Bipartite structure of the inactive mouse X chromosome

Background In mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate structural changes associated with allelic silencing, we have applied a recently developed Hi-C assay that uses DNase I for chromatin fragmentat...

Full description

Saved in:
Bibliographic Details
Published inGenome Biology Vol. 16; no. 1; p. 152
Main Authors Deng, Xinxian, Ma, Wenxiu, Ramani, Vijay, Hill, Andrew, Yang, Fan, Ay, Ferhat, Berletch, Joel B., Blau, Carl Anthony, Shendure, Jay, Duan, Zhijun, Noble, William S., Disteche, Christine M.
Format Journal Article
LanguageEnglish
Published London BioMed Central 07.08.2015
Subjects
Online AccessGet full text
ISSN1474-760X
1474-7596
1474-760X
DOI10.1186/s13059-015-0728-8

Cover

Abstract Background In mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate structural changes associated with allelic silencing, we have applied a recently developed Hi-C assay that uses DNase I for chromatin fragmentation to mouse F1 hybrid systems. Results We find radically different conformations for the two female mouse X chromosomes. The inactive X has two superdomains of frequent intrachromosomal contacts separated by a boundary region. Comparison with the recently reported two-superdomain structure of the human inactive X shows that the genomic content of the superdomains differs between species, but part of the boundary region is conserved and located near the Dxz4 / DXZ4 locus. In mouse, the boundary region also contains a minisatellite, Ds-TR , and both Dxz4 and Ds-TR appear to be anchored to the nucleolus. Genes that escape X inactivation do not cluster but are located near the periphery of the 3D structure, as are regions enriched in CTCF or RNA polymerase. Fewer short-range intrachromosomal contacts are detected for the inactive alleles of genes subject to X inactivation compared with the active alleles and with genes that escape X inactivation. This pattern is also evident for imprinted genes, in which more chromatin contacts are detected for the expressed allele. Conclusions By applying a novel Hi-C method to map allelic chromatin contacts, we discover a specific bipartite organization of the mouse inactive X chromosome that probably plays an important role in maintenance of gene silencing.
AbstractList In mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate structural changes associated with allelic silencing, we have applied a recently developed Hi-C assay that uses DNase I for chromatin fragmentation to mouse F1 hybrid systems.BACKGROUNDIn mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate structural changes associated with allelic silencing, we have applied a recently developed Hi-C assay that uses DNase I for chromatin fragmentation to mouse F1 hybrid systems.We find radically different conformations for the two female mouse X chromosomes. The inactive X has two superdomains of frequent intrachromosomal contacts separated by a boundary region. Comparison with the recently reported two-superdomain structure of the human inactive X shows that the genomic content of the superdomains differs between species, but part of the boundary region is conserved and located near the Dxz4/DXZ4 locus. In mouse, the boundary region also contains a minisatellite, Ds-TR, and both Dxz4 and Ds-TR appear to be anchored to the nucleolus. Genes that escape X inactivation do not cluster but are located near the periphery of the 3D structure, as are regions enriched in CTCF or RNA polymerase. Fewer short-range intrachromosomal contacts are detected for the inactive alleles of genes subject to X inactivation compared with the active alleles and with genes that escape X inactivation. This pattern is also evident for imprinted genes, in which more chromatin contacts are detected for the expressed allele.RESULTSWe find radically different conformations for the two female mouse X chromosomes. The inactive X has two superdomains of frequent intrachromosomal contacts separated by a boundary region. Comparison with the recently reported two-superdomain structure of the human inactive X shows that the genomic content of the superdomains differs between species, but part of the boundary region is conserved and located near the Dxz4/DXZ4 locus. In mouse, the boundary region also contains a minisatellite, Ds-TR, and both Dxz4 and Ds-TR appear to be anchored to the nucleolus. Genes that escape X inactivation do not cluster but are located near the periphery of the 3D structure, as are regions enriched in CTCF or RNA polymerase. Fewer short-range intrachromosomal contacts are detected for the inactive alleles of genes subject to X inactivation compared with the active alleles and with genes that escape X inactivation. This pattern is also evident for imprinted genes, in which more chromatin contacts are detected for the expressed allele.By applying a novel Hi-C method to map allelic chromatin contacts, we discover a specific bipartite organization of the mouse inactive X chromosome that probably plays an important role in maintenance of gene silencing.CONCLUSIONSBy applying a novel Hi-C method to map allelic chromatin contacts, we discover a specific bipartite organization of the mouse inactive X chromosome that probably plays an important role in maintenance of gene silencing.
Background In mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate structural changes associated with allelic silencing, we have applied a recently developed Hi-C assay that uses DNase I for chromatin fragmentation to mouse F1 hybrid systems. Results We find radically different conformations for the two female mouse X chromosomes. The inactive X has two superdomains of frequent intrachromosomal contacts separated by a boundary region. Comparison with the recently reported two-superdomain structure of the human inactive X shows that the genomic content of the superdomains differs between species, but part of the boundary region is conserved and located near the Dxz4/DXZ4 locus. In mouse, the boundary region also contains a minisatellite, Ds-TR, and both Dxz4 and Ds-TR appear to be anchored to the nucleolus. Genes that escape X inactivation do not cluster but are located near the periphery of the 3D structure, as are regions enriched in CTCF or RNA polymerase. Fewer short-range intrachromosomal contacts are detected for the inactive alleles of genes subject to X inactivation compared with the active alleles and with genes that escape X inactivation. This pattern is also evident for imprinted genes, in which more chromatin contacts are detected for the expressed allele. Conclusions By applying a novel Hi-C method to map allelic chromatin contacts, we discover a specific bipartite organization of the mouse inactive X chromosome that probably plays an important role in maintenance of gene silencing.
In mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate structural changes associated with allelic silencing, we have applied a recently developed Hi-C assay that uses DNase I for chromatin fragmentation to mouse F1 hybrid systems. We find radically different conformations for the two female mouse X chromosomes. The inactive X has two superdomains of frequent intrachromosomal contacts separated by a boundary region. Comparison with the recently reported two-superdomain structure of the human inactive X shows that the genomic content of the superdomains differs between species, but part of the boundary region is conserved and located near the Dxz4/DXZ4 locus. In mouse, the boundary region also contains a minisatellite, Ds-TR, and both Dxz4 and Ds-TR appear to be anchored to the nucleolus. Genes that escape X inactivation do not cluster but are located near the periphery of the 3D structure, as are regions enriched in CTCF or RNA polymerase. Fewer short-range intrachromosomal contacts are detected for the inactive alleles of genes subject to X inactivation compared with the active alleles and with genes that escape X inactivation. This pattern is also evident for imprinted genes, in which more chromatin contacts are detected for the expressed allele. By applying a novel Hi-C method to map allelic chromatin contacts, we discover a specific bipartite organization of the mouse inactive X chromosome that probably plays an important role in maintenance of gene silencing.
Background In mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate structural changes associated with allelic silencing, we have applied a recently developed Hi-C assay that uses DNase I for chromatin fragmentation to mouse F1 hybrid systems. Results We find radically different conformations for the two female mouse X chromosomes. The inactive X has two superdomains of frequent intrachromosomal contacts separated by a boundary region. Comparison with the recently reported two-superdomain structure of the human inactive X shows that the genomic content of the superdomains differs between species, but part of the boundary region is conserved and located near the Dxz4 / DXZ4 locus. In mouse, the boundary region also contains a minisatellite, Ds-TR , and both Dxz4 and Ds-TR appear to be anchored to the nucleolus. Genes that escape X inactivation do not cluster but are located near the periphery of the 3D structure, as are regions enriched in CTCF or RNA polymerase. Fewer short-range intrachromosomal contacts are detected for the inactive alleles of genes subject to X inactivation compared with the active alleles and with genes that escape X inactivation. This pattern is also evident for imprinted genes, in which more chromatin contacts are detected for the expressed allele. Conclusions By applying a novel Hi-C method to map allelic chromatin contacts, we discover a specific bipartite organization of the mouse inactive X chromosome that probably plays an important role in maintenance of gene silencing.
ArticleNumber 152
Author Duan, Zhijun
Hill, Andrew
Shendure, Jay
Ma, Wenxiu
Ramani, Vijay
Ay, Ferhat
Yang, Fan
Deng, Xinxian
Disteche, Christine M.
Noble, William S.
Berletch, Joel B.
Blau, Carl Anthony
Author_xml – sequence: 1
  givenname: Xinxian
  surname: Deng
  fullname: Deng, Xinxian
  organization: Department of Pathology, University of Washington
– sequence: 2
  givenname: Wenxiu
  surname: Ma
  fullname: Ma, Wenxiu
  organization: Department of Genome Sciences, University of Washington
– sequence: 3
  givenname: Vijay
  surname: Ramani
  fullname: Ramani, Vijay
  organization: Department of Genome Sciences, University of Washington
– sequence: 4
  givenname: Andrew
  surname: Hill
  fullname: Hill, Andrew
  organization: Department of Genome Sciences, University of Washington
– sequence: 5
  givenname: Fan
  surname: Yang
  fullname: Yang, Fan
  organization: Department of Pathology, University of Washington
– sequence: 6
  givenname: Ferhat
  surname: Ay
  fullname: Ay, Ferhat
  organization: Department of Genome Sciences, University of Washington
– sequence: 7
  givenname: Joel B.
  surname: Berletch
  fullname: Berletch, Joel B.
  organization: Department of Pathology, University of Washington
– sequence: 8
  givenname: Carl Anthony
  surname: Blau
  fullname: Blau, Carl Anthony
  organization: Institute for Stem Cell and Regenerative Medicine, University of Washington, Division of Hematology, University of Washington
– sequence: 9
  givenname: Jay
  surname: Shendure
  fullname: Shendure, Jay
  organization: Department of Genome Sciences, University of Washington
– sequence: 10
  givenname: Zhijun
  surname: Duan
  fullname: Duan, Zhijun
  email: zjduan@uw.edu
  organization: Institute for Stem Cell and Regenerative Medicine, University of Washington, Division of Hematology, University of Washington
– sequence: 11
  givenname: William S.
  surname: Noble
  fullname: Noble, William S.
  email: william-noble@uw.edu
  organization: Department of Genome Sciences, University of Washington, Department of Computer Science and Engineering, University of Washington
– sequence: 12
  givenname: Christine M.
  surname: Disteche
  fullname: Disteche, Christine M.
  email: cdistech@u.washington.edu
  organization: Department of Pathology, University of Washington, Department of Medicine, University of Washington
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26248554$$D View this record in MEDLINE/PubMed
BookMark eNqFUctq3TAUFCWheX5AN8HQTTdOj2S9vAkkoW0KgWwSyE7oyse5CrZ1I8mB_n11uXk10HYlCc3MmTOzR7amMCEhnygcU6rl10QbEG0NVNSgmK71B7JLueK1knC79ea-Q_ZSugegLWfyI9lhknEtBN8l8syvbMw-Y5VynF2eI1ahr_ISKz9Zl_0jVmOYE1a3lVvGMIYURjwg270dEh4-nfvk5vu36_OL-vLqx8_z08vaKeC5lq1G2-risrFMQqs7wRvoAGlDXdcvWuzKo-nVwgradYzZRa9pD7pDhRJks09ONrqreTFi53DK0Q5mFf1o4y8TrDd__kx-ae7Co-GiaRVlReDLk0AMDzOmbEafHA6DnbBsZRgAMCUpk_-FUgWiBCqBF-jnd9D7MMepJGEYAyWo1GotePTW_Ivr5_QLgG4ALoaUIvYvEApm3bDZNGxKw2bdsNGFo95xnM82-7De3w__ZLINM5Up0x3GV9N_J_0G4kK5bg
CitedBy_id crossref_primary_10_1016_j_semcdb_2016_05_003
crossref_primary_10_1016_j_semcdb_2018_07_015
crossref_primary_10_1016_j_cell_2023_11_033
crossref_primary_10_1038_s41586_020_2125_z
crossref_primary_10_1186_s13059_021_02523_8
crossref_primary_10_1007_s00412_024_00826_w
crossref_primary_10_7554_eLife_47214
crossref_primary_10_1073_pnas_2024624118
crossref_primary_10_1146_annurev_genet_120116_024611
crossref_primary_10_2139_ssrn_3345548
crossref_primary_10_1080_15592294_2017_1318235
crossref_primary_10_1007_s13770_017_0096_4
crossref_primary_10_1038_s41594_023_01052_1
crossref_primary_10_1111_dgd_12709
crossref_primary_10_1038_s41467_022_32273_5
crossref_primary_10_1093_nar_gkx036
crossref_primary_10_1007_s00018_021_04075_3
crossref_primary_10_1038_s41467_018_03694_y
crossref_primary_10_1155_2023_9991916
crossref_primary_10_1016_j_ceb_2016_09_006
crossref_primary_10_1073_pnas_2213810120
crossref_primary_10_1016_j_ceb_2016_02_014
crossref_primary_10_1101_gad_337196_120
crossref_primary_10_1093_nar_gkad523
crossref_primary_10_1146_annurev_genom_083115_022339
crossref_primary_10_1038_s41556_021_00722_w
crossref_primary_10_1038_s41580_021_00362_w
crossref_primary_10_1038_s41592_020_0890_0
crossref_primary_10_1038_s41467_021_23610_1
crossref_primary_10_1016_j_tig_2016_03_007
crossref_primary_10_3389_fcell_2019_00328
crossref_primary_10_1007_s12041_015_0574_1
crossref_primary_10_1007_s10565_018_9428_y
crossref_primary_10_7554_eLife_92499
crossref_primary_10_1038_ncomms11021
crossref_primary_10_1016_j_gde_2015_11_007
crossref_primary_10_1038_s41467_022_29333_1
crossref_primary_10_1101_gr_249706_119
crossref_primary_10_1073_pnas_1609643113
crossref_primary_10_1186_s12864_018_5251_3
crossref_primary_10_1093_nar_gkaa106
crossref_primary_10_1016_j_cell_2018_05_007
crossref_primary_10_1038_nrg_2017_17
crossref_primary_10_12688_f1000research_10707_1
crossref_primary_10_1016_j_molcel_2021_02_031
crossref_primary_10_1093_bioinformatics_btac838
crossref_primary_10_1016_j_molcel_2019_01_015
crossref_primary_10_1073_pnas_1612256114
crossref_primary_10_1042_BST20170346
crossref_primary_10_1038_srep37324
crossref_primary_10_1002_bies_201600121
crossref_primary_10_1126_science_aaf8084
crossref_primary_10_1038_nrm_2016_126
crossref_primary_10_1126_sciadv_adf2245
crossref_primary_10_1038_s41467_020_19879_3
crossref_primary_10_1038_s41588_017_0030_7
crossref_primary_10_1093_nar_gkaa872
crossref_primary_10_1038_s41467_017_00528_1
crossref_primary_10_1038_nrg_2015_2
crossref_primary_10_1186_s12915_025_02137_7
crossref_primary_10_1371_journal_ppat_1009207
crossref_primary_10_1016_j_semcdb_2016_03_023
crossref_primary_10_1073_pnas_2120555119
crossref_primary_10_1093_nar_gkac1258
crossref_primary_10_1016_j_ceb_2018_12_005
crossref_primary_10_1016_j_cell_2024_12_004
crossref_primary_10_1016_j_jpedp_2017_08_006
crossref_primary_10_1038_s41580_019_0132_4
crossref_primary_10_1101_gr_233288_117
crossref_primary_10_1093_gbe_evy176
crossref_primary_10_1101_gr_275274_121
crossref_primary_10_1371_journal_pgen_1008333
crossref_primary_10_1016_j_ceb_2016_03_022
crossref_primary_10_1038_s41576_021_00427_8
crossref_primary_10_3390_cells9122706
crossref_primary_10_1073_pnas_2107092118
crossref_primary_10_1016_j_stemcr_2019_04_004
crossref_primary_10_1038_s41587_022_01289_z
crossref_primary_10_1038_s41467_019_12211_8
crossref_primary_10_1186_s12967_023_04642_1
crossref_primary_10_1098_rstb_2016_0360
crossref_primary_10_3389_fcimb_2020_618454
crossref_primary_10_1038_s44319_024_00136_3
crossref_primary_10_1159_000531275
crossref_primary_10_1186_s12864_020_6580_6
crossref_primary_10_1186_s13059_015_0831_x
crossref_primary_10_1093_molbev_msab274
crossref_primary_10_1038_s41580_021_00438_7
crossref_primary_10_1101_gr_257568_119
crossref_primary_10_1038_s41467_022_29697_4
crossref_primary_10_1186_s13059_015_0751_9
crossref_primary_10_1126_science_aaw9498
crossref_primary_10_1186_s13148_021_01121_6
crossref_primary_10_1042_EBC20190028
crossref_primary_10_1016_j_tig_2019_02_001
crossref_primary_10_1186_s13059_021_02432_w
crossref_primary_10_1016_j_semcdb_2022_04_022
crossref_primary_10_1093_bfgp_elz005
crossref_primary_10_1098_rstb_2016_0355
crossref_primary_10_1242_dev_201742
crossref_primary_10_1098_rstb_2016_0357
crossref_primary_10_1098_rstb_2016_0356
crossref_primary_10_1016_j_neubiorev_2020_10_024
crossref_primary_10_1038_nrm_2016_104
crossref_primary_10_1007_s00018_017_2703_x
crossref_primary_10_1016_j_molcel_2018_09_021
crossref_primary_10_1038_s41588_024_01936_y
crossref_primary_10_1002_wsbm_1435
crossref_primary_10_1146_annurev_animal_061220_023149
crossref_primary_10_3389_fcell_2022_968145
crossref_primary_10_1186_s13059_017_1161_y
crossref_primary_10_1038_s41594_018_0111_z
crossref_primary_10_1093_hmg_ddy039
crossref_primary_10_1038_s42003_018_0199_z
crossref_primary_10_1016_j_febslet_2015_08_044
crossref_primary_10_1002_bies_202200105
crossref_primary_10_1038_s41467_022_29414_1
crossref_primary_10_1016_j_gde_2024_102235
crossref_primary_10_1007_s10577_022_09706_4
crossref_primary_10_1093_molbev_msz139
crossref_primary_10_1073_pnas_1611905114
crossref_primary_10_1186_s13059_017_1211_5
crossref_primary_10_1016_j_gde_2024_102198
crossref_primary_10_1038_s41586_020_1974_9
crossref_primary_10_1038_s41467_018_07907_2
crossref_primary_10_3389_fcell_2019_00241
crossref_primary_10_1038_s41467_018_04295_5
crossref_primary_10_1016_j_ymeth_2018_01_014
crossref_primary_10_1038_s41598_018_28356_3
crossref_primary_10_1038_s41467_024_54673_5
crossref_primary_10_1038_s41594_019_0189_y
crossref_primary_10_1146_annurev_cellbio_100616_060531
crossref_primary_10_1038_s41588_024_01897_2
crossref_primary_10_1007_s11538_024_01263_7
crossref_primary_10_1186_s13059_016_1136_4
crossref_primary_10_1038_nature18589
crossref_primary_10_1016_j_celrep_2025_115351
crossref_primary_10_1038_s41467_018_03614_0
crossref_primary_10_1042_BST20230143
crossref_primary_10_1016_j_ceb_2017_01_007
crossref_primary_10_7554_eLife_92499_3
crossref_primary_10_1515_ijb_2017_0061
crossref_primary_10_1016_j_molcel_2018_11_019
crossref_primary_10_1038_s41588_022_01116_w
crossref_primary_10_1038_s41467_019_10755_3
crossref_primary_10_1038_nmeth_4155
crossref_primary_10_1016_j_molcel_2024_10_042
crossref_primary_10_1186_s13059_019_1855_4
crossref_primary_10_1007_s00281_018_0712_y
crossref_primary_10_1016_j_semcdb_2018_07_004
crossref_primary_10_1093_jhered_esw053
crossref_primary_10_1038_nrg_2016_112
crossref_primary_10_1038_nprot_2016_126
crossref_primary_10_1038_nsmb_3370
crossref_primary_10_3389_fmolb_2021_634146
crossref_primary_10_1007_s11596_018_1842_0
crossref_primary_10_1126_sciadv_adv2067
crossref_primary_10_1016_j_ceb_2024_102406
crossref_primary_10_1016_j_gpb_2016_01_002
crossref_primary_10_1038_s41467_020_14337_6
crossref_primary_10_1038_s41588_019_0474_z
crossref_primary_10_1016_j_semcdb_2016_04_013
crossref_primary_10_3390_ijms22073478
crossref_primary_10_1016_j_jped_2017_02_004
crossref_primary_10_1016_j_csbj_2021_06_018
crossref_primary_10_1038_s41467_018_07446_w
crossref_primary_10_1186_s12864_020_07165_x
crossref_primary_10_1093_bfgp_elz019
crossref_primary_10_1016_j_cell_2022_09_035
Cites_doi 10.1016/j.cell.2015.03.025
10.1016/j.molcel.2013.02.011
10.1093/nar/gkt1114
10.1038/nature11049
10.1038/nsmb.2764
10.1016/j.cell.2014.11.021
10.1126/science.1262088
10.1111/j.2517-6161.1977.tb01600.x
10.1186/1756-8935-7-5
10.1093/bioinformatics/btp698
10.1016/j.cell.2007.03.036
10.1038/nature08973
10.1101/gad.1422906
10.1073/pnas.012539199
10.1038/nmeth.2148
10.1016/j.ceb.2007.04.016
10.1101/gr.086496.108
10.1146/annurev-cellbio-101512-122415
10.1038/nature14443
10.1101/gr.103200.109
10.1186/s13059-015-0618-0
10.1007/s00335-002-3038-x
10.1073/pnas.0600326103
10.1093/hmg/dds270
10.1101/gr.160374.113
10.1038/nmeth.3205
10.1126/science.8327891
10.1038/ng0398-212
10.1242/dev.026427
10.1073/pnas.88.14.6191
10.1101/gr.075713.107
10.1016/j.ceb.2014.03.001
10.1371/journal.pgen.1000889
10.1093/bioinformatics/btu268
10.1186/gb-2012-13-8-r70
10.1038/nrg3687
10.1007/BF00293281
10.1016/S0092-8674(00)81133-2
10.1038/nature11082
10.1016/j.molcel.2014.12.006
10.1101/gr.229102. Article published online before print in May 2002
10.1093/emboj/20.11.2867
10.1038/nature12593
10.1016/j.cell.2010.04.042
10.1093/bioinformatics/btr064
10.1038/190372a0
10.1126/science.aab2276
10.1101/cshperspect.a002592
10.1371/journal.pgen.1005079
10.1186/gb-2013-14-11-r122
10.1038/ng.3274
10.1126/science.1252966
10.1146/annurev-genom-091212-153515
10.1101/gad.633311
10.1016/j.devcel.2013.01.028
10.1016/j.cell.2014.09.030
10.1371/journal.pone.0075417
10.1186/gb-2011-12-4-r37
10.1038/163676a0
10.1007/s10107-004-0559-y
10.1016/j.cell.2014.03.025
10.1159/000089878
ContentType Journal Article
Copyright Deng et al. 2015
2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Deng et al. 2015
– notice: 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOI 10.1186/s13059-015-0728-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
MEDLINE

AGRICOLA
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (WRLC)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-760X
EndPage 152
ExternalDocumentID PMC4539712
26248554
10_1186_s13059_015_0728_8
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: GM098039
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: National Institutes of Health
  grantid: GM046883
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: NHGRI NIH HHS
  grantid: R01 HG006283
– fundername: NIGMS NIH HHS
  grantid: R01 GM046883
– fundername: NHGRI NIH HHS
  grantid: T32 HG000035
– fundername: NIGMS NIH HHS
  grantid: GM046883
– fundername: NIGMS NIH HHS
  grantid: R01 GM098039
– fundername: NIGMS NIH HHS
  grantid: GM098039
GroupedDBID ---
0R~
29H
4.4
53G
5GY
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACJQM
ACPRK
ADBBV
ADUKV
AEGXH
AFKRA
AFPKN
AHBYD
AHSBF
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
EBD
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
ISR
ITC
KPI
LK8
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
ROL
RPM
RSV
SJN
SOJ
SV3
UKHRP
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c704t-698ea983053a26098d5430d0e131cdfb9edd0e3f7ba51dd22abf81f08de7e6063
IEDL.DBID C6C
ISSN 1474-760X
1474-7596
IngestDate Thu Aug 21 14:05:52 EDT 2025
Fri Sep 05 08:56:39 EDT 2025
Fri Sep 05 12:20:01 EDT 2025
Fri Jul 25 11:39:53 EDT 2025
Mon Jul 21 05:39:42 EDT 2025
Thu Apr 24 23:07:39 EDT 2025
Tue Jul 01 03:10:38 EDT 2025
Sat Sep 06 07:24:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CTCF Site
CTCF Binding
Imprint Gene
Escape Gene
Hinge Region
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c704t-698ea983053a26098d5430d0e131cdfb9edd0e3f7ba51dd22abf81f08de7e6063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1186/s13059-015-0728-8
PMID 26248554
PQID 2207516876
PQPubID 2040232
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4539712
proquest_miscellaneous_2000276126
proquest_miscellaneous_1705474604
proquest_journals_2207516876
pubmed_primary_26248554
crossref_primary_10_1186_s13059_015_0728_8
crossref_citationtrail_10_1186_s13059_015_0728_8
springer_journals_10_1186_s13059_015_0728_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08-07
PublicationDateYYYYMMDD 2015-08-07
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-07
  day: 07
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Genome Biology
PublicationTitleAbbrev Genome Biol
PublicationTitleAlternate Genome Biol
PublicationYear 2015
Publisher BioMed Central
Publisher_xml – name: BioMed Central
References PA Lingenfelter (728_CR27) 1998; 18
ML Barr (728_CR8) 1949; 163
CL Walker (728_CR44) 1991; 88
BP Chadwick (728_CR30) 2008; 18
T Babak (728_CR36) 2015; 47
W Ma (728_CR23) 2015; 12
F Court (728_CR62) 2014; 7
AH Horakova (728_CR31) 2012; 13
V Narendra (728_CR46) 2015; 347
728_CR32
Y Hoki (728_CR50) 2009; 136
JM Dowen (728_CR47) 2014; 159
CR McLaughlin (728_CR38) 2011; 12
M Lyon (728_CR2) 1961; 190
WJ Kent (728_CR52) 2002; 12
MM Thiaville (728_CR63) 2013; 8
E Splinter (728_CR5) 2011; 25
X Deng (728_CR16) 2014; 15
X Deng (728_CR25) 2013; 25
WA Bickmore (728_CR1) 2013; 14
A Minajigi (728_CR12) 2015; 349
J Padeken (728_CR43) 2014; 28
S Kurukuti (728_CR7) 2006; 103
F Ay (728_CR54) 2014; 24
MS Bartolomei (728_CR3) 2011; 3
X Ke (728_CR48) 2002; 13
AM Cotton (728_CR14) 2013; 14
GJ Sullivan (728_CR35) 2001; 20
JH Kim (728_CR39) 2009; 19
JR Dixon (728_CR21) 2012; 485
AH Horakova (728_CR42) 2012; 21
Y Marahrens (728_CR51) 1998; 92
M Imakaev (728_CR57) 2012; 9
E Hacisuleyman (728_CR40) 2014; 21
C Chu (728_CR11) 2015; 161
CA Bourgeois (728_CR17) 1985; 69
A Wachter (728_CR61) 2006; 106
J Rinn (728_CR37) 2014; 345
T Nagano (728_CR28) 2013; 502
728_CR58
SS Rao (728_CR6) 2014; 159
LF Zhang (728_CR18) 2007; 129
KD Pruitt (728_CR59) 2014; 42
JM Greally (728_CR49) 2002; 99
CA McHugh (728_CR10) 2015; 521
E Heard (728_CR20) 2007; 19
F Yang (728_CR26) 2010; 20
AP Dempster (728_CR56) 1977; 39
EP Nora (728_CR4) 2012; 485
I Kuznetsova (728_CR29) 2006; 112
JC Chow (728_CR19) 2010; 141
Z Duan (728_CR55) 2010; 465
A Nemeth (728_CR34) 2010; 6
L Giorgetti (728_CR45) 2014; 157
JH Gibcus (728_CR22) 2013; 49
N Varoquaux (728_CR60) 2014; 30
JT Kung (728_CR41) 2015; 57
AV Gendrel (728_CR9) 2014; 30
JB Berletch (728_CR15) 2015; 11
CE Grant (728_CR33) 2011; 27
KE Cullen (728_CR24) 1993; 261
E Heard (728_CR13) 2006; 20
H Li (728_CR53) 2010; 26
20363980 - Genome Res. 2010 May;20(5):614-22
26089354 - Science. 2015 Jul 17;349(6245). pii: aab2276. doi: 10.1126/science.aab2276
22906166 - Genome Biol. 2012;13(8):R70
24463464 - Nat Struct Mol Biol. 2014 Feb;21(2):198-206
23473598 - Mol Cell. 2013 Mar 7;49(5):773-82
21489251 - Genome Biol. 2011;12(4):R37
17467967 - Curr Opin Cell Biol. 2007 Jun;19(3):311-6
12461650 - Mamm Genome. 2002 Nov;13(11):639-45
11756672 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):327-32
25887447 - Genome Biol. 2015;16:52
16484780 - Cytogenet Genome Res. 2006;112(3-4):248-55
24067610 - Nature. 2013 Oct 3;502(7469):59-64
12045153 - Genome Res. 2002 Jun;12(6):996-1006
21576252 - Cold Spring Harb Perspect Biol. 2011 Jul;3(7). pii: a002592. doi: 10.1101/cshperspect.a002592
19036803 - Development. 2009 Jan;136(1):139-46
25000994 - Annu Rev Cell Dev Biol. 2014;30:561-80
16847345 - Genes Dev. 2006 Jul 15;20(14):1848-67
25848752 - Nat Genet. 2015 May;47(5):544-9
25785854 - PLoS Genet. 2015 Mar;11(3):e1005079
18456864 - Genome Res. 2008 Aug;18(8):1259-69
25437436 - Nat Methods. 2015 Jan;12(1):71-8
22495300 - Nature. 2012 May 17;485(7398):376-80
22495304 - Nature. 2012 May 17;485(7398):381-5
25578877 - Mol Cell. 2015 Jan 22;57(2):361-75
25843628 - Cell. 2015 Apr 9;161(2):404-16
21330290 - Bioinformatics. 2011 Apr 1;27(7):1017-8
24501021 - Genome Res. 2014 Jun;24(6):999-1011
23875797 - Annu Rev Genomics Hum Genet. 2013;14:67-84
22791747 - Hum Mol Genet. 2012 Oct 15;21(20):4367-77
24733023 - Nat Rev Genet. 2014 Jun;15(6):367-78
24690547 - Curr Opin Cell Biol. 2014 Jun;28:54-60
24813616 - Cell. 2014 May 8;157(4):950-63
18120749 - Nature. 1949 Apr 30;163(4148):676
20550932 - Cell. 2010 Jun 11;141(6):956-69
24931992 - Bioinformatics. 2014 Jun 15;30(12):i26-33
25214588 - Science. 2014 Sep 12;345(6202):1240-1
25915022 - Nature. 2015 May 14;521(7551):232-6
20361057 - PLoS Genet. 2010 Mar;6(3):e1000889
25722416 - Science. 2015 Feb 27;347(6225):1017-21
24259432 - Nucleic Acids Res. 2014 Jan;42(Database issue):D756-63
1712482 - Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6191-5
3972413 - Hum Genet. 1985;69(2):122-9
16815976 - Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10684-9
8327891 - Science. 1993 Jul 9;261(5118):203-6
23523075 - Dev Cell. 2013 Apr 15;25(1):55-68
24667089 - Epigenetics Chromatin. 2014 Mar 25;7(1):5
21690198 - Genes Dev. 2011 Jul 1;25(13):1371-83
9506520 - Cell. 1998 Mar 6;92(5):657-64
20436457 - Nature. 2010 May 20;465(7296):363-7
25303531 - Cell. 2014 Oct 9;159(2):374-87
11387219 - EMBO J. 2001 Jun 1;20(11):2867-74
19141594 - Genome Res. 2009 Apr;19(4):533-44
24176135 - Genome Biol. 2013;14(11):R122
13764598 - Nature. 1961 Apr 22;190:372-3
24040411 - PLoS One. 2013;8(9):e75417
17512404 - Cell. 2007 May 18;129(4):693-706
20080505 - Bioinformatics. 2010 Mar 1;26(5):589-95
9500539 - Nat Genet. 1998 Mar;18(3):212-3
22941365 - Nat Methods. 2012 Oct;9(10):999-1003
25497547 - Cell. 2014 Dec 18;159(7):1665-80
References_xml – volume: 161
  start-page: 404
  year: 2015
  ident: 728_CR11
  publication-title: Cell.
  doi: 10.1016/j.cell.2015.03.025
– volume: 49
  start-page: 773
  year: 2013
  ident: 728_CR22
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2013.02.011
– volume: 42
  start-page: D756
  year: 2014
  ident: 728_CR59
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1114
– volume: 485
  start-page: 381
  year: 2012
  ident: 728_CR4
  publication-title: Nature.
  doi: 10.1038/nature11049
– volume: 21
  start-page: 198
  year: 2014
  ident: 728_CR40
  publication-title: Nat Struct Mol Biol.
  doi: 10.1038/nsmb.2764
– volume: 159
  start-page: 1665
  year: 2014
  ident: 728_CR6
  publication-title: Cell.
  doi: 10.1016/j.cell.2014.11.021
– volume: 347
  start-page: 1017
  year: 2015
  ident: 728_CR46
  publication-title: Science
  doi: 10.1126/science.1262088
– volume: 39
  start-page: 1
  year: 1977
  ident: 728_CR56
  publication-title: J R Stat Soc Ser B Methodol.
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 7
  start-page: 5
  year: 2014
  ident: 728_CR62
  publication-title: Epigenetics Chromatin.
  doi: 10.1186/1756-8935-7-5
– volume: 26
  start-page: 589
  year: 2010
  ident: 728_CR53
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btp698
– volume: 129
  start-page: 693
  year: 2007
  ident: 728_CR18
  publication-title: Cell.
  doi: 10.1016/j.cell.2007.03.036
– volume: 465
  start-page: 363
  year: 2010
  ident: 728_CR55
  publication-title: Nature.
  doi: 10.1038/nature08973
– volume: 20
  start-page: 1848
  year: 2006
  ident: 728_CR13
  publication-title: Genes Dev.
  doi: 10.1101/gad.1422906
– ident: 728_CR58
– volume: 99
  start-page: 327
  year: 2002
  ident: 728_CR49
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.012539199
– volume: 9
  start-page: 999
  year: 2012
  ident: 728_CR57
  publication-title: Nat Methods.
  doi: 10.1038/nmeth.2148
– volume: 19
  start-page: 311
  year: 2007
  ident: 728_CR20
  publication-title: Curr Opin Cell Biol.
  doi: 10.1016/j.ceb.2007.04.016
– volume: 19
  start-page: 533
  year: 2009
  ident: 728_CR39
  publication-title: Genome Res.
  doi: 10.1101/gr.086496.108
– volume: 30
  start-page: 561
  year: 2014
  ident: 728_CR9
  publication-title: Annu Rev Cell Dev Biol.
  doi: 10.1146/annurev-cellbio-101512-122415
– volume: 521
  start-page: 232
  year: 2015
  ident: 728_CR10
  publication-title: Nature.
  doi: 10.1038/nature14443
– volume: 20
  start-page: 614
  year: 2010
  ident: 728_CR26
  publication-title: Genome Res.
  doi: 10.1101/gr.103200.109
– ident: 728_CR32
  doi: 10.1186/s13059-015-0618-0
– volume: 13
  start-page: 639
  year: 2002
  ident: 728_CR48
  publication-title: Mamm Genome.
  doi: 10.1007/s00335-002-3038-x
– volume: 103
  start-page: 10684
  year: 2006
  ident: 728_CR7
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.0600326103
– volume: 21
  start-page: 4367
  year: 2012
  ident: 728_CR42
  publication-title: Hum Mol Genet.
  doi: 10.1093/hmg/dds270
– volume: 24
  start-page: 999
  year: 2014
  ident: 728_CR54
  publication-title: Genome Res.
  doi: 10.1101/gr.160374.113
– volume: 12
  start-page: 71
  year: 2015
  ident: 728_CR23
  publication-title: Nat Methods.
  doi: 10.1038/nmeth.3205
– volume: 261
  start-page: 203
  year: 1993
  ident: 728_CR24
  publication-title: Science.
  doi: 10.1126/science.8327891
– volume: 18
  start-page: 212
  year: 1998
  ident: 728_CR27
  publication-title: Nat Genet.
  doi: 10.1038/ng0398-212
– volume: 136
  start-page: 139
  year: 2009
  ident: 728_CR50
  publication-title: Development.
  doi: 10.1242/dev.026427
– volume: 88
  start-page: 6191
  year: 1991
  ident: 728_CR44
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.88.14.6191
– volume: 18
  start-page: 1259
  year: 2008
  ident: 728_CR30
  publication-title: Genome Res.
  doi: 10.1101/gr.075713.107
– volume: 28
  start-page: 54
  year: 2014
  ident: 728_CR43
  publication-title: Curr Opin Cell Biol.
  doi: 10.1016/j.ceb.2014.03.001
– volume: 6
  start-page: e1000889
  year: 2010
  ident: 728_CR34
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000889
– volume: 30
  start-page: i26
  year: 2014
  ident: 728_CR60
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btu268
– volume: 13
  start-page: R70
  year: 2012
  ident: 728_CR31
  publication-title: Genome Biol.
  doi: 10.1186/gb-2012-13-8-r70
– volume: 15
  start-page: 367
  year: 2014
  ident: 728_CR16
  publication-title: Nat Rev Genet.
  doi: 10.1038/nrg3687
– volume: 69
  start-page: 122
  year: 1985
  ident: 728_CR17
  publication-title: Hum Genet.
  doi: 10.1007/BF00293281
– volume: 92
  start-page: 657
  year: 1998
  ident: 728_CR51
  publication-title: Cell.
  doi: 10.1016/S0092-8674(00)81133-2
– volume: 485
  start-page: 376
  year: 2012
  ident: 728_CR21
  publication-title: Nature.
  doi: 10.1038/nature11082
– volume: 57
  start-page: 361
  year: 2015
  ident: 728_CR41
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2014.12.006
– volume: 12
  start-page: 996
  year: 2002
  ident: 728_CR52
  publication-title: Genome Res.
  doi: 10.1101/gr.229102. Article published online before print in May 2002
– volume: 20
  start-page: 2867
  year: 2001
  ident: 728_CR35
  publication-title: EMBO J.
  doi: 10.1093/emboj/20.11.2867
– volume: 502
  start-page: 59
  year: 2013
  ident: 728_CR28
  publication-title: Nature.
  doi: 10.1038/nature12593
– volume: 141
  start-page: 956
  year: 2010
  ident: 728_CR19
  publication-title: Cell.
  doi: 10.1016/j.cell.2010.04.042
– volume: 27
  start-page: 1017
  year: 2011
  ident: 728_CR33
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btr064
– volume: 190
  start-page: 372
  year: 1961
  ident: 728_CR2
  publication-title: Nature.
  doi: 10.1038/190372a0
– volume: 349
  start-page: aab2276
  year: 2015
  ident: 728_CR12
  publication-title: Science
  doi: 10.1126/science.aab2276
– volume: 3
  start-page: a002592
  year: 2011
  ident: 728_CR3
  publication-title: Cold Spring Harb Perspect Biol.
  doi: 10.1101/cshperspect.a002592
– volume: 11
  start-page: e1005079
  year: 2015
  ident: 728_CR15
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005079
– volume: 14
  start-page: R122
  year: 2013
  ident: 728_CR14
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-11-r122
– volume: 47
  start-page: 544
  year: 2015
  ident: 728_CR36
  publication-title: Nat Genet.
  doi: 10.1038/ng.3274
– volume: 345
  start-page: 1240
  year: 2014
  ident: 728_CR37
  publication-title: Science
  doi: 10.1126/science.1252966
– volume: 14
  start-page: 67
  year: 2013
  ident: 728_CR1
  publication-title: Annu Rev Genomics Hum Genet.
  doi: 10.1146/annurev-genom-091212-153515
– volume: 25
  start-page: 1371
  year: 2011
  ident: 728_CR5
  publication-title: Genes Dev.
  doi: 10.1101/gad.633311
– volume: 25
  start-page: 55
  year: 2013
  ident: 728_CR25
  publication-title: Dev Cell.
  doi: 10.1016/j.devcel.2013.01.028
– volume: 159
  start-page: 374
  year: 2014
  ident: 728_CR47
  publication-title: Cell.
  doi: 10.1016/j.cell.2014.09.030
– volume: 8
  start-page: e75417
  year: 2013
  ident: 728_CR63
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0075417
– volume: 12
  start-page: R37
  year: 2011
  ident: 728_CR38
  publication-title: Genome Biol.
  doi: 10.1186/gb-2011-12-4-r37
– volume: 163
  start-page: 676
  year: 1949
  ident: 728_CR8
  publication-title: Nature.
  doi: 10.1038/163676a0
– volume: 106
  start-page: 25
  year: 2006
  ident: 728_CR61
  publication-title: Math Program.
  doi: 10.1007/s10107-004-0559-y
– volume: 157
  start-page: 950
  year: 2014
  ident: 728_CR45
  publication-title: Cell.
  doi: 10.1016/j.cell.2014.03.025
– volume: 112
  start-page: 248
  year: 2006
  ident: 728_CR29
  publication-title: Cytogenet Genome Res.
  doi: 10.1159/000089878
– reference: 19036803 - Development. 2009 Jan;136(1):139-46
– reference: 20080505 - Bioinformatics. 2010 Mar 1;26(5):589-95
– reference: 25437436 - Nat Methods. 2015 Jan;12(1):71-8
– reference: 24067610 - Nature. 2013 Oct 3;502(7469):59-64
– reference: 23473598 - Mol Cell. 2013 Mar 7;49(5):773-82
– reference: 25303531 - Cell. 2014 Oct 9;159(2):374-87
– reference: 22495304 - Nature. 2012 May 17;485(7398):381-5
– reference: 25722416 - Science. 2015 Feb 27;347(6225):1017-21
– reference: 16847345 - Genes Dev. 2006 Jul 15;20(14):1848-67
– reference: 24040411 - PLoS One. 2013;8(9):e75417
– reference: 24667089 - Epigenetics Chromatin. 2014 Mar 25;7(1):5
– reference: 17512404 - Cell. 2007 May 18;129(4):693-706
– reference: 25843628 - Cell. 2015 Apr 9;161(2):404-16
– reference: 1712482 - Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6191-5
– reference: 13764598 - Nature. 1961 Apr 22;190:372-3
– reference: 20361057 - PLoS Genet. 2010 Mar;6(3):e1000889
– reference: 23875797 - Annu Rev Genomics Hum Genet. 2013;14:67-84
– reference: 3972413 - Hum Genet. 1985;69(2):122-9
– reference: 24733023 - Nat Rev Genet. 2014 Jun;15(6):367-78
– reference: 11387219 - EMBO J. 2001 Jun 1;20(11):2867-74
– reference: 18456864 - Genome Res. 2008 Aug;18(8):1259-69
– reference: 12461650 - Mamm Genome. 2002 Nov;13(11):639-45
– reference: 20550932 - Cell. 2010 Jun 11;141(6):956-69
– reference: 24259432 - Nucleic Acids Res. 2014 Jan;42(Database issue):D756-63
– reference: 25887447 - Genome Biol. 2015;16:52
– reference: 24463464 - Nat Struct Mol Biol. 2014 Feb;21(2):198-206
– reference: 21690198 - Genes Dev. 2011 Jul 1;25(13):1371-83
– reference: 12045153 - Genome Res. 2002 Jun;12(6):996-1006
– reference: 21576252 - Cold Spring Harb Perspect Biol. 2011 Jul;3(7). pii: a002592. doi: 10.1101/cshperspect.a002592
– reference: 24813616 - Cell. 2014 May 8;157(4):950-63
– reference: 25497547 - Cell. 2014 Dec 18;159(7):1665-80
– reference: 24176135 - Genome Biol. 2013;14(11):R122
– reference: 22906166 - Genome Biol. 2012;13(8):R70
– reference: 22941365 - Nat Methods. 2012 Oct;9(10):999-1003
– reference: 25785854 - PLoS Genet. 2015 Mar;11(3):e1005079
– reference: 25000994 - Annu Rev Cell Dev Biol. 2014;30:561-80
– reference: 17467967 - Curr Opin Cell Biol. 2007 Jun;19(3):311-6
– reference: 22791747 - Hum Mol Genet. 2012 Oct 15;21(20):4367-77
– reference: 16815976 - Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10684-9
– reference: 25915022 - Nature. 2015 May 14;521(7551):232-6
– reference: 26089354 - Science. 2015 Jul 17;349(6245). pii: aab2276. doi: 10.1126/science.aab2276
– reference: 25578877 - Mol Cell. 2015 Jan 22;57(2):361-75
– reference: 9500539 - Nat Genet. 1998 Mar;18(3):212-3
– reference: 11756672 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):327-32
– reference: 25214588 - Science. 2014 Sep 12;345(6202):1240-1
– reference: 20363980 - Genome Res. 2010 May;20(5):614-22
– reference: 24931992 - Bioinformatics. 2014 Jun 15;30(12):i26-33
– reference: 16484780 - Cytogenet Genome Res. 2006;112(3-4):248-55
– reference: 21330290 - Bioinformatics. 2011 Apr 1;27(7):1017-8
– reference: 18120749 - Nature. 1949 Apr 30;163(4148):676
– reference: 23523075 - Dev Cell. 2013 Apr 15;25(1):55-68
– reference: 25848752 - Nat Genet. 2015 May;47(5):544-9
– reference: 21489251 - Genome Biol. 2011;12(4):R37
– reference: 20436457 - Nature. 2010 May 20;465(7296):363-7
– reference: 8327891 - Science. 1993 Jul 9;261(5118):203-6
– reference: 22495300 - Nature. 2012 May 17;485(7398):376-80
– reference: 24501021 - Genome Res. 2014 Jun;24(6):999-1011
– reference: 24690547 - Curr Opin Cell Biol. 2014 Jun;28:54-60
– reference: 9506520 - Cell. 1998 Mar 6;92(5):657-64
– reference: 19141594 - Genome Res. 2009 Apr;19(4):533-44
SSID ssj0019426
ssj0017866
Score 2.5536585
Snippet Background In mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate...
In mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate structural...
Background In mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate...
BACKGROUND: In mammals, one of the female X chromosomes and all imprinted genes are expressed exclusively from a single allele in somatic cells. To evaluate...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 152
SubjectTerms Alleles
Animal Genetics and Genomics
Animals
Bioinformatics
Biomedical and Life Sciences
CCCTC-Binding Factor
Cell Line
cell nucleolus
Cell Nucleolus - metabolism
Cells, Cultured
Chromatin
Chromosomes
Chromosomes, Human, X - chemistry
Deoxyribonuclease
deoxyribonucleases
DNA methylation
DNA-directed RNA polymerase
Epigenetics
Evolutionary Biology
Female
females
Gene expression
Gene silencing
Genomes
Genomic Imprinting
genomics
Human Genetics
Humans
Life Sciences
loci
Male
Mice
Microbial Genetics and Genomics
Nucleoli
Plant Genetics and Genomics
Repressor Proteins - chemistry
Repressor Proteins - metabolism
RNA Polymerase II - chemistry
RNA Polymerase II - metabolism
Somatic cells
species
The three dimensional organization of the nucleus
X Chromosome - chemistry
X Chromosome - metabolism
X Chromosome Inactivation
X Chromosomes
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1BTxwhFCZW06SXxta2bmsbmnhqQwQGGDgZ29SYJnqqyd4IDBA3aWdXd3vw3_tg2DGr0SMBJsPjA77He7yH0CGjofGgWBBvQiBCBU_glBNESS5TkoLpkB8nn1-os0vxeyqn9cJtWd0q13ti2ajDvMt35Eecw-HGFCze48U1yVmjsnW1ptB4gXZK6DLAczsdFS7W6sxVasEIPjw1yg6I0qhq4mRaHS1hI5fZbUgS2nJN9OYh9Yh5PnagfGBFLYfT6S56XVklPhlg8AZtxf4tejnkmbzdQ-rHbJEhsop4iBf7_ybiecJA_vCsd2XLw_kOIOIp7q6yh95y_i--Q5env_78PCM1YQLpWipWRBkdndEwmMaBnmJ0kKKhgUbWsC4kb2KAQpNa7yQLgXPnk2aJ6hDbCJpM8x5t9_M-7iMMvIJCl-BbR4VPyUdjXOdjAgIXuuAmiK4lZLsaTTwntfhri1ahlR2EakGoNgvV6gn6NnZZDKE0nmt8sBa7ratqae8xMEFfx2pYD9nI4foIcrI5PBBMsaLi6Ta8GFyB28F3PgwzOf4RVyXIG_RuN-Z4bJDjcW_W9LOrEpdbSCB3jE_Q9zUa7n_9yYF-fH6gn9ArXnCpAZoHaBtAEj8DDVr5LwXrd5tHArA
  priority: 102
  providerName: ProQuest
Title Bipartite structure of the inactive mouse X chromosome
URI https://link.springer.com/article/10.1186/s13059-015-0728-8
https://www.ncbi.nlm.nih.gov/pubmed/26248554
https://www.proquest.com/docview/2207516876
https://www.proquest.com/docview/1705474604
https://www.proquest.com/docview/2000276126
https://pubmed.ncbi.nlm.nih.gov/PMC4539712
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9si-CL-N1r6xHBJ2UxyeZrH73SUgSLFAuHLyHZJPRA90rvfPC_d5LdWz1rBV8Wlswsm5nZ5Dc7yS8ArxkNtcfEovJNCJVQwVc4y4lKSS5TkoKZkDcnfzxXZ5fiw1zOB7LovBfm9_o9M-rdCsdYmVf0yIpqbiqzA3uS1arUZdXxWDBocKYZipZ_Vduedm5hydtLIv-oi5bp5vQRPBxwInnfO_Yx3IvdE7jfnxz54ymo2eI6O30dSc8A-_0mkmUiCOfIonNlECM5q49kTtqrvOZutfwWn8Hl6cnn47NqOAKhajUV60o1JrrGYGdqh5lHY4IUNQ00spq1IfkmBrypk_ZOshA4dz4ZlqgJUUfMTernsNstu7gPBJECRZXgtaPCp-Rj07jWx4SQLLTBTYBuLGTbgR88H1Px1ZY8wSjbG9WiUW02qjUTeDOqXPfkGP8SPtqY3Q7fycpyjpCFKRySJ_BqbMYIz2UL10W0k82EP0ILRcXdMryUUBGt4XNe9J4c34irQtuG2nrLx6NAZtjebukWV4VpW0iEa4xP4O0mGn69-p0dPfgv6UN4wEuYGozUI9jFmIkvEees_RR29FxPYW92cv7pYlrifVr-GeD1YvblJ0-M-vA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbxQhEJ_Ua4y-GL89rYqJvmhIWRZY9sEYq22utr0Y0yb3RpcF0kvs3tU7Y_pP-Tc67FdzNu1bHwmwgeEH82NnmAF4mzCXWrxYUJs7R4VylqKWE1RJLkOQItEuPk4-GKvRkfg2kZM1-Nu9hYluld2ZWB_UblbGf-SbnKNySxRu3k_zMxqzRkXrapdCo4HFnj__g1e2xcfdr7i-7zjf2T78MqJtVgFaZkwsqcq1L3KNOE8LJPO5dlKkzDGfpEnpgs29w0IaMlvIxDnOCxt0Eph2PvNI91P87i1YF_FF6wDWt7bH33_0dotMR3bUFnLBm8dN0eVR5qo1qiZabS5QdcjoqCQpy7imelUtXuK6l102_7Pb1upw5z7ca3ks-dwA7wGs-eoh3G4yW54_ArU1nUdQLj1pItT-_uXJLBCkm2RaFfUhS-JfB08mpDyJPoGL2al_DEc3IswnMKhmlX8GBJkMwy7OZgUTNgTr87worQ9IGV3piiGwTkKmbOOXxzQaP019j9HKNEI1KFQThWr0EN73XeZN8I7rGm90YjftPl6YC9QN4U1fjTswmlWKyqOcTAxIhEusmLi6Da9NvMgm8TtPm5XsR8RVHVYOe2cra9w3iBHAV2uq6UkdCVxIpJMJH8KHDg0XQ79yos-vn-hruDM6PNg3-7vjvRdwl9cY1QjTDRggYPxLJGFL-6pFPoHjm95s_wBp7UF7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEJ8IRsKL8QPwFLUmPEEaut22231U9IKghAdI7q1pt224BPcu3Pngf-90v8zJR8LjpjObdjrt_CYznQHYy5jPHToW1JXeU6G8o2jlBFWSyxilyLRPj5N_nqnjS3EykZOuz-miz3bvQ5Ltm4ZUpaleHs59bI-4VocLvHllyvORlBVcU70GT0WyfClaq46GMEKJ9qcLZd7JtmqMbiHM24mS_0VLGyM0fgHPO_RIPrfb_RKehPoVPGv7Sf55DerLdJ5UYRlIWxf2900gs0gQ5JFpbZurjSRfP5AJqa5SJt5i9itsweX428XRMe0aI9CqYGJJVamDLTUuJrfoj5TaS5Ezz0KWZ5WPrgweP_JYOCsz7zm3LuosMu1DEdBjybdhvZ7V4Q0QxA8MWbwrLBMuRhfK0lYuRARqvvJ2BKyXkKm6quGpecW1abwHrUwrVINCNUmoRo9gf2CZtyUzHiLe7cVuutOzMJwjkMkUXtQj-DQMo96nYIatA8rJpDJAohCKiftpeBNYRQyH_9lpd3KYEVdNMTfkLlb2eCBIdbdXR-rpVVN_W0gEcRkfwUGvDf-mfu9C3z6K-iNsnH8dmx_fz07fwSZvNFaj0u7COqpPeI9AaOk-NMr-F1jrAa4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bipartite+structure+of+the+inactive+mouse+X+chromosome&rft.jtitle=Genome+biology&rft.au=Deng%2C+Xinxian&rft.au=Ma%2C+Wenxiu&rft.au=Ramani%2C+Vijay&rft.au=Hill%2C+Andrew&rft.date=2015-08-07&rft.pub=BioMed+Central&rft.eissn=1474-760X&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1186%2Fs13059-015-0728-8&rft.externalDocID=10_1186_s13059_015_0728_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon