Essential role of ATP6AP2 enrichment in caveolae/lipid raft microdomains for the induction of neuronal differentiation of stem cells

Background The subcellular distribution of prorenin receptor and adaptor protein ATP6AP2 may affect neurogenesis. In this study, we hypothesized that ATP6AP2 expression and subcellular relocalization from caveolae/lipid raft microdomains (CLR-Ms) to intracellular sites may correlate with neuronal di...

Full description

Saved in:
Bibliographic Details
Published inStem cell research & therapy Vol. 9; no. 1; pp. 132 - 24
Main Authors Makdissy, Nehman, Haddad, Katia, AlBacha, Jeanne D’arc, Chaker, Diana, Ismail, Bassel, Azar, Albert, Oreibi, Ghada, Ayoub, David, Achkar, Ibrahim, Quilliot, Didier, Fajloun, Ziad
Format Journal Article
LanguageEnglish
Published London BioMed Central 11.05.2018
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1757-6512
1757-6512
DOI10.1186/s13287-018-0862-9

Cover

Loading…
Abstract Background The subcellular distribution of prorenin receptor and adaptor protein ATP6AP2 may affect neurogenesis. In this study, we hypothesized that ATP6AP2 expression and subcellular relocalization from caveolae/lipid raft microdomains (CLR-Ms) to intracellular sites may correlate with neuronal differentiation (Neu- Dif ) of adipose-derived mesenchymal stem cells (ADSCs). Methods Human ADSCs isolated from 24 healthy donors and 24 patients with neurological disorders (ND) were cultured and induced for Neu- Dif . The mechanism of action of ATP6AP2 and the impact of its localization within the plasma membrane (particularly CLR-Ms) and intracellular sites on several pathways (mitogen-activated protein kinase, Wnt(s) signaling and others) and intracellular calcium and exosome release were evaluated. The impact of CLR-Ms on ATP6AP2 or vice versa was determined by pharmacological disruption of CLR-Ms or siATP6AP2 assays. Results In patients with ND, loss of ATP6AP2 from CLR-Ms correlated with an inhibition of Neu- Dif and signaling. However, its relocalization in CLR-Ms was positively correlated to induction of Neu- Dif in healthy subjects . An apparent switch from canonical to noncanonical Wnt signaling as well as from caveolin to flotillin occurs concurrently with the increases of ATP6AP2 expression during neurogenesis. Stimulation by renin activates ERK/JNK/CREB/c-Jun but failed to induce β-catenin. Wnt5a enhanced the renin-induced JNK responsiveness. Gα proteins crosslink ATP6AP2 to caveolin where a switch from Gαi to Gαq is necessary for Neu- Dif . In ATP6AP2-enriched CLR-Ms, the release of exosomes was induced dependently from the intracellular Ca 2+ and Gαq. Pharmacological disruption of CLR-M formation/stability impairs both ATP6AP2 localization and Neu- Dif in addition to reducing exosome release, indicating an essential role of ATP6AP2 enrichment in CLR-Ms for the induction of Neu- Dif . The mechanism is dependent on CLR-M dynamics, particularly the membrane fluidity. Knockdown of ATP6AP2 inhibited Neu- Dif but increased astrocytic- Dif , depleted ATP6AP2/flotillin/Gαq but accumulated caveolin/Gαi in CLR-Ms, and blocked the activation of JNK/ERK/c-Jun/CREB/exosome release. siATP6AP2 cells treated with sphingomyelinase/methyl-β-cyclodextrin reversed the levels of caveolin/flotillin in CLR-Ms but did not induce Neu- Dif , indicating the crucial relocalization of ATP6AP2 in CLR-Ms for neurogenesis. Treatment of ND-derived cells with nSMase showed reversibility in ATP6AP2 abundance in CLR-Ms and enhanced Neu- Dif. Conclusions This study gives evidence of the determinant role of CLR-M ATP6AP2 localization for neuronal and oligodendrocyte differentiation involving mechanisms of switches from Gαi/caveolin/canonical to Gαq/flotillin/PCP, the ERK/JNK pathway and Ca 2+ -dependent release of exosomes and as a potential target of drug therapy for neurodegenerative disorders.
AbstractList The subcellular distribution of prorenin receptor and adaptor protein ATP6AP2 may affect neurogenesis. In this study, we hypothesized that ATP6AP2 expression and subcellular relocalization from caveolae/lipid raft microdomains (CLR-Ms) to intracellular sites may correlate with neuronal differentiation (Neu-Dif) of adipose-derived mesenchymal stem cells (ADSCs). Human ADSCs isolated from 24 healthy donors and 24 patients with neurological disorders (ND) were cultured and induced for Neu-Dif. The mechanism of action of ATP6AP2 and the impact of its localization within the plasma membrane (particularly CLR-Ms) and intracellular sites on several pathways (mitogen-activated protein kinase, Wnt(s) signaling and others) and intracellular calcium and exosome release were evaluated. The impact of CLR-Ms on ATP6AP2 or vice versa was determined by pharmacological disruption of CLR-Ms or siATP6AP2 assays. In patients with ND, loss of ATP6AP2 from CLR-Ms correlated with an inhibition of Neu-Dif and signaling. However, its relocalization in CLR-Ms was positively correlated to induction of Neu-Dif in healthy subjects. An apparent switch from canonical to noncanonical Wnt signaling as well as from caveolin to flotillin occurs concurrently with the increases of ATP6AP2 expression during neurogenesis. Stimulation by renin activates ERK/JNK/CREB/c-Jun but failed to induce β-catenin. Wnt5a enhanced the renin-induced JNK responsiveness. Gα proteins crosslink ATP6AP2 to caveolin where a switch from Gαi to Gαq is necessary for Neu-Dif. In ATP6AP2-enriched CLR-Ms, the release of exosomes was induced dependently from the intracellular Ca and Gαq. Pharmacological disruption of CLR-M formation/stability impairs both ATP6AP2 localization and Neu-Dif in addition to reducing exosome release, indicating an essential role of ATP6AP2 enrichment in CLR-Ms for the induction of Neu-Dif. The mechanism is dependent on CLR-M dynamics, particularly the membrane fluidity. Knockdown of ATP6AP2 inhibited Neu-Dif but increased astrocytic-Dif, depleted ATP6AP2/flotillin/Gαq but accumulated caveolin/Gαi in CLR-Ms, and blocked the activation of JNK/ERK/c-Jun/CREB/exosome release. siATP6AP2 cells treated with sphingomyelinase/methyl-β-cyclodextrin reversed the levels of caveolin/flotillin in CLR-Ms but did not induce Neu-Dif, indicating the crucial relocalization of ATP6AP2 in CLR-Ms for neurogenesis. Treatment of ND-derived cells with nSMase showed reversibility in ATP6AP2 abundance in CLR-Ms and enhanced Neu-Dif. This study gives evidence of the determinant role of CLR-M ATP6AP2 localization for neuronal and oligodendrocyte differentiation involving mechanisms of switches from Gαi/caveolin/canonical to Gαq/flotillin/PCP, the ERK/JNK pathway and Ca -dependent release of exosomes and as a potential target of drug therapy for neurodegenerative disorders.
Background The subcellular distribution of prorenin receptor and adaptor protein ATP6AP2 may affect neurogenesis. In this study, we hypothesized that ATP6AP2 expression and subcellular relocalization from caveolae/lipid raft microdomains (CLR-Ms) to intracellular sites may correlate with neuronal differentiation (Neu- Dif ) of adipose-derived mesenchymal stem cells (ADSCs). Methods Human ADSCs isolated from 24 healthy donors and 24 patients with neurological disorders (ND) were cultured and induced for Neu- Dif . The mechanism of action of ATP6AP2 and the impact of its localization within the plasma membrane (particularly CLR-Ms) and intracellular sites on several pathways (mitogen-activated protein kinase, Wnt(s) signaling and others) and intracellular calcium and exosome release were evaluated. The impact of CLR-Ms on ATP6AP2 or vice versa was determined by pharmacological disruption of CLR-Ms or siATP6AP2 assays. Results In patients with ND, loss of ATP6AP2 from CLR-Ms correlated with an inhibition of Neu- Dif and signaling. However, its relocalization in CLR-Ms was positively correlated to induction of Neu- Dif in healthy subjects . An apparent switch from canonical to noncanonical Wnt signaling as well as from caveolin to flotillin occurs concurrently with the increases of ATP6AP2 expression during neurogenesis. Stimulation by renin activates ERK/JNK/CREB/c-Jun but failed to induce β-catenin. Wnt5a enhanced the renin-induced JNK responsiveness. Gα proteins crosslink ATP6AP2 to caveolin where a switch from Gαi to Gαq is necessary for Neu- Dif . In ATP6AP2-enriched CLR-Ms, the release of exosomes was induced dependently from the intracellular Ca 2+ and Gαq. Pharmacological disruption of CLR-M formation/stability impairs both ATP6AP2 localization and Neu- Dif in addition to reducing exosome release, indicating an essential role of ATP6AP2 enrichment in CLR-Ms for the induction of Neu- Dif . The mechanism is dependent on CLR-M dynamics, particularly the membrane fluidity. Knockdown of ATP6AP2 inhibited Neu- Dif but increased astrocytic- Dif , depleted ATP6AP2/flotillin/Gαq but accumulated caveolin/Gαi in CLR-Ms, and blocked the activation of JNK/ERK/c-Jun/CREB/exosome release. siATP6AP2 cells treated with sphingomyelinase/methyl-β-cyclodextrin reversed the levels of caveolin/flotillin in CLR-Ms but did not induce Neu- Dif , indicating the crucial relocalization of ATP6AP2 in CLR-Ms for neurogenesis. Treatment of ND-derived cells with nSMase showed reversibility in ATP6AP2 abundance in CLR-Ms and enhanced Neu- Dif. Conclusions This study gives evidence of the determinant role of CLR-M ATP6AP2 localization for neuronal and oligodendrocyte differentiation involving mechanisms of switches from Gαi/caveolin/canonical to Gαq/flotillin/PCP, the ERK/JNK pathway and Ca 2+ -dependent release of exosomes and as a potential target of drug therapy for neurodegenerative disorders.
Abstract Background The subcellular distribution of prorenin receptor and adaptor protein ATP6AP2 may affect neurogenesis. In this study, we hypothesized that ATP6AP2 expression and subcellular relocalization from caveolae/lipid raft microdomains (CLR-Ms) to intracellular sites may correlate with neuronal differentiation (Neu-Dif) of adipose-derived mesenchymal stem cells (ADSCs). Methods Human ADSCs isolated from 24 healthy donors and 24 patients with neurological disorders (ND) were cultured and induced for Neu-Dif. The mechanism of action of ATP6AP2 and the impact of its localization within the plasma membrane (particularly CLR-Ms) and intracellular sites on several pathways (mitogen-activated protein kinase, Wnt(s) signaling and others) and intracellular calcium and exosome release were evaluated. The impact of CLR-Ms on ATP6AP2 or vice versa was determined by pharmacological disruption of CLR-Ms or siATP6AP2 assays. Results In patients with ND, loss of ATP6AP2 from CLR-Ms correlated with an inhibition of Neu-Dif and signaling. However, its relocalization in CLR-Ms was positively correlated to induction of Neu-Dif in healthy subjects. An apparent switch from canonical to noncanonical Wnt signaling as well as from caveolin to flotillin occurs concurrently with the increases of ATP6AP2 expression during neurogenesis. Stimulation by renin activates ERK/JNK/CREB/c-Jun but failed to induce β-catenin. Wnt5a enhanced the renin-induced JNK responsiveness. Gα proteins crosslink ATP6AP2 to caveolin where a switch from Gαi to Gαq is necessary for Neu-Dif. In ATP6AP2-enriched CLR-Ms, the release of exosomes was induced dependently from the intracellular Ca2+ and Gαq. Pharmacological disruption of CLR-M formation/stability impairs both ATP6AP2 localization and Neu-Dif in addition to reducing exosome release, indicating an essential role of ATP6AP2 enrichment in CLR-Ms for the induction of Neu-Dif. The mechanism is dependent on CLR-M dynamics, particularly the membrane fluidity. Knockdown of ATP6AP2 inhibited Neu-Dif but increased astrocytic-Dif, depleted ATP6AP2/flotillin/Gαq but accumulated caveolin/Gαi in CLR-Ms, and blocked the activation of JNK/ERK/c-Jun/CREB/exosome release. siATP6AP2 cells treated with sphingomyelinase/methyl-β-cyclodextrin reversed the levels of caveolin/flotillin in CLR-Ms but did not induce Neu-Dif, indicating the crucial relocalization of ATP6AP2 in CLR-Ms for neurogenesis. Treatment of ND-derived cells with nSMase showed reversibility in ATP6AP2 abundance in CLR-Ms and enhanced Neu-Dif. Conclusions This study gives evidence of the determinant role of CLR-M ATP6AP2 localization for neuronal and oligodendrocyte differentiation involving mechanisms of switches from Gαi/caveolin/canonical to Gαq/flotillin/PCP, the ERK/JNK pathway and Ca2+-dependent release of exosomes and as a potential target of drug therapy for neurodegenerative disorders.
The subcellular distribution of prorenin receptor and adaptor protein ATP6AP2 may affect neurogenesis. In this study, we hypothesized that ATP6AP2 expression and subcellular relocalization from caveolae/lipid raft microdomains (CLR-Ms) to intracellular sites may correlate with neuronal differentiation (Neu-Dif) of adipose-derived mesenchymal stem cells (ADSCs).BACKGROUNDThe subcellular distribution of prorenin receptor and adaptor protein ATP6AP2 may affect neurogenesis. In this study, we hypothesized that ATP6AP2 expression and subcellular relocalization from caveolae/lipid raft microdomains (CLR-Ms) to intracellular sites may correlate with neuronal differentiation (Neu-Dif) of adipose-derived mesenchymal stem cells (ADSCs).Human ADSCs isolated from 24 healthy donors and 24 patients with neurological disorders (ND) were cultured and induced for Neu-Dif. The mechanism of action of ATP6AP2 and the impact of its localization within the plasma membrane (particularly CLR-Ms) and intracellular sites on several pathways (mitogen-activated protein kinase, Wnt(s) signaling and others) and intracellular calcium and exosome release were evaluated. The impact of CLR-Ms on ATP6AP2 or vice versa was determined by pharmacological disruption of CLR-Ms or siATP6AP2 assays.METHODSHuman ADSCs isolated from 24 healthy donors and 24 patients with neurological disorders (ND) were cultured and induced for Neu-Dif. The mechanism of action of ATP6AP2 and the impact of its localization within the plasma membrane (particularly CLR-Ms) and intracellular sites on several pathways (mitogen-activated protein kinase, Wnt(s) signaling and others) and intracellular calcium and exosome release were evaluated. The impact of CLR-Ms on ATP6AP2 or vice versa was determined by pharmacological disruption of CLR-Ms or siATP6AP2 assays.In patients with ND, loss of ATP6AP2 from CLR-Ms correlated with an inhibition of Neu-Dif and signaling. However, its relocalization in CLR-Ms was positively correlated to induction of Neu-Dif in healthy subjects. An apparent switch from canonical to noncanonical Wnt signaling as well as from caveolin to flotillin occurs concurrently with the increases of ATP6AP2 expression during neurogenesis. Stimulation by renin activates ERK/JNK/CREB/c-Jun but failed to induce β-catenin. Wnt5a enhanced the renin-induced JNK responsiveness. Gα proteins crosslink ATP6AP2 to caveolin where a switch from Gαi to Gαq is necessary for Neu-Dif. In ATP6AP2-enriched CLR-Ms, the release of exosomes was induced dependently from the intracellular Ca2+ and Gαq. Pharmacological disruption of CLR-M formation/stability impairs both ATP6AP2 localization and Neu-Dif in addition to reducing exosome release, indicating an essential role of ATP6AP2 enrichment in CLR-Ms for the induction of Neu-Dif. The mechanism is dependent on CLR-M dynamics, particularly the membrane fluidity. Knockdown of ATP6AP2 inhibited Neu-Dif but increased astrocytic-Dif, depleted ATP6AP2/flotillin/Gαq but accumulated caveolin/Gαi in CLR-Ms, and blocked the activation of JNK/ERK/c-Jun/CREB/exosome release. siATP6AP2 cells treated with sphingomyelinase/methyl-β-cyclodextrin reversed the levels of caveolin/flotillin in CLR-Ms but did not induce Neu-Dif, indicating the crucial relocalization of ATP6AP2 in CLR-Ms for neurogenesis. Treatment of ND-derived cells with nSMase showed reversibility in ATP6AP2 abundance in CLR-Ms and enhanced Neu-Dif.RESULTSIn patients with ND, loss of ATP6AP2 from CLR-Ms correlated with an inhibition of Neu-Dif and signaling. However, its relocalization in CLR-Ms was positively correlated to induction of Neu-Dif in healthy subjects. An apparent switch from canonical to noncanonical Wnt signaling as well as from caveolin to flotillin occurs concurrently with the increases of ATP6AP2 expression during neurogenesis. Stimulation by renin activates ERK/JNK/CREB/c-Jun but failed to induce β-catenin. Wnt5a enhanced the renin-induced JNK responsiveness. Gα proteins crosslink ATP6AP2 to caveolin where a switch from Gαi to Gαq is necessary for Neu-Dif. In ATP6AP2-enriched CLR-Ms, the release of exosomes was induced dependently from the intracellular Ca2+ and Gαq. Pharmacological disruption of CLR-M formation/stability impairs both ATP6AP2 localization and Neu-Dif in addition to reducing exosome release, indicating an essential role of ATP6AP2 enrichment in CLR-Ms for the induction of Neu-Dif. The mechanism is dependent on CLR-M dynamics, particularly the membrane fluidity. Knockdown of ATP6AP2 inhibited Neu-Dif but increased astrocytic-Dif, depleted ATP6AP2/flotillin/Gαq but accumulated caveolin/Gαi in CLR-Ms, and blocked the activation of JNK/ERK/c-Jun/CREB/exosome release. siATP6AP2 cells treated with sphingomyelinase/methyl-β-cyclodextrin reversed the levels of caveolin/flotillin in CLR-Ms but did not induce Neu-Dif, indicating the crucial relocalization of ATP6AP2 in CLR-Ms for neurogenesis. Treatment of ND-derived cells with nSMase showed reversibility in ATP6AP2 abundance in CLR-Ms and enhanced Neu-Dif.This study gives evidence of the determinant role of CLR-M ATP6AP2 localization for neuronal and oligodendrocyte differentiation involving mechanisms of switches from Gαi/caveolin/canonical to Gαq/flotillin/PCP, the ERK/JNK pathway and Ca2+-dependent release of exosomes and as a potential target of drug therapy for neurodegenerative disorders.CONCLUSIONSThis study gives evidence of the determinant role of CLR-M ATP6AP2 localization for neuronal and oligodendrocyte differentiation involving mechanisms of switches from Gαi/caveolin/canonical to Gαq/flotillin/PCP, the ERK/JNK pathway and Ca2+-dependent release of exosomes and as a potential target of drug therapy for neurodegenerative disorders.
ArticleNumber 132
Audience Academic
Author Ismail, Bassel
Ayoub, David
Makdissy, Nehman
Oreibi, Ghada
Azar, Albert
Quilliot, Didier
Fajloun, Ziad
Haddad, Katia
Achkar, Ibrahim
AlBacha, Jeanne D’arc
Chaker, Diana
Author_xml – sequence: 1
  givenname: Nehman
  orcidid: 0000-0001-7240-0968
  surname: Makdissy
  fullname: Makdissy, Nehman
  email: almakdissy@hotmail.com
  organization: Department of Biology, Lebanese University, Faculty of Sciences III
– sequence: 2
  givenname: Katia
  surname: Haddad
  fullname: Haddad, Katia
  organization: Department of Biology, Lebanese University, Faculty of Sciences III
– sequence: 3
  givenname: Jeanne D’arc
  surname: AlBacha
  fullname: AlBacha, Jeanne D’arc
  organization: Doctoral School for Sciences and Technology, Azm Center for the Research in Biotechnology and its Applications, Lebanese University
– sequence: 4
  givenname: Diana
  surname: Chaker
  fullname: Chaker, Diana
  organization: Doctoral School for Sciences and Technology, Azm Center for the Research in Biotechnology and its Applications, Lebanese University
– sequence: 5
  givenname: Bassel
  surname: Ismail
  fullname: Ismail, Bassel
  organization: Doctoral School for Sciences and Technology, Faculty of Sciences I, Lebanese University
– sequence: 6
  givenname: Albert
  surname: Azar
  fullname: Azar, Albert
  organization: Reviva Regenerative Medicine Center, Human Genetic Center, Middle East Institute of Health Hospital
– sequence: 7
  givenname: Ghada
  surname: Oreibi
  fullname: Oreibi, Ghada
  organization: Reviva Regenerative Medicine Center, Human Genetic Center, Middle East Institute of Health Hospital
– sequence: 8
  givenname: David
  surname: Ayoub
  fullname: Ayoub, David
  organization: Ayoub Clinic Lebanon and Department of Neuroloradiology, Limoges University Hospital
– sequence: 9
  givenname: Ibrahim
  surname: Achkar
  fullname: Achkar, Ibrahim
  organization: Achkar Clinics, St. Elie Center
– sequence: 10
  givenname: Didier
  surname: Quilliot
  fullname: Quilliot, Didier
  organization: Diabetologia-Endocrinology & Nutrition, CHRU Nancy, INSERM 954, University Henri Poincaré, Faculty of Medicine
– sequence: 11
  givenname: Ziad
  surname: Fajloun
  fullname: Fajloun, Ziad
  organization: Department of Biology, Lebanese University, Faculty of Sciences III, Doctoral School for Sciences and Technology, Azm Center for the Research in Biotechnology and its Applications, Lebanese University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29751779$$D View this record in MEDLINE/PubMed
BookMark eNp9klFr1TAYhotM3Jz7Ad5IQRC96NakadLeDA5j6oGBQ-d1yEm-npNDmswkHXrvDzc93ZFTkTUXDfme903y5X2ZHVlnIcteo_IcoYZeBFThhhUlaoqyobhon2UniNWsoDXCRwfz4-wshG2ZvqoqS0peZMe4ZTVirD3Jfl-HADZqYXLvDOSuyxd3t3Rxi3OwXstNn6q5trkUD-CMgAuj77XKvehi3mvpnXK90DbknfN53EBi1SCjdnb0sjB4Z5O50l0HfrfTvhYi9LkEY8Kr7HknTICzx_9p9v3j9d3V5-Lmy6fl1eKmkKyksVCrFbRISqwoaxnrGqQYrhnqVkzWFaKykjUmQjAgDbSqJTXFpaQSi0a1aoWq02w5-Sontvze6174X9wJzXcLzq-58FFLA5ygBpK0paSSRFCyaiomS1ZLSklXkjZ5XU5e98OqByXT1bwwM9N5xeoNX7sHXrekYbRJBu8fDbz7MUCIvNdhbIew4IbAcVk1mGG82-vthK5FOpq2nUuOcsT5oiaUIEooTtT5f6g0FKSHSuHpdFqfCT7MBImJ8DOuxRACX377OmffHbAbECZugjPD-JhhDr457MvfhuwjlwA2ASk7IXjouNRxF4p0XG04KvmYbz7lm6d88zHffFSif5R786c0eNKExNo1eL51g0-JDE-I_gBZMAsH
CitedBy_id crossref_primary_10_1093_function_zqad043
crossref_primary_10_3390_membranes11110844
crossref_primary_10_1007_s00432_021_03793_2
crossref_primary_10_1016_j_ebiom_2020_103161
crossref_primary_10_1113_JP284807
crossref_primary_10_4103_1673_5374_250630
crossref_primary_10_3389_fnmol_2020_00150
crossref_primary_10_1186_s12860_019_0225_0
crossref_primary_10_4103_1673_5374_241428
crossref_primary_10_1186_s13018_021_02598_w
crossref_primary_10_1515_revneuro_2020_0013
Cites_doi 10.1073/pnas.182296499
10.1371/journal.pone.0127266
10.1016/j.neuint.2011.05.019
10.3109/07853890903321567
10.1073/pnas.1602397113
10.1177/1470320316666750
10.1113/expphysiol.2008.041988
10.1016/j.celrep.2015.01.049
10.1038/sj.bjc.6604508
10.1093/hmg/ddv380
10.1073/pnas.95.17.10257
10.1083/jcb.201002049
10.1074/jbc.M205664200
10.1074/jbc.274.18.12702
10.1093/hmg/ddi094
10.1097/ICO.0000000000001228
10.1172/JCI200317977
10.1371/journal.pone.0133181
10.1159/000092097
10.1016/j.devcel.2008.04.015
10.1093/hmg/ddt180
10.1002/stem.210
10.1371/journal.pone.0069440
10.1111/j.1471-4159.2007.05109.x
10.1007/s00125-012-2702-2
10.2174/138920312800493160
10.1002/prca.200700522
10.1113/JP270590
10.1002/ana.10051
10.1523/JNEUROSCI.1647-07.2007
10.1093/embo-reports/kvf008
10.1016/S0006-8993(98)00498-3
10.1074/jbc.M002020200
10.1016/j.ijdevneu.2012.09.004
10.1523/JNEUROSCI.4130-14.2015
10.1091/mbc.e13-12-0730
10.1002/0471143030.cb0322s30
10.1152/ajpregu.90832.2008
10.1681/ASN.2007091030
10.1002/mds.23085
10.1016/S0898-6568(03)00070-6
10.1126/science.1179802
10.1172/JCI0214276
10.1016/j.mcn.2010.11.004
10.1016/j.devcel.2006.07.003
10.2741/E631
10.1016/j.mcn.2005.12.003
10.1016/j.bbadis.2015.08.010
10.1161/01.HYP.0000248211.82232.a7
10.1126/science.1153124
10.1016/j.neulet.2004.04.002
10.1002/dneu.20559
10.1007/s00018-010-0447-y
10.1016/j.bbr.2011.04.022
10.1002/(SICI)1097-4695(199812)37:4<502::AID-NEU2>3.0.CO;2-S
10.1091/mbc.12.10.3031
10.1371/journal.pone.0022901
ContentType Journal Article
Copyright The Author(s). 2018
COPYRIGHT 2018 BioMed Central Ltd.
Copyright_xml – notice: The Author(s). 2018
– notice: COPYRIGHT 2018 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOA
DOI 10.1186/s13287-018-0862-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1757-6512
EndPage 24
ExternalDocumentID oai_doaj_org_article_418ec6c9643c4a64b837c075c664f049
PMC5948768
A546416462
29751779
10_1186_s13287_018_0862_9
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CEDRE
  grantid: 35399WH
– fundername: Lebanese Universitry
  grantid: MENESER
– fundername: ;
  grantid: MENESER
– fundername: ;
  grantid: 35399WH
GroupedDBID ---
0R~
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABUWG
ACGFS
ACIHN
ACJQM
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
DIK
E3Z
EBD
EBLON
EBS
EJD
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
IHW
INH
INR
ISR
ITC
KQ8
LK8
M1P
M7P
M~E
O5R
O5S
OK1
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
ROL
RPM
RSV
SBL
SOJ
SV3
TUS
UKHRP
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7X8
5PM
ID FETCH-LOGICAL-c706t-dbbe91cc2d67977f81d72571fb7c5316c3c524aa7e48e9d945620c6c2a8d9db13
IEDL.DBID C6C
ISSN 1757-6512
IngestDate Wed Aug 27 01:20:14 EDT 2025
Thu Aug 21 13:52:01 EDT 2025
Fri Sep 05 09:55:48 EDT 2025
Tue Jun 17 21:01:56 EDT 2025
Tue Jun 10 20:29:13 EDT 2025
Fri Jun 27 04:40:11 EDT 2025
Thu May 22 21:23:49 EDT 2025
Mon Jul 21 06:05:49 EDT 2025
Tue Jul 01 00:43:19 EDT 2025
Thu Apr 24 22:53:37 EDT 2025
Sat Sep 06 07:28:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Wnt signaling
Renin
Caveolae
Neural differentiation
Caveolin
Flotillin
ATP6AP2
Stem cells
Lipid rafts
Exosomes
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c706t-dbbe91cc2d67977f81d72571fb7c5316c3c524aa7e48e9d945620c6c2a8d9db13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7240-0968
OpenAccessLink https://doi.org/10.1186/s13287-018-0862-9
PMID 29751779
PQID 2038272249
PQPubID 23479
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_418ec6c9643c4a64b837c075c664f049
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5948768
proquest_miscellaneous_2038272249
gale_infotracmisc_A546416462
gale_infotracacademiconefile_A546416462
gale_incontextgauss_ISR_A546416462
gale_healthsolutions_A546416462
pubmed_primary_29751779
crossref_citationtrail_10_1186_s13287_018_0862_9
crossref_primary_10_1186_s13287_018_0862_9
springer_journals_10_1186_s13287_018_0862_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-11
PublicationDateYYYYMMDD 2018-05-11
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-11
  day: 11
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Stem cell research & therapy
PublicationTitleAbbrev Stem Cell Res Ther
PublicationTitleAlternate Stem Cell Res Ther
PublicationYear 2018
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References S Wang (862_CR47) 2013; 31
G Nguyen (862_CR40) 2010; 42
Y Li (862_CR14) 2011; 6
H Yamamoto (862_CR55) 2006; 11
F Galbiati (862_CR15) 1998; 95
K Trajkovic (862_CR58) 2008; 319
R Haque (862_CR12) 2015; 21
J Zschocke (862_CR16) 2002; 277
P Hedera (862_CR43) 2002; 51
A Chairoungdua (862_CR22) 2010; 190
Z Shan (862_CR4) 2008; 93
J Egawa (862_CR19) 2016; 594
C Wang (862_CR33) 2013; 8
H Yamamoto (862_CR54) 2008; 15
D Volonté (862_CR46) 1999; 274
M Boulware (862_CR17) 2007; 27
T Ikezu (862_CR48) 1998; 804
A Dubos (862_CR7) 2015; 24
C Stern (862_CR13) 2010; 67
P Poorkaj (862_CR41) 2010; 25
G Sihn (862_CR45) 2013; 5
C Lange (862_CR31) 2006; 3
J Ramser (862_CR42) 2005; 14
C D’Orlando (862_CR18) 2008; 104
G Lachenal (862_CR36) 2011; 46
Y Li (862_CR35) 2011; 59
C Stuermer (862_CR21) 2001; 12
N Al-Makdissy (862_CR56) 2003; 15
J Han (862_CR10) 2015; 10
A Taylor (862_CR39) 2007; 67
J Fauré (862_CR37) 2006; 31
G Nguyen (862_CR3) 2002; 109
S Schafer (862_CR34) 2015; 35
A Kanda (862_CR11) 2012; 55
N Makdissy (862_CR27) 2015; 10
C Cruciat (862_CR8) 2010; 327
D Lang (862_CR20) 1998; 37
A Contrepas (862_CR5) 2009; 297
F Galbiati (862_CR49) 2000; 275
K Matsushita (862_CR1) 2006; 48
J Alio Del Barrio (862_CR26) 2017; 36
E Krämer-Albers (862_CR38) 2007; 1
S Feldt (862_CR30) 2008; 19
K Jin (862_CR52) 2002; 99
O Korvatska (862_CR6) 2013; 22
K Yoshinaka (862_CR24) 2004; 363
L C̆ajánek (862_CR53) 2009; 27
862_CR44
N Fournier (862_CR50) 2012; 227
Y Sun (862_CR51) 2003; 111
B Beckermann (862_CR9) 2008; 99
Q He (862_CR57) 2014; 25
J AlBacha (862_CR25) 2015; 10
C Théry (862_CR28) 2006; 3
X Lu (862_CR29) 2016; 113
H Yamanaka (862_CR32) 2002; 3
H Lu (862_CR59) 2008; 118
E Jansen (862_CR2) 2012; 13
K Essandoh (862_CR23) 2015; 1852
References_xml – volume: 99
  start-page: 11946
  issue: 18
  year: 2002
  ident: 862_CR52
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.182296499
– volume: 10
  start-page: e0127266
  issue: 5
  year: 2015
  ident: 862_CR25
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0127266
– volume: 59
  start-page: 114
  issue: 2
  year: 2011
  ident: 862_CR35
  publication-title: Neurochem Int
  doi: 10.1016/j.neuint.2011.05.019
– volume: 42
  start-page: 13
  issue: 1
  year: 2010
  ident: 862_CR40
  publication-title: Ann Med
  doi: 10.3109/07853890903321567
– volume: 113
  start-page: E1898
  year: 2016
  ident: 862_CR29
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1602397113
– ident: 862_CR44
  doi: 10.1177/1470320316666750
– volume: 93
  start-page: 701
  issue: 5
  year: 2008
  ident: 862_CR4
  publication-title: Exp Physiol
  doi: 10.1113/expphysiol.2008.041988
– volume: 10
  start-page: 1158
  issue: 7
  year: 2015
  ident: 862_CR10
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2015.01.049
– volume: 99
  start-page: 622
  issue: 4
  year: 2008
  ident: 862_CR9
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6604508
– volume: 24
  start-page: 6736
  issue: 23
  year: 2015
  ident: 862_CR7
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddv380
– volume: 95
  start-page: 10257
  issue: 17
  year: 1998
  ident: 862_CR15
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.95.17.10257
– volume: 190
  start-page: 1079
  issue: 6
  year: 2010
  ident: 862_CR22
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201002049
– volume: 277
  start-page: 38772
  issue: 41
  year: 2002
  ident: 862_CR16
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M205664200
– volume: 118
  start-page: 984
  issue: 3
  year: 2008
  ident: 862_CR59
  publication-title: J Clin Invest
– volume: 274
  start-page: 12702
  issue: 18
  year: 1999
  ident: 862_CR46
  publication-title: J Biol Chem
  doi: 10.1074/jbc.274.18.12702
– volume: 14
  start-page: 1019
  issue: 8
  year: 2005
  ident: 862_CR42
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddi094
– volume: 36
  start-page: 952
  issue: 8
  year: 2017
  ident: 862_CR26
  publication-title: Cornea
  doi: 10.1097/ICO.0000000000001228
– volume: 111
  start-page: 1843
  issue: 12
  year: 2003
  ident: 862_CR51
  publication-title: J Clin Invest
  doi: 10.1172/JCI200317977
– volume: 10
  start-page: e0133181
  issue: 7
  year: 2015
  ident: 862_CR27
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0133181
– volume: 3
  start-page: 76
  issue: 1–2
  year: 2006
  ident: 862_CR31
  publication-title: Neurodegener Dis
  doi: 10.1159/000092097
– volume: 15
  start-page: 37
  issue: 1
  year: 2008
  ident: 862_CR54
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2008.04.015
– volume: 22
  start-page: 3259
  issue: 16
  year: 2013
  ident: 862_CR6
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddt180
– volume: 27
  start-page: 2917
  issue: 12
  year: 2009
  ident: 862_CR53
  publication-title: Stem Cells
  doi: 10.1002/stem.210
– volume: 8
  start-page: e69440
  issue: 7
  year: 2013
  ident: 862_CR33
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0069440
– volume: 104
  start-page: 1577
  issue: 6
  year: 2008
  ident: 862_CR18
  publication-title: J Neurochem
  doi: 10.1111/j.1471-4159.2007.05109.x
– volume: 55
  start-page: 3104
  issue: 11
  year: 2012
  ident: 862_CR11
  publication-title: Diabetologia
  doi: 10.1007/s00125-012-2702-2
– volume: 13
  start-page: 124
  issue: 2
  year: 2012
  ident: 862_CR2
  publication-title: Curr Protein Pept Sci
  doi: 10.2174/138920312800493160
– volume: 1
  start-page: 1446
  issue: 11
  year: 2007
  ident: 862_CR38
  publication-title: Proteomics Clin Appl
  doi: 10.1002/prca.200700522
– volume: 594
  start-page: 4565
  issue: 16
  year: 2016
  ident: 862_CR19
  publication-title: J Physiol
  doi: 10.1113/JP270590
– volume: 51
  start-page: 45
  issue: 1
  year: 2002
  ident: 862_CR43
  publication-title: Ann Neurol
  doi: 10.1002/ana.10051
– volume: 27
  start-page: 9941
  issue: 37
  year: 2007
  ident: 862_CR17
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1647-07.2007
– volume: 3
  start-page: 69
  issue: 1
  year: 2002
  ident: 862_CR32
  publication-title: EMBO Rep
  doi: 10.1093/embo-reports/kvf008
– volume: 804
  start-page: 177
  issue: 2
  year: 1998
  ident: 862_CR48
  publication-title: Brain Res
  doi: 10.1016/S0006-8993(98)00498-3
– volume: 275
  start-page: 23368
  issue: 30
  year: 2000
  ident: 862_CR49
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M002020200
– volume: 31
  start-page: 30
  issue: 1
  year: 2013
  ident: 862_CR47
  publication-title: Int J Dev Neurosci
  doi: 10.1016/j.ijdevneu.2012.09.004
– volume: 35
  start-page: 4983
  issue: 12
  year: 2015
  ident: 862_CR34
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4130-14.2015
– volume: 25
  start-page: 1715
  issue: 11
  year: 2014
  ident: 862_CR57
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e13-12-0730
– volume: 3
  start-page: 3.22
  year: 2006
  ident: 862_CR28
  publication-title: Curr Protoc Cell Biol
  doi: 10.1002/0471143030.cb0322s30
– volume: 297
  start-page: R250
  issue: 2
  year: 2009
  ident: 862_CR5
  publication-title: Am J Physiol Regul Integr Comp Physiol
  doi: 10.1152/ajpregu.90832.2008
– volume: 19
  start-page: 743
  issue: 4
  year: 2008
  ident: 862_CR30
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2007091030
– volume: 25
  start-page: 1409
  issue: 10
  year: 2010
  ident: 862_CR41
  publication-title: Mov Disord Off J Mov Disord Soc
  doi: 10.1002/mds.23085
– volume: 15
  start-page: 1019
  issue: 11
  year: 2003
  ident: 862_CR56
  publication-title: Cell Signal
  doi: 10.1016/S0898-6568(03)00070-6
– volume: 327
  start-page: 459
  issue: 5964
  year: 2010
  ident: 862_CR8
  publication-title: Science
  doi: 10.1126/science.1179802
– volume: 109
  start-page: 1417
  issue: 11
  year: 2002
  ident: 862_CR3
  publication-title: J Clin Invest
  doi: 10.1172/JCI0214276
– volume: 46
  start-page: 409
  issue: 2
  year: 2011
  ident: 862_CR36
  publication-title: Mol Cell Neurosci
  doi: 10.1016/j.mcn.2010.11.004
– volume: 21
  start-page: 224
  year: 2015
  ident: 862_CR12
  publication-title: Mol Vis
– volume: 11
  start-page: 213
  issue: 2
  year: 2006
  ident: 862_CR55
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2006.07.003
– volume: 5
  start-page: 500
  year: 2013
  ident: 862_CR45
  publication-title: Front Biosci (Elite Ed)
  doi: 10.2741/E631
– volume: 31
  start-page: 642
  issue: 4
  year: 2006
  ident: 862_CR37
  publication-title: Mol Cell Neurosci
  doi: 10.1016/j.mcn.2005.12.003
– volume: 1852
  start-page: 2362
  issue: 11
  year: 2015
  ident: 862_CR23
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbadis.2015.08.010
– volume: 48
  start-page: 1095
  issue: 6
  year: 2006
  ident: 862_CR1
  publication-title: Hypertension
  doi: 10.1161/01.HYP.0000248211.82232.a7
– volume: 319
  start-page: 1244
  issue: 5867
  year: 2008
  ident: 862_CR58
  publication-title: Science
  doi: 10.1126/science.1153124
– volume: 363
  start-page: 168
  issue: 2
  year: 2004
  ident: 862_CR24
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2004.04.002
– volume: 67
  start-page: 1815
  issue: 13
  year: 2007
  ident: 862_CR39
  publication-title: Dev Neurobiol
  doi: 10.1002/dneu.20559
– volume: 67
  start-page: 3785
  issue: 22
  year: 2010
  ident: 862_CR13
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-010-0447-y
– volume: 227
  start-page: 440
  issue: 2
  year: 2012
  ident: 862_CR50
  publication-title: Behav Brain Res
  doi: 10.1016/j.bbr.2011.04.022
– volume: 37
  start-page: 502
  issue: 4
  year: 1998
  ident: 862_CR20
  publication-title: J Neurobiol
  doi: 10.1002/(SICI)1097-4695(199812)37:4<502::AID-NEU2>3.0.CO;2-S
– volume: 12
  start-page: 3031
  issue: 10
  year: 2001
  ident: 862_CR21
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.12.10.3031
– volume: 6
  start-page: e22901
  issue: 8
  year: 2011
  ident: 862_CR14
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0022901
SSID ssj0000330064
Score 2.2118845
Snippet Background The subcellular distribution of prorenin receptor and adaptor protein ATP6AP2 may affect neurogenesis. In this study, we hypothesized that ATP6AP2...
The subcellular distribution of prorenin receptor and adaptor protein ATP6AP2 may affect neurogenesis. In this study, we hypothesized that ATP6AP2 expression...
Abstract Background The subcellular distribution of prorenin receptor and adaptor protein ATP6AP2 may affect neurogenesis. In this study, we hypothesized that...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 132
SubjectTerms ATP6AP2
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Caveolae
Caveolae - metabolism
Caveolin
Cell Biology
Cell differentiation
Exosomes
Flotillin
Humans
Life Sciences
Lipid rafts
Middle Aged
Neurons
Receptors, Cell Surface - metabolism
Regenerative Medicine/Tissue Engineering
Signal Transduction
Stem Cells
Stem Cells - metabolism
Vacuolar Proton-Translocating ATPases - metabolism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIPgifntadRVBUEKzm80m-3hKSxWUoi30bdlPG7BJaXKC7_7hzmRzx6WivvianbskM7PzkZ35DSEvOZhDXpUxy6U1mTDRZKZ2PotFWXiwf6HMsVH44yd5eCI-nJanW6O-sCYswQMnxu0JVgcnHcJGOWGksJBROfBzTkoRIbxF6ws-byuZGm0wpOngbKdjTFbLvR7SrhqrLBGQWfJMzRzRiNf_u1XecktXSyavnJuO7ujgFrk5xZF0mZ7_NrkW2jvkepos-eMu-bnfY1cRKBfF-kHaRbo8PpLLI05BYRp3hh8FadNSZ74HyG6xzuSi8fTSxIGeY5Ge785N0_YUgloKQSLQ-gQ0i_81omDi_dfzVYYkYVxDZGiK5wH9PXJysH_87jCbBi5krsrlkHlrg2LOcS8riAsjxLIVbGkWbeVgr0pXuJILY6og6qC8wuwpB-FwU3vlLSvuk522a8NDQl1kTpReQYRVCGWCjdYVlnkVFNCVYkHyNfe1m9DIcSjGNz1mJbXUSWAaBKZRYFotyOvNTy4SFMffiN-iSDeEiKI9XgDd0pNu6X_p1oI8Q4XQqSV1Ywv0shRSIDAbX5AXIwUiabRYqvPVrPpev__yeUb0aiKKHbyjM1PnA3AKwbdmlLszStjqbrb8fK2ZGpewPq4N3arXPC9qXkE4Bs_8IGnq5tWxd5pVFaxUMx2e8Wa-0jZnI9I4YvlAProgb9baricT1_-Z9Y_-B-sfkxt83Ktlxtgu2RkuV-EJhH-DfTru9F9m_FSV
  priority: 102
  providerName: Directory of Open Access Journals
Title Essential role of ATP6AP2 enrichment in caveolae/lipid raft microdomains for the induction of neuronal differentiation of stem cells
URI https://link.springer.com/article/10.1186/s13287-018-0862-9
https://www.ncbi.nlm.nih.gov/pubmed/29751779
https://www.proquest.com/docview/2038272249
https://pubmed.ncbi.nlm.nih.gov/PMC5948768
https://doaj.org/article/418ec6c9643c4a64b837c075c664f049
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF9si-CL-G20nqsIghJMNpvd5PFarlTBctQW7m3Z7IcN2KQ0uULf_cOdSXKhqR_ga2bytTOzO7Mz81tC3jGYDplMfRiJQodcex3qzNjQJ2liYf5zaYSNwl-PxOEp_7JKVwNYNPbC3Mzfx5n41EC0lGFxJOIoCxbmW2QnRZgxzMuK_XE7JYK4HFbXIW_5xzsnK08H0P_7NHxjHbpdI3krUdqtPwcPyP3BcaTzXtIPyR1XPSJ3-6Mkrx-Tn4sG24hAmygWDNLa0_nJUsyXjIKGlOYMdwFpWVGjrxyEs1hYclFaeql9S8-xKs_W57qsGgpeLAWvEHhtjyyLz-pgL_H9mwNV2l6kSEMoaIoJgOYJOT1YnOwfhsMJC6GRkWhDWxQuj41hVkhwBD04rxJsOPaFNGCcwiQmZVxr6XjmcptjuBQZYZjObG6LOHlKtqu6cs8JNT42PLU5uFQJz7UrfGGSIra5y4Ev5QGJNqOvzAA_jqdg_FBdGJIJ1QtMgcAUCkzlAfkw3nLRY2_8i3kPRToyImx2dwG0SQ1WqHicOfh8xCAzXAteQHhuwGkyQnAPsVJAXqNCqL4HdTR-NU-54IjExgLytuNA6IwKa3O-63XTqM_fjidM7wcmX8M_Gj20OsBIIdrWhHN3wgm2bSbkNxvNVEjCgrjK1etGsSjJmAT_C775Wa-p469js3QsJVDkRIcnYzOlVOVZBy2O4D0QgAbk40bb1TCnNX8f-hf_xf2S3GOdUaZhHO-S7fZy7V6BY9cWM7IlV3JGdvYWR8vjWWfgs26T5BchAUkI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCMEF8SZQqEFISKCIxHGc-LhUrbbQVhVspd4sxw8aiSZVk0Xizg9nxsmumvKQuK6_ZBPPjD2TmflMyGsGyyErch8notIx117HujQ29lmeWVj_XJ5go_DBoZgf848n-clIFo29MJfz92kp3ncQLZVYHIk8yoLF8jq5wSFQDnlZsb3-nJJAXA6765i3_OOVk50nEPT_vgxf2oeu1kheSZSG_Wf3LrkzOo50Nkj6Hrnmmvvk5nCU5I8H5OdOh21EoE0UCwZp6-lscSRmR4yChtTmFL8C0rqhRn93EM5iYcl5bemF9j09w6o8257puukoeLEUvELA2oFZFu8VaC_x_1cHqvSDSHEMqaApJgC6h-R4d2exPY_HExZiUySij21VOZkaw6wowBH04LwWYMOprwoDxilMZnLGtS4cL520EsOlxAjDdGmlrdLsEdlo2sY9IdT41PDcSnCpMi61q3xlsiq10knA5TwiyWr2lRnpx_EUjG8qhCGlUIPAFAhMocCUjMjb9SXnA_fGv8AfUKRrINJmhx9Am9RohYqnpYPHRw4yw7XgFYTnBpwmIwT3ECtFZAsVQg09qGvjV7OcC45MbCwirwICqTMarM35qpddp_a-fJ6A3owg38I7Gj22OsBMIdvWBLk5QYJtm8nwy5VmKhzCgrjGtctOsSQrWQH-Fzzz40FT16-OzdJpUcBIMdHhydxMR5r6NFCLI3kPBKARebfSdjWuad3fp_7pf6G3yK354mBf7e8dfnpGbrNgoHmcpptko79Yuufg5PXVi2DevwD_DUh_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ra9RAEF_0iuKX4tvUalcRBCU02Ww2yceoPdpTy2Fb6Ldls4_2wCbHJSf43T_cmTwOUx_g15tJLtl57Ex25jeEvGLgDlkSOz8QhfK5cspXqTa-i-LIgP-zcYCNwp-PxeEZn53H5_2c03qodh-OJLueBkRpKpv9pXGdiadiv4YcKsWSSURXFszPbpKtVED0MCFbeT47mW0-swSQr8Ou259n_vHa0Y7UAvf_7p5_2Z-u105eO0Bt96XpXbLdB5Q07zTgHrlhy_vkVjdi8vsD8uOgxvYi0DKKhYS0cjQ_nYt8zihozkJf4tdBuiipVt8spLlYcLJcGLpSrqFXWK1nqiu1KGsK0S2FaBF4TYc4i_dq4TDx_4dBK00naqQhRDTFg4H6ITmbHpy-P_T7yQu-TgLR-KYobBZqzYxIIEB0ENQmYNuhKxINRit0pGPGlUosT21mMkyjAi00U6nJTBFGj8ikrEr7hFDtQs1jk0GoFfFM2cIVOipCk9kM-GLukWBYfal7WHKcjvFVtulJKmQnMAkCkygwmXnkzeaSZYfJ8S_mdyjSDSPCabc_VKsL2Vun5GFq4fERm0xzJXgBabuGYEoLwR3kUB7ZQ4WQXW_qxinIPOaCI0Ib88jLlgMhNUqs2blQ67qWRydfRkyveyZXwTtq1bdAwEohCteIc3fECTavR-QXg2ZKJGGhXGmrdS1ZEKUsgbgMnvlxp6mbV8cm6jBJgJKMdHi0NmNKubhsIccR1AcSU4-8HbRd9r6u_vvS7_wX9x65Pf8wlZ-Ojj8-JXdYa5-xH4a7ZNKs1vYZxH5N8by3758eklIt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Essential+role+of+ATP6AP2+enrichment+in+caveolae%2Flipid+raft+microdomains+for+the+induction+of+neuronal+differentiation+of+stem+cells&rft.jtitle=Stem+cell+research+%26+therapy&rft.au=Makdissy%2C+Nehman&rft.au=Haddad%2C+Katia&rft.au=AlBacha%2C+Jeanne+D%27arc&rft.au=Chaker%2C+Diana&rft.date=2018-05-11&rft.pub=BioMed+Central+Ltd&rft.issn=1757-6512&rft.eissn=1757-6512&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1186%2Fs13287-018-0862-9&rft.externalDocID=A546416462
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-6512&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-6512&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-6512&client=summon