Influence of changes in the intestinal microflora on the immune function in mice

The composition of the intestinal microbiota is related to the health and immune function of the host. Administration of antibiotics affects the composition of the intestinal microbiota. However, the effects of immune function on the composition of the intestinal microbiota are still unclear. In thi...

Full description

Saved in:
Bibliographic Details
Published inJournal of Veterinary Medical Science Vol. 80; no. 3; pp. 440 - 446
Main Authors KISHIDA, Shigefumi, KATO-MORI, Yuko, HAGIWARA, Katsuro
Format Journal Article
LanguageEnglish
Published Japan JAPANESE SOCIETY OF VETERINARY SCIENCE 2018
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The composition of the intestinal microbiota is related to the health and immune function of the host. Administration of antibiotics affects the composition of the intestinal microbiota. However, the effects of immune function on the composition of the intestinal microbiota are still unclear. In this study, we investigated the lymphocyte composition and determined the relationships between lymphocyte function and the intestinal microbiota following antibiotic treatment in mice. To change the composition of the intestinal microbiota, mice were treated with or without antibiotics. Analysis of intestinal microbiota was performed by metagenomic analysis targeting 16S rRNA. Lymphocyte subsets of splenocytes were measured by flow cytometry. For functional analysis of T cells, splenocytes were stimulated with concanavalin (Con A), and cytokine gene expression was measured by real-time polymerase chain reaction. Firmicutes were predominant in the control group, whereas Bacteroidetes predominated in the antibiotic-treated group, as determined by metagenomic analysis. The diversity of the microbiota decreased in the antibiotic-treated group. Analysis of lymphocyte subsets showed that CD3+ cells decreased, whereas CD19+ cells increased in the antibiotic-treated group. All cytokine genes in splenocytes treated with Con A were downregulated in the antibiotic-treated group; in particular, genes encoding interferon-γ, interleukin (IL)-6, and IL-13 significantly decreased. Taken together, these results revealed that changes in the composition of the intestinal microbiota by antibiotic treatment influenced the population of lymphocytes in splenocytes and affected the immune response.
AbstractList The composition of the intestinal microbiota is related to the health and immune function of the host. Administration of antibiotics affects the composition of the intestinal microbiota. However, the effects of immune function on the composition of the intestinal microbiota are still unclear. In this study, we investigated the lymphocyte composition and determined the relationships between lymphocyte function and the intestinal microbiota following antibiotic treatment in mice. To change the composition of the intestinal microbiota, mice were treated with or without antibiotics. Analysis of intestinal microbiota was performed by metagenomic analysis targeting 16S rRNA. Lymphocyte subsets of splenocytes were measured by flow cytometry. For functional analysis of T cells, splenocytes were stimulated with concanavalin (Con A), and cytokine gene expression was measured by real-time polymerase chain reaction. Firmicutes were predominant in the control group, whereas Bacteroidetes predominated in the antibiotic-treated group, as determined by metagenomic analysis. The diversity of the microbiota decreased in the antibiotic-treated group. Analysis of lymphocyte subsets showed that CD3 cells decreased, whereas CD19 cells increased in the antibiotic-treated group. All cytokine genes in splenocytes treated with Con A were downregulated in the antibiotic-treated group; in particular, genes encoding interferon-γ, interleukin (IL)-6, and IL-13 significantly decreased. Taken together, these results revealed that changes in the composition of the intestinal microbiota by antibiotic treatment influenced the population of lymphocytes in splenocytes and affected the immune response.
The composition of the intestinal microbiota is related to the health and immune function of the host. Administration of antibiotics affects the composition of the intestinal microbiota. However, the effects of immune function on the composition of the intestinal microbiota are still unclear. In this study, we investigated the lymphocyte composition and determined the relationships between lymphocyte function and the intestinal microbiota following antibiotic treatment in mice. To change the composition of the intestinal microbiota, mice were treated with or without antibiotics. Analysis of intestinal microbiota was performed by metagenomic analysis targeting 16S rRNA. Lymphocyte subsets of splenocytes were measured by flow cytometry. For functional analysis of T cells, splenocytes were stimulated with concanavalin (Con A), and cytokine gene expression was measured by real-time polymerase chain reaction. Firmicutes were predominant in the control group, whereas Bacteroidetes predominated in the antibiotic-treated group, as determined by metagenomic analysis. The diversity of the microbiota decreased in the antibiotic-treated group. Analysis of lymphocyte subsets showed that CD3 + cells decreased, whereas CD19 + cells increased in the antibiotic-treated group. All cytokine genes in splenocytes treated with Con A were downregulated in the antibiotic-treated group; in particular, genes encoding interferon-γ, interleukin (IL)-6, and IL-13 significantly decreased. Taken together, these results revealed that changes in the composition of the intestinal microbiota by antibiotic treatment influenced the population of lymphocytes in splenocytes and affected the immune response.
The composition of the intestinal microbiota is related to the health and immune function of the host. Administration of antibiotics affects the composition of the intestinal microbiota. However, the effects of immune function on the composition of the intestinal microbiota are still unclear. In this study, we investigated the lymphocyte composition and determined the relationships between lymphocyte function and the intestinal microbiota following antibiotic treatment in mice. To change the composition of the intestinal microbiota, mice were treated with or without antibiotics. Analysis of intestinal microbiota was performed by metagenomic analysis targeting 16S rRNA. Lymphocyte subsets of splenocytes were measured by flow cytometry. For functional analysis of T cells, splenocytes were stimulated with concanavalin (Con A), and cytokine gene expression was measured by real-time polymerase chain reaction. Firmicutes were predominant in the control group, whereas Bacteroidetes predominated in the antibiotic-treated group, as determined by metagenomic analysis. The diversity of the microbiota decreased in the antibiotic-treated group. Analysis of lymphocyte subsets showed that CD3+ cells decreased, whereas CD19+ cells increased in the antibiotic-treated group. All cytokine genes in splenocytes treated with Con A were downregulated in the antibiotic-treated group; in particular, genes encoding interferon-γ, interleukin (IL)-6, and IL-13 significantly decreased. Taken together, these results revealed that changes in the composition of the intestinal microbiota by antibiotic treatment influenced the population of lymphocytes in splenocytes and affected the immune response.The composition of the intestinal microbiota is related to the health and immune function of the host. Administration of antibiotics affects the composition of the intestinal microbiota. However, the effects of immune function on the composition of the intestinal microbiota are still unclear. In this study, we investigated the lymphocyte composition and determined the relationships between lymphocyte function and the intestinal microbiota following antibiotic treatment in mice. To change the composition of the intestinal microbiota, mice were treated with or without antibiotics. Analysis of intestinal microbiota was performed by metagenomic analysis targeting 16S rRNA. Lymphocyte subsets of splenocytes were measured by flow cytometry. For functional analysis of T cells, splenocytes were stimulated with concanavalin (Con A), and cytokine gene expression was measured by real-time polymerase chain reaction. Firmicutes were predominant in the control group, whereas Bacteroidetes predominated in the antibiotic-treated group, as determined by metagenomic analysis. The diversity of the microbiota decreased in the antibiotic-treated group. Analysis of lymphocyte subsets showed that CD3+ cells decreased, whereas CD19+ cells increased in the antibiotic-treated group. All cytokine genes in splenocytes treated with Con A were downregulated in the antibiotic-treated group; in particular, genes encoding interferon-γ, interleukin (IL)-6, and IL-13 significantly decreased. Taken together, these results revealed that changes in the composition of the intestinal microbiota by antibiotic treatment influenced the population of lymphocytes in splenocytes and affected the immune response.
The composition of the intestinal microbiota is related to the health and immune function of the host. Administration of antibiotics affects the composition of the intestinal microbiota. However, the effects of immune function on the composition of the intestinal microbiota are still unclear. In this study, we investigated the lymphocyte composition and determined the relationships between lymphocyte function and the intestinal microbiota following antibiotic treatment in mice. To change the composition of the intestinal microbiota, mice were treated with or without antibiotics. Analysis of intestinal microbiota was performed by metagenomic analysis targeting 16S rRNA. Lymphocyte subsets of splenocytes were measured by flow cytometry. For functional analysis of T cells, splenocytes were stimulated with concanavalin (Con A), and cytokine gene expression was measured by real-time polymerase chain reaction. Firmicutes were predominant in the control group, whereas Bacteroidetes predominated in the antibiotic-treated group, as determined by metagenomic analysis. The diversity of the microbiota decreased in the antibiotic-treated group. Analysis of lymphocyte subsets showed that CD3+ cells decreased, whereas CD19+ cells increased in the antibiotic-treated group. All cytokine genes in splenocytes treated with Con A were downregulated in the antibiotic-treated group; in particular, genes encoding interferon-γ, interleukin (IL)-6, and IL-13 significantly decreased. Taken together, these results revealed that changes in the composition of the intestinal microbiota by antibiotic treatment influenced the population of lymphocytes in splenocytes and affected the immune response.
Author HAGIWARA, Katsuro
KATO-MORI, Yuko
KISHIDA, Shigefumi
Author_xml – sequence: 1
  fullname: KISHIDA, Shigefumi
  organization: School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501 Japan
– sequence: 2
  fullname: KATO-MORI, Yuko
  organization: School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501 Japan
– sequence: 3
  fullname: HAGIWARA, Katsuro
  organization: School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501 Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29415902$$D View this record in MEDLINE/PubMed
BookMark eNp1kctv1DAQxi1URLeFG2cUiQsHUvyKHxekUvGoVAkOcLYcZ7LrVWIX26nEf4-jXVZQiYvHmvnNePx9F-gsxAAIvST4ilBN3-0f5nxFZIu56p6gDWFctpIzfYY2WBPRStrhc3SR8x5jSrjQz9A51Zx0GtMN-nYbxmmB4KCJY-N2NmwhNz40ZQc1FMjFBzs1s3cpjlNMtonH4jwvAZpxCa74mqs9FYLn6OlopwwvjvES_fj08fvNl_bu6-fbm-u71kksSstZx-XQg-4UGTqhHBmxGCwhUkk2ENFzBkJhYeuW9YaVHNUgdT9yXrM9Zpfo_WHu_dLPMDgIJdnJ3Cc_2_TLROvNv5Xgd2YbH0ynFFaU1QFvjgNS_LnUf5rZZwfTZAPEJRuitRaKUcwr-voRuo9LqrJkQzGlhHBGdKVe_b3RaZU_Ylfg7QGoUuacYDwhBJvVS7N6aYg0q5cVp49w54tdta7_8dP_mj4cmva52C2cXrCpeDfBAVbYsPU4Np2K1f5kILDfaca6Kw
CitedBy_id crossref_primary_10_1038_s41598_019_45913_6
crossref_primary_10_1155_2020_8638103
crossref_primary_10_3390_ani12182399
crossref_primary_10_1111_1348_0421_13014
crossref_primary_10_3389_fmicb_2022_959726
crossref_primary_10_1021_acs_jafc_9b00861
crossref_primary_10_3389_fmicb_2019_02415
crossref_primary_10_3389_fmicb_2023_1039287
crossref_primary_10_3390_ijms25041993
Cites_doi 10.1093/dnares/dsw002
10.1016/j.ebiom.2015.11.038
10.1038/nature09944
10.1053/j.gastro.2011.07.046
10.1271/bbb.90709
10.1073/pnas.0706625104
10.1016/j.immuni.2012.02.002
10.1067/mai.2003.105
10.1126/science.1110591
10.1073/pnas.1005963107
10.1067/mai.2001.111142
10.1016/j.clim.2016.10.009
10.1111/j.1398-9995.2007.01462.x
10.1038/ncomms8320
10.1128/jb.176.1.1-6.1994
10.1016/j.jaci.2016.03.041
10.1073/pnas.1019378108
10.1073/pnas.1412008111
10.3389/fimmu.2017.00397
10.1038/nature11053
10.1073/pnas.0901529106
10.4049/jimmunol.136.7.2348
10.1016/j.celrep.2015.02.049
10.1016/j.anai.2017.05.013
10.1067/mai.2001.118130
ContentType Journal Article
Copyright 2018 by the Japanese Society of Veterinary Science
Copyright Japan Science and Technology Agency Mar 2018
2018 The Japanese Society of Veterinary Science 2018
Copyright_xml – notice: 2018 by the Japanese Society of Veterinary Science
– notice: Copyright Japan Science and Technology Agency Mar 2018
– notice: 2018 The Japanese Society of Veterinary Science 2018
DBID AAYXX
CITATION
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
DOI 10.1292/jvms.17-0485
DatabaseName CrossRef
PubMed
Chemoreception Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
EISSN 1347-7439
EndPage 446
ExternalDocumentID PMC5880823
29415902
10_1292_jvms_17_0485
article_jvms_80_3_80_17_0485_article_char_en
Genre Journal Article
GroupedDBID 29L
2WC
53G
5GY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
HYE
JSF
JSH
KQ8
M48
M~E
N5S
OK1
P2P
RJT
RNS
RPM
RYR
RZJ
TKC
TR2
VH1
XSB
AAYXX
B.T
CITATION
OVT
PGMZT
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
ID FETCH-LOGICAL-c706t-43547dbe9581d568c1f06da117873d16b43e6806a9023e6087f8d79bf44806b03
IEDL.DBID M48
ISSN 0916-7250
1347-7439
IngestDate Thu Aug 21 18:31:44 EDT 2025
Fri Jul 11 07:23:06 EDT 2025
Mon Jun 30 11:07:15 EDT 2025
Wed Feb 19 02:43:46 EST 2025
Tue Jul 01 04:14:33 EDT 2025
Thu Apr 24 23:01:21 EDT 2025
Wed Apr 05 08:57:02 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords cytokine
intestinal microbiota
metagenomics analysis
immune response
T cell
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c706t-43547dbe9581d568c1f06da117873d16b43e6806a9023e6087f8d79bf44806b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.17-0485
PMID 29415902
PQID 2022114319
PQPubID 2028964
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5880823
proquest_miscellaneous_1999683204
proquest_journals_2022114319
pubmed_primary_29415902
crossref_primary_10_1292_jvms_17_0485
crossref_citationtrail_10_1292_jvms_17_0485
jstage_primary_article_jvms_80_3_80_17_0485_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Journal of Veterinary Medical Science
PublicationTitleAlternate J. Vet. Med. Sci.
PublicationYear 2018
Publisher JAPANESE SOCIETY OF VETERINARY SCIENCE
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Publisher_xml – name: JAPANESE SOCIETY OF VETERINARY SCIENCE
– name: Japan Science and Technology Agency
– name: The Japanese Society of Veterinary Science
References 2. Balzola, F., Bernstein, C., Ho, G. T. and Lees, C. 2010. A human gut microbial gene catalogue established by metagenomic sequencing Commentary. Inflamm. Bowel Dis. Monitor. 11: 28.
10. Frank, D. N., St Amand, A. L., Feldman, R. A., Boedeker, E. C., Harpaz, N. and Pace, N. R. 2007. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. U.S.A. 104: 13780–13785.
7. Diesner, S. C., Bergmayr, C., Pfitzner, B., Assmann, V., Krishnamurthy, D., Starkl, P., Endesfelder, D., Rothballer, M., Welzl, G., Rattei, T., Eiwegger, T., Szépfalusi, Z., Fehrenbach, H., Jensen-Jarolim, E., Hartmann, A., Pali-Schöll, I. and Untersmayr, E. 2016. A distinct microbiota composition is associated with protection from food allergy in an oral mouse immunization model. Clin. Immunol. 173: 10–18.
19. Nishijima, S., Suda, W., Oshima, K., Kim, S. W., Hirose, Y., Morita, H. and Hattori, M. 2016. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res. 23: 125–133.
23. Stefka, A. T., Feehley, T., Tripathi, P., Qiu, J., McCoy, K., Mazmanian, S. K., Tjota, M. Y., Seo, G. Y., Cao, S., Theriault, B. R., Antonopoulos, D. A., Zhou, L., Chang, E. B., Fu, Y. X. and Nagler, C. R. 2014. Commensal bacteria protect against food allergen sensitization. Proc. Natl. Acad. Sci. U.S.A. 111: 13145–13150.
15. Islam, K. B. M. S., Fukiya, S., Hagio, M., Fujii, N., Ishizuka, S., Ooka, T., Ogura, Y., Hayashi, T. and Yokota, A. 2011. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141: 1773–1781.
28. Yatunennko, T., Ray, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., Magris, M., Hidalgo, G., Baldassano, R. N., Anokhin, A. P., Heath, A. C., Warner, B., Reeder, J., Kuczynski, J., Caporaso, J. G., Lozupone, C. A., Lauber, C., Clemente, J. C., Knights, D., Knight, R. and Gordon, J. I. 2012. Human gut microbiome viewed across age and geography. Nature 486: 222–227.
13. Hua, X., Goedert, J. J., Pu, A., Yu, G. and Shi, J. 2015. Allergy associations with the adult fecal microbiota: Analysis of the American Gut Project. EBioMedicine 3: 172–179.
3. Bamola, V. D., Ghosh, A., Kapardar, R. K., Lal, B., Cheema, S., Sarma, P. and Chaudhry, R. 2017. Gut microbial diversity in health and disease: experience of healthy Indian subjects, and colon carcinoma and inflammatory bowel disease patients. Microb. Ecol. Health Dis. 28: 1322447.
12. Harada, Y., Tanaka, S., Motomura, Y., Harada, Y., Ohno, S., Ohno, S., Yanagi, Y., Inoue, H. and Kubo, M. 2012. The 3′ enhancer CNS2 is a critical regulator of interleukin-4-mediated humoral immunity in follicular helper T cells. Immunity 36: 188–200.
20. Olsen, G. J., Woese, C. R. and Overbeek, R. 1994. The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol. 176: 1–6.
16. Leclercq, S., Mian, F. M., Stanisz, A. M., Bindels, L. B., Cambier, E., Ben-Amram, H., Koren, O., Forsythe, P. and Bienenstock, J. 2017. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat. Commun. 8: 15062.
25. Thorburn, A. N., McKenzie, C. I., Shen, S., Stanley, D., Macia, L., Mason, L. J., Roberts, L. K., Wong, C. H., Shim, R., Robert, R., Chevalier, N., Tan, J. K., Mariño, E., Moore, R. J., Wong, L., McConville, M. J., Tull, D. L., Wood, L. G., Murphy, V. E., Mattes, J., Gibson, P. G. and Mackay, C. R. 2015. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6: 7320.
8. Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E. and Relman, D. A. 2005. Diversity of the human intestinal microbial flora. Science 308: 1635–1638.
26. Watanabe, J., Fujiwara, R., Sasajima, N., Ito, S. and Sonoyama, K. 2010. Administration of antibiotics during infancy promoted the development of atopic dermatitis-like skin lesions in NC/Nga mice. Biosci. Biotechnol. Biochem. 74: 358–363.
27. Watanabe, S., Narisawa, Y., Arase, S., Okamatsu, H., Ikenaga, T., Tajiri, Y. and Kumemura, M. 2003. Differences in fecal microflora between patients with atopic dermatitis and healthy control subjects. J. Allergy Clin. Immunol. 111: 587–591.
22. Penders, J., Stobberingh, E. E., van den Brandt, P. A. and Thijs, C. 2007. The role of the intestinal microbiota in the development of atopic disorders. Allergy 62: 1223–1236.
21. Oyama, N., Sudo, N., Sogawa, H. and Kubo, C. 2001. Antibiotic use during infancy promotes a shift in the T(H)1/T(H)2 balance toward T(H)2-dominant immunity in mice. J. Allergy Clin. Immunol. 107: 153–159.
5. Bunyavanich, S., Shen, N., Grishin, A., Wood, R., Burks, W., Dawson, P., Jones, S. M., Leung, D. Y. M., Sampson, H., Sicherer, S. and Clemente, J. C. 2016. Early-life gut microbiome composition and milk allergy resolution. J. Allergy Clin. Immunol. 138: 1122–1130.
1. Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J. M., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., Kleerebezem, M., Kurokawa, K., Leclerc, M., Levenez, F., Manichanh, C., Nielsen, H. B., Nielsen, T., Pons, N., Poulain, J., Qin, J., Sicheritz-Ponten, T., Tims, S., Torrents, D., Ugarte, E., Zoetendal, E. G., Wang, J., Guarner, F., Pedersen, O., de Vos, W. M., Brunak, S., Doré, J., Antolín, M., Artiguenave, F., Blottiere, H. M., Almeida, M., Brechot, C., Cara, C., Chervaux, C., Cultrone, A., Delorme, C., Denariaz, G., Dervyn, R., Foerstner, K. U., Friss, C., van de Guchte, M., Guedon, E., Haimet, F., Huber, W., van Hylckama-Vlieg, J., Jamet, A., Juste, C., Kaci, G., Knol, J., Lakhdari, O., Layec, S., Le Roux, K., Maguin, E., Mérieux, A., Melo Minardi, R., M’rini, C., Muller, J., Oozeer, R., Parkhill, J., Renault, P., Rescigno, M., Sanchez, N., Sunagawa, S., Torrejon, A., Turner, K., Vandemeulebrouck, G., Varela, E., Winogradsky, Y., Zeller, G., Weissenbach, J., Ehrlich, S. D., Bork, P., MetaHIT Consortium. 2011. Enterotypes of the human gut microbiome. Nature 473: 174–180.
17. Mahowald, M. A., Rey, F. E., Seedorf, H., Turnbaugh, P. J., Fulton, R. S., Wollam, A., Shah, N., Wang, C., Magrini, V., Wilson, R. K., Cantarel, B. L., Coutinho, P. M., Henrissat, B., Crock, L. W., Russell, A., Verberkmoes, N. C., Hettich, R. L. and Gordon, J. I. 2009. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc. Natl. Acad. Sci. U.S.A. 106: 5859–5864.
11. Hanada, K., Yang, L., Narita, M., Saito, H. and Ohya, Y. 2017. Influence of antibiotic use in early childhood on asthma and allergic diseases at age 5. Ann. Allergy Asthma Immunol. 119: 54–58.
24. Thompson, J. A., Oliveira, R. A., Djukovic, A., Ubeda, C. and Xavier, K. B. 2015. Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Reports 10: 1861–1871.
4. Björkstén, B., Sepp, E., Julge, K., Voor, T. and Mikelsaar, M. 2001. Allergy development and the intestinal microflora during the first year of life. J. Allergy Clin. Immunol. 108: 516–520.
9. Ekmekciu, I., von Klitzing, E., Fiebiger, U., Escher, U., Neumann, C., Bacher, P., Scheffold, A., Kühl, A. A., Bereswill, S. and Heimesaat, M. M. 2017. Immune responses to broad-spectrum antibiotic treatment and fecal microbiota transplantation in mice. Front. Immunol. 8: 397.
14. Ichinohe, T., Pang, I. K., Kumamoto, Y., Peaper, D. R., Ho, J. H., Murray, T. S. and Iwasaki, A. 2011. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. U.S.A. 108: 5354–5359.
18. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. and Coffman, R. L. 1986. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136: 2348–2357.
6. De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., Collini, S., Pieraccini, G. and Lionetti, P. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U.S.A. 107: 14691–14696.
22
23
24
25
26
27
28
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 25. Thorburn, A. N., McKenzie, C. I., Shen, S., Stanley, D., Macia, L., Mason, L. J., Roberts, L. K., Wong, C. H., Shim, R., Robert, R., Chevalier, N., Tan, J. K., Mariño, E., Moore, R. J., Wong, L., McConville, M. J., Tull, D. L., Wood, L. G., Murphy, V. E., Mattes, J., Gibson, P. G. and Mackay, C. R. 2015. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6: 7320.
– reference: 14. Ichinohe, T., Pang, I. K., Kumamoto, Y., Peaper, D. R., Ho, J. H., Murray, T. S. and Iwasaki, A. 2011. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. U.S.A. 108: 5354–5359.
– reference: 21. Oyama, N., Sudo, N., Sogawa, H. and Kubo, C. 2001. Antibiotic use during infancy promotes a shift in the T(H)1/T(H)2 balance toward T(H)2-dominant immunity in mice. J. Allergy Clin. Immunol. 107: 153–159.
– reference: 28. Yatunennko, T., Ray, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., Magris, M., Hidalgo, G., Baldassano, R. N., Anokhin, A. P., Heath, A. C., Warner, B., Reeder, J., Kuczynski, J., Caporaso, J. G., Lozupone, C. A., Lauber, C., Clemente, J. C., Knights, D., Knight, R. and Gordon, J. I. 2012. Human gut microbiome viewed across age and geography. Nature 486: 222–227.
– reference: 22. Penders, J., Stobberingh, E. E., van den Brandt, P. A. and Thijs, C. 2007. The role of the intestinal microbiota in the development of atopic disorders. Allergy 62: 1223–1236.
– reference: 12. Harada, Y., Tanaka, S., Motomura, Y., Harada, Y., Ohno, S., Ohno, S., Yanagi, Y., Inoue, H. and Kubo, M. 2012. The 3′ enhancer CNS2 is a critical regulator of interleukin-4-mediated humoral immunity in follicular helper T cells. Immunity 36: 188–200.
– reference: 4. Björkstén, B., Sepp, E., Julge, K., Voor, T. and Mikelsaar, M. 2001. Allergy development and the intestinal microflora during the first year of life. J. Allergy Clin. Immunol. 108: 516–520.
– reference: 9. Ekmekciu, I., von Klitzing, E., Fiebiger, U., Escher, U., Neumann, C., Bacher, P., Scheffold, A., Kühl, A. A., Bereswill, S. and Heimesaat, M. M. 2017. Immune responses to broad-spectrum antibiotic treatment and fecal microbiota transplantation in mice. Front. Immunol. 8: 397.
– reference: 13. Hua, X., Goedert, J. J., Pu, A., Yu, G. and Shi, J. 2015. Allergy associations with the adult fecal microbiota: Analysis of the American Gut Project. EBioMedicine 3: 172–179.
– reference: 15. Islam, K. B. M. S., Fukiya, S., Hagio, M., Fujii, N., Ishizuka, S., Ooka, T., Ogura, Y., Hayashi, T. and Yokota, A. 2011. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141: 1773–1781.
– reference: 1. Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J. M., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., Kleerebezem, M., Kurokawa, K., Leclerc, M., Levenez, F., Manichanh, C., Nielsen, H. B., Nielsen, T., Pons, N., Poulain, J., Qin, J., Sicheritz-Ponten, T., Tims, S., Torrents, D., Ugarte, E., Zoetendal, E. G., Wang, J., Guarner, F., Pedersen, O., de Vos, W. M., Brunak, S., Doré, J., Antolín, M., Artiguenave, F., Blottiere, H. M., Almeida, M., Brechot, C., Cara, C., Chervaux, C., Cultrone, A., Delorme, C., Denariaz, G., Dervyn, R., Foerstner, K. U., Friss, C., van de Guchte, M., Guedon, E., Haimet, F., Huber, W., van Hylckama-Vlieg, J., Jamet, A., Juste, C., Kaci, G., Knol, J., Lakhdari, O., Layec, S., Le Roux, K., Maguin, E., Mérieux, A., Melo Minardi, R., M’rini, C., Muller, J., Oozeer, R., Parkhill, J., Renault, P., Rescigno, M., Sanchez, N., Sunagawa, S., Torrejon, A., Turner, K., Vandemeulebrouck, G., Varela, E., Winogradsky, Y., Zeller, G., Weissenbach, J., Ehrlich, S. D., Bork, P., MetaHIT Consortium. 2011. Enterotypes of the human gut microbiome. Nature 473: 174–180.
– reference: 11. Hanada, K., Yang, L., Narita, M., Saito, H. and Ohya, Y. 2017. Influence of antibiotic use in early childhood on asthma and allergic diseases at age 5. Ann. Allergy Asthma Immunol. 119: 54–58.
– reference: 5. Bunyavanich, S., Shen, N., Grishin, A., Wood, R., Burks, W., Dawson, P., Jones, S. M., Leung, D. Y. M., Sampson, H., Sicherer, S. and Clemente, J. C. 2016. Early-life gut microbiome composition and milk allergy resolution. J. Allergy Clin. Immunol. 138: 1122–1130.
– reference: 10. Frank, D. N., St Amand, A. L., Feldman, R. A., Boedeker, E. C., Harpaz, N. and Pace, N. R. 2007. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. U.S.A. 104: 13780–13785.
– reference: 23. Stefka, A. T., Feehley, T., Tripathi, P., Qiu, J., McCoy, K., Mazmanian, S. K., Tjota, M. Y., Seo, G. Y., Cao, S., Theriault, B. R., Antonopoulos, D. A., Zhou, L., Chang, E. B., Fu, Y. X. and Nagler, C. R. 2014. Commensal bacteria protect against food allergen sensitization. Proc. Natl. Acad. Sci. U.S.A. 111: 13145–13150.
– reference: 6. De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., Collini, S., Pieraccini, G. and Lionetti, P. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U.S.A. 107: 14691–14696.
– reference: 27. Watanabe, S., Narisawa, Y., Arase, S., Okamatsu, H., Ikenaga, T., Tajiri, Y. and Kumemura, M. 2003. Differences in fecal microflora between patients with atopic dermatitis and healthy control subjects. J. Allergy Clin. Immunol. 111: 587–591.
– reference: 19. Nishijima, S., Suda, W., Oshima, K., Kim, S. W., Hirose, Y., Morita, H. and Hattori, M. 2016. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res. 23: 125–133.
– reference: 16. Leclercq, S., Mian, F. M., Stanisz, A. M., Bindels, L. B., Cambier, E., Ben-Amram, H., Koren, O., Forsythe, P. and Bienenstock, J. 2017. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat. Commun. 8: 15062.
– reference: 18. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. and Coffman, R. L. 1986. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136: 2348–2357.
– reference: 8. Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E. and Relman, D. A. 2005. Diversity of the human intestinal microbial flora. Science 308: 1635–1638.
– reference: 24. Thompson, J. A., Oliveira, R. A., Djukovic, A., Ubeda, C. and Xavier, K. B. 2015. Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Reports 10: 1861–1871.
– reference: 2. Balzola, F., Bernstein, C., Ho, G. T. and Lees, C. 2010. A human gut microbial gene catalogue established by metagenomic sequencing Commentary. Inflamm. Bowel Dis. Monitor. 11: 28.
– reference: 17. Mahowald, M. A., Rey, F. E., Seedorf, H., Turnbaugh, P. J., Fulton, R. S., Wollam, A., Shah, N., Wang, C., Magrini, V., Wilson, R. K., Cantarel, B. L., Coutinho, P. M., Henrissat, B., Crock, L. W., Russell, A., Verberkmoes, N. C., Hettich, R. L. and Gordon, J. I. 2009. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc. Natl. Acad. Sci. U.S.A. 106: 5859–5864.
– reference: 26. Watanabe, J., Fujiwara, R., Sasajima, N., Ito, S. and Sonoyama, K. 2010. Administration of antibiotics during infancy promoted the development of atopic dermatitis-like skin lesions in NC/Nga mice. Biosci. Biotechnol. Biochem. 74: 358–363.
– reference: 3. Bamola, V. D., Ghosh, A., Kapardar, R. K., Lal, B., Cheema, S., Sarma, P. and Chaudhry, R. 2017. Gut microbial diversity in health and disease: experience of healthy Indian subjects, and colon carcinoma and inflammatory bowel disease patients. Microb. Ecol. Health Dis. 28: 1322447.
– reference: 20. Olsen, G. J., Woese, C. R. and Overbeek, R. 1994. The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol. 176: 1–6.
– reference: 7. Diesner, S. C., Bergmayr, C., Pfitzner, B., Assmann, V., Krishnamurthy, D., Starkl, P., Endesfelder, D., Rothballer, M., Welzl, G., Rattei, T., Eiwegger, T., Szépfalusi, Z., Fehrenbach, H., Jensen-Jarolim, E., Hartmann, A., Pali-Schöll, I. and Untersmayr, E. 2016. A distinct microbiota composition is associated with protection from food allergy in an oral mouse immunization model. Clin. Immunol. 173: 10–18.
– ident: 2
– ident: 19
  doi: 10.1093/dnares/dsw002
– ident: 13
  doi: 10.1016/j.ebiom.2015.11.038
– ident: 1
  doi: 10.1038/nature09944
– ident: 15
  doi: 10.1053/j.gastro.2011.07.046
– ident: 26
  doi: 10.1271/bbb.90709
– ident: 10
  doi: 10.1073/pnas.0706625104
– ident: 12
  doi: 10.1016/j.immuni.2012.02.002
– ident: 27
  doi: 10.1067/mai.2003.105
– ident: 8
  doi: 10.1126/science.1110591
– ident: 16
– ident: 6
  doi: 10.1073/pnas.1005963107
– ident: 21
  doi: 10.1067/mai.2001.111142
– ident: 7
  doi: 10.1016/j.clim.2016.10.009
– ident: 22
  doi: 10.1111/j.1398-9995.2007.01462.x
– ident: 25
  doi: 10.1038/ncomms8320
– ident: 20
  doi: 10.1128/jb.176.1.1-6.1994
– ident: 3
– ident: 5
  doi: 10.1016/j.jaci.2016.03.041
– ident: 14
  doi: 10.1073/pnas.1019378108
– ident: 23
  doi: 10.1073/pnas.1412008111
– ident: 9
  doi: 10.3389/fimmu.2017.00397
– ident: 28
  doi: 10.1038/nature11053
– ident: 17
  doi: 10.1073/pnas.0901529106
– ident: 18
  doi: 10.4049/jimmunol.136.7.2348
– ident: 24
  doi: 10.1016/j.celrep.2015.02.049
– ident: 11
  doi: 10.1016/j.anai.2017.05.013
– ident: 4
  doi: 10.1067/mai.2001.118130
SSID ssj0021469
Score 2.2138622
Snippet The composition of the intestinal microbiota is related to the health and immune function of the host. Administration of antibiotics affects the composition of...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 440
SubjectTerms Antibiotics
CD19 antigen
CD3 antigen
cytokine
Cytokines
Flow cytometry
Gene expression
immune response
Immunology
Interferon
Interleukin 13
intestinal microbiota
Intestinal microflora
Intestine
Lymphocytes
Lymphocytes T
metagenomics analysis
Microbiota
Polymerase chain reaction
rRNA 16S
Splenocytes
T cell
Title Influence of changes in the intestinal microflora on the immune function in mice
URI https://www.jstage.jst.go.jp/article/jvms/80/3/80_17-0485/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/29415902
https://www.proquest.com/docview/2022114319
https://www.proquest.com/docview/1999683204
https://pubmed.ncbi.nlm.nih.gov/PMC5880823
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Veterinary Medical Science, 2018, Vol.80(3), pp.440-446
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7RhUMvqAVKQylyJThVAefhR1RVVVUVQdEiDt2KW5TENl0EWWB3q_LvmUmcqIuoxCUXTx6a8cx8X2zPAOxqLrQzkQnjkpdhKjQPM125UCgqJ66NNJZWdIen8miU_jgX50vQdRv1Cpw-Se2on9To7mr_7-39F3T4z01thCw-uPxzPd3HYIuTUbyAZcxJinoZDNN-PYG6V2cN9UpVSBDcb4F_fPdCclq5RHx2YZ-Cno93UP6Tkg5fwarHkuxra_zXsGTrNVj7RRtcmlO2bOgXztfh7LhrRsImjrWnfadsXDPEf4xKRqCn07OuaX-eQw5fsIkfpAMkllH-IxvSPdTBfgNGh99_fjsKfTOFsFJczkKERakypc0EIlQhdRU5Lk0RReixiYlkmSZWai6LDLO4lVwrp43KSof8jcuSJ29gUE9q-xaY4LE1hUoU1U4vXKxN4ZDGWVcal2ZVHMDHTot55SuNU8OLq5wYB-o8J53nkcpJ5wHs9dI3bYWN_8h9ag3SS3nfaqU0zxO6eOl-kA6vYQQIYLuzYt5NsjxGAIN8EKNQAB_6YfQvWjQpajuZ49uJEWLY42kAm63R-w-IM4Q_qK8A1MJ06AWodvfiSD3-3dTwFhg3dZxsPeO97-AlojTd_vfZhsHsbm7fIxKalTvIAY5Pdpqp_gBlTgrW
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+changes+in+the+intestinal+microflora+on+the+immune+function+in+mice&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=Kishida%2C+Shigefumi&rft.au=Kato-Mori%2C+Yuko&rft.au=Hagiwara%2C+Katsuro&rft.date=2018&rft.issn=1347-7439&rft.eissn=1347-7439&rft.volume=80&rft.issue=3&rft.spage=440&rft_id=info:doi/10.1292%2Fjvms.17-0485&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon