Influence of changes in the intestinal microflora on the immune function in mice
The composition of the intestinal microbiota is related to the health and immune function of the host. Administration of antibiotics affects the composition of the intestinal microbiota. However, the effects of immune function on the composition of the intestinal microbiota are still unclear. In thi...
Saved in:
Published in | Journal of Veterinary Medical Science Vol. 80; no. 3; pp. 440 - 446 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Japan
JAPANESE SOCIETY OF VETERINARY SCIENCE
2018
Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The composition of the intestinal microbiota is related to the health and immune function of the host. Administration of antibiotics affects the composition of the intestinal microbiota. However, the effects of immune function on the composition of the intestinal microbiota are still unclear. In this study, we investigated the lymphocyte composition and determined the relationships between lymphocyte function and the intestinal microbiota following antibiotic treatment in mice. To change the composition of the intestinal microbiota, mice were treated with or without antibiotics. Analysis of intestinal microbiota was performed by metagenomic analysis targeting 16S rRNA. Lymphocyte subsets of splenocytes were measured by flow cytometry. For functional analysis of T cells, splenocytes were stimulated with concanavalin (Con A), and cytokine gene expression was measured by real-time polymerase chain reaction. Firmicutes were predominant in the control group, whereas Bacteroidetes predominated in the antibiotic-treated group, as determined by metagenomic analysis. The diversity of the microbiota decreased in the antibiotic-treated group. Analysis of lymphocyte subsets showed that CD3+ cells decreased, whereas CD19+ cells increased in the antibiotic-treated group. All cytokine genes in splenocytes treated with Con A were downregulated in the antibiotic-treated group; in particular, genes encoding interferon-γ, interleukin (IL)-6, and IL-13 significantly decreased. Taken together, these results revealed that changes in the composition of the intestinal microbiota by antibiotic treatment influenced the population of lymphocytes in splenocytes and affected the immune response. |
---|---|
AbstractList | The composition of the intestinal microbiota is related to the health and immune function of the host. Administration of antibiotics affects the composition of the intestinal microbiota. However, the effects of immune function on the composition of the intestinal microbiota are still unclear. In this study, we investigated the lymphocyte composition and determined the relationships between lymphocyte function and the intestinal microbiota following antibiotic treatment in mice. To change the composition of the intestinal microbiota, mice were treated with or without antibiotics. Analysis of intestinal microbiota was performed by metagenomic analysis targeting 16S rRNA. Lymphocyte subsets of splenocytes were measured by flow cytometry. For functional analysis of T cells, splenocytes were stimulated with concanavalin (Con A), and cytokine gene expression was measured by real-time polymerase chain reaction. Firmicutes were predominant in the control group, whereas Bacteroidetes predominated in the antibiotic-treated group, as determined by metagenomic analysis. The diversity of the microbiota decreased in the antibiotic-treated group. Analysis of lymphocyte subsets showed that CD3
cells decreased, whereas CD19
cells increased in the antibiotic-treated group. All cytokine genes in splenocytes treated with Con A were downregulated in the antibiotic-treated group; in particular, genes encoding interferon-γ, interleukin (IL)-6, and IL-13 significantly decreased. Taken together, these results revealed that changes in the composition of the intestinal microbiota by antibiotic treatment influenced the population of lymphocytes in splenocytes and affected the immune response. The composition of the intestinal microbiota is related to the health and immune function of the host. Administration of antibiotics affects the composition of the intestinal microbiota. However, the effects of immune function on the composition of the intestinal microbiota are still unclear. In this study, we investigated the lymphocyte composition and determined the relationships between lymphocyte function and the intestinal microbiota following antibiotic treatment in mice. To change the composition of the intestinal microbiota, mice were treated with or without antibiotics. Analysis of intestinal microbiota was performed by metagenomic analysis targeting 16S rRNA. Lymphocyte subsets of splenocytes were measured by flow cytometry. For functional analysis of T cells, splenocytes were stimulated with concanavalin (Con A), and cytokine gene expression was measured by real-time polymerase chain reaction. Firmicutes were predominant in the control group, whereas Bacteroidetes predominated in the antibiotic-treated group, as determined by metagenomic analysis. The diversity of the microbiota decreased in the antibiotic-treated group. Analysis of lymphocyte subsets showed that CD3 + cells decreased, whereas CD19 + cells increased in the antibiotic-treated group. All cytokine genes in splenocytes treated with Con A were downregulated in the antibiotic-treated group; in particular, genes encoding interferon-γ, interleukin (IL)-6, and IL-13 significantly decreased. Taken together, these results revealed that changes in the composition of the intestinal microbiota by antibiotic treatment influenced the population of lymphocytes in splenocytes and affected the immune response. The composition of the intestinal microbiota is related to the health and immune function of the host. Administration of antibiotics affects the composition of the intestinal microbiota. However, the effects of immune function on the composition of the intestinal microbiota are still unclear. In this study, we investigated the lymphocyte composition and determined the relationships between lymphocyte function and the intestinal microbiota following antibiotic treatment in mice. To change the composition of the intestinal microbiota, mice were treated with or without antibiotics. Analysis of intestinal microbiota was performed by metagenomic analysis targeting 16S rRNA. Lymphocyte subsets of splenocytes were measured by flow cytometry. For functional analysis of T cells, splenocytes were stimulated with concanavalin (Con A), and cytokine gene expression was measured by real-time polymerase chain reaction. Firmicutes were predominant in the control group, whereas Bacteroidetes predominated in the antibiotic-treated group, as determined by metagenomic analysis. The diversity of the microbiota decreased in the antibiotic-treated group. Analysis of lymphocyte subsets showed that CD3+ cells decreased, whereas CD19+ cells increased in the antibiotic-treated group. All cytokine genes in splenocytes treated with Con A were downregulated in the antibiotic-treated group; in particular, genes encoding interferon-γ, interleukin (IL)-6, and IL-13 significantly decreased. Taken together, these results revealed that changes in the composition of the intestinal microbiota by antibiotic treatment influenced the population of lymphocytes in splenocytes and affected the immune response.The composition of the intestinal microbiota is related to the health and immune function of the host. Administration of antibiotics affects the composition of the intestinal microbiota. However, the effects of immune function on the composition of the intestinal microbiota are still unclear. In this study, we investigated the lymphocyte composition and determined the relationships between lymphocyte function and the intestinal microbiota following antibiotic treatment in mice. To change the composition of the intestinal microbiota, mice were treated with or without antibiotics. Analysis of intestinal microbiota was performed by metagenomic analysis targeting 16S rRNA. Lymphocyte subsets of splenocytes were measured by flow cytometry. For functional analysis of T cells, splenocytes were stimulated with concanavalin (Con A), and cytokine gene expression was measured by real-time polymerase chain reaction. Firmicutes were predominant in the control group, whereas Bacteroidetes predominated in the antibiotic-treated group, as determined by metagenomic analysis. The diversity of the microbiota decreased in the antibiotic-treated group. Analysis of lymphocyte subsets showed that CD3+ cells decreased, whereas CD19+ cells increased in the antibiotic-treated group. All cytokine genes in splenocytes treated with Con A were downregulated in the antibiotic-treated group; in particular, genes encoding interferon-γ, interleukin (IL)-6, and IL-13 significantly decreased. Taken together, these results revealed that changes in the composition of the intestinal microbiota by antibiotic treatment influenced the population of lymphocytes in splenocytes and affected the immune response. The composition of the intestinal microbiota is related to the health and immune function of the host. Administration of antibiotics affects the composition of the intestinal microbiota. However, the effects of immune function on the composition of the intestinal microbiota are still unclear. In this study, we investigated the lymphocyte composition and determined the relationships between lymphocyte function and the intestinal microbiota following antibiotic treatment in mice. To change the composition of the intestinal microbiota, mice were treated with or without antibiotics. Analysis of intestinal microbiota was performed by metagenomic analysis targeting 16S rRNA. Lymphocyte subsets of splenocytes were measured by flow cytometry. For functional analysis of T cells, splenocytes were stimulated with concanavalin (Con A), and cytokine gene expression was measured by real-time polymerase chain reaction. Firmicutes were predominant in the control group, whereas Bacteroidetes predominated in the antibiotic-treated group, as determined by metagenomic analysis. The diversity of the microbiota decreased in the antibiotic-treated group. Analysis of lymphocyte subsets showed that CD3+ cells decreased, whereas CD19+ cells increased in the antibiotic-treated group. All cytokine genes in splenocytes treated with Con A were downregulated in the antibiotic-treated group; in particular, genes encoding interferon-γ, interleukin (IL)-6, and IL-13 significantly decreased. Taken together, these results revealed that changes in the composition of the intestinal microbiota by antibiotic treatment influenced the population of lymphocytes in splenocytes and affected the immune response. |
Author | HAGIWARA, Katsuro KATO-MORI, Yuko KISHIDA, Shigefumi |
Author_xml | – sequence: 1 fullname: KISHIDA, Shigefumi organization: School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501 Japan – sequence: 2 fullname: KATO-MORI, Yuko organization: School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501 Japan – sequence: 3 fullname: HAGIWARA, Katsuro organization: School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501 Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29415902$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctv1DAQxi1URLeFG2cUiQsHUvyKHxekUvGoVAkOcLYcZ7LrVWIX26nEf4-jXVZQiYvHmvnNePx9F-gsxAAIvST4ilBN3-0f5nxFZIu56p6gDWFctpIzfYY2WBPRStrhc3SR8x5jSrjQz9A51Zx0GtMN-nYbxmmB4KCJY-N2NmwhNz40ZQc1FMjFBzs1s3cpjlNMtonH4jwvAZpxCa74mqs9FYLn6OlopwwvjvES_fj08fvNl_bu6-fbm-u71kksSstZx-XQg-4UGTqhHBmxGCwhUkk2ENFzBkJhYeuW9YaVHNUgdT9yXrM9Zpfo_WHu_dLPMDgIJdnJ3Cc_2_TLROvNv5Xgd2YbH0ynFFaU1QFvjgNS_LnUf5rZZwfTZAPEJRuitRaKUcwr-voRuo9LqrJkQzGlhHBGdKVe_b3RaZU_Ylfg7QGoUuacYDwhBJvVS7N6aYg0q5cVp49w54tdta7_8dP_mj4cmva52C2cXrCpeDfBAVbYsPU4Np2K1f5kILDfaca6Kw |
CitedBy_id | crossref_primary_10_1038_s41598_019_45913_6 crossref_primary_10_1155_2020_8638103 crossref_primary_10_3390_ani12182399 crossref_primary_10_1111_1348_0421_13014 crossref_primary_10_3389_fmicb_2022_959726 crossref_primary_10_1021_acs_jafc_9b00861 crossref_primary_10_3389_fmicb_2019_02415 crossref_primary_10_3389_fmicb_2023_1039287 crossref_primary_10_3390_ijms25041993 |
Cites_doi | 10.1093/dnares/dsw002 10.1016/j.ebiom.2015.11.038 10.1038/nature09944 10.1053/j.gastro.2011.07.046 10.1271/bbb.90709 10.1073/pnas.0706625104 10.1016/j.immuni.2012.02.002 10.1067/mai.2003.105 10.1126/science.1110591 10.1073/pnas.1005963107 10.1067/mai.2001.111142 10.1016/j.clim.2016.10.009 10.1111/j.1398-9995.2007.01462.x 10.1038/ncomms8320 10.1128/jb.176.1.1-6.1994 10.1016/j.jaci.2016.03.041 10.1073/pnas.1019378108 10.1073/pnas.1412008111 10.3389/fimmu.2017.00397 10.1038/nature11053 10.1073/pnas.0901529106 10.4049/jimmunol.136.7.2348 10.1016/j.celrep.2015.02.049 10.1016/j.anai.2017.05.013 10.1067/mai.2001.118130 |
ContentType | Journal Article |
Copyright | 2018 by the Japanese Society of Veterinary Science Copyright Japan Science and Technology Agency Mar 2018 2018 The Japanese Society of Veterinary Science 2018 |
Copyright_xml | – notice: 2018 by the Japanese Society of Veterinary Science – notice: Copyright Japan Science and Technology Agency Mar 2018 – notice: 2018 The Japanese Society of Veterinary Science 2018 |
DBID | AAYXX CITATION NPM 7QR 7U9 8FD FR3 H94 M7N P64 7X8 5PM |
DOI | 10.1292/jvms.17-0485 |
DatabaseName | CrossRef PubMed Chemoreception Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine |
EISSN | 1347-7439 |
EndPage | 446 |
ExternalDocumentID | PMC5880823 29415902 10_1292_jvms_17_0485 article_jvms_80_3_80_17_0485_article_char_en |
Genre | Journal Article |
GroupedDBID | 29L 2WC 53G 5GY ACGFO ACIWK ACPRK ADBBV ADRAZ AENEX AFRAH AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK DU5 E3Z EBS EJD HYE JSF JSH KQ8 M48 M~E N5S OK1 P2P RJT RNS RPM RYR RZJ TKC TR2 VH1 XSB AAYXX B.T CITATION OVT PGMZT NPM 7QR 7U9 8FD FR3 H94 M7N P64 7X8 5PM |
ID | FETCH-LOGICAL-c706t-43547dbe9581d568c1f06da117873d16b43e6806a9023e6087f8d79bf44806b03 |
IEDL.DBID | M48 |
ISSN | 0916-7250 1347-7439 |
IngestDate | Thu Aug 21 18:31:44 EDT 2025 Fri Jul 11 07:23:06 EDT 2025 Mon Jun 30 11:07:15 EDT 2025 Wed Feb 19 02:43:46 EST 2025 Tue Jul 01 04:14:33 EDT 2025 Thu Apr 24 23:01:21 EDT 2025 Wed Apr 05 08:57:02 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | cytokine intestinal microbiota metagenomics analysis immune response T cell |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c706t-43547dbe9581d568c1f06da117873d16b43e6806a9023e6087f8d79bf44806b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.17-0485 |
PMID | 29415902 |
PQID | 2022114319 |
PQPubID | 2028964 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5880823 proquest_miscellaneous_1999683204 proquest_journals_2022114319 pubmed_primary_29415902 crossref_primary_10_1292_jvms_17_0485 crossref_citationtrail_10_1292_jvms_17_0485 jstage_primary_article_jvms_80_3_80_17_0485_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Journal of Veterinary Medical Science |
PublicationTitleAlternate | J. Vet. Med. Sci. |
PublicationYear | 2018 |
Publisher | JAPANESE SOCIETY OF VETERINARY SCIENCE Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Publisher_xml | – name: JAPANESE SOCIETY OF VETERINARY SCIENCE – name: Japan Science and Technology Agency – name: The Japanese Society of Veterinary Science |
References | 2. Balzola, F., Bernstein, C., Ho, G. T. and Lees, C. 2010. A human gut microbial gene catalogue established by metagenomic sequencing Commentary. Inflamm. Bowel Dis. Monitor. 11: 28. 10. Frank, D. N., St Amand, A. L., Feldman, R. A., Boedeker, E. C., Harpaz, N. and Pace, N. R. 2007. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. U.S.A. 104: 13780–13785. 7. Diesner, S. C., Bergmayr, C., Pfitzner, B., Assmann, V., Krishnamurthy, D., Starkl, P., Endesfelder, D., Rothballer, M., Welzl, G., Rattei, T., Eiwegger, T., Szépfalusi, Z., Fehrenbach, H., Jensen-Jarolim, E., Hartmann, A., Pali-Schöll, I. and Untersmayr, E. 2016. A distinct microbiota composition is associated with protection from food allergy in an oral mouse immunization model. Clin. Immunol. 173: 10–18. 19. Nishijima, S., Suda, W., Oshima, K., Kim, S. W., Hirose, Y., Morita, H. and Hattori, M. 2016. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res. 23: 125–133. 23. Stefka, A. T., Feehley, T., Tripathi, P., Qiu, J., McCoy, K., Mazmanian, S. K., Tjota, M. Y., Seo, G. Y., Cao, S., Theriault, B. R., Antonopoulos, D. A., Zhou, L., Chang, E. B., Fu, Y. X. and Nagler, C. R. 2014. Commensal bacteria protect against food allergen sensitization. Proc. Natl. Acad. Sci. U.S.A. 111: 13145–13150. 15. Islam, K. B. M. S., Fukiya, S., Hagio, M., Fujii, N., Ishizuka, S., Ooka, T., Ogura, Y., Hayashi, T. and Yokota, A. 2011. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141: 1773–1781. 28. Yatunennko, T., Ray, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., Magris, M., Hidalgo, G., Baldassano, R. N., Anokhin, A. P., Heath, A. C., Warner, B., Reeder, J., Kuczynski, J., Caporaso, J. G., Lozupone, C. A., Lauber, C., Clemente, J. C., Knights, D., Knight, R. and Gordon, J. I. 2012. Human gut microbiome viewed across age and geography. Nature 486: 222–227. 13. Hua, X., Goedert, J. J., Pu, A., Yu, G. and Shi, J. 2015. Allergy associations with the adult fecal microbiota: Analysis of the American Gut Project. EBioMedicine 3: 172–179. 3. Bamola, V. D., Ghosh, A., Kapardar, R. K., Lal, B., Cheema, S., Sarma, P. and Chaudhry, R. 2017. Gut microbial diversity in health and disease: experience of healthy Indian subjects, and colon carcinoma and inflammatory bowel disease patients. Microb. Ecol. Health Dis. 28: 1322447. 12. Harada, Y., Tanaka, S., Motomura, Y., Harada, Y., Ohno, S., Ohno, S., Yanagi, Y., Inoue, H. and Kubo, M. 2012. The 3′ enhancer CNS2 is a critical regulator of interleukin-4-mediated humoral immunity in follicular helper T cells. Immunity 36: 188–200. 20. Olsen, G. J., Woese, C. R. and Overbeek, R. 1994. The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol. 176: 1–6. 16. Leclercq, S., Mian, F. M., Stanisz, A. M., Bindels, L. B., Cambier, E., Ben-Amram, H., Koren, O., Forsythe, P. and Bienenstock, J. 2017. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat. Commun. 8: 15062. 25. Thorburn, A. N., McKenzie, C. I., Shen, S., Stanley, D., Macia, L., Mason, L. J., Roberts, L. K., Wong, C. H., Shim, R., Robert, R., Chevalier, N., Tan, J. K., Mariño, E., Moore, R. J., Wong, L., McConville, M. J., Tull, D. L., Wood, L. G., Murphy, V. E., Mattes, J., Gibson, P. G. and Mackay, C. R. 2015. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6: 7320. 8. Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E. and Relman, D. A. 2005. Diversity of the human intestinal microbial flora. Science 308: 1635–1638. 26. Watanabe, J., Fujiwara, R., Sasajima, N., Ito, S. and Sonoyama, K. 2010. Administration of antibiotics during infancy promoted the development of atopic dermatitis-like skin lesions in NC/Nga mice. Biosci. Biotechnol. Biochem. 74: 358–363. 27. Watanabe, S., Narisawa, Y., Arase, S., Okamatsu, H., Ikenaga, T., Tajiri, Y. and Kumemura, M. 2003. Differences in fecal microflora between patients with atopic dermatitis and healthy control subjects. J. Allergy Clin. Immunol. 111: 587–591. 22. Penders, J., Stobberingh, E. E., van den Brandt, P. A. and Thijs, C. 2007. The role of the intestinal microbiota in the development of atopic disorders. Allergy 62: 1223–1236. 21. Oyama, N., Sudo, N., Sogawa, H. and Kubo, C. 2001. Antibiotic use during infancy promotes a shift in the T(H)1/T(H)2 balance toward T(H)2-dominant immunity in mice. J. Allergy Clin. Immunol. 107: 153–159. 5. Bunyavanich, S., Shen, N., Grishin, A., Wood, R., Burks, W., Dawson, P., Jones, S. M., Leung, D. Y. M., Sampson, H., Sicherer, S. and Clemente, J. C. 2016. Early-life gut microbiome composition and milk allergy resolution. J. Allergy Clin. Immunol. 138: 1122–1130. 1. Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J. M., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., Kleerebezem, M., Kurokawa, K., Leclerc, M., Levenez, F., Manichanh, C., Nielsen, H. B., Nielsen, T., Pons, N., Poulain, J., Qin, J., Sicheritz-Ponten, T., Tims, S., Torrents, D., Ugarte, E., Zoetendal, E. G., Wang, J., Guarner, F., Pedersen, O., de Vos, W. M., Brunak, S., Doré, J., Antolín, M., Artiguenave, F., Blottiere, H. M., Almeida, M., Brechot, C., Cara, C., Chervaux, C., Cultrone, A., Delorme, C., Denariaz, G., Dervyn, R., Foerstner, K. U., Friss, C., van de Guchte, M., Guedon, E., Haimet, F., Huber, W., van Hylckama-Vlieg, J., Jamet, A., Juste, C., Kaci, G., Knol, J., Lakhdari, O., Layec, S., Le Roux, K., Maguin, E., Mérieux, A., Melo Minardi, R., M’rini, C., Muller, J., Oozeer, R., Parkhill, J., Renault, P., Rescigno, M., Sanchez, N., Sunagawa, S., Torrejon, A., Turner, K., Vandemeulebrouck, G., Varela, E., Winogradsky, Y., Zeller, G., Weissenbach, J., Ehrlich, S. D., Bork, P., MetaHIT Consortium. 2011. Enterotypes of the human gut microbiome. Nature 473: 174–180. 17. Mahowald, M. A., Rey, F. E., Seedorf, H., Turnbaugh, P. J., Fulton, R. S., Wollam, A., Shah, N., Wang, C., Magrini, V., Wilson, R. K., Cantarel, B. L., Coutinho, P. M., Henrissat, B., Crock, L. W., Russell, A., Verberkmoes, N. C., Hettich, R. L. and Gordon, J. I. 2009. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc. Natl. Acad. Sci. U.S.A. 106: 5859–5864. 11. Hanada, K., Yang, L., Narita, M., Saito, H. and Ohya, Y. 2017. Influence of antibiotic use in early childhood on asthma and allergic diseases at age 5. Ann. Allergy Asthma Immunol. 119: 54–58. 24. Thompson, J. A., Oliveira, R. A., Djukovic, A., Ubeda, C. and Xavier, K. B. 2015. Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Reports 10: 1861–1871. 4. Björkstén, B., Sepp, E., Julge, K., Voor, T. and Mikelsaar, M. 2001. Allergy development and the intestinal microflora during the first year of life. J. Allergy Clin. Immunol. 108: 516–520. 9. Ekmekciu, I., von Klitzing, E., Fiebiger, U., Escher, U., Neumann, C., Bacher, P., Scheffold, A., Kühl, A. A., Bereswill, S. and Heimesaat, M. M. 2017. Immune responses to broad-spectrum antibiotic treatment and fecal microbiota transplantation in mice. Front. Immunol. 8: 397. 14. Ichinohe, T., Pang, I. K., Kumamoto, Y., Peaper, D. R., Ho, J. H., Murray, T. S. and Iwasaki, A. 2011. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. U.S.A. 108: 5354–5359. 18. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. and Coffman, R. L. 1986. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136: 2348–2357. 6. De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., Collini, S., Pieraccini, G. and Lionetti, P. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U.S.A. 107: 14691–14696. 22 23 24 25 26 27 28 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 25. Thorburn, A. N., McKenzie, C. I., Shen, S., Stanley, D., Macia, L., Mason, L. J., Roberts, L. K., Wong, C. H., Shim, R., Robert, R., Chevalier, N., Tan, J. K., Mariño, E., Moore, R. J., Wong, L., McConville, M. J., Tull, D. L., Wood, L. G., Murphy, V. E., Mattes, J., Gibson, P. G. and Mackay, C. R. 2015. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6: 7320. – reference: 14. Ichinohe, T., Pang, I. K., Kumamoto, Y., Peaper, D. R., Ho, J. H., Murray, T. S. and Iwasaki, A. 2011. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. U.S.A. 108: 5354–5359. – reference: 21. Oyama, N., Sudo, N., Sogawa, H. and Kubo, C. 2001. Antibiotic use during infancy promotes a shift in the T(H)1/T(H)2 balance toward T(H)2-dominant immunity in mice. J. Allergy Clin. Immunol. 107: 153–159. – reference: 28. Yatunennko, T., Ray, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., Magris, M., Hidalgo, G., Baldassano, R. N., Anokhin, A. P., Heath, A. C., Warner, B., Reeder, J., Kuczynski, J., Caporaso, J. G., Lozupone, C. A., Lauber, C., Clemente, J. C., Knights, D., Knight, R. and Gordon, J. I. 2012. Human gut microbiome viewed across age and geography. Nature 486: 222–227. – reference: 22. Penders, J., Stobberingh, E. E., van den Brandt, P. A. and Thijs, C. 2007. The role of the intestinal microbiota in the development of atopic disorders. Allergy 62: 1223–1236. – reference: 12. Harada, Y., Tanaka, S., Motomura, Y., Harada, Y., Ohno, S., Ohno, S., Yanagi, Y., Inoue, H. and Kubo, M. 2012. The 3′ enhancer CNS2 is a critical regulator of interleukin-4-mediated humoral immunity in follicular helper T cells. Immunity 36: 188–200. – reference: 4. Björkstén, B., Sepp, E., Julge, K., Voor, T. and Mikelsaar, M. 2001. Allergy development and the intestinal microflora during the first year of life. J. Allergy Clin. Immunol. 108: 516–520. – reference: 9. Ekmekciu, I., von Klitzing, E., Fiebiger, U., Escher, U., Neumann, C., Bacher, P., Scheffold, A., Kühl, A. A., Bereswill, S. and Heimesaat, M. M. 2017. Immune responses to broad-spectrum antibiotic treatment and fecal microbiota transplantation in mice. Front. Immunol. 8: 397. – reference: 13. Hua, X., Goedert, J. J., Pu, A., Yu, G. and Shi, J. 2015. Allergy associations with the adult fecal microbiota: Analysis of the American Gut Project. EBioMedicine 3: 172–179. – reference: 15. Islam, K. B. M. S., Fukiya, S., Hagio, M., Fujii, N., Ishizuka, S., Ooka, T., Ogura, Y., Hayashi, T. and Yokota, A. 2011. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141: 1773–1781. – reference: 1. Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J. M., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., Kleerebezem, M., Kurokawa, K., Leclerc, M., Levenez, F., Manichanh, C., Nielsen, H. B., Nielsen, T., Pons, N., Poulain, J., Qin, J., Sicheritz-Ponten, T., Tims, S., Torrents, D., Ugarte, E., Zoetendal, E. G., Wang, J., Guarner, F., Pedersen, O., de Vos, W. M., Brunak, S., Doré, J., Antolín, M., Artiguenave, F., Blottiere, H. M., Almeida, M., Brechot, C., Cara, C., Chervaux, C., Cultrone, A., Delorme, C., Denariaz, G., Dervyn, R., Foerstner, K. U., Friss, C., van de Guchte, M., Guedon, E., Haimet, F., Huber, W., van Hylckama-Vlieg, J., Jamet, A., Juste, C., Kaci, G., Knol, J., Lakhdari, O., Layec, S., Le Roux, K., Maguin, E., Mérieux, A., Melo Minardi, R., M’rini, C., Muller, J., Oozeer, R., Parkhill, J., Renault, P., Rescigno, M., Sanchez, N., Sunagawa, S., Torrejon, A., Turner, K., Vandemeulebrouck, G., Varela, E., Winogradsky, Y., Zeller, G., Weissenbach, J., Ehrlich, S. D., Bork, P., MetaHIT Consortium. 2011. Enterotypes of the human gut microbiome. Nature 473: 174–180. – reference: 11. Hanada, K., Yang, L., Narita, M., Saito, H. and Ohya, Y. 2017. Influence of antibiotic use in early childhood on asthma and allergic diseases at age 5. Ann. Allergy Asthma Immunol. 119: 54–58. – reference: 5. Bunyavanich, S., Shen, N., Grishin, A., Wood, R., Burks, W., Dawson, P., Jones, S. M., Leung, D. Y. M., Sampson, H., Sicherer, S. and Clemente, J. C. 2016. Early-life gut microbiome composition and milk allergy resolution. J. Allergy Clin. Immunol. 138: 1122–1130. – reference: 10. Frank, D. N., St Amand, A. L., Feldman, R. A., Boedeker, E. C., Harpaz, N. and Pace, N. R. 2007. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. U.S.A. 104: 13780–13785. – reference: 23. Stefka, A. T., Feehley, T., Tripathi, P., Qiu, J., McCoy, K., Mazmanian, S. K., Tjota, M. Y., Seo, G. Y., Cao, S., Theriault, B. R., Antonopoulos, D. A., Zhou, L., Chang, E. B., Fu, Y. X. and Nagler, C. R. 2014. Commensal bacteria protect against food allergen sensitization. Proc. Natl. Acad. Sci. U.S.A. 111: 13145–13150. – reference: 6. De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., Collini, S., Pieraccini, G. and Lionetti, P. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U.S.A. 107: 14691–14696. – reference: 27. Watanabe, S., Narisawa, Y., Arase, S., Okamatsu, H., Ikenaga, T., Tajiri, Y. and Kumemura, M. 2003. Differences in fecal microflora between patients with atopic dermatitis and healthy control subjects. J. Allergy Clin. Immunol. 111: 587–591. – reference: 19. Nishijima, S., Suda, W., Oshima, K., Kim, S. W., Hirose, Y., Morita, H. and Hattori, M. 2016. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res. 23: 125–133. – reference: 16. Leclercq, S., Mian, F. M., Stanisz, A. M., Bindels, L. B., Cambier, E., Ben-Amram, H., Koren, O., Forsythe, P. and Bienenstock, J. 2017. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat. Commun. 8: 15062. – reference: 18. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. and Coffman, R. L. 1986. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136: 2348–2357. – reference: 8. Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E. and Relman, D. A. 2005. Diversity of the human intestinal microbial flora. Science 308: 1635–1638. – reference: 24. Thompson, J. A., Oliveira, R. A., Djukovic, A., Ubeda, C. and Xavier, K. B. 2015. Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Reports 10: 1861–1871. – reference: 2. Balzola, F., Bernstein, C., Ho, G. T. and Lees, C. 2010. A human gut microbial gene catalogue established by metagenomic sequencing Commentary. Inflamm. Bowel Dis. Monitor. 11: 28. – reference: 17. Mahowald, M. A., Rey, F. E., Seedorf, H., Turnbaugh, P. J., Fulton, R. S., Wollam, A., Shah, N., Wang, C., Magrini, V., Wilson, R. K., Cantarel, B. L., Coutinho, P. M., Henrissat, B., Crock, L. W., Russell, A., Verberkmoes, N. C., Hettich, R. L. and Gordon, J. I. 2009. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc. Natl. Acad. Sci. U.S.A. 106: 5859–5864. – reference: 26. Watanabe, J., Fujiwara, R., Sasajima, N., Ito, S. and Sonoyama, K. 2010. Administration of antibiotics during infancy promoted the development of atopic dermatitis-like skin lesions in NC/Nga mice. Biosci. Biotechnol. Biochem. 74: 358–363. – reference: 3. Bamola, V. D., Ghosh, A., Kapardar, R. K., Lal, B., Cheema, S., Sarma, P. and Chaudhry, R. 2017. Gut microbial diversity in health and disease: experience of healthy Indian subjects, and colon carcinoma and inflammatory bowel disease patients. Microb. Ecol. Health Dis. 28: 1322447. – reference: 20. Olsen, G. J., Woese, C. R. and Overbeek, R. 1994. The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol. 176: 1–6. – reference: 7. Diesner, S. C., Bergmayr, C., Pfitzner, B., Assmann, V., Krishnamurthy, D., Starkl, P., Endesfelder, D., Rothballer, M., Welzl, G., Rattei, T., Eiwegger, T., Szépfalusi, Z., Fehrenbach, H., Jensen-Jarolim, E., Hartmann, A., Pali-Schöll, I. and Untersmayr, E. 2016. A distinct microbiota composition is associated with protection from food allergy in an oral mouse immunization model. Clin. Immunol. 173: 10–18. – ident: 2 – ident: 19 doi: 10.1093/dnares/dsw002 – ident: 13 doi: 10.1016/j.ebiom.2015.11.038 – ident: 1 doi: 10.1038/nature09944 – ident: 15 doi: 10.1053/j.gastro.2011.07.046 – ident: 26 doi: 10.1271/bbb.90709 – ident: 10 doi: 10.1073/pnas.0706625104 – ident: 12 doi: 10.1016/j.immuni.2012.02.002 – ident: 27 doi: 10.1067/mai.2003.105 – ident: 8 doi: 10.1126/science.1110591 – ident: 16 – ident: 6 doi: 10.1073/pnas.1005963107 – ident: 21 doi: 10.1067/mai.2001.111142 – ident: 7 doi: 10.1016/j.clim.2016.10.009 – ident: 22 doi: 10.1111/j.1398-9995.2007.01462.x – ident: 25 doi: 10.1038/ncomms8320 – ident: 20 doi: 10.1128/jb.176.1.1-6.1994 – ident: 3 – ident: 5 doi: 10.1016/j.jaci.2016.03.041 – ident: 14 doi: 10.1073/pnas.1019378108 – ident: 23 doi: 10.1073/pnas.1412008111 – ident: 9 doi: 10.3389/fimmu.2017.00397 – ident: 28 doi: 10.1038/nature11053 – ident: 17 doi: 10.1073/pnas.0901529106 – ident: 18 doi: 10.4049/jimmunol.136.7.2348 – ident: 24 doi: 10.1016/j.celrep.2015.02.049 – ident: 11 doi: 10.1016/j.anai.2017.05.013 – ident: 4 doi: 10.1067/mai.2001.118130 |
SSID | ssj0021469 |
Score | 2.2138622 |
Snippet | The composition of the intestinal microbiota is related to the health and immune function of the host. Administration of antibiotics affects the composition of... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 440 |
SubjectTerms | Antibiotics CD19 antigen CD3 antigen cytokine Cytokines Flow cytometry Gene expression immune response Immunology Interferon Interleukin 13 intestinal microbiota Intestinal microflora Intestine Lymphocytes Lymphocytes T metagenomics analysis Microbiota Polymerase chain reaction rRNA 16S Splenocytes T cell |
Title | Influence of changes in the intestinal microflora on the immune function in mice |
URI | https://www.jstage.jst.go.jp/article/jvms/80/3/80_17-0485/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/29415902 https://www.proquest.com/docview/2022114319 https://www.proquest.com/docview/1999683204 https://pubmed.ncbi.nlm.nih.gov/PMC5880823 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Veterinary Medical Science, 2018, Vol.80(3), pp.440-446 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7RhUMvqAVKQylyJThVAefhR1RVVVUVQdEiDt2KW5TENl0EWWB3q_LvmUmcqIuoxCUXTx6a8cx8X2zPAOxqLrQzkQnjkpdhKjQPM125UCgqJ66NNJZWdIen8miU_jgX50vQdRv1Cpw-Se2on9To7mr_7-39F3T4z01thCw-uPxzPd3HYIuTUbyAZcxJinoZDNN-PYG6V2cN9UpVSBDcb4F_fPdCclq5RHx2YZ-Cno93UP6Tkg5fwarHkuxra_zXsGTrNVj7RRtcmlO2bOgXztfh7LhrRsImjrWnfadsXDPEf4xKRqCn07OuaX-eQw5fsIkfpAMkllH-IxvSPdTBfgNGh99_fjsKfTOFsFJczkKERakypc0EIlQhdRU5Lk0RReixiYlkmSZWai6LDLO4lVwrp43KSof8jcuSJ29gUE9q-xaY4LE1hUoU1U4vXKxN4ZDGWVcal2ZVHMDHTot55SuNU8OLq5wYB-o8J53nkcpJ5wHs9dI3bYWN_8h9ag3SS3nfaqU0zxO6eOl-kA6vYQQIYLuzYt5NsjxGAIN8EKNQAB_6YfQvWjQpajuZ49uJEWLY42kAm63R-w-IM4Q_qK8A1MJ06AWodvfiSD3-3dTwFhg3dZxsPeO97-AlojTd_vfZhsHsbm7fIxKalTvIAY5Pdpqp_gBlTgrW |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+changes+in+the+intestinal+microflora+on+the+immune+function+in+mice&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=Kishida%2C+Shigefumi&rft.au=Kato-Mori%2C+Yuko&rft.au=Hagiwara%2C+Katsuro&rft.date=2018&rft.issn=1347-7439&rft.eissn=1347-7439&rft.volume=80&rft.issue=3&rft.spage=440&rft_id=info:doi/10.1292%2Fjvms.17-0485&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon |