Characterization of Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting

In risk evaluation, the effect of mixtures of environmental chemicals on a common adverse outcome is of interest. However, due to the high dimensionality and inherent correlations among chemicals that occur together, the traditional methods (e.g. ordinary or logistic regression) suffer from collinea...

Full description

Saved in:
Bibliographic Details
Published inJournal of agricultural, biological, and environmental statistics Vol. 20; no. 1; pp. 100 - 120
Main Authors Carrico, Caroline, Gennings, Chris, Wheeler, David C., Factor-Litvak, Pam
Format Journal Article
LanguageEnglish
Published Boston Springer Science+Business Media, LLC 01.03.2015
Springer US
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In risk evaluation, the effect of mixtures of environmental chemicals on a common adverse outcome is of interest. However, due to the high dimensionality and inherent correlations among chemicals that occur together, the traditional methods (e.g. ordinary or logistic regression) suffer from collinearity and variance inflation, and shrinkage methods have limitations in selecting among correlated components. We propose a weighted quantile sum (WQS) approach to estimating a body burden index, which identifies "bad actors" in a set of highly correlated environmental chemicals. We evaluate and characterize the accuracy of WQS regression in variable selection through extensive simulation studies through sensitivity and specificity (i.e., ability of the WQS method to select the bad actors correctly and not incorrect ones). We demonstrate the improvement in accuracy this method provides over traditional ordinary regression and shrinkage methods (lasso, adaptive lasso, and elastic net). Results from simulations demonstrate that WQS regression is accurate under some environmentally relevant conditions, but its accuracy decreases for a fixed correlation pattern as the association with a response variable diminishes. Nonzero weights (i.e., weights exceeding a selection threshold parameter) may be used to identify bad actors; however, components within a cluster of highly correlated active components tend to have lower weights, with the sum of their weights representative of the set. Supplementary materials accompanying this paper appear on-line.
AbstractList In risk evaluation, the effect of mixtures of environmental chemicals on a common adverse outcome is of interest. However, due to the high dimensionality and inherent correlations among chemicals that occur together, the traditional methods (e.g. ordinary or logistic regression) suffer from collinearity and variance inflation, and shrinkage methods have limitations in selecting among correlated components. We propose a weighted quantile sum (WQS) approach to estimating a body burden index, which identifies "bad actors" in a set of highly correlated environmental chemicals. We evaluate and characterize the accuracy of WQS regression in variable selection through extensive simulation studies through sensitivity and specificity (i.e., ability of the WQS method to select the bad actors correctly and not incorrect ones). We demonstrate the improvement in accuracy this method provides over traditional ordinary regression and shrinkage methods (lasso, adaptive lasso, and elastic net). Results from simulations demonstrate that WQS regression is accurate under some environmentally relevant conditions, but its accuracy decreases for a fixed correlation pattern as the association with a response variable diminishes. Nonzero weights (i.e., weights exceeding a selection threshold parameter) may be used to identify bad actors; however, components within a cluster of highly correlated active components tend to have lower weights, with the sum of their weights representative of the set. Supplementary materials accompanying this paper appear on-line. Electronic Supplementary Material Supplementary materials for this article are available at 10.1007/s13253-014-0180-3.
In risk evaluation, the effect of mixtures of environmental chemicals on a common adverse outcome is of interest. However, due to the high dimensionality and inherent correlations among chemicals that occur together, the traditional methods (e.g. ordinary or logistic regression) suffer from collinearity and variance inflation, and shrinkage methods have limitations in selecting among correlated components. We propose a weighted quantile sum (WQS) approach to estimating a body burden index, which identifies “bad actors” in a set of highly correlated environmental chemicals. We evaluate and characterize the accuracy of WQS regression in variable selection through extensive simulation studies through sensitivity and specificity (i.e., ability of the WQS method to select the bad actors correctly and not incorrect ones). We demonstrate the improvement in accuracy this method provides over traditional ordinary regression and shrinkage methods (lasso, adaptive lasso, and elastic net). Results from simulations demonstrate that WQS regression is accurate under some environmentally relevant conditions, but its accuracy decreases for a fixed correlation pattern as the association with a response variable diminishes. Nonzero weights (i.e., weights exceeding a selection threshold parameter) may be used to identify bad actors; however, components within a cluster of highly correlated active components tend to have lower weights, with the sum of their weights representative of the set. Supplementary materials accompanying this paper appear on-line.
In risk evaluation, the effect of mixtures of environmental chemicals on a common adverse outcome is of interest. However, due to the high dimensionality and inherent correlations among chemicals that occur together, the traditional methods (e.g. ordinary or logistic regression) suffer from collinearity and variance inflation, and shrinkage methods have limitations in selecting among correlated components. We propose a weighted quantile sum (WQS) approach to estimating a body burden index, which identifies "bad actors" in a set of highly correlated environmental chemicals. We evaluate and characterize the accuracy of WQS regression in variable selection through extensive simulation studies through sensitivity and specificity (i.e., ability of the WQS method to select the bad actors correctly and not incorrect ones). We demonstrate the improvement in accuracy this method provides over traditional ordinary regression and shrinkage methods (lasso, adaptive lasso, and elastic net). Results from simulations demonstrate that WQS regression is accurate under some environmentally relevant conditions, but its accuracy decreases for a fixed correlation pattern as the association with a response variable diminishes. Nonzero weights (i.e., weights exceeding a selection threshold parameter) may be used to identify bad actors; however, components within a cluster of highly correlated active components tend to have lower weights, with the sum of their weights representative of the set. Supplementary materials accompanying this paper appear on-line.
In risk evaluation, the effect of mixtures of environmental chemicals on a common adverse outcome is of interest. However, due to the high dimensionality and inherent correlations among chemicals that occur together, the traditional methods (e.g. ordinary or logistic regression) suffer from collinearity and variance inflation, and shrinkage methods have limitations in selecting among correlated components. We propose a weighted quantile sum (WQS) approach to estimating a body burden index, which identifies "bad actors" in a set of highly correlated environmental chemicals. We evaluate and characterize the accuracy of WQS regression in variable selection through extensive simulation studies through sensitivity and specificity (i.e., ability of the WQS method to select the bad actors correctly and not incorrect ones). We demonstrate the improvement in accuracy this method provides over traditional ordinary regression and shrinkage methods (lasso, adaptive lasso, and elastic net). Results from simulations demonstrate that WQS regression is accurate under some environmentally relevant conditions, but its accuracy decreases for a fixed correlation pattern as the association with a response variable diminishes. Nonzero weights (i.e., weights exceeding a selection threshold parameter) may be used to identify bad actors; however, components within a cluster of highly correlated active components tend to have lower weights, with the sum of their weights representative of the set.
In risk evaluation, the effect of mixtures of environmental chemicals on a common adverse outcome is of interest. However, due to the high dimensionality and inherent correlations among chemicals that occur together, the traditional methods (e.g. ordinary or logistic regression) suffer from collinearity and variance inflation, and shrinkage methods have limitations in selecting among correlated components. We propose a weighted quantile sum (WQS) approach to estimating a body burden index, which identifies "bad actors" in a set of highly correlated environmental chemicals. We evaluate and characterize the accuracy of WQS regression in variable selection through extensive simulation studies through sensitivity and specificity (i.e., ability of the WQS method to select the bad actors correctly and not incorrect ones). We demonstrate the improvement in accuracy this method provides over traditional ordinary regression and shrinkage methods (lasso, adaptive lasso, and elastic net). Results from simulations demonstrate that WQS regression is accurate under some environmentally relevant conditions, but its accuracy decreases for a fixed correlation pattern as the association with a response variable diminishes. Nonzero weights (i.e., weights exceeding a selection threshold parameter) may be used to identify bad actors; however, components within a cluster of highly correlated active components tend to have lower weights, with the sum of their weights representative of the set.In risk evaluation, the effect of mixtures of environmental chemicals on a common adverse outcome is of interest. However, due to the high dimensionality and inherent correlations among chemicals that occur together, the traditional methods (e.g. ordinary or logistic regression) suffer from collinearity and variance inflation, and shrinkage methods have limitations in selecting among correlated components. We propose a weighted quantile sum (WQS) approach to estimating a body burden index, which identifies "bad actors" in a set of highly correlated environmental chemicals. We evaluate and characterize the accuracy of WQS regression in variable selection through extensive simulation studies through sensitivity and specificity (i.e., ability of the WQS method to select the bad actors correctly and not incorrect ones). We demonstrate the improvement in accuracy this method provides over traditional ordinary regression and shrinkage methods (lasso, adaptive lasso, and elastic net). Results from simulations demonstrate that WQS regression is accurate under some environmentally relevant conditions, but its accuracy decreases for a fixed correlation pattern as the association with a response variable diminishes. Nonzero weights (i.e., weights exceeding a selection threshold parameter) may be used to identify bad actors; however, components within a cluster of highly correlated active components tend to have lower weights, with the sum of their weights representative of the set.
Audience Academic
Author Factor-Litvak, Pam
Gennings, Chris
Wheeler, David C.
Carrico, Caroline
Author_xml – sequence: 1
  givenname: Caroline
  surname: Carrico
  fullname: Carrico, Caroline
– sequence: 2
  givenname: Chris
  surname: Gennings
  fullname: Gennings, Chris
– sequence: 3
  givenname: David C.
  surname: Wheeler
  fullname: Wheeler, David C.
– sequence: 4
  givenname: Pam
  surname: Factor-Litvak
  fullname: Factor-Litvak, Pam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30505142$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhiNURD_gB3AA-QiHFI8dO9kL0mr5aKVKiF0QR8tJJlkvWbu1HcTy6_GStmI5FFmWLfl5Zzwz72l2ZJ3FLHsO9BwoLd8E4EzwnEKRdkVz_ig7AcHLnMkZP0p3Wom8BCiPs9MQNpQCl5Q9yY45FVRAwU6yzWKtvW4ievNLR-MscR35hqZfR2zJ51HbaAYkq3FLlth7DGHPdM6Ti8QMO7Jw3uOg9_Q7HTUxlmiyNOE7mVs97IIJZIUxGts_zR53egj47PY8y75-eP9lcZFfffp4uZhf5U1JZcxlJ3XNZ03LKAOuq7LhKFtRN6wqULd1LTSXuhJclK1sKdcgUJaia1ktsKsoP8veTnGvx3qLbYM2ej2oa2-22u-U00YdvlizVr37oSSTIKhMAV7dBvDuZsQQ1daEBodBW3RjUAyKGQUQqff_Q6EEyhJfQkLPJ7TXAypjO5eSN2m1uDVNGmyXGq3mRRopAIe94PWBIDERf8ZejyGoy9XykH35d833xd4NOgHlBDTeheCxU42JfwaefmEGBVTtLaUmS6lkKbW3lOJJCf8o74I_pGGTJiTW9ujVxo0--SE8KHoxiTYhOn-fhclCsBkv-G_5K-aR
CitedBy_id crossref_primary_10_1016_j_ecoenv_2023_115546
crossref_primary_10_1016_j_envres_2024_119165
crossref_primary_10_1016_j_jclepro_2024_143156
crossref_primary_10_1289_EHP10125
crossref_primary_10_1016_j_intimp_2021_108428
crossref_primary_10_18332_pht_144201
crossref_primary_10_3390_atmos15101157
crossref_primary_10_1016_j_enceco_2025_03_001
crossref_primary_10_1007_s11356_023_29318_7
crossref_primary_10_1007_s12561_023_09405_6
crossref_primary_10_1016_j_ecoenv_2023_114687
crossref_primary_10_1016_j_chemosphere_2021_129664
crossref_primary_10_1007_s11356_022_22352_x
crossref_primary_10_1016_j_envres_2021_110764
crossref_primary_10_1289_EHP4918
crossref_primary_10_1111_liv_15492
crossref_primary_10_1007_s11356_023_30177_5
crossref_primary_10_1289_EHP13864
crossref_primary_10_1016_j_scitotenv_2023_165151
crossref_primary_10_1093_hropen_hoae051
crossref_primary_10_3389_fnut_2022_962705
crossref_primary_10_1186_s12940_024_01096_w
crossref_primary_10_1038_s41370_019_0162_1
crossref_primary_10_1007_s12403_022_00471_7
crossref_primary_10_1136_bmjopen_2019_032758
crossref_primary_10_1016_j_scitotenv_2024_176311
crossref_primary_10_1016_j_scitotenv_2022_160203
crossref_primary_10_1007_s00420_024_02047_1
crossref_primary_10_3389_fpubh_2025_1572360
crossref_primary_10_1186_s12889_024_20926_7
crossref_primary_10_1186_s12940_019_0526_y
crossref_primary_10_1007_s11356_023_31423_6
crossref_primary_10_1080_10253890_2025_2477530
crossref_primary_10_3390_ijerph192416746
crossref_primary_10_1186_s12940_025_01156_9
crossref_primary_10_1016_j_envint_2019_105185
crossref_primary_10_1016_j_envres_2023_116838
crossref_primary_10_1038_s41370_018_0081_6
crossref_primary_10_1016_j_ecoenv_2023_115312
crossref_primary_10_1016_j_envres_2019_108922
crossref_primary_10_1289_EHP10570
crossref_primary_10_1007_s11356_021_17794_8
crossref_primary_10_1016_j_jes_2024_01_043
crossref_primary_10_1038_s41598_024_76972_z
crossref_primary_10_1002_fsn3_4613
crossref_primary_10_1016_j_envres_2020_110009
crossref_primary_10_1016_j_chemosphere_2022_135134
crossref_primary_10_3390_ijerph191912421
crossref_primary_10_1016_j_scitotenv_2023_169565
crossref_primary_10_1016_j_envres_2024_120598
crossref_primary_10_1016_j_envres_2022_114115
crossref_primary_10_1016_j_envres_2023_115720
crossref_primary_10_1007_s11356_023_26119_w
crossref_primary_10_1214_20_AOAS1364
crossref_primary_10_3945_jn_117_253419
crossref_primary_10_1186_s12967_024_06021_w
crossref_primary_10_1016_j_ijheh_2023_114238
crossref_primary_10_1016_j_scitotenv_2023_167385
crossref_primary_10_3390_ijerph16193700
crossref_primary_10_1016_j_ecoenv_2022_114130
crossref_primary_10_1038_s41598_024_82673_4
crossref_primary_10_1186_s12889_024_18209_2
crossref_primary_10_1016_j_ecoenv_2023_115733
crossref_primary_10_1016_j_envpol_2023_122389
crossref_primary_10_1186_s12889_024_20349_4
crossref_primary_10_3389_fnut_2023_1205537
crossref_primary_10_1007_s11356_023_27181_0
crossref_primary_10_1038_nrendo_2016_186
crossref_primary_10_3390_metabo13020158
crossref_primary_10_1016_j_jtemb_2024_127477
crossref_primary_10_1016_j_envpol_2022_118864
crossref_primary_10_1016_j_envres_2015_09_013
crossref_primary_10_1016_j_scitotenv_2022_160883
crossref_primary_10_1021_acs_est_4c02080
crossref_primary_10_1016_j_envres_2022_113019
crossref_primary_10_3390_ijerph18126576
crossref_primary_10_1016_j_chemosphere_2023_137870
crossref_primary_10_1186_s12940_019_0515_1
crossref_primary_10_3389_fncom_2023_1302010
crossref_primary_10_3390_toxics12070503
crossref_primary_10_1016_j_envint_2024_108872
crossref_primary_10_1016_j_envres_2024_119148
crossref_primary_10_1016_j_scitotenv_2024_173085
crossref_primary_10_1016_j_envres_2024_118293
crossref_primary_10_1016_j_chemosphere_2024_142052
crossref_primary_10_1016_j_ijheh_2023_114210
crossref_primary_10_3389_fnut_2024_1486741
crossref_primary_10_3390_ijerph19020694
crossref_primary_10_1016_j_scitotenv_2024_173083
crossref_primary_10_1186_s12940_023_01009_3
crossref_primary_10_1002_sim_9765
crossref_primary_10_1016_j_envpol_2022_119926
crossref_primary_10_1016_j_envres_2023_115943
crossref_primary_10_1016_j_envres_2022_114322
crossref_primary_10_1007_s12011_024_04458_0
crossref_primary_10_1016_j_hrtlng_2025_03_006
crossref_primary_10_1016_j_envres_2021_111435
crossref_primary_10_1111_jcpe_13919
crossref_primary_10_1007_s40572_017_0162_z
crossref_primary_10_1016_j_ecoenv_2023_115384
crossref_primary_10_1016_j_envres_2024_118912
crossref_primary_10_1007_s11356_023_29932_5
crossref_primary_10_1007_s11356_022_24958_7
crossref_primary_10_1097_EDE_0000000000001492
crossref_primary_10_1007_s11356_022_21062_8
crossref_primary_10_1016_j_ijheh_2019_113446
crossref_primary_10_1016_j_ijheh_2023_114270
crossref_primary_10_2139_ssrn_3952432
crossref_primary_10_3390_ijerph19042273
crossref_primary_10_37871_jbres1298
crossref_primary_10_3390_ijerph19031369
crossref_primary_10_1016_j_envpol_2022_120727
crossref_primary_10_1016_j_ecoenv_2024_116525
crossref_primary_10_1016_j_ecoenv_2024_116765
crossref_primary_10_1016_j_envpol_2024_124669
crossref_primary_10_1289_EHP11606
crossref_primary_10_1016_j_scitotenv_2020_141735
crossref_primary_10_3390_nu10081093
crossref_primary_10_1016_j_envres_2025_121131
crossref_primary_10_3390_toxics13010009
crossref_primary_10_1080_09603123_2024_2431246
crossref_primary_10_3390_ijerph19031378
crossref_primary_10_1016_j_ecoenv_2023_115371
crossref_primary_10_1016_j_envres_2022_115067
crossref_primary_10_1007_s11356_022_21391_8
crossref_primary_10_1016_j_envpol_2024_125527
crossref_primary_10_1097_EDE_0000000000001272
crossref_primary_10_1016_j_scitotenv_2022_154362
crossref_primary_10_1016_j_envint_2022_107300
crossref_primary_10_1016_j_envint_2023_107816
crossref_primary_10_1016_j_envint_2025_109362
crossref_primary_10_1038_s41398_020_01041_8
crossref_primary_10_1038_s41598_025_88765_z
crossref_primary_10_1186_s12940_024_01065_3
crossref_primary_10_1016_j_envint_2021_107075
crossref_primary_10_1007_s11524_024_00829_z
crossref_primary_10_1073_pnas_2208886119
crossref_primary_10_1016_j_envres_2023_115350
crossref_primary_10_1016_j_scitotenv_2022_158788
crossref_primary_10_1016_j_ecoenv_2024_116950
crossref_primary_10_1016_j_envpol_2024_124694
crossref_primary_10_1016_j_envint_2019_104993
crossref_primary_10_1016_j_envres_2023_117986
crossref_primary_10_1016_j_ecoenv_2023_115346
crossref_primary_10_1016_j_envint_2021_107004
crossref_primary_10_1007_s10653_024_01929_0
crossref_primary_10_1080_02664763_2022_2061430
crossref_primary_10_3389_fpubh_2022_832079
crossref_primary_10_1016_j_envpol_2019_113548
crossref_primary_10_1021_acs_est_4c00074
crossref_primary_10_1016_j_jhazmat_2024_134224
crossref_primary_10_1007_s10653_024_02048_6
crossref_primary_10_1007_s11356_021_18317_1
crossref_primary_10_1016_j_envpol_2022_119780
crossref_primary_10_1016_j_envres_2023_117507
crossref_primary_10_1016_j_scitotenv_2023_165365
crossref_primary_10_3390_ijerph20010094
crossref_primary_10_1007_s11356_024_32745_9
crossref_primary_10_1016_j_envres_2022_114187
crossref_primary_10_1016_j_envres_2023_115334
crossref_primary_10_1016_j_scitotenv_2023_168621
crossref_primary_10_1016_j_scitotenv_2024_172185
crossref_primary_10_1111_biom_13702
crossref_primary_10_3389_fnut_2024_1465875
crossref_primary_10_1016_j_envint_2022_107597
crossref_primary_10_1289_EHP10318
crossref_primary_10_1021_acs_est_4c01156
crossref_primary_10_1186_s12889_024_20702_7
crossref_primary_10_3390_s20175002
crossref_primary_10_1016_j_envres_2019_01_054
crossref_primary_10_1186_s40001_024_01785_9
crossref_primary_10_3390_toxics13010046
crossref_primary_10_1016_j_chemosphere_2020_128467
crossref_primary_10_1007_s12561_023_09410_9
crossref_primary_10_1021_acs_est_3c04688
crossref_primary_10_1093_jncics_pkae122
crossref_primary_10_1289_EHP5838
crossref_primary_10_1016_j_envres_2020_109212
crossref_primary_10_1016_j_ijheh_2024_114335
crossref_primary_10_1021_acs_est_4c00094
crossref_primary_10_1016_j_ijheh_2024_114336
crossref_primary_10_1016_j_scitotenv_2023_165586
crossref_primary_10_1016_j_chemosphere_2022_134471
crossref_primary_10_1016_j_ecoenv_2024_116981
crossref_primary_10_3389_fpubh_2024_1401420
crossref_primary_10_1016_j_envres_2023_116880
crossref_primary_10_1016_j_envint_2021_107039
crossref_primary_10_1016_j_envres_2020_109466
crossref_primary_10_1016_j_chemosphere_2022_136428
crossref_primary_10_1016_j_neuro_2021_11_008
crossref_primary_10_1007_s40572_023_00402_x
crossref_primary_10_1016_j_envpol_2024_124495
crossref_primary_10_1016_j_mex_2019_11_008
crossref_primary_10_1016_j_chemosphere_2023_140334
crossref_primary_10_1021_envhealth_4c00097
crossref_primary_10_1016_j_cofs_2024_101151
crossref_primary_10_3390_ijerph182412881
crossref_primary_10_1016_j_envint_2018_02_044
crossref_primary_10_3390_nu16121901
crossref_primary_10_1016_j_chemosphere_2023_138494
crossref_primary_10_1016_j_ecoenv_2024_117440
crossref_primary_10_1016_j_reprotox_2023_108495
crossref_primary_10_1016_j_envint_2024_108486
crossref_primary_10_1016_j_ecoenv_2025_117952
crossref_primary_10_1016_j_jad_2024_08_089
crossref_primary_10_3390_children8080673
crossref_primary_10_1007_s12403_021_00439_z
crossref_primary_10_1016_j_genhosppsych_2023_12_005
crossref_primary_10_1016_j_chemosphere_2021_133235
crossref_primary_10_3390_toxics12050316
crossref_primary_10_1016_j_envpol_2022_119356
crossref_primary_10_1136_bmjopen_2021_058286
crossref_primary_10_1016_j_neuro_2025_02_005
crossref_primary_10_1016_j_scitotenv_2022_156869
crossref_primary_10_1289_EHP12097
crossref_primary_10_1016_j_envres_2024_119989
crossref_primary_10_1016_j_envres_2021_112276
crossref_primary_10_1126_science_abe8244
crossref_primary_10_3389_fonc_2023_1239147
crossref_primary_10_1007_s12403_023_00573_w
crossref_primary_10_1097_EE9_0000000000000225
crossref_primary_10_1016_j_ecoenv_2025_117949
crossref_primary_10_1016_j_envres_2023_116394
crossref_primary_10_1016_j_ijheh_2024_114493
crossref_primary_10_1016_j_envres_2022_113607
crossref_primary_10_1016_j_envres_2022_113609
crossref_primary_10_1016_j_jad_2024_07_021
crossref_primary_10_3390_nu14193915
crossref_primary_10_1016_j_scitotenv_2022_153548
crossref_primary_10_1016_j_envres_2022_113606
crossref_primary_10_3390_metabo11080545
crossref_primary_10_1007_s10067_024_07156_3
crossref_primary_10_1016_j_envpol_2024_124043
crossref_primary_10_1289_EHP8739
crossref_primary_10_1126_sciadv_aat1293
crossref_primary_10_1007_s11356_022_23148_9
crossref_primary_10_1038_s41380_022_01669_6
crossref_primary_10_1177_11786302231225313
crossref_primary_10_1016_j_envpol_2021_117097
crossref_primary_10_1016_j_jhazmat_2024_134312
crossref_primary_10_1016_j_ntt_2024_107355
crossref_primary_10_1126_science_adp1870
crossref_primary_10_1016_j_ecoenv_2024_116142
crossref_primary_10_1016_j_ecoenv_2024_117473
crossref_primary_10_1016_j_scitotenv_2024_172638
crossref_primary_10_1016_j_ecoenv_2024_116310
crossref_primary_10_1007_s13762_023_05275_z
crossref_primary_10_1038_s41467_024_49283_0
crossref_primary_10_1159_000541875
crossref_primary_10_1016_j_jtemb_2023_127243
crossref_primary_10_1007_s10653_024_01949_w
crossref_primary_10_1016_j_envint_2023_107920
crossref_primary_10_1080_09603123_2025_2451626
crossref_primary_10_1016_j_chemosphere_2022_135741
crossref_primary_10_1016_j_chemosphere_2022_134416
crossref_primary_10_3389_fcell_2024_1390247
crossref_primary_10_1007_s11356_024_33266_1
crossref_primary_10_1007_s12403_022_00489_x
crossref_primary_10_1016_j_chemosphere_2023_139144
crossref_primary_10_1016_j_jacc_2024_07_023
crossref_primary_10_1016_j_jhazmat_2024_134507
crossref_primary_10_1016_j_msard_2022_104243
crossref_primary_10_1016_j_envres_2023_117234
crossref_primary_10_1016_j_envpol_2024_125152
crossref_primary_10_1016_j_envint_2019_105212
crossref_primary_10_1016_j_envpol_2020_114537
crossref_primary_10_1016_j_envpol_2023_121730
crossref_primary_10_1016_j_envres_2020_109840
crossref_primary_10_1021_acs_est_3c06013
crossref_primary_10_1016_j_envpol_2023_121965
crossref_primary_10_1038_s41598_023_41865_0
crossref_primary_10_1016_j_etap_2023_104233
crossref_primary_10_1007_s11356_023_28218_0
crossref_primary_10_3390_toxics10110692
crossref_primary_10_1007_s11356_022_21208_8
crossref_primary_10_1016_j_envint_2019_105424
crossref_primary_10_1016_j_envint_2024_109167
crossref_primary_10_1016_j_earlhumdev_2021_105450
crossref_primary_10_1016_j_envint_2021_106697
crossref_primary_10_3389_fnut_2025_1524099
crossref_primary_10_1007_s12011_021_02972_z
crossref_primary_10_1016_j_scitotenv_2023_165622
crossref_primary_10_3389_fnut_2022_921550
crossref_primary_10_3390_ijerph18031254
crossref_primary_10_1161_HYPERTENSIONAHA_121_18809
crossref_primary_10_3389_frph_2023_1285444
crossref_primary_10_1016_j_teac_2022_e00161
crossref_primary_10_1016_j_ecoenv_2024_116572
crossref_primary_10_1186_s12940_022_00855_x
crossref_primary_10_1016_j_envpol_2020_114557
crossref_primary_10_1016_j_envres_2023_117459
crossref_primary_10_1210_clinem_dgad425
crossref_primary_10_1016_j_envint_2022_107615
crossref_primary_10_1016_j_jpsychires_2022_06_006
crossref_primary_10_1016_j_envres_2023_116361
crossref_primary_10_1038_s43856_024_00683_9
crossref_primary_10_1007_s11356_023_29938_z
crossref_primary_10_1016_j_ecoenv_2020_111854
crossref_primary_10_3389_fmicb_2023_1193919
crossref_primary_10_1021_acs_est_3c09503
crossref_primary_10_1186_s40246_022_00428_6
crossref_primary_10_3389_fpubh_2024_1367644
crossref_primary_10_3389_fpubh_2024_1377685
crossref_primary_10_1016_j_chemosphere_2021_133015
crossref_primary_10_1016_j_rasd_2020_101681
crossref_primary_10_3390_ijerph21020222
crossref_primary_10_1016_j_envint_2019_105003
crossref_primary_10_4103_aja202237
crossref_primary_10_1016_j_scitotenv_2023_169127
crossref_primary_10_1016_j_scitotenv_2024_178116
crossref_primary_10_1186_s12940_023_00985_w
crossref_primary_10_1016_j_jtemb_2024_127566
crossref_primary_10_1186_s12937_025_01079_8
crossref_primary_10_1007_s11270_025_07869_4
crossref_primary_10_1016_j_envres_2022_113225
crossref_primary_10_1007_s40572_023_00417_4
crossref_primary_10_1016_j_chemosphere_2023_138650
crossref_primary_10_1016_j_isci_2024_111335
crossref_primary_10_1039_D3FO02920D
crossref_primary_10_3390_toxics10030116
crossref_primary_10_2139_ssrn_4176357
crossref_primary_10_1053_j_gastro_2024_10_041
crossref_primary_10_1016_j_ecoenv_2025_117798
crossref_primary_10_3389_fendo_2021_774142
crossref_primary_10_2139_ssrn_4182819
crossref_primary_10_1016_j_jad_2024_08_004
crossref_primary_10_1186_s12889_024_19414_9
crossref_primary_10_1097_EE9_0000000000000092
crossref_primary_10_1016_j_chemosphere_2023_139973
crossref_primary_10_1371_journal_pone_0249236
crossref_primary_10_1016_j_envres_2022_114305
crossref_primary_10_1016_j_scitotenv_2024_170639
crossref_primary_10_1002_cad_20363
crossref_primary_10_1016_j_chemosphere_2023_138644
crossref_primary_10_1289_ehp_1408630
crossref_primary_10_1016_j_envres_2024_119109
crossref_primary_10_1016_j_envint_2024_108433
crossref_primary_10_1186_s12916_024_03596_5
crossref_primary_10_1016_j_envint_2020_106374
crossref_primary_10_1016_j_envint_2023_108117
crossref_primary_10_1016_j_envint_2021_106409
crossref_primary_10_1002_jpn3_12346
crossref_primary_10_1371_journal_pone_0316045
crossref_primary_10_3390_toxics12090642
crossref_primary_10_1016_j_envres_2024_120325
crossref_primary_10_1016_j_ypmed_2024_108217
crossref_primary_10_1186_s12937_023_00898_x
crossref_primary_10_1289_EHP14418
crossref_primary_10_1016_j_chemosphere_2019_124412
crossref_primary_10_1016_j_envint_2024_108425
crossref_primary_10_1016_j_scitotenv_2023_162935
crossref_primary_10_1016_j_ecoenv_2022_114209
crossref_primary_10_1186_s12889_024_20897_9
crossref_primary_10_1017_S0007114523003070
crossref_primary_10_3920_WMJ2022_2784
crossref_primary_10_1016_j_annepidem_2016_11_016
crossref_primary_10_3390_ijerph18020504
crossref_primary_10_1016_j_envres_2024_120514
crossref_primary_10_1016_j_jtemb_2024_127524
crossref_primary_10_1016_j_jhazmat_2020_124378
crossref_primary_10_1016_j_envres_2024_118434
crossref_primary_10_1016_j_envint_2023_108176
crossref_primary_10_1016_j_jhazmat_2025_137214
crossref_primary_10_1016_j_envint_2020_105461
crossref_primary_10_1016_j_chemosphere_2024_143084
crossref_primary_10_1016_j_envint_2020_106312
crossref_primary_10_1002_JPER_23_0079
crossref_primary_10_3389_fpubh_2024_1476953
crossref_primary_10_1186_s12940_020_00608_8
crossref_primary_10_1016_j_envres_2022_114759
crossref_primary_10_1016_j_scitotenv_2024_173954
crossref_primary_10_1016_j_pmedr_2023_102235
crossref_primary_10_1016_j_ecoenv_2023_114921
crossref_primary_10_1016_j_scs_2025_106293
crossref_primary_10_3389_fnut_2023_1129169
crossref_primary_10_1016_j_envint_2024_108447
crossref_primary_10_1007_s10661_024_13534_w
crossref_primary_10_1007_s12403_023_00591_8
crossref_primary_10_2139_ssrn_4111404
crossref_primary_10_1016_j_diabet_2024_101602
crossref_primary_10_1016_j_envint_2023_108183
crossref_primary_10_1016_j_scitotenv_2024_172614
crossref_primary_10_1289_EHP9875
crossref_primary_10_1016_j_scitotenv_2024_171742
crossref_primary_10_1016_j_envint_2021_106612
crossref_primary_10_1016_j_envres_2019_108719
crossref_primary_10_1097_EE9_0000000000000262
crossref_primary_10_1016_j_jad_2025_03_049
crossref_primary_10_1016_j_chemosphere_2022_137065
crossref_primary_10_1021_acs_est_9b00392
crossref_primary_10_1371_journal_pone_0227219
crossref_primary_10_1038_s41598_019_42377_6
crossref_primary_10_1016_j_envres_2024_119776
crossref_primary_10_1186_s12986_023_00746_z
crossref_primary_10_1016_j_envres_2024_118443
crossref_primary_10_1183_13993003_02149_2021
crossref_primary_10_1016_j_scitotenv_2023_161410
crossref_primary_10_1016_j_envpol_2023_121348
crossref_primary_10_3390_ijerph18073486
crossref_primary_10_1029_2023GH000796
crossref_primary_10_1007_s12011_024_04236_y
crossref_primary_10_3390_e23121633
crossref_primary_10_1097_EDE_0000000000001777
crossref_primary_10_1186_s12302_023_00809_1
crossref_primary_10_1186_s12890_024_03128_0
crossref_primary_10_1016_j_jes_2024_08_020
crossref_primary_10_1016_j_heliyon_2024_e37837
crossref_primary_10_1016_j_envres_2020_110111
crossref_primary_10_1016_j_scitotenv_2021_152639
crossref_primary_10_1021_acs_est_3c08064
crossref_primary_10_2337_dc22_1585
crossref_primary_10_1186_s12940_020_00637_3
crossref_primary_10_1016_j_envres_2024_119277
crossref_primary_10_1016_j_envpol_2024_124943
crossref_primary_10_1038_s41598_024_75010_2
crossref_primary_10_1186_s12940_018_0400_3
crossref_primary_10_1016_j_envres_2020_110341
crossref_primary_10_1007_s13253_018_0326_9
crossref_primary_10_1016_j_scitotenv_2025_178934
crossref_primary_10_1016_j_heliyon_2024_e37840
crossref_primary_10_1016_j_envres_2023_115419
crossref_primary_10_1016_j_envres_2023_116508
crossref_primary_10_1016_j_envpol_2024_123866
crossref_primary_10_1016_j_ecoenv_2023_115208
crossref_primary_10_1016_j_envint_2024_108957
crossref_primary_10_1186_s13690_024_01275_8
crossref_primary_10_3389_fpubh_2024_1410601
crossref_primary_10_1016_j_ecoenv_2022_114279
crossref_primary_10_2139_ssrn_4142177
crossref_primary_10_1007_s11356_023_27578_x
crossref_primary_10_3390_ijerph18073614
crossref_primary_10_1016_j_envres_2021_111747
crossref_primary_10_1016_j_envint_2022_107494
crossref_primary_10_1016_j_jhazmat_2021_126963
crossref_primary_10_1016_j_ijheh_2021_113909
crossref_primary_10_1007_s12561_023_09404_7
crossref_primary_10_1016_j_envres_2023_116965
crossref_primary_10_2139_ssrn_4123445
crossref_primary_10_1016_j_envres_2022_113157
crossref_primary_10_1007_s12011_023_03901_y
crossref_primary_10_1177_20406207231189922
crossref_primary_10_1016_j_envres_2025_121439
crossref_primary_10_1007_s11356_023_27717_4
crossref_primary_10_1016_j_envres_2020_109148
crossref_primary_10_1016_j_scitotenv_2023_166347
crossref_primary_10_1016_j_puhe_2022_06_015
crossref_primary_10_1097_PXR_0000000000000322
crossref_primary_10_1007_s12403_024_00629_5
crossref_primary_10_1016_j_jad_2021_12_133
crossref_primary_10_1016_j_envint_2022_107083
crossref_primary_10_1038_s41370_024_00739_x
crossref_primary_10_1186_s12889_024_19971_z
crossref_primary_10_1016_j_envpol_2025_126113
crossref_primary_10_1016_j_envres_2018_10_029
crossref_primary_10_1007_s11356_023_28739_8
crossref_primary_10_1016_j_envres_2021_112615
crossref_primary_10_1289_EHP10285
crossref_primary_10_1016_j_envpol_2021_118452
crossref_primary_10_1371_journal_pone_0317678
crossref_primary_10_3390_toxics12080613
crossref_primary_10_1016_j_envres_2021_111764
crossref_primary_10_1016_j_envres_2020_109396
crossref_primary_10_1016_j_rasd_2018_08_003
crossref_primary_10_1016_j_envint_2022_107078
crossref_primary_10_1007_s11356_023_28704_5
crossref_primary_10_1186_s12940_024_01103_0
crossref_primary_10_1016_j_envpol_2024_124987
crossref_primary_10_1016_j_envres_2024_119232
crossref_primary_10_1016_j_envint_2020_105970
crossref_primary_10_1097_MOP_0000000000000877
crossref_primary_10_1016_j_jhazmat_2025_137980
crossref_primary_10_1016_j_envpol_2025_126103
crossref_primary_10_1016_j_envpol_2022_119833
crossref_primary_10_3390_nu14081552
crossref_primary_10_1016_j_envint_2020_105728
crossref_primary_10_1016_j_ecoenv_2025_118044
crossref_primary_10_1038_s41467_024_46595_z
crossref_primary_10_1016_j_envres_2021_111539
crossref_primary_10_1016_j_ecoenv_2023_115881
crossref_primary_10_1021_acs_est_4c13095
crossref_primary_10_1289_EHP9478
crossref_primary_10_1016_j_neuro_2023_01_008
crossref_primary_10_1016_j_scitotenv_2024_174055
crossref_primary_10_1089_lgbt_2021_0088
crossref_primary_10_1097_EDE_0000000000001351
crossref_primary_10_35371_aoem_2023_35_e23
crossref_primary_10_1097_EDE_0000000000001356
crossref_primary_10_1007_s12012_025_09969_3
crossref_primary_10_1016_j_envres_2024_118175
crossref_primary_10_1038_s41467_025_57253_3
crossref_primary_10_1002_sim_9888
crossref_primary_10_1097_JOM_0000000000003002
crossref_primary_10_3389_fpubh_2022_980987
crossref_primary_10_1016_j_ecoenv_2020_111284
crossref_primary_10_1016_j_scitotenv_2022_158218
crossref_primary_10_1186_s12889_024_20546_1
crossref_primary_10_1007_s11356_022_21090_4
crossref_primary_10_1016_j_envint_2022_107297
crossref_primary_10_1016_j_jtemb_2024_127573
crossref_primary_10_1016_j_envpol_2024_123679
crossref_primary_10_1016_j_envint_2020_105753
crossref_primary_10_1038_s41370_024_00726_2
crossref_primary_10_1038_s41598_021_89846_5
crossref_primary_10_1007_s11356_022_19916_2
crossref_primary_10_1016_j_envpol_2022_118969
crossref_primary_10_1016_j_envres_2024_120483
crossref_primary_10_1093_biostatistics_kxac001
crossref_primary_10_1016_j_envint_2018_07_028
crossref_primary_10_1016_j_sste_2019_100286
crossref_primary_10_1016_j_envpol_2023_123163
crossref_primary_10_1016_j_ecoenv_2024_116634
crossref_primary_10_1289_EHP1374
crossref_primary_10_1016_j_ijheh_2024_114430
crossref_primary_10_1186_s12940_020_00644_4
crossref_primary_10_1186_s13098_024_01556_w
crossref_primary_10_1007_s11356_023_26828_2
crossref_primary_10_1016_j_envint_2020_105941
crossref_primary_10_1016_j_envres_2020_109994
crossref_primary_10_1371_journal_pone_0313675
crossref_primary_10_1016_j_envres_2022_112932
crossref_primary_10_1007_s11356_023_26926_1
crossref_primary_10_1093_exposome_osae001
crossref_primary_10_1186_s12940_023_01023_5
crossref_primary_10_1186_s12889_025_22010_0
crossref_primary_10_1007_s12403_024_00653_5
crossref_primary_10_1016_j_ecoenv_2023_115253
crossref_primary_10_1016_j_ijheh_2018_03_010
crossref_primary_10_1016_j_chemosphere_2024_143610
crossref_primary_10_1016_j_chemosphere_2023_139054
crossref_primary_10_1016_j_ecoenv_2023_115256
crossref_primary_10_1007_s11356_023_28706_3
crossref_primary_10_1186_s12940_024_01088_w
crossref_primary_10_3389_fpubh_2025_1555731
crossref_primary_10_1016_j_envres_2020_109529
crossref_primary_10_1016_j_jhazmat_2024_135220
crossref_primary_10_1016_j_jhazmat_2020_124905
crossref_primary_10_1021_acs_est_4c04500
crossref_primary_10_1186_s12889_024_21204_2
crossref_primary_10_1186_s12916_022_02403_3
crossref_primary_10_1007_s11356_023_28902_1
crossref_primary_10_1021_acs_est_4c11066
crossref_primary_10_1016_j_envpol_2025_125686
crossref_primary_10_1016_j_lanwpc_2024_101100
crossref_primary_10_1007_s11356_023_30317_x
crossref_primary_10_1016_j_envint_2022_107422
crossref_primary_10_3389_fendo_2024_1329247
crossref_primary_10_1016_j_ijheh_2023_114136
crossref_primary_10_3389_fnut_2021_754663
crossref_primary_10_1016_j_envres_2020_110534
crossref_primary_10_1016_j_envres_2025_121266
crossref_primary_10_1214_24_AOAS1988
crossref_primary_10_1007_s11356_022_18871_2
crossref_primary_10_1016_j_puhe_2023_12_021
crossref_primary_10_1093_biostatistics_kxac038
crossref_primary_10_1016_j_eehl_2022_09_001
crossref_primary_10_1016_j_envpol_2024_125415
crossref_primary_10_1371_journal_pone_0301097
crossref_primary_10_1016_j_jes_2024_09_008
crossref_primary_10_1016_j_ijheh_2024_114422
crossref_primary_10_3390_ijerph19127399
crossref_primary_10_1016_j_ecoenv_2025_118062
crossref_primary_10_1016_j_chemosphere_2024_143882
crossref_primary_10_1016_j_scitotenv_2018_03_283
crossref_primary_10_3390_nu15132874
crossref_primary_10_1016_j_envint_2022_107249
crossref_primary_10_1016_j_scitotenv_2021_145237
crossref_primary_10_1093_aje_kwae115
crossref_primary_10_1016_j_envint_2022_107246
crossref_primary_10_1093_ije_dyaa259
crossref_primary_10_3389_fpubh_2023_1190948
crossref_primary_10_1097_PXR_0000000000000113
crossref_primary_10_1016_j_chemosphere_2024_142321
crossref_primary_10_1016_j_envint_2023_107771
crossref_primary_10_1111_pai_13732
crossref_primary_10_1016_j_chemosphere_2023_140085
crossref_primary_10_1016_j_envres_2023_117631
crossref_primary_10_1016_j_ecoenv_2023_115453
crossref_primary_10_1002_jbt_23745
crossref_primary_10_1186_s12940_024_01086_y
crossref_primary_10_1186_s12940_021_00765_4
crossref_primary_10_1016_j_ijheh_2024_114483
crossref_primary_10_1186_s12940_022_00907_2
crossref_primary_10_1007_s11356_025_36089_w
crossref_primary_10_3390_toxics12060438
crossref_primary_10_1016_j_jhepr_2023_100912
crossref_primary_10_3389_fpubh_2024_1411123
crossref_primary_10_1007_s11356_022_19836_1
crossref_primary_10_1186_s12937_024_01062_9
crossref_primary_10_3390_toxics12060430
crossref_primary_10_3390_sym14101962
crossref_primary_10_1016_j_scitotenv_2022_159935
crossref_primary_10_1214_21_AOAS1533
crossref_primary_10_1186_s12940_024_01073_3
crossref_primary_10_1289_EHP9294
crossref_primary_10_1016_j_envint_2018_12_030
crossref_primary_10_1186_s12889_025_21552_7
crossref_primary_10_1016_j_envpol_2025_125647
crossref_primary_10_1093_aje_kwab065
crossref_primary_10_1016_j_reprotox_2024_108544
crossref_primary_10_1289_EHP2207
crossref_primary_10_1265_jjh_22009
crossref_primary_10_1016_j_scitotenv_2023_164133
crossref_primary_10_3390_ijerph17238805
crossref_primary_10_1136_oemed_2023_109112
crossref_primary_10_3724_SP_J_1123_2023_09009
crossref_primary_10_1016_j_ecoenv_2024_116861
crossref_primary_10_1093_aje_kwad015
crossref_primary_10_3389_fendo_2024_1375374
crossref_primary_10_1214_21_AOAS1560
crossref_primary_10_1016_j_ecoenv_2023_115239
crossref_primary_10_1016_j_ecoenv_2024_116626
crossref_primary_10_1016_j_scitotenv_2024_175791
crossref_primary_10_1038_s41370_017_0008_7
crossref_primary_10_1016_j_ijheh_2020_113660
crossref_primary_10_1021_acs_est_3c11095
crossref_primary_10_1080_09603123_2024_2352609
crossref_primary_10_1016_j_envres_2021_111713
crossref_primary_10_1016_j_envint_2020_105900
crossref_primary_10_1080_03610918_2019_1577971
crossref_primary_10_1007_s40572_024_00467_2
crossref_primary_10_51387_24_NEJSDS58
crossref_primary_10_1016_j_envpol_2022_119894
crossref_primary_10_1038_s41366_022_01127_x
crossref_primary_10_1016_j_chemosphere_2023_140690
crossref_primary_10_1016_j_envint_2018_09_035
crossref_primary_10_3390_toxics12110828
crossref_primary_10_1016_j_envres_2024_118511
crossref_primary_10_1038_s41467_024_45776_0
crossref_primary_10_1016_j_envint_2019_04_051
crossref_primary_10_1016_j_ntt_2023_107181
crossref_primary_10_3389_fpubh_2023_1241971
crossref_primary_10_1038_s41467_024_55080_6
crossref_primary_10_1016_j_envres_2021_112377
crossref_primary_10_1016_j_jes_2024_04_002
crossref_primary_10_1007_s40471_022_00296_7
crossref_primary_10_3390_ijms241512188
crossref_primary_10_1002_bimj_70033
crossref_primary_10_1016_j_ecoenv_2024_116472
crossref_primary_10_3389_fpubh_2025_1387702
crossref_primary_10_1016_j_cgh_2023_12_020
crossref_primary_10_3390_ijerph18041373
crossref_primary_10_1097_EE9_0000000000000135
crossref_primary_10_1016_j_chemosphere_2023_140200
crossref_primary_10_1016_j_envint_2022_107713
crossref_primary_10_1016_j_envint_2019_03_018
crossref_primary_10_1080_07853890_2023_2227844
crossref_primary_10_1080_10643389_2021_1970455
crossref_primary_10_2139_ssrn_4073661
crossref_primary_10_3390_toxics12120866
crossref_primary_10_1038_s41598_024_67728_w
crossref_primary_10_1016_j_scitotenv_2024_170576
crossref_primary_10_1016_j_jes_2024_05_026
crossref_primary_10_1016_j_envint_2020_106098
crossref_primary_10_1289_EHP6202
crossref_primary_10_1186_s12891_023_06202_6
crossref_primary_10_1016_j_cotox_2021_03_005
crossref_primary_10_1093_aje_kwx183
crossref_primary_10_1007_s12011_022_03484_0
crossref_primary_10_1007_s11356_024_33563_9
crossref_primary_10_1016_j_ijheh_2024_114377
crossref_primary_10_1016_j_envres_2022_113962
crossref_primary_10_3389_fpubh_2023_1151821
crossref_primary_10_1038_s41370_024_00687_6
crossref_primary_10_1016_j_reprotox_2023_108393
crossref_primary_10_3389_fpubh_2022_995649
crossref_primary_10_1016_j_envres_2023_116049
crossref_primary_10_1097_EE9_0000000000000115
crossref_primary_10_1016_j_ijheh_2024_114380
crossref_primary_10_2903_sp_efsa_2022_EN_7555
crossref_primary_10_1007_s10995_023_03844_9
crossref_primary_10_1016_j_chemosphere_2021_131150
crossref_primary_10_1007_s11356_023_28065_z
crossref_primary_10_1007_s12403_023_00594_5
crossref_primary_10_1007_s10654_020_00624_5
crossref_primary_10_1016_j_ecoenv_2024_117353
crossref_primary_10_1080_02664763_2024_2394784
crossref_primary_10_1038_s41598_024_58607_5
crossref_primary_10_1016_j_envpol_2021_116705
crossref_primary_10_1016_j_ecoenv_2024_116438
crossref_primary_10_1186_s12940_020_00642_6
crossref_primary_10_1016_j_scitotenv_2023_165518
crossref_primary_10_3389_fpubh_2024_1401034
crossref_primary_10_1002_cad_20458
crossref_primary_10_1016_j_jhazmat_2024_134864
crossref_primary_10_1016_j_envint_2018_08_039
crossref_primary_10_1038_s41370_018_0069_2
crossref_primary_10_1016_j_scitotenv_2024_174748
crossref_primary_10_1038_s41598_022_21747_7
crossref_primary_10_1111_risa_13323
crossref_primary_10_1186_s12940_024_01066_2
crossref_primary_10_1177_0033354919849882
crossref_primary_10_3389_fpubh_2023_1182127
crossref_primary_10_1016_j_scitotenv_2021_145759
crossref_primary_10_2217_epi_2016_0095
crossref_primary_10_1016_j_scitotenv_2023_163577
crossref_primary_10_1016_j_jhazmat_2024_134614
crossref_primary_10_1016_j_envint_2018_08_045
crossref_primary_10_1057_s41292_020_00192_7
crossref_primary_10_3390_brainsci13060902
crossref_primary_10_3390_nu15122677
crossref_primary_10_1016_j_ijheh_2022_113954
crossref_primary_10_1016_j_envres_2025_121171
crossref_primary_10_3390_nu16193282
crossref_primary_10_1016_j_chemosphere_2021_132065
crossref_primary_10_1097_EE9_0000000000000308
crossref_primary_10_1016_j_chemosphere_2020_128505
crossref_primary_10_1016_j_eehl_2024_02_005
crossref_primary_10_2139_ssrn_4118343
crossref_primary_10_1093_humrep_deae229
crossref_primary_10_1007_s11356_022_23093_7
crossref_primary_10_1016_j_envint_2018_08_010
crossref_primary_10_1038_s41598_024_67210_7
crossref_primary_10_3390_ijerph18031138
crossref_primary_10_1016_j_ijheh_2021_113689
crossref_primary_10_1016_j_chemosphere_2021_133147
crossref_primary_10_1016_j_envres_2019_108681
crossref_primary_10_1007_s10651_024_00610_0
crossref_primary_10_1007_s11356_022_22662_0
crossref_primary_10_1097_EE9_0000000000000316
crossref_primary_10_1186_s12889_024_20267_5
crossref_primary_10_1016_j_medp_2024_100058
crossref_primary_10_1089_heq_2020_0032
crossref_primary_10_2139_ssrn_3987971
crossref_primary_10_1016_j_scitotenv_2023_167909
crossref_primary_10_1016_j_envint_2021_106589
crossref_primary_10_1038_s41370_023_00524_2
crossref_primary_10_1016_j_envint_2018_11_076
crossref_primary_10_1016_j_chemosphere_2022_136940
crossref_primary_10_1210_clinem_dgae873
crossref_primary_10_1016_j_jhazmat_2024_133785
crossref_primary_10_3724_SP_J_1123_2023_12001
crossref_primary_10_1186_s12940_023_01012_8
crossref_primary_10_1007_s00204_022_03260_y
crossref_primary_10_1016_j_placenta_2022_02_020
crossref_primary_10_1177_09622802211013578
crossref_primary_10_1016_j_envres_2024_119685
crossref_primary_10_1016_j_ajcnut_2024_11_026
crossref_primary_10_1183_20734735_0034_2023
crossref_primary_10_1080_10807039_2024_2440729
crossref_primary_10_1007_s12403_024_00638_4
crossref_primary_10_1111_ina_12508
crossref_primary_10_1016_j_envres_2022_114435
crossref_primary_10_1080_02664763_2020_1843611
crossref_primary_10_1016_j_chemosphere_2022_136077
crossref_primary_10_1016_j_jtemb_2024_127438
crossref_primary_10_1016_j_scitotenv_2021_151167
crossref_primary_10_1038_s41370_021_00370_0
crossref_primary_10_1007_s12561_023_09409_2
crossref_primary_10_1016_j_ajo_2024_05_019
crossref_primary_10_3389_fpubh_2024_1374959
crossref_primary_10_1016_j_scitotenv_2023_161745
crossref_primary_10_1016_j_scs_2024_106071
crossref_primary_10_1016_j_envres_2024_118580
crossref_primary_10_1016_j_envint_2020_106218
crossref_primary_10_1016_j_envpol_2023_122979
crossref_primary_10_3390_biomedicines10061438
crossref_primary_10_1007_s12011_024_04359_2
crossref_primary_10_1016_j_envpol_2023_121647
crossref_primary_10_1016_j_envres_2023_116902
crossref_primary_10_1016_j_scitotenv_2024_170754
crossref_primary_10_1002_acn3_51006
crossref_primary_10_1016_j_jtemb_2024_127428
crossref_primary_10_1016_j_jtemb_2024_127426
crossref_primary_10_1016_j_scitotenv_2023_169222
crossref_primary_10_1021_acs_est_6b03783
crossref_primary_10_1016_j_envint_2021_106770
crossref_primary_10_1016_j_envres_2019_108639
crossref_primary_10_3390_antiox11101991
crossref_primary_10_1016_j_envres_2025_120976
crossref_primary_10_1021_acs_est_3c00848
crossref_primary_10_3390_ijms23042320
crossref_primary_10_1016_j_ecoenv_2023_115726
crossref_primary_10_1016_j_chemosphere_2023_140626
crossref_primary_10_1016_j_ecoenv_2024_116091
crossref_primary_10_1080_10643389_2022_2093595
crossref_primary_10_1016_j_lanwpc_2023_100776
crossref_primary_10_1038_s41386_021_01066_7
crossref_primary_10_1016_j_ecoenv_2024_116097
crossref_primary_10_3389_fnut_2021_799095
crossref_primary_10_1016_j_envint_2019_105118
crossref_primary_10_1007_s13253_023_00528_3
crossref_primary_10_1016_j_envint_2023_108009
crossref_primary_10_1186_s12944_024_02153_6
crossref_primary_10_1289_EHP12118
crossref_primary_10_1111_biom_13569
crossref_primary_10_2139_ssrn_4102800
crossref_primary_10_1016_j_jhazmat_2024_133500
crossref_primary_10_1038_s41370_023_00568_4
crossref_primary_10_1097_EE9_0000000000000194
crossref_primary_10_1007_s11356_021_16936_2
crossref_primary_10_1289_EHP12596
crossref_primary_10_1016_j_envres_2021_112565
crossref_primary_10_1007_s10653_023_01791_6
crossref_primary_10_1186_s12874_024_02434_9
crossref_primary_10_1016_j_scitotenv_2024_170975
crossref_primary_10_1089_chi_2024_0215
crossref_primary_10_1016_j_envres_2024_119644
crossref_primary_10_1016_j_jad_2024_02_026
crossref_primary_10_1016_j_scitotenv_2022_161202
crossref_primary_10_1016_j_ecoenv_2024_116271
crossref_primary_10_1007_s40572_019_00229_5
crossref_primary_10_1016_j_ecoenv_2024_116030
crossref_primary_10_3390_ijerph20032321
crossref_primary_10_1016_j_apr_2024_102391
crossref_primary_10_1097_HJH_0000000000003795
crossref_primary_10_1016_j_scitotenv_2024_172985
crossref_primary_10_1007_s11356_020_08092_w
crossref_primary_10_1016_j_envint_2024_108563
crossref_primary_10_1016_j_envint_2024_108562
crossref_primary_10_1007_s12011_025_04585_2
crossref_primary_10_1016_j_ecoenv_2023_114803
crossref_primary_10_1016_j_envres_2021_111019
crossref_primary_10_1097_EE9_0000000000000171
crossref_primary_10_1016_j_scitotenv_2024_177192
crossref_primary_10_1002_mco2_533
crossref_primary_10_1016_j_envres_2022_114866
crossref_primary_10_1136_bmjopen_2022_070772
crossref_primary_10_1016_j_ecoenv_2024_116283
crossref_primary_10_1016_j_envres_2024_119426
crossref_primary_10_3390_ijerph19063309
crossref_primary_10_1016_j_scitotenv_2022_160129
crossref_primary_10_1097_EE9_0000000000000147
crossref_primary_10_1016_j_envint_2021_106734
crossref_primary_10_3389_fpubh_2023_1138811
crossref_primary_10_1016_j_scitotenv_2018_09_088
crossref_primary_10_1186_s12940_017_0310_9
crossref_primary_10_1002_bimj_201800259
crossref_primary_10_1007_s11356_021_15589_5
crossref_primary_10_3390_ijerph19137819
crossref_primary_10_1186_s12889_025_21417_z
crossref_primary_10_1016_j_envpol_2021_117606
crossref_primary_10_1186_s12889_024_21000_y
crossref_primary_10_3390_toxics12030222
crossref_primary_10_1016_j_ajcnut_2023_05_020
crossref_primary_10_1016_j_psychres_2024_115986
crossref_primary_10_1021_acs_est_9b02226
crossref_primary_10_1186_s12905_023_02381_5
crossref_primary_10_1038_s41598_023_42282_z
crossref_primary_10_1016_j_envpol_2020_115138
Cites_doi 10.1097/EDE.0b013e3181cc86e8
10.1097/01.ede.0000164811.25760.f1
10.1016/j.annepidem.2011.11.004
10.1016/j.scitotenv.2013.10.118
10.1289/ehp.1003099
10.1198/016214506000000735
10.1164/rccm.201009-1520ED
10.1126/science.1192603
10.1080/00401706.1970.10488634
10.1093/ije/dyr236
10.1111/j.1539-6924.2006.00770.x
10.1007/b98818
10.1111/j.1467-9868.2010.00740.x
10.1158/1055-9965.EPI-05-0456
10.1097/EDE.0b013e3181ce946c
10.1016/j.atmosenv.2005.10.022
10.1111/j.1467-9868.2005.00503.x
10.1111/ppe.12040
10.1021/es202340b
10.1289/ehp.1206367
10.1002/em.21767
10.1007/978-0-387-84858-7
10.1186/1742-7622-5-2
10.18637/jss.v033.i01
10.1111/j.2517-6161.1996.tb02080.x
ContentType Journal Article
Copyright 2014 International Biometric Society
International Biometric Society 2014
COPYRIGHT 2015 Springer
Copyright_xml – notice: 2014 International Biometric Society
– notice: International Biometric Society 2014
– notice: COPYRIGHT 2015 Springer
DBID AAYXX
CITATION
NPM
ISR
7S9
L.6
7X8
5PM
DOI 10.1007/s13253-014-0180-3
DatabaseName CrossRef
PubMed
Gale In Context: Science
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList


PubMed
MEDLINE - Academic


AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
Environmental Sciences
Medicine
Statistics
EISSN 1537-2693
EndPage 120
ExternalDocumentID PMC6261506
A432511311
30505142
10_1007_s13253_014_0180_3
26452934
Genre Journal Article
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: R01 ES021482
– fundername: NIEHS NIH HHS
  grantid: T32 ES007334
GroupedDBID 06D
0R~
0VY
199
1N0
203
2AX
2JN
2KG
2LR
2XV
30V
4.4
406
408
40D
40E
5GY
8UJ
95.
96X
A8Z
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWIL
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABAWQ
ABBHK
ABBRH
ABDBE
ABDBF
ABDZT
ABECU
ABFAN
ABFSG
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQDR
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ABXSQ
ABYWD
ACAOD
ACDIW
ACDTI
ACGFS
ACHJO
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACMTB
ACOKC
ACPIV
ACPRK
ACSTC
ACTMH
ACUHS
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADODI
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AELLO
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUPB
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFRAH
AFVYC
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGLNM
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIHAF
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKBRZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
BAPOH
BGNMA
CSCUP
D0L
DDRTE
DNIVK
DPUIP
DQDLB
DSRWC
DU5
EBD
EBLON
EBS
ECEWR
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GXS
H13
HF~
HMJXF
HQ6
HRMNR
IAO
IEP
IGS
IKXTQ
IPSME
ISR
ITM
IWAJR
I~Z
J-C
J0Z
JAA
JAAYA
JBMMH
JBSCW
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
JZLTJ
KOV
LLZTM
M4Y
ML.
NPVJJ
NQJWS
NU0
O93
O9J
P2P
P9R
PT4
R9I
ROL
RSV
S27
S3B
SA0
SHX
SISQX
SJN
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
ZMTXR
~KM
-5D
-5G
-BR
-EM
-~C
0VX
2VQ
3-Y
AAKYL
AARHV
ABULA
ACBXY
ADINQ
AELPN
AI.
AS~
BHOJU
CAG
COF
FEDTE
GIFXF
GQ6
HGD
HVGLF
HZ~
IFM
JSODD
O9-
PKN
RNS
S1Z
UQL
VH1
Z7U
Z7W
Z7Y
Z7Z
Z81
AAYXX
ADXHL
CITATION
NPM
AEIIB
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c706t-6f6ab39cd20213a87c3e6d5bc284eadbb5a36a85357d6d03a15e675fd2b5ef803
IEDL.DBID U2A
ISSN 1085-7117
IngestDate Thu Aug 21 14:10:59 EDT 2025
Fri Jul 11 06:12:52 EDT 2025
Thu Jul 10 23:09:14 EDT 2025
Tue Jun 10 20:27:26 EDT 2025
Fri Jun 27 04:15:11 EDT 2025
Thu Apr 03 07:06:13 EDT 2025
Tue Jul 01 01:51:33 EDT 2025
Thu Apr 24 23:08:04 EDT 2025
Fri Feb 21 02:33:22 EST 2025
Sun Aug 31 12:00:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords WQS
Correlation
Nonlinear model
Subset selection
Variable selection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c706t-6f6ab39cd20213a87c3e6d5bc284eadbb5a36a85357d6d03a15e675fd2b5ef803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6261506
PMID 30505142
PQID 1710221471
PQPubID 24069
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6261506
proquest_miscellaneous_2149011525
proquest_miscellaneous_1710221471
gale_infotracacademiconefile_A432511311
gale_incontextgauss_ISR_A432511311
pubmed_primary_30505142
crossref_citationtrail_10_1007_s13253_014_0180_3
crossref_primary_10_1007_s13253_014_0180_3
springer_journals_10_1007_s13253_014_0180_3
jstor_primary_26452934
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: Switzerland
PublicationTitle Journal of agricultural, biological, and environmental statistics
PublicationTitleAbbrev JABES
PublicationTitleAlternate J Agric Biol Environ Stat
PublicationYear 2015
Publisher Springer Science+Business Media, LLC
Springer US
Springer
Publisher_xml – name: Springer Science+Business Media, LLC
– name: Springer US
– name: Springer
References Hoerl, Kennard (CR14) 1970; 12
Meinshausen, Buhlmann (CR18) 2010; 72
Nocedal, Wright (CR19) 2006
Schecter, Lorber, Guo, Wu, Yun, Kannan, Hommel, Imran, Hynan, Cheng, Colacino, Birnbaum (CR24) 2013; 121
Wild (CR28) 2005; 14
Buck Louis, Yeung, Sundaram, Laughon, Zhang (CR4) 2013; 27
Breiman (CR2) 1996; 24
Wormuth, Scheringer, Vollenweider, Hungerbuhler (CR30) 2006; 26
CR12
CR10
Zou (CR31) 2006; 101
Zou, Hastie (CR32) 2005; 67
Vedal, Kaufman (CR27) 2011; 183
Billionnet, Sherrill, Annesi-Maesano (CR1) 2012; 22
Colt, Severson, Lubin, Rothman, Camann, Davis, Cerhan, Cozen, Hartge (CR7) 2005; 16
CR3
CR6
CR5
Kim, Kang, Lee, Lee, Jo, Kwak, Kim, Koh, Kho, Kim, Choi (CR15) 2014; 472
Mustapha, Blangiardo, Briggs, Hansell (CR17) 2011; 119
Roberts, Martin (CR22) 2006; 40
Tibshirani (CR25) 1996; 58
CR9
CR26
CR23
Leblanc, Tibshirani (CR16) 1993; 91
CR20
Gennings, Sabo, Carney (CR11) 2010; 21
Harville (CR13) 1997
Dominici, Peng, Barr, Bell (CR8) 2010; 21
Rappaport, Smith (CR21) 2010; 330
Wild (CR29) 2012; 41
L Breiman (180_CR2) 1996; 24
S Kim (180_CR15) 2014; 472
J Nocedal (180_CR19) 2006
H Zou (180_CR31) 2006; 101
J Colt (180_CR7) 2005; 16
R Tibshirani (180_CR25) 1996; 58
A Schecter (180_CR24) 2013; 121
SM Rappaport (180_CR21) 2010; 330
180_CR10
DA Harville (180_CR13) 1997
BA Mustapha (180_CR17) 2011; 119
CP Wild (180_CR28) 2005; 14
180_CR12
C Billionnet (180_CR1) 2012; 22
180_CR6
180_CR5
C Gennings (180_CR11) 2010; 21
N Meinshausen (180_CR18) 2010; 72
GM Buck Louis (180_CR4) 2013; 27
S Vedal (180_CR27) 2011; 183
M Wormuth (180_CR30) 2006; 26
F Dominici (180_CR8) 2010; 21
180_CR9
S Roberts (180_CR22) 2006; 40
M Leblanc (180_CR16) 1993; 91
180_CR26
CP Wild (180_CR29) 2012; 41
180_CR20
H Zou (180_CR32) 2005; 67
180_CR3
AE Hoerl (180_CR14) 1970; 12
180_CR23
References_xml – volume: 24
  start-page: 49
  year: 1996
  end-page: 64
  ident: CR2
  article-title: Stacked regressions
  publication-title: Machine Learning
– volume: 21
  start-page: 187
  issue: 2
  year: 2010
  end-page: 194
  ident: CR8
  article-title: Protecting human health from air pollution: shifting from a single-pollutant to a multipollutant approach
  publication-title: Epidemiology.
  doi: 10.1097/EDE.0b013e3181cc86e8
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  end-page: 288
  ident: CR25
  article-title: Regression Shrinkage and Selection via the Lasso
  publication-title: Journal of the Royal Statistical Society.
– year: 2006
  ident: CR19
  publication-title: Numerical optimization
– volume: 16
  start-page: 516
  issue: 4
  year: 2005
  end-page: 525
  ident: CR7
  article-title: Organochlorines in carpet dust and non-Hodgkin lymphoma
  publication-title: Epidemiology
  doi: 10.1097/01.ede.0000164811.25760.f1
– volume: 22
  start-page: 126
  issue: 2
  year: 2012
  end-page: 141
  ident: CR1
  article-title: Estimating the health effects of exposure to multi-pollutant mixture
  publication-title: Annals of Epidemiology
  doi: 10.1016/j.annepidem.2011.11.004
– ident: CR12
– volume: 472
  start-page: 49
  year: 2014
  end-page: 55
  ident: CR15
  article-title: Urinary phthalate metabolites among elementary school children of Korea: sources, risks, and their association with oxidative stress marker
  publication-title: Sci Total Environment
  doi: 10.1016/j.scitotenv.2013.10.118
– ident: CR10
– volume: 119
  start-page: 1478
  year: 2011
  end-page: 1482
  ident: CR17
  article-title: Traffic ari pollution and other risk factors for respiratory illness in schoolchildren in the Niger-Delta region of Nigeria
  publication-title: Environ Health Perspect.
  doi: 10.1289/ehp.1003099
– volume: 121
  start-page: 473
  issue: 4
  year: 2013
  end-page: 494
  ident: CR24
  article-title: Phthalate concentrations and dietary exposure from food purchased in New York State
  publication-title: Environ Health Perspect.
– ident: CR6
– volume: 101
  start-page: 1418
  year: 2006
  end-page: 1429
  ident: CR31
  article-title: The adaptive lasso and its oracle properties
  publication-title: J American Statistical Association.
  doi: 10.1198/016214506000000735
– volume: 183
  start-page: 4
  issue: 1
  year: 2011
  end-page: 6
  ident: CR27
  article-title: What does multi-pollutant air pollution research mean?
  publication-title: Am J Respir Crit Care Med.
  doi: 10.1164/rccm.201009-1520ED
– volume: 91
  start-page: 1641
  year: 1993
  end-page: 1650
  ident: CR16
  article-title: Combining estimates in regression and classification
  publication-title: J American Statistical Association
– ident: CR23
– volume: 330
  start-page: 460
  issue: 6003
  year: 2010
  end-page: 461
  ident: CR21
  article-title: Epidemiology. Environment and disease risks
  publication-title: Science.
  doi: 10.1126/science.1192603
– volume: 12
  start-page: 55
  issue: 1
  year: 1970
  end-page: 67
  ident: CR14
  article-title: Ridge regression: biased estimation for nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
– volume: 41
  start-page: 24
  issue: 1
  year: 2012
  end-page: 32
  ident: CR29
  article-title: The exposome: from concept to utility
  publication-title: International journal of epidemiology.
  doi: 10.1093/ije/dyr236
– volume: 26
  start-page: 803
  issue: 3
  year: 2006
  end-page: 824
  ident: CR30
  article-title: What are the sources of exposure to eight frequently used phthalic acid esters in Europeans?
  publication-title: Risk Analysis
  doi: 10.1111/j.1539-6924.2006.00770.x
– year: 1997
  ident: CR13
  publication-title: Matrix algebra from a statistician’s perspective
  doi: 10.1007/b98818
– ident: CR3
– volume: 72
  start-page: 417
  year: 2010
  end-page: 473
  ident: CR18
  article-title: Stability selection
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.1467-9868.2010.00740.x
– ident: CR9
– ident: CR5
– volume: 14
  start-page: 1847
  issue: 8
  year: 2005
  end-page: 1850
  ident: CR28
  article-title: Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology
  publication-title: Cancer Epidemiol Biomarkers Prev.
  doi: 10.1158/1055-9965.EPI-05-0456
– volume: 21
  start-page: S77
  year: 2010
  end-page: S84
  ident: CR11
  article-title: Identifying subsets of complex mixtures most associated with complex diseases polychlorinated biphenyls and endometriosis as a case study
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181ce946c
– volume: 40
  start-page: 984
  issue: 5
  year: 2006
  end-page: 991
  ident: CR22
  article-title: Investigating the mixture of air pollutants associated with adverse health outcomes
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2005.10.022
– ident: CR26
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  end-page: 320
  ident: CR32
  article-title: Regularization and variable selection via the elastic net
  publication-title: Journal of the Royal Statistical Society. Series B (Statistical Methodology)
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: CR20
– volume: 27
  start-page: 229
  issue: 3
  year: 2013
  end-page: 236
  ident: CR4
  article-title: The exposome-exciting opportunities for discoveries in reproductive and perinatal epidemiology
  publication-title: Paediatr Perinat Epidemiol
  doi: 10.1111/ppe.12040
– ident: 180_CR20
– ident: 180_CR6
– volume: 101
  start-page: 1418
  year: 2006
  ident: 180_CR31
  publication-title: J American Statistical Association.
  doi: 10.1198/016214506000000735
– volume: 27
  start-page: 229
  issue: 3
  year: 2013
  ident: 180_CR4
  publication-title: Paediatr Perinat Epidemiol
  doi: 10.1111/ppe.12040
– volume: 72
  start-page: 417
  year: 2010
  ident: 180_CR18
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.1467-9868.2010.00740.x
– ident: 180_CR9
  doi: 10.1021/es202340b
– volume: 121
  start-page: 473
  issue: 4
  year: 2013
  ident: 180_CR24
  publication-title: Environ Health Perspect.
  doi: 10.1289/ehp.1206367
– volume-title: Numerical optimization
  year: 2006
  ident: 180_CR19
– volume: 16
  start-page: 516
  issue: 4
  year: 2005
  ident: 180_CR7
  publication-title: Epidemiology
  doi: 10.1097/01.ede.0000164811.25760.f1
– volume: 24
  start-page: 49
  year: 1996
  ident: 180_CR2
  publication-title: Machine Learning
– volume-title: Matrix algebra from a statistician’s perspective
  year: 1997
  ident: 180_CR13
  doi: 10.1007/b98818
– ident: 180_CR3
  doi: 10.1002/em.21767
– volume: 14
  start-page: 1847
  issue: 8
  year: 2005
  ident: 180_CR28
  publication-title: Cancer Epidemiol Biomarkers Prev.
  doi: 10.1158/1055-9965.EPI-05-0456
– volume: 21
  start-page: 187
  issue: 2
  year: 2010
  ident: 180_CR8
  publication-title: Epidemiology.
  doi: 10.1097/EDE.0b013e3181cc86e8
– ident: 180_CR12
  doi: 10.1007/978-0-387-84858-7
– ident: 180_CR5
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: 180_CR32
  publication-title: Journal of the Royal Statistical Society. Series B (Statistical Methodology)
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 12
  start-page: 55
  issue: 1
  year: 1970
  ident: 180_CR14
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
– volume: 119
  start-page: 1478
  year: 2011
  ident: 180_CR17
  publication-title: Environ Health Perspect.
  doi: 10.1289/ehp.1003099
– ident: 180_CR26
  doi: 10.1186/1742-7622-5-2
– volume: 21
  start-page: S77
  year: 2010
  ident: 180_CR11
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181ce946c
– volume: 41
  start-page: 24
  issue: 1
  year: 2012
  ident: 180_CR29
  publication-title: International journal of epidemiology.
  doi: 10.1093/ije/dyr236
– ident: 180_CR10
  doi: 10.18637/jss.v033.i01
– volume: 472
  start-page: 49
  year: 2014
  ident: 180_CR15
  publication-title: Sci Total Environment
  doi: 10.1016/j.scitotenv.2013.10.118
– volume: 330
  start-page: 460
  issue: 6003
  year: 2010
  ident: 180_CR21
  publication-title: Science.
  doi: 10.1126/science.1192603
– ident: 180_CR23
– volume: 40
  start-page: 984
  issue: 5
  year: 2006
  ident: 180_CR22
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2005.10.022
– volume: 26
  start-page: 803
  issue: 3
  year: 2006
  ident: 180_CR30
  publication-title: Risk Analysis
  doi: 10.1111/j.1539-6924.2006.00770.x
– volume: 22
  start-page: 126
  issue: 2
  year: 2012
  ident: 180_CR1
  publication-title: Annals of Epidemiology
  doi: 10.1016/j.annepidem.2011.11.004
– volume: 91
  start-page: 1641
  year: 1993
  ident: 180_CR16
  publication-title: J American Statistical Association
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 180_CR25
  publication-title: Journal of the Royal Statistical Society.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 183
  start-page: 4
  issue: 1
  year: 2011
  ident: 180_CR27
  publication-title: Am J Respir Crit Care Med.
  doi: 10.1164/rccm.201009-1520ED
SSID ssj0013602
Score 2.5914812
Snippet In risk evaluation, the effect of mixtures of environmental chemicals on a common adverse outcome is of interest. However, due to the high dimensionality and...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100
SubjectTerms Actors
Agriculture
Biostatistics
Chemical properties
Health Sciences
inflation
Inflation (Economics)
Mathematics and Statistics
Medicine
Monitoring/Environmental Analysis
regression analysis
Risk assessment
shrinkage
Statistics
Statistics for Life Sciences
variance
Title Characterization of Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting
URI https://www.jstor.org/stable/26452934
https://link.springer.com/article/10.1007/s13253-014-0180-3
https://www.ncbi.nlm.nih.gov/pubmed/30505142
https://www.proquest.com/docview/1710221471
https://www.proquest.com/docview/2149011525
https://pubmed.ncbi.nlm.nih.gov/PMC6261506
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BJtB4QBAoCx-TQUhIoEhJHOfjMSodAwQSLRXjybITpysrKVrah_333CVOq8KGxHPOtpI7n8-53_0O4KXmScWDUHm6iBIv0iLztK6MF1bazwqT4YnUoi0-xyfT6MOpOLV13E2Pdu9Tkq2n3ha78VAQ9odQEyk6j5uwL_DqTjiuaZhvUwexBRqmwkuCIOlTmVdNsXMYWZfcwRKvCjj_xk3-kTxtz6Tje3DXBpMs77R_H26Y2oE7-ezCEmoYB251zSYvHRiMtjVtOMhu6saB259sft2BA4o9O-rmB_BjuCFz7mo12bJi39pfqaZkX9aoE3QpbLL-ycZm1uFpa4ZBMCPwyOKSDanzx0KR9Fu1UmxeM8XG8-ac9VQobGJa3PVDmB6Pvg5PPNuawSsSP155cRUrzbOiRAUEXKVJwU1cCl3gaYe2qbVQPFYYCoikjEufq0AYvJpUZaiFqVKfD2CvXtbmEFiUlBGGRbzkcRalVZyh7y4zqukuUpy8dMHvdSQLy1tO7TMWcsu4TGqVqFZJapXchdebIb860o5_Cb8gxUsiw6gJbTNT66aR7ydjmUecbmA8CFx4ZYWqJS5eKFu8gK9A_Fk7koPWgDYLh5Q6znjkwvPeoiRuYcrLqNos140MKMqjflHB9TL4mIqERShceNRZ4WYFTt0Igyh0Idmxz40AUYjvPqnnZy2VOF5niWLShTe9JUvrw5rrv9jj_5J-AgcYZIoOt_cU9lYXa_MMA7mVPoL9_N33j6OjdgP_Bp82Pq8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIqAcEAQC5rkgEBLIUuz1-nHgEKWtEvqQSFu1t2XXXodAcFCdCOX38EeZsdeJAi0Sh5499tqe8cys55tvAF5rHuXc85Wr0yByAy0SV-vcuH6uO0lqEoxIFdriMOyfBB_PxNkG_Gp6YSq0e1OSrDz1qtmN-4KwP4SaiNF5WCTlnln8xH1a-WGwjUp94_u7O8e9vmtHCbhp1AlnbpiHSvMkzXCv73EVRyk3YSZ0it4Z36XWQvFQYegSURZmHa48YTCVzjNfC5PHHY7XvQbXMfeI6dM58burUkVogY2xcCPPi5rS6UW3vBb8bAioYZAXJbh_4zT_KNZWMXD3LtyxySvr1tZ2DzZM0YLb3dG5JfAwLbhRD7dctKC9s-qhw5OsEylbcPPA1vNbsEW5bk0VfR--9pbk0XVvKJvm7LT6dWsy9mmONoAujB3Nv7OhGdX43YJh0s0IrDJZsB5NGpkokt5WM8XGBVNsOC6_sYZ6hR2ZCuf9AE6uRH9t2CymhXkELIiyANMwnvEwCeI8TDBWZAn1kKcxXjxzoNPoSKaWJ53GdUzkiuGZ1CpRrZLUKrkD75an_KhJQv4l_IoUL4l8oyB0z0jNy1IOjoayG3Da8XHPc-CtFcqnuHiqbLMEPgLxda1JtisDWi7sU6k64YEDLxuLkugyqA6kCjOdl9KjrJLmU3mXy-BhakoWvnDgYW2FyxU4TT_0At-BaM0-lwJEWb5-pBh_qajLcftMlJYOvG8sWVqfWV7-xh7_l_QLuNU_PtiX-4PDvSewhQmuqDGDT2Fzdj43zzCJnOnn1UfM4PNVe43foJR69g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9NADLbGENN4QFAohJ8HAiGBojW5XNI88FC1qzYGE7RU7O24Sy6lUNJpaYX6V_EvYieXVoUNiYc9x8klsWP74s-fAZ5rHmXc85WrkyByAy1iV-vMuH6mW3FiYoxIJdriODwYBW9PxMkW_Kp7YUq0e12SrHoaiKUpn--dptneuvGN-4JwQISgaKMjsajKI7P8iXu24s1hDxX8wvf7-5-6B64dK-AmUSucu2EWKs3jJMV9v8dVO0q4CVOhE_TU-F61FoqHCsOYiNIwbXHlCYNpdZb6Wpis3eJ43StwNaDmY_yARn5nXbYILcixLdzI86K6jHreLW8EQhsOKkjkecnu35jNPwq3ZTzs34QbNpFlncrybsGWyRtwvTM-s2QepgHXqkGXywY099f9dHiSdShFA3be29p-A3Yp761oo2_Dt-6KSLrqE2WzjH0uf-OalH1coD2gO2PDxQ82MOMKy5szTMAZAVemS9alqSNTRdI9NVdskjPFBpPiO6tpWNjQlJjvOzC6FP01YTuf5eYesCBKA0zJeMrDOGhnYYxxI42pnzxp48VTB1q1jmRiOdNpdMdUrtmeSa0S1SpJrZI78Gp1ymlFGPIv4WekeElEHDkhfcZqURTycDiQnYDT7o97ngMvrVA2w8UTZRsn8BGIu2tDslka0Gphn8rWMQ8ceFpblET3QTUhlZvZopAeZZg0q8q7WAYPU4Oy8IUDdysrXK3AaRKiF_gORBv2uRIg-vLNI_nka0ljjltpord04HVtydL6z-LiN3b_v6SfwM6HXl--Ozw-egC7mOuKCj74ELbnZwvzCPPJuX5cfsMMvly20_gN9ep_KQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+Weighted+Quantile+Sum+Regression+for+Highly+Correlated+Data+in+a+Risk+Analysis+Setting&rft.jtitle=Journal+of+agricultural%2C+biological%2C+and+environmental+statistics&rft.au=Carrico%2C+Caroline&rft.au=Gennings%2C+Chris&rft.au=Wheeler%2C+David+C.&rft.au=Factor-Litvak%2C+Pam&rft.date=2015-03-01&rft.pub=Springer+US&rft.issn=1085-7117&rft.eissn=1537-2693&rft.volume=20&rft.issue=1&rft.spage=100&rft.epage=120&rft_id=info:doi/10.1007%2Fs13253-014-0180-3&rft.externalDocID=10_1007_s13253_014_0180_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1085-7117&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1085-7117&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1085-7117&client=summon