Genome-wide association analysis of metabolic syndrome quantitative traits in the GENNID multiethnic family study

Background To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. Methods Data was collected from GENetics of Noninsulin dependent Diabetes Mellitus (GENNID), a multiethnic resource of Type 2 diabetic families and includ...

Full description

Saved in:
Bibliographic Details
Published inDiabetology and metabolic syndrome Vol. 13; no. 1; pp. 59 - 15
Main Authors Wan, Jia Y., Goodman, Deborah L., Willems, Emileigh L., Freedland, Alexis R., Norden-Krichmar, Trina M., Santorico, Stephanie A., Edwards, Karen L.
Format Journal Article
LanguageEnglish
Published London BioMed Central 01.06.2021
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1758-5996
1758-5996
DOI10.1186/s13098-021-00670-3

Cover

Abstract Background To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. Methods Data was collected from GENetics of Noninsulin dependent Diabetes Mellitus (GENNID), a multiethnic resource of Type 2 diabetic families and included 1520 subjects in 259 African-American, European-American, Japanese-Americans, and Mexican-American families. We focused on eight MetS traits: weight, waist circumference, systolic and diastolic blood pressure, high-density lipoprotein, triglycerides, fasting glucose, and insulin. Using genotyped and imputed data from Illumina’s Multiethnic array, we conducted genome-wide association analyses with linear mixed models for all ethnicities, except for the smaller Japanese-American group, where we used additive genetic models with gene-dropping. Results Findings included ethnic-specific genetic associations and heterogeneity across ethnicities. Most significant associations were outside our candidate linkage regions and were coincident within a gene or intergenic region, with two exceptions in European-American families: (a) within previously identified linkage region on chromosome 2, two significant GLI2-TFCP2L1 associations with weight, and (b) one chromosome 11 variant near CADM1-LINC00900 with pleiotropic blood pressure effects. Conclusions This multiethnic family study found genetic heterogeneity and coincident associations (with one case of pleiotropy), highlighting the importance of including diverse populations in genetic research and illustrating the complex genetic architecture underlying MetS.
AbstractList To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. Data was collected from GENetics of Noninsulin dependent Diabetes Mellitus (GENNID), a multiethnic resource of Type 2 diabetic families and included 1520 subjects in 259 African-American, European-American, Japanese-Americans, and Mexican-American families. We focused on eight MetS traits: weight, waist circumference, systolic and diastolic blood pressure, high-density lipoprotein, triglycerides, fasting glucose, and insulin. Using genotyped and imputed data from Illumina's Multiethnic array, we conducted genome-wide association analyses with linear mixed models for all ethnicities, except for the smaller Japanese-American group, where we used additive genetic models with gene-dropping. This multiethnic family study found genetic heterogeneity and coincident associations (with one case of pleiotropy), highlighting the importance of including diverse populations in genetic research and illustrating the complex genetic architecture underlying MetS.
Abstract Background To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. Methods Data was collected from GENetics of Noninsulin dependent Diabetes Mellitus (GENNID), a multiethnic resource of Type 2 diabetic families and included 1520 subjects in 259 African-American, European-American, Japanese-Americans, and Mexican-American families. We focused on eight MetS traits: weight, waist circumference, systolic and diastolic blood pressure, high-density lipoprotein, triglycerides, fasting glucose, and insulin. Using genotyped and imputed data from Illumina’s Multiethnic array, we conducted genome-wide association analyses with linear mixed models for all ethnicities, except for the smaller Japanese-American group, where we used additive genetic models with gene-dropping. Results Findings included ethnic-specific genetic associations and heterogeneity across ethnicities. Most significant associations were outside our candidate linkage regions and were coincident within a gene or intergenic region, with two exceptions in European-American families: (a) within previously identified linkage region on chromosome 2, two significant GLI2-TFCP2L1 associations with weight, and (b) one chromosome 11 variant near CADM1-LINC00900 with pleiotropic blood pressure effects. Conclusions This multiethnic family study found genetic heterogeneity and coincident associations (with one case of pleiotropy), highlighting the importance of including diverse populations in genetic research and illustrating the complex genetic architecture underlying MetS.
To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups.BACKGROUNDTo identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups.Data was collected from GENetics of Noninsulin dependent Diabetes Mellitus (GENNID), a multiethnic resource of Type 2 diabetic families and included 1520 subjects in 259 African-American, European-American, Japanese-Americans, and Mexican-American families. We focused on eight MetS traits: weight, waist circumference, systolic and diastolic blood pressure, high-density lipoprotein, triglycerides, fasting glucose, and insulin. Using genotyped and imputed data from Illumina's Multiethnic array, we conducted genome-wide association analyses with linear mixed models for all ethnicities, except for the smaller Japanese-American group, where we used additive genetic models with gene-dropping.METHODSData was collected from GENetics of Noninsulin dependent Diabetes Mellitus (GENNID), a multiethnic resource of Type 2 diabetic families and included 1520 subjects in 259 African-American, European-American, Japanese-Americans, and Mexican-American families. We focused on eight MetS traits: weight, waist circumference, systolic and diastolic blood pressure, high-density lipoprotein, triglycerides, fasting glucose, and insulin. Using genotyped and imputed data from Illumina's Multiethnic array, we conducted genome-wide association analyses with linear mixed models for all ethnicities, except for the smaller Japanese-American group, where we used additive genetic models with gene-dropping.Findings included ethnic-specific genetic associations and heterogeneity across ethnicities. Most significant associations were outside our candidate linkage regions and were coincident within a gene or intergenic region, with two exceptions in European-American families: (a) within previously identified linkage region on chromosome 2, two significant GLI2-TFCP2L1 associations with weight, and (b) one chromosome 11 variant near CADM1-LINC00900 with pleiotropic blood pressure effects.RESULTSFindings included ethnic-specific genetic associations and heterogeneity across ethnicities. Most significant associations were outside our candidate linkage regions and were coincident within a gene or intergenic region, with two exceptions in European-American families: (a) within previously identified linkage region on chromosome 2, two significant GLI2-TFCP2L1 associations with weight, and (b) one chromosome 11 variant near CADM1-LINC00900 with pleiotropic blood pressure effects.This multiethnic family study found genetic heterogeneity and coincident associations (with one case of pleiotropy), highlighting the importance of including diverse populations in genetic research and illustrating the complex genetic architecture underlying MetS.CONCLUSIONSThis multiethnic family study found genetic heterogeneity and coincident associations (with one case of pleiotropy), highlighting the importance of including diverse populations in genetic research and illustrating the complex genetic architecture underlying MetS.
Background To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. Methods Data was collected from GENetics of Noninsulin dependent Diabetes Mellitus (GENNID), a multiethnic resource of Type 2 diabetic families and included 1520 subjects in 259 African-American, European-American, Japanese-Americans, and Mexican-American families. We focused on eight MetS traits: weight, waist circumference, systolic and diastolic blood pressure, high-density lipoprotein, triglycerides, fasting glucose, and insulin. Using genotyped and imputed data from Illumina's Multiethnic array, we conducted genome-wide association analyses with linear mixed models for all ethnicities, except for the smaller Japanese-American group, where we used additive genetic models with gene-dropping. Results Findings included ethnic-specific genetic associations and heterogeneity across ethnicities. Most significant associations were outside our candidate linkage regions and were coincident within a gene or intergenic region, with two exceptions in European-American families: (a) within previously identified linkage region on chromosome 2, two significant GLI2-TFCP2L1 associations with weight, and (b) one chromosome 11 variant near CADM1-LINC00900 with pleiotropic blood pressure effects. Conclusions This multiethnic family study found genetic heterogeneity and coincident associations (with one case of pleiotropy), highlighting the importance of including diverse populations in genetic research and illustrating the complex genetic architecture underlying MetS. Keywords: Metabolic syndrome, Genetic epidemiology, Family studies, Quantitative trait loci, Linkage
Background To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. Methods Data was collected from GENetics of Noninsulin dependent Diabetes Mellitus (GENNID), a multiethnic resource of Type 2 diabetic families and included 1520 subjects in 259 African-American, European-American, Japanese-Americans, and Mexican-American families. We focused on eight MetS traits: weight, waist circumference, systolic and diastolic blood pressure, high-density lipoprotein, triglycerides, fasting glucose, and insulin. Using genotyped and imputed data from Illumina’s Multiethnic array, we conducted genome-wide association analyses with linear mixed models for all ethnicities, except for the smaller Japanese-American group, where we used additive genetic models with gene-dropping. Results Findings included ethnic-specific genetic associations and heterogeneity across ethnicities. Most significant associations were outside our candidate linkage regions and were coincident within a gene or intergenic region, with two exceptions in European-American families: (a) within previously identified linkage region on chromosome 2, two significant GLI2-TFCP2L1 associations with weight, and (b) one chromosome 11 variant near CADM1-LINC00900 with pleiotropic blood pressure effects. Conclusions This multiethnic family study found genetic heterogeneity and coincident associations (with one case of pleiotropy), highlighting the importance of including diverse populations in genetic research and illustrating the complex genetic architecture underlying MetS.
Background To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. Methods Data was collected from GENetics of Noninsulin dependent Diabetes Mellitus (GENNID), a multiethnic resource of Type 2 diabetic families and included 1520 subjects in 259 African-American, European-American, Japanese-Americans, and Mexican-American families. We focused on eight MetS traits: weight, waist circumference, systolic and diastolic blood pressure, high-density lipoprotein, triglycerides, fasting glucose, and insulin. Using genotyped and imputed data from Illumina’s Multiethnic array, we conducted genome-wide association analyses with linear mixed models for all ethnicities, except for the smaller Japanese-American group, where we used additive genetic models with gene-dropping. Results Findings included ethnic-specific genetic associations and heterogeneity across ethnicities. Most significant associations were outside our candidate linkage regions and were coincident within a gene or intergenic region, with two exceptions in European-American families: (a) within previously identified linkage region on chromosome 2, two significant GLI2-TFCP2L1 associations with weight, and (b) one chromosome 11 variant near CADM1-LINC00900 with pleiotropic blood pressure effects. Conclusions This multiethnic family study found genetic heterogeneity and coincident associations (with one case of pleiotropy), highlighting the importance of including diverse populations in genetic research and illustrating the complex genetic architecture underlying MetS.
To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. Data was collected from GENetics of Noninsulin dependent Diabetes Mellitus (GENNID), a multiethnic resource of Type 2 diabetic families and included 1520 subjects in 259 African-American, European-American, Japanese-Americans, and Mexican-American families. We focused on eight MetS traits: weight, waist circumference, systolic and diastolic blood pressure, high-density lipoprotein, triglycerides, fasting glucose, and insulin. Using genotyped and imputed data from Illumina's Multiethnic array, we conducted genome-wide association analyses with linear mixed models for all ethnicities, except for the smaller Japanese-American group, where we used additive genetic models with gene-dropping. Findings included ethnic-specific genetic associations and heterogeneity across ethnicities. Most significant associations were outside our candidate linkage regions and were coincident within a gene or intergenic region, with two exceptions in European-American families: (a) within previously identified linkage region on chromosome 2, two significant GLI2-TFCP2L1 associations with weight, and (b) one chromosome 11 variant near CADM1-LINC00900 with pleiotropic blood pressure effects. This multiethnic family study found genetic heterogeneity and coincident associations (with one case of pleiotropy), highlighting the importance of including diverse populations in genetic research and illustrating the complex genetic architecture underlying MetS.
ArticleNumber 59
Audience Academic
Author Wan, Jia Y.
Freedland, Alexis R.
Goodman, Deborah L.
Willems, Emileigh L.
Edwards, Karen L.
Norden-Krichmar, Trina M.
Santorico, Stephanie A.
Author_xml – sequence: 1
  givenname: Jia Y.
  surname: Wan
  fullname: Wan, Jia Y.
  organization: Department of Epidemiology and Biostatistics, Program in Public Health, University of California
– sequence: 2
  givenname: Deborah L.
  surname: Goodman
  fullname: Goodman, Deborah L.
  organization: Department of Epidemiology and Biostatistics, Program in Public Health, University of California
– sequence: 3
  givenname: Emileigh L.
  surname: Willems
  fullname: Willems, Emileigh L.
  organization: Department of Mathematical and Statistical Sciences, University of Colorado
– sequence: 4
  givenname: Alexis R.
  surname: Freedland
  fullname: Freedland, Alexis R.
  organization: Department of Epidemiology and Biostatistics, Program in Public Health, University of California
– sequence: 5
  givenname: Trina M.
  surname: Norden-Krichmar
  fullname: Norden-Krichmar, Trina M.
  organization: Department of Epidemiology and Biostatistics, Program in Public Health, University of California
– sequence: 6
  givenname: Stephanie A.
  surname: Santorico
  fullname: Santorico, Stephanie A.
  organization: Department of Mathematical and Statistical Sciences, University of Colorado, Human Medical Genetics and Genomics Program, University of Colorado, Department of Biostatistics & Informatics, University of Colorado, Division of Biomedical Informatics & Personalized Medicine, University of Colorado School of Medicine
– sequence: 7
  givenname: Karen L.
  surname: Edwards
  fullname: Edwards, Karen L.
  email: kedward1@hs.uci.edu
  organization: Department of Epidemiology and Biostatistics, Program in Public Health, University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34074324$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhSNURH_gBVigSEiITYodO3ayQapKGSpVZQNr68a5mfHIsdvYKZq3x-m0dKZClRexrr9zEp-c4-zAeYdZ9p6SU0pr8SVQRpq6ICUtCBGSFOxVdkRlVRdV04iDnf1hdhzCeoYqyd9kh4wTyVnJj7LbBTo_YPHHdJhDCF4biMa7HBzYTTAh930-YITWW6PzsHHdmPj8dgIXTUzsHeZxBBNDblweV5gvLq6vL7_lw2SjwbhySdbDYOwmD3HqNm-z1z3YgO8enifZ7-8Xv85_FFc_F5fnZ1eFloTHouwFNoIS0MAFAJdatj2RQhMOZQsIFDvJWpEOkROQfYW6afuKEtbyqiXsJLvc-nYe1upmNAOMG-XBqPuBH5cKxmi0RQUSe2g7TUvWcSFES4WWZcUpckmw18nr69brZmoH7DS6dGW7Z7p_4sxKLf2dqqkkjWDJ4PODwehvJwxRDSZotBYc-imosmKCNxWv5-_--Axd-2lMf2OmOKsI45w_UUtIFzCu9-m9ejZVZ0JUPCVXi0Sd_odKq8PB6NSm3qT5nuDTjmCFYOMqeDvNlQj74IfdRP5F8disBNRbQI8-hBF7pe_r4ueAjFWUqLnEaltilUqs7kus5rDKZ9JH9xdFbCsKCXZLHJ9ie0H1F3cdBCk
CitedBy_id crossref_primary_10_1038_s41598_024_71217_5
crossref_primary_10_3389_fendo_2024_1468824
crossref_primary_10_1152_physrev_00017_2024
crossref_primary_10_1016_j_arth_2024_05_022
crossref_primary_10_1161_CIR_0000000000001209
crossref_primary_10_3389_fgene_2024_1417262
crossref_primary_10_3390_nu16010077
crossref_primary_10_3390_pr11113221
crossref_primary_10_1161_CIR_0000000000001303
crossref_primary_10_1007_s13258_024_01507_9
crossref_primary_10_1038_s41588_024_01933_1
crossref_primary_10_1161_CIR_0000000000001123
crossref_primary_10_3390_antiox12040844
crossref_primary_10_1038_s42255_024_01168_8
crossref_primary_10_1089_met_2023_0125
crossref_primary_10_1186_s13098_022_00893_y
Cites_doi 10.1038/s41598-020-64031-2
10.1007/s11886-016-0755-4
10.1038/nature11247
10.3389/fgene.2015.00027
10.1186/s12864-016-2594-5
10.1214/08-STS280
10.1089/met.2019.0070
10.2337/diab.28.12.1039
10.1161/STROKEAHA.119.025376
10.1038/nrg2468
10.1038/jhg.2013.21
10.1161/HYP.0000000000000075
10.1038/ncomms8754
10.1038/ng.3865
10.1353/hub.2005.0001
10.1038/oby.2010.299
10.1093/bioinformatics/btq340
10.1038/oby.2008.236
10.1161/CIRCGENETICS.116.001621
10.1016/j.ajhg.2010.11.011
10.1371/journal.pone.0100548
10.1097/MOL.0000000000000276
10.15344/2456-8007/2020/143
10.1038/nmeth.2832
10.2337/diabetes.53.4.1166
10.1161/STROKEAHA.120.028944
10.2337/db08-0931
10.1086/302950
10.1016/j.ajhg.2008.03.015
10.1002/9781119536604.ch10
10.1038/ng.2892
10.1101/gr.137323.112
10.1016/j.tcm.2015.10.004
10.1186/s13148-016-0173-x
10.1136/bmjopen-2015-008675
10.1186/s13059-019-1847-4
10.1186/1475-2840-9-79
10.1101/531210v4
10.1002/sim.1186
10.1038/ng.3643
10.1093/nar/gkq603
10.1093/bioinformatics/btv009
10.1038/nature08494
10.1161/01.HYP.0000184249.20016.bb
10.2337/diacare.19.8.864
10.2337/diabetes.53.7.1866
10.1016/j.diabres.2020.108193
10.1073/pnas.97.26.14478
10.1371/journal.pone.0011690
10.3390/ijms19102852
10.1038/ng.3477
10.1161/circ.106.25.3143
10.1371/journal.pgen.1004234
10.1161/CIRCULATIONAHA.109.192644
10.1186/s12863-016-0387-0
10.1038/nature15393
10.1038/ng.3656
10.1038/s41588-020-0640-3
10.1038/s41586-020-2308-7
10.1093/bioinformatics/btv402
10.1186/s12263-017-0567-1
10.2337/db10-1011
10.2174/187153010791213100
10.1002/oby.21257
10.1371/journal.pone.0204502
10.1016/j.ajhg.2016.08.015
10.1136/jmg.2007.052415
ContentType Journal Article
Contributor Robbins, David C
Elbein, Steven C
Norris, Jill
Hanis, Craig L
Buse, John
Kahn, Steven E
Fujimoto, Wilfred
Beck, Jeanne C
Alan Permutt, M
DeFronzo, Ralph
Ehrmann, David
Behn, Philip
Boerwinkle, Eric
Mulivor, Richard A
Raffel, Leslie
Contributor_xml – sequence: 1
  givenname: Eric
  surname: Boerwinkle
  fullname: Boerwinkle, Eric
– sequence: 2
  givenname: John
  surname: Buse
  fullname: Buse, John
– sequence: 3
  givenname: Ralph
  surname: DeFronzo
  fullname: DeFronzo, Ralph
– sequence: 4
  givenname: David
  surname: Ehrmann
  fullname: Ehrmann, David
– sequence: 5
  givenname: Steven C
  surname: Elbein
  fullname: Elbein, Steven C
– sequence: 6
  givenname: Wilfred
  surname: Fujimoto
  fullname: Fujimoto, Wilfred
– sequence: 7
  givenname: Steven E
  surname: Kahn
  fullname: Kahn, Steven E
– sequence: 8
  givenname: Craig L
  surname: Hanis
  fullname: Hanis, Craig L
– sequence: 9
  givenname: Richard A
  surname: Mulivor
  fullname: Mulivor, Richard A
– sequence: 10
  givenname: Jeanne C
  surname: Beck
  fullname: Beck, Jeanne C
– sequence: 11
  givenname: Jill
  surname: Norris
  fullname: Norris, Jill
– sequence: 12
  givenname: M
  surname: Alan Permutt
  fullname: Alan Permutt, M
– sequence: 13
  givenname: Philip
  surname: Behn
  fullname: Behn, Philip
– sequence: 14
  givenname: Leslie
  surname: Raffel
  fullname: Raffel, Leslie
– sequence: 15
  givenname: David C
  surname: Robbins
  fullname: Robbins, David C
Copyright The Author(s) 2021
COPYRIGHT 2021 BioMed Central Ltd.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor American Diabetes GENNID Study Group
CorporateAuthor_xml – name: American Diabetes GENNID Study Group
DBID C6C
AAYXX
CITATION
NPM
3V.
7QP
7TS
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13098-021-00670-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
Physical Education Index
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

Publicly Available Content Database


PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1758-5996
EndPage 15
ExternalDocumentID oai_doaj_org_article_a7efabdc123d4666b16c72541e470efc
PMC8170963
A665461086
34074324
10_1186_s13098_021_00670_3
Genre Journal Article
GeographicLocations Japan
United States--US
GeographicLocations_xml – name: Japan
– name: United States--US
GrantInformation_xml – fundername: National Heart, Lung, and Blood Institute
  grantid: 1R01HL113189
  funderid: http://dx.doi.org/10.13039/100000050
– fundername: NHLBI NIH HHS
  grantid: 1R01HL113189
– fundername: NHLBI NIH HHS
  grantid: R01 HL113189
– fundername: ;
  grantid: 1R01HL113189
GroupedDBID ---
0R~
53G
5VS
7X7
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACPRK
ACUHS
ADBBV
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
DIK
E3Z
EBD
EBLON
EBS
ESX
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IEA
IHR
IHW
ITC
KQ8
M48
M~E
O5R
O5S
OK1
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
TUS
U2A
UKHRP
AAYXX
ALIPV
CITATION
NPM
PMFND
3V.
7QP
7TS
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c704t-2f6e9610aca46aa47c7bf076c04a2baea1ed73b646ae40a7f5ec9bf5103b45b03
IEDL.DBID M48
ISSN 1758-5996
IngestDate Wed Aug 27 01:28:54 EDT 2025
Thu Aug 21 18:10:33 EDT 2025
Thu Sep 04 19:53:59 EDT 2025
Sun Sep 07 03:41:06 EDT 2025
Tue Jun 17 21:08:01 EDT 2025
Tue Jun 10 20:16:32 EDT 2025
Thu May 22 21:19:24 EDT 2025
Mon Jul 21 06:04:58 EDT 2025
Thu Apr 24 23:10:12 EDT 2025
Tue Jul 01 01:26:45 EDT 2025
Sat Sep 06 07:29:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Quantitative trait loci
Family studies
Linkage
Genetic epidemiology
Metabolic syndrome
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c704t-2f6e9610aca46aa47c7bf076c04a2baea1ed73b646ae40a7f5ec9bf5103b45b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13098-021-00670-3
PMID 34074324
PQID 2543503444
PQPubID 54993
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_a7efabdc123d4666b16c72541e470efc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8170963
proquest_miscellaneous_2536495480
proquest_journals_2543503444
gale_infotracmisc_A665461086
gale_infotracacademiconefile_A665461086
gale_healthsolutions_A665461086
pubmed_primary_34074324
crossref_citationtrail_10_1186_s13098_021_00670_3
crossref_primary_10_1186_s13098_021_00670_3
springer_journals_10_1186_s13098_021_00670_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Diabetology and metabolic syndrome
PublicationTitleAbbrev Diabetol Metab Syndr
PublicationTitleAlternate Diabetol Metab Syndr
PublicationYear 2021
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References SJ Hasstedt (670_CR36) 2013; 58
670_CR72
JH Sul (670_CR75) 2016; 99
AP Boyle (670_CR59) 2012; 22
SM Grundy (670_CR2) 2016; 26
National Diabetes Data Group (670_CR38) 1979; 28
S McCarthy (670_CR41) 2016; 48
K Wang (670_CR52) 2010; 38
M Kircher (670_CR53) 2014; 46
Y Yamada (670_CR22) 2008; 45
CJ Willer (670_CR48) 2010; 26
GR Ritchie (670_CR54) 2014; 11
PM Ridker (670_CR26) 2008; 82
MDA Ziki (670_CR8) 2016; 27
KL Monda (670_CR31) 2010; 10
H Kaur (670_CR70) 2018; 13
J O'Connell (670_CR43) 2014; 10
K Setoh (670_CR27) 2015; 6
AJ Lusis (670_CR29) 2008; 9
H Lin (670_CR57) 2019; 20
AH Kissebah (670_CR62) 2000; 97
SS Rich (670_CR63) 2004; 53
JJ Decker (670_CR9) 2019; 50
670_CR60
KG Alberti (670_CR1) 2009; 120
MJ Machiela (670_CR58) 2015; 31
M Mohas (670_CR68) 2010; 9
Y Yamada (670_CR28) 2018; 9
MA Austin (670_CR11) 2004; 53
HA Shihab (670_CR56) 2015; 31
G Chittoor (670_CR65) 2016; 17
R Core Team (670_CR50) 2020
MG Ehm (670_CR39) 2000; 66
J Wan (670_CR34) 2001; 6
RJ Khan (670_CR12) 2015; 5
M Bi (670_CR67) 2010; 5
AJ Rogers (670_CR10) 2020; 5
EL Willems (670_CR40) 2018; 42
JA Yang (670_CR45) 2011; 88
670_CR16
SK Musani (670_CR14) 2017; 10
I Ionita-Laza (670_CR55) 2016; 48
A Taracha (670_CR73) 2018; 19
670_CR51
DSH Bell (670_CR6) 2020; 164
MD DeBoer (670_CR7) 2020; 51
MS Panizzon (670_CR15) 2015; 23
AT Kraja (670_CR4) 2005; 46
M Mamtani (670_CR13) 2016; 8
YD Salinas (670_CR74) 2016; 17
Consortium EP (670_CR66) 2012; 489
K Ishigaki (670_CR71) 2020; 52
N Morris (670_CR17) 2015; 6
G Cai (670_CR64) 2004; 76
TA Manolio (670_CR30) 2009; 461
KJ Karczewski (670_CR61) 2020; 581
KJ Karczewski (670_CR76) 2020
S Das (670_CR44) 2016; 48
XT Li (670_CR69) 2012; 21
JP Higgins (670_CR47) 2002; 21
National Cholesterol Education Program Expert Panel on Detection E, Treatment of High Blood Cholesterol in A (670_CR3) 2002; 106
670_CR49
AT Kraja (670_CR24) 2011; 60
L Lind (670_CR25) 2019; 17
R Nagrani (670_CR21) 2020; 10
AM Munoz (670_CR20) 2017; 12
DM Altshuler (670_CR42) 2015; 526
D Speed (670_CR46) 2017; 49
KL Edwards (670_CR32) 2008; 16
A Chuluun-Erdene (670_CR19) 2020; 8
D Carmelli (670_CR5) 1994; 55
AE Brown (670_CR18) 2016; 18
SC Elbein (670_CR35) 2009; 58
KL Edwards (670_CR33) 2011; 19
LJ Raffel (670_CR37) 1996; 19
J Yang (670_CR23) 2014; 9
References_xml – volume-title: R: a language and environment for statistical computing
  year: 2020
  ident: 670_CR50
– volume: 10
  start-page: 7189
  issue: 1
  year: 2020
  ident: 670_CR21
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-64031-2
– volume: 18
  start-page: 75
  issue: 8
  year: 2016
  ident: 670_CR18
  publication-title: Curr Cardiol Rep
  doi: 10.1007/s11886-016-0755-4
– volume: 489
  start-page: 57
  issue: 7414
  year: 2012
  ident: 670_CR66
  publication-title: Nature
  doi: 10.1038/nature11247
– volume: 6
  start-page: 27
  year: 2015
  ident: 670_CR17
  publication-title: Front Genet
  doi: 10.3389/fgene.2015.00027
– volume: 17
  start-page: 276
  year: 2016
  ident: 670_CR65
  publication-title: BMC Genom
  doi: 10.1186/s12864-016-2594-5
– ident: 670_CR16
  doi: 10.1214/08-STS280
– volume: 17
  start-page: 505
  issue: 10
  year: 2019
  ident: 670_CR25
  publication-title: Metab Syndr Relat Disord
  doi: 10.1089/met.2019.0070
– volume: 28
  start-page: 1039
  issue: 12
  year: 1979
  ident: 670_CR38
  publication-title: Diabetes
  doi: 10.2337/diab.28.12.1039
– volume: 50
  start-page: 3045
  issue: 11
  year: 2019
  ident: 670_CR9
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.119.025376
– volume: 9
  start-page: 819
  issue: 11
  year: 2008
  ident: 670_CR29
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2468
– volume: 6
  start-page: 77
  issue: 2
  year: 2001
  ident: 670_CR34
  publication-title: JP J Biostat
– volume: 58
  start-page: 378
  issue: 6
  year: 2013
  ident: 670_CR36
  publication-title: J Hum Genet
  doi: 10.1038/jhg.2013.21
– ident: 670_CR60
  doi: 10.1161/HYP.0000000000000075
– volume: 6
  start-page: 7754
  year: 2015
  ident: 670_CR27
  publication-title: Nat Commun
  doi: 10.1038/ncomms8754
– volume: 49
  start-page: 986
  issue: 7
  year: 2017
  ident: 670_CR46
  publication-title: Nat Genet
  doi: 10.1038/ng.3865
– volume: 76
  start-page: 651
  issue: 5
  year: 2004
  ident: 670_CR64
  publication-title: Hum Biol
  doi: 10.1353/hub.2005.0001
– volume: 19
  start-page: 1235
  issue: 6
  year: 2011
  ident: 670_CR33
  publication-title: Obesity
  doi: 10.1038/oby.2010.299
– volume: 9
  start-page: 21
  issue: 1
  year: 2018
  ident: 670_CR28
  publication-title: Biomed Rep
– volume: 26
  start-page: 2190
  issue: 17
  year: 2010
  ident: 670_CR48
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq340
– volume: 42
  start-page: 741
  issue: 7
  year: 2018
  ident: 670_CR40
  publication-title: Genet Epidemiol
– volume: 16
  start-page: 1596
  issue: 7
  year: 2008
  ident: 670_CR32
  publication-title: Obesity
  doi: 10.1038/oby.2008.236
– volume: 10
  start-page: e001621
  issue: 2
  year: 2017
  ident: 670_CR14
  publication-title: Circ Cardiovasc Genet
  doi: 10.1161/CIRCGENETICS.116.001621
– volume: 88
  start-page: 76
  issue: 1
  year: 2011
  ident: 670_CR45
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2010.11.011
– volume: 9
  start-page: e100548
  issue: 6
  year: 2014
  ident: 670_CR23
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0100548
– volume: 27
  start-page: 162
  issue: 2
  year: 2016
  ident: 670_CR8
  publication-title: Curr Opin Lipidol
  doi: 10.1097/MOL.0000000000000276
– volume: 5
  start-page: 143
  issue: 1
  year: 2020
  ident: 670_CR10
  publication-title: Int J Clin Res Trials
  doi: 10.15344/2456-8007/2020/143
– volume: 11
  start-page: 294
  issue: 3
  year: 2014
  ident: 670_CR54
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2832
– volume: 53
  start-page: 1166
  issue: 4
  year: 2004
  ident: 670_CR11
  publication-title: Diabetes
  doi: 10.2337/diabetes.53.4.1166
– volume: 51
  start-page: 2548
  issue: 8
  year: 2020
  ident: 670_CR7
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.120.028944
– volume: 58
  start-page: 268
  issue: 1
  year: 2009
  ident: 670_CR35
  publication-title: Diabetes
  doi: 10.2337/db08-0931
– ident: 670_CR72
– volume: 66
  start-page: 1871
  issue: 6
  year: 2000
  ident: 670_CR39
  publication-title: Am J Hum Genet
  doi: 10.1086/302950
– ident: 670_CR51
– volume: 21
  start-page: 296
  issue: 2
  year: 2012
  ident: 670_CR69
  publication-title: Asia Pac J Clin Nutr
– volume: 82
  start-page: 1185
  issue: 5
  year: 2008
  ident: 670_CR26
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2008.03.015
– ident: 670_CR49
  doi: 10.1002/9781119536604.ch10
– volume: 46
  start-page: 310
  issue: 3
  year: 2014
  ident: 670_CR53
  publication-title: Nat Genet
  doi: 10.1038/ng.2892
– volume: 8
  start-page: 38
  issue: 3
  year: 2020
  ident: 670_CR19
  publication-title: Med Sci
– volume: 22
  start-page: 1790
  issue: 9
  year: 2012
  ident: 670_CR59
  publication-title: Genome Res
  doi: 10.1101/gr.137323.112
– volume: 26
  start-page: 364
  issue: 4
  year: 2016
  ident: 670_CR2
  publication-title: Trends Cardiovasc Med
  doi: 10.1016/j.tcm.2015.10.004
– volume: 8
  start-page: 6
  year: 2016
  ident: 670_CR13
  publication-title: Clin Epigenet
  doi: 10.1186/s13148-016-0173-x
– volume: 5
  start-page: e008675
  issue: 10
  year: 2015
  ident: 670_CR12
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2015-008675
– volume: 20
  start-page: 254
  issue: 1
  year: 2019
  ident: 670_CR57
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1847-4
– volume: 9
  start-page: 79
  year: 2010
  ident: 670_CR68
  publication-title: Cardiovasc Diabetol
  doi: 10.1186/1475-2840-9-79
– year: 2020
  ident: 670_CR76
  publication-title: bioRxiv
  doi: 10.1101/531210v4
– volume: 21
  start-page: 1539
  issue: 11
  year: 2002
  ident: 670_CR47
  publication-title: Stat Med
  doi: 10.1002/sim.1186
– volume: 55
  start-page: 566
  issue: 3
  year: 1994
  ident: 670_CR5
  publication-title: Am J Hum Genet
– volume: 48
  start-page: 1279
  issue: 10
  year: 2016
  ident: 670_CR41
  publication-title: Nat Genet
  doi: 10.1038/ng.3643
– volume: 38
  start-page: e164
  issue: 16
  year: 2010
  ident: 670_CR52
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq603
– volume: 31
  start-page: 1536
  issue: 10
  year: 2015
  ident: 670_CR56
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv009
– volume: 461
  start-page: 747
  issue: 7265
  year: 2009
  ident: 670_CR30
  publication-title: Nature
  doi: 10.1038/nature08494
– volume: 46
  start-page: 751
  issue: 4
  year: 2005
  ident: 670_CR4
  publication-title: Hypertension
  doi: 10.1161/01.HYP.0000184249.20016.bb
– volume: 19
  start-page: 864
  issue: 8
  year: 1996
  ident: 670_CR37
  publication-title: Diabetes Care
  doi: 10.2337/diacare.19.8.864
– volume: 53
  start-page: 1866
  issue: 7
  year: 2004
  ident: 670_CR63
  publication-title: Diabetes
  doi: 10.2337/diabetes.53.7.1866
– volume: 164
  start-page: 108193
  year: 2020
  ident: 670_CR6
  publication-title: Diabetes Res Clin Pract
  doi: 10.1016/j.diabres.2020.108193
– volume: 97
  start-page: 14478
  issue: 26
  year: 2000
  ident: 670_CR62
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.97.26.14478
– volume: 5
  start-page: e11690
  issue: 7
  year: 2010
  ident: 670_CR67
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0011690
– volume: 19
  start-page: 2852
  issue: 10
  year: 2018
  ident: 670_CR73
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19102852
– volume: 48
  start-page: 214
  issue: 2
  year: 2016
  ident: 670_CR55
  publication-title: Nat Genet
  doi: 10.1038/ng.3477
– volume: 106
  start-page: 3143
  issue: 25
  year: 2002
  ident: 670_CR3
  publication-title: Circulation
  doi: 10.1161/circ.106.25.3143
– volume: 10
  start-page: e1004234
  issue: 4
  year: 2014
  ident: 670_CR43
  publication-title: Plos Genet
  doi: 10.1371/journal.pgen.1004234
– volume: 120
  start-page: 1640
  issue: 16
  year: 2009
  ident: 670_CR1
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.109.192644
– volume: 17
  start-page: 78
  issue: 1
  year: 2016
  ident: 670_CR74
  publication-title: BMC Genet
  doi: 10.1186/s12863-016-0387-0
– volume: 526
  start-page: 68
  issue: 7571
  year: 2015
  ident: 670_CR42
  publication-title: Nature
  doi: 10.1038/nature15393
– volume: 48
  start-page: 1284
  issue: 10
  year: 2016
  ident: 670_CR44
  publication-title: Nat Genet
  doi: 10.1038/ng.3656
– volume: 52
  start-page: 669
  issue: 7
  year: 2020
  ident: 670_CR71
  publication-title: Nat Genet
  doi: 10.1038/s41588-020-0640-3
– volume: 581
  start-page: 434
  issue: 7809
  year: 2020
  ident: 670_CR61
  publication-title: Nature
  doi: 10.1038/s41586-020-2308-7
– volume: 31
  start-page: 3555
  issue: 21
  year: 2015
  ident: 670_CR58
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv402
– volume: 12
  start-page: 19
  year: 2017
  ident: 670_CR20
  publication-title: Genes Nutr
  doi: 10.1186/s12263-017-0567-1
– volume: 60
  start-page: 1329
  issue: 4
  year: 2011
  ident: 670_CR24
  publication-title: Diabetes
  doi: 10.2337/db10-1011
– volume: 10
  start-page: 86
  issue: 2
  year: 2010
  ident: 670_CR31
  publication-title: Endocr Metab Immune Disord Drug Targets
  doi: 10.2174/187153010791213100
– volume: 23
  start-page: 2499
  issue: 12
  year: 2015
  ident: 670_CR15
  publication-title: Obesity
  doi: 10.1002/oby.21257
– volume: 13
  start-page: e0204502
  issue: 9
  year: 2018
  ident: 670_CR70
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0204502
– volume: 99
  start-page: 846
  issue: 4
  year: 2016
  ident: 670_CR75
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2016.08.015
– volume: 45
  start-page: 22
  issue: 1
  year: 2008
  ident: 670_CR22
  publication-title: J Med Genet
  doi: 10.1136/jmg.2007.052415
SSID ssj0067574
Score 2.3141544
Snippet Background To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. Methods Data...
To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. Data was collected from...
Background To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. Methods Data...
To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. Data was collected from...
To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups.BACKGROUNDTo identify...
Abstract Background To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups....
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 59
SubjectTerms African Americans
Annotations
Association analysis
Blood pressure
Chromosome 11
Chromosome 2
Data collection
Diabetes
Diabetes mellitus
Endocrinology
Epidemiology
Family
Family studies
Genes
Genetic diversity
Genetic epidemiology
Genetics
Genomes
Genomics
Glucose
Haplotypes
Hypertension
Insulin
Linkage
Medical research
Medicine
Medicine & Public Health
Medicine, Experimental
Metabolic Diseases
Metabolic syndrome
Minority & ethnic groups
Obesity
Pleiotropy
Population genetics
Quantitative genetics
Quantitative trait loci
Siblings
Software
Statistical analysis
Triglycerides
Type 2 diabetes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4k1KASMhcYCoeXjtzbFAHyB1T1TqzRrbE3WlNkvZrPr3O-M82hQBF67xWLLn5ZnY840Q7zFgcEUFqasql6pQ6RQCw-PpMtRAGQTOuXb4eKGPTtT309nprVZf_CasgwfuGLcLBmtwwZOHDYpibZdrbyiryVGZDGvP3jersiGZ6nwwRcFGDSUyc727Jk_NpWQFpc5cmJKWk2MoovX_7pNvHUp3H0zeuTWNh9HBI_GwjyLlXrf6x-IeNk_E_eP-nvypuDzEZnWB6dUyoIQbCUjoMUjkqpYX2JIGnC-9HGAL5OUGmlh1Rj5QcveIdi2XjaQgUR7uLxbfvsr4ABHbs4amdT9HZESofSZODvZ_fDlK--YKqTeZatOi1lhR7AQelAZQxhtXZ0b7TEHhACHHYEqnaRBVBqaeoa9czQB8Ts1cVj4XW82qwZdCKsgNqIqSN1crZQpXBR9ISPMctQZnEpEPvLa-Rx7nLZzbmIHMte3kY0k-NsrHlon4OM752eFu_JX6M4twpGTM7PiBNMn2mmT_pUmJeMsKYLsC1NHy7R43aNbckSoRHyIF2z5twENfwkBsYBStCeXOhJJs1k-HByWzvc9YW4YlmDECo0rEu3GYZ_I7uAZXG6YptYoYfYl40enkuOlScThY0Gwz0dYJV6YjzfIsIoozSiN54kR8GvT6Zll_5vr2_-D6K_GgiHbJP7Z2xFb7a4OvKc5r3Zto0tex8U_u
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwELagSIgXxE2ggJGQeICoORx784QK9ACp-0SlfbN8TNqV2qTbzYq_z4xzLCmir_FYij2HZ-yZbxj7AB68zUoT27K0sfCljI0neDyZ-8pgBAEzqh0-mcvjU_FzUSz6C7d1n1Y52MRgqH3j6I58j4q2C8KnE1-uVjF1jaLX1b6Fxl12L0CXoTyrxRhwoS-sxFAoM5N7a7TXVFCWYQBN5SlxPjmMAmb_v5b5r6PpZtrkjbfTcCQdPmIPe1-S73fMf8zuQP2E3T_pX8ufstUR1M0lxL-XHrjZ8oGbHomENxW_hBbl4GLp-ABewFcbU4faM7SEnHpItGu-rDm6ivzoYD7_8Z2HNERoz2uc1l2R8IBT-4ydHh78-nYc9y0WYqcS0cZZJaFED8o4I6QxQjllq0RJlwiTWQMmBa9yK3EQRGJUVYArbUUwfFYUNsmfs526qeEl48KkyogSQzhbCaEyW3rnncpmKUhprIpYOuy1dj3-OC3hQoc4ZCZ1xx-N_NGBPzqP2KdxzlWHvnEr9Vdi4UhJyNnhQ3N9pntF1EZBZax3eGJ7gbGbTSX-ZCFSECqBykXsHQmA7spQR_3X-9SmWVJfqoh9DBRkAXABzvSFDLgNhKU1odydUKLmuunwIGS6txxrvZXziL0fh2kmZcPV0GyIJpciIPVF7EUnk-Oic0FOYYaz1URaJ7syHamX5wFXnLAa0R5H7PMg19vf-v-uv7p9Fa_ZgyxoHF1c7bKd9noDb9CPa-3boKx_ADBJRpY
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELagSIgXRDkDpRgJiQeIyOHYm8elJ0jdJ1bqm-Vj0q7UJrSbFX-fGecoKYfEazwj2XN5JvZ8ZuwdePA2K01sy9LGwpcyNp7g8WTuK4MVBMyod_hkIY-X4utpcdo3ha2H2-7DkWSI1MGtZ_LTGqMttYNlWP5Sc0mc32X3CqzdyR2X2XyIv5gBKzG0x_yRb7IFBaT-3-PxLxvS7cuSt05Mw0Z0-Ig97DNIPu9Uvs3uQP2Y3T_pz8ifsKsjqJtLiH-sPHBzI31uevwR3lT8ElrU_sXK8QGygF9tTB06zjD-cXo5ol3zVc0xQeRHB4vFl30eLh9Ce14jW_djhAd02qdseXjwbe847h9WiJ1KRBtnlYQS8ybjjJDGCOWUrRIlXSJMZg2YFLzKrcRBEIlRVQGutBWB71lR2CR_xrbqpoYXjAuTKiNKLNxsJYTKbOmddyqbpSClsSpi6SBr7XrUcVrChQ7Vx0zqTj8a9aODfnQesQ8jz_cOc-Of1J9JhSMl4WWHD831me7dTxsFlbHe4T7tBVZsNpU4yUKkIFQClYvYGzIA3TWfjl6v5_Q4s6TXqCL2PlCQ3-MCnOnbF1AMhKA1odyZUKK_uunwYGS6jxdrTZAEBaEvioi9HYeJk-7A1dBsiCaXIuDzRex5Z5PjonNBqWCG3GpirROpTEfq1XlAEyeERozCEfs42PXNtP4u9Zf_R_6KPciCB9Lvqx221V5v4DVmc63dDc77E9rtQ5E
  priority: 102
  providerName: Springer Nature
Title Genome-wide association analysis of metabolic syndrome quantitative traits in the GENNID multiethnic family study
URI https://link.springer.com/article/10.1186/s13098-021-00670-3
https://www.ncbi.nlm.nih.gov/pubmed/34074324
https://www.proquest.com/docview/2543503444
https://www.proquest.com/docview/2536495480
https://pubmed.ncbi.nlm.nih.gov/PMC8170963
https://doaj.org/article/a7efabdc123d4666b16c72541e470efc
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ5r2gvgmMIqRkHiAsHy4dvOAUFe2DqRWCFGpb5HtOKxSl9I2FfDfc-ckHRmDB14ipT6rse_LZ_t-B_DCZjbTUaJ8nSTa51kifJURPJ6Is1xhBGF7lDs8GovzCf847U53oCl3VE_g-sbQjupJTVbzNz-WP9-hwr91Ct8Tx2u0w5QoFmFgTGknfrwL--iZBAVjI749VcC1seRN4syN_Q7hIObkVCPe8lMOzv9Po_2b17p-o_LasarzVme34Va9zGT9Si7uwI4t7sLBqD5IvwfLoS0Wl9b_PsssU1csYqoGKWGLnF3aEkVkPjOswTVgy40qXFoaGklG5SXKNZsVDFeRbHg6Hn94z9wNRVteFNit2j1hDsL2PkzOTr8Mzv26-oJvZMBLP8qFTXBxpYziQikujdR5IIUJuIq0siq0mYy1wEbLAyXzrjWJzgmhT_OuDuIHsFcsCvsIGFehVDzB6E7nnMtIJ5nJjIx6oRVCaelB2Mx1ampochrCPHUhSk-kFatSZFXqWJXGHrza9vlWAXP8k_qEWLilJFBt98Ni9TWtdTRV0uZKZwadecYxrNOhwI_s8tByGdjcePCMBCCtMlS3piHtUwVnQSWrPHjpKEhccQBG1TkOOA0Es9WiPGpRolKbdnMjZGmjEynhFnQJopF78HzbTD3polxhFxuiiQV3IH4ePKxkcjvoRrQ9kC1pbc1Ku6WYXTjIcYJxRFPtwetGrq8-6--z_vi__-gJHEZOL2m76wj2ytXGPsXVX6k7sCunsgP7J6fjT5_xbSAGHbeTgs_hNOw4lcfnJOr_AuFfXU0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwEviG8CgxkJxANEaxLXbh4Q2li3lq0VQpu0N89fYZW2ZFtTTfxT_I3cOUlLhtjbXutzFd-d78P2_Y6Qd846q-NUhTpNdchsykNlER6PJzZTkEG4PtYOjyd8eMi-HfWOVsjvphYGn1U2NtEbalsYPCPfwKLtHuLTsS_nFyF2jcLb1aaFRqUWe-7XFaRss8-jbZDv-zjeGRx8HYZ1V4HQiC4rwzjjLoWgQRnFuFJMGKEzyOZNl6lYK6ciZ0WiOQw61lUi6zmT6gyR5zTr6W4C_3uHrDKsaO2Q1a3B5PuPxvZD9C1YU5rT5xsz8BBYwhZDyo4FMWHScn--S8C_vuAvZ3j9oea121rvBHcekgd19Eo3K3V7RFZc_pjcHdf380_Ixa7LizMXXk2to2opeapq7BNaZPTMlaB5p1NDG7gEejFXua92A9tLsWtFOaPTnEJwSncHk8lom_qHj648yWFadShDPTLuU3J4K-x_Rjp5kbsXhDIVCcVSSBp1xpiIdWqNNSLuR45zpUVAoobX0tSI57iEU-kznz6XlXwkyEd6-cgkIB8Xc84rvI8bqbdQhAtKxOr2PxSXP2W99aUSLlPaGogRLINsUUccPrLHIsdE12UmIOuoALIqfF1YHLmJjaE5dsIKyAdPgTYHFmBUXToBbED0rhblWosSbIVpDzdKJmtbNZPLnRWQt4thnInv73JXzJEm4cxjAwbkeaWTi0UnDMPQGGaLlra2uNIeyacnHskc0SHBAwTkU6PXy8_6P9df3ryKdXJveDDel_ujyd4rcj_2uw-PzdZIp7ycu9cQRZb6Tb11KTm-bWvxB3KehkU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELagSBUviJtAoUZC4gGi5vDam8fSdtsCXfFApb5ZPiZ0pTZpu1nx95lxjjblkHiNZyTbc8eez4y9Aw_eZoWJbVHYWPhCxsYTPJ7MfWmwgoAp9Q4fzeXBsfh8Mjm50cUfbrv3R5JtTwOhNFXN1oUvWxOfyq0lel5qDcuwFKZGkzi_y-4JCn10XCt3el-M2bASfavMH_lG4Sig9v_um28Ep9sXJ2-dnoagNHvIHnTZJN9uxf-I3YHqMVs_6s7Ln7DLfajqc4h_Ljxwcy0JbjosEl6X_Bwa1ISzheM9fAG_XJkqdJ-hL-T0ikSz5IuKY7LI9_fm88NdHi4iQnNaIVv7k4QHpNqn7Hi2933nIO4eWYidSkQTZ6WEAnMo44yQxgjllC0TJV0iTGYNmBS8yq3EQRCJUeUEXGFLAuKzYmKT_Blbq-oKXjAuTKqMKLCIs6UQKrOFd96pbJqClMaqiKX9XmvXIZDTEs50qESmUrfy0SgfHeSj84h9GHguWvyNf1J_IhEOlISdHT7UVz90Z4raKCiN9Q5jthdYvdlU4iQnIgWhEihdxDZJAXTbiDp4AL1NDzVLepkqYu8DBfkAXIAzXSsDbgOhaY0oN0aUaLtuPNwrme58x1ITPMGEkBhFxN4Ow8RJ9-EqqFdEk0sRsPoi9rzVyWHRuaC0MENuNdLW0a6MR6rFaUAWJ7RG9MgR-9jr9fW0_r7rL_-PfJOtf9ud6a-H8y-v2P0sGCP91dpga83VCl5jktfYN8GOfwEnMkqq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+association+analysis+of+metabolic+syndrome+quantitative+traits+in+the+GENNID+multiethnic+family+study&rft.jtitle=Diabetology+and+metabolic+syndrome&rft.au=Wan%2C+Jia+Y.&rft.au=Goodman%2C+Deborah+L.&rft.au=Willems%2C+Emileigh+L.&rft.au=Freedland%2C+Alexis+R.&rft.date=2021-06-01&rft.pub=BioMed+Central&rft.eissn=1758-5996&rft.volume=13&rft_id=info:doi/10.1186%2Fs13098-021-00670-3&rft_id=info%3Apmid%2F34074324&rft.externalDocID=PMC8170963
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-5996&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-5996&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-5996&client=summon