Prognosis prediction model for conversion from mild cognitive impairment to Alzheimer’s disease created by integrative analysis of multi-omics data

Background Mild cognitive impairment (MCI) is a precursor to Alzheimer’s disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals at high risk for MCI-to-AD conversion are urgently required. Methods We used blood-based microRNA expression profiles and genomic...

Full description

Saved in:
Bibliographic Details
Published inAlzheimer's research & therapy Vol. 12; no. 1; pp. 145 - 12
Main Authors Shigemizu, Daichi, Akiyama, Shintaro, Higaki, Sayuri, Sugimoto, Taiki, Sakurai, Takashi, Boroevich, Keith A., Sharma, Alok, Tsunoda, Tatsuhiko, Ochiya, Takahiro, Niida, Shumpei, Ozaki, Kouichi
Format Journal Article
LanguageEnglish
Published London BioMed Central 10.11.2020
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1758-9193
1758-9193
DOI10.1186/s13195-020-00716-0

Cover

Abstract Background Mild cognitive impairment (MCI) is a precursor to Alzheimer’s disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals at high risk for MCI-to-AD conversion are urgently required. Methods We used blood-based microRNA expression profiles and genomic data of 197 Japanese MCI patients to construct a prognosis prediction model based on a Cox proportional hazard model. We examined the biological significance of our findings with single nucleotide polymorphism-microRNA pairs (miR-eQTLs) by focusing on the target genes of the miRNAs. We investigated functional modules from the target genes with the occurrence of hub genes though a large-scale protein-protein interaction network analysis. We further examined the expression of the genes in 610 blood samples (271 ADs, 248 MCIs, and 91 cognitively normal elderly subjects [CNs]). Results The final prediction model, composed of 24 miR-eQTLs and three clinical factors (age, sex, and APOE4 alleles), successfully classified MCI patients into low and high risk of MCI-to-AD conversion (log-rank test P  = 3.44 × 10 −4 and achieved a concordance index of 0.702 on an independent test set. Four important hub genes associated with AD pathogenesis ( SHC1 , FOXO1 , GSK3B , and PTEN ) were identified in a network-based meta-analysis of miR-eQTL target genes. RNA-seq data from 610 blood samples showed statistically significant differences in PTEN expression between MCI and AD and in SHC1 expression between CN and AD ( PTEN , P  = 0.023; SHC1 , P  = 0.049). Conclusions Our proposed model was demonstrated to be effective in MCI-to-AD conversion prediction. A network-based meta-analysis of miR-eQTL target genes identified important hub genes associated with AD pathogenesis. Accurate prediction of MCI-to-AD conversion would enable earlier intervention for MCI patients at high risk, potentially reducing conversion to AD.
AbstractList Mild cognitive impairment (MCI) is a precursor to Alzheimer's disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals at high risk for MCI-to-AD conversion are urgently required.BACKGROUNDMild cognitive impairment (MCI) is a precursor to Alzheimer's disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals at high risk for MCI-to-AD conversion are urgently required.We used blood-based microRNA expression profiles and genomic data of 197 Japanese MCI patients to construct a prognosis prediction model based on a Cox proportional hazard model. We examined the biological significance of our findings with single nucleotide polymorphism-microRNA pairs (miR-eQTLs) by focusing on the target genes of the miRNAs. We investigated functional modules from the target genes with the occurrence of hub genes though a large-scale protein-protein interaction network analysis. We further examined the expression of the genes in 610 blood samples (271 ADs, 248 MCIs, and 91 cognitively normal elderly subjects [CNs]).METHODSWe used blood-based microRNA expression profiles and genomic data of 197 Japanese MCI patients to construct a prognosis prediction model based on a Cox proportional hazard model. We examined the biological significance of our findings with single nucleotide polymorphism-microRNA pairs (miR-eQTLs) by focusing on the target genes of the miRNAs. We investigated functional modules from the target genes with the occurrence of hub genes though a large-scale protein-protein interaction network analysis. We further examined the expression of the genes in 610 blood samples (271 ADs, 248 MCIs, and 91 cognitively normal elderly subjects [CNs]).The final prediction model, composed of 24 miR-eQTLs and three clinical factors (age, sex, and APOE4 alleles), successfully classified MCI patients into low and high risk of MCI-to-AD conversion (log-rank test P = 3.44 × 10-4 and achieved a concordance index of 0.702 on an independent test set. Four important hub genes associated with AD pathogenesis (SHC1, FOXO1, GSK3B, and PTEN) were identified in a network-based meta-analysis of miR-eQTL target genes. RNA-seq data from 610 blood samples showed statistically significant differences in PTEN expression between MCI and AD and in SHC1 expression between CN and AD (PTEN, P = 0.023; SHC1, P = 0.049).RESULTSThe final prediction model, composed of 24 miR-eQTLs and three clinical factors (age, sex, and APOE4 alleles), successfully classified MCI patients into low and high risk of MCI-to-AD conversion (log-rank test P = 3.44 × 10-4 and achieved a concordance index of 0.702 on an independent test set. Four important hub genes associated with AD pathogenesis (SHC1, FOXO1, GSK3B, and PTEN) were identified in a network-based meta-analysis of miR-eQTL target genes. RNA-seq data from 610 blood samples showed statistically significant differences in PTEN expression between MCI and AD and in SHC1 expression between CN and AD (PTEN, P = 0.023; SHC1, P = 0.049).Our proposed model was demonstrated to be effective in MCI-to-AD conversion prediction. A network-based meta-analysis of miR-eQTL target genes identified important hub genes associated with AD pathogenesis. Accurate prediction of MCI-to-AD conversion would enable earlier intervention for MCI patients at high risk, potentially reducing conversion to AD.CONCLUSIONSOur proposed model was demonstrated to be effective in MCI-to-AD conversion prediction. A network-based meta-analysis of miR-eQTL target genes identified important hub genes associated with AD pathogenesis. Accurate prediction of MCI-to-AD conversion would enable earlier intervention for MCI patients at high risk, potentially reducing conversion to AD.
Background Mild cognitive impairment (MCI) is a precursor to Alzheimer’s disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals at high risk for MCI-to-AD conversion are urgently required. Methods We used blood-based microRNA expression profiles and genomic data of 197 Japanese MCI patients to construct a prognosis prediction model based on a Cox proportional hazard model. We examined the biological significance of our findings with single nucleotide polymorphism-microRNA pairs (miR-eQTLs) by focusing on the target genes of the miRNAs. We investigated functional modules from the target genes with the occurrence of hub genes though a large-scale protein-protein interaction network analysis. We further examined the expression of the genes in 610 blood samples (271 ADs, 248 MCIs, and 91 cognitively normal elderly subjects [CNs]). Results The final prediction model, composed of 24 miR-eQTLs and three clinical factors (age, sex, and APOE4 alleles), successfully classified MCI patients into low and high risk of MCI-to-AD conversion (log-rank test P  = 3.44 × 10 −4 and achieved a concordance index of 0.702 on an independent test set. Four important hub genes associated with AD pathogenesis ( SHC1 , FOXO1 , GSK3B , and PTEN ) were identified in a network-based meta-analysis of miR-eQTL target genes. RNA-seq data from 610 blood samples showed statistically significant differences in PTEN expression between MCI and AD and in SHC1 expression between CN and AD ( PTEN , P  = 0.023; SHC1 , P  = 0.049). Conclusions Our proposed model was demonstrated to be effective in MCI-to-AD conversion prediction. A network-based meta-analysis of miR-eQTL target genes identified important hub genes associated with AD pathogenesis. Accurate prediction of MCI-to-AD conversion would enable earlier intervention for MCI patients at high risk, potentially reducing conversion to AD.
Mild cognitive impairment (MCI) is a precursor to Alzheimer's disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals at high risk for MCI-to-AD conversion are urgently required. We used blood-based microRNA expression profiles and genomic data of 197 Japanese MCI patients to construct a prognosis prediction model based on a Cox proportional hazard model. We examined the biological significance of our findings with single nucleotide polymorphism-microRNA pairs (miR-eQTLs) by focusing on the target genes of the miRNAs. We investigated functional modules from the target genes with the occurrence of hub genes though a large-scale protein-protein interaction network analysis. We further examined the expression of the genes in 610 blood samples (271 ADs, 248 MCIs, and 91 cognitively normal elderly subjects [CNs]). The final prediction model, composed of 24 miR-eQTLs and three clinical factors (age, sex, and APOE4 alleles), successfully classified MCI patients into low and high risk of MCI-to-AD conversion (log-rank test P = 3.44 x 10.sup.-4 and achieved a concordance index of 0.702 on an independent test set. Four important hub genes associated with AD pathogenesis (SHC1, FOXO1, GSK3B, and PTEN) were identified in a network-based meta-analysis of miR-eQTL target genes. RNA-seq data from 610 blood samples showed statistically significant differences in PTEN expression between MCI and AD and in SHC1 expression between CN and AD (PTEN, P = 0.023; SHC1, P = 0.049). Our proposed model was demonstrated to be effective in MCI-to-AD conversion prediction. A network-based meta-analysis of miR-eQTL target genes identified important hub genes associated with AD pathogenesis. Accurate prediction of MCI-to-AD conversion would enable earlier intervention for MCI patients at high risk, potentially reducing conversion to AD.
Background Mild cognitive impairment (MCI) is a precursor to Alzheimer's disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals at high risk for MCI-to-AD conversion are urgently required. Methods We used blood-based microRNA expression profiles and genomic data of 197 Japanese MCI patients to construct a prognosis prediction model based on a Cox proportional hazard model. We examined the biological significance of our findings with single nucleotide polymorphism-microRNA pairs (miR-eQTLs) by focusing on the target genes of the miRNAs. We investigated functional modules from the target genes with the occurrence of hub genes though a large-scale protein-protein interaction network analysis. We further examined the expression of the genes in 610 blood samples (271 ADs, 248 MCIs, and 91 cognitively normal elderly subjects [CNs]). Results The final prediction model, composed of 24 miR-eQTLs and three clinical factors (age, sex, and APOE4 alleles), successfully classified MCI patients into low and high risk of MCI-to-AD conversion (log-rank test P = 3.44 x 10.sup.-4 and achieved a concordance index of 0.702 on an independent test set. Four important hub genes associated with AD pathogenesis (SHC1, FOXO1, GSK3B, and PTEN) were identified in a network-based meta-analysis of miR-eQTL target genes. RNA-seq data from 610 blood samples showed statistically significant differences in PTEN expression between MCI and AD and in SHC1 expression between CN and AD (PTEN, P = 0.023; SHC1, P = 0.049). Conclusions Our proposed model was demonstrated to be effective in MCI-to-AD conversion prediction. A network-based meta-analysis of miR-eQTL target genes identified important hub genes associated with AD pathogenesis. Accurate prediction of MCI-to-AD conversion would enable earlier intervention for MCI patients at high risk, potentially reducing conversion to AD. Keywords: Alzheimer's disease, Biomarkers for early diagnosis, eQTL effect
Mild cognitive impairment (MCI) is a precursor to Alzheimer's disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals at high risk for MCI-to-AD conversion are urgently required. We used blood-based microRNA expression profiles and genomic data of 197 Japanese MCI patients to construct a prognosis prediction model based on a Cox proportional hazard model. We examined the biological significance of our findings with single nucleotide polymorphism-microRNA pairs (miR-eQTLs) by focusing on the target genes of the miRNAs. We investigated functional modules from the target genes with the occurrence of hub genes though a large-scale protein-protein interaction network analysis. We further examined the expression of the genes in 610 blood samples (271 ADs, 248 MCIs, and 91 cognitively normal elderly subjects [CNs]). The final prediction model, composed of 24 miR-eQTLs and three clinical factors (age, sex, and APOE4 alleles), successfully classified MCI patients into low and high risk of MCI-to-AD conversion (log-rank test P = 3.44 × 10 and achieved a concordance index of 0.702 on an independent test set. Four important hub genes associated with AD pathogenesis (SHC1, FOXO1, GSK3B, and PTEN) were identified in a network-based meta-analysis of miR-eQTL target genes. RNA-seq data from 610 blood samples showed statistically significant differences in PTEN expression between MCI and AD and in SHC1 expression between CN and AD (PTEN, P = 0.023; SHC1, P = 0.049). Our proposed model was demonstrated to be effective in MCI-to-AD conversion prediction. A network-based meta-analysis of miR-eQTL target genes identified important hub genes associated with AD pathogenesis. Accurate prediction of MCI-to-AD conversion would enable earlier intervention for MCI patients at high risk, potentially reducing conversion to AD.
Background Mild cognitive impairment (MCI) is a precursor to Alzheimer’s disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals at high risk for MCI-to-AD conversion are urgently required. Methods We used blood-based microRNA expression profiles and genomic data of 197 Japanese MCI patients to construct a prognosis prediction model based on a Cox proportional hazard model. We examined the biological significance of our findings with single nucleotide polymorphism-microRNA pairs (miR-eQTLs) by focusing on the target genes of the miRNAs. We investigated functional modules from the target genes with the occurrence of hub genes though a large-scale protein-protein interaction network analysis. We further examined the expression of the genes in 610 blood samples (271 ADs, 248 MCIs, and 91 cognitively normal elderly subjects [CNs]). Results The final prediction model, composed of 24 miR-eQTLs and three clinical factors (age, sex, and APOE4 alleles), successfully classified MCI patients into low and high risk of MCI-to-AD conversion (log-rank test P = 3.44 × 10−4 and achieved a concordance index of 0.702 on an independent test set. Four important hub genes associated with AD pathogenesis (SHC1, FOXO1, GSK3B, and PTEN) were identified in a network-based meta-analysis of miR-eQTL target genes. RNA-seq data from 610 blood samples showed statistically significant differences in PTEN expression between MCI and AD and in SHC1 expression between CN and AD (PTEN, P = 0.023; SHC1, P = 0.049). Conclusions Our proposed model was demonstrated to be effective in MCI-to-AD conversion prediction. A network-based meta-analysis of miR-eQTL target genes identified important hub genes associated with AD pathogenesis. Accurate prediction of MCI-to-AD conversion would enable earlier intervention for MCI patients at high risk, potentially reducing conversion to AD.
Abstract Background Mild cognitive impairment (MCI) is a precursor to Alzheimer’s disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals at high risk for MCI-to-AD conversion are urgently required. Methods We used blood-based microRNA expression profiles and genomic data of 197 Japanese MCI patients to construct a prognosis prediction model based on a Cox proportional hazard model. We examined the biological significance of our findings with single nucleotide polymorphism-microRNA pairs (miR-eQTLs) by focusing on the target genes of the miRNAs. We investigated functional modules from the target genes with the occurrence of hub genes though a large-scale protein-protein interaction network analysis. We further examined the expression of the genes in 610 blood samples (271 ADs, 248 MCIs, and 91 cognitively normal elderly subjects [CNs]). Results The final prediction model, composed of 24 miR-eQTLs and three clinical factors (age, sex, and APOE4 alleles), successfully classified MCI patients into low and high risk of MCI-to-AD conversion (log-rank test P = 3.44 × 10−4 and achieved a concordance index of 0.702 on an independent test set. Four important hub genes associated with AD pathogenesis (SHC1, FOXO1, GSK3B, and PTEN) were identified in a network-based meta-analysis of miR-eQTL target genes. RNA-seq data from 610 blood samples showed statistically significant differences in PTEN expression between MCI and AD and in SHC1 expression between CN and AD (PTEN, P = 0.023; SHC1, P = 0.049). Conclusions Our proposed model was demonstrated to be effective in MCI-to-AD conversion prediction. A network-based meta-analysis of miR-eQTL target genes identified important hub genes associated with AD pathogenesis. Accurate prediction of MCI-to-AD conversion would enable earlier intervention for MCI patients at high risk, potentially reducing conversion to AD.
ArticleNumber 145
Audience Academic
Author Shigemizu, Daichi
Boroevich, Keith A.
Ozaki, Kouichi
Akiyama, Shintaro
Sharma, Alok
Sugimoto, Taiki
Sakurai, Takashi
Niida, Shumpei
Tsunoda, Tatsuhiko
Ochiya, Takahiro
Higaki, Sayuri
Author_xml – sequence: 1
  givenname: Daichi
  orcidid: 0000-0002-4412-0552
  surname: Shigemizu
  fullname: Shigemizu, Daichi
  email: d.shigemizu@gmail.com
  organization: Medical Genome Center, National Center for Geriatrics and Gerontology, Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), RIKEN Center for Integrative Medical Sciences
– sequence: 2
  givenname: Shintaro
  surname: Akiyama
  fullname: Akiyama, Shintaro
  organization: Medical Genome Center, National Center for Geriatrics and Gerontology
– sequence: 3
  givenname: Sayuri
  surname: Higaki
  fullname: Higaki, Sayuri
  organization: Medical Genome Center, National Center for Geriatrics and Gerontology
– sequence: 4
  givenname: Taiki
  surname: Sugimoto
  fullname: Sugimoto, Taiki
  organization: The Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology
– sequence: 5
  givenname: Takashi
  surname: Sakurai
  fullname: Sakurai, Takashi
  organization: The Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Department of Cognitive and Behavioral Science, Nagoya University Graduate School of Medicine
– sequence: 6
  givenname: Keith A.
  surname: Boroevich
  fullname: Boroevich, Keith A.
  organization: RIKEN Center for Integrative Medical Sciences
– sequence: 7
  givenname: Alok
  surname: Sharma
  fullname: Sharma, Alok
  organization: RIKEN Center for Integrative Medical Sciences, Institute for Integrated and Intelligent Systems, Griffith University, University of the South Pacific
– sequence: 8
  givenname: Tatsuhiko
  surname: Tsunoda
  fullname: Tsunoda, Tatsuhiko
  organization: Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), RIKEN Center for Integrative Medical Sciences, Department of Biological Sciences, Graduate School of Science, The University of Tokyo
– sequence: 9
  givenname: Takahiro
  surname: Ochiya
  fullname: Ochiya, Takahiro
  organization: Division of Molecular and Cellular Medicine, Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Institute of Medical Science, Tokyo Medical University
– sequence: 10
  givenname: Shumpei
  surname: Niida
  fullname: Niida, Shumpei
  organization: Medical Genome Center, National Center for Geriatrics and Gerontology
– sequence: 11
  givenname: Kouichi
  surname: Ozaki
  fullname: Ozaki, Kouichi
  organization: Medical Genome Center, National Center for Geriatrics and Gerontology, RIKEN Center for Integrative Medical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33172501$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhSNURH_gBVggS0iITYrtOHayQaoqfipVggWsLce-zrhy7MHOVCorXoIFr8eT4HRa6FSoyiLRzfnOdU7OYbUXYoCqek7wMSEdf5NJQ_q2xhTXGAvCa_yoOiCi7eqe9M3enef96jDnC4w5px17Uu03DRG0xeSg-vk5xTHE7DJaJzBOzy4GNEUDHtmYkI7hElJehjbFCU3OmzIcg5vdJSA3rZVLE4QZzRGd-O8rcBOk3z9-ZWRcBpUB6QRqBoOGK-TCDGNS16gKyl8te6NF08bPro6T0wVTs3paPbbKZ3h2cz-qvr5_9-X0Y33-6cPZ6cl5rQVmc62BtS3Y3g696QnjimmtGKeGipYMiinSmUHjptPQikZ3rGsGQ2zDBkYIGaA5qs62viaqC7lOblLpSkbl5PUgplGqNDvtQRJocTto2_WCMGOtYj3BHe95ZwzvlSheb7de680wgdElk6T8junum-BWcoyXUvCWi4YVg9c3Bil-20Ce5eSyBu9VgLjJkrK251QItux6eU96ETepBLqoOKUU76hGVT7ABRvLXr2YyhPOKBVNL7qiOv6PqlwGyv8ojbOuzHeAV3eAFSg_r3L0m6U5eVf44m4if6O4bV8RdFuBTjHnBFZqN6vFpxzBeUmwXIout0WXpejyuugSF5TeQ2_dH4SaLZSLOIyQ_sX2APUH4KkSbQ
CitedBy_id crossref_primary_10_3389_flang_2023_1199107
crossref_primary_10_1093_hmg_ddac202
crossref_primary_10_1016_j_psychres_2023_115141
crossref_primary_10_3390_ncrna8040045
crossref_primary_10_1038_s44400_024_00002_y
crossref_primary_10_1109_ACCESS_2023_3342921
crossref_primary_10_3389_fnagi_2022_1069606
crossref_primary_10_2174_1386207325666220208122911
crossref_primary_10_3390_cells13221920
crossref_primary_10_3233_ADR_230081
crossref_primary_10_3389_fnagi_2022_840386
crossref_primary_10_3389_fnagi_2022_1065904
crossref_primary_10_3389_fgene_2022_1049786
crossref_primary_10_1177_13872877241302493
crossref_primary_10_1016_j_wneu_2021_06_118
crossref_primary_10_3390_ijms25042211
crossref_primary_10_1096_fj_202301254R
crossref_primary_10_1007_s12035_023_03633_z
crossref_primary_10_1002_pmic_202000235
crossref_primary_10_12677_ap_2024_143171
crossref_primary_10_3233_ADR_230006
crossref_primary_10_3233_ADR_230149
crossref_primary_10_1016_j_jbi_2023_104442
crossref_primary_10_1186_s12859_024_05840_4
crossref_primary_10_3390_ijms25126678
crossref_primary_10_1186_s13195_021_00879_4
crossref_primary_10_1016_j_bspc_2022_104301
crossref_primary_10_1186_s40035_022_00315_z
crossref_primary_10_1038_s41514_022_00096_9
crossref_primary_10_1007_s42835_024_01897_6
crossref_primary_10_1186_s12877_024_05645_3
crossref_primary_10_3233_JAD_240285
crossref_primary_10_3233_JAD_220826
crossref_primary_10_3390_biomedicines9121812
crossref_primary_10_1007_s44197_024_00266_w
crossref_primary_10_3389_fneur_2024_1354092
crossref_primary_10_3390_ijerph19084839
crossref_primary_10_1080_23279095_2024_2323627
crossref_primary_10_1038_s41598_024_54875_3
crossref_primary_10_1186_s13024_022_00517_z
crossref_primary_10_1186_s40168_023_01717_5
crossref_primary_10_3389_fnins_2024_1358998
crossref_primary_10_1093_database_baab072
crossref_primary_10_3389_fnagi_2021_807764
Cites_doi 10.1016/j.jalz.2011.03.008
10.1038/s41588-019-0358-2
10.1254/jphs.10R11FM
10.1093/nar/gkq973
10.1016/j.nicl.2018.101637
10.1111/psyg.12019
10.1001/archneur.56.3.303
10.1016/j.jalz.2019.06.4950
10.1038/gim.2015.117
10.1093/bioinformatics/btp616
10.1038/s41582-019-0158-4
10.1038/jhg.2015.68
10.1101/gr.1239303
10.1634/theoncologist.2010-0103
10.1038/s42003-019-0324-7
10.18632/aging.100486
10.1186/s13195-019-0501-4
10.1093/jamiaopen/ooy050
10.1126/science.1260419
10.1001/archpsyc.63.2.168
10.1093/nar/gku1104
10.1186/s13195-020-00654-x
10.1016/j.jalz.2011.03.005
10.1158/1078-0432.CCR-11-2725
10.1371/journal.pone.0040498
10.1126/science.1174148
10.1038/s41588-018-0311-9
10.1016/j.nicl.2019.101837
10.1016/bs.ctdb.2017.10.002
10.3390/geriatrics1020011
10.1371/journal.pgen.1000529
10.1002/cphg.59
10.3233/JAD-160835
10.1111/cas.12880
10.1016/j.jaut.2018.07.010
10.1373/clinchem.2010.151845
10.1016/j.jalz.2011.03.003
10.1007/s12035-019-1500-y
10.18632/aging.100413
10.1073/pnas.1423573112
10.1016/0014-5793(93)81066-9
10.1093/bioinformatics/bts635
10.1186/bcr2766
10.3233/JAD-2008-14103
10.1016/S0960-9822(00)00246-3
10.1093/bioinformatics/btt656
10.3233/JAD-180539
10.1091/mbc.e12-05-0337
10.1038/s41598-018-29433-3
10.1038/mp.2017.30
10.1038/ng.2802
10.3233/JAD-2009-0992
10.3389/fneur.2018.01178
10.1152/physrev.00006.2010
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13195-020-00716-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



PubMed
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1758-9193
EndPage 12
ExternalDocumentID oai_doaj_org_article_1e505bcf89714dffa491086968dd69a7
PMC7656734
A642273978
33172501
10_1186_s13195_020_00716_0
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GrantInformation_xml – fundername: The Japan Foundation for Aging and Health
– fundername: Takeda Science Foundation
  funderid: http://dx.doi.org/10.13039/100007449
– fundername: the Japan Agency for Medical Research and Development
  grantid: JP18kk0205009
– fundername: Longevity Sciences from the National Center for Geriatrics and Gerontology
  grantid: 30-29; 29-45
– fundername: Research on Dementia from the Japanese Ministry of Health, Labor and Welfare
– fundername: ;
– fundername: ;
  grantid: JP18kk0205009
– fundername: ;
  grantid: 30-29; 29-45
GroupedDBID ---
0R~
23M
2WC
53G
5VS
6J9
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABUWG
ACGFS
ACIHN
ACJQM
ACUHS
ADBBV
ADUKV
AEAQA
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
DIK
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
HZ~
IAO
IEA
IHR
IHW
INH
INR
ITC
KQ8
M1P
M~E
O5R
O5S
O9-
OK1
P2P
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
AAYXX
ALIPV
CITATION
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c704t-ce455ef9fb9d9146a4cca462d2751ba4a18dbc038ce573c8483bd1f34b4111be3
IEDL.DBID C6C
ISSN 1758-9193
IngestDate Wed Aug 27 01:30:45 EDT 2025
Thu Aug 21 14:12:39 EDT 2025
Thu Sep 04 19:09:08 EDT 2025
Fri Jul 25 07:14:34 EDT 2025
Tue Jun 17 21:10:06 EDT 2025
Tue Jun 10 20:31:14 EDT 2025
Thu May 22 20:54:03 EDT 2025
Thu Apr 03 06:54:21 EDT 2025
Tue Jul 01 02:38:50 EDT 2025
Thu Apr 24 23:08:57 EDT 2025
Sat Sep 06 07:34:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Alzheimer’s disease
eQTL effect
Biomarkers for early diagnosis
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c704t-ce455ef9fb9d9146a4cca462d2751ba4a18dbc038ce573c8483bd1f34b4111be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4412-0552
OpenAccessLink https://doi.org/10.1186/s13195-020-00716-0
PMID 33172501
PQID 2462220747
PQPubID 2040174
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_1e505bcf89714dffa491086968dd69a7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7656734
proquest_miscellaneous_2459627747
proquest_journals_2462220747
gale_infotracmisc_A642273978
gale_infotracacademiconefile_A642273978
gale_healthsolutions_A642273978
pubmed_primary_33172501
crossref_citationtrail_10_1186_s13195_020_00716_0
crossref_primary_10_1186_s13195_020_00716_0
springer_journals_10_1186_s13195_020_00716_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-10
PublicationDateYYYYMMDD 2020-11-10
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Alzheimer's research & therapy
PublicationTitleAbbrev Alz Res Therapy
PublicationTitleAlternate Alzheimers Res Ther
PublicationYear 2020
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References GM McKhann (716_CR2) 2011; 7
J Satoh (716_CR18) 2010; 114
L Bertram (716_CR52) 2019; 15
RDC T (716_CR34) 2009
A Dobin (716_CR39) 2013; 29
N Wong (716_CR35) 2015; 43
M Gatz (716_CR8) 2006; 63
C Roth (716_CR44) 2010; 12
MA Lovell (716_CR6) 2009; 16
Y Liao (716_CR40) 2014; 30
RA Sperling (716_CR3) 2011; 7
MD Robinson (716_CR41) 2010; 26
A Sorensen (716_CR50) 2019; 21
D Shigemizu (716_CR15) 2019; 2
D Liang (716_CR57) 2012; 7
JT Wiedrick (716_CR22) 2019; 67
D Szklarczyk (716_CR37) 2011; 39
AS Dimas (716_CR24) 2009; 325
A Moscoso (716_CR49) 2019; 23
MA Pericak-Vance (716_CR10) 1991; 48
S Khanna (716_CR47) 2018; 8
RC Petersen (716_CR5) 1999; 56
MS Albert (716_CR1) 2011; 7
I Wohlers (716_CR25) 2018; 94
TA Lusardi (716_CR21) 2017; 55
KS Sheinerman (716_CR23) 2012; 4
Y Kawai (716_CR28) 2013; 13
BN Howie (716_CR30) 2009; 5
IE Jansen (716_CR12) 2019; 51
716_CR4
P Shannon (716_CR38) 2003; 13
M Uhlen (716_CR45) 2015; 347
D Shigemizu (716_CR46) 2020; 12
C Van Cauwenberghe (716_CR9) 2016; 18
S Swarbrick (716_CR51) 2019; 56
JC Lambert (716_CR11) 2013; 45
R Tacutu (716_CR20) 2011; 3
A Shimomura (716_CR32) 2016; 107
C Zheng (716_CR58) 2019; 2
D Sayed (716_CR17) 2011; 91
S Asaga (716_CR43) 2011; 57
JP Cogswell (716_CR19) 2008; 14
K Ishiguro (716_CR54) 1993; 325
716_CR13
Y Kawai (716_CR29) 2015; 60
SH Slifer (716_CR31) 2018; 97
P Devanna (716_CR27) 2018; 23
JA Santiago (716_CR36) 2015; 112
S Lovestone (716_CR55) 1994; 4
D Shigemizu (716_CR16) 2019; 12
W Xiao (716_CR26) 2019; 10
HM Heneghan (716_CR42) 2010; 15
Y Sun (716_CR48) 2018; 9
BW Kunkle (716_CR14) 2019; 51
EE Santo (716_CR53) 2018; 127
K Yoshihara (716_CR33) 2012; 18
A Gupta (716_CR56) 2012; 23
D Siedlecki-Wullich (716_CR7) 2019; 11
References_xml – volume: 7
  start-page: 270
  issue: 3
  year: 2011
  ident: 716_CR1
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2011.03.008
– volume: 51
  start-page: 414
  issue: 3
  year: 2019
  ident: 716_CR14
  publication-title: Nat Genet
  doi: 10.1038/s41588-019-0358-2
– volume: 114
  start-page: 269
  issue: 3
  year: 2010
  ident: 716_CR18
  publication-title: J Pharmacol Sci
  doi: 10.1254/jphs.10R11FM
– volume: 39
  start-page: D561
  issue: Database issue
  year: 2011
  ident: 716_CR37
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq973
– volume: 21
  start-page: 101637
  year: 2019
  ident: 716_CR50
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2018.101637
– volume: 13
  start-page: 157
  issue: 3
  year: 2013
  ident: 716_CR28
  publication-title: Psychogeriatrics
  doi: 10.1111/psyg.12019
– volume: 56
  start-page: 303
  issue: 3
  year: 1999
  ident: 716_CR5
  publication-title: Arch Neurol
  doi: 10.1001/archneur.56.3.303
– ident: 716_CR13
  doi: 10.1016/j.jalz.2019.06.4950
– volume: 18
  start-page: 421
  issue: 5
  year: 2016
  ident: 716_CR9
  publication-title: Genet Med
  doi: 10.1038/gim.2015.117
– volume: 26
  start-page: 139
  issue: 1
  year: 2010
  ident: 716_CR41
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 15
  start-page: 191
  issue: 4
  year: 2019
  ident: 716_CR52
  publication-title: Nat Rev Neurol
  doi: 10.1038/s41582-019-0158-4
– volume: 60
  start-page: 581
  issue: 10
  year: 2015
  ident: 716_CR29
  publication-title: J Hum Genet
  doi: 10.1038/jhg.2015.68
– volume: 13
  start-page: 2498
  issue: 11
  year: 2003
  ident: 716_CR38
  publication-title: Genome Res
  doi: 10.1101/gr.1239303
– volume: 15
  start-page: 673
  issue: 7
  year: 2010
  ident: 716_CR42
  publication-title: Oncologist
  doi: 10.1634/theoncologist.2010-0103
– volume-title: R: a language and environment for statistical computing
  year: 2009
  ident: 716_CR34
– volume: 2
  start-page: 77
  year: 2019
  ident: 716_CR15
  publication-title: Commun Biol
  doi: 10.1038/s42003-019-0324-7
– volume: 4
  start-page: 590
  issue: 9
  year: 2012
  ident: 716_CR23
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.100486
– volume: 11
  start-page: 46
  issue: 1
  year: 2019
  ident: 716_CR7
  publication-title: Alzheimers Res Ther
  doi: 10.1186/s13195-019-0501-4
– volume: 2
  start-page: 131
  issue: 1
  year: 2019
  ident: 716_CR58
  publication-title: JAMIA Open
  doi: 10.1093/jamiaopen/ooy050
– volume: 347
  start-page: 1260419
  issue: 6220
  year: 2015
  ident: 716_CR45
  publication-title: Science
  doi: 10.1126/science.1260419
– volume: 63
  start-page: 168
  issue: 2
  year: 2006
  ident: 716_CR8
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.63.2.168
– volume: 43
  start-page: D146
  issue: Database issue
  year: 2015
  ident: 716_CR35
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1104
– volume: 12
  start-page: 87
  issue: 1
  year: 2020
  ident: 716_CR46
  publication-title: Alzheimers Res Ther
  doi: 10.1186/s13195-020-00654-x
– volume: 7
  start-page: 263
  issue: 3
  year: 2011
  ident: 716_CR2
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2011.03.005
– volume: 18
  start-page: 1374
  issue: 5
  year: 2012
  ident: 716_CR33
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-11-2725
– volume: 7
  start-page: e40498
  issue: 7
  year: 2012
  ident: 716_CR57
  publication-title: Plos One
  doi: 10.1371/journal.pone.0040498
– volume: 325
  start-page: 1246
  issue: 5945
  year: 2009
  ident: 716_CR24
  publication-title: Science
  doi: 10.1126/science.1174148
– volume: 51
  start-page: 404
  issue: 3
  year: 2019
  ident: 716_CR12
  publication-title: Nat Genet
  doi: 10.1038/s41588-018-0311-9
– volume: 23
  start-page: 101837
  year: 2019
  ident: 716_CR49
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2019.101837
– volume: 127
  start-page: 105
  year: 2018
  ident: 716_CR53
  publication-title: Curr Top Dev Biol
  doi: 10.1016/bs.ctdb.2017.10.002
– ident: 716_CR4
  doi: 10.3390/geriatrics1020011
– volume: 5
  start-page: e1000529
  issue: 6
  year: 2009
  ident: 716_CR30
  publication-title: Plos Genet
  doi: 10.1371/journal.pgen.1000529
– volume: 97
  start-page: e59
  issue: 1
  year: 2018
  ident: 716_CR31
  publication-title: Curr Protoc Hum Genet
  doi: 10.1002/cphg.59
– volume: 55
  start-page: 1223
  issue: 3
  year: 2017
  ident: 716_CR21
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-160835
– volume: 107
  start-page: 326
  issue: 3
  year: 2016
  ident: 716_CR32
  publication-title: Cancer Sci
  doi: 10.1111/cas.12880
– volume: 94
  start-page: 83
  year: 2018
  ident: 716_CR25
  publication-title: J Autoimmun
  doi: 10.1016/j.jaut.2018.07.010
– volume: 57
  start-page: 84
  issue: 1
  year: 2011
  ident: 716_CR43
  publication-title: Clin Chem
  doi: 10.1373/clinchem.2010.151845
– volume: 7
  start-page: 280
  issue: 3
  year: 2011
  ident: 716_CR3
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2011.03.003
– volume: 56
  start-page: 6156
  issue: 9
  year: 2019
  ident: 716_CR51
  publication-title: Mol Neurobiol
  doi: 10.1007/s12035-019-1500-y
– volume: 3
  start-page: 1178
  issue: 12
  year: 2011
  ident: 716_CR20
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.100413
– volume: 112
  start-page: 2257
  issue: 7
  year: 2015
  ident: 716_CR36
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1423573112
– volume: 48
  start-page: 1034
  issue: 6
  year: 1991
  ident: 716_CR10
  publication-title: Am J Hum Genet
– volume: 325
  start-page: 167
  issue: 3
  year: 1993
  ident: 716_CR54
  publication-title: FEBS Lett
  doi: 10.1016/0014-5793(93)81066-9
– volume: 29
  start-page: 15
  issue: 1
  year: 2013
  ident: 716_CR39
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 12
  start-page: R90
  issue: 6
  year: 2010
  ident: 716_CR44
  publication-title: Breast Cancer Res
  doi: 10.1186/bcr2766
– volume: 14
  start-page: 27
  issue: 1
  year: 2008
  ident: 716_CR19
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2008-14103
– volume: 4
  start-page: 1077
  issue: 12
  year: 1994
  ident: 716_CR55
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(00)00246-3
– volume: 10
  start-page: 67
  issue: 1
  year: 2019
  ident: 716_CR26
  publication-title: Mol Clin Oncol
– volume: 30
  start-page: 923
  issue: 7
  year: 2014
  ident: 716_CR40
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt656
– volume: 67
  start-page: 875
  issue: 3
  year: 2019
  ident: 716_CR22
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-180539
– volume: 23
  start-page: 3882
  issue: 19
  year: 2012
  ident: 716_CR56
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e12-05-0337
– volume: 8
  start-page: 11173
  issue: 1
  year: 2018
  ident: 716_CR47
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-29433-3
– volume: 23
  start-page: 1375
  issue: 5
  year: 2018
  ident: 716_CR27
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2017.30
– volume: 45
  start-page: 1452
  issue: 12
  year: 2013
  ident: 716_CR11
  publication-title: Nat Genet
  doi: 10.1038/ng.2802
– volume: 12
  start-page: 150
  issue: 1
  year: 2019
  ident: 716_CR16
  publication-title: BMC Med Genet
– volume: 16
  start-page: 471
  issue: 3
  year: 2009
  ident: 716_CR6
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2009-0992
– volume: 9
  start-page: 1178
  year: 2018
  ident: 716_CR48
  publication-title: Front Neurol
  doi: 10.3389/fneur.2018.01178
– volume: 91
  start-page: 827
  issue: 3
  year: 2011
  ident: 716_CR17
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00006.2010
SSID ssj0066284
Score 2.4321253
Snippet Background Mild cognitive impairment (MCI) is a precursor to Alzheimer’s disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of...
Mild cognitive impairment (MCI) is a precursor to Alzheimer's disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals...
Background Mild cognitive impairment (MCI) is a precursor to Alzheimer's disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of...
Background Mild cognitive impairment (MCI) is a precursor to Alzheimer’s disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of...
Abstract Background Mild cognitive impairment (MCI) is a precursor to Alzheimer’s disease (AD), but not all MCI patients develop AD. Biomarkers for early...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 145
SubjectTerms Age
Alzheimer's disease
Biomarkers
Biomarkers for early diagnosis
Biomedical and Life Sciences
Biomedicine
Cognitive ability
Cognitive disorders
Conversion
Dementia
Development and progression
Diagnosis
Disease
eQTL effect
Gene expression
Genetic aspects
Genomes
Geriatric Psychiatry
Geriatrics
Geriatrics/Gerontology
Health aspects
Health risk assessment
Medical diagnosis
Medical prognosis
MicroRNA
MicroRNAs
Neurology
Neurosciences
Pathogenesis
Prognosis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09b9YwELZQJxYE4itQwEhIDBDViR3HGV8QVcWAGKjUzfJX1EhvkypvOsDUP9GBv8cv4c75oCkCFtb4rCR35_Odfc8dIa9qp4ILiqXMKjytsipVntvUZBz7wlbc1DHb4pM8OhYfT4qTa62-MCdsLA88Mu4gC7BHW1erqsyEr2sjKmwOVEnlvaxMxJGzis3B1GiDpQSrO0NklDzYwZsjEhlR1BAhpGy1DcVq_b_b5Gub0s2EyRu3pnEzOrxL7kxeJN2MX3-P3ArtfXL1ue8wba7Z0fMe71-Q5zS2uqHgmtKYYB5PxyiCSuhZs_V0SR-iiJdsejwspENHN9tvp6E5C_2Py-87Ol3j0OhiBk_tVzrXmcCpZqpsQruaxgzFFLHOMM0M5gE5Pvzw5f1ROnVdSF3JxJC6IIoi1FVtK1-BHTUChCxk7vOyyKwRJlPeOsaVC0XJnRKKW5_VXFgBdtMG_pDstV0bHhPKQpHVmSwCnlgai5e4jnnGDUMvzMuEZLMQtJtKkmNnjK2OoYmSehScBsHpKDjNEvJmmXM-FuT4K_U7lO1CicW04wNQMT2pmP6XiiXkBWqGHpGpi0nQG4jdwPuDODwhryMFGgX4AWcmbAOwActrrSj3V5SwmN16eNY-PRmTnc6B-3mOnQ4S8nIZxpmYINeG7gJpYhulSPNoVNblpzn4iODpZgkpV2q84sp6pG1OY6nxEtz9kouEvJ0V_tdn_ZnrT_4H15-S2zku2JhyuU_2hv4iPAMHcLDP41r_CfwlWL0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQw0IJy4YJAvAIFjITEAaImaydxTmhBVBUHxIFKe7P8Co20TZYkPbQnfoIDv8eXMOM4KSmi1_VYWXsenvcQ8qoywhknkjjRAr1VWsTCMh2rlOFc2JKpymdbfM6PjvmnTbYJDrc-pFVOMtELatsa9JEfrHgOTxm2e3-3-x7j1CiMroYRGjfJLd-6DOi52MwGV56D7J0KZUR-0MP3fT0y1lKDnRAni8fI9-z_VzL_9TRdTZu8Ejv1T9LhXXIn6JJ0PSL_Hrnhmvvk55euxeS5uqe7DqMwePPUD7yhoKBSn2bufWQUS0voab21dE4iolg1WXfoMqRDS9fbixNXn7ru949fPQ3BHOoVTWepPqdTtwncqkJ_E9pW1OcpxljxDNvUoB6Q48OPXz8cxWH2QmyKhA-xcTzLXFVWurQlSFPFAdWAArsqslQrrlJhtUmYMC4rmBFcMG3TinHNQXpqxx6SvaZt3GNCE5elVZpnDv2WSmMo1yQ2YSpBXczmEUknJEgTGpPjfIyt9AaKyOWIOAmIkx5xMonIm3nPbmzLcS30e8TtDIkttf0PbfdNBg6VqQNlUJtKlEXKbVUpXuIUqjIX1ualKiLyAilDjvWps2CQa7DgQAcEazwirz0EigY4gFGhwgGuAZtsLSD3F5DA0ma5PFGfDCKll5cMEJGX8zLuxDS5xrVnCOOHKXmYRyOxzodmoCmCvptGpFiQ8eJWlitNfeIbjheg9BeMR-TtRPCXf-v_t_7k-lM8JbdXyIo-pXKf7A3dmXsGCt6gn3su_gNST1BH
  priority: 102
  providerName: ProQuest
Title Prognosis prediction model for conversion from mild cognitive impairment to Alzheimer’s disease created by integrative analysis of multi-omics data
URI https://link.springer.com/article/10.1186/s13195-020-00716-0
https://www.ncbi.nlm.nih.gov/pubmed/33172501
https://www.proquest.com/docview/2462220747
https://www.proquest.com/docview/2459627747
https://pubmed.ncbi.nlm.nih.gov/PMC7656734
https://doaj.org/article/1e505bcf89714dffa491086968dd69a7
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagvXBBIF4pZTESEgeIiGPHcY7bqlXFoaoQlfZm-RU10nZT7aYHOPEnOPD3-CXMeJPQlIfEdT0jbWbG48-eFyGva6eCCypLM6vwtcqqVHluU8M4zoWtuKljtsWpPDkXHxbFom-Tg7UwN-P3TMn3G-CJNcRY_wzYPoXr-W7BuIyBWXk4eF0pwc8ORTF_5JscPLE__-9e-MYxdDtF8lacNB4_xw_I_R430vlW0Q_JnbB6RL6drVtMlGs29GqNEReUMo3DbSiAURpTyuN7GMUyEnrZLD0dE4YoVkg2a3wepF1L58svF6G5DOsfX79vaB-4oRFUBk_tZzp0lkBW0_cyoW1NY05iitXNwGY685icHx99OjxJ-zkLqSsz0aUuiKIIdVXbylfgOY0AtQqZ-7wsmDXCMOWty7hyoSi5U0Jx61nNhRXgKW3gT8jOql2FZ4RmoWA1k0XAN0pjMWzrMp9xkyHu8jIhbFCCdn0TcpyFsdTxMqKk3ipOg-J0VJzOEvJ25LnatuD4J_UB6nakxPbZ8QewKt3vRs0CAD_ralWVTPi6NqLCiVOVVN7LypQJeYmWobe1qKMT0HO4rQHeg5t3Qt5ECnQD8AHO9NUMIAZsqDWh3J9QwvZ10-XB-nTvPjY6B-nnOc42SMircRk5MSVuFdprpImDkyLN062xjh_NARUCtmUJKSdmPJHKdGXVXMTm4iUA_JKLhLwbDP7X3_q71Pf-j_w5uZfj1ozplPtkp1tfhxcA7jo7I3fLRTkjuwdHp2cfZ3GPz-JDyU-hfUyP
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXBOIVKNRIIA4QNQ8ncQ4IbaHVlpZVhVqpN-NX6ErbzZLdCpUTf4IDf4IfxS9hxnmUFNFbr-txtPaMP8-M50HIs0Jzqy0P_EBx9FYp7nMTK1-GMfaFzWNZuGiLcTo6ZO-PkqMV8qvNhcGwyhYTHVCbUqOPfCNiKVxlWO79zfyLj12j8HW1baFRi8WuPfsKJtvi9c474O_zKNreOng78puuAr7OArb0tWVJYou8ULnJASckg0XAx02UJaGSTIbcKB3EXNskizVnPFYmLGKmGOCCsjF89xpZZZjROiCrm1vj_Y8t9qcpoH2bmsPTjQWs2GVAY_Y2WCZ-0Lv-XJeAf--Cvy7Di4GaF15r3SW4fYvcbLRXOqzF7TZZsbM75Md-VWK43mRB5xW--yCvqWuxQ0Elpi6w3XnlKCaz0JPJ1NAubIlinuakQiclXZZ0OP12bCcntvr9_eeCNs9H1Km21lB1Rtv6FjhVNhVVaFlQFxnpY441TJNLeZccXglf7pHBrJzZB4QGNgmLME0sekqlwsdjHZgglgFqfyb1SNgyQeimFDp25JgKZxLxVNSME8A44RgnAo-87ObM60Igl1JvIm87Sizi7X4oq8-iwQQRWlA_lS54noXMFIVkOfa9ylNuTJrLzCPrKBmizojtoEgMwWYErRPsf4-8cBQIRrAALZucCtgGLOvVo1zrUQKI6P5wK32iAbGFOD9yHnnaDeNMDMyb2fIUaVz7JkdzvxbWbtEx6KagYYceyXpi3NuV_shscuxKnGdgZmQx88irVuDP_9b_d_3h5atYJ9dHBx_2xN7OePcRuRHhsXQBnWtksKxO7WNQL5fqSXOmKfl01TDyB4XQj2A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLZQkRAXBGJLKdRISBwgahbHcY6lMCqLqh6o1JvllY40TUaZ9AAn_gQH_h6_hPechaYsEtf4OUr8Fn_22wh55o1wxokkTrTA2yotYmFzHas0x76wVa58iLY44ocn7N1pcXopiz9Eu48uyT6nAas01d3e2vpexQXf28CbQmYxZkUD4o_h0H6d4daH7lp-MNpizsH6jqkyf5w3245C1f7fbfOlzelq4OQV72nYlBa3ya0BTdL9nv13yDVX3yXfjtsGw-eWG7pu0Q-Da09DyxsKEJWGQPNwS0YxuYSeL1eWTmFEFPMmly1eGtKuofurL2duee7aH1-_b-jgzqEBajpL9Wc61pvAqWqocEIbT0OkYow5zzBNdeoeOVm8-XhwGA_dF2JTJqyLjWNF4XzldWUrsKeKAbMZz2xWFqlWTKXCapPkwriizI1gItc29TnTDOyndvl9slU3tXtIaOKK1Ke8cHhzqTQ6c01ik1wliMYsj0g6MkGaoTQ5dshYyXBEEVz2jJPAOBkYJ5OIvJjmrPvCHP-kfoW8nSixqHZ40LSf5KCjMnUAB7XxoipTZr1XrMI-VBUX1vJKlRHZRcmQfYbqZBrkPpzhAAXCeTwizwMFGgf4AaOGHAdYBiyzNaPcmVGCUpv58Ch9cjAqG5nB6mcZdjyIyNNpGGdioFztmgukCe2UAs2DXlinn84BKwLiTSNSzsR4tirzkXp5FkqOlwD7y5xF5OUo8L8-6--rvv1_5LvkxvHrhfzw9uj9I3IzQy0N8ZY7ZKtrL9xjQH-dfhIU_Cft5FRN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prognosis+prediction+model+for+conversion+from+mild+cognitive+impairment+to+Alzheimer%27s+disease+created+by+integrative+analysis+of+multi-omics+data&rft.jtitle=Alzheimer%27s+research+%26+therapy&rft.au=Shigemizu%2C+Daichi&rft.au=Akiyama%2C+Shintaro&rft.au=Higaki%2C+Sayuri&rft.au=Sugimoto%2C+Taiki&rft.date=2020-11-10&rft.pub=BioMed+Central+Ltd&rft.issn=1758-9193&rft.eissn=1758-9193&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1186%2Fs13195-020-00716-0&rft.externalDocID=A642273978
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-9193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-9193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-9193&client=summon