Genome-wide association analysis of metabolic syndrome quantitative traits in the GENNID multiethnic family study
Background To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. Methods Data was collected from GENetics of Noninsulin dependent Diabetes Mellitus (GENNID), a multiethnic resource of Type 2 diabetic families and includ...
Saved in:
Published in | Diabetology and metabolic syndrome Vol. 13; no. 1; pp. 59 - 15 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
01.06.2021
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1758-5996 1758-5996 |
DOI | 10.1186/s13098-021-00670-3 |
Cover
Abstract | Background
To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups.
Methods
Data was collected from GENetics of Noninsulin dependent Diabetes Mellitus (GENNID), a multiethnic resource of Type 2 diabetic families and included 1520 subjects in 259 African-American, European-American, Japanese-Americans, and Mexican-American families. We focused on eight MetS traits: weight, waist circumference, systolic and diastolic blood pressure, high-density lipoprotein, triglycerides, fasting glucose, and insulin. Using genotyped and imputed data from Illumina’s Multiethnic array, we conducted genome-wide association analyses with linear mixed models for all ethnicities, except for the smaller Japanese-American group, where we used additive genetic models with gene-dropping.
Results
Findings included ethnic-specific genetic associations and heterogeneity across ethnicities. Most significant associations were outside our candidate linkage regions and were coincident within a gene or intergenic region, with two exceptions in European-American families: (a) within previously identified linkage region on chromosome 2, two significant
GLI2-TFCP2L1
associations with weight, and (b) one chromosome 11 variant near
CADM1-LINC00900
with pleiotropic blood pressure effects.
Conclusions
This multiethnic family study found genetic heterogeneity and coincident associations (with one case of pleiotropy), highlighting the importance of including diverse populations in genetic research and illustrating the complex genetic architecture underlying MetS. |
---|---|
AbstractList | To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. Data was collected from GENetics of Noninsulin dependent Diabetes Mellitus (GENNID), a multiethnic resource of Type 2 diabetic families and included 1520 subjects in 259 African-American, European-American, Japanese-Americans, and Mexican-American families. We focused on eight MetS traits: weight, waist circumference, systolic and diastolic blood pressure, high-density lipoprotein, triglycerides, fasting glucose, and insulin. Using genotyped and imputed data from Illumina's Multiethnic array, we conducted genome-wide association analyses with linear mixed models for all ethnicities, except for the smaller Japanese-American group, where we used additive genetic models with gene-dropping. This multiethnic family study found genetic heterogeneity and coincident associations (with one case of pleiotropy), highlighting the importance of including diverse populations in genetic research and illustrating the complex genetic architecture underlying MetS. Abstract Background To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. Methods Data was collected from GENetics of Noninsulin dependent Diabetes Mellitus (GENNID), a multiethnic resource of Type 2 diabetic families and included 1520 subjects in 259 African-American, European-American, Japanese-Americans, and Mexican-American families. We focused on eight MetS traits: weight, waist circumference, systolic and diastolic blood pressure, high-density lipoprotein, triglycerides, fasting glucose, and insulin. Using genotyped and imputed data from Illumina’s Multiethnic array, we conducted genome-wide association analyses with linear mixed models for all ethnicities, except for the smaller Japanese-American group, where we used additive genetic models with gene-dropping. Results Findings included ethnic-specific genetic associations and heterogeneity across ethnicities. Most significant associations were outside our candidate linkage regions and were coincident within a gene or intergenic region, with two exceptions in European-American families: (a) within previously identified linkage region on chromosome 2, two significant GLI2-TFCP2L1 associations with weight, and (b) one chromosome 11 variant near CADM1-LINC00900 with pleiotropic blood pressure effects. Conclusions This multiethnic family study found genetic heterogeneity and coincident associations (with one case of pleiotropy), highlighting the importance of including diverse populations in genetic research and illustrating the complex genetic architecture underlying MetS. To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups.BACKGROUNDTo identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups.Data was collected from GENetics of Noninsulin dependent Diabetes Mellitus (GENNID), a multiethnic resource of Type 2 diabetic families and included 1520 subjects in 259 African-American, European-American, Japanese-Americans, and Mexican-American families. We focused on eight MetS traits: weight, waist circumference, systolic and diastolic blood pressure, high-density lipoprotein, triglycerides, fasting glucose, and insulin. Using genotyped and imputed data from Illumina's Multiethnic array, we conducted genome-wide association analyses with linear mixed models for all ethnicities, except for the smaller Japanese-American group, where we used additive genetic models with gene-dropping.METHODSData was collected from GENetics of Noninsulin dependent Diabetes Mellitus (GENNID), a multiethnic resource of Type 2 diabetic families and included 1520 subjects in 259 African-American, European-American, Japanese-Americans, and Mexican-American families. We focused on eight MetS traits: weight, waist circumference, systolic and diastolic blood pressure, high-density lipoprotein, triglycerides, fasting glucose, and insulin. Using genotyped and imputed data from Illumina's Multiethnic array, we conducted genome-wide association analyses with linear mixed models for all ethnicities, except for the smaller Japanese-American group, where we used additive genetic models with gene-dropping.Findings included ethnic-specific genetic associations and heterogeneity across ethnicities. Most significant associations were outside our candidate linkage regions and were coincident within a gene or intergenic region, with two exceptions in European-American families: (a) within previously identified linkage region on chromosome 2, two significant GLI2-TFCP2L1 associations with weight, and (b) one chromosome 11 variant near CADM1-LINC00900 with pleiotropic blood pressure effects.RESULTSFindings included ethnic-specific genetic associations and heterogeneity across ethnicities. Most significant associations were outside our candidate linkage regions and were coincident within a gene or intergenic region, with two exceptions in European-American families: (a) within previously identified linkage region on chromosome 2, two significant GLI2-TFCP2L1 associations with weight, and (b) one chromosome 11 variant near CADM1-LINC00900 with pleiotropic blood pressure effects.This multiethnic family study found genetic heterogeneity and coincident associations (with one case of pleiotropy), highlighting the importance of including diverse populations in genetic research and illustrating the complex genetic architecture underlying MetS.CONCLUSIONSThis multiethnic family study found genetic heterogeneity and coincident associations (with one case of pleiotropy), highlighting the importance of including diverse populations in genetic research and illustrating the complex genetic architecture underlying MetS. Background To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. Methods Data was collected from GENetics of Noninsulin dependent Diabetes Mellitus (GENNID), a multiethnic resource of Type 2 diabetic families and included 1520 subjects in 259 African-American, European-American, Japanese-Americans, and Mexican-American families. We focused on eight MetS traits: weight, waist circumference, systolic and diastolic blood pressure, high-density lipoprotein, triglycerides, fasting glucose, and insulin. Using genotyped and imputed data from Illumina's Multiethnic array, we conducted genome-wide association analyses with linear mixed models for all ethnicities, except for the smaller Japanese-American group, where we used additive genetic models with gene-dropping. Results Findings included ethnic-specific genetic associations and heterogeneity across ethnicities. Most significant associations were outside our candidate linkage regions and were coincident within a gene or intergenic region, with two exceptions in European-American families: (a) within previously identified linkage region on chromosome 2, two significant GLI2-TFCP2L1 associations with weight, and (b) one chromosome 11 variant near CADM1-LINC00900 with pleiotropic blood pressure effects. Conclusions This multiethnic family study found genetic heterogeneity and coincident associations (with one case of pleiotropy), highlighting the importance of including diverse populations in genetic research and illustrating the complex genetic architecture underlying MetS. Keywords: Metabolic syndrome, Genetic epidemiology, Family studies, Quantitative trait loci, Linkage Background To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. Methods Data was collected from GENetics of Noninsulin dependent Diabetes Mellitus (GENNID), a multiethnic resource of Type 2 diabetic families and included 1520 subjects in 259 African-American, European-American, Japanese-Americans, and Mexican-American families. We focused on eight MetS traits: weight, waist circumference, systolic and diastolic blood pressure, high-density lipoprotein, triglycerides, fasting glucose, and insulin. Using genotyped and imputed data from Illumina’s Multiethnic array, we conducted genome-wide association analyses with linear mixed models for all ethnicities, except for the smaller Japanese-American group, where we used additive genetic models with gene-dropping. Results Findings included ethnic-specific genetic associations and heterogeneity across ethnicities. Most significant associations were outside our candidate linkage regions and were coincident within a gene or intergenic region, with two exceptions in European-American families: (a) within previously identified linkage region on chromosome 2, two significant GLI2-TFCP2L1 associations with weight, and (b) one chromosome 11 variant near CADM1-LINC00900 with pleiotropic blood pressure effects. Conclusions This multiethnic family study found genetic heterogeneity and coincident associations (with one case of pleiotropy), highlighting the importance of including diverse populations in genetic research and illustrating the complex genetic architecture underlying MetS. Background To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. Methods Data was collected from GENetics of Noninsulin dependent Diabetes Mellitus (GENNID), a multiethnic resource of Type 2 diabetic families and included 1520 subjects in 259 African-American, European-American, Japanese-Americans, and Mexican-American families. We focused on eight MetS traits: weight, waist circumference, systolic and diastolic blood pressure, high-density lipoprotein, triglycerides, fasting glucose, and insulin. Using genotyped and imputed data from Illumina’s Multiethnic array, we conducted genome-wide association analyses with linear mixed models for all ethnicities, except for the smaller Japanese-American group, where we used additive genetic models with gene-dropping. Results Findings included ethnic-specific genetic associations and heterogeneity across ethnicities. Most significant associations were outside our candidate linkage regions and were coincident within a gene or intergenic region, with two exceptions in European-American families: (a) within previously identified linkage region on chromosome 2, two significant GLI2-TFCP2L1 associations with weight, and (b) one chromosome 11 variant near CADM1-LINC00900 with pleiotropic blood pressure effects. Conclusions This multiethnic family study found genetic heterogeneity and coincident associations (with one case of pleiotropy), highlighting the importance of including diverse populations in genetic research and illustrating the complex genetic architecture underlying MetS. To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. Data was collected from GENetics of Noninsulin dependent Diabetes Mellitus (GENNID), a multiethnic resource of Type 2 diabetic families and included 1520 subjects in 259 African-American, European-American, Japanese-Americans, and Mexican-American families. We focused on eight MetS traits: weight, waist circumference, systolic and diastolic blood pressure, high-density lipoprotein, triglycerides, fasting glucose, and insulin. Using genotyped and imputed data from Illumina's Multiethnic array, we conducted genome-wide association analyses with linear mixed models for all ethnicities, except for the smaller Japanese-American group, where we used additive genetic models with gene-dropping. Findings included ethnic-specific genetic associations and heterogeneity across ethnicities. Most significant associations were outside our candidate linkage regions and were coincident within a gene or intergenic region, with two exceptions in European-American families: (a) within previously identified linkage region on chromosome 2, two significant GLI2-TFCP2L1 associations with weight, and (b) one chromosome 11 variant near CADM1-LINC00900 with pleiotropic blood pressure effects. This multiethnic family study found genetic heterogeneity and coincident associations (with one case of pleiotropy), highlighting the importance of including diverse populations in genetic research and illustrating the complex genetic architecture underlying MetS. |
ArticleNumber | 59 |
Audience | Academic |
Author | Wan, Jia Y. Freedland, Alexis R. Goodman, Deborah L. Willems, Emileigh L. Edwards, Karen L. Norden-Krichmar, Trina M. Santorico, Stephanie A. |
Author_xml | – sequence: 1 givenname: Jia Y. surname: Wan fullname: Wan, Jia Y. organization: Department of Epidemiology and Biostatistics, Program in Public Health, University of California – sequence: 2 givenname: Deborah L. surname: Goodman fullname: Goodman, Deborah L. organization: Department of Epidemiology and Biostatistics, Program in Public Health, University of California – sequence: 3 givenname: Emileigh L. surname: Willems fullname: Willems, Emileigh L. organization: Department of Mathematical and Statistical Sciences, University of Colorado – sequence: 4 givenname: Alexis R. surname: Freedland fullname: Freedland, Alexis R. organization: Department of Epidemiology and Biostatistics, Program in Public Health, University of California – sequence: 5 givenname: Trina M. surname: Norden-Krichmar fullname: Norden-Krichmar, Trina M. organization: Department of Epidemiology and Biostatistics, Program in Public Health, University of California – sequence: 6 givenname: Stephanie A. surname: Santorico fullname: Santorico, Stephanie A. organization: Department of Mathematical and Statistical Sciences, University of Colorado, Human Medical Genetics and Genomics Program, University of Colorado, Department of Biostatistics & Informatics, University of Colorado, Division of Biomedical Informatics & Personalized Medicine, University of Colorado School of Medicine – sequence: 7 givenname: Karen L. surname: Edwards fullname: Edwards, Karen L. email: kedward1@hs.uci.edu organization: Department of Epidemiology and Biostatistics, Program in Public Health, University of California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34074324$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhSNURH_gBVigSEiITYodO3ayQapKGSpVZQNr68a5mfHIsdvYKZq3x-m0dKZClRexrr9zEp-c4-zAeYdZ9p6SU0pr8SVQRpq6ICUtCBGSFOxVdkRlVRdV04iDnf1hdhzCeoYqyd9kh4wTyVnJj7LbBTo_YPHHdJhDCF4biMa7HBzYTTAh930-YITWW6PzsHHdmPj8dgIXTUzsHeZxBBNDblweV5gvLq6vL7_lw2SjwbhySdbDYOwmD3HqNm-z1z3YgO8enifZ7-8Xv85_FFc_F5fnZ1eFloTHouwFNoIS0MAFAJdatj2RQhMOZQsIFDvJWpEOkROQfYW6afuKEtbyqiXsJLvc-nYe1upmNAOMG-XBqPuBH5cKxmi0RQUSe2g7TUvWcSFES4WWZcUpckmw18nr69brZmoH7DS6dGW7Z7p_4sxKLf2dqqkkjWDJ4PODwehvJwxRDSZotBYc-imosmKCNxWv5-_--Axd-2lMf2OmOKsI45w_UUtIFzCu9-m9ejZVZ0JUPCVXi0Sd_odKq8PB6NSm3qT5nuDTjmCFYOMqeDvNlQj74IfdRP5F8disBNRbQI8-hBF7pe_r4ueAjFWUqLnEaltilUqs7kus5rDKZ9JH9xdFbCsKCXZLHJ9ie0H1F3cdBCk |
CitedBy_id | crossref_primary_10_1038_s41598_024_71217_5 crossref_primary_10_3389_fendo_2024_1468824 crossref_primary_10_1152_physrev_00017_2024 crossref_primary_10_1016_j_arth_2024_05_022 crossref_primary_10_1161_CIR_0000000000001209 crossref_primary_10_3389_fgene_2024_1417262 crossref_primary_10_3390_nu16010077 crossref_primary_10_3390_pr11113221 crossref_primary_10_1161_CIR_0000000000001303 crossref_primary_10_1007_s13258_024_01507_9 crossref_primary_10_1038_s41588_024_01933_1 crossref_primary_10_1161_CIR_0000000000001123 crossref_primary_10_3390_antiox12040844 crossref_primary_10_1038_s42255_024_01168_8 crossref_primary_10_1089_met_2023_0125 crossref_primary_10_1186_s13098_022_00893_y |
Cites_doi | 10.1038/s41598-020-64031-2 10.1007/s11886-016-0755-4 10.1038/nature11247 10.3389/fgene.2015.00027 10.1186/s12864-016-2594-5 10.1214/08-STS280 10.1089/met.2019.0070 10.2337/diab.28.12.1039 10.1161/STROKEAHA.119.025376 10.1038/nrg2468 10.1038/jhg.2013.21 10.1161/HYP.0000000000000075 10.1038/ncomms8754 10.1038/ng.3865 10.1353/hub.2005.0001 10.1038/oby.2010.299 10.1093/bioinformatics/btq340 10.1038/oby.2008.236 10.1161/CIRCGENETICS.116.001621 10.1016/j.ajhg.2010.11.011 10.1371/journal.pone.0100548 10.1097/MOL.0000000000000276 10.15344/2456-8007/2020/143 10.1038/nmeth.2832 10.2337/diabetes.53.4.1166 10.1161/STROKEAHA.120.028944 10.2337/db08-0931 10.1086/302950 10.1016/j.ajhg.2008.03.015 10.1002/9781119536604.ch10 10.1038/ng.2892 10.1101/gr.137323.112 10.1016/j.tcm.2015.10.004 10.1186/s13148-016-0173-x 10.1136/bmjopen-2015-008675 10.1186/s13059-019-1847-4 10.1186/1475-2840-9-79 10.1101/531210v4 10.1002/sim.1186 10.1038/ng.3643 10.1093/nar/gkq603 10.1093/bioinformatics/btv009 10.1038/nature08494 10.1161/01.HYP.0000184249.20016.bb 10.2337/diacare.19.8.864 10.2337/diabetes.53.7.1866 10.1016/j.diabres.2020.108193 10.1073/pnas.97.26.14478 10.1371/journal.pone.0011690 10.3390/ijms19102852 10.1038/ng.3477 10.1161/circ.106.25.3143 10.1371/journal.pgen.1004234 10.1161/CIRCULATIONAHA.109.192644 10.1186/s12863-016-0387-0 10.1038/nature15393 10.1038/ng.3656 10.1038/s41588-020-0640-3 10.1038/s41586-020-2308-7 10.1093/bioinformatics/btv402 10.1186/s12263-017-0567-1 10.2337/db10-1011 10.2174/187153010791213100 10.1002/oby.21257 10.1371/journal.pone.0204502 10.1016/j.ajhg.2016.08.015 10.1136/jmg.2007.052415 |
ContentType | Journal Article |
Contributor | Robbins, David C Elbein, Steven C Norris, Jill Hanis, Craig L Buse, John Kahn, Steven E Fujimoto, Wilfred Beck, Jeanne C Alan Permutt, M DeFronzo, Ralph Ehrmann, David Behn, Philip Boerwinkle, Eric Mulivor, Richard A Raffel, Leslie |
Contributor_xml | – sequence: 1 givenname: Eric surname: Boerwinkle fullname: Boerwinkle, Eric – sequence: 2 givenname: John surname: Buse fullname: Buse, John – sequence: 3 givenname: Ralph surname: DeFronzo fullname: DeFronzo, Ralph – sequence: 4 givenname: David surname: Ehrmann fullname: Ehrmann, David – sequence: 5 givenname: Steven C surname: Elbein fullname: Elbein, Steven C – sequence: 6 givenname: Wilfred surname: Fujimoto fullname: Fujimoto, Wilfred – sequence: 7 givenname: Steven E surname: Kahn fullname: Kahn, Steven E – sequence: 8 givenname: Craig L surname: Hanis fullname: Hanis, Craig L – sequence: 9 givenname: Richard A surname: Mulivor fullname: Mulivor, Richard A – sequence: 10 givenname: Jeanne C surname: Beck fullname: Beck, Jeanne C – sequence: 11 givenname: Jill surname: Norris fullname: Norris, Jill – sequence: 12 givenname: M surname: Alan Permutt fullname: Alan Permutt, M – sequence: 13 givenname: Philip surname: Behn fullname: Behn, Philip – sequence: 14 givenname: Leslie surname: Raffel fullname: Raffel, Leslie – sequence: 15 givenname: David C surname: Robbins fullname: Robbins, David C |
Copyright | The Author(s) 2021 COPYRIGHT 2021 BioMed Central Ltd. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: COPYRIGHT 2021 BioMed Central Ltd. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | American Diabetes GENNID Study Group |
CorporateAuthor_xml | – name: American Diabetes GENNID Study Group |
DBID | C6C AAYXX CITATION NPM 3V. 7QP 7TS 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s13098-021-00670-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) Physical Education Index ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1758-5996 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_a7efabdc123d4666b16c72541e470efc PMC8170963 A665461086 34074324 10_1186_s13098_021_00670_3 |
Genre | Journal Article |
GeographicLocations | Japan United States--US |
GeographicLocations_xml | – name: Japan – name: United States--US |
GrantInformation_xml | – fundername: National Heart, Lung, and Blood Institute grantid: 1R01HL113189 funderid: http://dx.doi.org/10.13039/100000050 – fundername: NHLBI NIH HHS grantid: 1R01HL113189 – fundername: NHLBI NIH HHS grantid: R01 HL113189 – fundername: ; grantid: 1R01HL113189 |
GroupedDBID | --- 0R~ 53G 5VS 7X7 8FI 8FJ AAFWJ AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACPRK ACUHS ADBBV ADUKV AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU DIK E3Z EBD EBLON EBS ESX FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IEA IHR IHW ITC KQ8 M48 M~E O5R O5S OK1 P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PUEGO RBZ RNS ROL RPM RSV SMD SOJ TUS U2A UKHRP AAYXX ALIPV CITATION NPM PMFND 3V. 7QP 7TS 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c704t-2f6e9610aca46aa47c7bf076c04a2baea1ed73b646ae40a7f5ec9bf5103b45b03 |
IEDL.DBID | M48 |
ISSN | 1758-5996 |
IngestDate | Wed Aug 27 01:28:54 EDT 2025 Thu Aug 21 18:10:33 EDT 2025 Thu Sep 04 19:53:59 EDT 2025 Sun Sep 07 03:41:06 EDT 2025 Tue Jun 17 21:08:01 EDT 2025 Tue Jun 10 20:16:32 EDT 2025 Thu May 22 21:19:24 EDT 2025 Mon Jul 21 06:04:58 EDT 2025 Thu Apr 24 23:10:12 EDT 2025 Tue Jul 01 01:26:45 EDT 2025 Sat Sep 06 07:29:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Quantitative trait loci Family studies Linkage Genetic epidemiology Metabolic syndrome |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c704t-2f6e9610aca46aa47c7bf076c04a2baea1ed73b646ae40a7f5ec9bf5103b45b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13098-021-00670-3 |
PMID | 34074324 |
PQID | 2543503444 |
PQPubID | 54993 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a7efabdc123d4666b16c72541e470efc pubmedcentral_primary_oai_pubmedcentral_nih_gov_8170963 proquest_miscellaneous_2536495480 proquest_journals_2543503444 gale_infotracmisc_A665461086 gale_infotracacademiconefile_A665461086 gale_healthsolutions_A665461086 pubmed_primary_34074324 crossref_citationtrail_10_1186_s13098_021_00670_3 crossref_primary_10_1186_s13098_021_00670_3 springer_journals_10_1186_s13098_021_00670_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Diabetology and metabolic syndrome |
PublicationTitleAbbrev | Diabetol Metab Syndr |
PublicationTitleAlternate | Diabetol Metab Syndr |
PublicationYear | 2021 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | SJ Hasstedt (670_CR36) 2013; 58 670_CR72 JH Sul (670_CR75) 2016; 99 AP Boyle (670_CR59) 2012; 22 SM Grundy (670_CR2) 2016; 26 National Diabetes Data Group (670_CR38) 1979; 28 S McCarthy (670_CR41) 2016; 48 K Wang (670_CR52) 2010; 38 M Kircher (670_CR53) 2014; 46 Y Yamada (670_CR22) 2008; 45 CJ Willer (670_CR48) 2010; 26 GR Ritchie (670_CR54) 2014; 11 PM Ridker (670_CR26) 2008; 82 MDA Ziki (670_CR8) 2016; 27 KL Monda (670_CR31) 2010; 10 H Kaur (670_CR70) 2018; 13 J O'Connell (670_CR43) 2014; 10 K Setoh (670_CR27) 2015; 6 AJ Lusis (670_CR29) 2008; 9 H Lin (670_CR57) 2019; 20 AH Kissebah (670_CR62) 2000; 97 SS Rich (670_CR63) 2004; 53 JJ Decker (670_CR9) 2019; 50 670_CR60 KG Alberti (670_CR1) 2009; 120 MJ Machiela (670_CR58) 2015; 31 M Mohas (670_CR68) 2010; 9 Y Yamada (670_CR28) 2018; 9 MA Austin (670_CR11) 2004; 53 HA Shihab (670_CR56) 2015; 31 G Chittoor (670_CR65) 2016; 17 R Core Team (670_CR50) 2020 MG Ehm (670_CR39) 2000; 66 J Wan (670_CR34) 2001; 6 RJ Khan (670_CR12) 2015; 5 M Bi (670_CR67) 2010; 5 AJ Rogers (670_CR10) 2020; 5 EL Willems (670_CR40) 2018; 42 JA Yang (670_CR45) 2011; 88 670_CR16 SK Musani (670_CR14) 2017; 10 I Ionita-Laza (670_CR55) 2016; 48 A Taracha (670_CR73) 2018; 19 670_CR51 DSH Bell (670_CR6) 2020; 164 MD DeBoer (670_CR7) 2020; 51 MS Panizzon (670_CR15) 2015; 23 AT Kraja (670_CR4) 2005; 46 M Mamtani (670_CR13) 2016; 8 YD Salinas (670_CR74) 2016; 17 Consortium EP (670_CR66) 2012; 489 K Ishigaki (670_CR71) 2020; 52 N Morris (670_CR17) 2015; 6 G Cai (670_CR64) 2004; 76 TA Manolio (670_CR30) 2009; 461 KJ Karczewski (670_CR61) 2020; 581 KJ Karczewski (670_CR76) 2020 S Das (670_CR44) 2016; 48 XT Li (670_CR69) 2012; 21 JP Higgins (670_CR47) 2002; 21 National Cholesterol Education Program Expert Panel on Detection E, Treatment of High Blood Cholesterol in A (670_CR3) 2002; 106 670_CR49 AT Kraja (670_CR24) 2011; 60 L Lind (670_CR25) 2019; 17 R Nagrani (670_CR21) 2020; 10 AM Munoz (670_CR20) 2017; 12 DM Altshuler (670_CR42) 2015; 526 D Speed (670_CR46) 2017; 49 KL Edwards (670_CR32) 2008; 16 A Chuluun-Erdene (670_CR19) 2020; 8 D Carmelli (670_CR5) 1994; 55 AE Brown (670_CR18) 2016; 18 SC Elbein (670_CR35) 2009; 58 KL Edwards (670_CR33) 2011; 19 LJ Raffel (670_CR37) 1996; 19 J Yang (670_CR23) 2014; 9 |
References_xml | – volume-title: R: a language and environment for statistical computing year: 2020 ident: 670_CR50 – volume: 10 start-page: 7189 issue: 1 year: 2020 ident: 670_CR21 publication-title: Sci Rep doi: 10.1038/s41598-020-64031-2 – volume: 18 start-page: 75 issue: 8 year: 2016 ident: 670_CR18 publication-title: Curr Cardiol Rep doi: 10.1007/s11886-016-0755-4 – volume: 489 start-page: 57 issue: 7414 year: 2012 ident: 670_CR66 publication-title: Nature doi: 10.1038/nature11247 – volume: 6 start-page: 27 year: 2015 ident: 670_CR17 publication-title: Front Genet doi: 10.3389/fgene.2015.00027 – volume: 17 start-page: 276 year: 2016 ident: 670_CR65 publication-title: BMC Genom doi: 10.1186/s12864-016-2594-5 – ident: 670_CR16 doi: 10.1214/08-STS280 – volume: 17 start-page: 505 issue: 10 year: 2019 ident: 670_CR25 publication-title: Metab Syndr Relat Disord doi: 10.1089/met.2019.0070 – volume: 28 start-page: 1039 issue: 12 year: 1979 ident: 670_CR38 publication-title: Diabetes doi: 10.2337/diab.28.12.1039 – volume: 50 start-page: 3045 issue: 11 year: 2019 ident: 670_CR9 publication-title: Stroke doi: 10.1161/STROKEAHA.119.025376 – volume: 9 start-page: 819 issue: 11 year: 2008 ident: 670_CR29 publication-title: Nat Rev Genet doi: 10.1038/nrg2468 – volume: 6 start-page: 77 issue: 2 year: 2001 ident: 670_CR34 publication-title: JP J Biostat – volume: 58 start-page: 378 issue: 6 year: 2013 ident: 670_CR36 publication-title: J Hum Genet doi: 10.1038/jhg.2013.21 – ident: 670_CR60 doi: 10.1161/HYP.0000000000000075 – volume: 6 start-page: 7754 year: 2015 ident: 670_CR27 publication-title: Nat Commun doi: 10.1038/ncomms8754 – volume: 49 start-page: 986 issue: 7 year: 2017 ident: 670_CR46 publication-title: Nat Genet doi: 10.1038/ng.3865 – volume: 76 start-page: 651 issue: 5 year: 2004 ident: 670_CR64 publication-title: Hum Biol doi: 10.1353/hub.2005.0001 – volume: 19 start-page: 1235 issue: 6 year: 2011 ident: 670_CR33 publication-title: Obesity doi: 10.1038/oby.2010.299 – volume: 9 start-page: 21 issue: 1 year: 2018 ident: 670_CR28 publication-title: Biomed Rep – volume: 26 start-page: 2190 issue: 17 year: 2010 ident: 670_CR48 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq340 – volume: 42 start-page: 741 issue: 7 year: 2018 ident: 670_CR40 publication-title: Genet Epidemiol – volume: 16 start-page: 1596 issue: 7 year: 2008 ident: 670_CR32 publication-title: Obesity doi: 10.1038/oby.2008.236 – volume: 10 start-page: e001621 issue: 2 year: 2017 ident: 670_CR14 publication-title: Circ Cardiovasc Genet doi: 10.1161/CIRCGENETICS.116.001621 – volume: 88 start-page: 76 issue: 1 year: 2011 ident: 670_CR45 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2010.11.011 – volume: 9 start-page: e100548 issue: 6 year: 2014 ident: 670_CR23 publication-title: PLoS ONE doi: 10.1371/journal.pone.0100548 – volume: 27 start-page: 162 issue: 2 year: 2016 ident: 670_CR8 publication-title: Curr Opin Lipidol doi: 10.1097/MOL.0000000000000276 – volume: 5 start-page: 143 issue: 1 year: 2020 ident: 670_CR10 publication-title: Int J Clin Res Trials doi: 10.15344/2456-8007/2020/143 – volume: 11 start-page: 294 issue: 3 year: 2014 ident: 670_CR54 publication-title: Nat Methods doi: 10.1038/nmeth.2832 – volume: 53 start-page: 1166 issue: 4 year: 2004 ident: 670_CR11 publication-title: Diabetes doi: 10.2337/diabetes.53.4.1166 – volume: 51 start-page: 2548 issue: 8 year: 2020 ident: 670_CR7 publication-title: Stroke doi: 10.1161/STROKEAHA.120.028944 – volume: 58 start-page: 268 issue: 1 year: 2009 ident: 670_CR35 publication-title: Diabetes doi: 10.2337/db08-0931 – ident: 670_CR72 – volume: 66 start-page: 1871 issue: 6 year: 2000 ident: 670_CR39 publication-title: Am J Hum Genet doi: 10.1086/302950 – ident: 670_CR51 – volume: 21 start-page: 296 issue: 2 year: 2012 ident: 670_CR69 publication-title: Asia Pac J Clin Nutr – volume: 82 start-page: 1185 issue: 5 year: 2008 ident: 670_CR26 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2008.03.015 – ident: 670_CR49 doi: 10.1002/9781119536604.ch10 – volume: 46 start-page: 310 issue: 3 year: 2014 ident: 670_CR53 publication-title: Nat Genet doi: 10.1038/ng.2892 – volume: 8 start-page: 38 issue: 3 year: 2020 ident: 670_CR19 publication-title: Med Sci – volume: 22 start-page: 1790 issue: 9 year: 2012 ident: 670_CR59 publication-title: Genome Res doi: 10.1101/gr.137323.112 – volume: 26 start-page: 364 issue: 4 year: 2016 ident: 670_CR2 publication-title: Trends Cardiovasc Med doi: 10.1016/j.tcm.2015.10.004 – volume: 8 start-page: 6 year: 2016 ident: 670_CR13 publication-title: Clin Epigenet doi: 10.1186/s13148-016-0173-x – volume: 5 start-page: e008675 issue: 10 year: 2015 ident: 670_CR12 publication-title: BMJ Open doi: 10.1136/bmjopen-2015-008675 – volume: 20 start-page: 254 issue: 1 year: 2019 ident: 670_CR57 publication-title: Genome Biol doi: 10.1186/s13059-019-1847-4 – volume: 9 start-page: 79 year: 2010 ident: 670_CR68 publication-title: Cardiovasc Diabetol doi: 10.1186/1475-2840-9-79 – year: 2020 ident: 670_CR76 publication-title: bioRxiv doi: 10.1101/531210v4 – volume: 21 start-page: 1539 issue: 11 year: 2002 ident: 670_CR47 publication-title: Stat Med doi: 10.1002/sim.1186 – volume: 55 start-page: 566 issue: 3 year: 1994 ident: 670_CR5 publication-title: Am J Hum Genet – volume: 48 start-page: 1279 issue: 10 year: 2016 ident: 670_CR41 publication-title: Nat Genet doi: 10.1038/ng.3643 – volume: 38 start-page: e164 issue: 16 year: 2010 ident: 670_CR52 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq603 – volume: 31 start-page: 1536 issue: 10 year: 2015 ident: 670_CR56 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv009 – volume: 461 start-page: 747 issue: 7265 year: 2009 ident: 670_CR30 publication-title: Nature doi: 10.1038/nature08494 – volume: 46 start-page: 751 issue: 4 year: 2005 ident: 670_CR4 publication-title: Hypertension doi: 10.1161/01.HYP.0000184249.20016.bb – volume: 19 start-page: 864 issue: 8 year: 1996 ident: 670_CR37 publication-title: Diabetes Care doi: 10.2337/diacare.19.8.864 – volume: 53 start-page: 1866 issue: 7 year: 2004 ident: 670_CR63 publication-title: Diabetes doi: 10.2337/diabetes.53.7.1866 – volume: 164 start-page: 108193 year: 2020 ident: 670_CR6 publication-title: Diabetes Res Clin Pract doi: 10.1016/j.diabres.2020.108193 – volume: 97 start-page: 14478 issue: 26 year: 2000 ident: 670_CR62 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.26.14478 – volume: 5 start-page: e11690 issue: 7 year: 2010 ident: 670_CR67 publication-title: PLoS ONE doi: 10.1371/journal.pone.0011690 – volume: 19 start-page: 2852 issue: 10 year: 2018 ident: 670_CR73 publication-title: Int J Mol Sci doi: 10.3390/ijms19102852 – volume: 48 start-page: 214 issue: 2 year: 2016 ident: 670_CR55 publication-title: Nat Genet doi: 10.1038/ng.3477 – volume: 106 start-page: 3143 issue: 25 year: 2002 ident: 670_CR3 publication-title: Circulation doi: 10.1161/circ.106.25.3143 – volume: 10 start-page: e1004234 issue: 4 year: 2014 ident: 670_CR43 publication-title: Plos Genet doi: 10.1371/journal.pgen.1004234 – volume: 120 start-page: 1640 issue: 16 year: 2009 ident: 670_CR1 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.109.192644 – volume: 17 start-page: 78 issue: 1 year: 2016 ident: 670_CR74 publication-title: BMC Genet doi: 10.1186/s12863-016-0387-0 – volume: 526 start-page: 68 issue: 7571 year: 2015 ident: 670_CR42 publication-title: Nature doi: 10.1038/nature15393 – volume: 48 start-page: 1284 issue: 10 year: 2016 ident: 670_CR44 publication-title: Nat Genet doi: 10.1038/ng.3656 – volume: 52 start-page: 669 issue: 7 year: 2020 ident: 670_CR71 publication-title: Nat Genet doi: 10.1038/s41588-020-0640-3 – volume: 581 start-page: 434 issue: 7809 year: 2020 ident: 670_CR61 publication-title: Nature doi: 10.1038/s41586-020-2308-7 – volume: 31 start-page: 3555 issue: 21 year: 2015 ident: 670_CR58 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv402 – volume: 12 start-page: 19 year: 2017 ident: 670_CR20 publication-title: Genes Nutr doi: 10.1186/s12263-017-0567-1 – volume: 60 start-page: 1329 issue: 4 year: 2011 ident: 670_CR24 publication-title: Diabetes doi: 10.2337/db10-1011 – volume: 10 start-page: 86 issue: 2 year: 2010 ident: 670_CR31 publication-title: Endocr Metab Immune Disord Drug Targets doi: 10.2174/187153010791213100 – volume: 23 start-page: 2499 issue: 12 year: 2015 ident: 670_CR15 publication-title: Obesity doi: 10.1002/oby.21257 – volume: 13 start-page: e0204502 issue: 9 year: 2018 ident: 670_CR70 publication-title: PLoS ONE doi: 10.1371/journal.pone.0204502 – volume: 99 start-page: 846 issue: 4 year: 2016 ident: 670_CR75 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2016.08.015 – volume: 45 start-page: 22 issue: 1 year: 2008 ident: 670_CR22 publication-title: J Med Genet doi: 10.1136/jmg.2007.052415 |
SSID | ssj0067574 |
Score | 2.3141544 |
Snippet | Background
To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups.
Methods
Data... To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. Data was collected from... Background To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. Methods Data... To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. Data was collected from... To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups.BACKGROUNDTo identify... Abstract Background To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups.... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 59 |
SubjectTerms | African Americans Annotations Association analysis Blood pressure Chromosome 11 Chromosome 2 Data collection Diabetes Diabetes mellitus Endocrinology Epidemiology Family Family studies Genes Genetic diversity Genetic epidemiology Genetics Genomes Genomics Glucose Haplotypes Hypertension Insulin Linkage Medical research Medicine Medicine & Public Health Medicine, Experimental Metabolic Diseases Metabolic syndrome Minority & ethnic groups Obesity Pleiotropy Population genetics Quantitative genetics Quantitative trait loci Siblings Software Statistical analysis Triglycerides Type 2 diabetes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4k1KASMhcYCoeXjtzbFAHyB1T1TqzRrbE3WlNkvZrPr3O-M82hQBF67xWLLn5ZnY840Q7zFgcEUFqasql6pQ6RQCw-PpMtRAGQTOuXb4eKGPTtT309nprVZf_CasgwfuGLcLBmtwwZOHDYpibZdrbyiryVGZDGvP3jersiGZ6nwwRcFGDSUyc727Jk_NpWQFpc5cmJKWk2MoovX_7pNvHUp3H0zeuTWNh9HBI_GwjyLlXrf6x-IeNk_E_eP-nvypuDzEZnWB6dUyoIQbCUjoMUjkqpYX2JIGnC-9HGAL5OUGmlh1Rj5QcveIdi2XjaQgUR7uLxbfvsr4ABHbs4amdT9HZESofSZODvZ_fDlK--YKqTeZatOi1lhR7AQelAZQxhtXZ0b7TEHhACHHYEqnaRBVBqaeoa9czQB8Ts1cVj4XW82qwZdCKsgNqIqSN1crZQpXBR9ISPMctQZnEpEPvLa-Rx7nLZzbmIHMte3kY0k-NsrHlon4OM752eFu_JX6M4twpGTM7PiBNMn2mmT_pUmJeMsKYLsC1NHy7R43aNbckSoRHyIF2z5twENfwkBsYBStCeXOhJJs1k-HByWzvc9YW4YlmDECo0rEu3GYZ_I7uAZXG6YptYoYfYl40enkuOlScThY0Gwz0dYJV6YjzfIsIoozSiN54kR8GvT6Zll_5vr2_-D6K_GgiHbJP7Z2xFb7a4OvKc5r3Zto0tex8U_u priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwELagSIgXxE2ggJGQeICoORx784QK9ACp-0SlfbN8TNqV2qTbzYq_z4xzLCmir_FYij2HZ-yZbxj7AB68zUoT27K0sfCljI0neDyZ-8pgBAEzqh0-mcvjU_FzUSz6C7d1n1Y52MRgqH3j6I58j4q2C8KnE1-uVjF1jaLX1b6Fxl12L0CXoTyrxRhwoS-sxFAoM5N7a7TXVFCWYQBN5SlxPjmMAmb_v5b5r6PpZtrkjbfTcCQdPmIPe1-S73fMf8zuQP2E3T_pX8ufstUR1M0lxL-XHrjZ8oGbHomENxW_hBbl4GLp-ABewFcbU4faM7SEnHpItGu-rDm6ivzoYD7_8Z2HNERoz2uc1l2R8IBT-4ydHh78-nYc9y0WYqcS0cZZJaFED8o4I6QxQjllq0RJlwiTWQMmBa9yK3EQRGJUVYArbUUwfFYUNsmfs526qeEl48KkyogSQzhbCaEyW3rnncpmKUhprIpYOuy1dj3-OC3hQoc4ZCZ1xx-N_NGBPzqP2KdxzlWHvnEr9Vdi4UhJyNnhQ3N9pntF1EZBZax3eGJ7gbGbTSX-ZCFSECqBykXsHQmA7spQR_3X-9SmWVJfqoh9DBRkAXABzvSFDLgNhKU1odydUKLmuunwIGS6txxrvZXziL0fh2kmZcPV0GyIJpciIPVF7EUnk-Oic0FOYYaz1URaJ7syHamX5wFXnLAa0R5H7PMg19vf-v-uv7p9Fa_ZgyxoHF1c7bKd9noDb9CPa-3boKx_ADBJRpY priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELagSIgXRDkDpRgJiQeIyOHYm8elJ0jdJ1bqm-Vj0q7UJrSbFX-fGecoKYfEazwj2XN5JvZ8ZuwdePA2K01sy9LGwpcyNp7g8WTuK4MVBMyod_hkIY-X4utpcdo3ha2H2-7DkWSI1MGtZ_LTGqMttYNlWP5Sc0mc32X3CqzdyR2X2XyIv5gBKzG0x_yRb7IFBaT-3-PxLxvS7cuSt05Mw0Z0-Ig97DNIPu9Uvs3uQP2Y3T_pz8ifsKsjqJtLiH-sPHBzI31uevwR3lT8ElrU_sXK8QGygF9tTB06zjD-cXo5ol3zVc0xQeRHB4vFl30eLh9Ce14jW_djhAd02qdseXjwbe847h9WiJ1KRBtnlYQS8ybjjJDGCOWUrRIlXSJMZg2YFLzKrcRBEIlRVQGutBWB71lR2CR_xrbqpoYXjAuTKiNKLNxsJYTKbOmddyqbpSClsSpi6SBr7XrUcVrChQ7Vx0zqTj8a9aODfnQesQ8jz_cOc-Of1J9JhSMl4WWHD831me7dTxsFlbHe4T7tBVZsNpU4yUKkIFQClYvYGzIA3TWfjl6v5_Q4s6TXqCL2PlCQ3-MCnOnbF1AMhKA1odyZUKK_uunwYGS6jxdrTZAEBaEvioi9HYeJk-7A1dBsiCaXIuDzRex5Z5PjonNBqWCG3GpirROpTEfq1XlAEyeERozCEfs42PXNtP4u9Zf_R_6KPciCB9Lvqx221V5v4DVmc63dDc77E9rtQ5E priority: 102 providerName: Springer Nature |
Title | Genome-wide association analysis of metabolic syndrome quantitative traits in the GENNID multiethnic family study |
URI | https://link.springer.com/article/10.1186/s13098-021-00670-3 https://www.ncbi.nlm.nih.gov/pubmed/34074324 https://www.proquest.com/docview/2543503444 https://www.proquest.com/docview/2536495480 https://pubmed.ncbi.nlm.nih.gov/PMC8170963 https://doaj.org/article/a7efabdc123d4666b16c72541e470efc |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ5r2gvgmMIqRkHiAsHy4dvOAUFe2DqRWCFGpb5HtOKxSl9I2FfDfc-ckHRmDB14ipT6rse_LZ_t-B_DCZjbTUaJ8nSTa51kifJURPJ6Is1xhBGF7lDs8GovzCf847U53oCl3VE_g-sbQjupJTVbzNz-WP9-hwr91Ct8Tx2u0w5QoFmFgTGknfrwL--iZBAVjI749VcC1seRN4syN_Q7hIObkVCPe8lMOzv9Po_2b17p-o_LasarzVme34Va9zGT9Si7uwI4t7sLBqD5IvwfLoS0Wl9b_PsssU1csYqoGKWGLnF3aEkVkPjOswTVgy40qXFoaGklG5SXKNZsVDFeRbHg6Hn94z9wNRVteFNit2j1hDsL2PkzOTr8Mzv26-oJvZMBLP8qFTXBxpYziQikujdR5IIUJuIq0siq0mYy1wEbLAyXzrjWJzgmhT_OuDuIHsFcsCvsIGFehVDzB6E7nnMtIJ5nJjIx6oRVCaelB2Mx1ampochrCPHUhSk-kFatSZFXqWJXGHrza9vlWAXP8k_qEWLilJFBt98Ni9TWtdTRV0uZKZwadecYxrNOhwI_s8tByGdjcePCMBCCtMlS3piHtUwVnQSWrPHjpKEhccQBG1TkOOA0Es9WiPGpRolKbdnMjZGmjEynhFnQJopF78HzbTD3polxhFxuiiQV3IH4ePKxkcjvoRrQ9kC1pbc1Ku6WYXTjIcYJxRFPtwetGrq8-6--z_vi__-gJHEZOL2m76wj2ytXGPsXVX6k7sCunsgP7J6fjT5_xbSAGHbeTgs_hNOw4lcfnJOr_AuFfXU0 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwEviG8CgxkJxANEaxLXbh4Q2li3lq0VQpu0N89fYZW2ZFtTTfxT_I3cOUlLhtjbXutzFd-d78P2_Y6Qd846q-NUhTpNdchsykNlER6PJzZTkEG4PtYOjyd8eMi-HfWOVsjvphYGn1U2NtEbalsYPCPfwKLtHuLTsS_nFyF2jcLb1aaFRqUWe-7XFaRss8-jbZDv-zjeGRx8HYZ1V4HQiC4rwzjjLoWgQRnFuFJMGKEzyOZNl6lYK6ciZ0WiOQw61lUi6zmT6gyR5zTr6W4C_3uHrDKsaO2Q1a3B5PuPxvZD9C1YU5rT5xsz8BBYwhZDyo4FMWHScn--S8C_vuAvZ3j9oea121rvBHcekgd19Eo3K3V7RFZc_pjcHdf380_Ixa7LizMXXk2to2opeapq7BNaZPTMlaB5p1NDG7gEejFXua92A9tLsWtFOaPTnEJwSncHk8lom_qHj648yWFadShDPTLuU3J4K-x_Rjp5kbsXhDIVCcVSSBp1xpiIdWqNNSLuR45zpUVAoobX0tSI57iEU-kznz6XlXwkyEd6-cgkIB8Xc84rvI8bqbdQhAtKxOr2PxSXP2W99aUSLlPaGogRLINsUUccPrLHIsdE12UmIOuoALIqfF1YHLmJjaE5dsIKyAdPgTYHFmBUXToBbED0rhblWosSbIVpDzdKJmtbNZPLnRWQt4thnInv73JXzJEm4cxjAwbkeaWTi0UnDMPQGGaLlra2uNIeyacnHskc0SHBAwTkU6PXy8_6P9df3ryKdXJveDDel_ujyd4rcj_2uw-PzdZIp7ycu9cQRZb6Tb11KTm-bWvxB3KehkU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELagSBUviJtAoUZC4gGi5vDam8fSdtsCXfFApb5ZPiZ0pTZpu1nx95lxjjblkHiNZyTbc8eez4y9Aw_eZoWJbVHYWPhCxsYTPJ7MfWmwgoAp9Q4fzeXBsfh8Mjm50cUfbrv3R5JtTwOhNFXN1oUvWxOfyq0lel5qDcuwFKZGkzi_y-4JCn10XCt3el-M2bASfavMH_lG4Sig9v_um28Ep9sXJ2-dnoagNHvIHnTZJN9uxf-I3YHqMVs_6s7Ln7DLfajqc4h_Ljxwcy0JbjosEl6X_Bwa1ISzheM9fAG_XJkqdJ-hL-T0ikSz5IuKY7LI9_fm88NdHi4iQnNaIVv7k4QHpNqn7Hi2933nIO4eWYidSkQTZ6WEAnMo44yQxgjllC0TJV0iTGYNmBS8yq3EQRCJUeUEXGFLAuKzYmKT_Blbq-oKXjAuTKqMKLCIs6UQKrOFd96pbJqClMaqiKX9XmvXIZDTEs50qESmUrfy0SgfHeSj84h9GHguWvyNf1J_IhEOlISdHT7UVz90Z4raKCiN9Q5jthdYvdlU4iQnIgWhEihdxDZJAXTbiDp4AL1NDzVLepkqYu8DBfkAXIAzXSsDbgOhaY0oN0aUaLtuPNwrme58x1ITPMGEkBhFxN4Ow8RJ9-EqqFdEk0sRsPoi9rzVyWHRuaC0MENuNdLW0a6MR6rFaUAWJ7RG9MgR-9jr9fW0_r7rL_-PfJOtf9ud6a-H8y-v2P0sGCP91dpga83VCl5jktfYN8GOfwEnMkqq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+association+analysis+of+metabolic+syndrome+quantitative+traits+in+the+GENNID+multiethnic+family+study&rft.jtitle=Diabetology+and+metabolic+syndrome&rft.au=Wan%2C+Jia+Y.&rft.au=Goodman%2C+Deborah+L.&rft.au=Willems%2C+Emileigh+L.&rft.au=Freedland%2C+Alexis+R.&rft.date=2021-06-01&rft.pub=BioMed+Central&rft.eissn=1758-5996&rft.volume=13&rft_id=info:doi/10.1186%2Fs13098-021-00670-3&rft_id=info%3Apmid%2F34074324&rft.externalDocID=PMC8170963 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-5996&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-5996&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-5996&client=summon |