Bipartite structure of the inactive mouse X chromosome
Background In mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate structural changes associated with allelic silencing, we have applied a recently developed Hi-C assay that uses DNase I for chromatin fragmentat...
Saved in:
Published in | Genome Biology Vol. 16; no. 1; p. 152 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
07.08.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1474-760X 1474-7596 1474-760X |
DOI | 10.1186/s13059-015-0728-8 |
Cover
Abstract | Background
In mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate structural changes associated with allelic silencing, we have applied a recently developed Hi-C assay that uses DNase I for chromatin fragmentation to mouse F1 hybrid systems.
Results
We find radically different conformations for the two female mouse X chromosomes. The inactive X has two superdomains of frequent intrachromosomal contacts separated by a boundary region. Comparison with the recently reported two-superdomain structure of the human inactive X shows that the genomic content of the superdomains differs between species, but part of the boundary region is conserved and located near the
Dxz4
/
DXZ4
locus. In mouse, the boundary region also contains a minisatellite,
Ds-TR
, and both
Dxz4
and
Ds-TR
appear to be anchored to the nucleolus. Genes that escape X inactivation do not cluster but are located near the periphery of the 3D structure, as are regions enriched in CTCF or RNA polymerase. Fewer short-range intrachromosomal contacts are detected for the inactive alleles of genes subject to X inactivation compared with the active alleles and with genes that escape X inactivation. This pattern is also evident for imprinted genes, in which more chromatin contacts are detected for the expressed allele.
Conclusions
By applying a novel Hi-C method to map allelic chromatin contacts, we discover a specific bipartite organization of the mouse inactive X chromosome that probably plays an important role in maintenance of gene silencing. |
---|---|
AbstractList | In mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate structural changes associated with allelic silencing, we have applied a recently developed Hi-C assay that uses DNase I for chromatin fragmentation to mouse F1 hybrid systems.BACKGROUNDIn mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate structural changes associated with allelic silencing, we have applied a recently developed Hi-C assay that uses DNase I for chromatin fragmentation to mouse F1 hybrid systems.We find radically different conformations for the two female mouse X chromosomes. The inactive X has two superdomains of frequent intrachromosomal contacts separated by a boundary region. Comparison with the recently reported two-superdomain structure of the human inactive X shows that the genomic content of the superdomains differs between species, but part of the boundary region is conserved and located near the Dxz4/DXZ4 locus. In mouse, the boundary region also contains a minisatellite, Ds-TR, and both Dxz4 and Ds-TR appear to be anchored to the nucleolus. Genes that escape X inactivation do not cluster but are located near the periphery of the 3D structure, as are regions enriched in CTCF or RNA polymerase. Fewer short-range intrachromosomal contacts are detected for the inactive alleles of genes subject to X inactivation compared with the active alleles and with genes that escape X inactivation. This pattern is also evident for imprinted genes, in which more chromatin contacts are detected for the expressed allele.RESULTSWe find radically different conformations for the two female mouse X chromosomes. The inactive X has two superdomains of frequent intrachromosomal contacts separated by a boundary region. Comparison with the recently reported two-superdomain structure of the human inactive X shows that the genomic content of the superdomains differs between species, but part of the boundary region is conserved and located near the Dxz4/DXZ4 locus. In mouse, the boundary region also contains a minisatellite, Ds-TR, and both Dxz4 and Ds-TR appear to be anchored to the nucleolus. Genes that escape X inactivation do not cluster but are located near the periphery of the 3D structure, as are regions enriched in CTCF or RNA polymerase. Fewer short-range intrachromosomal contacts are detected for the inactive alleles of genes subject to X inactivation compared with the active alleles and with genes that escape X inactivation. This pattern is also evident for imprinted genes, in which more chromatin contacts are detected for the expressed allele.By applying a novel Hi-C method to map allelic chromatin contacts, we discover a specific bipartite organization of the mouse inactive X chromosome that probably plays an important role in maintenance of gene silencing.CONCLUSIONSBy applying a novel Hi-C method to map allelic chromatin contacts, we discover a specific bipartite organization of the mouse inactive X chromosome that probably plays an important role in maintenance of gene silencing. Background In mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate structural changes associated with allelic silencing, we have applied a recently developed Hi-C assay that uses DNase I for chromatin fragmentation to mouse F1 hybrid systems. Results We find radically different conformations for the two female mouse X chromosomes. The inactive X has two superdomains of frequent intrachromosomal contacts separated by a boundary region. Comparison with the recently reported two-superdomain structure of the human inactive X shows that the genomic content of the superdomains differs between species, but part of the boundary region is conserved and located near the Dxz4/DXZ4 locus. In mouse, the boundary region also contains a minisatellite, Ds-TR, and both Dxz4 and Ds-TR appear to be anchored to the nucleolus. Genes that escape X inactivation do not cluster but are located near the periphery of the 3D structure, as are regions enriched in CTCF or RNA polymerase. Fewer short-range intrachromosomal contacts are detected for the inactive alleles of genes subject to X inactivation compared with the active alleles and with genes that escape X inactivation. This pattern is also evident for imprinted genes, in which more chromatin contacts are detected for the expressed allele. Conclusions By applying a novel Hi-C method to map allelic chromatin contacts, we discover a specific bipartite organization of the mouse inactive X chromosome that probably plays an important role in maintenance of gene silencing. In mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate structural changes associated with allelic silencing, we have applied a recently developed Hi-C assay that uses DNase I for chromatin fragmentation to mouse F1 hybrid systems. We find radically different conformations for the two female mouse X chromosomes. The inactive X has two superdomains of frequent intrachromosomal contacts separated by a boundary region. Comparison with the recently reported two-superdomain structure of the human inactive X shows that the genomic content of the superdomains differs between species, but part of the boundary region is conserved and located near the Dxz4/DXZ4 locus. In mouse, the boundary region also contains a minisatellite, Ds-TR, and both Dxz4 and Ds-TR appear to be anchored to the nucleolus. Genes that escape X inactivation do not cluster but are located near the periphery of the 3D structure, as are regions enriched in CTCF or RNA polymerase. Fewer short-range intrachromosomal contacts are detected for the inactive alleles of genes subject to X inactivation compared with the active alleles and with genes that escape X inactivation. This pattern is also evident for imprinted genes, in which more chromatin contacts are detected for the expressed allele. By applying a novel Hi-C method to map allelic chromatin contacts, we discover a specific bipartite organization of the mouse inactive X chromosome that probably plays an important role in maintenance of gene silencing. Background In mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate structural changes associated with allelic silencing, we have applied a recently developed Hi-C assay that uses DNase I for chromatin fragmentation to mouse F1 hybrid systems. Results We find radically different conformations for the two female mouse X chromosomes. The inactive X has two superdomains of frequent intrachromosomal contacts separated by a boundary region. Comparison with the recently reported two-superdomain structure of the human inactive X shows that the genomic content of the superdomains differs between species, but part of the boundary region is conserved and located near the Dxz4 / DXZ4 locus. In mouse, the boundary region also contains a minisatellite, Ds-TR , and both Dxz4 and Ds-TR appear to be anchored to the nucleolus. Genes that escape X inactivation do not cluster but are located near the periphery of the 3D structure, as are regions enriched in CTCF or RNA polymerase. Fewer short-range intrachromosomal contacts are detected for the inactive alleles of genes subject to X inactivation compared with the active alleles and with genes that escape X inactivation. This pattern is also evident for imprinted genes, in which more chromatin contacts are detected for the expressed allele. Conclusions By applying a novel Hi-C method to map allelic chromatin contacts, we discover a specific bipartite organization of the mouse inactive X chromosome that probably plays an important role in maintenance of gene silencing. |
ArticleNumber | 152 |
Author | Duan, Zhijun Hill, Andrew Shendure, Jay Ma, Wenxiu Ramani, Vijay Ay, Ferhat Yang, Fan Deng, Xinxian Disteche, Christine M. Noble, William S. Berletch, Joel B. Blau, Carl Anthony |
Author_xml | – sequence: 1 givenname: Xinxian surname: Deng fullname: Deng, Xinxian organization: Department of Pathology, University of Washington – sequence: 2 givenname: Wenxiu surname: Ma fullname: Ma, Wenxiu organization: Department of Genome Sciences, University of Washington – sequence: 3 givenname: Vijay surname: Ramani fullname: Ramani, Vijay organization: Department of Genome Sciences, University of Washington – sequence: 4 givenname: Andrew surname: Hill fullname: Hill, Andrew organization: Department of Genome Sciences, University of Washington – sequence: 5 givenname: Fan surname: Yang fullname: Yang, Fan organization: Department of Pathology, University of Washington – sequence: 6 givenname: Ferhat surname: Ay fullname: Ay, Ferhat organization: Department of Genome Sciences, University of Washington – sequence: 7 givenname: Joel B. surname: Berletch fullname: Berletch, Joel B. organization: Department of Pathology, University of Washington – sequence: 8 givenname: Carl Anthony surname: Blau fullname: Blau, Carl Anthony organization: Institute for Stem Cell and Regenerative Medicine, University of Washington, Division of Hematology, University of Washington – sequence: 9 givenname: Jay surname: Shendure fullname: Shendure, Jay organization: Department of Genome Sciences, University of Washington – sequence: 10 givenname: Zhijun surname: Duan fullname: Duan, Zhijun email: zjduan@uw.edu organization: Institute for Stem Cell and Regenerative Medicine, University of Washington, Division of Hematology, University of Washington – sequence: 11 givenname: William S. surname: Noble fullname: Noble, William S. email: william-noble@uw.edu organization: Department of Genome Sciences, University of Washington, Department of Computer Science and Engineering, University of Washington – sequence: 12 givenname: Christine M. surname: Disteche fullname: Disteche, Christine M. email: cdistech@u.washington.edu organization: Department of Pathology, University of Washington, Department of Medicine, University of Washington |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26248554$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctq3TAUFCWheX5AN8HQTTdOj2S9vAkkoW0KgWwSyE7oyse5CrZ1I8mB_n11uXk10HYlCc3MmTOzR7amMCEhnygcU6rl10QbEG0NVNSgmK71B7JLueK1knC79ea-Q_ZSugegLWfyI9lhknEtBN8l8syvbMw-Y5VynF2eI1ahr_ISKz9Zl_0jVmOYE1a3lVvGMIYURjwg270dEh4-nfvk5vu36_OL-vLqx8_z08vaKeC5lq1G2-risrFMQqs7wRvoAGlDXdcvWuzKo-nVwgradYzZRa9pD7pDhRJks09ONrqreTFi53DK0Q5mFf1o4y8TrDd__kx-ae7Co-GiaRVlReDLk0AMDzOmbEafHA6DnbBsZRgAMCUpk_-FUgWiBCqBF-jnd9D7MMepJGEYAyWo1GotePTW_Ivr5_QLgG4ALoaUIvYvEApm3bDZNGxKw2bdsNGFo95xnM82-7De3w__ZLINM5Up0x3GV9N_J_0G4kK5bg |
CitedBy_id | crossref_primary_10_1016_j_semcdb_2016_05_003 crossref_primary_10_1016_j_semcdb_2018_07_015 crossref_primary_10_1016_j_cell_2023_11_033 crossref_primary_10_1038_s41586_020_2125_z crossref_primary_10_1186_s13059_021_02523_8 crossref_primary_10_1007_s00412_024_00826_w crossref_primary_10_7554_eLife_47214 crossref_primary_10_1073_pnas_2024624118 crossref_primary_10_1146_annurev_genet_120116_024611 crossref_primary_10_2139_ssrn_3345548 crossref_primary_10_1080_15592294_2017_1318235 crossref_primary_10_1007_s13770_017_0096_4 crossref_primary_10_1038_s41594_023_01052_1 crossref_primary_10_1111_dgd_12709 crossref_primary_10_1038_s41467_022_32273_5 crossref_primary_10_1093_nar_gkx036 crossref_primary_10_1007_s00018_021_04075_3 crossref_primary_10_1038_s41467_018_03694_y crossref_primary_10_1155_2023_9991916 crossref_primary_10_1016_j_ceb_2016_09_006 crossref_primary_10_1073_pnas_2213810120 crossref_primary_10_1016_j_ceb_2016_02_014 crossref_primary_10_1101_gad_337196_120 crossref_primary_10_1093_nar_gkad523 crossref_primary_10_1146_annurev_genom_083115_022339 crossref_primary_10_1038_s41556_021_00722_w crossref_primary_10_1038_s41580_021_00362_w crossref_primary_10_1038_s41592_020_0890_0 crossref_primary_10_1038_s41467_021_23610_1 crossref_primary_10_1016_j_tig_2016_03_007 crossref_primary_10_3389_fcell_2019_00328 crossref_primary_10_1007_s12041_015_0574_1 crossref_primary_10_1007_s10565_018_9428_y crossref_primary_10_7554_eLife_92499 crossref_primary_10_1038_ncomms11021 crossref_primary_10_1016_j_gde_2015_11_007 crossref_primary_10_1038_s41467_022_29333_1 crossref_primary_10_1101_gr_249706_119 crossref_primary_10_1073_pnas_1609643113 crossref_primary_10_1186_s12864_018_5251_3 crossref_primary_10_1093_nar_gkaa106 crossref_primary_10_1016_j_cell_2018_05_007 crossref_primary_10_1038_nrg_2017_17 crossref_primary_10_12688_f1000research_10707_1 crossref_primary_10_1016_j_molcel_2021_02_031 crossref_primary_10_1093_bioinformatics_btac838 crossref_primary_10_1016_j_molcel_2019_01_015 crossref_primary_10_1073_pnas_1612256114 crossref_primary_10_1042_BST20170346 crossref_primary_10_1038_srep37324 crossref_primary_10_1002_bies_201600121 crossref_primary_10_1126_science_aaf8084 crossref_primary_10_1038_nrm_2016_126 crossref_primary_10_1126_sciadv_adf2245 crossref_primary_10_1038_s41467_020_19879_3 crossref_primary_10_1038_s41588_017_0030_7 crossref_primary_10_1093_nar_gkaa872 crossref_primary_10_1038_s41467_017_00528_1 crossref_primary_10_1038_nrg_2015_2 crossref_primary_10_1186_s12915_025_02137_7 crossref_primary_10_1371_journal_ppat_1009207 crossref_primary_10_1016_j_semcdb_2016_03_023 crossref_primary_10_1073_pnas_2120555119 crossref_primary_10_1093_nar_gkac1258 crossref_primary_10_1016_j_ceb_2018_12_005 crossref_primary_10_1016_j_cell_2024_12_004 crossref_primary_10_1016_j_jpedp_2017_08_006 crossref_primary_10_1038_s41580_019_0132_4 crossref_primary_10_1101_gr_233288_117 crossref_primary_10_1093_gbe_evy176 crossref_primary_10_1101_gr_275274_121 crossref_primary_10_1371_journal_pgen_1008333 crossref_primary_10_1016_j_ceb_2016_03_022 crossref_primary_10_1038_s41576_021_00427_8 crossref_primary_10_3390_cells9122706 crossref_primary_10_1073_pnas_2107092118 crossref_primary_10_1016_j_stemcr_2019_04_004 crossref_primary_10_1038_s41587_022_01289_z crossref_primary_10_1038_s41467_019_12211_8 crossref_primary_10_1186_s12967_023_04642_1 crossref_primary_10_1098_rstb_2016_0360 crossref_primary_10_3389_fcimb_2020_618454 crossref_primary_10_1038_s44319_024_00136_3 crossref_primary_10_1159_000531275 crossref_primary_10_1186_s12864_020_6580_6 crossref_primary_10_1186_s13059_015_0831_x crossref_primary_10_1093_molbev_msab274 crossref_primary_10_1038_s41580_021_00438_7 crossref_primary_10_1101_gr_257568_119 crossref_primary_10_1038_s41467_022_29697_4 crossref_primary_10_1186_s13059_015_0751_9 crossref_primary_10_1126_science_aaw9498 crossref_primary_10_1186_s13148_021_01121_6 crossref_primary_10_1042_EBC20190028 crossref_primary_10_1016_j_tig_2019_02_001 crossref_primary_10_1186_s13059_021_02432_w crossref_primary_10_1016_j_semcdb_2022_04_022 crossref_primary_10_1093_bfgp_elz005 crossref_primary_10_1098_rstb_2016_0355 crossref_primary_10_1242_dev_201742 crossref_primary_10_1098_rstb_2016_0357 crossref_primary_10_1098_rstb_2016_0356 crossref_primary_10_1016_j_neubiorev_2020_10_024 crossref_primary_10_1038_nrm_2016_104 crossref_primary_10_1007_s00018_017_2703_x crossref_primary_10_1016_j_molcel_2018_09_021 crossref_primary_10_1038_s41588_024_01936_y crossref_primary_10_1002_wsbm_1435 crossref_primary_10_1146_annurev_animal_061220_023149 crossref_primary_10_3389_fcell_2022_968145 crossref_primary_10_1186_s13059_017_1161_y crossref_primary_10_1038_s41594_018_0111_z crossref_primary_10_1093_hmg_ddy039 crossref_primary_10_1038_s42003_018_0199_z crossref_primary_10_1016_j_febslet_2015_08_044 crossref_primary_10_1002_bies_202200105 crossref_primary_10_1038_s41467_022_29414_1 crossref_primary_10_1016_j_gde_2024_102235 crossref_primary_10_1007_s10577_022_09706_4 crossref_primary_10_1093_molbev_msz139 crossref_primary_10_1073_pnas_1611905114 crossref_primary_10_1186_s13059_017_1211_5 crossref_primary_10_1016_j_gde_2024_102198 crossref_primary_10_1038_s41586_020_1974_9 crossref_primary_10_1038_s41467_018_07907_2 crossref_primary_10_3389_fcell_2019_00241 crossref_primary_10_1038_s41467_018_04295_5 crossref_primary_10_1016_j_ymeth_2018_01_014 crossref_primary_10_1038_s41598_018_28356_3 crossref_primary_10_1038_s41467_024_54673_5 crossref_primary_10_1038_s41594_019_0189_y crossref_primary_10_1146_annurev_cellbio_100616_060531 crossref_primary_10_1038_s41588_024_01897_2 crossref_primary_10_1007_s11538_024_01263_7 crossref_primary_10_1186_s13059_016_1136_4 crossref_primary_10_1038_nature18589 crossref_primary_10_1016_j_celrep_2025_115351 crossref_primary_10_1038_s41467_018_03614_0 crossref_primary_10_1042_BST20230143 crossref_primary_10_1016_j_ceb_2017_01_007 crossref_primary_10_7554_eLife_92499_3 crossref_primary_10_1515_ijb_2017_0061 crossref_primary_10_1016_j_molcel_2018_11_019 crossref_primary_10_1038_s41588_022_01116_w crossref_primary_10_1038_s41467_019_10755_3 crossref_primary_10_1038_nmeth_4155 crossref_primary_10_1016_j_molcel_2024_10_042 crossref_primary_10_1186_s13059_019_1855_4 crossref_primary_10_1007_s00281_018_0712_y crossref_primary_10_1016_j_semcdb_2018_07_004 crossref_primary_10_1093_jhered_esw053 crossref_primary_10_1038_nrg_2016_112 crossref_primary_10_1038_nprot_2016_126 crossref_primary_10_1038_nsmb_3370 crossref_primary_10_3389_fmolb_2021_634146 crossref_primary_10_1007_s11596_018_1842_0 crossref_primary_10_1126_sciadv_adv2067 crossref_primary_10_1016_j_ceb_2024_102406 crossref_primary_10_1016_j_gpb_2016_01_002 crossref_primary_10_1038_s41467_020_14337_6 crossref_primary_10_1038_s41588_019_0474_z crossref_primary_10_1016_j_semcdb_2016_04_013 crossref_primary_10_3390_ijms22073478 crossref_primary_10_1016_j_jped_2017_02_004 crossref_primary_10_1016_j_csbj_2021_06_018 crossref_primary_10_1038_s41467_018_07446_w crossref_primary_10_1186_s12864_020_07165_x crossref_primary_10_1093_bfgp_elz019 crossref_primary_10_1016_j_cell_2022_09_035 |
Cites_doi | 10.1016/j.cell.2015.03.025 10.1016/j.molcel.2013.02.011 10.1093/nar/gkt1114 10.1038/nature11049 10.1038/nsmb.2764 10.1016/j.cell.2014.11.021 10.1126/science.1262088 10.1111/j.2517-6161.1977.tb01600.x 10.1186/1756-8935-7-5 10.1093/bioinformatics/btp698 10.1016/j.cell.2007.03.036 10.1038/nature08973 10.1101/gad.1422906 10.1073/pnas.012539199 10.1038/nmeth.2148 10.1016/j.ceb.2007.04.016 10.1101/gr.086496.108 10.1146/annurev-cellbio-101512-122415 10.1038/nature14443 10.1101/gr.103200.109 10.1186/s13059-015-0618-0 10.1007/s00335-002-3038-x 10.1073/pnas.0600326103 10.1093/hmg/dds270 10.1101/gr.160374.113 10.1038/nmeth.3205 10.1126/science.8327891 10.1038/ng0398-212 10.1242/dev.026427 10.1073/pnas.88.14.6191 10.1101/gr.075713.107 10.1016/j.ceb.2014.03.001 10.1371/journal.pgen.1000889 10.1093/bioinformatics/btu268 10.1186/gb-2012-13-8-r70 10.1038/nrg3687 10.1007/BF00293281 10.1016/S0092-8674(00)81133-2 10.1038/nature11082 10.1016/j.molcel.2014.12.006 10.1101/gr.229102. Article published online before print in May 2002 10.1093/emboj/20.11.2867 10.1038/nature12593 10.1016/j.cell.2010.04.042 10.1093/bioinformatics/btr064 10.1038/190372a0 10.1126/science.aab2276 10.1101/cshperspect.a002592 10.1371/journal.pgen.1005079 10.1186/gb-2013-14-11-r122 10.1038/ng.3274 10.1126/science.1252966 10.1146/annurev-genom-091212-153515 10.1101/gad.633311 10.1016/j.devcel.2013.01.028 10.1016/j.cell.2014.09.030 10.1371/journal.pone.0075417 10.1186/gb-2011-12-4-r37 10.1038/163676a0 10.1007/s10107-004-0559-y 10.1016/j.cell.2014.03.025 10.1159/000089878 |
ContentType | Journal Article |
Copyright | Deng et al. 2015 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Deng et al. 2015 – notice: 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM |
DOI | 10.1186/s13059-015-0728-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (WRLC) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1474-760X |
EndPage | 152 |
ExternalDocumentID | PMC4539712 26248554 10_1186_s13059_015_0728_8 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health grantid: GM098039 funderid: http://dx.doi.org/10.13039/100000002 – fundername: National Institutes of Health grantid: GM046883 funderid: http://dx.doi.org/10.13039/100000002 – fundername: NHGRI NIH HHS grantid: R01 HG006283 – fundername: NIGMS NIH HHS grantid: R01 GM046883 – fundername: NHGRI NIH HHS grantid: T32 HG000035 – fundername: NIGMS NIH HHS grantid: GM046883 – fundername: NIGMS NIH HHS grantid: R01 GM098039 – fundername: NIGMS NIH HHS grantid: GM098039 |
GroupedDBID | --- 0R~ 29H 4.4 53G 5GY 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABUWG ACGFO ACGFS ACJQM ACPRK ADBBV ADUKV AEGXH AFKRA AFPKN AHBYD AHSBF AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU EBD EBLON EBS EMOBN FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR ISR ITC KPI LK8 M1P M7P PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO ROL RPM RSV SJN SOJ SV3 UKHRP AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c704t-698ea983053a26098d5430d0e131cdfb9edd0e3f7ba51dd22abf81f08de7e6063 |
IEDL.DBID | C6C |
ISSN | 1474-760X 1474-7596 |
IngestDate | Thu Aug 21 14:05:52 EDT 2025 Fri Sep 05 08:56:39 EDT 2025 Fri Sep 05 12:20:01 EDT 2025 Fri Jul 25 11:39:53 EDT 2025 Mon Jul 21 05:39:42 EDT 2025 Thu Apr 24 23:07:39 EDT 2025 Tue Jul 01 03:10:38 EDT 2025 Sat Sep 06 07:24:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | CTCF Site CTCF Binding Imprint Gene Escape Gene Hinge Region |
Language | English |
License | Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c704t-698ea983053a26098d5430d0e131cdfb9edd0e3f7ba51dd22abf81f08de7e6063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doi.org/10.1186/s13059-015-0728-8 |
PMID | 26248554 |
PQID | 2207516876 |
PQPubID | 2040232 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4539712 proquest_miscellaneous_2000276126 proquest_miscellaneous_1705474604 proquest_journals_2207516876 pubmed_primary_26248554 crossref_primary_10_1186_s13059_015_0728_8 crossref_citationtrail_10_1186_s13059_015_0728_8 springer_journals_10_1186_s13059_015_0728_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-08-07 |
PublicationDateYYYYMMDD | 2015-08-07 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Genome Biology |
PublicationTitleAbbrev | Genome Biol |
PublicationTitleAlternate | Genome Biol |
PublicationYear | 2015 |
Publisher | BioMed Central |
Publisher_xml | – name: BioMed Central |
References | PA Lingenfelter (728_CR27) 1998; 18 ML Barr (728_CR8) 1949; 163 CL Walker (728_CR44) 1991; 88 BP Chadwick (728_CR30) 2008; 18 T Babak (728_CR36) 2015; 47 W Ma (728_CR23) 2015; 12 F Court (728_CR62) 2014; 7 AH Horakova (728_CR31) 2012; 13 V Narendra (728_CR46) 2015; 347 728_CR32 Y Hoki (728_CR50) 2009; 136 JM Dowen (728_CR47) 2014; 159 CR McLaughlin (728_CR38) 2011; 12 M Lyon (728_CR2) 1961; 190 WJ Kent (728_CR52) 2002; 12 MM Thiaville (728_CR63) 2013; 8 E Splinter (728_CR5) 2011; 25 X Deng (728_CR16) 2014; 15 X Deng (728_CR25) 2013; 25 WA Bickmore (728_CR1) 2013; 14 A Minajigi (728_CR12) 2015; 349 J Padeken (728_CR43) 2014; 28 S Kurukuti (728_CR7) 2006; 103 F Ay (728_CR54) 2014; 24 MS Bartolomei (728_CR3) 2011; 3 X Ke (728_CR48) 2002; 13 AM Cotton (728_CR14) 2013; 14 GJ Sullivan (728_CR35) 2001; 20 JH Kim (728_CR39) 2009; 19 JR Dixon (728_CR21) 2012; 485 AH Horakova (728_CR42) 2012; 21 Y Marahrens (728_CR51) 1998; 92 M Imakaev (728_CR57) 2012; 9 E Hacisuleyman (728_CR40) 2014; 21 C Chu (728_CR11) 2015; 161 CA Bourgeois (728_CR17) 1985; 69 A Wachter (728_CR61) 2006; 106 J Rinn (728_CR37) 2014; 345 T Nagano (728_CR28) 2013; 502 728_CR58 SS Rao (728_CR6) 2014; 159 LF Zhang (728_CR18) 2007; 129 KD Pruitt (728_CR59) 2014; 42 JM Greally (728_CR49) 2002; 99 CA McHugh (728_CR10) 2015; 521 E Heard (728_CR20) 2007; 19 F Yang (728_CR26) 2010; 20 AP Dempster (728_CR56) 1977; 39 EP Nora (728_CR4) 2012; 485 I Kuznetsova (728_CR29) 2006; 112 JC Chow (728_CR19) 2010; 141 Z Duan (728_CR55) 2010; 465 A Nemeth (728_CR34) 2010; 6 L Giorgetti (728_CR45) 2014; 157 JH Gibcus (728_CR22) 2013; 49 N Varoquaux (728_CR60) 2014; 30 JT Kung (728_CR41) 2015; 57 AV Gendrel (728_CR9) 2014; 30 JB Berletch (728_CR15) 2015; 11 CE Grant (728_CR33) 2011; 27 KE Cullen (728_CR24) 1993; 261 E Heard (728_CR13) 2006; 20 H Li (728_CR53) 2010; 26 20363980 - Genome Res. 2010 May;20(5):614-22 26089354 - Science. 2015 Jul 17;349(6245). pii: aab2276. doi: 10.1126/science.aab2276 22906166 - Genome Biol. 2012;13(8):R70 24463464 - Nat Struct Mol Biol. 2014 Feb;21(2):198-206 23473598 - Mol Cell. 2013 Mar 7;49(5):773-82 21489251 - Genome Biol. 2011;12(4):R37 17467967 - Curr Opin Cell Biol. 2007 Jun;19(3):311-6 12461650 - Mamm Genome. 2002 Nov;13(11):639-45 11756672 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):327-32 25887447 - Genome Biol. 2015;16:52 16484780 - Cytogenet Genome Res. 2006;112(3-4):248-55 24067610 - Nature. 2013 Oct 3;502(7469):59-64 12045153 - Genome Res. 2002 Jun;12(6):996-1006 21576252 - Cold Spring Harb Perspect Biol. 2011 Jul;3(7). pii: a002592. doi: 10.1101/cshperspect.a002592 19036803 - Development. 2009 Jan;136(1):139-46 25000994 - Annu Rev Cell Dev Biol. 2014;30:561-80 16847345 - Genes Dev. 2006 Jul 15;20(14):1848-67 25848752 - Nat Genet. 2015 May;47(5):544-9 25785854 - PLoS Genet. 2015 Mar;11(3):e1005079 18456864 - Genome Res. 2008 Aug;18(8):1259-69 25437436 - Nat Methods. 2015 Jan;12(1):71-8 22495300 - Nature. 2012 May 17;485(7398):376-80 22495304 - Nature. 2012 May 17;485(7398):381-5 25578877 - Mol Cell. 2015 Jan 22;57(2):361-75 25843628 - Cell. 2015 Apr 9;161(2):404-16 21330290 - Bioinformatics. 2011 Apr 1;27(7):1017-8 24501021 - Genome Res. 2014 Jun;24(6):999-1011 23875797 - Annu Rev Genomics Hum Genet. 2013;14:67-84 22791747 - Hum Mol Genet. 2012 Oct 15;21(20):4367-77 24733023 - Nat Rev Genet. 2014 Jun;15(6):367-78 24690547 - Curr Opin Cell Biol. 2014 Jun;28:54-60 24813616 - Cell. 2014 May 8;157(4):950-63 18120749 - Nature. 1949 Apr 30;163(4148):676 20550932 - Cell. 2010 Jun 11;141(6):956-69 24931992 - Bioinformatics. 2014 Jun 15;30(12):i26-33 25214588 - Science. 2014 Sep 12;345(6202):1240-1 25915022 - Nature. 2015 May 14;521(7551):232-6 20361057 - PLoS Genet. 2010 Mar;6(3):e1000889 25722416 - Science. 2015 Feb 27;347(6225):1017-21 24259432 - Nucleic Acids Res. 2014 Jan;42(Database issue):D756-63 1712482 - Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6191-5 3972413 - Hum Genet. 1985;69(2):122-9 16815976 - Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10684-9 8327891 - Science. 1993 Jul 9;261(5118):203-6 23523075 - Dev Cell. 2013 Apr 15;25(1):55-68 24667089 - Epigenetics Chromatin. 2014 Mar 25;7(1):5 21690198 - Genes Dev. 2011 Jul 1;25(13):1371-83 9506520 - Cell. 1998 Mar 6;92(5):657-64 20436457 - Nature. 2010 May 20;465(7296):363-7 25303531 - Cell. 2014 Oct 9;159(2):374-87 11387219 - EMBO J. 2001 Jun 1;20(11):2867-74 19141594 - Genome Res. 2009 Apr;19(4):533-44 24176135 - Genome Biol. 2013;14(11):R122 13764598 - Nature. 1961 Apr 22;190:372-3 24040411 - PLoS One. 2013;8(9):e75417 17512404 - Cell. 2007 May 18;129(4):693-706 20080505 - Bioinformatics. 2010 Mar 1;26(5):589-95 9500539 - Nat Genet. 1998 Mar;18(3):212-3 22941365 - Nat Methods. 2012 Oct;9(10):999-1003 25497547 - Cell. 2014 Dec 18;159(7):1665-80 |
References_xml | – volume: 161 start-page: 404 year: 2015 ident: 728_CR11 publication-title: Cell. doi: 10.1016/j.cell.2015.03.025 – volume: 49 start-page: 773 year: 2013 ident: 728_CR22 publication-title: Mol Cell. doi: 10.1016/j.molcel.2013.02.011 – volume: 42 start-page: D756 year: 2014 ident: 728_CR59 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1114 – volume: 485 start-page: 381 year: 2012 ident: 728_CR4 publication-title: Nature. doi: 10.1038/nature11049 – volume: 21 start-page: 198 year: 2014 ident: 728_CR40 publication-title: Nat Struct Mol Biol. doi: 10.1038/nsmb.2764 – volume: 159 start-page: 1665 year: 2014 ident: 728_CR6 publication-title: Cell. doi: 10.1016/j.cell.2014.11.021 – volume: 347 start-page: 1017 year: 2015 ident: 728_CR46 publication-title: Science doi: 10.1126/science.1262088 – volume: 39 start-page: 1 year: 1977 ident: 728_CR56 publication-title: J R Stat Soc Ser B Methodol. doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 7 start-page: 5 year: 2014 ident: 728_CR62 publication-title: Epigenetics Chromatin. doi: 10.1186/1756-8935-7-5 – volume: 26 start-page: 589 year: 2010 ident: 728_CR53 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btp698 – volume: 129 start-page: 693 year: 2007 ident: 728_CR18 publication-title: Cell. doi: 10.1016/j.cell.2007.03.036 – volume: 465 start-page: 363 year: 2010 ident: 728_CR55 publication-title: Nature. doi: 10.1038/nature08973 – volume: 20 start-page: 1848 year: 2006 ident: 728_CR13 publication-title: Genes Dev. doi: 10.1101/gad.1422906 – ident: 728_CR58 – volume: 99 start-page: 327 year: 2002 ident: 728_CR49 publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.012539199 – volume: 9 start-page: 999 year: 2012 ident: 728_CR57 publication-title: Nat Methods. doi: 10.1038/nmeth.2148 – volume: 19 start-page: 311 year: 2007 ident: 728_CR20 publication-title: Curr Opin Cell Biol. doi: 10.1016/j.ceb.2007.04.016 – volume: 19 start-page: 533 year: 2009 ident: 728_CR39 publication-title: Genome Res. doi: 10.1101/gr.086496.108 – volume: 30 start-page: 561 year: 2014 ident: 728_CR9 publication-title: Annu Rev Cell Dev Biol. doi: 10.1146/annurev-cellbio-101512-122415 – volume: 521 start-page: 232 year: 2015 ident: 728_CR10 publication-title: Nature. doi: 10.1038/nature14443 – volume: 20 start-page: 614 year: 2010 ident: 728_CR26 publication-title: Genome Res. doi: 10.1101/gr.103200.109 – ident: 728_CR32 doi: 10.1186/s13059-015-0618-0 – volume: 13 start-page: 639 year: 2002 ident: 728_CR48 publication-title: Mamm Genome. doi: 10.1007/s00335-002-3038-x – volume: 103 start-page: 10684 year: 2006 ident: 728_CR7 publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.0600326103 – volume: 21 start-page: 4367 year: 2012 ident: 728_CR42 publication-title: Hum Mol Genet. doi: 10.1093/hmg/dds270 – volume: 24 start-page: 999 year: 2014 ident: 728_CR54 publication-title: Genome Res. doi: 10.1101/gr.160374.113 – volume: 12 start-page: 71 year: 2015 ident: 728_CR23 publication-title: Nat Methods. doi: 10.1038/nmeth.3205 – volume: 261 start-page: 203 year: 1993 ident: 728_CR24 publication-title: Science. doi: 10.1126/science.8327891 – volume: 18 start-page: 212 year: 1998 ident: 728_CR27 publication-title: Nat Genet. doi: 10.1038/ng0398-212 – volume: 136 start-page: 139 year: 2009 ident: 728_CR50 publication-title: Development. doi: 10.1242/dev.026427 – volume: 88 start-page: 6191 year: 1991 ident: 728_CR44 publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.88.14.6191 – volume: 18 start-page: 1259 year: 2008 ident: 728_CR30 publication-title: Genome Res. doi: 10.1101/gr.075713.107 – volume: 28 start-page: 54 year: 2014 ident: 728_CR43 publication-title: Curr Opin Cell Biol. doi: 10.1016/j.ceb.2014.03.001 – volume: 6 start-page: e1000889 year: 2010 ident: 728_CR34 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000889 – volume: 30 start-page: i26 year: 2014 ident: 728_CR60 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btu268 – volume: 13 start-page: R70 year: 2012 ident: 728_CR31 publication-title: Genome Biol. doi: 10.1186/gb-2012-13-8-r70 – volume: 15 start-page: 367 year: 2014 ident: 728_CR16 publication-title: Nat Rev Genet. doi: 10.1038/nrg3687 – volume: 69 start-page: 122 year: 1985 ident: 728_CR17 publication-title: Hum Genet. doi: 10.1007/BF00293281 – volume: 92 start-page: 657 year: 1998 ident: 728_CR51 publication-title: Cell. doi: 10.1016/S0092-8674(00)81133-2 – volume: 485 start-page: 376 year: 2012 ident: 728_CR21 publication-title: Nature. doi: 10.1038/nature11082 – volume: 57 start-page: 361 year: 2015 ident: 728_CR41 publication-title: Mol Cell. doi: 10.1016/j.molcel.2014.12.006 – volume: 12 start-page: 996 year: 2002 ident: 728_CR52 publication-title: Genome Res. doi: 10.1101/gr.229102. Article published online before print in May 2002 – volume: 20 start-page: 2867 year: 2001 ident: 728_CR35 publication-title: EMBO J. doi: 10.1093/emboj/20.11.2867 – volume: 502 start-page: 59 year: 2013 ident: 728_CR28 publication-title: Nature. doi: 10.1038/nature12593 – volume: 141 start-page: 956 year: 2010 ident: 728_CR19 publication-title: Cell. doi: 10.1016/j.cell.2010.04.042 – volume: 27 start-page: 1017 year: 2011 ident: 728_CR33 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btr064 – volume: 190 start-page: 372 year: 1961 ident: 728_CR2 publication-title: Nature. doi: 10.1038/190372a0 – volume: 349 start-page: aab2276 year: 2015 ident: 728_CR12 publication-title: Science doi: 10.1126/science.aab2276 – volume: 3 start-page: a002592 year: 2011 ident: 728_CR3 publication-title: Cold Spring Harb Perspect Biol. doi: 10.1101/cshperspect.a002592 – volume: 11 start-page: e1005079 year: 2015 ident: 728_CR15 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005079 – volume: 14 start-page: R122 year: 2013 ident: 728_CR14 publication-title: Genome Biol. doi: 10.1186/gb-2013-14-11-r122 – volume: 47 start-page: 544 year: 2015 ident: 728_CR36 publication-title: Nat Genet. doi: 10.1038/ng.3274 – volume: 345 start-page: 1240 year: 2014 ident: 728_CR37 publication-title: Science doi: 10.1126/science.1252966 – volume: 14 start-page: 67 year: 2013 ident: 728_CR1 publication-title: Annu Rev Genomics Hum Genet. doi: 10.1146/annurev-genom-091212-153515 – volume: 25 start-page: 1371 year: 2011 ident: 728_CR5 publication-title: Genes Dev. doi: 10.1101/gad.633311 – volume: 25 start-page: 55 year: 2013 ident: 728_CR25 publication-title: Dev Cell. doi: 10.1016/j.devcel.2013.01.028 – volume: 159 start-page: 374 year: 2014 ident: 728_CR47 publication-title: Cell. doi: 10.1016/j.cell.2014.09.030 – volume: 8 start-page: e75417 year: 2013 ident: 728_CR63 publication-title: PLoS One. doi: 10.1371/journal.pone.0075417 – volume: 12 start-page: R37 year: 2011 ident: 728_CR38 publication-title: Genome Biol. doi: 10.1186/gb-2011-12-4-r37 – volume: 163 start-page: 676 year: 1949 ident: 728_CR8 publication-title: Nature. doi: 10.1038/163676a0 – volume: 106 start-page: 25 year: 2006 ident: 728_CR61 publication-title: Math Program. doi: 10.1007/s10107-004-0559-y – volume: 157 start-page: 950 year: 2014 ident: 728_CR45 publication-title: Cell. doi: 10.1016/j.cell.2014.03.025 – volume: 112 start-page: 248 year: 2006 ident: 728_CR29 publication-title: Cytogenet Genome Res. doi: 10.1159/000089878 – reference: 19036803 - Development. 2009 Jan;136(1):139-46 – reference: 20080505 - Bioinformatics. 2010 Mar 1;26(5):589-95 – reference: 25437436 - Nat Methods. 2015 Jan;12(1):71-8 – reference: 24067610 - Nature. 2013 Oct 3;502(7469):59-64 – reference: 23473598 - Mol Cell. 2013 Mar 7;49(5):773-82 – reference: 25303531 - Cell. 2014 Oct 9;159(2):374-87 – reference: 22495304 - Nature. 2012 May 17;485(7398):381-5 – reference: 25722416 - Science. 2015 Feb 27;347(6225):1017-21 – reference: 16847345 - Genes Dev. 2006 Jul 15;20(14):1848-67 – reference: 24040411 - PLoS One. 2013;8(9):e75417 – reference: 24667089 - Epigenetics Chromatin. 2014 Mar 25;7(1):5 – reference: 17512404 - Cell. 2007 May 18;129(4):693-706 – reference: 25843628 - Cell. 2015 Apr 9;161(2):404-16 – reference: 1712482 - Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6191-5 – reference: 13764598 - Nature. 1961 Apr 22;190:372-3 – reference: 20361057 - PLoS Genet. 2010 Mar;6(3):e1000889 – reference: 23875797 - Annu Rev Genomics Hum Genet. 2013;14:67-84 – reference: 3972413 - Hum Genet. 1985;69(2):122-9 – reference: 24733023 - Nat Rev Genet. 2014 Jun;15(6):367-78 – reference: 11387219 - EMBO J. 2001 Jun 1;20(11):2867-74 – reference: 18456864 - Genome Res. 2008 Aug;18(8):1259-69 – reference: 12461650 - Mamm Genome. 2002 Nov;13(11):639-45 – reference: 20550932 - Cell. 2010 Jun 11;141(6):956-69 – reference: 24259432 - Nucleic Acids Res. 2014 Jan;42(Database issue):D756-63 – reference: 25887447 - Genome Biol. 2015;16:52 – reference: 24463464 - Nat Struct Mol Biol. 2014 Feb;21(2):198-206 – reference: 21690198 - Genes Dev. 2011 Jul 1;25(13):1371-83 – reference: 12045153 - Genome Res. 2002 Jun;12(6):996-1006 – reference: 21576252 - Cold Spring Harb Perspect Biol. 2011 Jul;3(7). pii: a002592. doi: 10.1101/cshperspect.a002592 – reference: 24813616 - Cell. 2014 May 8;157(4):950-63 – reference: 25497547 - Cell. 2014 Dec 18;159(7):1665-80 – reference: 24176135 - Genome Biol. 2013;14(11):R122 – reference: 22906166 - Genome Biol. 2012;13(8):R70 – reference: 22941365 - Nat Methods. 2012 Oct;9(10):999-1003 – reference: 25785854 - PLoS Genet. 2015 Mar;11(3):e1005079 – reference: 25000994 - Annu Rev Cell Dev Biol. 2014;30:561-80 – reference: 17467967 - Curr Opin Cell Biol. 2007 Jun;19(3):311-6 – reference: 22791747 - Hum Mol Genet. 2012 Oct 15;21(20):4367-77 – reference: 16815976 - Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10684-9 – reference: 25915022 - Nature. 2015 May 14;521(7551):232-6 – reference: 26089354 - Science. 2015 Jul 17;349(6245). pii: aab2276. doi: 10.1126/science.aab2276 – reference: 25578877 - Mol Cell. 2015 Jan 22;57(2):361-75 – reference: 9500539 - Nat Genet. 1998 Mar;18(3):212-3 – reference: 11756672 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):327-32 – reference: 25214588 - Science. 2014 Sep 12;345(6202):1240-1 – reference: 20363980 - Genome Res. 2010 May;20(5):614-22 – reference: 24931992 - Bioinformatics. 2014 Jun 15;30(12):i26-33 – reference: 16484780 - Cytogenet Genome Res. 2006;112(3-4):248-55 – reference: 21330290 - Bioinformatics. 2011 Apr 1;27(7):1017-8 – reference: 18120749 - Nature. 1949 Apr 30;163(4148):676 – reference: 23523075 - Dev Cell. 2013 Apr 15;25(1):55-68 – reference: 25848752 - Nat Genet. 2015 May;47(5):544-9 – reference: 21489251 - Genome Biol. 2011;12(4):R37 – reference: 20436457 - Nature. 2010 May 20;465(7296):363-7 – reference: 8327891 - Science. 1993 Jul 9;261(5118):203-6 – reference: 22495300 - Nature. 2012 May 17;485(7398):376-80 – reference: 24501021 - Genome Res. 2014 Jun;24(6):999-1011 – reference: 24690547 - Curr Opin Cell Biol. 2014 Jun;28:54-60 – reference: 9506520 - Cell. 1998 Mar 6;92(5):657-64 – reference: 19141594 - Genome Res. 2009 Apr;19(4):533-44 |
SSID | ssj0019426 ssj0017866 |
Score | 2.5536585 |
Snippet | Background
In mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate... In mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate structural... Background In mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate... BACKGROUND: In mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 152 |
SubjectTerms | Alleles Animal Genetics and Genomics Animals Bioinformatics Biomedical and Life Sciences CCCTC-Binding Factor Cell Line cell nucleolus Cell Nucleolus - metabolism Cells, Cultured Chromatin Chromosomes Chromosomes, Human, X - chemistry Deoxyribonuclease deoxyribonucleases DNA methylation DNA-directed RNA polymerase Epigenetics Evolutionary Biology Female females Gene expression Gene silencing Genomes Genomic Imprinting genomics Human Genetics Humans Life Sciences loci Male Mice Microbial Genetics and Genomics Nucleoli Plant Genetics and Genomics Repressor Proteins - chemistry Repressor Proteins - metabolism RNA Polymerase II - chemistry RNA Polymerase II - metabolism Somatic cells species The three dimensional organization of the nucleus X Chromosome - chemistry X Chromosome - metabolism X Chromosome Inactivation X Chromosomes |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1BTxwhFCZW06SXxta2bmsbmnhqQwQGGDgZ29SYJnqqyd4IDBA3aWdXd3vw3_tg2DGr0SMBJsPjA77He7yH0CGjofGgWBBvQiBCBU_glBNESS5TkoLpkB8nn1-os0vxeyqn9cJtWd0q13ti2ajDvMt35Eecw-HGFCze48U1yVmjsnW1ptB4gXZK6DLAczsdFS7W6sxVasEIPjw1yg6I0qhq4mRaHS1hI5fZbUgS2nJN9OYh9Yh5PnagfGBFLYfT6S56XVklPhlg8AZtxf4tejnkmbzdQ-rHbJEhsop4iBf7_ybiecJA_vCsd2XLw_kOIOIp7q6yh95y_i--Q5env_78PCM1YQLpWipWRBkdndEwmMaBnmJ0kKKhgUbWsC4kb2KAQpNa7yQLgXPnk2aJ6hDbCJpM8x5t9_M-7iMMvIJCl-BbR4VPyUdjXOdjAgIXuuAmiK4lZLsaTTwntfhri1ahlR2EakGoNgvV6gn6NnZZDKE0nmt8sBa7ratqae8xMEFfx2pYD9nI4foIcrI5PBBMsaLi6Ta8GFyB28F3PgwzOf4RVyXIG_RuN-Z4bJDjcW_W9LOrEpdbSCB3jE_Q9zUa7n_9yYF-fH6gn9ArXnCpAZoHaBtAEj8DDVr5LwXrd5tHArA priority: 102 providerName: ProQuest |
Title | Bipartite structure of the inactive mouse X chromosome |
URI | https://link.springer.com/article/10.1186/s13059-015-0728-8 https://www.ncbi.nlm.nih.gov/pubmed/26248554 https://www.proquest.com/docview/2207516876 https://www.proquest.com/docview/1705474604 https://www.proquest.com/docview/2000276126 https://pubmed.ncbi.nlm.nih.gov/PMC4539712 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9si-CL-N1r6xHBJ2UxyeZrH73SUgSLFAuHLyHZJPRA90rvfPC_d5LdWz1rBV8Wlswsm5nZ5Dc7yS8ArxkNtcfEovJNCJVQwVc4y4lKSS5TkoKZkDcnfzxXZ5fiw1zOB7LovBfm9_o9M-rdCsdYmVf0yIpqbiqzA3uS1arUZdXxWDBocKYZipZ_Vduedm5hydtLIv-oi5bp5vQRPBxwInnfO_Yx3IvdE7jfnxz54ymo2eI6O30dSc8A-_0mkmUiCOfIonNlECM5q49kTtqrvOZutfwWn8Hl6cnn47NqOAKhajUV60o1JrrGYGdqh5lHY4IUNQ00spq1IfkmBrypk_ZOshA4dz4ZlqgJUUfMTernsNstu7gPBJECRZXgtaPCp-Rj07jWx4SQLLTBTYBuLGTbgR88H1Px1ZY8wSjbG9WiUW02qjUTeDOqXPfkGP8SPtqY3Q7fycpyjpCFKRySJ_BqbMYIz2UL10W0k82EP0ILRcXdMryUUBGt4XNe9J4c34irQtuG2nrLx6NAZtjebukWV4VpW0iEa4xP4O0mGn69-p0dPfgv6UN4wEuYGozUI9jFmIkvEees_RR29FxPYW92cv7pYlrifVr-GeD1YvblJ0-M-vA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbxQhEJ_Ua4y-GL89rYqJvmhIWRZY9sEYq22utr0Y0yb3RpcF0kvs3tU7Y_pP-Tc67FdzNu1bHwmwgeEH82NnmAF4mzCXWrxYUJs7R4VylqKWE1RJLkOQItEuPk4-GKvRkfg2kZM1-Nu9hYluld2ZWB_UblbGf-SbnKNySxRu3k_zMxqzRkXrapdCo4HFnj__g1e2xcfdr7i-7zjf2T78MqJtVgFaZkwsqcq1L3KNOE8LJPO5dlKkzDGfpEnpgs29w0IaMlvIxDnOCxt0Eph2PvNI91P87i1YF_FF6wDWt7bH33_0dotMR3bUFnLBm8dN0eVR5qo1qiZabS5QdcjoqCQpy7imelUtXuK6l102_7Pb1upw5z7ca3ks-dwA7wGs-eoh3G4yW54_ArU1nUdQLj1pItT-_uXJLBCkm2RaFfUhS-JfB08mpDyJPoGL2al_DEc3IswnMKhmlX8GBJkMwy7OZgUTNgTr87worQ9IGV3piiGwTkKmbOOXxzQaP019j9HKNEI1KFQThWr0EN73XeZN8I7rGm90YjftPl6YC9QN4U1fjTswmlWKyqOcTAxIhEusmLi6Da9NvMgm8TtPm5XsR8RVHVYOe2cra9w3iBHAV2uq6UkdCVxIpJMJH8KHDg0XQ79yos-vn-hruDM6PNg3-7vjvRdwl9cY1QjTDRggYPxLJGFL-6pFPoHjm95s_wBp7UF7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEJ8IRsKL8QPwFLUmPEEaut22231U9IKghAdI7q1pt224BPcu3Pngf-90v8zJR8LjpjObdjrt_CYznQHYy5jPHToW1JXeU6G8o2jlBFWSyxilyLRPj5N_nqnjS3EykZOuz-miz3bvQ5Ltm4ZUpaleHs59bI-4VocLvHllyvORlBVcU70GT0WyfClaq46GMEKJ9qcLZd7JtmqMbiHM24mS_0VLGyM0fgHPO_RIPrfb_RKehPoVPGv7Sf55DerLdJ5UYRlIWxf2900gs0gQ5JFpbZurjSRfP5AJqa5SJt5i9itsweX428XRMe0aI9CqYGJJVamDLTUuJrfoj5TaS5Ezz0KWZ5WPrgweP_JYOCsz7zm3LuosMu1DEdBjybdhvZ7V4Q0QxA8MWbwrLBMuRhfK0lYuRARqvvJ2BKyXkKm6quGpecW1abwHrUwrVINCNUmoRo9gf2CZtyUzHiLe7cVuutOzMJwjkMkUXtQj-DQMo96nYIatA8rJpDJAohCKiftpeBNYRQyH_9lpd3KYEVdNMTfkLlb2eCBIdbdXR-rpVVN_W0gEcRkfwUGvDf-mfu9C3z6K-iNsnH8dmx_fz07fwSZvNFaj0u7COqpPeI9AaOk-NMr-F1jrAa4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bipartite+structure+of+the+inactive+mouse+X+chromosome&rft.jtitle=Genome+biology&rft.au=Deng%2C+Xinxian&rft.au=Ma%2C+Wenxiu&rft.au=Ramani%2C+Vijay&rft.au=Hill%2C+Andrew&rft.date=2015-08-07&rft.pub=BioMed+Central&rft.eissn=1474-760X&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1186%2Fs13059-015-0728-8&rft.externalDocID=10_1186_s13059_015_0728_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon |