Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch
A switch for antimicrobials? Riboswitches are structured RNA elements that bind a specific ligand to control expression of the gene to which they are linked. Several bacterial genes involved in the transport and synthesis of riboflavin and related compounds are regulated by a riboswitch that binds f...
Saved in:
Published in | Nature Vol. 458; no. 7235; pp. 233 - 237 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
12.03.2009
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 0028-0836 1476-4687 1476-4687 1476-4679 |
DOI | 10.1038/nature07642 |
Cover
Loading…
Abstract | A switch for antimicrobials?
Riboswitches are structured RNA elements that bind a specific ligand to control expression of the gene to which they are linked. Several bacterial genes involved in the transport and synthesis of riboflavin and related compounds are regulated by a riboswitch that binds flavin mononucleotide (FMN). Serganov
et al
. report the unusual structure of the metabolite-sensing domain bound to FMN, riboflavin and an antibiotic. The relatively open ligand-binding pocket suggests that antimicrobials based on FMN could be devised.
This paper reports the unusual structure of the metabolite-sensing domain of a flavin mononucleotide (FMN)-specific riboswitch bound to FMN, riboflavin and an antibiotic. The relatively open ligand-binding pocket suggests that antimicrobials based on FMN could be devised.
The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches
1
,
2
,
3
. Flavin mononucleotide (FMN)-specific riboswitches
4
,
5
, also known as RFN elements
6
, direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin B
2
) and related compounds. Here we present the crystal structures of the
Fusobacterium nucleatum
riboswitch bound to FMN, riboflavin and antibiotic roseoflavin
7
. The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and Mg
2+
-mediated contacts with the phosphate moiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN-binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains. |
---|---|
AbstractList | The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches. Flavin mononucleotide (FMN)-specific riboswitches, also known as RFN elements, direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin B sub(2)) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin. The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and Mg super(2+)-mediated contacts with the phosphate moiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN- binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains. The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches. Flavin mononucleotide (FMN)-specific riboswitches, also known as RFN elements, direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin B(2)) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin. The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and Mg(2+)-mediated contacts with the phosphate moiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN-binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains.The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches. Flavin mononucleotide (FMN)-specific riboswitches, also known as RFN elements, direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin B(2)) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin. The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and Mg(2+)-mediated contacts with the phosphate moiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN-binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains. The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches 1 – 3 . Flavin mononucleotide (FMN)-specific riboswitches 4 , 5 , also known as RFN elements 6 , direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin B 2 ) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin 7 . The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and Mg 2+ -mediated contacts with the phosphate moiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN-binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains. The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches1-3. Flavin mononucleotide (FMN)- specific riboswitches4,5, also known as RFN elements6, direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin B2) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin7. The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and Mg^sup 2+^-mediated contacts with the phosphate moiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN-binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains. [PUBLICATION ABSTRACT] The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches. Flavin mononucleotide (FMN)-specific riboswitches, also known as RFN elements, direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin B(2)) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin. The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and Mg(2+)-mediated contacts with the phosphate moiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN-binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains. A switch for antimicrobials? Riboswitches are structured RNA elements that bind a specific ligand to control expression of the gene to which they are linked. Several bacterial genes involved in the transport and synthesis of riboflavin and related compounds are regulated by a riboswitch that binds flavin mononucleotide (FMN). Serganov et al . report the unusual structure of the metabolite-sensing domain bound to FMN, riboflavin and an antibiotic. The relatively open ligand-binding pocket suggests that antimicrobials based on FMN could be devised. This paper reports the unusual structure of the metabolite-sensing domain of a flavin mononucleotide (FMN)-specific riboswitch bound to FMN, riboflavin and an antibiotic. The relatively open ligand-binding pocket suggests that antimicrobials based on FMN could be devised. The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches 1 , 2 , 3 . Flavin mononucleotide (FMN)-specific riboswitches 4 , 5 , also known as RFN elements 6 , direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin B 2 ) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin 7 . The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and Mg 2+ -mediated contacts with the phosphate moiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN-binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains. The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches (1-3). Flavin mononucleotide (FMN)specific riboswitches (4,5), also known as RFN elements (6), direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin [B.sub.2]) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin (7). The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and [Mg.sup.2+]-mediated contacts with the phosphatemoiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN-binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains. |
Audience | Academic |
Author | Patel, Dinshaw J. Serganov, Alexander Huang, Lili |
Author_xml | – sequence: 1 givenname: Alexander surname: Serganov fullname: Serganov, Alexander email: serganoa@mskcc.org organization: Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA – sequence: 2 givenname: Lili surname: Huang fullname: Huang, Lili organization: Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA – sequence: 3 givenname: Dinshaw J. surname: Patel fullname: Patel, Dinshaw J. email: pateld@mskcc.org organization: Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21206871$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19169240$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0t2L1DAQAPAgJ97e6ZPvUgQF0Z75aJP2RVgWPw6OE_TEx5CmSS9Hm-wl7en615verrtbWZE-FKa_TKYzcwKOrLMKgKcIniFIirdW9INXkNEMPwAzlDGaZrRgR2AGIS5SWBB6DE5CuIEQ5ohlj8AxKhEtcQZn4HLhlP216lTilXSNNb1xNhG2Thplx2AztOI-Vq0SkehW3BmbdC7WMMhWud7UUZnKhR-ml9ePwUMt2qCebN6n4NuH91eLT-nF54_ni_lFKhnM-zTHpWASV4SRqtBaKqolrRiFVUkowgyNLMNMoaJSGhNEa5VXNS7yXFOhS3IK3q3zLoeqU7VUtvei5UtvOuFX3AnDp1-sueaNu-OEYcpQHhO83CTw7nZQoeedCVK1rbDKDYFTBlHJCPovxDBDOctohM__gjdu8DZ2YTR5RjI8onSNGtEqbqx2sTo5tjoWGceqTQzPUUlRjikku6QTL5fmlu-jswMoPrXqjDyY9dXkQDS9-tk3YgiBn3_9MrWv_23nV98Xl1P9bH8u24H8WbgIXmyACFK02gsrTdg6jDCMuzu2Ha2d9C4ErzSXpr9fxPhvpuUI8nH5-d7y70rdntlef1C_WesQlW2U383rEP8NHNASVw |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1099_mic_0_001508 crossref_primary_10_1002_jcb_27252 crossref_primary_10_1021_acscentsci_2c01237 crossref_primary_10_1021_ja510549b crossref_primary_10_1002_cbic_200900697 crossref_primary_10_1038_nsmb_2405 crossref_primary_10_1021_jp104926t crossref_primary_10_1007_s11427_021_2116_2 crossref_primary_10_1038_nsmb_3073 crossref_primary_10_1016_j_bbrc_2023_01_028 crossref_primary_10_34172_bi_2021_17 crossref_primary_10_1016_j_molcel_2011_08_024 crossref_primary_10_1021_acs_jcim_4c01324 crossref_primary_10_1002_wrna_1175 crossref_primary_10_1016_j_bmcl_2011_04_033 crossref_primary_10_1080_21505594_2021_1963909 crossref_primary_10_1093_nar_gkr1154 crossref_primary_10_1016_j_ymeth_2019_05_012 crossref_primary_10_1134_S1022795412100109 crossref_primary_10_1002_ange_201803052 crossref_primary_10_1021_ar200035g crossref_primary_10_3390_ijms24065497 crossref_primary_10_1021_acschembio_1c00880 crossref_primary_10_3390_ijms21061926 crossref_primary_10_1016_j_biochi_2015_06_028 crossref_primary_10_1017_S0033583510000144 crossref_primary_10_1093_nar_gkad222 crossref_primary_10_1016_j_biochi_2013_02_012 crossref_primary_10_1007_s00438_019_01642_z crossref_primary_10_1002_ange_201403579 crossref_primary_10_1016_j_chembiol_2014_01_004 crossref_primary_10_1002_ange_201407385 crossref_primary_10_1038_s41589_022_01121_4 crossref_primary_10_1007_s13205_022_03348_3 crossref_primary_10_1038_nature15542 crossref_primary_10_3390_antibiotics11091177 crossref_primary_10_1021_acschembio_8b00533 crossref_primary_10_1016_j_cell_2014_03_008 crossref_primary_10_1371_journal_pgen_1011188 crossref_primary_10_1080_07391102_2019_1665587 crossref_primary_10_1146_annurev_biophys_070816_034125 crossref_primary_10_1039_D3CP03142J crossref_primary_10_1016_j_molcel_2009_02_019 crossref_primary_10_1021_acschembio_7b01013 crossref_primary_10_1021_acs_jpcb_0c05625 crossref_primary_10_1128_spectrum_03207_23 crossref_primary_10_3389_fnut_2022_978831 crossref_primary_10_1107_S1399004714005161 crossref_primary_10_1021_acs_jcim_4c00420 crossref_primary_10_1039_c2ra01211a crossref_primary_10_1128_AEM_01541_10 crossref_primary_10_1038_nchembio_1606 crossref_primary_10_1016_j_abb_2023_109762 crossref_primary_10_1038_nchembio_1607 crossref_primary_10_1128_MMBR_00030_10 crossref_primary_10_1261_rna_054890_115 crossref_primary_10_2174_2666001602666220722112558 crossref_primary_10_1002_anie_201803052 crossref_primary_10_1038_s41592_022_01455_w crossref_primary_10_1021_jm500868e crossref_primary_10_1021_acs_jctc_2c00381 crossref_primary_10_1371_journal_pone_0073984 crossref_primary_10_31857_S032097252108008X crossref_primary_10_1016_j_tibs_2015_02_004 crossref_primary_10_1021_acs_analchem_0c03941 crossref_primary_10_1074_jbc_REV119_006860 crossref_primary_10_1039_D0NP00037J crossref_primary_10_1021_bi101842u crossref_primary_10_3390_ijms251910495 crossref_primary_10_1039_D4SC06189F crossref_primary_10_1080_15476286_2016_1216304 crossref_primary_10_1016_j_jmb_2023_168070 crossref_primary_10_3390_ijms25020735 crossref_primary_10_1080_15476286_2023_2231708 crossref_primary_10_1016_j_jbiotec_2017_04_013 crossref_primary_10_1016_j_ymben_2021_08_009 crossref_primary_10_1093_nar_gkaa546 crossref_primary_10_1093_nar_gkp1106 crossref_primary_10_1093_nar_gkaa427 crossref_primary_10_1089_ars_2011_4290 crossref_primary_10_1111_j_1747_0285_2010_00946_x crossref_primary_10_1021_ar200039b crossref_primary_10_1073_pnas_2410206121 crossref_primary_10_1016_j_nbt_2010_03_002 crossref_primary_10_1261_rna_1852310 crossref_primary_10_1080_15476286_2020_1712544 crossref_primary_10_1016_j_bbagrm_2009_07_002 crossref_primary_10_1146_annurev_biophys_101211_113224 crossref_primary_10_1016_j_str_2015_05_016 crossref_primary_10_1111_bph_17308 crossref_primary_10_1146_annurev_biochem_060815_014628 crossref_primary_10_1016_j_chembiol_2015_06_007 crossref_primary_10_4155_fmc_2017_0063 crossref_primary_10_1021_acs_jcim_4c02158 crossref_primary_10_1093_nar_gks616 crossref_primary_10_3389_fmicb_2017_02012 crossref_primary_10_1007_s00253_009_2194_2 crossref_primary_10_1093_nar_gkq433 crossref_primary_10_1021_acs_analchem_6b02498 crossref_primary_10_1002_wrna_1153 crossref_primary_10_1021_jacs_2c02685 crossref_primary_10_1021_acsomega_3c06826 crossref_primary_10_1016_j_jmb_2012_06_038 crossref_primary_10_1016_j_sbi_2009_02_002 crossref_primary_10_1016_j_tibs_2022_08_009 crossref_primary_10_1016_j_jsb_2017_12_006 crossref_primary_10_1038_s41589_018_0114_4 crossref_primary_10_1002_anie_201403579 crossref_primary_10_1093_bioinformatics_btae155 crossref_primary_10_1124_pr_120_019554 crossref_primary_10_1016_j_jmb_2022_167585 crossref_primary_10_1261_rna_080074_124 crossref_primary_10_1021_acs_jcim_4c01708 crossref_primary_10_1002_anie_201407385 crossref_primary_10_15171_bi_2018_03 crossref_primary_10_1111_1751_7915_13919 crossref_primary_10_1016_j_gene_2019_05_036 crossref_primary_10_3390_molecules22071169 crossref_primary_10_1016_j_ijmm_2013_09_002 crossref_primary_10_1093_nar_gkq138 crossref_primary_10_1128_jmbe_v19i2_1501 crossref_primary_10_1016_j_cels_2021_04_011 crossref_primary_10_4014_jmb_2212_12026 crossref_primary_10_1016_j_ymeth_2018_02_014 crossref_primary_10_1261_rna_079414_122 crossref_primary_10_1261_rna_067975_118 crossref_primary_10_1080_14728222_2019_1618274 crossref_primary_10_1021_acschembio_1c00014 crossref_primary_10_1016_j_bbagrm_2014_02_014 crossref_primary_10_1093_nar_gkad891 crossref_primary_10_1016_j_gene_2016_07_035 crossref_primary_10_1002_anie_201914786 crossref_primary_10_1016_j_bbagrm_2014_02_012 crossref_primary_10_1002_chem_201303098 crossref_primary_10_1016_j_bbagrm_2009_06_004 crossref_primary_10_4161_rna_28526 crossref_primary_10_1007_s11426_010_4174_x crossref_primary_10_1021_acs_biochem_9b00122 crossref_primary_10_1002_jmr_978 crossref_primary_10_1021_jp400751w crossref_primary_10_1080_17460441_2022_2134852 crossref_primary_10_1371_journal_pcbi_1009603 crossref_primary_10_3389_fmicb_2023_1154130 crossref_primary_10_3390_ijms251910682 crossref_primary_10_1128_microbiolspec_RWR_0025_2018 crossref_primary_10_1246_bcsj_20150063 crossref_primary_10_1016_j_jmb_2009_11_030 crossref_primary_10_1093_nar_gkac775 crossref_primary_10_1016_j_jmb_2011_01_049 crossref_primary_10_1016_j_jmb_2009_04_083 crossref_primary_10_1021_acs_jcim_4c00852 crossref_primary_10_1002_tcr_202100322 crossref_primary_10_1093_nar_gkr565 crossref_primary_10_4161_rna_8_4_15586 crossref_primary_10_1021_acs_jpcb_1c02702 crossref_primary_10_1038_nchembio_631 crossref_primary_10_1007_s10847_009_9609_7 crossref_primary_10_1261_rna_061234_117 crossref_primary_10_1038_s41592_020_0878_9 crossref_primary_10_3390_microorganisms10112303 crossref_primary_10_1016_j_micres_2013_09_005 crossref_primary_10_1186_s12864_018_4951_z crossref_primary_10_1371_journal_pcbi_1008387 crossref_primary_10_4155_fmc_09_149 crossref_primary_10_3390_microorganisms12050960 crossref_primary_10_1002_ange_201914786 crossref_primary_10_1038_nature11607 crossref_primary_10_1038_nrd_2018_93 crossref_primary_10_1021_cb900146k crossref_primary_10_1073_pnas_1111701108 crossref_primary_10_2142_biophysico_bppb_v20_0047 crossref_primary_10_1016_j_bmcl_2021_128236 crossref_primary_10_1021_acs_jctc_4c00681 crossref_primary_10_1016_j_yjsbx_2020_100035 crossref_primary_10_1021_acs_jcim_7b00139 crossref_primary_10_1186_s12859_015_0523_2 crossref_primary_10_2217_fmb_09_46 crossref_primary_10_15252_embj_201489209 crossref_primary_10_1134_S0006297921080071 crossref_primary_10_1038_s41573_022_00521_4 crossref_primary_10_1261_rna_039909_113 crossref_primary_10_15171_apb_2020_012 crossref_primary_10_1038_nature11152 crossref_primary_10_1016_j_synbio_2024_12_001 crossref_primary_10_3390_antibiotics11091243 crossref_primary_10_1093_nar_gkab486 crossref_primary_10_1021_jacs_3c09230 crossref_primary_10_1039_c2cc34506d crossref_primary_10_1146_annurev_biophys_070816_034042 crossref_primary_10_1016_j_cell_2012_12_024 crossref_primary_10_1128_AAC_01282_15 crossref_primary_10_1021_bi1012645 crossref_primary_10_1016_j_chembiol_2017_03_014 crossref_primary_10_1016_j_chembiol_2019_02_011 crossref_primary_10_1128_JB_00293_20 crossref_primary_10_1186_s12859_021_04349_4 crossref_primary_10_3390_life15010104 crossref_primary_10_1016_j_molcel_2010_11_026 crossref_primary_10_1016_j_jbc_2024_105730 crossref_primary_10_1111_mmi_12810 crossref_primary_10_3103_S0891416814040090 |
Cites_doi | 10.1016/S0092-8674(02)01134-0 10.1093/nar/gkf433 10.1073/pnas.212628899 10.1074/jbc.C800120200 10.1038/nsmb.1371 10.1186/1475-2859-5-24 10.1016/j.tibs.2003.11.004 10.1261/rna.2202703 10.1146/annurev.micro.59.030804.121336 10.1006/jmbi.1996.0263 10.1016/S1074-5521(02)00224-7 10.1515/BC.2005.098 10.1016/j.molcel.2005.02.032 10.1038/nature07326 10.1016/j.str.2006.07.008 10.1038/nbt1268 10.1126/science.1128451 10.1128/JB.184.7.2005-2018.2002 10.1038/nature03037 10.1016/S0168-9525(99)01856-9 10.1093/nar/gkl963 10.1017/S135583820202006X 10.1128/AEM.70.10.5769-5777.2004 10.1038/nrg2172 10.1107/S0907444996012255 10.1111/j.1432-1033.1997.00291.x 10.1093/emboj/cdg170 10.1038/nature04740 10.1038/nature04819 10.1186/gb-2007-8-11-r239 10.1016/j.chembiol.2004.11.018 10.1126/science.1131127 10.1093/nar/gkn911 |
ContentType | Journal Article |
Copyright | Macmillan Publishers Limited. All rights reserved 2009 2009 INIST-CNRS COPYRIGHT 2009 Nature Publishing Group Copyright Nature Publishing Group Mar 12, 2009 |
Copyright_xml | – notice: Macmillan Publishers Limited. All rights reserved 2009 – notice: 2009 INIST-CNRS – notice: COPYRIGHT 2009 Nature Publishing Group – notice: Copyright Nature Publishing Group Mar 12, 2009 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7T7 7X8 5PM |
DOI | 10.1038/nature07642 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Middle School (Gale in Context) ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni) Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) Industrial and Applied Microbiology Abstracts (Microbiology A) MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics Biology |
EISSN | 1476-4687 1476-4679 |
EndPage | 237 |
ExternalDocumentID | PMC3726715 1667625851 A196152603 19169240 21206871 10_1038_nature07642 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM073618 – fundername: National Institute of General Medical Sciences : NIGMS grantid: R01 GM073618 || GM |
GroupedDBID | --- --Z -DZ -ET -~X .-4 .55 .CO .GJ .HR .XZ 00M 07C 0R~ 0WA 123 186 1VR 29M 2KS 2XV 354 39C 3O- 3V. 4.4 41X 4R4 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L 9M8 A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYOK AAYZH ABAWZ ABDBF ABDQB ABEFU ABFSI ABIVO ABJCF ABJNI ABLJU ABNNU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACRPL ACUHS ACWUS ADBBV ADFRT ADNMO ADUKH ADYSU ADZCM AENEX AEUYN AFFDN AFFNX AFHKK AFKRA AFLOW AFRAH AFSHS AGAYW AGCDD AGGDT AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCR BCU BDKGC BEC BENPR BES BGLVJ BHPHI BIN BKEYQ BKKNO BKOMP BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DB5 DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L-9 L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S MVM N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OHT OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PEA PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7L X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YYP YZZ Z5M ZCA ZHY ZKB ~02 ~7V ~88 ~8M ~G0 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADGHP ADXHL AETEA AFANA AGQPQ ALPWD ATHPR CITATION PHGZM PHGZT 08P 1CY 1OL 1VW 3EH 41~ 42X 663 79B AAJYS AAVBQ ABDPE ACBNA ACBTR ACTDY ADRHT AEZWR AFBBN AFHIU AHWEU AIXLP AJUXI FA8 FAC HG6 IQODW J5H LGEZI LOTEE N4W NADUK NFIDA NXXTH ODYON PJZUB PPXIY PQGLB PV9 QS- R4F RHI SKT TUD UBY UHB USG VOH XOL YJ6 YQI YQJ YV5 YXA YYQ ZCG ZE2 ZGI ZY4 CGR CUY CVF ECM EIF NPM AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 36B 7T7 ABCQX AFWHJ AHBCP AHOSX AIBTJ D0L NNMJJ QF4 QM4 QN7 QO4 7X8 5PM |
ID | FETCH-LOGICAL-c705t-529a7c2b373b8ffce6fc6b760b9361271c705427e18bef2316de5bd2855f6af93 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 14:37:49 EDT 2025 Fri Jul 11 00:14:17 EDT 2025 Fri Jul 11 11:20:37 EDT 2025 Fri Jul 25 09:00:47 EDT 2025 Fri Jun 13 00:44:58 EDT 2025 Tue Jun 10 15:35:38 EDT 2025 Tue Jun 10 21:30:58 EDT 2025 Fri Jun 27 05:50:25 EDT 2025 Fri Jun 27 05:53:40 EDT 2025 Thu Apr 03 07:01:56 EDT 2025 Mon Jul 21 09:16:43 EDT 2025 Tue Jul 01 02:42:34 EDT 2025 Thu Apr 24 22:58:01 EDT 2025 Fri Feb 21 02:37:54 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7235 |
Keywords | Riboswitch Vitamin Riboflavin B-Vitamins Biosynthesis Metabolism Cofactor Bacteroidaceae Regulation(control) Fusobacterium nucleatum Gene Three dimensional structure Bacteria Molecular complex Recognition Crystalline structure |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c705t-529a7c2b373b8ffce6fc6b760b9361271c705427e18bef2316de5bd2855f6af93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3726715 |
PMID | 19169240 |
PQID | 204543426 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3726715 proquest_miscellaneous_67019731 proquest_miscellaneous_20415746 proquest_journals_204543426 gale_infotracgeneralonefile_A196152603 gale_infotraccpiq_196152603 gale_infotracacademiconefile_A196152603 gale_incontextgauss_ISR_A196152603 gale_incontextgauss_ATWCN_A196152603 pubmed_primary_19169240 pascalfrancis_primary_21206871 crossref_citationtrail_10_1038_nature07642 crossref_primary_10_1038_nature07642 springer_journals_10_1038_nature07642 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-03-12 |
PublicationDateYYYYMMDD | 2009-03-12 |
PublicationDate_xml | – month: 03 year: 2009 text: 2009-03-12 day: 12 |
PublicationDecade | 2000 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2009 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | de La Fortelle, Bricogne (CR32) 1997 Gilbert, Rambo, Van Tyne, Batey (CR12) 2008; 15 Nudler, Mironov (CR1) 2004; 29 CR19 Krasilnikov, Mondragon (CR21) 2008; 9 Fan, Suri, Fiala, Live, Patel (CR28) 1996; 258 Feig, Uhlenbeck (CR34) 1999 Mironov (CR4) 2002; 111 Thore, Leibundgut, Ban (CR10) 2006; 312 Barrick, Breaker (CR8) 2007; 8 Montange, Batey (CR13) 2006; 441 Serganov (CR25) 2004; 11 Gelfand, Mironov, Jomantas, Kozlov, Perumov (CR6) 1999; 15 Serganov, Polonskaia, Ehresmann, Ehresmann, Patel (CR35) 2003; 8 Serganov (CR31) 1997; 246 Serganov, Polonskaia, Phan, Breaker, Patel (CR9) 2006; 441 Edwards, Ferre-D’Amare (CR11) 2006; 14 Vitreschak, Rodionov, Mironov, Gelfand (CR17) 2002; 30 Lescoute, Westhof (CR20) 2006; 34 Winkler, Cohen-Chalamish, Breaker (CR5) 2002; 99 Wickiser, Winkler, Breaker, Crothers (CR30) 2005; 18 Nahvi (CR14) 2002; 9 Winkler, Breaker (CR3) 2005; 59 Agmon, Bashan, Zarivach, Yonath (CR18) 2005; 386 Burgess, Smid, Rutten, van Sinderen (CR15) 2006; 5 Selmer (CR23) 2006; 313 Garst, Heroux, Rambo, Batey (CR26) 2008; 283 Murshudov, Vagin, Dodson (CR33) 1997; 53 Blount, Breaker (CR7) 2006; 24 Batey, Gilbert, Montange (CR24) 2004; 432 Kapatral (CR16) 2002; 184 Nagaswamy, Fox (CR22) 2002; 8 Serganov, Patel (CR2) 2007; 8 Burgess, O’Connell-Motherway, Sybesma, Hugenholtz, van Sinderen (CR29) 2004; 70 Serganov, Huang, Patel (CR27) 2008; 455 M Selmer (BFnature07642_CR23) 2006; 313 A Serganov (BFnature07642_CR27) 2008; 455 AG Vitreschak (BFnature07642_CR17) 2002; 30 JK Wickiser (BFnature07642_CR30) 2005; 18 C Burgess (BFnature07642_CR29) 2004; 70 WC Winkler (BFnature07642_CR3) 2005; 59 P Fan (BFnature07642_CR28) 1996; 258 RK Montange (BFnature07642_CR13) 2006; 441 A Serganov (BFnature07642_CR9) 2006; 441 I Agmon (BFnature07642_CR18) 2005; 386 JE Barrick (BFnature07642_CR8) 2007; 8 A Lescoute (BFnature07642_CR20) 2006; 34 KF Blount (BFnature07642_CR7) 2006; 24 S Thore (BFnature07642_CR10) 2006; 312 RT Batey (BFnature07642_CR24) 2004; 432 AS Krasilnikov (BFnature07642_CR21) 2008; 9 WC Winkler (BFnature07642_CR5) 2002; 99 A Serganov (BFnature07642_CR35) 2003; 8 E de La Fortelle (BFnature07642_CR32) 1997 A Serganov (BFnature07642_CR25) 2004; 11 V Kapatral (BFnature07642_CR16) 2002; 184 AD Garst (BFnature07642_CR26) 2008; 283 CM Burgess (BFnature07642_CR15) 2006; 5 E Nudler (BFnature07642_CR1) 2004; 29 GN Murshudov (BFnature07642_CR33) 1997; 53 U Nagaswamy (BFnature07642_CR22) 2002; 8 A Nahvi (BFnature07642_CR14) 2002; 9 SD Gilbert (BFnature07642_CR12) 2008; 15 TE Edwards (BFnature07642_CR11) 2006; 14 BFnature07642_CR19 A Serganov (BFnature07642_CR2) 2007; 8 A Serganov (BFnature07642_CR31) 1997; 246 MS Gelfand (BFnature07642_CR6) 1999; 15 AS Mironov (BFnature07642_CR4) 2002; 111 AL Feig (BFnature07642_CR34) 1999 |
References_xml | – volume: 111 start-page: 747 year: 2002 end-page: 756 ident: CR4 article-title: Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria publication-title: Cell doi: 10.1016/S0092-8674(02)01134-0 – volume: 30 start-page: 3141 year: 2002 end-page: 3151 ident: CR17 article-title: Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkf433 – volume: 99 start-page: 15908 year: 2002 end-page: 15913 ident: CR5 article-title: An mRNA structure that controls gene expression by binding FMN publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.212628899 – volume: 283 start-page: 22347 year: 2008 end-page: 22351 ident: CR26 article-title: Crystal structure of the lysine riboswitch regulatory mRNA element publication-title: J. Biol. Chem. doi: 10.1074/jbc.C800120200 – volume: 15 start-page: 177 year: 2008 end-page: 182 ident: CR12 article-title: Structure of the SAM-II riboswitch bound to -adenosylmethionine publication-title: Nature Struct. Mol. Biol. doi: 10.1038/nsmb.1371 – volume: 5 start-page: 24 year: 2006 ident: CR15 article-title: A general method for selection of riboflavin-overproducing food grade micro-organisms publication-title: Microb. Cell Fact. doi: 10.1186/1475-2859-5-24 – volume: 29 start-page: 11 year: 2004 end-page: 17 ident: CR1 article-title: The riboswitch control of bacterial metabolism publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2003.11.004 – volume: 9 start-page: 640 year: 2008 end-page: 643 ident: CR21 article-title: On the occurrence of the T-loop RNA folding motif in large RNA molecules publication-title: RNA doi: 10.1261/rna.2202703 – volume: 59 start-page: 487 year: 2005 end-page: 517 ident: CR3 article-title: Regulation of bacterial gene expression by riboswitches publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.59.030804.121336 – volume: 258 start-page: 480 year: 1996 end-page: 500 ident: CR28 article-title: Molecular recognition in the FMN-RNA aptamer complex publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1996.0263 – volume: 9 start-page: 1043 year: 2002 end-page: 1049 ident: CR14 article-title: Genetic control by a metabolite binding mRNA publication-title: Chem. Biol. doi: 10.1016/S1074-5521(02)00224-7 – start-page: 287 year: 1999 end-page: 319 ident: CR34 publication-title: The RNA World – volume: 386 start-page: 833 year: 2005 end-page: 844 ident: CR18 article-title: Symmetry at the active site of the ribosome: structural and functional implications publication-title: Biol. Chem. doi: 10.1515/BC.2005.098 – ident: CR19 – volume: 18 start-page: 49 year: 2005 end-page: 60 ident: CR30 article-title: The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.02.032 – volume: 455 start-page: 1263 year: 2008 end-page: 1267 ident: CR27 article-title: Structural insights into amino acid binding and gene control by a lysine riboswitch publication-title: Nature doi: 10.1038/nature07326 – volume: 14 start-page: 1459 year: 2006 end-page: 1468 ident: CR11 article-title: Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition publication-title: Structure doi: 10.1016/j.str.2006.07.008 – volume: 24 start-page: 1558 year: 2006 end-page: 1564 ident: CR7 article-title: Riboswitches as antibacterial drug targets publication-title: Nature Biotechnol. doi: 10.1038/nbt1268 – volume: 312 start-page: 1208 year: 2006 end-page: 1211 ident: CR10 article-title: Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand publication-title: Science doi: 10.1126/science.1128451 – volume: 184 start-page: 2005 year: 2002 end-page: 2018 ident: CR16 article-title: Genome sequence and analysis of the oral bacterium strain ATCC 25586 publication-title: J. Bacteriol. doi: 10.1128/JB.184.7.2005-2018.2002 – volume: 432 start-page: 411 year: 2004 end-page: 415 ident: CR24 article-title: Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine publication-title: Nature doi: 10.1038/nature03037 – volume: 15 start-page: 439 year: 1999 end-page: 442 ident: CR6 article-title: A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes publication-title: Trends Genet. doi: 10.1016/S0168-9525(99)01856-9 – volume: 34 start-page: 6587 year: 2006 end-page: 6604 ident: CR20 article-title: The interaction networks of structured RNAs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl963 – volume: 8 start-page: 1112 year: 2002 end-page: 1119 ident: CR22 article-title: Frequent occurrence of the T-loop RNA folding motif in ribosomal RNAs publication-title: RNA doi: 10.1017/S135583820202006X – volume: 70 start-page: 5769 year: 2004 end-page: 5777 ident: CR29 article-title: Riboflavin production in : potential for production of vitamin-enriched foods publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.70.10.5769-5777.2004 – volume: 8 start-page: 776 year: 2007 end-page: 790 ident: CR2 article-title: Ribozymes, riboswitches and beyond: regulation of gene expression without proteins publication-title: Nature Rev. Genet. doi: 10.1038/nrg2172 – volume: 53 start-page: 240 year: 1997 end-page: 255 ident: CR33 article-title: Refinement of macromolecular structures by the maximum-likelihood method publication-title: Acta Crystallogr. D doi: 10.1107/S0907444996012255 – volume: 246 start-page: 291 year: 1997 end-page: 300 ident: CR31 article-title: Ribosomal protein S15 from : cloning, sequencing, overexpression of the gene and RNA-binding properties of the protein publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1997.00291.x – volume: 8 start-page: 1898 year: 2003 end-page: 1908 ident: CR35 article-title: Ribosomal protein S15 represses its own translation via adaptation of an rRNA-like fold within its mRNA publication-title: EMBO J. doi: 10.1093/emboj/cdg170 – volume: 441 start-page: 1167 year: 2006 end-page: 1171 ident: CR9 article-title: Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch publication-title: Nature doi: 10.1038/nature04740 – volume: 441 start-page: 1172 year: 2006 end-page: 1175 ident: CR13 article-title: Structure of the -adenosylmethionine riboswitch regulatory mRNA element publication-title: Nature doi: 10.1038/nature04819 – volume: 8 start-page: R239 year: 2007 ident: CR8 article-title: The distributions, mechanisms, and structures of metabolite-binding riboswitches publication-title: Genome Biol. doi: 10.1186/gb-2007-8-11-r239 – start-page: 472 year: 1997 end-page: 494 ident: CR32 publication-title: Methods in Enzymology – volume: 11 start-page: 1729 year: 2004 end-page: 1741 ident: CR25 article-title: Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2004.11.018 – volume: 313 start-page: 1935 year: 2006 end-page: 1942 ident: CR23 article-title: Structure of the 70S ribosome complexed with mRNA and tRNA publication-title: Science doi: 10.1126/science.1131127 – volume: 441 start-page: 1167 year: 2006 ident: BFnature07642_CR9 publication-title: Nature doi: 10.1038/nature04740 – volume: 8 start-page: 776 year: 2007 ident: BFnature07642_CR2 publication-title: Nature Rev. Genet. doi: 10.1038/nrg2172 – volume: 313 start-page: 1935 year: 2006 ident: BFnature07642_CR23 publication-title: Science doi: 10.1126/science.1131127 – start-page: 472 volume-title: Methods in Enzymology year: 1997 ident: BFnature07642_CR32 – volume: 30 start-page: 3141 year: 2002 ident: BFnature07642_CR17 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkf433 – volume: 386 start-page: 833 year: 2005 ident: BFnature07642_CR18 publication-title: Biol. Chem. doi: 10.1515/BC.2005.098 – volume: 8 start-page: 1112 year: 2002 ident: BFnature07642_CR22 publication-title: RNA doi: 10.1017/S135583820202006X – volume: 15 start-page: 177 year: 2008 ident: BFnature07642_CR12 publication-title: Nature Struct. Mol. Biol. doi: 10.1038/nsmb.1371 – volume: 8 start-page: R239 year: 2007 ident: BFnature07642_CR8 publication-title: Genome Biol. doi: 10.1186/gb-2007-8-11-r239 – volume: 111 start-page: 747 year: 2002 ident: BFnature07642_CR4 publication-title: Cell doi: 10.1016/S0092-8674(02)01134-0 – volume: 15 start-page: 439 year: 1999 ident: BFnature07642_CR6 publication-title: Trends Genet. doi: 10.1016/S0168-9525(99)01856-9 – volume: 14 start-page: 1459 year: 2006 ident: BFnature07642_CR11 publication-title: Structure doi: 10.1016/j.str.2006.07.008 – volume: 441 start-page: 1172 year: 2006 ident: BFnature07642_CR13 publication-title: Nature doi: 10.1038/nature04819 – volume: 24 start-page: 1558 year: 2006 ident: BFnature07642_CR7 publication-title: Nature Biotechnol. doi: 10.1038/nbt1268 – volume: 258 start-page: 480 year: 1996 ident: BFnature07642_CR28 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1996.0263 – ident: BFnature07642_CR19 doi: 10.1093/nar/gkn911 – volume: 18 start-page: 49 year: 2005 ident: BFnature07642_CR30 publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.02.032 – volume: 8 start-page: 1898 year: 2003 ident: BFnature07642_CR35 publication-title: EMBO J. doi: 10.1093/emboj/cdg170 – volume: 11 start-page: 1729 year: 2004 ident: BFnature07642_CR25 publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2004.11.018 – volume: 70 start-page: 5769 year: 2004 ident: BFnature07642_CR29 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.70.10.5769-5777.2004 – volume: 5 start-page: 24 year: 2006 ident: BFnature07642_CR15 publication-title: Microb. Cell Fact. doi: 10.1186/1475-2859-5-24 – volume: 184 start-page: 2005 year: 2002 ident: BFnature07642_CR16 publication-title: J. Bacteriol. doi: 10.1128/JB.184.7.2005-2018.2002 – volume: 29 start-page: 11 year: 2004 ident: BFnature07642_CR1 publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2003.11.004 – volume: 99 start-page: 15908 year: 2002 ident: BFnature07642_CR5 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.212628899 – volume: 9 start-page: 1043 year: 2002 ident: BFnature07642_CR14 publication-title: Chem. Biol. doi: 10.1016/S1074-5521(02)00224-7 – volume: 59 start-page: 487 year: 2005 ident: BFnature07642_CR3 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.59.030804.121336 – volume: 53 start-page: 240 year: 1997 ident: BFnature07642_CR33 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444996012255 – volume: 283 start-page: 22347 year: 2008 ident: BFnature07642_CR26 publication-title: J. Biol. Chem. doi: 10.1074/jbc.C800120200 – start-page: 287 volume-title: The RNA World year: 1999 ident: BFnature07642_CR34 – volume: 246 start-page: 291 year: 1997 ident: BFnature07642_CR31 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1997.00291.x – volume: 455 start-page: 1263 year: 2008 ident: BFnature07642_CR27 publication-title: Nature doi: 10.1038/nature07326 – volume: 312 start-page: 1208 year: 2006 ident: BFnature07642_CR10 publication-title: Science doi: 10.1126/science.1128451 – volume: 34 start-page: 6587 year: 2006 ident: BFnature07642_CR20 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl963 – volume: 9 start-page: 640 year: 2008 ident: BFnature07642_CR21 publication-title: RNA doi: 10.1261/rna.2202703 – volume: 432 start-page: 411 year: 2004 ident: BFnature07642_CR24 publication-title: Nature doi: 10.1038/nature03037 |
SSID | ssj0005174 ssj0014407 |
Score | 2.4199474 |
Snippet | A switch for antimicrobials?
Riboswitches are structured RNA elements that bind a specific ligand to control expression of the gene to which they are linked.... The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches. Flavin mononucleotide (FMN)-specific riboswitches, also known... The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches (1-3). Flavin mononucleotide (FMN)specific riboswitches (4,5),... The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches1-3. Flavin mononucleotide (FMN)- specific riboswitches4,5, also... The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches 1 – 3 . Flavin mononucleotide (FMN)-specific riboswitches 4 , 5... |
SourceID | pubmedcentral proquest gale pubmed pascalfrancis crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 233 |
SubjectTerms | Antibiotics Bacteria Biological and medical sciences Biosynthesis Coenzymes - metabolism Crystalline structure Crystals Deregulation Enzyme kinetics Flavin mononucleotide Flavin Mononucleotide - metabolism Fundamental and applied biological sciences. Psychology Fusobacterium nucleatum Fusobacterium nucleatum - chemistry Fusobacterium nucleatum - genetics Fusobacterium nucleatum - metabolism Gene Expression Regulation, Bacterial Genetic regulation Humanities and Social Sciences Hydrogen bonds letter Models, Molecular Molecular biophysics multidisciplinary Nucleic Acid Conformation Observations Properties Proteins RNA, Bacterial - chemistry RNA, Bacterial - metabolism Science Science (multidisciplinary) Structure in molecular biology |
Title | Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch |
URI | https://link.springer.com/article/10.1038/nature07642 https://www.ncbi.nlm.nih.gov/pubmed/19169240 https://www.proquest.com/docview/204543426 https://www.proquest.com/docview/20415746 https://www.proquest.com/docview/67019731 https://pubmed.ncbi.nlm.nih.gov/PMC3726715 |
Volume | 458 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExISQmx8hUGJ0PiUosWxYydPqFQrg4cKjU30LbIdu0QaSUda0PjrOSduuoyylzzEP8WxfT7f5S6_Q2g_wRrnqYoCw0US0FzwIKU6CijTcFjmJs1Nk20xYUen9PM0nrrcnNqlVa50YqOo80rZb-QHljadEjhP3s_PA1s0ygZXXQWNm2jbMpfZjC4-5esMjyskzO73vJAkBy1rJvjwNOodSE4t35mLGqbItLUtNhmf_-ZQXgmkNufT-B666wxLf9hKwg66octddKtJ8FT1Ltpxm7j23zim6bf30WRU6fLPxQ_td3lEVemLMvdBrOzNmSvu5csLX_jmTPwqSh-moiotDXK1KHJAFbKqfxew-g_Q6fjwZHQUuAILgeJhvAAnNBVcRZJwIhNjlGZGMclZKFMClg_HFkYjrnEitQFLkOU6lnmUxLFhwqTkIdqCHvVj5McCHBU451IWKYp1IrRRysiU5RQLJiMPvVvNcqYc-7gtgnGWNVFwkmSXlsRD-x143pJu_AdmlyuzNBalzZOZiWVdZ8OTb6NJNgTVArYJC4mHXmyCffp63AO9diBTwXsp4f5OgNFZgqwecq-HVPPiPLvU-qrXOmuXdNNjBj0h6wYKtkTIwI2FflZSlzm9UmfdLvDQ864VFIKN8ohSV8sGgmNOr0EwS8HPCfTwqJXh9SSDswAOeegh3pPuDmDJyPstZfG9ISUnPGIcxx56udoH67fesHZPrh3dHrrdRu1IgKOnaGvxc6mfgfG3kINmi8M1GWF7HX8coO0Ph5Mvx38BVP5eDg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIQQSQmx8hcFmoY0vKVriJHbygFBVmFo2-gCb6FtwHLtEGklHWqbyP_E_ck6cdBllb3uNf4pj3_nuHJ9_h9Bu6Eo3jQSxFeOh7aec2ZEvie1TCc4yVVGqqmyLER2c-B_HwXgN_Wnuwui0ysYmVoY6LYT-R76vadN9D_zJu-mZrYtG6cPVpoJGrRWHcnEOO7by7fA9iHePkIMPx_2BbYoK2II5wQw2XhFngiQe85JQKSGpEjRh1EkiD7w9czXMJ0y6YSIVRD80lUGSkjAIFOVKcy-Bxb8BftfRC4qN2TKj5BLps7kO6Hjhfs3S6TDqk44DNG7gzpSXIBJV19JYFez-m7N56eC28ocH99BdE8jiXq15G2hN5pvoZpVQKspNtGGMRolfGWbr1_fRqF_I_Pfih8Rt3lKRY56nGNRYP5yYYmI4WWCO1Sn_leUYpr7INe1yMctSQGVJUZ5noG0P0Mm1zP1DtA49yscIBxw2RuBXI0qE78qQSyWESiKa-i6nCbHQm2aWY2HYznXRjdO4OnX3wviCSCy024KnNcnHf2BaXLGmzch1Xs6Ez8sy7h1_7Y_iHpgyiIWo41no-SrY8MvnDuilAakCvktwcxsCRqcJuTrIrQ5STLOz-ELri07rpBbpqtdsd5SsHSjELg6FbTP002hdbOxYGberzkI7bSsYIH2qxHNZzCuIGzD_CgTVlP_Mgx4e1Tq8nGTYnEQQU1qIdbS7BWjy825Lnn2vSNA9RihzAwvtNetg-dUrZPfkytHtoFuD409H8dFwdLiFbtcnhp7tkqdoffZzLp9B4DlLtqvljtG367YvfwFuWJd- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELamIRASQmy8hcFmoY03KWriJHbyAaGqo9oYqhBsot-C49gl0kg60jKVf8a_45w46TLKvu1r_CiOfee7c3x-DqHd0JVuGgliK8ZD2085syNfEtunEpxlqqJUVdkWI3pw4n8YB-M19Ke5C6PTKhubWBnqtBD6H3lP06b7HviTnjJZEZ_2h--mZ7YuIKUPWptqGrWGHMnFOezeyreH-yDqPUKG748HB7YpMGAL5gQz2IRFnAmSeMxLQqWEpErQhFEniTzw_MzVMJ8w6YaJVBAJ0VQGSUrCIFCUK83DBNb_BvMCVy8xNmbL7JJLBNDmaqDjhb2asdNh1CcdZ2hcwp0pL0E8qq6rsSrw_Td_89IhbuUbh_fQXRPU4n6thRtoTeab6GaVXCrKTbRhDEiJXxmW69f30WhQyPz34ofEbQ5TkWOepxhUWj-cmMJiOFlgjtUp_5XlGKa-yDUFczHLUkBlSVGeZ6B5D9DJtcz9Q7QOPcrHCAccNkngYyNKhO_KkEslhEoimvoupwmx0JtmlmNhmM91AY7TuDqB98L4gkgstNuCpzXhx39gWlyxptDItTZO-Lws4_7x18Eo7oNZg7iIOp6Fnq-CHX753AG9NCBVwHcJbm5GwOg0OVcHudVBiml2Fl9ofdFpndQiXfWa7Y6StQOFOMahsIWGfhqti41NK-N2BVpop20FY6RPmHgui3kFcQPmX4Ggmv6fedDDo1qHl5MMG5UI4ksLsY52twBNhN5tybPvFSG6xwhlbmChvWYdLL96heyeXDm6HXQLLEv88XB0tIVu14eHnu2Sp2h99nMun0EMOku2q9WO0bfrNi9_AYVkm7Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coenzyme+recognition+and+gene+regulation+by+a+flavin+mononucleotide+riboswitch&rft.jtitle=Nature+%28London%29&rft.au=Serganov%2C+Alexander&rft.au=Huang%2C+Lili&rft.au=Patel%2C+Dinshaw+J&rft.date=2009-03-12&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=458&rft.issue=7235&rft.spage=233&rft_id=info:doi/10.1038%2Fnature07642&rft.externalDocID=A196152603 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |