding ongoing decay and looming extinction of the human Y chromosome (7-10), remarkably little is known about how many MSY genes were lost in the human lineage in the 25 million years that have followed its separation from the Old World monkey lineage. To investigate this question, we sequenced the MSY of the rhesus macaque, an Old World monkey, and compared it to the human MSY. We discovered that during the last 25 million years MSY gene loss in the human lineage was limited to the youngest stratum (stratum 5), which comprises three percent of the human MSY. In the older strata, which collectively comprise the bulk of the human MSY, gene loss evidently ceased more than 25 million years ago. Likewise, the rhesus MSY has not lost any older genes (from strata 1-4) during the past 25 million years, despite its major structural differences to the human MSY. The rhesus MSY is simpler, with few amplified gene families or palindromes that might enable intrachromosomal recombination and repair. We present an empirical reconstruction of human MSY evolution in which each stratum transitioned from rapid, exponential loss of ancestral genes to strict conservation through purifying selection. |
Audience | Academic |
Author | Ding, Yan Cree, Andrew Villasana, Donna Muzny, Donna M. Page, David C. Pyntikova, Tatyana Hughes, Jennifer F. Kremitzki, Colin Skaletsky, Helen Graves, Tina Dugan, Shannon Rozen, Steve Gibbs, Richard A. Cho, Ting-Jan Wilson, Richard K. Wang, Qiaoyan Nazareth, Lynne V. Veizer, Joelle Koutseva, Natalia Shen, Hua Holder, Michael Kotkiewicz, Holland Brown, Laura G. Courtney, Laura Warren, Wesley C. Fulton, Robert S. Buhay, Christian J. |
AuthorAffiliation | 3 Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA 2 The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, Missouri 63108, USA 1 Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA |
AuthorAffiliation_xml | – name: 2 The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, Missouri 63108, USA – name: 3 Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA – name: 1 Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA |
Author_xml | – sequence: 1 givenname: Jennifer F. surname: Hughes fullname: Hughes, Jennifer F. email: jhughes@wi.mit.edu organization: Whitehead Institute and Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 9 Cambridge Center – sequence: 2 givenname: Helen surname: Skaletsky fullname: Skaletsky, Helen organization: Whitehead Institute and Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 9 Cambridge Center – sequence: 3 givenname: Laura G. surname: Brown fullname: Brown, Laura G. organization: Whitehead Institute and Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 9 Cambridge Center – sequence: 4 givenname: Tatyana surname: Pyntikova fullname: Pyntikova, Tatyana organization: Whitehead Institute and Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 9 Cambridge Center – sequence: 5 givenname: Tina surname: Graves fullname: Graves, Tina organization: The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, Missouri 63108, USA – sequence: 6 givenname: Robert S. surname: Fulton fullname: Fulton, Robert S. organization: The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, Missouri 63108, USA – sequence: 7 givenname: Shannon surname: Dugan fullname: Dugan, Shannon organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA – sequence: 8 givenname: Yan surname: Ding fullname: Ding, Yan organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA – sequence: 9 givenname: Christian J. surname: Buhay fullname: Buhay, Christian J. organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA – sequence: 10 givenname: Colin surname: Kremitzki fullname: Kremitzki, Colin organization: The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, Missouri 63108, USA – sequence: 11 givenname: Qiaoyan surname: Wang fullname: Wang, Qiaoyan organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA – sequence: 12 givenname: Hua surname: Shen fullname: Shen, Hua organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA – sequence: 13 givenname: Michael surname: Holder fullname: Holder, Michael organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA – sequence: 14 givenname: Donna surname: Villasana fullname: Villasana, Donna organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA – sequence: 15 givenname: Lynne V. surname: Nazareth fullname: Nazareth, Lynne V. organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA – sequence: 16 givenname: Andrew surname: Cree fullname: Cree, Andrew organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA – sequence: 17 givenname: Laura surname: Courtney fullname: Courtney, Laura organization: The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, Missouri 63108, USA – sequence: 18 givenname: Joelle surname: Veizer fullname: Veizer, Joelle organization: The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, Missouri 63108, USA – sequence: 19 givenname: Holland surname: Kotkiewicz fullname: Kotkiewicz, Holland organization: The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, Missouri 63108, USA – sequence: 20 givenname: Ting-Jan surname: Cho fullname: Cho, Ting-Jan organization: Whitehead Institute and Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 9 Cambridge Center – sequence: 21 givenname: Natalia surname: Koutseva fullname: Koutseva, Natalia organization: Whitehead Institute and Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 9 Cambridge Center – sequence: 22 givenname: Steve surname: Rozen fullname: Rozen, Steve organization: Whitehead Institute and Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 9 Cambridge Center – sequence: 23 givenname: Donna M. surname: Muzny fullname: Muzny, Donna M. organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA – sequence: 24 givenname: Wesley C. surname: Warren fullname: Warren, Wesley C. organization: The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, Missouri 63108, USA – sequence: 25 givenname: Richard A. surname: Gibbs fullname: Gibbs, Richard A. organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA – sequence: 26 givenname: Richard K. surname: Wilson fullname: Wilson, Richard K. organization: The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, Missouri 63108, USA – sequence: 27 givenname: David C. surname: Page fullname: Page, David C. organization: Whitehead Institute and Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 9 Cambridge Center |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25539121$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22367542$$D View this record in MEDLINE/PubMed |
BookMark | eNptks1rFDEYxoNU7Hb15F1CiwfRqfmameQilOJHoSBYPYiHkM0ksykzyTaZ2db_3iy7trsw5BCS95fnyftxAo588AaA1xidY0T5R6-GMRqMOKPPwAyzuipYxesjMEOI8AJxWh2Dk5RuEUIlrtkLcEwIreqSkRn4czNEpwdo1qEbBxe8in-hDj6ZuFabM7Sh68K9aWBUK9fA1ngDu5ASzLHl2CsPlc_BpUljgr-hXsbQhxR6k16C51Z1ybza7XPw68vnn5ffiuvvX68uL64LXaNqKKzgSnHaiJpq0VDEKlFaRqraEo6sYSVlFVMsnxfVgjd0Ya1FlmEhqOCGCzoHn7a6q3HRm0YbP0TVyVV0fc5GBuXkYcS7pWzDWlIisg3PAqc7gRjuRpMGeRvG6POfpdi4I4RZhs62UKs6I523IWvp3iUtLwgnNSMoZzAHxQS1KVo2zn2zLl8f8KcTvF65O7kPnU9AeTWmd3pS9d3Bg8wM5mFo1ZiSvLr5cci-37I65q5GYx8Lh5HcDJjcG7BMv9mv9SP7f6Iy8HYHqKRVZ6Py2qUnriypwARn7sOWSznkWxOfaj7l-w_bJuhf |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1093_genetics_iyab204 crossref_primary_10_1534_genetics_113_150755 crossref_primary_10_1007_s10441_024_09482_0 crossref_primary_10_1038_nature_2012_10082 crossref_primary_10_1101_gr_237586_118 crossref_primary_10_1016_j_ygeno_2020_09_058 crossref_primary_10_1016_j_cois_2014_12_003 crossref_primary_10_1126_science_aaw7317 crossref_primary_10_1111_jeb_13141 crossref_primary_10_1534_genetics_118_301765 crossref_primary_10_1016_j_tig_2017_01_008 crossref_primary_10_1186_1471_2156_15_19 crossref_primary_10_1371_journal_pgen_1007680 crossref_primary_10_1073_pnas_1221104110 crossref_primary_10_1016_j_devcel_2020_07_018 crossref_primary_10_1146_annurev_genet_112414_055311 crossref_primary_10_1016_j_ajhg_2018_07_007 crossref_primary_10_7554_eLife_63650 crossref_primary_10_7554_eLife_82290 crossref_primary_10_1038_nature13151 crossref_primary_10_1101_gr_157503_113 crossref_primary_10_1186_s12864_020_6672_3 crossref_primary_10_1159_000519622 crossref_primary_10_1080_10495398_2016_1243551 crossref_primary_10_1098_rsos_170351 crossref_primary_10_1093_molbev_msu155 crossref_primary_10_1101_gr_268516_120 crossref_primary_10_3390_insects13060549 crossref_primary_10_1038_nrg_2016_39 crossref_primary_10_3390_genes13122272 crossref_primary_10_1093_jas_skac232 crossref_primary_10_1530_REP_14_0613 crossref_primary_10_1002_zoo_21259 crossref_primary_10_1007_s10577_013_9345_0 crossref_primary_10_5686_jjzwm_20_15 crossref_primary_10_1126_science_abc6617 crossref_primary_10_1073_pnas_1300860110 crossref_primary_10_1016_j_bbrc_2020_02_043 crossref_primary_10_1093_gbe_evaa173 crossref_primary_10_1038_s41598_019_41821_x crossref_primary_10_1038_ng_3778 crossref_primary_10_1093_molbev_mss267 crossref_primary_10_1093_molbev_msu203 crossref_primary_10_3390_ani12182380 crossref_primary_10_1371_journal_pone_0131745 crossref_primary_10_1002_ajp_22512 crossref_primary_10_1016_j_tig_2018_06_003 crossref_primary_10_1111_bij_12832 crossref_primary_10_1038_s41598_023_40931_x crossref_primary_10_1101_gr_192922_115 crossref_primary_10_1093_gbe_evw282 crossref_primary_10_1186_s13293_015_0024_z crossref_primary_10_1146_annurev_animal_020518_115332 crossref_primary_10_1007_s00412_021_00755_y crossref_primary_10_1186_1471_2164_14_273 crossref_primary_10_1093_bioinformatics_btx771 crossref_primary_10_1093_jb_mvae045 crossref_primary_10_5713_ab_21_0480 crossref_primary_10_1186_s12861_015_0085_6 crossref_primary_10_3390_life12040522 crossref_primary_10_1016_j_semcdb_2024_04_004 crossref_primary_10_1038_s41598_018_27219_1 crossref_primary_10_3390_genes12010105 crossref_primary_10_1111_mec_15054 crossref_primary_10_1093_gigascience_giae015 crossref_primary_10_1534_genetics_114_164269 crossref_primary_10_1002_ajp_22882 crossref_primary_10_1007_s10577_016_9531_y crossref_primary_10_1098_rsbl_2019_0867 crossref_primary_10_1101_gr_201665_115 crossref_primary_10_1186_s13059_020_02097_x crossref_primary_10_3390_dna2030012 crossref_primary_10_1016_j_cub_2015_03_015 crossref_primary_10_1080_23746149_2018_1509727 crossref_primary_10_6064_2012_543176 crossref_primary_10_1093_molbev_msv078 crossref_primary_10_1021_acs_jproteome_7b00446 crossref_primary_10_1038_ng_2903 crossref_primary_10_1093_gbe_evv103 crossref_primary_10_1111_jeb_12201 crossref_primary_10_1186_s12862_015_0514_y crossref_primary_10_1016_j_cell_2014_09_052 crossref_primary_10_1371_journal_pone_0119651 crossref_primary_10_1111_evo_12493 crossref_primary_10_1371_journal_pone_0168744 crossref_primary_10_1038_ng_3797 crossref_primary_10_1093_nsr_nwac239 crossref_primary_10_1159_000362479 crossref_primary_10_1073_pnas_1202905109 crossref_primary_10_1093_jhered_esx108 crossref_primary_10_1186_s13059_015_0667_4 crossref_primary_10_1016_j_jgg_2014_01_006 crossref_primary_10_1186_1471_2350_14_115 crossref_primary_10_1016_j_compbiolchem_2014_08_015 crossref_primary_10_3390_genes11111273 crossref_primary_10_1007_s10577_015_9490_8 crossref_primary_10_1007_s00439_017_1777_8 crossref_primary_10_1073_pnas_1207833109 crossref_primary_10_1038_ncomms8330 crossref_primary_10_1371_journal_pbio_1001711 crossref_primary_10_1101_gr_183905_114 crossref_primary_10_4236_aa_2012_24022 crossref_primary_10_1101_gr_275188_120 crossref_primary_10_1073_pnas_2121469119 crossref_primary_10_1111_j_1749_6632_2012_06748_x crossref_primary_10_1007_s11427_020_1807_0 crossref_primary_10_2527_jas_2015_9983 crossref_primary_10_1038_nrendo_2014_163 crossref_primary_10_1101_gr_168450_113 crossref_primary_10_1111_1755_0998_12237 crossref_primary_10_1093_molbev_msu197 crossref_primary_10_1186_s12864_019_5996_3 crossref_primary_10_1093_gbe_evaa088 crossref_primary_10_1126_science_abg7019 crossref_primary_10_1186_s13059_019_1816_y crossref_primary_10_1073_pnas_2001749117 crossref_primary_10_1186_s40169_015_0060_7 crossref_primary_10_1016_j_cub_2018_04_069 crossref_primary_10_1186_s12864_015_2187_8 crossref_primary_10_3390_genes11060610 crossref_primary_10_4161_chim_27095 crossref_primary_10_1186_s12915_022_01338_8 crossref_primary_10_1038_ng_2890 crossref_primary_10_1146_annurev_genom_090711_163855 crossref_primary_10_1007_s00439_017_1781_z crossref_primary_10_1073_pnas_1525164113 crossref_primary_10_1093_molbev_msad167 crossref_primary_10_1371_journal_pgen_1003666 crossref_primary_10_1093_gigascience_giaa142 crossref_primary_10_1186_s12864_019_6364_z crossref_primary_10_1038_s41467_018_07885_5 crossref_primary_10_1098_rstb_2020_0097 crossref_primary_10_1038_s41467_018_05290_6 crossref_primary_10_1101_gr_154286_112 crossref_primary_10_1073_pnas_1319227111 crossref_primary_10_1111_1755_0998_12767 crossref_primary_10_1080_23723556_2019_1575691 crossref_primary_10_1186_1471_2164_14_899 crossref_primary_10_3389_fcell_2019_00241 crossref_primary_10_1038_s41598_018_27819_x crossref_primary_10_1093_molbev_msae020 crossref_primary_10_1186_s12915_022_01357_5 crossref_primary_10_2164_jandrol_112_017103 crossref_primary_10_1016_j_bbadis_2012_04_010 crossref_primary_10_1016_j_xgen_2024_100589 crossref_primary_10_4161_epi_25672 crossref_primary_10_1038_nature18637 crossref_primary_10_1038_s41467_017_01002_8 crossref_primary_10_1016_j_tig_2013_07_005 crossref_primary_10_1038_s41559_022_01974_x crossref_primary_10_1371_journal_pbio_1001899 crossref_primary_10_1002_bies_201200066 crossref_primary_10_1007_s00103_014_2011_7 crossref_primary_10_1002_bies_201200064 crossref_primary_10_1038_s41586_024_07473_2 crossref_primary_10_1038_nrg3366 crossref_primary_10_1002_bies_201500040 crossref_primary_10_1093_gbe_evv033 crossref_primary_10_1155_2012_207958 crossref_primary_10_1098_rstb_2021_0229 crossref_primary_10_1101_gr_230433_117 crossref_primary_10_1371_journal_pgen_1004064 crossref_primary_10_1155_2014_104683 crossref_primary_10_1038_nprot_2018_019 crossref_primary_10_1126_science_1246338 crossref_primary_10_1007_s00439_017_1769_8 crossref_primary_10_1111_evo_12328 crossref_primary_10_1534_genetics_112_141291 crossref_primary_10_1016_j_ympev_2012_07_031 crossref_primary_10_1186_s13059_020_1952_4 crossref_primary_10_1101_gr_198754_115 crossref_primary_10_1002_bies_201800059 crossref_primary_10_1038_s42003_023_05004_9 crossref_primary_10_1111_nph_15694 crossref_primary_10_1371_journal_pgen_1004578 crossref_primary_10_1002_ece3_7611 crossref_primary_10_1371_journal_pone_0269692 crossref_primary_10_1080_23746149_2018_1480420 crossref_primary_10_1098_rstb_2016_0326 crossref_primary_10_1038_s41598_020_58997_2 crossref_primary_10_1101_gr_269902_120 crossref_primary_10_4161_mge_20852 crossref_primary_10_7554_eLife_67345 crossref_primary_10_1038_nature13206 crossref_primary_10_1093_g3journal_jkab224 crossref_primary_10_1016_j_tig_2022_04_004 crossref_primary_10_1093_g3journal_jkac278 crossref_primary_10_1016_j_ygeno_2021_06_007 crossref_primary_10_1038_nbt_2595 crossref_primary_10_1111_1749_4877_12352 crossref_primary_10_1016_j_ajhg_2012_09_003 crossref_primary_10_1111_cas_16072 |
Cites_doi | 10.1038/415963a 10.1016/j.ajhg.2009.11.011 10.1016/j.ygeno.2008.05.013 10.1146/annurev.genet.42.110807.091714 10.1038/ng757 10.1038/ng1196-292 10.1126/science.1998119 10.1098/rstb.2000.0717 10.1038/nature01723 10.1534/genetics.107.084012 10.1016/j.gde.2006.04.007 10.1038/35020557 10.1126/science.286.5441.964 10.1038/nature04101 10.1126/science.278.5338.675 10.1038/nature09172 10.1038/362745a0 10.1038/nature01722 10.1093/hmg/9.2.311 10.1038/nature08700 10.1126/science.1139247 10.1016/j.cell.2006.02.024 10.1089/cmb.1997.4.487 10.1101/SQB.1987.052.01.094 10.1038/293055a0 10.1002/ar.1090720310 10.1038/nature03440 10.1093/genetics/116.1.161 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2012 2015 INIST-CNRS COPYRIGHT 2012 Nature Publishing Group Copyright Nature Publishing Group Mar 1, 2012 |
Copyright_xml | – notice: Springer Nature Limited 2012 – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2012 Nature Publishing Group – notice: Copyright Nature Publishing Group Mar 1, 2012 |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PQEST PQQKQ PQUKI PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 5PM |
DOI | 10.1038/nature10843 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Complete (ProQuest Database) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Psychology Database ProQuest research library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection Environmental Sciences and Pollution Management Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Biological Science Collection Chemoreception Abstracts ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic University of Michigan Technology Collection Technology Research Database SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 86 |
ExternalDocumentID | 2620638981 A282742097 10_1038_nature10843 22367542 25539121 |
Genre | Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NHGRI NIH HHS grantid: U54 HG003273 – fundername: NHGRI NIH HHS grantid: R01 HG000257 – fundername: Howard Hughes Medical Institute – fundername: NHGRI NIH HHS grantid: R01 HG000257-17 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .HR .XZ 00M 07C 08P 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAZLF ABAWZ ABDBF ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABVXF ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH ADYSU ADZCM AENEX AFFNX AFKRA AFLOW AFRAH AFRQD AFSHS AGAYW AGEZK AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B-7 B0M BBNVY BCR BCU BDKGC BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESTFP ESX EX3 EXGXG F20 F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L-9 L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OHT OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PEA PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YNT YOC YQT YR2 YXB YZZ ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~G0 ~KM .-4 .GJ 08R 0B8 1CY 1VW 354 3EH 3O- 41~ 42X 4R4 663 68V 79B 9M8 AADEA AADWK AAEXX AAGJQ AAJMP AAJWC AAJYS AAPBV AAUGY AAVBQ AAYJO AAYOK ABEEJ ABEFU ABGFU ABGIJ ABPTK ABTAH ACBMV ACBNA ACBRV ACBTR ACBYP ACIGE ACTDY ACTTH ACVWB ADFPY ADMDM ADQMX ADRHT ADZGE AEDAW AEFTE AETEA AFDAS AFFDN AFHKK AFMIJ AFNRJ AGCDD AGGBP AHGBK AJDOV AJUXI AMRJV BES BKOMP DB5 FA8 FAC G8K HG6 I-U IQODW J5H MVM N4W PV9 QS- R4F RHI SKT TUD U1R UAO UBY UHB USG VOH X7L XFK XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZA5 ZCG ZGI ZHY ZKG ZY4 AAYZH CGR CUY CVF ECM EIF NPM AAYXX CITATION NXXTH AGPPL AHPSJ AEQTP 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PQEST PQUKI Q9U RC3 SOI 5PM |
ID | FETCH-LOGICAL-c706t-f98aa83d973c9d304695f4267f280fe453464a467fb6b8d3bfff0f4199398e893 |
IEDL.DBID | BENPR |
ISSN | 0028-0836 |
IngestDate | Tue Sep 17 21:22:18 EDT 2024 Thu Oct 10 21:10:51 EDT 2024 Thu Feb 22 23:33:02 EST 2024 Fri Feb 02 04:49:08 EST 2024 Tue Dec 12 21:18:31 EST 2023 Fri Feb 02 04:13:42 EST 2024 Thu Aug 01 19:59:51 EDT 2024 Thu Sep 26 19:05:11 EDT 2024 Tue Oct 15 23:47:08 EDT 2024 Sun Oct 29 17:06:59 EDT 2023 Fri Oct 11 20:47:27 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7387 |
Keywords | Human Molecular evolution Vertebrata Mammalia Sex chromosome Primates Simioidea Macaca mulatta X-Chromosome Y-Chromosome Comparative study |
Language | English |
License | CC BY 4.0 Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c706t-f98aa83d973c9d304695f4267f280fe453464a467fb6b8d3bfff0f4199398e893 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3292678 |
PMID | 22367542 |
PQID | 953460014 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3292678 proquest_journals_953460014 gale_infotracmisc_A282742097 gale_infotracgeneralonefile_A282742097 gale_infotraccpiq_282742097 gale_infotracacademiconefile_A282742097 gale_incontextgauss_ISR_A282742097 crossref_primary_10_1038_nature10843 pubmed_primary_22367542 pascalfrancis_primary_25539121 springer_journals_10_1038_nature10843 |
PublicationCentury | 2000 |
PublicationDate | 2012-03-01 |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2012 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Bachtrog (CR26) 2008; 179 Karere, Froenicke, Millon, Womack, Lyons (CR28) 2008; 92 Marshall Graves (CR10) 2008; 42 Lahn, Page (CR18) 1997; 278 Gibbs (CR14) 2007; 316 Bohossian, Skaletsky, Page (CR16) 2000; 406 Rozen (CR17) 2003; 423 Kuroda-Kawaguchi (CR11) 2001; 29 Skaletsky (CR4) 2003; 423 Miyata, Hayashida, Kuma, Mitsuyasu, Yasunaga (CR15) 1987; 52 Charlesworth, Charlesworth (CR6) 2000; 355 Charlesworth (CR1) 1991; 251 Schultz (CR23) 1938; 72 Graves (CR25) 2006; 124 Dixson (CR21) 1998 Saxena (CR27) 1996; 14 Hughes (CR13) 2010; 463 Lahn, Page (CR2) 1999; 286 Graves, Koina, Sankovic (CR9) 2006; 16 Bellott (CR5) 2010; 466 Harcourt, Harvey, Larson, Short (CR24) 1981; 293 Rice (CR22) 1987; 116 Rozen, Marszalek, Alagappan, Skaletsky, Page (CR20) 2009; 85 Hughes (CR12) 2005; 437 Lahn, Page (CR19) 2000; 9 Shimmin, Chang, Li (CR30) 1993; 362 Ross (CR3) 2005; 434 Aitken, Marshall Graves (CR7) 2002; 415 Sykes (CR8) 2004 Slonim, Kruglyak, Stein, Lander (CR29) 1997; 4 1998119 - Science. 1991 Mar 1;251(4997):1030-3 18983263 - Annu Rev Genet. 2008;42:565-86 20004767 - Am J Hum Genet. 2009 Dec;85(6):923-8 15772651 - Nature. 2005 Mar 17;434(7031):325-37 11127901 - Philos Trans R Soc Lond B Biol Sci. 2000 Nov 29;355(1403):1563-72 16650758 - Curr Opin Genet Dev. 2006 Jun;16(3):219-24 10607842 - Hum Mol Genet. 2000 Jan 22;9(2):311-9 8469284 - Nature. 1993 Apr 22;362(6422):745-7 18562655 - Genetics. 2008 Jul;179(3):1513-25 9381176 - Science. 1997 Oct 24;278(5338):675-80 12815433 - Nature. 2003 Jun 19;423(6942):873-6 3596229 - Genetics. 1987 May;116(1):161-7 11875544 - Nature. 2002 Feb 28;415(6875):963 11687796 - Nat Genet. 2001 Nov;29(3):279-86 20622855 - Nature. 2010 Jul 29;466(7306):612-6 16530039 - Cell. 2006 Mar 10;124(5):901-14 10949301 - Nature. 2000 Aug 10;406(6796):622-5 12815422 - Nature. 2003 Jun 19;423(6942):825-37 18601997 - Genomics. 2008 Oct;92(4):210-8 9385541 - J Comput Biol. 1997 Winter;4(4):487-504 3454295 - Cold Spring Harb Symp Quant Biol. 1987;52:863-7 16136134 - Nature. 2005 Sep 1;437(7055):100-3 17431167 - Science. 2007 Apr 13;316(5822):222-34 7266658 - Nature. 1981 Sep 3;293(5827):55-7 20072128 - Nature. 2010 Jan 28;463(7280):536-9 10542153 - Science. 1999 Oct 29;286(5441):964-7 8896558 - Nat Genet. 1996 Nov;14(3):292-9 AH Harcourt (BFnature10843_CR24) 1981; 293 WR Rice (BFnature10843_CR22) 1987; 116 AF Dixson (BFnature10843_CR21) 1998 DW Bellott (BFnature10843_CR5) 2010; 466 MT Ross (BFnature10843_CR3) 2005; 434 RA Gibbs (BFnature10843_CR14) 2007; 316 JA Marshall Graves (BFnature10843_CR10) 2008; 42 H Skaletsky (BFnature10843_CR4) 2003; 423 B Charlesworth (BFnature10843_CR6) 2000; 355 B Sykes (BFnature10843_CR8) 2004 T Kuroda-Kawaguchi (BFnature10843_CR11) 2001; 29 HB Bohossian (BFnature10843_CR16) 2000; 406 D Slonim (BFnature10843_CR29) 1997; 4 LC Shimmin (BFnature10843_CR30) 1993; 362 BT Lahn (BFnature10843_CR18) 1997; 278 JF Hughes (BFnature10843_CR13) 2010; 463 R Saxena (BFnature10843_CR27) 1996; 14 GM Karere (BFnature10843_CR28) 2008; 92 BT Lahn (BFnature10843_CR2) 1999; 286 AH Schultz (BFnature10843_CR23) 1938; 72 B Charlesworth (BFnature10843_CR1) 1991; 251 D Bachtrog (BFnature10843_CR26) 2008; 179 BT Lahn (BFnature10843_CR19) 2000; 9 JF Hughes (BFnature10843_CR12) 2005; 437 JA Graves (BFnature10843_CR25) 2006; 124 RJ Aitken (BFnature10843_CR7) 2002; 415 S Rozen (BFnature10843_CR17) 2003; 423 T Miyata (BFnature10843_CR15) 1987; 52 JA Graves (BFnature10843_CR9) 2006; 16 S Rozen (BFnature10843_CR20) 2009; 85 |
References_xml | – volume: 415 start-page: 963 year: 2002 ident: CR7 article-title: The future of sex publication-title: Nature doi: 10.1038/415963a contributor: fullname: Marshall Graves – volume: 85 start-page: 923 year: 2009 end-page: 928 ident: CR20 article-title: Remarkably little variation in proteins encoded by the Y chromosome’s single-copy genes, implying effective purifying selection publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2009.11.011 contributor: fullname: Page – year: 1998 ident: CR21 publication-title: Primate Sexuality: Comparative Studies of the Prosimians, Monkeys, Apes and Human Beings contributor: fullname: Dixson – volume: 116 start-page: 161 year: 1987 end-page: 167 ident: CR22 article-title: Genetic hitchhiking and the evolution of reduced genetic activity of the Y sex chromosome publication-title: Genetics contributor: fullname: Rice – volume: 92 start-page: 210 year: 2008 end-page: 218 ident: CR28 article-title: A high-resolution radiation hybrid map of rhesus macaque chromosome 5 identifies rearrangements in the genome assembly publication-title: Genomics doi: 10.1016/j.ygeno.2008.05.013 contributor: fullname: Lyons – volume: 42 start-page: 565 year: 2008 end-page: 586 ident: CR10 article-title: Weird animal genomes and the evolution of vertebrate sex and sex chromosomes publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.42.110807.091714 contributor: fullname: Marshall Graves – year: 2004 ident: CR8 publication-title: Adam's Curse contributor: fullname: Sykes – volume: 29 start-page: 279 year: 2001 end-page: 286 ident: CR11 article-title: The region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men publication-title: Nature Genet. doi: 10.1038/ng757 contributor: fullname: Kuroda-Kawaguchi – volume: 14 start-page: 292 year: 1996 end-page: 299 ident: CR27 article-title: The gene cluster on the human Y chromosome arose from an autosomal gene that was transposed, repeatedly amplified and pruned publication-title: Nature Genet. doi: 10.1038/ng1196-292 contributor: fullname: Saxena – volume: 251 start-page: 1030 year: 1991 end-page: 1033 ident: CR1 article-title: The evolution of sex chromosomes publication-title: Science doi: 10.1126/science.1998119 contributor: fullname: Charlesworth – volume: 355 start-page: 1563 year: 2000 end-page: 1572 ident: CR6 article-title: The degeneration of Y chromosomes publication-title: Phil. Trans. R. Soc. Lond. B doi: 10.1098/rstb.2000.0717 contributor: fullname: Charlesworth – volume: 423 start-page: 873 year: 2003 end-page: 876 ident: CR17 article-title: Abundant gene conversion between arms of palindromes in human and ape Y chromosomes publication-title: Nature doi: 10.1038/nature01723 contributor: fullname: Rozen – volume: 179 start-page: 1513 year: 2008 end-page: 1525 ident: CR26 article-title: The temporal dynamics of processes underlying Y chromosome degeneration publication-title: Genetics doi: 10.1534/genetics.107.084012 contributor: fullname: Bachtrog – volume: 16 start-page: 219 year: 2006 end-page: 224 ident: CR9 article-title: How the gene content of human sex chromosomes evolved publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2006.04.007 contributor: fullname: Sankovic – volume: 406 start-page: 622 year: 2000 end-page: 625 ident: CR16 article-title: Unexpectedly similar rates of nucleotide substitution found in male and female hominids publication-title: Nature doi: 10.1038/35020557 contributor: fullname: Page – volume: 286 start-page: 964 year: 1999 end-page: 967 ident: CR2 article-title: Four evolutionary strata on the human X chromosome publication-title: Science doi: 10.1126/science.286.5441.964 contributor: fullname: Page – volume: 437 start-page: 100 year: 2005 end-page: 103 ident: CR12 article-title: Conservation of Y-linked genes during human evolution revealed by comparative sequencing in chimpanzee publication-title: Nature doi: 10.1038/nature04101 contributor: fullname: Hughes – volume: 278 start-page: 675 year: 1997 end-page: 680 ident: CR18 article-title: Functional coherence of the human Y chromosome publication-title: Science doi: 10.1126/science.278.5338.675 contributor: fullname: Page – volume: 466 start-page: 612 year: 2010 end-page: 616 ident: CR5 article-title: Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition publication-title: Nature doi: 10.1038/nature09172 contributor: fullname: Bellott – volume: 362 start-page: 745 year: 1993 end-page: 747 ident: CR30 article-title: Male-driven evolution of DNA sequences publication-title: Nature doi: 10.1038/362745a0 contributor: fullname: Li – volume: 423 start-page: 825 year: 2003 end-page: 837 ident: CR4 article-title: The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes publication-title: Nature doi: 10.1038/nature01722 contributor: fullname: Skaletsky – volume: 9 start-page: 311 year: 2000 end-page: 319 ident: CR19 article-title: A human sex-chromosomal gene family expressed in male germ cells and encoding variably charged proteins publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/9.2.311 contributor: fullname: Page – volume: 463 start-page: 536 year: 2010 end-page: 539 ident: CR13 article-title: Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content publication-title: Nature doi: 10.1038/nature08700 contributor: fullname: Hughes – volume: 316 start-page: 222 year: 2007 end-page: 234 ident: CR14 article-title: Evolutionary and biomedical insights from the rhesus macaque genome publication-title: Science doi: 10.1126/science.1139247 contributor: fullname: Gibbs – volume: 124 start-page: 901 year: 2006 end-page: 914 ident: CR25 article-title: Sex chromosome specialization and degeneration in mammals publication-title: Cell doi: 10.1016/j.cell.2006.02.024 contributor: fullname: Graves – volume: 4 start-page: 487 year: 1997 end-page: 504 ident: CR29 article-title: Building human genome maps with radiation hybrids publication-title: J. Comput. Biol. doi: 10.1089/cmb.1997.4.487 contributor: fullname: Lander – volume: 52 start-page: 863 year: 1987 end-page: 867 ident: CR15 article-title: Male-driven molecular evolution: a model and nucleotide sequence analysis publication-title: Cold Spring Harb. Symp. Quant. Biol. doi: 10.1101/SQB.1987.052.01.094 contributor: fullname: Yasunaga – volume: 293 start-page: 55 year: 1981 end-page: 57 ident: CR24 article-title: Testis weight, body weight and breeding system in primates publication-title: Nature doi: 10.1038/293055a0 contributor: fullname: Short – volume: 72 start-page: 387 year: 1938 end-page: 394 ident: CR23 article-title: The relative weight of the testes in primates publication-title: Anat. Rec. doi: 10.1002/ar.1090720310 contributor: fullname: Schultz – volume: 434 start-page: 325 year: 2005 end-page: 337 ident: CR3 article-title: The DNA sequence of the human X chromosome publication-title: Nature doi: 10.1038/nature03440 contributor: fullname: Ross – volume: 52 start-page: 863 year: 1987 ident: BFnature10843_CR15 publication-title: Cold Spring Harb. Symp. Quant. Biol. doi: 10.1101/SQB.1987.052.01.094 contributor: fullname: T Miyata – volume: 85 start-page: 923 year: 2009 ident: BFnature10843_CR20 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2009.11.011 contributor: fullname: S Rozen – volume-title: Primate Sexuality: Comparative Studies of the Prosimians, Monkeys, Apes and Human Beings year: 1998 ident: BFnature10843_CR21 contributor: fullname: AF Dixson – volume-title: Adam's Curse year: 2004 ident: BFnature10843_CR8 contributor: fullname: B Sykes – volume: 179 start-page: 1513 year: 2008 ident: BFnature10843_CR26 publication-title: Genetics doi: 10.1534/genetics.107.084012 contributor: fullname: D Bachtrog – volume: 251 start-page: 1030 year: 1991 ident: BFnature10843_CR1 publication-title: Science doi: 10.1126/science.1998119 contributor: fullname: B Charlesworth – volume: 293 start-page: 55 year: 1981 ident: BFnature10843_CR24 publication-title: Nature doi: 10.1038/293055a0 contributor: fullname: AH Harcourt – volume: 4 start-page: 487 year: 1997 ident: BFnature10843_CR29 publication-title: J. Comput. Biol. doi: 10.1089/cmb.1997.4.487 contributor: fullname: D Slonim – volume: 9 start-page: 311 year: 2000 ident: BFnature10843_CR19 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/9.2.311 contributor: fullname: BT Lahn – volume: 124 start-page: 901 year: 2006 ident: BFnature10843_CR25 publication-title: Cell doi: 10.1016/j.cell.2006.02.024 contributor: fullname: JA Graves – volume: 116 start-page: 161 year: 1987 ident: BFnature10843_CR22 publication-title: Genetics doi: 10.1093/genetics/116.1.161 contributor: fullname: WR Rice – volume: 42 start-page: 565 year: 2008 ident: BFnature10843_CR10 publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.42.110807.091714 contributor: fullname: JA Marshall Graves – volume: 437 start-page: 100 year: 2005 ident: BFnature10843_CR12 publication-title: Nature doi: 10.1038/nature04101 contributor: fullname: JF Hughes – volume: 463 start-page: 536 year: 2010 ident: BFnature10843_CR13 publication-title: Nature doi: 10.1038/nature08700 contributor: fullname: JF Hughes – volume: 423 start-page: 873 year: 2003 ident: BFnature10843_CR17 publication-title: Nature doi: 10.1038/nature01723 contributor: fullname: S Rozen – volume: 92 start-page: 210 year: 2008 ident: BFnature10843_CR28 publication-title: Genomics doi: 10.1016/j.ygeno.2008.05.013 contributor: fullname: GM Karere – volume: 316 start-page: 222 year: 2007 ident: BFnature10843_CR14 publication-title: Science doi: 10.1126/science.1139247 contributor: fullname: RA Gibbs – volume: 466 start-page: 612 year: 2010 ident: BFnature10843_CR5 publication-title: Nature doi: 10.1038/nature09172 contributor: fullname: DW Bellott – volume: 362 start-page: 745 year: 1993 ident: BFnature10843_CR30 publication-title: Nature doi: 10.1038/362745a0 contributor: fullname: LC Shimmin – volume: 406 start-page: 622 year: 2000 ident: BFnature10843_CR16 publication-title: Nature doi: 10.1038/35020557 contributor: fullname: HB Bohossian – volume: 355 start-page: 1563 year: 2000 ident: BFnature10843_CR6 publication-title: Phil. Trans. R. Soc. Lond. B doi: 10.1098/rstb.2000.0717 contributor: fullname: B Charlesworth – volume: 278 start-page: 675 year: 1997 ident: BFnature10843_CR18 publication-title: Science doi: 10.1126/science.278.5338.675 contributor: fullname: BT Lahn – volume: 16 start-page: 219 year: 2006 ident: BFnature10843_CR9 publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2006.04.007 contributor: fullname: JA Graves – volume: 14 start-page: 292 year: 1996 ident: BFnature10843_CR27 publication-title: Nature Genet. doi: 10.1038/ng1196-292 contributor: fullname: R Saxena – volume: 434 start-page: 325 year: 2005 ident: BFnature10843_CR3 publication-title: Nature doi: 10.1038/nature03440 contributor: fullname: MT Ross – volume: 423 start-page: 825 year: 2003 ident: BFnature10843_CR4 publication-title: Nature doi: 10.1038/nature01722 contributor: fullname: H Skaletsky – volume: 415 start-page: 963 year: 2002 ident: BFnature10843_CR7 publication-title: Nature doi: 10.1038/415963a contributor: fullname: RJ Aitken – volume: 29 start-page: 279 year: 2001 ident: BFnature10843_CR11 publication-title: Nature Genet. doi: 10.1038/ng757 contributor: fullname: T Kuroda-Kawaguchi – volume: 286 start-page: 964 year: 1999 ident: BFnature10843_CR2 publication-title: Science doi: 10.1126/science.286.5441.964 contributor: fullname: BT Lahn – volume: 72 start-page: 387 year: 1938 ident: BFnature10843_CR23 publication-title: Anat. Rec. doi: 10.1002/ar.1090720310 contributor: fullname: AH Schultz |
SSID | ssj0005174 |
Score | 2.5338223 |
Snippet | The male-specific region of rhesus macaque and human Y chromosome (MSY) are sequenced and compared to the human MSY, showing that during the last 25 million... The human X and Y chromosomes evolved from an ordinary pair of autosomes during the past 200-300 million years. The human MSY (male-specific region of Y... The human X and Y chromosomes evolved from an ordinary pair of autosomes during the past 200-300 million years (1-3). The human MSY (male-specific region of Y... [...] we searched for homologues of all known human X-linked genes, to identify any X-Y shared genes that had been lost in both the human and chimpanzee MSY... The human X and Y chromosomes evolved from an ordinary pair of autosomes during the past 200–300 million years 1 – 3 . Due to genetic decay, the human MSY... |
SourceID | pubmedcentral proquest gale crossref pubmed pascalfrancis springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 82 |
SubjectTerms | 631/181/2474 631/337/103 Animals Artificial chromosomes Biological and medical sciences Chimpanzees Chromosome mapping Chromosomes Chromosomes, Human, Y - genetics Classical genetics, quantitative genetics, hybrids Cloning Confidence intervals Conserved Sequence - genetics Crossing Over, Genetic - genetics Evolution, Molecular Evolutionary genetics Fundamental and applied biological sciences. Psychology Gene Amplification - genetics Gene Deletion Genes Genetic aspects Genetics Genetics of eukaryotes. Biological and molecular evolution Haplotypes Human Human chromosomes Human genetics Humanities and Social Sciences Humans Hybridization In Situ Hybridization, Fluorescence letter Macaca mulatta - genetics Male Methods Models, Genetic Molecular Sequence Data multidisciplinary Pan troglodytes - genetics Properties Radiation Hybrid Mapping Regression analysis Rhesus monkey Science Science (multidisciplinary) Selection, Genetic - genetics Stratigraphy Time Factors Y chromosome Y Chromosome - genetics |
Title | Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes |
URI | https://link.springer.com/article/10.1038/nature10843 https://www.ncbi.nlm.nih.gov/pubmed/22367542 https://www.proquest.com/docview/953460014 https://pubmed.ncbi.nlm.nih.gov/PMC3292678 |
Volume | 483 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdYJyQkNLEBI9uoLDS-HqIlsZPYT2hMKwOJCW1MKuIhcvyxVoKkq1sQ_z3nxG2XUfGSl7u0ju98vot_-R1ChykUaDwuWUiVgAIly0QoiKQhUZmA7VOarOHS-3yenV3RT8N06LE51sMqFzGxCdSqlu4d-RFPCXWbM303uQld0yh3uOo7aGygzQQKhaSHNt-fnn-5WGE87tAw-w_0IsKOWt7MOGKUdLYkH5gfToSFSTJtd4t16ee_KMo7R6nNDjV4hLZ8aomPW1_YRvd0tYPuNxBPaXfQtl_GFr_xXNNvH6Pvl46hf4b1L--CYvoHS4ew9u9qsQFHqX9rhadiMlYY_E3jH_AYGGRNgz8sKhCOtJ1b_A3LkcP32fqntk_Q1eD068lZ6PsthDKPslloOBOCEcVzIrlyR6Y8NbCD5yZhkdHUWYAKiKymzEqmSGmMiQx1EEDONCQ-T1Gvqiv9DGGdgSwuE0jGNFXSMEl0zLhSRsZlmrAAHS6mvJi0tBpFcxxOWHHLMgF64cxROKKKyiFhrsXc2uLj5UVxDLUilPURzwP02iuZGgwhhf-wAEbiuK06mvsdTTkZ3xS3pK860uvWFut-5qCjCAtSdsT9jvMsHxCqN1gXSQzDWHhT4SOGLZb-HaDd1q9W9zmWvZQmAco7HrdUcBThXUk1HjVU4SThYD-Y7pcL31z945r53vvvyPbRA0gXkxaBd4B6s-lcP4eUbFb20UY-zOHKTmJ3HXzo-6X4FzFfOmI |
link.rule.ids | 230,315,783,787,888,12070,12237,12779,21402,27938,27939,31733,33280,33387,33758,43324,43593,43614,43819,74081,74350,74371,74638 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwELagCIGEUFuu0AMLleshahI7ifOEKkS1hbYPtJUW9cFyfHRXgiRd74L494wT725TVjzPJHFmxnPEk28Q2kuhQCvikoVUCShQskyEgkgaEpUJCJ_SZC2W3slpNrigX4bp0PfmWN9WOfeJraNWtXTfyPeLlFAXnOnH5jp0Q6Pc4aqfoHEX3XMwXA46Px_myw6PWyDM_ve8iLD9DjUzjhglvYDk3fKjRlgQkelmW6xKPv_tobx1kNrGp8N19Ngnlvigs4QNdEdXm-h-2-Ap7Sba8JvY4vceafrDE3R55vD5p1j_8gYoJn-wdP3V_kstNmAm9W-t8EQ0Y4XB2jT-Aa-BgdaO98OiAuJI25nF37Ecue4-W__U9im6OPx8_mkQ-mkLocyjbBqaggnBiCpyIgvlDkyL1ED8zk3CIqOpkz8V4FdNmZVMkdIYExnqGgALpiHteYbWqrrSLxDWGdDiMoFUTFMlDZNEx6xQysi4TBMWoL25yHnTgWrw9jCcMH5DMwF67dTBHUxF5fpgrsTMWn509o0fQKUIRX1U5AF655lMDYqQwv9WACtxyFY9zq0ep2zG1_wG9W2PetXpYtVttnuMsB1lj7zbM57FC0LtBrsiiWEZc2vi3l9YvrDuAD3v7Gp5ncPYS2kSoLxncQsGBxDep1TjUQsUTpIC9AfifjO3zeUTV8j75X9X9go9GJyfHPPjo9OvW-ghJI5J14u3jdamk5negeRsWu62W_Av2Kc5Uw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegE2gSQmzACBvDQgPGQ9QkdhLnCQ1YtfFRTRuThniIHH-slSDJ6hbEf885cdtlVDyfkzi-3_nu4svvENqLIUHLwoL5VHJIUJKE-5wI6hOZcHCfQicNl96XYXJ0Tj9exBeOUsi4ssr5nths1LIS9ht5P4sJtc6Z9rWrijj5MHhbX_m2gZQ9aHXdNG6jtZQCqHpo7d3h8OR0We9xg5LZ_awXENZvOTTDgFHScU9uk75XcwMLpttOF6tC0X8rKm8cqzbeavAA3XdhJj5ocbGBbqlyE91pyj2F2UQbzqQN3ne8028eou9nlq1_itUvB0c--YOFrbZ2322xBtBUv5XEE16PJQbsKfwDXgODrGn2h3kJwpEyM4O_YTGytX6m-qnMI3Q-OPz6_sh3vRd8kQbJ1NcZ45wRmaVEZNIen2axBm-e6ogFWlGrDcphl9VFUjBJCq11oKktB8yYgiDoMeqVVameIKwSkIVFBIGZolJoJogKWSalFmERR8xDe_Mlz-uWYiNvjsYJy69pxkMvrDpyS1pRWv1f8pkx-fHZaX4AeSOk-EGWeui1G6QrUITg7icDmInlueqM3O6MFPX4Kr8mfdWRXra6WHWbnc5AME7REe92wLN4QcjkwEaiEKYxR1Pudg-TL7Duoa0WV8vrLONeTCMPpR3ELQZYuvCupByPGtpwEmWgP1jul3NsLp-4Yr2f_ndmz9FdsL_88_Hw0zZahygyagvzdlBvOpmpZxCpTYtdZ4N_Af0MPvY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strict+evolutionary+conservation+followed+rapid+gene+loss+on+human+and+rhesus+Y+chromosomes&rft.jtitle=Nature+%28London%29&rft.au=Hughes%2C+Jennifer+F&rft.au=Skaletsky%2C+Helen&rft.au=Brown%2C+Laura+G&rft.au=Pyntikova%2C+Tatyana&rft.date=2012-03-01&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=483&rft.issue=7387&rft.spage=82&rft_id=info:doi/10.1038%2Fnature10843&rft.externalDBID=ISR&rft.externalDocID=A282742097 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |