Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch

A switch for antimicrobials? Riboswitches are structured RNA elements that bind a specific ligand to control expression of the gene to which they are linked. Several bacterial genes involved in the transport and synthesis of riboflavin and related compounds are regulated by a riboswitch that binds f...

Full description

Saved in:
Bibliographic Details
Published inNature Vol. 458; no. 7235; pp. 233 - 237
Main Authors Serganov, Alexander, Huang, Lili, Patel, Dinshaw J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.03.2009
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
1476-4679
DOI10.1038/nature07642

Cover

Loading…
Abstract A switch for antimicrobials? Riboswitches are structured RNA elements that bind a specific ligand to control expression of the gene to which they are linked. Several bacterial genes involved in the transport and synthesis of riboflavin and related compounds are regulated by a riboswitch that binds flavin mononucleotide (FMN). Serganov et al . report the unusual structure of the metabolite-sensing domain bound to FMN, riboflavin and an antibiotic. The relatively open ligand-binding pocket suggests that antimicrobials based on FMN could be devised. This paper reports the unusual structure of the metabolite-sensing domain of a flavin mononucleotide (FMN)-specific riboswitch bound to FMN, riboflavin and an antibiotic. The relatively open ligand-binding pocket suggests that antimicrobials based on FMN could be devised. The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches 1 , 2 , 3 . Flavin mononucleotide (FMN)-specific riboswitches 4 , 5 , also known as RFN elements 6 , direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin B 2 ) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin 7 . The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and Mg 2+ -mediated contacts with the phosphate moiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN-binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains.
AbstractList The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches. Flavin mononucleotide (FMN)-specific riboswitches, also known as RFN elements, direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin B sub(2)) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin. The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and Mg super(2+)-mediated contacts with the phosphate moiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN- binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains.
The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches. Flavin mononucleotide (FMN)-specific riboswitches, also known as RFN elements, direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin B(2)) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin. The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and Mg(2+)-mediated contacts with the phosphate moiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN-binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains.The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches. Flavin mononucleotide (FMN)-specific riboswitches, also known as RFN elements, direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin B(2)) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin. The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and Mg(2+)-mediated contacts with the phosphate moiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN-binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains.
The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches 1 – 3 . Flavin mononucleotide (FMN)-specific riboswitches 4 , 5 , also known as RFN elements 6 , direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin B 2 ) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin 7 . The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and Mg 2+ -mediated contacts with the phosphate moiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN-binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains.
The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches1-3. Flavin mononucleotide (FMN)- specific riboswitches4,5, also known as RFN elements6, direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin B2) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin7. The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and Mg^sup 2+^-mediated contacts with the phosphate moiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN-binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains. [PUBLICATION ABSTRACT]
The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches. Flavin mononucleotide (FMN)-specific riboswitches, also known as RFN elements, direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin B(2)) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin. The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and Mg(2+)-mediated contacts with the phosphate moiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN-binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains.
A switch for antimicrobials? Riboswitches are structured RNA elements that bind a specific ligand to control expression of the gene to which they are linked. Several bacterial genes involved in the transport and synthesis of riboflavin and related compounds are regulated by a riboswitch that binds flavin mononucleotide (FMN). Serganov et al . report the unusual structure of the metabolite-sensing domain bound to FMN, riboflavin and an antibiotic. The relatively open ligand-binding pocket suggests that antimicrobials based on FMN could be devised. This paper reports the unusual structure of the metabolite-sensing domain of a flavin mononucleotide (FMN)-specific riboswitch bound to FMN, riboflavin and an antibiotic. The relatively open ligand-binding pocket suggests that antimicrobials based on FMN could be devised. The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches 1 , 2 , 3 . Flavin mononucleotide (FMN)-specific riboswitches 4 , 5 , also known as RFN elements 6 , direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin B 2 ) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin 7 . The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and Mg 2+ -mediated contacts with the phosphate moiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN-binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains.
The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches (1-3). Flavin mononucleotide (FMN)specific riboswitches (4,5), also known as RFN elements (6), direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin [B.sub.2]) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin (7). The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and [Mg.sup.2+]-mediated contacts with the phosphatemoiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN-binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains.
Audience Academic
Author Patel, Dinshaw J.
Serganov, Alexander
Huang, Lili
Author_xml – sequence: 1
  givenname: Alexander
  surname: Serganov
  fullname: Serganov, Alexander
  email: serganoa@mskcc.org
  organization: Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
– sequence: 2
  givenname: Lili
  surname: Huang
  fullname: Huang, Lili
  organization: Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
– sequence: 3
  givenname: Dinshaw J.
  surname: Patel
  fullname: Patel, Dinshaw J.
  email: pateld@mskcc.org
  organization: Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21206871$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19169240$$D View this record in MEDLINE/PubMed
BookMark eNqF0t2L1DAQAPAgJ97e6ZPvUgQF0Z75aJP2RVgWPw6OE_TEx5CmSS9Hm-wl7en615verrtbWZE-FKa_TKYzcwKOrLMKgKcIniFIirdW9INXkNEMPwAzlDGaZrRgR2AGIS5SWBB6DE5CuIEQ5ohlj8AxKhEtcQZn4HLhlP216lTilXSNNb1xNhG2Thplx2AztOI-Vq0SkehW3BmbdC7WMMhWud7UUZnKhR-ml9ePwUMt2qCebN6n4NuH91eLT-nF54_ni_lFKhnM-zTHpWASV4SRqtBaKqolrRiFVUkowgyNLMNMoaJSGhNEa5VXNS7yXFOhS3IK3q3zLoeqU7VUtvei5UtvOuFX3AnDp1-sueaNu-OEYcpQHhO83CTw7nZQoeedCVK1rbDKDYFTBlHJCPovxDBDOctohM__gjdu8DZ2YTR5RjI8onSNGtEqbqx2sTo5tjoWGceqTQzPUUlRjikku6QTL5fmlu-jswMoPrXqjDyY9dXkQDS9-tk3YgiBn3_9MrWv_23nV98Xl1P9bH8u24H8WbgIXmyACFK02gsrTdg6jDCMuzu2Ha2d9C4ErzSXpr9fxPhvpuUI8nH5-d7y70rdntlef1C_WesQlW2U383rEP8NHNASVw
CODEN NATUAS
CitedBy_id crossref_primary_10_1099_mic_0_001508
crossref_primary_10_1002_jcb_27252
crossref_primary_10_1021_acscentsci_2c01237
crossref_primary_10_1021_ja510549b
crossref_primary_10_1002_cbic_200900697
crossref_primary_10_1038_nsmb_2405
crossref_primary_10_1021_jp104926t
crossref_primary_10_1007_s11427_021_2116_2
crossref_primary_10_1038_nsmb_3073
crossref_primary_10_1016_j_bbrc_2023_01_028
crossref_primary_10_34172_bi_2021_17
crossref_primary_10_1016_j_molcel_2011_08_024
crossref_primary_10_1021_acs_jcim_4c01324
crossref_primary_10_1002_wrna_1175
crossref_primary_10_1016_j_bmcl_2011_04_033
crossref_primary_10_1080_21505594_2021_1963909
crossref_primary_10_1093_nar_gkr1154
crossref_primary_10_1016_j_ymeth_2019_05_012
crossref_primary_10_1134_S1022795412100109
crossref_primary_10_1002_ange_201803052
crossref_primary_10_1021_ar200035g
crossref_primary_10_3390_ijms24065497
crossref_primary_10_1021_acschembio_1c00880
crossref_primary_10_3390_ijms21061926
crossref_primary_10_1016_j_biochi_2015_06_028
crossref_primary_10_1017_S0033583510000144
crossref_primary_10_1093_nar_gkad222
crossref_primary_10_1016_j_biochi_2013_02_012
crossref_primary_10_1007_s00438_019_01642_z
crossref_primary_10_1002_ange_201403579
crossref_primary_10_1016_j_chembiol_2014_01_004
crossref_primary_10_1002_ange_201407385
crossref_primary_10_1038_s41589_022_01121_4
crossref_primary_10_1007_s13205_022_03348_3
crossref_primary_10_1038_nature15542
crossref_primary_10_3390_antibiotics11091177
crossref_primary_10_1021_acschembio_8b00533
crossref_primary_10_1016_j_cell_2014_03_008
crossref_primary_10_1371_journal_pgen_1011188
crossref_primary_10_1080_07391102_2019_1665587
crossref_primary_10_1146_annurev_biophys_070816_034125
crossref_primary_10_1039_D3CP03142J
crossref_primary_10_1016_j_molcel_2009_02_019
crossref_primary_10_1021_acschembio_7b01013
crossref_primary_10_1021_acs_jpcb_0c05625
crossref_primary_10_1128_spectrum_03207_23
crossref_primary_10_3389_fnut_2022_978831
crossref_primary_10_1107_S1399004714005161
crossref_primary_10_1021_acs_jcim_4c00420
crossref_primary_10_1039_c2ra01211a
crossref_primary_10_1128_AEM_01541_10
crossref_primary_10_1038_nchembio_1606
crossref_primary_10_1016_j_abb_2023_109762
crossref_primary_10_1038_nchembio_1607
crossref_primary_10_1128_MMBR_00030_10
crossref_primary_10_1261_rna_054890_115
crossref_primary_10_2174_2666001602666220722112558
crossref_primary_10_1002_anie_201803052
crossref_primary_10_1038_s41592_022_01455_w
crossref_primary_10_1021_jm500868e
crossref_primary_10_1021_acs_jctc_2c00381
crossref_primary_10_1371_journal_pone_0073984
crossref_primary_10_31857_S032097252108008X
crossref_primary_10_1016_j_tibs_2015_02_004
crossref_primary_10_1021_acs_analchem_0c03941
crossref_primary_10_1074_jbc_REV119_006860
crossref_primary_10_1039_D0NP00037J
crossref_primary_10_1021_bi101842u
crossref_primary_10_3390_ijms251910495
crossref_primary_10_1039_D4SC06189F
crossref_primary_10_1080_15476286_2016_1216304
crossref_primary_10_1016_j_jmb_2023_168070
crossref_primary_10_3390_ijms25020735
crossref_primary_10_1080_15476286_2023_2231708
crossref_primary_10_1016_j_jbiotec_2017_04_013
crossref_primary_10_1016_j_ymben_2021_08_009
crossref_primary_10_1093_nar_gkaa546
crossref_primary_10_1093_nar_gkp1106
crossref_primary_10_1093_nar_gkaa427
crossref_primary_10_1089_ars_2011_4290
crossref_primary_10_1111_j_1747_0285_2010_00946_x
crossref_primary_10_1021_ar200039b
crossref_primary_10_1073_pnas_2410206121
crossref_primary_10_1016_j_nbt_2010_03_002
crossref_primary_10_1261_rna_1852310
crossref_primary_10_1080_15476286_2020_1712544
crossref_primary_10_1016_j_bbagrm_2009_07_002
crossref_primary_10_1146_annurev_biophys_101211_113224
crossref_primary_10_1016_j_str_2015_05_016
crossref_primary_10_1111_bph_17308
crossref_primary_10_1146_annurev_biochem_060815_014628
crossref_primary_10_1016_j_chembiol_2015_06_007
crossref_primary_10_4155_fmc_2017_0063
crossref_primary_10_1021_acs_jcim_4c02158
crossref_primary_10_1093_nar_gks616
crossref_primary_10_3389_fmicb_2017_02012
crossref_primary_10_1007_s00253_009_2194_2
crossref_primary_10_1093_nar_gkq433
crossref_primary_10_1021_acs_analchem_6b02498
crossref_primary_10_1002_wrna_1153
crossref_primary_10_1021_jacs_2c02685
crossref_primary_10_1021_acsomega_3c06826
crossref_primary_10_1016_j_jmb_2012_06_038
crossref_primary_10_1016_j_sbi_2009_02_002
crossref_primary_10_1016_j_tibs_2022_08_009
crossref_primary_10_1016_j_jsb_2017_12_006
crossref_primary_10_1038_s41589_018_0114_4
crossref_primary_10_1002_anie_201403579
crossref_primary_10_1093_bioinformatics_btae155
crossref_primary_10_1124_pr_120_019554
crossref_primary_10_1016_j_jmb_2022_167585
crossref_primary_10_1261_rna_080074_124
crossref_primary_10_1021_acs_jcim_4c01708
crossref_primary_10_1002_anie_201407385
crossref_primary_10_15171_bi_2018_03
crossref_primary_10_1111_1751_7915_13919
crossref_primary_10_1016_j_gene_2019_05_036
crossref_primary_10_3390_molecules22071169
crossref_primary_10_1016_j_ijmm_2013_09_002
crossref_primary_10_1093_nar_gkq138
crossref_primary_10_1128_jmbe_v19i2_1501
crossref_primary_10_1016_j_cels_2021_04_011
crossref_primary_10_4014_jmb_2212_12026
crossref_primary_10_1016_j_ymeth_2018_02_014
crossref_primary_10_1261_rna_079414_122
crossref_primary_10_1261_rna_067975_118
crossref_primary_10_1080_14728222_2019_1618274
crossref_primary_10_1021_acschembio_1c00014
crossref_primary_10_1016_j_bbagrm_2014_02_014
crossref_primary_10_1093_nar_gkad891
crossref_primary_10_1016_j_gene_2016_07_035
crossref_primary_10_1002_anie_201914786
crossref_primary_10_1016_j_bbagrm_2014_02_012
crossref_primary_10_1002_chem_201303098
crossref_primary_10_1016_j_bbagrm_2009_06_004
crossref_primary_10_4161_rna_28526
crossref_primary_10_1007_s11426_010_4174_x
crossref_primary_10_1021_acs_biochem_9b00122
crossref_primary_10_1002_jmr_978
crossref_primary_10_1021_jp400751w
crossref_primary_10_1080_17460441_2022_2134852
crossref_primary_10_1371_journal_pcbi_1009603
crossref_primary_10_3389_fmicb_2023_1154130
crossref_primary_10_3390_ijms251910682
crossref_primary_10_1128_microbiolspec_RWR_0025_2018
crossref_primary_10_1246_bcsj_20150063
crossref_primary_10_1016_j_jmb_2009_11_030
crossref_primary_10_1093_nar_gkac775
crossref_primary_10_1016_j_jmb_2011_01_049
crossref_primary_10_1016_j_jmb_2009_04_083
crossref_primary_10_1021_acs_jcim_4c00852
crossref_primary_10_1002_tcr_202100322
crossref_primary_10_1093_nar_gkr565
crossref_primary_10_4161_rna_8_4_15586
crossref_primary_10_1021_acs_jpcb_1c02702
crossref_primary_10_1038_nchembio_631
crossref_primary_10_1007_s10847_009_9609_7
crossref_primary_10_1261_rna_061234_117
crossref_primary_10_1038_s41592_020_0878_9
crossref_primary_10_3390_microorganisms10112303
crossref_primary_10_1016_j_micres_2013_09_005
crossref_primary_10_1186_s12864_018_4951_z
crossref_primary_10_1371_journal_pcbi_1008387
crossref_primary_10_4155_fmc_09_149
crossref_primary_10_3390_microorganisms12050960
crossref_primary_10_1002_ange_201914786
crossref_primary_10_1038_nature11607
crossref_primary_10_1038_nrd_2018_93
crossref_primary_10_1021_cb900146k
crossref_primary_10_1073_pnas_1111701108
crossref_primary_10_2142_biophysico_bppb_v20_0047
crossref_primary_10_1016_j_bmcl_2021_128236
crossref_primary_10_1021_acs_jctc_4c00681
crossref_primary_10_1016_j_yjsbx_2020_100035
crossref_primary_10_1021_acs_jcim_7b00139
crossref_primary_10_1186_s12859_015_0523_2
crossref_primary_10_2217_fmb_09_46
crossref_primary_10_15252_embj_201489209
crossref_primary_10_1134_S0006297921080071
crossref_primary_10_1038_s41573_022_00521_4
crossref_primary_10_1261_rna_039909_113
crossref_primary_10_15171_apb_2020_012
crossref_primary_10_1038_nature11152
crossref_primary_10_1016_j_synbio_2024_12_001
crossref_primary_10_3390_antibiotics11091243
crossref_primary_10_1093_nar_gkab486
crossref_primary_10_1021_jacs_3c09230
crossref_primary_10_1039_c2cc34506d
crossref_primary_10_1146_annurev_biophys_070816_034042
crossref_primary_10_1016_j_cell_2012_12_024
crossref_primary_10_1128_AAC_01282_15
crossref_primary_10_1021_bi1012645
crossref_primary_10_1016_j_chembiol_2017_03_014
crossref_primary_10_1016_j_chembiol_2019_02_011
crossref_primary_10_1128_JB_00293_20
crossref_primary_10_1186_s12859_021_04349_4
crossref_primary_10_3390_life15010104
crossref_primary_10_1016_j_molcel_2010_11_026
crossref_primary_10_1016_j_jbc_2024_105730
crossref_primary_10_1111_mmi_12810
crossref_primary_10_3103_S0891416814040090
Cites_doi 10.1016/S0092-8674(02)01134-0
10.1093/nar/gkf433
10.1073/pnas.212628899
10.1074/jbc.C800120200
10.1038/nsmb.1371
10.1186/1475-2859-5-24
10.1016/j.tibs.2003.11.004
10.1261/rna.2202703
10.1146/annurev.micro.59.030804.121336
10.1006/jmbi.1996.0263
10.1016/S1074-5521(02)00224-7
10.1515/BC.2005.098
10.1016/j.molcel.2005.02.032
10.1038/nature07326
10.1016/j.str.2006.07.008
10.1038/nbt1268
10.1126/science.1128451
10.1128/JB.184.7.2005-2018.2002
10.1038/nature03037
10.1016/S0168-9525(99)01856-9
10.1093/nar/gkl963
10.1017/S135583820202006X
10.1128/AEM.70.10.5769-5777.2004
10.1038/nrg2172
10.1107/S0907444996012255
10.1111/j.1432-1033.1997.00291.x
10.1093/emboj/cdg170
10.1038/nature04740
10.1038/nature04819
10.1186/gb-2007-8-11-r239
10.1016/j.chembiol.2004.11.018
10.1126/science.1131127
10.1093/nar/gkn911
ContentType Journal Article
Copyright Macmillan Publishers Limited. All rights reserved 2009
2009 INIST-CNRS
COPYRIGHT 2009 Nature Publishing Group
Copyright Nature Publishing Group Mar 12, 2009
Copyright_xml – notice: Macmillan Publishers Limited. All rights reserved 2009
– notice: 2009 INIST-CNRS
– notice: COPYRIGHT 2009 Nature Publishing Group
– notice: Copyright Nature Publishing Group Mar 12, 2009
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7T7
7X8
5PM
DOI 10.1038/nature07642
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Middle School (Gale in Context)
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
Industrial and Applied Microbiology Abstracts (Microbiology A)
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE - Academic

Agricultural Science Database
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
Biology
EISSN 1476-4687
1476-4679
EndPage 237
ExternalDocumentID PMC3726715
1667625851
A196152603
19169240
21206871
10_1038_nature07642
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM073618
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: R01 GM073618 || GM
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
.55
.CO
.GJ
.HR
.XZ
00M
07C
0R~
0WA
123
186
1VR
29M
2KS
2XV
354
39C
3O-
3V.
4.4
41X
4R4
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
9M8
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYOK
AAYZH
ABAWZ
ABDBF
ABDQB
ABEFU
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABNNU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACRPL
ACUHS
ACWUS
ADBBV
ADFRT
ADNMO
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFDN
AFFNX
AFHKK
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGCDD
AGGDT
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BENPR
BES
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKOMP
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DB5
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L-9
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
MVM
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OHT
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PEA
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7L
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YYP
YZZ
Z5M
ZCA
ZHY
ZKB
~02
~7V
~88
~8M
~G0
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADGHP
ADXHL
AETEA
AFANA
AGQPQ
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
08P
1CY
1OL
1VW
3EH
41~
42X
663
79B
AAJYS
AAVBQ
ABDPE
ACBNA
ACBTR
ACTDY
ADRHT
AEZWR
AFBBN
AFHIU
AHWEU
AIXLP
AJUXI
FA8
FAC
HG6
IQODW
J5H
LGEZI
LOTEE
N4W
NADUK
NFIDA
NXXTH
ODYON
PJZUB
PPXIY
PQGLB
PV9
QS-
R4F
RHI
SKT
TUD
UBY
UHB
USG
VOH
XOL
YJ6
YQI
YQJ
YV5
YXA
YYQ
ZCG
ZE2
ZGI
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
36B
7T7
ABCQX
AFWHJ
AHBCP
AHOSX
AIBTJ
D0L
NNMJJ
QF4
QM4
QN7
QO4
7X8
5PM
ID FETCH-LOGICAL-c705t-529a7c2b373b8ffce6fc6b760b9361271c705427e18bef2316de5bd2855f6af93
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 14:37:49 EDT 2025
Fri Jul 11 00:14:17 EDT 2025
Fri Jul 11 11:20:37 EDT 2025
Fri Jul 25 09:00:47 EDT 2025
Fri Jun 13 00:44:58 EDT 2025
Tue Jun 10 15:35:38 EDT 2025
Tue Jun 10 21:30:58 EDT 2025
Fri Jun 27 05:50:25 EDT 2025
Fri Jun 27 05:53:40 EDT 2025
Thu Apr 03 07:01:56 EDT 2025
Mon Jul 21 09:16:43 EDT 2025
Tue Jul 01 02:42:34 EDT 2025
Thu Apr 24 22:58:01 EDT 2025
Fri Feb 21 02:37:54 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7235
Keywords Riboswitch
Vitamin
Riboflavin
B-Vitamins
Biosynthesis
Metabolism
Cofactor
Bacteroidaceae
Regulation(control)
Fusobacterium nucleatum
Gene
Three dimensional structure
Bacteria
Molecular complex
Recognition
Crystalline structure
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c705t-529a7c2b373b8ffce6fc6b760b9361271c705427e18bef2316de5bd2855f6af93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3726715
PMID 19169240
PQID 204543426
PQPubID 40569
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3726715
proquest_miscellaneous_67019731
proquest_miscellaneous_20415746
proquest_journals_204543426
gale_infotracgeneralonefile_A196152603
gale_infotraccpiq_196152603
gale_infotracacademiconefile_A196152603
gale_incontextgauss_ISR_A196152603
gale_incontextgauss_ATWCN_A196152603
pubmed_primary_19169240
pascalfrancis_primary_21206871
crossref_citationtrail_10_1038_nature07642
crossref_primary_10_1038_nature07642
springer_journals_10_1038_nature07642
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-03-12
PublicationDateYYYYMMDD 2009-03-12
PublicationDate_xml – month: 03
  year: 2009
  text: 2009-03-12
  day: 12
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2009
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References de La Fortelle, Bricogne (CR32) 1997
Gilbert, Rambo, Van Tyne, Batey (CR12) 2008; 15
Nudler, Mironov (CR1) 2004; 29
CR19
Krasilnikov, Mondragon (CR21) 2008; 9
Fan, Suri, Fiala, Live, Patel (CR28) 1996; 258
Feig, Uhlenbeck (CR34) 1999
Mironov (CR4) 2002; 111
Thore, Leibundgut, Ban (CR10) 2006; 312
Barrick, Breaker (CR8) 2007; 8
Montange, Batey (CR13) 2006; 441
Serganov (CR25) 2004; 11
Gelfand, Mironov, Jomantas, Kozlov, Perumov (CR6) 1999; 15
Serganov, Polonskaia, Ehresmann, Ehresmann, Patel (CR35) 2003; 8
Serganov (CR31) 1997; 246
Serganov, Polonskaia, Phan, Breaker, Patel (CR9) 2006; 441
Edwards, Ferre-D’Amare (CR11) 2006; 14
Vitreschak, Rodionov, Mironov, Gelfand (CR17) 2002; 30
Lescoute, Westhof (CR20) 2006; 34
Winkler, Cohen-Chalamish, Breaker (CR5) 2002; 99
Wickiser, Winkler, Breaker, Crothers (CR30) 2005; 18
Nahvi (CR14) 2002; 9
Winkler, Breaker (CR3) 2005; 59
Agmon, Bashan, Zarivach, Yonath (CR18) 2005; 386
Burgess, Smid, Rutten, van Sinderen (CR15) 2006; 5
Selmer (CR23) 2006; 313
Garst, Heroux, Rambo, Batey (CR26) 2008; 283
Murshudov, Vagin, Dodson (CR33) 1997; 53
Blount, Breaker (CR7) 2006; 24
Batey, Gilbert, Montange (CR24) 2004; 432
Kapatral (CR16) 2002; 184
Nagaswamy, Fox (CR22) 2002; 8
Serganov, Patel (CR2) 2007; 8
Burgess, O’Connell-Motherway, Sybesma, Hugenholtz, van Sinderen (CR29) 2004; 70
Serganov, Huang, Patel (CR27) 2008; 455
M Selmer (BFnature07642_CR23) 2006; 313
A Serganov (BFnature07642_CR27) 2008; 455
AG Vitreschak (BFnature07642_CR17) 2002; 30
JK Wickiser (BFnature07642_CR30) 2005; 18
C Burgess (BFnature07642_CR29) 2004; 70
WC Winkler (BFnature07642_CR3) 2005; 59
P Fan (BFnature07642_CR28) 1996; 258
RK Montange (BFnature07642_CR13) 2006; 441
A Serganov (BFnature07642_CR9) 2006; 441
I Agmon (BFnature07642_CR18) 2005; 386
JE Barrick (BFnature07642_CR8) 2007; 8
A Lescoute (BFnature07642_CR20) 2006; 34
KF Blount (BFnature07642_CR7) 2006; 24
S Thore (BFnature07642_CR10) 2006; 312
RT Batey (BFnature07642_CR24) 2004; 432
AS Krasilnikov (BFnature07642_CR21) 2008; 9
WC Winkler (BFnature07642_CR5) 2002; 99
A Serganov (BFnature07642_CR35) 2003; 8
E de La Fortelle (BFnature07642_CR32) 1997
A Serganov (BFnature07642_CR25) 2004; 11
V Kapatral (BFnature07642_CR16) 2002; 184
AD Garst (BFnature07642_CR26) 2008; 283
CM Burgess (BFnature07642_CR15) 2006; 5
E Nudler (BFnature07642_CR1) 2004; 29
GN Murshudov (BFnature07642_CR33) 1997; 53
U Nagaswamy (BFnature07642_CR22) 2002; 8
A Nahvi (BFnature07642_CR14) 2002; 9
SD Gilbert (BFnature07642_CR12) 2008; 15
TE Edwards (BFnature07642_CR11) 2006; 14
BFnature07642_CR19
A Serganov (BFnature07642_CR2) 2007; 8
A Serganov (BFnature07642_CR31) 1997; 246
MS Gelfand (BFnature07642_CR6) 1999; 15
AS Mironov (BFnature07642_CR4) 2002; 111
AL Feig (BFnature07642_CR34) 1999
References_xml – volume: 111
  start-page: 747
  year: 2002
  end-page: 756
  ident: CR4
  article-title: Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)01134-0
– volume: 30
  start-page: 3141
  year: 2002
  end-page: 3151
  ident: CR17
  article-title: Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkf433
– volume: 99
  start-page: 15908
  year: 2002
  end-page: 15913
  ident: CR5
  article-title: An mRNA structure that controls gene expression by binding FMN
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.212628899
– volume: 283
  start-page: 22347
  year: 2008
  end-page: 22351
  ident: CR26
  article-title: Crystal structure of the lysine riboswitch regulatory mRNA element
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C800120200
– volume: 15
  start-page: 177
  year: 2008
  end-page: 182
  ident: CR12
  article-title: Structure of the SAM-II riboswitch bound to -adenosylmethionine
  publication-title: Nature Struct. Mol. Biol.
  doi: 10.1038/nsmb.1371
– volume: 5
  start-page: 24
  year: 2006
  ident: CR15
  article-title: A general method for selection of riboflavin-overproducing food grade micro-organisms
  publication-title: Microb. Cell Fact.
  doi: 10.1186/1475-2859-5-24
– volume: 29
  start-page: 11
  year: 2004
  end-page: 17
  ident: CR1
  article-title: The riboswitch control of bacterial metabolism
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2003.11.004
– volume: 9
  start-page: 640
  year: 2008
  end-page: 643
  ident: CR21
  article-title: On the occurrence of the T-loop RNA folding motif in large RNA molecules
  publication-title: RNA
  doi: 10.1261/rna.2202703
– volume: 59
  start-page: 487
  year: 2005
  end-page: 517
  ident: CR3
  article-title: Regulation of bacterial gene expression by riboswitches
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.59.030804.121336
– volume: 258
  start-page: 480
  year: 1996
  end-page: 500
  ident: CR28
  article-title: Molecular recognition in the FMN-RNA aptamer complex
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1996.0263
– volume: 9
  start-page: 1043
  year: 2002
  end-page: 1049
  ident: CR14
  article-title: Genetic control by a metabolite binding mRNA
  publication-title: Chem. Biol.
  doi: 10.1016/S1074-5521(02)00224-7
– start-page: 287
  year: 1999
  end-page: 319
  ident: CR34
  publication-title: The RNA World
– volume: 386
  start-page: 833
  year: 2005
  end-page: 844
  ident: CR18
  article-title: Symmetry at the active site of the ribosome: structural and functional implications
  publication-title: Biol. Chem.
  doi: 10.1515/BC.2005.098
– ident: CR19
– volume: 18
  start-page: 49
  year: 2005
  end-page: 60
  ident: CR30
  article-title: The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.02.032
– volume: 455
  start-page: 1263
  year: 2008
  end-page: 1267
  ident: CR27
  article-title: Structural insights into amino acid binding and gene control by a lysine riboswitch
  publication-title: Nature
  doi: 10.1038/nature07326
– volume: 14
  start-page: 1459
  year: 2006
  end-page: 1468
  ident: CR11
  article-title: Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition
  publication-title: Structure
  doi: 10.1016/j.str.2006.07.008
– volume: 24
  start-page: 1558
  year: 2006
  end-page: 1564
  ident: CR7
  article-title: Riboswitches as antibacterial drug targets
  publication-title: Nature Biotechnol.
  doi: 10.1038/nbt1268
– volume: 312
  start-page: 1208
  year: 2006
  end-page: 1211
  ident: CR10
  article-title: Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand
  publication-title: Science
  doi: 10.1126/science.1128451
– volume: 184
  start-page: 2005
  year: 2002
  end-page: 2018
  ident: CR16
  article-title: Genome sequence and analysis of the oral bacterium strain ATCC 25586
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.184.7.2005-2018.2002
– volume: 432
  start-page: 411
  year: 2004
  end-page: 415
  ident: CR24
  article-title: Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine
  publication-title: Nature
  doi: 10.1038/nature03037
– volume: 15
  start-page: 439
  year: 1999
  end-page: 442
  ident: CR6
  article-title: A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes
  publication-title: Trends Genet.
  doi: 10.1016/S0168-9525(99)01856-9
– volume: 34
  start-page: 6587
  year: 2006
  end-page: 6604
  ident: CR20
  article-title: The interaction networks of structured RNAs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl963
– volume: 8
  start-page: 1112
  year: 2002
  end-page: 1119
  ident: CR22
  article-title: Frequent occurrence of the T-loop RNA folding motif in ribosomal RNAs
  publication-title: RNA
  doi: 10.1017/S135583820202006X
– volume: 70
  start-page: 5769
  year: 2004
  end-page: 5777
  ident: CR29
  article-title: Riboflavin production in : potential for production of vitamin-enriched foods
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.70.10.5769-5777.2004
– volume: 8
  start-page: 776
  year: 2007
  end-page: 790
  ident: CR2
  article-title: Ribozymes, riboswitches and beyond: regulation of gene expression without proteins
  publication-title: Nature Rev. Genet.
  doi: 10.1038/nrg2172
– volume: 53
  start-page: 240
  year: 1997
  end-page: 255
  ident: CR33
  article-title: Refinement of macromolecular structures by the maximum-likelihood method
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444996012255
– volume: 246
  start-page: 291
  year: 1997
  end-page: 300
  ident: CR31
  article-title: Ribosomal protein S15 from : cloning, sequencing, overexpression of the gene and RNA-binding properties of the protein
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1997.00291.x
– volume: 8
  start-page: 1898
  year: 2003
  end-page: 1908
  ident: CR35
  article-title: Ribosomal protein S15 represses its own translation via adaptation of an rRNA-like fold within its mRNA
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg170
– volume: 441
  start-page: 1167
  year: 2006
  end-page: 1171
  ident: CR9
  article-title: Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch
  publication-title: Nature
  doi: 10.1038/nature04740
– volume: 441
  start-page: 1172
  year: 2006
  end-page: 1175
  ident: CR13
  article-title: Structure of the -adenosylmethionine riboswitch regulatory mRNA element
  publication-title: Nature
  doi: 10.1038/nature04819
– volume: 8
  start-page: R239
  year: 2007
  ident: CR8
  article-title: The distributions, mechanisms, and structures of metabolite-binding riboswitches
  publication-title: Genome Biol.
  doi: 10.1186/gb-2007-8-11-r239
– start-page: 472
  year: 1997
  end-page: 494
  ident: CR32
  publication-title: Methods in Enzymology
– volume: 11
  start-page: 1729
  year: 2004
  end-page: 1741
  ident: CR25
  article-title: Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2004.11.018
– volume: 313
  start-page: 1935
  year: 2006
  end-page: 1942
  ident: CR23
  article-title: Structure of the 70S ribosome complexed with mRNA and tRNA
  publication-title: Science
  doi: 10.1126/science.1131127
– volume: 441
  start-page: 1167
  year: 2006
  ident: BFnature07642_CR9
  publication-title: Nature
  doi: 10.1038/nature04740
– volume: 8
  start-page: 776
  year: 2007
  ident: BFnature07642_CR2
  publication-title: Nature Rev. Genet.
  doi: 10.1038/nrg2172
– volume: 313
  start-page: 1935
  year: 2006
  ident: BFnature07642_CR23
  publication-title: Science
  doi: 10.1126/science.1131127
– start-page: 472
  volume-title: Methods in Enzymology
  year: 1997
  ident: BFnature07642_CR32
– volume: 30
  start-page: 3141
  year: 2002
  ident: BFnature07642_CR17
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkf433
– volume: 386
  start-page: 833
  year: 2005
  ident: BFnature07642_CR18
  publication-title: Biol. Chem.
  doi: 10.1515/BC.2005.098
– volume: 8
  start-page: 1112
  year: 2002
  ident: BFnature07642_CR22
  publication-title: RNA
  doi: 10.1017/S135583820202006X
– volume: 15
  start-page: 177
  year: 2008
  ident: BFnature07642_CR12
  publication-title: Nature Struct. Mol. Biol.
  doi: 10.1038/nsmb.1371
– volume: 8
  start-page: R239
  year: 2007
  ident: BFnature07642_CR8
  publication-title: Genome Biol.
  doi: 10.1186/gb-2007-8-11-r239
– volume: 111
  start-page: 747
  year: 2002
  ident: BFnature07642_CR4
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)01134-0
– volume: 15
  start-page: 439
  year: 1999
  ident: BFnature07642_CR6
  publication-title: Trends Genet.
  doi: 10.1016/S0168-9525(99)01856-9
– volume: 14
  start-page: 1459
  year: 2006
  ident: BFnature07642_CR11
  publication-title: Structure
  doi: 10.1016/j.str.2006.07.008
– volume: 441
  start-page: 1172
  year: 2006
  ident: BFnature07642_CR13
  publication-title: Nature
  doi: 10.1038/nature04819
– volume: 24
  start-page: 1558
  year: 2006
  ident: BFnature07642_CR7
  publication-title: Nature Biotechnol.
  doi: 10.1038/nbt1268
– volume: 258
  start-page: 480
  year: 1996
  ident: BFnature07642_CR28
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1996.0263
– ident: BFnature07642_CR19
  doi: 10.1093/nar/gkn911
– volume: 18
  start-page: 49
  year: 2005
  ident: BFnature07642_CR30
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.02.032
– volume: 8
  start-page: 1898
  year: 2003
  ident: BFnature07642_CR35
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg170
– volume: 11
  start-page: 1729
  year: 2004
  ident: BFnature07642_CR25
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2004.11.018
– volume: 70
  start-page: 5769
  year: 2004
  ident: BFnature07642_CR29
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.70.10.5769-5777.2004
– volume: 5
  start-page: 24
  year: 2006
  ident: BFnature07642_CR15
  publication-title: Microb. Cell Fact.
  doi: 10.1186/1475-2859-5-24
– volume: 184
  start-page: 2005
  year: 2002
  ident: BFnature07642_CR16
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.184.7.2005-2018.2002
– volume: 29
  start-page: 11
  year: 2004
  ident: BFnature07642_CR1
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2003.11.004
– volume: 99
  start-page: 15908
  year: 2002
  ident: BFnature07642_CR5
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.212628899
– volume: 9
  start-page: 1043
  year: 2002
  ident: BFnature07642_CR14
  publication-title: Chem. Biol.
  doi: 10.1016/S1074-5521(02)00224-7
– volume: 59
  start-page: 487
  year: 2005
  ident: BFnature07642_CR3
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.59.030804.121336
– volume: 53
  start-page: 240
  year: 1997
  ident: BFnature07642_CR33
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444996012255
– volume: 283
  start-page: 22347
  year: 2008
  ident: BFnature07642_CR26
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C800120200
– start-page: 287
  volume-title: The RNA World
  year: 1999
  ident: BFnature07642_CR34
– volume: 246
  start-page: 291
  year: 1997
  ident: BFnature07642_CR31
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1997.00291.x
– volume: 455
  start-page: 1263
  year: 2008
  ident: BFnature07642_CR27
  publication-title: Nature
  doi: 10.1038/nature07326
– volume: 312
  start-page: 1208
  year: 2006
  ident: BFnature07642_CR10
  publication-title: Science
  doi: 10.1126/science.1128451
– volume: 34
  start-page: 6587
  year: 2006
  ident: BFnature07642_CR20
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl963
– volume: 9
  start-page: 640
  year: 2008
  ident: BFnature07642_CR21
  publication-title: RNA
  doi: 10.1261/rna.2202703
– volume: 432
  start-page: 411
  year: 2004
  ident: BFnature07642_CR24
  publication-title: Nature
  doi: 10.1038/nature03037
SSID ssj0005174
ssj0014407
Score 2.4199474
Snippet A switch for antimicrobials? Riboswitches are structured RNA elements that bind a specific ligand to control expression of the gene to which they are linked....
The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches. Flavin mononucleotide (FMN)-specific riboswitches, also known...
The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches (1-3). Flavin mononucleotide (FMN)specific riboswitches (4,5),...
The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches1-3. Flavin mononucleotide (FMN)- specific riboswitches4,5, also...
The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches 1 – 3 . Flavin mononucleotide (FMN)-specific riboswitches 4 , 5...
SourceID pubmedcentral
proquest
gale
pubmed
pascalfrancis
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 233
SubjectTerms Antibiotics
Bacteria
Biological and medical sciences
Biosynthesis
Coenzymes - metabolism
Crystalline structure
Crystals
Deregulation
Enzyme kinetics
Flavin mononucleotide
Flavin Mononucleotide - metabolism
Fundamental and applied biological sciences. Psychology
Fusobacterium nucleatum
Fusobacterium nucleatum - chemistry
Fusobacterium nucleatum - genetics
Fusobacterium nucleatum - metabolism
Gene Expression Regulation, Bacterial
Genetic regulation
Humanities and Social Sciences
Hydrogen bonds
letter
Models, Molecular
Molecular biophysics
multidisciplinary
Nucleic Acid Conformation
Observations
Properties
Proteins
RNA, Bacterial - chemistry
RNA, Bacterial - metabolism
Science
Science (multidisciplinary)
Structure in molecular biology
Title Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch
URI https://link.springer.com/article/10.1038/nature07642
https://www.ncbi.nlm.nih.gov/pubmed/19169240
https://www.proquest.com/docview/204543426
https://www.proquest.com/docview/20415746
https://www.proquest.com/docview/67019731
https://pubmed.ncbi.nlm.nih.gov/PMC3726715
Volume 458
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExISQmx8hUGJ0PiUosWxYydPqFQrg4cKjU30LbIdu0QaSUda0PjrOSduuoyylzzEP8WxfT7f5S6_Q2g_wRrnqYoCw0US0FzwIKU6CijTcFjmJs1Nk20xYUen9PM0nrrcnNqlVa50YqOo80rZb-QHljadEjhP3s_PA1s0ygZXXQWNm2jbMpfZjC4-5esMjyskzO73vJAkBy1rJvjwNOodSE4t35mLGqbItLUtNhmf_-ZQXgmkNufT-B666wxLf9hKwg66octddKtJ8FT1Ltpxm7j23zim6bf30WRU6fLPxQ_td3lEVemLMvdBrOzNmSvu5csLX_jmTPwqSh-moiotDXK1KHJAFbKqfxew-g_Q6fjwZHQUuAILgeJhvAAnNBVcRZJwIhNjlGZGMclZKFMClg_HFkYjrnEitQFLkOU6lnmUxLFhwqTkIdqCHvVj5McCHBU451IWKYp1IrRRysiU5RQLJiMPvVvNcqYc-7gtgnGWNVFwkmSXlsRD-x143pJu_AdmlyuzNBalzZOZiWVdZ8OTb6NJNgTVArYJC4mHXmyCffp63AO9diBTwXsp4f5OgNFZgqwecq-HVPPiPLvU-qrXOmuXdNNjBj0h6wYKtkTIwI2FflZSlzm9UmfdLvDQ864VFIKN8ohSV8sGgmNOr0EwS8HPCfTwqJXh9SSDswAOeegh3pPuDmDJyPstZfG9ISUnPGIcxx56udoH67fesHZPrh3dHrrdRu1IgKOnaGvxc6mfgfG3kINmi8M1GWF7HX8coO0Ph5Mvx38BVP5eDg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIQQSQmx8hcFmoY0vKVriJHbygFBVmFo2-gCb6FtwHLtEGklHWqbyP_E_ck6cdBllb3uNf4pj3_nuHJ9_h9Bu6Eo3jQSxFeOh7aec2ZEvie1TCc4yVVGqqmyLER2c-B_HwXgN_Wnuwui0ysYmVoY6LYT-R76vadN9D_zJu-mZrYtG6cPVpoJGrRWHcnEOO7by7fA9iHePkIMPx_2BbYoK2II5wQw2XhFngiQe85JQKSGpEjRh1EkiD7w9czXMJ0y6YSIVRD80lUGSkjAIFOVKcy-Bxb8BftfRC4qN2TKj5BLps7kO6Hjhfs3S6TDqk44DNG7gzpSXIBJV19JYFez-m7N56eC28ocH99BdE8jiXq15G2hN5pvoZpVQKspNtGGMRolfGWbr1_fRqF_I_Pfih8Rt3lKRY56nGNRYP5yYYmI4WWCO1Sn_leUYpr7INe1yMctSQGVJUZ5noG0P0Mm1zP1DtA49yscIBxw2RuBXI0qE78qQSyWESiKa-i6nCbHQm2aWY2HYznXRjdO4OnX3wviCSCy024KnNcnHf2BaXLGmzch1Xs6Ez8sy7h1_7Y_iHpgyiIWo41no-SrY8MvnDuilAakCvktwcxsCRqcJuTrIrQ5STLOz-ELri07rpBbpqtdsd5SsHSjELg6FbTP002hdbOxYGberzkI7bSsYIH2qxHNZzCuIGzD_CgTVlP_Mgx4e1Tq8nGTYnEQQU1qIdbS7BWjy825Lnn2vSNA9RihzAwvtNetg-dUrZPfkytHtoFuD409H8dFwdLiFbtcnhp7tkqdoffZzLp9B4DlLtqvljtG367YvfwFuWJd-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELamIRASQmy8hcFmoY03KWriJHbyAaGqo9oYqhBsot-C49gl0kg60jKVf8a_45w46TLKvu1r_CiOfee7c3x-DqHd0JVuGgliK8ZD2085syNfEtunEpxlqqJUVdkWI3pw4n8YB-M19Ke5C6PTKhubWBnqtBD6H3lP06b7HviTnjJZEZ_2h--mZ7YuIKUPWptqGrWGHMnFOezeyreH-yDqPUKG748HB7YpMGAL5gQz2IRFnAmSeMxLQqWEpErQhFEniTzw_MzVMJ8w6YaJVBAJ0VQGSUrCIFCUK83DBNb_BvMCVy8xNmbL7JJLBNDmaqDjhb2asdNh1CcdZ2hcwp0pL0E8qq6rsSrw_Td_89IhbuUbh_fQXRPU4n6thRtoTeab6GaVXCrKTbRhDEiJXxmW69f30WhQyPz34ofEbQ5TkWOepxhUWj-cmMJiOFlgjtUp_5XlGKa-yDUFczHLUkBlSVGeZ6B5D9DJtcz9Q7QOPcrHCAccNkngYyNKhO_KkEslhEoimvoupwmx0JtmlmNhmM91AY7TuDqB98L4gkgstNuCpzXhx39gWlyxptDItTZO-Lws4_7x18Eo7oNZg7iIOp6Fnq-CHX753AG9NCBVwHcJbm5GwOg0OVcHudVBiml2Fl9ofdFpndQiXfWa7Y6StQOFOMahsIWGfhqti41NK-N2BVpop20FY6RPmHgui3kFcQPmX4Ggmv6fedDDo1qHl5MMG5UI4ksLsY52twBNhN5tybPvFSG6xwhlbmChvWYdLL96heyeXDm6HXQLLEv88XB0tIVu14eHnu2Sp2h99nMun0EMOku2q9WO0bfrNi9_AYVkm7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coenzyme+recognition+and+gene+regulation+by+a+flavin+mononucleotide+riboswitch&rft.jtitle=Nature+%28London%29&rft.au=Serganov%2C+Alexander&rft.au=Huang%2C+Lili&rft.au=Patel%2C+Dinshaw+J&rft.date=2009-03-12&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=458&rft.issue=7235&rft.spage=233&rft_id=info:doi/10.1038%2Fnature07642&rft.externalDocID=A196152603
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon