Prognosis prediction model for conversion from mild cognitive impairment to Alzheimer’s disease created by integrative analysis of multi-omics data
Background Mild cognitive impairment (MCI) is a precursor to Alzheimer’s disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals at high risk for MCI-to-AD conversion are urgently required. Methods We used blood-based microRNA expression profiles and genomic...
Saved in:
Published in | Alzheimer's research & therapy Vol. 12; no. 1; pp. 145 - 12 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
10.11.2020
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1758-9193 1758-9193 |
DOI | 10.1186/s13195-020-00716-0 |
Cover
Abstract | Background
Mild cognitive impairment (MCI) is a precursor to Alzheimer’s disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals at high risk for MCI-to-AD conversion are urgently required.
Methods
We used blood-based microRNA expression profiles and genomic data of 197 Japanese MCI patients to construct a prognosis prediction model based on a Cox proportional hazard model. We examined the biological significance of our findings with single nucleotide polymorphism-microRNA pairs (miR-eQTLs) by focusing on the target genes of the miRNAs. We investigated functional modules from the target genes with the occurrence of hub genes though a large-scale protein-protein interaction network analysis. We further examined the expression of the genes in 610 blood samples (271 ADs, 248 MCIs, and 91 cognitively normal elderly subjects [CNs]).
Results
The final prediction model, composed of 24 miR-eQTLs and three clinical factors (age, sex, and
APOE4
alleles), successfully classified MCI patients into low and high risk of MCI-to-AD conversion (log-rank test
P
= 3.44 × 10
−4
and achieved a concordance index of 0.702 on an independent test set. Four important hub genes associated with AD pathogenesis (
SHC1
,
FOXO1
,
GSK3B
, and
PTEN
) were identified in a network-based meta-analysis of miR-eQTL target genes. RNA-seq data from 610 blood samples showed statistically significant differences in
PTEN
expression between MCI and AD and in
SHC1
expression between CN and AD (
PTEN
,
P
= 0.023;
SHC1
,
P
= 0.049).
Conclusions
Our proposed model was demonstrated to be effective in MCI-to-AD conversion prediction. A network-based meta-analysis of miR-eQTL target genes identified important hub genes associated with AD pathogenesis. Accurate prediction of MCI-to-AD conversion would enable earlier intervention for MCI patients at high risk, potentially reducing conversion to AD. |
---|---|
AbstractList | Mild cognitive impairment (MCI) is a precursor to Alzheimer's disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals at high risk for MCI-to-AD conversion are urgently required.BACKGROUNDMild cognitive impairment (MCI) is a precursor to Alzheimer's disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals at high risk for MCI-to-AD conversion are urgently required.We used blood-based microRNA expression profiles and genomic data of 197 Japanese MCI patients to construct a prognosis prediction model based on a Cox proportional hazard model. We examined the biological significance of our findings with single nucleotide polymorphism-microRNA pairs (miR-eQTLs) by focusing on the target genes of the miRNAs. We investigated functional modules from the target genes with the occurrence of hub genes though a large-scale protein-protein interaction network analysis. We further examined the expression of the genes in 610 blood samples (271 ADs, 248 MCIs, and 91 cognitively normal elderly subjects [CNs]).METHODSWe used blood-based microRNA expression profiles and genomic data of 197 Japanese MCI patients to construct a prognosis prediction model based on a Cox proportional hazard model. We examined the biological significance of our findings with single nucleotide polymorphism-microRNA pairs (miR-eQTLs) by focusing on the target genes of the miRNAs. We investigated functional modules from the target genes with the occurrence of hub genes though a large-scale protein-protein interaction network analysis. We further examined the expression of the genes in 610 blood samples (271 ADs, 248 MCIs, and 91 cognitively normal elderly subjects [CNs]).The final prediction model, composed of 24 miR-eQTLs and three clinical factors (age, sex, and APOE4 alleles), successfully classified MCI patients into low and high risk of MCI-to-AD conversion (log-rank test P = 3.44 × 10-4 and achieved a concordance index of 0.702 on an independent test set. Four important hub genes associated with AD pathogenesis (SHC1, FOXO1, GSK3B, and PTEN) were identified in a network-based meta-analysis of miR-eQTL target genes. RNA-seq data from 610 blood samples showed statistically significant differences in PTEN expression between MCI and AD and in SHC1 expression between CN and AD (PTEN, P = 0.023; SHC1, P = 0.049).RESULTSThe final prediction model, composed of 24 miR-eQTLs and three clinical factors (age, sex, and APOE4 alleles), successfully classified MCI patients into low and high risk of MCI-to-AD conversion (log-rank test P = 3.44 × 10-4 and achieved a concordance index of 0.702 on an independent test set. Four important hub genes associated with AD pathogenesis (SHC1, FOXO1, GSK3B, and PTEN) were identified in a network-based meta-analysis of miR-eQTL target genes. RNA-seq data from 610 blood samples showed statistically significant differences in PTEN expression between MCI and AD and in SHC1 expression between CN and AD (PTEN, P = 0.023; SHC1, P = 0.049).Our proposed model was demonstrated to be effective in MCI-to-AD conversion prediction. A network-based meta-analysis of miR-eQTL target genes identified important hub genes associated with AD pathogenesis. Accurate prediction of MCI-to-AD conversion would enable earlier intervention for MCI patients at high risk, potentially reducing conversion to AD.CONCLUSIONSOur proposed model was demonstrated to be effective in MCI-to-AD conversion prediction. A network-based meta-analysis of miR-eQTL target genes identified important hub genes associated with AD pathogenesis. Accurate prediction of MCI-to-AD conversion would enable earlier intervention for MCI patients at high risk, potentially reducing conversion to AD. Background Mild cognitive impairment (MCI) is a precursor to Alzheimer’s disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals at high risk for MCI-to-AD conversion are urgently required. Methods We used blood-based microRNA expression profiles and genomic data of 197 Japanese MCI patients to construct a prognosis prediction model based on a Cox proportional hazard model. We examined the biological significance of our findings with single nucleotide polymorphism-microRNA pairs (miR-eQTLs) by focusing on the target genes of the miRNAs. We investigated functional modules from the target genes with the occurrence of hub genes though a large-scale protein-protein interaction network analysis. We further examined the expression of the genes in 610 blood samples (271 ADs, 248 MCIs, and 91 cognitively normal elderly subjects [CNs]). Results The final prediction model, composed of 24 miR-eQTLs and three clinical factors (age, sex, and APOE4 alleles), successfully classified MCI patients into low and high risk of MCI-to-AD conversion (log-rank test P = 3.44 × 10 −4 and achieved a concordance index of 0.702 on an independent test set. Four important hub genes associated with AD pathogenesis ( SHC1 , FOXO1 , GSK3B , and PTEN ) were identified in a network-based meta-analysis of miR-eQTL target genes. RNA-seq data from 610 blood samples showed statistically significant differences in PTEN expression between MCI and AD and in SHC1 expression between CN and AD ( PTEN , P = 0.023; SHC1 , P = 0.049). Conclusions Our proposed model was demonstrated to be effective in MCI-to-AD conversion prediction. A network-based meta-analysis of miR-eQTL target genes identified important hub genes associated with AD pathogenesis. Accurate prediction of MCI-to-AD conversion would enable earlier intervention for MCI patients at high risk, potentially reducing conversion to AD. Mild cognitive impairment (MCI) is a precursor to Alzheimer's disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals at high risk for MCI-to-AD conversion are urgently required. We used blood-based microRNA expression profiles and genomic data of 197 Japanese MCI patients to construct a prognosis prediction model based on a Cox proportional hazard model. We examined the biological significance of our findings with single nucleotide polymorphism-microRNA pairs (miR-eQTLs) by focusing on the target genes of the miRNAs. We investigated functional modules from the target genes with the occurrence of hub genes though a large-scale protein-protein interaction network analysis. We further examined the expression of the genes in 610 blood samples (271 ADs, 248 MCIs, and 91 cognitively normal elderly subjects [CNs]). The final prediction model, composed of 24 miR-eQTLs and three clinical factors (age, sex, and APOE4 alleles), successfully classified MCI patients into low and high risk of MCI-to-AD conversion (log-rank test P = 3.44 x 10.sup.-4 and achieved a concordance index of 0.702 on an independent test set. Four important hub genes associated with AD pathogenesis (SHC1, FOXO1, GSK3B, and PTEN) were identified in a network-based meta-analysis of miR-eQTL target genes. RNA-seq data from 610 blood samples showed statistically significant differences in PTEN expression between MCI and AD and in SHC1 expression between CN and AD (PTEN, P = 0.023; SHC1, P = 0.049). Our proposed model was demonstrated to be effective in MCI-to-AD conversion prediction. A network-based meta-analysis of miR-eQTL target genes identified important hub genes associated with AD pathogenesis. Accurate prediction of MCI-to-AD conversion would enable earlier intervention for MCI patients at high risk, potentially reducing conversion to AD. Background Mild cognitive impairment (MCI) is a precursor to Alzheimer's disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals at high risk for MCI-to-AD conversion are urgently required. Methods We used blood-based microRNA expression profiles and genomic data of 197 Japanese MCI patients to construct a prognosis prediction model based on a Cox proportional hazard model. We examined the biological significance of our findings with single nucleotide polymorphism-microRNA pairs (miR-eQTLs) by focusing on the target genes of the miRNAs. We investigated functional modules from the target genes with the occurrence of hub genes though a large-scale protein-protein interaction network analysis. We further examined the expression of the genes in 610 blood samples (271 ADs, 248 MCIs, and 91 cognitively normal elderly subjects [CNs]). Results The final prediction model, composed of 24 miR-eQTLs and three clinical factors (age, sex, and APOE4 alleles), successfully classified MCI patients into low and high risk of MCI-to-AD conversion (log-rank test P = 3.44 x 10.sup.-4 and achieved a concordance index of 0.702 on an independent test set. Four important hub genes associated with AD pathogenesis (SHC1, FOXO1, GSK3B, and PTEN) were identified in a network-based meta-analysis of miR-eQTL target genes. RNA-seq data from 610 blood samples showed statistically significant differences in PTEN expression between MCI and AD and in SHC1 expression between CN and AD (PTEN, P = 0.023; SHC1, P = 0.049). Conclusions Our proposed model was demonstrated to be effective in MCI-to-AD conversion prediction. A network-based meta-analysis of miR-eQTL target genes identified important hub genes associated with AD pathogenesis. Accurate prediction of MCI-to-AD conversion would enable earlier intervention for MCI patients at high risk, potentially reducing conversion to AD. Keywords: Alzheimer's disease, Biomarkers for early diagnosis, eQTL effect Mild cognitive impairment (MCI) is a precursor to Alzheimer's disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals at high risk for MCI-to-AD conversion are urgently required. We used blood-based microRNA expression profiles and genomic data of 197 Japanese MCI patients to construct a prognosis prediction model based on a Cox proportional hazard model. We examined the biological significance of our findings with single nucleotide polymorphism-microRNA pairs (miR-eQTLs) by focusing on the target genes of the miRNAs. We investigated functional modules from the target genes with the occurrence of hub genes though a large-scale protein-protein interaction network analysis. We further examined the expression of the genes in 610 blood samples (271 ADs, 248 MCIs, and 91 cognitively normal elderly subjects [CNs]). The final prediction model, composed of 24 miR-eQTLs and three clinical factors (age, sex, and APOE4 alleles), successfully classified MCI patients into low and high risk of MCI-to-AD conversion (log-rank test P = 3.44 × 10 and achieved a concordance index of 0.702 on an independent test set. Four important hub genes associated with AD pathogenesis (SHC1, FOXO1, GSK3B, and PTEN) were identified in a network-based meta-analysis of miR-eQTL target genes. RNA-seq data from 610 blood samples showed statistically significant differences in PTEN expression between MCI and AD and in SHC1 expression between CN and AD (PTEN, P = 0.023; SHC1, P = 0.049). Our proposed model was demonstrated to be effective in MCI-to-AD conversion prediction. A network-based meta-analysis of miR-eQTL target genes identified important hub genes associated with AD pathogenesis. Accurate prediction of MCI-to-AD conversion would enable earlier intervention for MCI patients at high risk, potentially reducing conversion to AD. Background Mild cognitive impairment (MCI) is a precursor to Alzheimer’s disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals at high risk for MCI-to-AD conversion are urgently required. Methods We used blood-based microRNA expression profiles and genomic data of 197 Japanese MCI patients to construct a prognosis prediction model based on a Cox proportional hazard model. We examined the biological significance of our findings with single nucleotide polymorphism-microRNA pairs (miR-eQTLs) by focusing on the target genes of the miRNAs. We investigated functional modules from the target genes with the occurrence of hub genes though a large-scale protein-protein interaction network analysis. We further examined the expression of the genes in 610 blood samples (271 ADs, 248 MCIs, and 91 cognitively normal elderly subjects [CNs]). Results The final prediction model, composed of 24 miR-eQTLs and three clinical factors (age, sex, and APOE4 alleles), successfully classified MCI patients into low and high risk of MCI-to-AD conversion (log-rank test P = 3.44 × 10−4 and achieved a concordance index of 0.702 on an independent test set. Four important hub genes associated with AD pathogenesis (SHC1, FOXO1, GSK3B, and PTEN) were identified in a network-based meta-analysis of miR-eQTL target genes. RNA-seq data from 610 blood samples showed statistically significant differences in PTEN expression between MCI and AD and in SHC1 expression between CN and AD (PTEN, P = 0.023; SHC1, P = 0.049). Conclusions Our proposed model was demonstrated to be effective in MCI-to-AD conversion prediction. A network-based meta-analysis of miR-eQTL target genes identified important hub genes associated with AD pathogenesis. Accurate prediction of MCI-to-AD conversion would enable earlier intervention for MCI patients at high risk, potentially reducing conversion to AD. Abstract Background Mild cognitive impairment (MCI) is a precursor to Alzheimer’s disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals at high risk for MCI-to-AD conversion are urgently required. Methods We used blood-based microRNA expression profiles and genomic data of 197 Japanese MCI patients to construct a prognosis prediction model based on a Cox proportional hazard model. We examined the biological significance of our findings with single nucleotide polymorphism-microRNA pairs (miR-eQTLs) by focusing on the target genes of the miRNAs. We investigated functional modules from the target genes with the occurrence of hub genes though a large-scale protein-protein interaction network analysis. We further examined the expression of the genes in 610 blood samples (271 ADs, 248 MCIs, and 91 cognitively normal elderly subjects [CNs]). Results The final prediction model, composed of 24 miR-eQTLs and three clinical factors (age, sex, and APOE4 alleles), successfully classified MCI patients into low and high risk of MCI-to-AD conversion (log-rank test P = 3.44 × 10−4 and achieved a concordance index of 0.702 on an independent test set. Four important hub genes associated with AD pathogenesis (SHC1, FOXO1, GSK3B, and PTEN) were identified in a network-based meta-analysis of miR-eQTL target genes. RNA-seq data from 610 blood samples showed statistically significant differences in PTEN expression between MCI and AD and in SHC1 expression between CN and AD (PTEN, P = 0.023; SHC1, P = 0.049). Conclusions Our proposed model was demonstrated to be effective in MCI-to-AD conversion prediction. A network-based meta-analysis of miR-eQTL target genes identified important hub genes associated with AD pathogenesis. Accurate prediction of MCI-to-AD conversion would enable earlier intervention for MCI patients at high risk, potentially reducing conversion to AD. |
ArticleNumber | 145 |
Audience | Academic |
Author | Shigemizu, Daichi Boroevich, Keith A. Ozaki, Kouichi Akiyama, Shintaro Sharma, Alok Sugimoto, Taiki Sakurai, Takashi Niida, Shumpei Tsunoda, Tatsuhiko Ochiya, Takahiro Higaki, Sayuri |
Author_xml | – sequence: 1 givenname: Daichi orcidid: 0000-0002-4412-0552 surname: Shigemizu fullname: Shigemizu, Daichi email: d.shigemizu@gmail.com organization: Medical Genome Center, National Center for Geriatrics and Gerontology, Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), RIKEN Center for Integrative Medical Sciences – sequence: 2 givenname: Shintaro surname: Akiyama fullname: Akiyama, Shintaro organization: Medical Genome Center, National Center for Geriatrics and Gerontology – sequence: 3 givenname: Sayuri surname: Higaki fullname: Higaki, Sayuri organization: Medical Genome Center, National Center for Geriatrics and Gerontology – sequence: 4 givenname: Taiki surname: Sugimoto fullname: Sugimoto, Taiki organization: The Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology – sequence: 5 givenname: Takashi surname: Sakurai fullname: Sakurai, Takashi organization: The Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Department of Cognitive and Behavioral Science, Nagoya University Graduate School of Medicine – sequence: 6 givenname: Keith A. surname: Boroevich fullname: Boroevich, Keith A. organization: RIKEN Center for Integrative Medical Sciences – sequence: 7 givenname: Alok surname: Sharma fullname: Sharma, Alok organization: RIKEN Center for Integrative Medical Sciences, Institute for Integrated and Intelligent Systems, Griffith University, University of the South Pacific – sequence: 8 givenname: Tatsuhiko surname: Tsunoda fullname: Tsunoda, Tatsuhiko organization: Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), RIKEN Center for Integrative Medical Sciences, Department of Biological Sciences, Graduate School of Science, The University of Tokyo – sequence: 9 givenname: Takahiro surname: Ochiya fullname: Ochiya, Takahiro organization: Division of Molecular and Cellular Medicine, Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Institute of Medical Science, Tokyo Medical University – sequence: 10 givenname: Shumpei surname: Niida fullname: Niida, Shumpei organization: Medical Genome Center, National Center for Geriatrics and Gerontology – sequence: 11 givenname: Kouichi surname: Ozaki fullname: Ozaki, Kouichi organization: Medical Genome Center, National Center for Geriatrics and Gerontology, RIKEN Center for Integrative Medical Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33172501$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhSNURH_gBVggS0iITYrtOHayQaoqfipVggWsLce-zrhy7MHOVCorXoIFr8eT4HRa6FSoyiLRzfnOdU7OYbUXYoCqek7wMSEdf5NJQ_q2xhTXGAvCa_yoOiCi7eqe9M3enef96jDnC4w5px17Uu03DRG0xeSg-vk5xTHE7DJaJzBOzy4GNEUDHtmYkI7hElJehjbFCU3OmzIcg5vdJSA3rZVLE4QZzRGd-O8rcBOk3z9-ZWRcBpUB6QRqBoOGK-TCDGNS16gKyl8te6NF08bPro6T0wVTs3paPbbKZ3h2cz-qvr5_9-X0Y33-6cPZ6cl5rQVmc62BtS3Y3g696QnjimmtGKeGipYMiinSmUHjptPQikZ3rGsGQ2zDBkYIGaA5qs62viaqC7lOblLpSkbl5PUgplGqNDvtQRJocTto2_WCMGOtYj3BHe95ZwzvlSheb7de680wgdElk6T8junum-BWcoyXUvCWi4YVg9c3Bil-20Ce5eSyBu9VgLjJkrK251QItux6eU96ETepBLqoOKUU76hGVT7ABRvLXr2YyhPOKBVNL7qiOv6PqlwGyv8ojbOuzHeAV3eAFSg_r3L0m6U5eVf44m4if6O4bV8RdFuBTjHnBFZqN6vFpxzBeUmwXIout0WXpejyuugSF5TeQ2_dH4SaLZSLOIyQ_sX2APUH4KkSbQ |
CitedBy_id | crossref_primary_10_3389_flang_2023_1199107 crossref_primary_10_1093_hmg_ddac202 crossref_primary_10_1016_j_psychres_2023_115141 crossref_primary_10_3390_ncrna8040045 crossref_primary_10_1038_s44400_024_00002_y crossref_primary_10_1109_ACCESS_2023_3342921 crossref_primary_10_3389_fnagi_2022_1069606 crossref_primary_10_2174_1386207325666220208122911 crossref_primary_10_3390_cells13221920 crossref_primary_10_3233_ADR_230081 crossref_primary_10_3389_fnagi_2022_840386 crossref_primary_10_3389_fnagi_2022_1065904 crossref_primary_10_3389_fgene_2022_1049786 crossref_primary_10_1177_13872877241302493 crossref_primary_10_1016_j_wneu_2021_06_118 crossref_primary_10_3390_ijms25042211 crossref_primary_10_1096_fj_202301254R crossref_primary_10_1007_s12035_023_03633_z crossref_primary_10_1002_pmic_202000235 crossref_primary_10_12677_ap_2024_143171 crossref_primary_10_3233_ADR_230006 crossref_primary_10_3233_ADR_230149 crossref_primary_10_1016_j_jbi_2023_104442 crossref_primary_10_1186_s12859_024_05840_4 crossref_primary_10_3390_ijms25126678 crossref_primary_10_1186_s13195_021_00879_4 crossref_primary_10_1016_j_bspc_2022_104301 crossref_primary_10_1186_s40035_022_00315_z crossref_primary_10_1038_s41514_022_00096_9 crossref_primary_10_1007_s42835_024_01897_6 crossref_primary_10_1186_s12877_024_05645_3 crossref_primary_10_3233_JAD_240285 crossref_primary_10_3233_JAD_220826 crossref_primary_10_3390_biomedicines9121812 crossref_primary_10_1007_s44197_024_00266_w crossref_primary_10_3389_fneur_2024_1354092 crossref_primary_10_3390_ijerph19084839 crossref_primary_10_1080_23279095_2024_2323627 crossref_primary_10_1038_s41598_024_54875_3 crossref_primary_10_1186_s13024_022_00517_z crossref_primary_10_1186_s40168_023_01717_5 crossref_primary_10_3389_fnins_2024_1358998 crossref_primary_10_1093_database_baab072 crossref_primary_10_3389_fnagi_2021_807764 |
Cites_doi | 10.1016/j.jalz.2011.03.008 10.1038/s41588-019-0358-2 10.1254/jphs.10R11FM 10.1093/nar/gkq973 10.1016/j.nicl.2018.101637 10.1111/psyg.12019 10.1001/archneur.56.3.303 10.1016/j.jalz.2019.06.4950 10.1038/gim.2015.117 10.1093/bioinformatics/btp616 10.1038/s41582-019-0158-4 10.1038/jhg.2015.68 10.1101/gr.1239303 10.1634/theoncologist.2010-0103 10.1038/s42003-019-0324-7 10.18632/aging.100486 10.1186/s13195-019-0501-4 10.1093/jamiaopen/ooy050 10.1126/science.1260419 10.1001/archpsyc.63.2.168 10.1093/nar/gku1104 10.1186/s13195-020-00654-x 10.1016/j.jalz.2011.03.005 10.1158/1078-0432.CCR-11-2725 10.1371/journal.pone.0040498 10.1126/science.1174148 10.1038/s41588-018-0311-9 10.1016/j.nicl.2019.101837 10.1016/bs.ctdb.2017.10.002 10.3390/geriatrics1020011 10.1371/journal.pgen.1000529 10.1002/cphg.59 10.3233/JAD-160835 10.1111/cas.12880 10.1016/j.jaut.2018.07.010 10.1373/clinchem.2010.151845 10.1016/j.jalz.2011.03.003 10.1007/s12035-019-1500-y 10.18632/aging.100413 10.1073/pnas.1423573112 10.1016/0014-5793(93)81066-9 10.1093/bioinformatics/bts635 10.1186/bcr2766 10.3233/JAD-2008-14103 10.1016/S0960-9822(00)00246-3 10.1093/bioinformatics/btt656 10.3233/JAD-180539 10.1091/mbc.e12-05-0337 10.1038/s41598-018-29433-3 10.1038/mp.2017.30 10.1038/ng.2802 10.3233/JAD-2009-0992 10.3389/fneur.2018.01178 10.1152/physrev.00006.2010 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 COPYRIGHT 2020 BioMed Central Ltd. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2020 BioMed Central Ltd. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s13195-020-00716-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1758-9193 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_1e505bcf89714dffa491086968dd69a7 PMC7656734 A642273978 33172501 10_1186_s13195_020_00716_0 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GrantInformation_xml | – fundername: The Japan Foundation for Aging and Health – fundername: Takeda Science Foundation funderid: http://dx.doi.org/10.13039/100007449 – fundername: the Japan Agency for Medical Research and Development grantid: JP18kk0205009 – fundername: Longevity Sciences from the National Center for Geriatrics and Gerontology grantid: 30-29; 29-45 – fundername: Research on Dementia from the Japanese Ministry of Health, Labor and Welfare – fundername: ; – fundername: ; grantid: JP18kk0205009 – fundername: ; grantid: 30-29; 29-45 |
GroupedDBID | --- 0R~ 23M 2WC 53G 5VS 6J9 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML ABDBF ABUWG ACGFS ACIHN ACJQM ACUHS ADBBV ADUKV AEAQA AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU DIK E3Z EBD EBLON EBS ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE HZ~ IAO IEA IHR IHW INH INR ITC KQ8 M1P M~E O5R O5S O9- OK1 P2P P6G PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ ROL RPM RSV SBL SOJ TR2 TUS UKHRP AAYXX ALIPV CITATION NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c704t-ce455ef9fb9d9146a4cca462d2751ba4a18dbc038ce573c8483bd1f34b4111be3 |
IEDL.DBID | C6C |
ISSN | 1758-9193 |
IngestDate | Wed Aug 27 01:30:45 EDT 2025 Thu Aug 21 14:12:39 EDT 2025 Thu Sep 04 19:09:08 EDT 2025 Fri Jul 25 07:14:34 EDT 2025 Tue Jun 17 21:10:06 EDT 2025 Tue Jun 10 20:31:14 EDT 2025 Thu May 22 20:54:03 EDT 2025 Thu Apr 03 06:54:21 EDT 2025 Tue Jul 01 02:38:50 EDT 2025 Thu Apr 24 23:08:57 EDT 2025 Sat Sep 06 07:34:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Alzheimer’s disease eQTL effect Biomarkers for early diagnosis |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c704t-ce455ef9fb9d9146a4cca462d2751ba4a18dbc038ce573c8483bd1f34b4111be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4412-0552 |
OpenAccessLink | https://doi.org/10.1186/s13195-020-00716-0 |
PMID | 33172501 |
PQID | 2462220747 |
PQPubID | 2040174 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1e505bcf89714dffa491086968dd69a7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7656734 proquest_miscellaneous_2459627747 proquest_journals_2462220747 gale_infotracmisc_A642273978 gale_infotracacademiconefile_A642273978 gale_healthsolutions_A642273978 pubmed_primary_33172501 crossref_citationtrail_10_1186_s13195_020_00716_0 crossref_primary_10_1186_s13195_020_00716_0 springer_journals_10_1186_s13195_020_00716_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-10 |
PublicationDateYYYYMMDD | 2020-11-10 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Alzheimer's research & therapy |
PublicationTitleAbbrev | Alz Res Therapy |
PublicationTitleAlternate | Alzheimers Res Ther |
PublicationYear | 2020 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | GM McKhann (716_CR2) 2011; 7 J Satoh (716_CR18) 2010; 114 L Bertram (716_CR52) 2019; 15 RDC T (716_CR34) 2009 A Dobin (716_CR39) 2013; 29 N Wong (716_CR35) 2015; 43 M Gatz (716_CR8) 2006; 63 C Roth (716_CR44) 2010; 12 MA Lovell (716_CR6) 2009; 16 Y Liao (716_CR40) 2014; 30 RA Sperling (716_CR3) 2011; 7 MD Robinson (716_CR41) 2010; 26 A Sorensen (716_CR50) 2019; 21 D Shigemizu (716_CR15) 2019; 2 D Liang (716_CR57) 2012; 7 JT Wiedrick (716_CR22) 2019; 67 D Szklarczyk (716_CR37) 2011; 39 AS Dimas (716_CR24) 2009; 325 A Moscoso (716_CR49) 2019; 23 MA Pericak-Vance (716_CR10) 1991; 48 S Khanna (716_CR47) 2018; 8 RC Petersen (716_CR5) 1999; 56 MS Albert (716_CR1) 2011; 7 I Wohlers (716_CR25) 2018; 94 TA Lusardi (716_CR21) 2017; 55 KS Sheinerman (716_CR23) 2012; 4 Y Kawai (716_CR28) 2013; 13 BN Howie (716_CR30) 2009; 5 IE Jansen (716_CR12) 2019; 51 716_CR4 P Shannon (716_CR38) 2003; 13 M Uhlen (716_CR45) 2015; 347 D Shigemizu (716_CR46) 2020; 12 C Van Cauwenberghe (716_CR9) 2016; 18 S Swarbrick (716_CR51) 2019; 56 JC Lambert (716_CR11) 2013; 45 R Tacutu (716_CR20) 2011; 3 A Shimomura (716_CR32) 2016; 107 C Zheng (716_CR58) 2019; 2 D Sayed (716_CR17) 2011; 91 S Asaga (716_CR43) 2011; 57 JP Cogswell (716_CR19) 2008; 14 K Ishiguro (716_CR54) 1993; 325 716_CR13 Y Kawai (716_CR29) 2015; 60 SH Slifer (716_CR31) 2018; 97 P Devanna (716_CR27) 2018; 23 JA Santiago (716_CR36) 2015; 112 S Lovestone (716_CR55) 1994; 4 D Shigemizu (716_CR16) 2019; 12 W Xiao (716_CR26) 2019; 10 HM Heneghan (716_CR42) 2010; 15 Y Sun (716_CR48) 2018; 9 BW Kunkle (716_CR14) 2019; 51 EE Santo (716_CR53) 2018; 127 K Yoshihara (716_CR33) 2012; 18 A Gupta (716_CR56) 2012; 23 D Siedlecki-Wullich (716_CR7) 2019; 11 |
References_xml | – volume: 7 start-page: 270 issue: 3 year: 2011 ident: 716_CR1 publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2011.03.008 – volume: 51 start-page: 414 issue: 3 year: 2019 ident: 716_CR14 publication-title: Nat Genet doi: 10.1038/s41588-019-0358-2 – volume: 114 start-page: 269 issue: 3 year: 2010 ident: 716_CR18 publication-title: J Pharmacol Sci doi: 10.1254/jphs.10R11FM – volume: 39 start-page: D561 issue: Database issue year: 2011 ident: 716_CR37 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq973 – volume: 21 start-page: 101637 year: 2019 ident: 716_CR50 publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2018.101637 – volume: 13 start-page: 157 issue: 3 year: 2013 ident: 716_CR28 publication-title: Psychogeriatrics doi: 10.1111/psyg.12019 – volume: 56 start-page: 303 issue: 3 year: 1999 ident: 716_CR5 publication-title: Arch Neurol doi: 10.1001/archneur.56.3.303 – ident: 716_CR13 doi: 10.1016/j.jalz.2019.06.4950 – volume: 18 start-page: 421 issue: 5 year: 2016 ident: 716_CR9 publication-title: Genet Med doi: 10.1038/gim.2015.117 – volume: 26 start-page: 139 issue: 1 year: 2010 ident: 716_CR41 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 15 start-page: 191 issue: 4 year: 2019 ident: 716_CR52 publication-title: Nat Rev Neurol doi: 10.1038/s41582-019-0158-4 – volume: 60 start-page: 581 issue: 10 year: 2015 ident: 716_CR29 publication-title: J Hum Genet doi: 10.1038/jhg.2015.68 – volume: 13 start-page: 2498 issue: 11 year: 2003 ident: 716_CR38 publication-title: Genome Res doi: 10.1101/gr.1239303 – volume: 15 start-page: 673 issue: 7 year: 2010 ident: 716_CR42 publication-title: Oncologist doi: 10.1634/theoncologist.2010-0103 – volume-title: R: a language and environment for statistical computing year: 2009 ident: 716_CR34 – volume: 2 start-page: 77 year: 2019 ident: 716_CR15 publication-title: Commun Biol doi: 10.1038/s42003-019-0324-7 – volume: 4 start-page: 590 issue: 9 year: 2012 ident: 716_CR23 publication-title: Aging (Albany NY) doi: 10.18632/aging.100486 – volume: 11 start-page: 46 issue: 1 year: 2019 ident: 716_CR7 publication-title: Alzheimers Res Ther doi: 10.1186/s13195-019-0501-4 – volume: 2 start-page: 131 issue: 1 year: 2019 ident: 716_CR58 publication-title: JAMIA Open doi: 10.1093/jamiaopen/ooy050 – volume: 347 start-page: 1260419 issue: 6220 year: 2015 ident: 716_CR45 publication-title: Science doi: 10.1126/science.1260419 – volume: 63 start-page: 168 issue: 2 year: 2006 ident: 716_CR8 publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.63.2.168 – volume: 43 start-page: D146 issue: Database issue year: 2015 ident: 716_CR35 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1104 – volume: 12 start-page: 87 issue: 1 year: 2020 ident: 716_CR46 publication-title: Alzheimers Res Ther doi: 10.1186/s13195-020-00654-x – volume: 7 start-page: 263 issue: 3 year: 2011 ident: 716_CR2 publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2011.03.005 – volume: 18 start-page: 1374 issue: 5 year: 2012 ident: 716_CR33 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-11-2725 – volume: 7 start-page: e40498 issue: 7 year: 2012 ident: 716_CR57 publication-title: Plos One doi: 10.1371/journal.pone.0040498 – volume: 325 start-page: 1246 issue: 5945 year: 2009 ident: 716_CR24 publication-title: Science doi: 10.1126/science.1174148 – volume: 51 start-page: 404 issue: 3 year: 2019 ident: 716_CR12 publication-title: Nat Genet doi: 10.1038/s41588-018-0311-9 – volume: 23 start-page: 101837 year: 2019 ident: 716_CR49 publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2019.101837 – volume: 127 start-page: 105 year: 2018 ident: 716_CR53 publication-title: Curr Top Dev Biol doi: 10.1016/bs.ctdb.2017.10.002 – ident: 716_CR4 doi: 10.3390/geriatrics1020011 – volume: 5 start-page: e1000529 issue: 6 year: 2009 ident: 716_CR30 publication-title: Plos Genet doi: 10.1371/journal.pgen.1000529 – volume: 97 start-page: e59 issue: 1 year: 2018 ident: 716_CR31 publication-title: Curr Protoc Hum Genet doi: 10.1002/cphg.59 – volume: 55 start-page: 1223 issue: 3 year: 2017 ident: 716_CR21 publication-title: J Alzheimers Dis doi: 10.3233/JAD-160835 – volume: 107 start-page: 326 issue: 3 year: 2016 ident: 716_CR32 publication-title: Cancer Sci doi: 10.1111/cas.12880 – volume: 94 start-page: 83 year: 2018 ident: 716_CR25 publication-title: J Autoimmun doi: 10.1016/j.jaut.2018.07.010 – volume: 57 start-page: 84 issue: 1 year: 2011 ident: 716_CR43 publication-title: Clin Chem doi: 10.1373/clinchem.2010.151845 – volume: 7 start-page: 280 issue: 3 year: 2011 ident: 716_CR3 publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2011.03.003 – volume: 56 start-page: 6156 issue: 9 year: 2019 ident: 716_CR51 publication-title: Mol Neurobiol doi: 10.1007/s12035-019-1500-y – volume: 3 start-page: 1178 issue: 12 year: 2011 ident: 716_CR20 publication-title: Aging (Albany NY) doi: 10.18632/aging.100413 – volume: 112 start-page: 2257 issue: 7 year: 2015 ident: 716_CR36 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1423573112 – volume: 48 start-page: 1034 issue: 6 year: 1991 ident: 716_CR10 publication-title: Am J Hum Genet – volume: 325 start-page: 167 issue: 3 year: 1993 ident: 716_CR54 publication-title: FEBS Lett doi: 10.1016/0014-5793(93)81066-9 – volume: 29 start-page: 15 issue: 1 year: 2013 ident: 716_CR39 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 12 start-page: R90 issue: 6 year: 2010 ident: 716_CR44 publication-title: Breast Cancer Res doi: 10.1186/bcr2766 – volume: 14 start-page: 27 issue: 1 year: 2008 ident: 716_CR19 publication-title: J Alzheimers Dis doi: 10.3233/JAD-2008-14103 – volume: 4 start-page: 1077 issue: 12 year: 1994 ident: 716_CR55 publication-title: Curr Biol doi: 10.1016/S0960-9822(00)00246-3 – volume: 10 start-page: 67 issue: 1 year: 2019 ident: 716_CR26 publication-title: Mol Clin Oncol – volume: 30 start-page: 923 issue: 7 year: 2014 ident: 716_CR40 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt656 – volume: 67 start-page: 875 issue: 3 year: 2019 ident: 716_CR22 publication-title: J Alzheimers Dis doi: 10.3233/JAD-180539 – volume: 23 start-page: 3882 issue: 19 year: 2012 ident: 716_CR56 publication-title: Mol Biol Cell doi: 10.1091/mbc.e12-05-0337 – volume: 8 start-page: 11173 issue: 1 year: 2018 ident: 716_CR47 publication-title: Sci Rep doi: 10.1038/s41598-018-29433-3 – volume: 23 start-page: 1375 issue: 5 year: 2018 ident: 716_CR27 publication-title: Mol Psychiatry doi: 10.1038/mp.2017.30 – volume: 45 start-page: 1452 issue: 12 year: 2013 ident: 716_CR11 publication-title: Nat Genet doi: 10.1038/ng.2802 – volume: 12 start-page: 150 issue: 1 year: 2019 ident: 716_CR16 publication-title: BMC Med Genet – volume: 16 start-page: 471 issue: 3 year: 2009 ident: 716_CR6 publication-title: J Alzheimers Dis doi: 10.3233/JAD-2009-0992 – volume: 9 start-page: 1178 year: 2018 ident: 716_CR48 publication-title: Front Neurol doi: 10.3389/fneur.2018.01178 – volume: 91 start-page: 827 issue: 3 year: 2011 ident: 716_CR17 publication-title: Physiol Rev doi: 10.1152/physrev.00006.2010 |
SSID | ssj0066284 |
Score | 2.4321253 |
Snippet | Background
Mild cognitive impairment (MCI) is a precursor to Alzheimer’s disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of... Mild cognitive impairment (MCI) is a precursor to Alzheimer's disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of individuals... Background Mild cognitive impairment (MCI) is a precursor to Alzheimer's disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of... Background Mild cognitive impairment (MCI) is a precursor to Alzheimer’s disease (AD), but not all MCI patients develop AD. Biomarkers for early detection of... Abstract Background Mild cognitive impairment (MCI) is a precursor to Alzheimer’s disease (AD), but not all MCI patients develop AD. Biomarkers for early... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 145 |
SubjectTerms | Age Alzheimer's disease Biomarkers Biomarkers for early diagnosis Biomedical and Life Sciences Biomedicine Cognitive ability Cognitive disorders Conversion Dementia Development and progression Diagnosis Disease eQTL effect Gene expression Genetic aspects Genomes Geriatric Psychiatry Geriatrics Geriatrics/Gerontology Health aspects Health risk assessment Medical diagnosis Medical prognosis MicroRNA MicroRNAs Neurology Neurosciences Pathogenesis Prognosis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09b9YwELZQJxYE4itQwEhIDBDViR3HGV8QVcWAGKjUzfJX1EhvkypvOsDUP9GBv8cv4c75oCkCFtb4rCR35_Odfc8dIa9qp4ILiqXMKjytsipVntvUZBz7wlbc1DHb4pM8OhYfT4qTa62-MCdsLA88Mu4gC7BHW1erqsyEr2sjKmwOVEnlvaxMxJGzis3B1GiDpQSrO0NklDzYwZsjEhlR1BAhpGy1DcVq_b_b5Gub0s2EyRu3pnEzOrxL7kxeJN2MX3-P3ArtfXL1ue8wba7Z0fMe71-Q5zS2uqHgmtKYYB5PxyiCSuhZs_V0SR-iiJdsejwspENHN9tvp6E5C_2Py-87Ol3j0OhiBk_tVzrXmcCpZqpsQruaxgzFFLHOMM0M5gE5Pvzw5f1ROnVdSF3JxJC6IIoi1FVtK1-BHTUChCxk7vOyyKwRJlPeOsaVC0XJnRKKW5_VXFgBdtMG_pDstV0bHhPKQpHVmSwCnlgai5e4jnnGDUMvzMuEZLMQtJtKkmNnjK2OoYmSehScBsHpKDjNEvJmmXM-FuT4K_U7lO1CicW04wNQMT2pmP6XiiXkBWqGHpGpi0nQG4jdwPuDODwhryMFGgX4AWcmbAOwActrrSj3V5SwmN16eNY-PRmTnc6B-3mOnQ4S8nIZxpmYINeG7gJpYhulSPNoVNblpzn4iODpZgkpV2q84sp6pG1OY6nxEtz9kouEvJ0V_tdn_ZnrT_4H15-S2zku2JhyuU_2hv4iPAMHcLDP41r_CfwlWL0 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQw0IJy4YJAvAIFjITEAaImaydxTmhBVBUHxIFKe7P8Co20TZYkPbQnfoIDv8eXMOM4KSmi1_VYWXsenvcQ8qoywhknkjjRAr1VWsTCMh2rlOFc2JKpymdbfM6PjvmnTbYJDrc-pFVOMtELatsa9JEfrHgOTxm2e3-3-x7j1CiMroYRGjfJLd-6DOi52MwGV56D7J0KZUR-0MP3fT0y1lKDnRAni8fI9-z_VzL_9TRdTZu8Ejv1T9LhXXIn6JJ0PSL_Hrnhmvvk55euxeS5uqe7DqMwePPUD7yhoKBSn2bufWQUS0voab21dE4iolg1WXfoMqRDS9fbixNXn7ru949fPQ3BHOoVTWepPqdTtwncqkJ_E9pW1OcpxljxDNvUoB6Q48OPXz8cxWH2QmyKhA-xcTzLXFVWurQlSFPFAdWAArsqslQrrlJhtUmYMC4rmBFcMG3TinHNQXpqxx6SvaZt3GNCE5elVZpnDv2WSmMo1yQ2YSpBXczmEUknJEgTGpPjfIyt9AaKyOWIOAmIkx5xMonIm3nPbmzLcS30e8TtDIkttf0PbfdNBg6VqQNlUJtKlEXKbVUpXuIUqjIX1ualKiLyAilDjvWps2CQa7DgQAcEazwirz0EigY4gFGhwgGuAZtsLSD3F5DA0ma5PFGfDCKll5cMEJGX8zLuxDS5xrVnCOOHKXmYRyOxzodmoCmCvptGpFiQ8eJWlitNfeIbjheg9BeMR-TtRPCXf-v_t_7k-lM8JbdXyIo-pXKf7A3dmXsGCt6gn3su_gNST1BH priority: 102 providerName: ProQuest |
Title | Prognosis prediction model for conversion from mild cognitive impairment to Alzheimer’s disease created by integrative analysis of multi-omics data |
URI | https://link.springer.com/article/10.1186/s13195-020-00716-0 https://www.ncbi.nlm.nih.gov/pubmed/33172501 https://www.proquest.com/docview/2462220747 https://www.proquest.com/docview/2459627747 https://pubmed.ncbi.nlm.nih.gov/PMC7656734 https://doaj.org/article/1e505bcf89714dffa491086968dd69a7 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagvXBBIF4pZTESEgeIiGPHcY7bqlXFoaoQlfZm-RU10nZT7aYHOPEnOPD3-CXMeJPQlIfEdT0jbWbG48-eFyGva6eCCypLM6vwtcqqVHluU8M4zoWtuKljtsWpPDkXHxbFom-Tg7UwN-P3TMn3G-CJNcRY_wzYPoXr-W7BuIyBWXk4eF0pwc8ORTF_5JscPLE__-9e-MYxdDtF8lacNB4_xw_I_R430vlW0Q_JnbB6RL6drVtMlGs29GqNEReUMo3DbSiAURpTyuN7GMUyEnrZLD0dE4YoVkg2a3wepF1L58svF6G5DOsfX79vaB-4oRFUBk_tZzp0lkBW0_cyoW1NY05iitXNwGY685icHx99OjxJ-zkLqSsz0aUuiKIIdVXbylfgOY0AtQqZ-7wsmDXCMOWty7hyoSi5U0Jx61nNhRXgKW3gT8jOql2FZ4RmoWA1k0XAN0pjMWzrMp9xkyHu8jIhbFCCdn0TcpyFsdTxMqKk3ipOg-J0VJzOEvJ25LnatuD4J_UB6nakxPbZ8QewKt3vRs0CAD_ralWVTPi6NqLCiVOVVN7LypQJeYmWobe1qKMT0HO4rQHeg5t3Qt5ECnQD8AHO9NUMIAZsqDWh3J9QwvZ10-XB-nTvPjY6B-nnOc42SMircRk5MSVuFdprpImDkyLN062xjh_NARUCtmUJKSdmPJHKdGXVXMTm4iUA_JKLhLwbDP7X3_q71Pf-j_w5uZfj1ozplPtkp1tfhxcA7jo7I3fLRTkjuwdHp2cfZ3GPz-JDyU-hfUyP |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXBOIVKNRIIA4QNQ8ncQ4IbaHVlpZVhVqpN-NX6ErbzZLdCpUTf4IDf4IfxS9hxnmUFNFbr-txtPaMP8-M50HIs0Jzqy0P_EBx9FYp7nMTK1-GMfaFzWNZuGiLcTo6ZO-PkqMV8qvNhcGwyhYTHVCbUqOPfCNiKVxlWO79zfyLj12j8HW1baFRi8WuPfsKJtvi9c474O_zKNreOng78puuAr7OArb0tWVJYou8ULnJASckg0XAx02UJaGSTIbcKB3EXNskizVnPFYmLGKmGOCCsjF89xpZZZjROiCrm1vj_Y8t9qcpoH2bmsPTjQWs2GVAY_Y2WCZ-0Lv-XJeAf--Cvy7Di4GaF15r3SW4fYvcbLRXOqzF7TZZsbM75Md-VWK43mRB5xW--yCvqWuxQ0Elpi6w3XnlKCaz0JPJ1NAubIlinuakQiclXZZ0OP12bCcntvr9_eeCNs9H1Km21lB1Rtv6FjhVNhVVaFlQFxnpY441TJNLeZccXglf7pHBrJzZB4QGNgmLME0sekqlwsdjHZgglgFqfyb1SNgyQeimFDp25JgKZxLxVNSME8A44RgnAo-87ObM60Igl1JvIm87Sizi7X4oq8-iwQQRWlA_lS54noXMFIVkOfa9ylNuTJrLzCPrKBmizojtoEgMwWYErRPsf4-8cBQIRrAALZucCtgGLOvVo1zrUQKI6P5wK32iAbGFOD9yHnnaDeNMDMyb2fIUaVz7JkdzvxbWbtEx6KagYYceyXpi3NuV_shscuxKnGdgZmQx88irVuDP_9b_d_3h5atYJ9dHBx_2xN7OePcRuRHhsXQBnWtksKxO7WNQL5fqSXOmKfl01TDyB4XQj2A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLZQkRAXBGJLKdRISBwgahbHcY6lMCqLqh6o1JvllY40TUaZ9AAn_gQH_h6_hPechaYsEtf4OUr8Fn_22wh55o1wxokkTrTA2yotYmFzHas0x76wVa58iLY44ocn7N1pcXopiz9Eu48uyT6nAas01d3e2vpexQXf28CbQmYxZkUD4o_h0H6d4daH7lp-MNpizsH6jqkyf5w3245C1f7fbfOlzelq4OQV72nYlBa3ya0BTdL9nv13yDVX3yXfjtsGw-eWG7pu0Q-Da09DyxsKEJWGQPNwS0YxuYSeL1eWTmFEFPMmly1eGtKuofurL2duee7aH1-_b-jgzqEBajpL9Wc61pvAqWqocEIbT0OkYow5zzBNdeoeOVm8-XhwGA_dF2JTJqyLjWNF4XzldWUrsKeKAbMZz2xWFqlWTKXCapPkwriizI1gItc29TnTDOyndvl9slU3tXtIaOKK1Ke8cHhzqTQ6c01ik1wliMYsj0g6MkGaoTQ5dshYyXBEEVz2jJPAOBkYJ5OIvJjmrPvCHP-kfoW8nSixqHZ40LSf5KCjMnUAB7XxoipTZr1XrMI-VBUX1vJKlRHZRcmQfYbqZBrkPpzhAAXCeTwizwMFGgf4AaOGHAdYBiyzNaPcmVGCUpv58Ch9cjAqG5nB6mcZdjyIyNNpGGdioFztmgukCe2UAs2DXlinn84BKwLiTSNSzsR4tirzkXp5FkqOlwD7y5xF5OUo8L8-6--rvv1_5LvkxvHrhfzw9uj9I3IzQy0N8ZY7ZKtrL9xjQH-dfhIU_Cft5FRN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prognosis+prediction+model+for+conversion+from+mild+cognitive+impairment+to+Alzheimer%27s+disease+created+by+integrative+analysis+of+multi-omics+data&rft.jtitle=Alzheimer%27s+research+%26+therapy&rft.au=Shigemizu%2C+Daichi&rft.au=Akiyama%2C+Shintaro&rft.au=Higaki%2C+Sayuri&rft.au=Sugimoto%2C+Taiki&rft.date=2020-11-10&rft.pub=BioMed+Central+Ltd&rft.issn=1758-9193&rft.eissn=1758-9193&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1186%2Fs13195-020-00716-0&rft.externalDocID=A642273978 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-9193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-9193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-9193&client=summon |