Precipitation manipulation experiments - challenges and recommendations for the future

Climatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experi...

Full description

Saved in:
Bibliographic Details
Published inEcology letters Vol. 15; no. 8; pp. 899 - 911
Main Authors Beier, Claus, Beierkuhnlein, Carl, Wohlgemuth, Thomas, Penuelas, Josep, Emmett, Bridget, Körner, Christian, de Boeck, Hans, Christensen, Jens Hesselbjerg, Leuzinger, Sebastian, Janssens, Ivan A., Hansen, Karin
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.08.2012
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Climatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experiments indicates that they have provided important information on how water regulates ecosystem processes. However, they do not adequately represent global biomes nor forecasted precipitation scenarios and their potential contribution to advance our understanding of ecosystem responses to precipitation changes is therefore limited, as is their potential value for the development and testing of ecosystem models. This highlights the need for new precipitation experiments in biomes and ambient climatic conditions hitherto poorly studied applying relevant complex scenarios including changes in precipitation frequency and amplitude, seasonality, extremity and interactions with other global change drivers. A systematic and holistic approach to investigate how soil and plant community characteristics change with altered precipitation regimes and the consequent effects on ecosystem processes and functioning within these experiments will greatly increase their value to the climate change and ecosystem research communities. Experiments should specifically test how changes in precipitation leading to exceedance of biological thresholds affect ecosystem resilience and acclimation.
AbstractList Climatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experiments indicates that they have provided important information on how water regulates ecosystem processes. However, they do not adequately represent global biomes nor forecasted precipitation scenarios and their potential contribution to advance our understanding of ecosystem responses to precipitation changes is therefore limited, as is their potential value for the development and testing of ecosystem models. This highlights the need for new precipitation experiments in biomes and ambient climatic conditions hitherto poorly studied applying relevant complex scenarios including changes in precipitation frequency and amplitude, seasonality, extremity and interactions with other global change drivers. A systematic and holistic approach to investigate how soil and plant community characteristics change with altered precipitation regimes and the consequent effects on ecosystem processes and functioning within these experiments will greatly increase their value to the climate change and ecosystem research communities. Experiments should specifically test how changes in precipitation leading to exceedance of biological thresholds affect ecosystem resilience and acclimation.
Climatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experiments indicates that they have provided important information on how water regulates ecosystem processes. However, they do not adequately represent global biomes nor forecasted precipitation scenarios and their potential contribution to advance our understanding of ecosystem responses to precipitation changes is therefore limited, as is their potential value for the development and testing of ecosystem models. This highlights the need for new precipitation experiments in biomes and ambient climatic conditions hitherto poorly studied applying relevant complex scenarios including changes in precipitation frequency and amplitude, seasonality, extremity and interactions with other global change drivers. A systematic and holistic approach to investigate how soil and plant community characteristics change with altered precipitation regimes and the consequent effects on ecosystem processes and functioning within these experiments will greatly increase their value to the climate change and ecosystem research communities. Experiments should specifically test how changes in precipitation leading to exceedance of biological thresholds affect ecosystem resilience and acclimation. [PUBLICATION ABSTRACT]
Climatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experiments indicates that they have provided important information on how water regulates ecosystem processes. However, they do not adequately represent global biomes nor forecasted precipitation scenarios and their potential contribution to advance our understanding of ecosystem responses to precipitation changes is therefore limited, as is their potential value for the development and testing of ecosystem models. This highlights the need for new precipitation experiments in biomes and ambient climatic conditions hitherto poorly studied applying relevant complex scenarios including changes in precipitation frequency and amplitude, seasonality, extremity and interactions with other global change drivers. A systematic and holistic approach to investigate how soil and plant community characteristics change with altered precipitation regimes and the consequent effects on ecosystem processes and functioning within these experiments will greatly increase their value to the climate change and ecosystem research communities. Experiments should specifically test how changes in precipitation leading to exceedance of biological thresholds affect ecosystem resilience and acclimation.Climatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experiments indicates that they have provided important information on how water regulates ecosystem processes. However, they do not adequately represent global biomes nor forecasted precipitation scenarios and their potential contribution to advance our understanding of ecosystem responses to precipitation changes is therefore limited, as is their potential value for the development and testing of ecosystem models. This highlights the need for new precipitation experiments in biomes and ambient climatic conditions hitherto poorly studied applying relevant complex scenarios including changes in precipitation frequency and amplitude, seasonality, extremity and interactions with other global change drivers. A systematic and holistic approach to investigate how soil and plant community characteristics change with altered precipitation regimes and the consequent effects on ecosystem processes and functioning within these experiments will greatly increase their value to the climate change and ecosystem research communities. Experiments should specifically test how changes in precipitation leading to exceedance of biological thresholds affect ecosystem resilience and acclimation.
Author Beier, Claus
de Boeck, Hans
Beierkuhnlein, Carl
Wohlgemuth, Thomas
Emmett, Bridget
Christensen, Jens Hesselbjerg
Körner, Christian
Penuelas, Josep
Janssens, Ivan A.
Leuzinger, Sebastian
Hansen, Karin
Author_xml – sequence: 1
  givenname: Claus
  surname: Beier
  fullname: Beier, Claus
  email: clbe@kt.dtu.dk
  organization: Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
– sequence: 2
  givenname: Carl
  surname: Beierkuhnlein
  fullname: Beierkuhnlein, Carl
  organization: Department of Biogeography, University of Bayreuth, Universitaetsstr. 25, D-95440, Bayreuth, Germany
– sequence: 3
  givenname: Thomas
  surname: Wohlgemuth
  fullname: Wohlgemuth, Thomas
  organization: Forest Dynamics, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
– sequence: 4
  givenname: Josep
  surname: Penuelas
  fullname: Penuelas, Josep
  organization: Department Global Ecology, CREAF-CSIC Barcelona, Edifici C, UAB o8193, Bellaterra, Spain
– sequence: 5
  givenname: Bridget
  surname: Emmett
  fullname: Emmett, Bridget
  organization: Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, UK-LL57 2UW, Wales, Bangor, UK
– sequence: 6
  givenname: Christian
  surname: Körner
  fullname: Körner, Christian
  organization: Institute of Botany, University of Basel, Schoenbeinstr. 6, CH-4056, Basel, Switzerland
– sequence: 7
  givenname: Hans
  surname: de Boeck
  fullname: de Boeck, Hans
  organization: Plant and Vegetation Ecology, University of Antwerp, Universiteitsplein 1, BE-2610, Wilrijk, Belgium
– sequence: 8
  givenname: Jens Hesselbjerg
  surname: Christensen
  fullname: Christensen, Jens Hesselbjerg
  organization: Danish Climate Centre, Danish Meteorological Institute, Lyngbyvej 100, DK-2100, Copenhagen Ø, Denmark
– sequence: 9
  givenname: Sebastian
  surname: Leuzinger
  fullname: Leuzinger, Sebastian
  organization: Environmental Sciences, ETH Zurich Forest Ecology, Universitätstrasse 16, CH-8092, Basel, Switzerland
– sequence: 10
  givenname: Ivan A.
  surname: Janssens
  fullname: Janssens, Ivan A.
  organization: Plant and Vegetation Ecology, University of Antwerp, Universiteitsplein 1, BE-2610, Wilrijk, Belgium
– sequence: 11
  givenname: Karin
  surname: Hansen
  fullname: Hansen, Karin
  organization: IVL Swedish Environmental Research Institute, P.O. Box 210 60, SE-100 31, Stockholm, Sweden
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26161476$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22553898$$D View this record in MEDLINE/PubMed
BookMark eNqNkdtu1DAQhi1URA_wCigSQuImwYfEsS9Aqqqli7oCJI53luMdUy9ZJ9iJ2L49TrMsUq_WNx57vn_smf8cnfjOA0IZwQVJ6_WmICUnOaalKCgmtMCklqzYPUJnh8TJIWY_TtF5jBucSFmTJ-iU0qpiQooz9O1TAON6N-jBdT7bau_6sZ0PsOshuC34IWZ5Zm5124L_CTHTfp0lWbdNufU9GzPbhWy4hcyOwxjgKXpsdRvh2X6_QF_fLb5cLfPVx-v3V5er3NS4ZLltiCC0BmLLprZlKZtK4spwwblZ8_TfhhoQlDVGc5ZuSGMh9VRbK6VsSswu0Ku5bh-63yPEQW1dNNC22kM3RkUwFZhRwsgxKKOSS84S-uIBuunG4FMjE0WlFLScCj7fU2OzhbXq06x0uFP_hpuAl3tAR6NbG7Q3Lv7nOOGkrHnixMyZ0MUYwB4QgtXkt9qoyUo12aomv9W932qXpG8fSM3eyiFo1x5T4M1c4I9r4e7oh9VitZiipM9nvYsD7A56HX4pXrO6Ut8_XCu6xGJ581mqG_YXgq7RSw
CitedBy_id crossref_primary_10_5194_acp_14_6345_2014
crossref_primary_10_1002_rse2_148
crossref_primary_10_1111_een_12403
crossref_primary_10_1139_cjss_2018_0002
crossref_primary_10_1038_ncomms7682
crossref_primary_10_1111_gcb_12225
crossref_primary_10_1038_s41467_021_22766_0
crossref_primary_10_7717_peerj_9040
crossref_primary_10_1002_ece3_433
crossref_primary_10_1111_1365_2656_12451
crossref_primary_10_1007_s10021_016_0025_8
crossref_primary_10_1111_1365_2745_13226
crossref_primary_10_1111_1365_2745_13102
crossref_primary_10_1111_1365_2745_12253
crossref_primary_10_1371_journal_pone_0188260
crossref_primary_10_1016_j_atmosenv_2019_116951
crossref_primary_10_1016_j_mex_2021_101331
crossref_primary_10_1111_2041_210X_12582
crossref_primary_10_1111_gcb_12215
crossref_primary_10_1038_s41559_019_0958_3
crossref_primary_10_3389_fmicb_2017_01384
crossref_primary_10_1007_s10705_021_10155_4
crossref_primary_10_1139_cjss_2018_0114
crossref_primary_10_1111_1365_2745_14426
crossref_primary_10_1007_s10661_024_13393_5
crossref_primary_10_5194_hess_26_2277_2022
crossref_primary_10_1016_j_agrformet_2021_108337
crossref_primary_10_1016_j_foreco_2021_119970
crossref_primary_10_1007_s00468_014_1011_4
crossref_primary_10_1016_j_scitotenv_2020_141222
crossref_primary_10_1007_s11104_023_06348_1
crossref_primary_10_1016_j_ppees_2016_08_001
crossref_primary_10_1093_jpe_rtae011
crossref_primary_10_3390_f12020165
crossref_primary_10_1080_15427528_2020_1750521
crossref_primary_10_3389_fpls_2016_00663
crossref_primary_10_1111_gcb_13662
crossref_primary_10_1080_02626667_2014_950582
crossref_primary_10_1080_17550874_2022_2101154
crossref_primary_10_1093_femsec_fiaa205
crossref_primary_10_1016_j_apsoil_2014_03_007
crossref_primary_10_1007_s00374_023_01716_6
crossref_primary_10_3389_fpls_2025_1519879
crossref_primary_10_1007_s10021_023_00842_4
crossref_primary_10_1016_j_ejsobi_2020_103170
crossref_primary_10_11648_j_fem_20241001_13
crossref_primary_10_1007_s11104_014_2137_2
crossref_primary_10_1016_j_scib_2019_03_012
crossref_primary_10_1038_s41598_018_34969_5
crossref_primary_10_1016_j_agrformet_2021_108472
crossref_primary_10_1093_treephys_tpu114
crossref_primary_10_1002_wat2_1481
crossref_primary_10_1016_j_foreco_2023_121212
crossref_primary_10_1038_srep20120
crossref_primary_10_1111_2041_210X_13331
crossref_primary_10_5194_bg_11_2991_2014
crossref_primary_10_1093_treephys_tpt027
crossref_primary_10_1111_gcb_16959
crossref_primary_10_1016_j_envexpbot_2013_10_004
crossref_primary_10_1111_gcb_15501
crossref_primary_10_1080_23311843_2018_1549799
crossref_primary_10_1007_s10811_019_01838_1
crossref_primary_10_1038_ncomms6102
crossref_primary_10_1002_ece3_5635
crossref_primary_10_3390_f13081194
crossref_primary_10_1016_j_scitotenv_2020_140272
crossref_primary_10_1093_jpe_rtz011
crossref_primary_10_1016_j_catena_2022_106652
crossref_primary_10_1111_2041_210X_12495
crossref_primary_10_1111_gcb_12424
crossref_primary_10_1002_eap_3007
crossref_primary_10_1007_s11258_019_00977_2
crossref_primary_10_1111_nph_17269
crossref_primary_10_21829_abm129_2022_2009
crossref_primary_10_1016_j_indic_2020_100095
crossref_primary_10_1007_s10021_018_0280_y
crossref_primary_10_1016_j_soilbio_2018_12_022
crossref_primary_10_3389_ffgc_2019_00010
crossref_primary_10_1007_s00248_022_02092_8
crossref_primary_10_1002_aps3_11325
crossref_primary_10_1111_gcb_13504
crossref_primary_10_1111_nph_18462
crossref_primary_10_1111_gcb_12537
crossref_primary_10_1111_gcb_13620
crossref_primary_10_1007_s11056_019_09716_x
crossref_primary_10_1111_ele_12193
crossref_primary_10_1002_2016GL069416
crossref_primary_10_1016_j_envexpbot_2017_02_006
crossref_primary_10_1371_journal_pone_0041493
crossref_primary_10_1016_j_plantsci_2016_07_004
crossref_primary_10_1525_elementa_2022_00116
crossref_primary_10_3389_fpls_2022_974745
crossref_primary_10_1002_gdj3_129
crossref_primary_10_1002_ldr_4576
crossref_primary_10_1016_j_envexpbot_2018_04_012
crossref_primary_10_3389_fpls_2023_1211182
crossref_primary_10_3390_plants12173017
crossref_primary_10_1007_s11104_025_07370_1
crossref_primary_10_1002_ecs2_2088
crossref_primary_10_1017_S096025852400014X
crossref_primary_10_1007_s11104_024_07067_x
crossref_primary_10_1007_s11430_024_1459_3
crossref_primary_10_1016_j_eja_2025_127568
crossref_primary_10_1007_s00442_015_3396_1
crossref_primary_10_1016_j_ppees_2017_01_002
crossref_primary_10_1111_ele_13134
crossref_primary_10_1016_j_gecco_2018_e00475
crossref_primary_10_1016_j_still_2023_105898
crossref_primary_10_1007_s11258_014_0349_4
crossref_primary_10_1016_j_scitotenv_2023_167007
crossref_primary_10_3389_fenvs_2020_00088
crossref_primary_10_7717_peerj_7044
crossref_primary_10_1088_2752_5295_acb5b8
crossref_primary_10_5194_bg_17_3859_2020
crossref_primary_10_1007_s00442_022_05133_8
crossref_primary_10_1371_journal_pone_0132663
crossref_primary_10_1111_gcb_13763
crossref_primary_10_1002_ece3_6400
crossref_primary_10_1111_oik_10136
crossref_primary_10_1016_j_scitotenv_2024_173098
crossref_primary_10_1016_j_agrformet_2015_08_251
crossref_primary_10_1016_j_soilbio_2022_108783
crossref_primary_10_1016_j_scitotenv_2013_11_122
crossref_primary_10_1002_pei3_10031
crossref_primary_10_1016_j_foreco_2023_121423
crossref_primary_10_1007_s10530_021_02478_8
crossref_primary_10_1007_s10457_024_01092_6
crossref_primary_10_1111_gcb_13399
crossref_primary_10_1111_een_12120
crossref_primary_10_1093_biosci_biv099
crossref_primary_10_1080_17550874_2022_2160674
crossref_primary_10_1111_gcb_13156
crossref_primary_10_1111_jvs_12902
crossref_primary_10_1093_ee_nvx053
crossref_primary_10_1098_rspb_2019_1486
crossref_primary_10_1111_gcb_13029
crossref_primary_10_3389_fmicb_2023_1249036
crossref_primary_10_59717_j_xinn_geo_2024_100117
crossref_primary_10_5194_bg_20_2117_2023
crossref_primary_10_1007_s11104_014_2349_5
crossref_primary_10_1111_gcb_13269
crossref_primary_10_7554_eLife_23255
crossref_primary_10_1111_aje_12881
crossref_primary_10_3161_15052249PJE2015_63_3_003
crossref_primary_10_1111_aec_12527
crossref_primary_10_5194_bg_19_1979_2022
crossref_primary_10_1002_ecm_1262
crossref_primary_10_1111_1365_2435_14460
crossref_primary_10_1086_676304
crossref_primary_10_1111_1365_2435_14100
crossref_primary_10_1111_gcb_14595
crossref_primary_10_3390_f13010037
crossref_primary_10_1111_gcb_16532
crossref_primary_10_3389_fpls_2022_836968
crossref_primary_10_5194_bg_14_2513_2017
crossref_primary_10_1016_j_scitotenv_2024_176835
crossref_primary_10_1890_14_0144_1
crossref_primary_10_1093_femsec_fiy099
crossref_primary_10_1016_j_ecolind_2017_04_011
crossref_primary_10_1007_s10533_022_00963_3
crossref_primary_10_1038_nclimate3114
crossref_primary_10_3390_f11101094
crossref_primary_10_1111_ecog_07018
crossref_primary_10_1002_2015JG003091
crossref_primary_10_1038_srep12344
crossref_primary_10_1016_j_scitotenv_2023_164212
crossref_primary_10_1111_gcb_13177
crossref_primary_10_1016_j_catena_2021_105253
crossref_primary_10_1111_jvs_12807
crossref_primary_10_3389_fpls_2025_1455170
crossref_primary_10_1016_j_scitotenv_2013_12_071
crossref_primary_10_1088_1748_9326_aa7398
crossref_primary_10_1016_j_scienta_2023_112573
crossref_primary_10_3390_agronomy13010220
crossref_primary_10_1007_s42452_024_05640_8
crossref_primary_10_3389_fpls_2017_01200
crossref_primary_10_1186_s40663_019_0181_3
crossref_primary_10_1111_gcb_12194
crossref_primary_10_1111_btp_12829
crossref_primary_10_1111_gcb_13161
crossref_primary_10_1016_j_soilbio_2012_12_012
crossref_primary_10_1111_csp2_475
crossref_primary_10_1002_2014RG000458
crossref_primary_10_1007_s10021_015_9845_1
crossref_primary_10_1111_plb_12461
crossref_primary_10_3389_fpls_2018_01586
crossref_primary_10_1007_s40641_018_0103_4
crossref_primary_10_7717_peerj_8433
crossref_primary_10_1371_journal_pone_0070997
crossref_primary_10_1007_s10265_019_01105_x
crossref_primary_10_1111_gcb_12023
crossref_primary_10_1111_jac_12225
crossref_primary_10_3389_fenvs_2023_1117184
crossref_primary_10_1111_1365_2435_13215
crossref_primary_10_1038_s41598_023_39267_3
crossref_primary_10_1016_j_agee_2016_04_030
crossref_primary_10_1093_biosci_biab033
crossref_primary_10_1111_gcb_14797
crossref_primary_10_1111_nph_20144
crossref_primary_10_3389_fevo_2021_708761
crossref_primary_10_1016_j_scitotenv_2021_149604
crossref_primary_10_3389_fpls_2020_564802
crossref_primary_10_5194_bg_12_961_2015
crossref_primary_10_1017_S096025851300038X
crossref_primary_10_1111_jvs_13089
crossref_primary_10_1007_s13157_021_01445_2
crossref_primary_10_1016_j_scitotenv_2023_167419
crossref_primary_10_1016_j_agrformet_2016_07_010
crossref_primary_10_1111_1365_2664_12593
crossref_primary_10_1371_journal_pone_0093881
crossref_primary_10_1016_j_agee_2018_12_016
crossref_primary_10_1128_msystems_00247_22
crossref_primary_10_1007_s10021_017_0131_2
crossref_primary_10_1111_1365_2435_12135
crossref_primary_10_1111_ele_12202
crossref_primary_10_1016_j_ecolind_2024_112276
crossref_primary_10_1111_1365_2435_13341
crossref_primary_10_1016_j_scitotenv_2024_174693
crossref_primary_10_1007_s11104_015_2604_4
crossref_primary_10_5194_bg_20_2143_2023
crossref_primary_10_1371_journal_pone_0194242
crossref_primary_10_1111_plb_12245
crossref_primary_10_1111_gcb_13493
crossref_primary_10_1371_journal_pone_0162310
crossref_primary_10_3389_fpls_2017_01478
crossref_primary_10_1029_2022JG007127
crossref_primary_10_1007_s00442_019_04463_4
crossref_primary_10_7717_peerj_6347
crossref_primary_10_1016_j_gecco_2023_e02627
crossref_primary_10_1111_1462_2920_15970
crossref_primary_10_1016_j_envres_2023_117029
crossref_primary_10_1111_geb_12224
crossref_primary_10_1007_s00442_018_4232_1
crossref_primary_10_1002_ecy_2474
crossref_primary_10_3389_fpls_2021_756956
crossref_primary_10_1525_elementa_2021_00110
crossref_primary_10_1016_j_scitotenv_2024_173632
crossref_primary_10_1016_j_agrformet_2013_10_004
crossref_primary_10_1007_s40333_015_0136_7
crossref_primary_10_1002_ajb2_16452
crossref_primary_10_1007_s00442_013_2839_9
crossref_primary_10_1007_s11629_013_2697_2
crossref_primary_10_1016_j_foreco_2022_120538
crossref_primary_10_1659_MRD_JOURNAL_D_16_00097_1
crossref_primary_10_1007_s00442_015_3414_3
crossref_primary_10_1016_j_scitotenv_2024_175805
crossref_primary_10_1002_ecm_1424
crossref_primary_10_1007_s12237_016_0090_4
crossref_primary_10_3389_fpls_2016_01196
crossref_primary_10_1007_s11258_019_00915_2
crossref_primary_10_1016_j_scitotenv_2022_153314
crossref_primary_10_1016_j_scitotenv_2022_155732
crossref_primary_10_2112_JCOASTRES_D_15_00179_1
crossref_primary_10_1007_s11104_023_05949_0
crossref_primary_10_1007_s10021_014_9798_9
crossref_primary_10_1016_j_catena_2024_108402
crossref_primary_10_1525_elementa_2021_00014
crossref_primary_10_1002_fee_2031
crossref_primary_10_1007_s42729_023_01298_0
crossref_primary_10_1111_jvs_12766
crossref_primary_10_1111_jvs_12889
crossref_primary_10_1016_j_jaridenv_2014_11_005
crossref_primary_10_1016_j_agee_2023_108852
crossref_primary_10_1038_s43017_024_00534_0
crossref_primary_10_1016_j_jenvman_2024_122235
crossref_primary_10_1111_gcb_12916
crossref_primary_10_1016_j_soilbio_2018_02_023
crossref_primary_10_1111_plb_12177
crossref_primary_10_3389_fenvs_2018_00014
crossref_primary_10_1093_aobpla_plw026
crossref_primary_10_1111_nph_12662
crossref_primary_10_1111_gcb_14096
crossref_primary_10_1002_ecs2_2543
crossref_primary_10_1111_1365_2435_13677
crossref_primary_10_5194_bg_11_3083_2014
crossref_primary_10_1016_j_geoderma_2023_116432
crossref_primary_10_1186_s12898_017_0133_0
crossref_primary_10_1007_s00374_019_01417_z
crossref_primary_10_1016_j_foreco_2014_06_030
crossref_primary_10_1098_rstb_2018_0085
crossref_primary_10_3390_plants11040505
crossref_primary_10_1016_j_catena_2014_11_013
crossref_primary_10_1016_j_ecolind_2020_106843
crossref_primary_10_1016_j_soilbio_2024_109427
crossref_primary_10_1029_2022JG006887
crossref_primary_10_1016_j_geoderma_2022_116318
crossref_primary_10_1038_nclimate1904
crossref_primary_10_1093_treephys_tpx041
crossref_primary_10_5194_bg_19_2025_2022
crossref_primary_10_1016_j_scitotenv_2020_144384
crossref_primary_10_1111_geb_13356
crossref_primary_10_1111_gcb_14046
crossref_primary_10_1007_s11104_017_3377_8
crossref_primary_10_1002_ecs2_2635
crossref_primary_10_1007_s10021_017_0185_1
crossref_primary_10_1111_nph_13693
crossref_primary_10_1016_j_scitotenv_2023_162000
crossref_primary_10_1002_ecy_2444
crossref_primary_10_1002_2016GB005480
crossref_primary_10_3390_plants12051158
crossref_primary_10_3390_rs14102484
crossref_primary_10_1007_s00468_015_1165_8
crossref_primary_10_1016_j_fmre_2022_09_028
crossref_primary_10_1007_s11258_019_00917_0
crossref_primary_10_1111_nph_15860
crossref_primary_10_1016_j_scitotenv_2023_164406
crossref_primary_10_1007_s13280_021_01645_4
crossref_primary_10_1002_ecy_3744
crossref_primary_10_1016_j_gecco_2022_e02152
crossref_primary_10_1016_j_gecco_2023_e02471
crossref_primary_10_1515_biolog_2017_0163
crossref_primary_10_1007_s00442_019_04506_w
crossref_primary_10_1007_s11258_015_0488_2
crossref_primary_10_1016_j_ecolmodel_2021_109737
crossref_primary_10_3390_agronomy10040520
crossref_primary_10_1016_j_apsoil_2018_06_014
crossref_primary_10_15377_2410_3624_2020_07_3
crossref_primary_10_1007_s11120_024_01110_9
crossref_primary_10_1016_j_soilbio_2017_08_002
crossref_primary_10_1186_s12862_021_01842_5
crossref_primary_10_12944_CWE_18_2_10
crossref_primary_10_1016_j_scitotenv_2018_01_174
crossref_primary_10_1002_ece3_2729
crossref_primary_10_1007_s11676_018_0733_3
crossref_primary_10_34133_ehs_0261
crossref_primary_10_1093_bioscience_63_9_763
crossref_primary_10_1093_jpe_rtaa035
crossref_primary_10_1111_geb_13039
crossref_primary_10_1007_s00484_023_02502_7
crossref_primary_10_1111_gcb_12626
crossref_primary_10_1016_j_atmosenv_2018_08_010
crossref_primary_10_1016_j_geoderma_2024_117042
crossref_primary_10_3390_microorganisms10040817
crossref_primary_10_1016_j_earscirev_2020_103501
crossref_primary_10_1038_s41467_020_18631_1
crossref_primary_10_1007_s10342_013_0697_y
crossref_primary_10_1111_rec_14210
crossref_primary_10_1111_2041_210X_14483
crossref_primary_10_1111_gcb_13941
crossref_primary_10_1111_nph_13134
crossref_primary_10_3389_fpls_2017_00802
crossref_primary_10_1007_s00442_014_3090_8
crossref_primary_10_1111_evo_14131
crossref_primary_10_1007_s00114_013_1132_4
crossref_primary_10_1016_j_soilbio_2017_09_028
crossref_primary_10_1007_s11258_018_0814_6
crossref_primary_10_1016_j_soilbio_2017_09_023
crossref_primary_10_1016_j_foreco_2018_08_022
crossref_primary_10_1186_s12870_021_02920_y
crossref_primary_10_1186_s13717_023_00429_w
crossref_primary_10_1007_s12665_016_6158_4
crossref_primary_10_1111_jvs_12362
crossref_primary_10_3390_f6062029
crossref_primary_10_1016_j_soilbio_2024_109402
crossref_primary_10_1016_j_rama_2023_05_007
crossref_primary_10_1007_s40333_023_0051_2
crossref_primary_10_3390_f14040796
crossref_primary_10_1016_j_soilbio_2019_107520
crossref_primary_10_1080_20964129_2022_2110523
crossref_primary_10_1016_j_envexpbot_2019_103865
crossref_primary_10_1007_s00374_016_1171_z
crossref_primary_10_1007_s11368_018_1998_z
crossref_primary_10_1093_plcell_koac324
crossref_primary_10_1111_1365_2435_13957
crossref_primary_10_1007_s10750_014_2129_5
crossref_primary_10_1111_ecog_06835
crossref_primary_10_1016_j_ecoleng_2023_106949
crossref_primary_10_1016_j_apsoil_2023_104805
crossref_primary_10_1002_ecy_2984
crossref_primary_10_1111_nph_13477
crossref_primary_10_1371_journal_pone_0070287
crossref_primary_10_1002_ecm_1507
crossref_primary_10_1007_s10533_020_00651_0
crossref_primary_10_1016_j_agee_2024_109312
crossref_primary_10_1111_nph_15123
crossref_primary_10_1002_saj2_20344
crossref_primary_10_1111_ppl_14160
crossref_primary_10_1002_ecy_3926
crossref_primary_10_1002_ecy_1501
crossref_primary_10_1002_ecy_1506
crossref_primary_10_1016_j_ejsobi_2023_103545
crossref_primary_10_1111_jvs_12783
crossref_primary_10_1016_j_ppees_2020_125530
crossref_primary_10_1111_oik_09415
crossref_primary_10_1111_oik_05297
crossref_primary_10_3389_fpls_2022_998169
crossref_primary_10_3389_fenvs_2014_00044
crossref_primary_10_1016_j_pedobi_2016_04_003
crossref_primary_10_1002_2016JG003370
crossref_primary_10_5194_bg_15_1065_2018
crossref_primary_10_1016_j_agrformet_2024_110151
crossref_primary_10_1016_j_soilbio_2018_04_029
crossref_primary_10_1111_jvs_12558
crossref_primary_10_1093_jpe_rtw058
crossref_primary_10_1111_2041_210X_13094
crossref_primary_10_3389_ffgc_2024_1370934
crossref_primary_10_1016_j_scitotenv_2019_134421
crossref_primary_10_1111_ecog_05671
crossref_primary_10_1016_j_ecolind_2020_106223
crossref_primary_10_1016_j_scitotenv_2018_07_035
crossref_primary_10_1029_2018GL081418
crossref_primary_10_3389_fenvs_2021_686668
crossref_primary_10_3390_agronomy10122004
crossref_primary_10_18822_edgcc134238
crossref_primary_10_3390_su11215954
crossref_primary_10_1360_SSTe_2024_0141
crossref_primary_10_1016_j_scitotenv_2016_03_117
crossref_primary_10_1016_j_agrformet_2021_108557
crossref_primary_10_1038_nature12350
crossref_primary_10_1038_s41598_017_15157_3
crossref_primary_10_1111_jvs_12698
crossref_primary_10_1111_1365_2435_12824
Cites_doi 10.1111/j.1469-8137.2010.03515.x
10.1016/S0378-1127(97)00128-X
10.1016/j.envexpbot.2010.09.003
10.1126/science.1075312
10.1089/ees.2005.22.9
10.1007/s10021-004-0178-8
10.1111/j.1461-0248.2011.01637.x
10.1111/j.1466-8238.2009.00504.x
10.1111/j.1365-2486.2008.01703.x
10.1016/S0378-1127(00)00677-0
10.1111/j.1365-2486.2008.01643.x
10.1016/j.scitotenv.2008.04.050
10.1016/j.scitotenv.2008.10.001
10.5194/bg-8-3053-2011
10.1126/science.1076347
10.1046/j.1469-8137.2003.00866.x
10.2307/1552283
10.1126/science.1066860
10.1006/jare.1999.0514
10.1641/B580908
10.1111/j.1365-2745.2005.01042.x
10.1111/j.1751-8369.2010.00153.x
10.1007/s10021-004-0220-x
10.1038/ngeo1090
10.1111/j.1365-2486.2011.02451.x
10.1038/nature09763
10.1111/j.1469-8137.2007.02329.x
10.2307/3546063
10.1073/pnas.0608379104
10.1016/j.jconhyd.2009.12.003
10.1111/j.1365-2389.2010.01276.x
10.1111/j.1365-2745.2011.01809.x
10.1890/1540-9295(2007)5[365:ANGOCE]2.0.CO;2
10.1111/j.1365-2435.2007.01362.x
10.1111/j.1365-2486.2010.02265.x
10.1126/science.289.5480.762
10.1126/science.1186473
10.1016/j.jhydrol.2005.07.003
10.1016/j.agrformet.2006.12.004
10.1016/j.tree.2011.02.011
10.1016/j.soilbio.2009.02.030
10.1111/j.1365-2486.2008.01681.x
10.1111/j.1365-2486.2007.01464.x
10.1007/s00442-004-1550-2
10.1007/s10584-010-9866-x
10.1016/j.earscirev.2010.02.004
10.1093/treephys/tpp123
10.1111/j.1365-2486.2008.01651.x
10.2307/1941962
10.1038/nature02121
10.1111/j.1365-2486.2010.02302.x
10.1016/j.envexpbot.2010.10.020
10.1046/j.1365-2486.1998.00118.x
10.1007/s00442-002-1088-0
10.1641/0006-3568(2003)053[0941:ATROTE]2.0.CO;2
10.1890/1540-9295(2005)003[0145:KWTDTL]2.0.CO;2
10.1007/s100210000028
10.1007/BF00139728
10.1111/j.1365-2486.2010.02351.x
10.1016/0378-1127(94)90134-1
10.1016/j.agrformet.2011.06.019
10.1098/rstb.2010.0144
10.1111/j.1365-2486.2009.01937.x
10.1007/s00442-004-1682-4
10.1016/j.tree.2003.09.002
10.1007/s11104-008-9612-6
10.1111/j.1365-2745.2011.01833.x
10.1007/s00382-008-0446-y
10.2111/05-115R.1
10.1111/j.1365-2486.2008.01629.x
10.1007/s004420000544
10.1038/ngeo950
10.1111/j.1365-2745.2011.01817.x
10.1007/s00442-004-1551-1
10.1007/s10584-006-9210-7
10.1007/s00442-011-2191-x
10.1890/08-1815.1
10.1111/j.1365-3040.2011.02320.x
10.1046/j.1365-2745.1998.00297.x
ContentType Journal Article
Copyright 2012 Blackwell Publishing Ltd/CNRS
2015 INIST-CNRS
2012 Blackwell Publishing Ltd/CNRS.
Copyright © 2012 Blackwell Publishing Ltd/CNRS
Copyright_xml – notice: 2012 Blackwell Publishing Ltd/CNRS
– notice: 2015 INIST-CNRS
– notice: 2012 Blackwell Publishing Ltd/CNRS.
– notice: Copyright © 2012 Blackwell Publishing Ltd/CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7X8
7ST
7U6
DOI 10.1111/j.1461-0248.2012.01793.x
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Ecology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitleList CrossRef

Entomology Abstracts
MEDLINE - Academic
MEDLINE
Ecology Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1461-0248
Editor Arnone, John
Editor_xml – sequence: 12
  givenname: John
  surname: Arnone
  fullname: Arnone, John
EndPage 911
ExternalDocumentID 2701270281
22553898
26161476
10_1111_j_1461_0248_2012_01793_x
ELE1793
ark_67375_WNG_2H08HKS9_K
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: ClimMani
– fundername: ACQWA
– fundername: European Science Foundation
– fundername: Danish V. Kann Rasmussen Foundation
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
N~3
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7X8
7ST
7U6
ID FETCH-LOGICAL-c7043-fb18127e1f4b7f449b5905c6866cd6001b2ce823bca63cd61bfe4617ff999b403
IEDL.DBID DR2
ISSN 1461-023X
1461-0248
IngestDate Fri Jul 11 15:17:06 EDT 2025
Fri Jul 11 09:22:33 EDT 2025
Sun Jul 13 04:59:42 EDT 2025
Thu Apr 03 06:58:34 EDT 2025
Mon Jul 21 09:16:24 EDT 2025
Thu Apr 24 23:44:09 EDT 2025
Tue Jul 01 02:29:38 EDT 2025
Wed Jan 22 16:26:46 EST 2025
Wed Oct 30 09:55:34 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Dynamical climatology
Climate change
Precipitation
precipitation patterns
Experimental design
manipulative experiments
Manipulation
Experimental study
precipitation change
precipitation scenarios
Language English
License CC BY 4.0
2012 Blackwell Publishing Ltd/CNRS.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c7043-fb18127e1f4b7f449b5905c6866cd6001b2ce823bca63cd61bfe4617ff999b403
Notes  
ArticleID:ELE1793
ark:/67375/WNG-2H08HKS9-K
Danish V. Kann Rasmussen Foundation
ACQWA
ClimMani
European Science Foundation
istex:484A90DE767044337D067BD26B2918153B5BCA62
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 22553898
PQID 1022998241
PQPubID 32390
PageCount 13
ParticipantIDs proquest_miscellaneous_1028032131
proquest_miscellaneous_1023296963
proquest_journals_1022998241
pubmed_primary_22553898
pascalfrancis_primary_26161476
crossref_primary_10_1111_j_1461_0248_2012_01793_x
crossref_citationtrail_10_1111_j_1461_0248_2012_01793_x
wiley_primary_10_1111_j_1461_0248_2012_01793_x_ELE1793
istex_primary_ark_67375_WNG_2H08HKS9_K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2012
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: August 2012
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
– name: Paris
PublicationTitle Ecology letters
PublicationTitleAlternate Ecol Lett
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Peterjohn, W.T., Melillo, J.M., Steudler, P.A., Newkirk, K.M., Bowles, F.P. & Aber, J.D. (1995). Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecol. Appl., 4, 617-625.
Jentsch, A., Kreyling, J. & Beierkuhnlein, C. (2007). A new generation of climate change experiments: events, not trends. Front. Ecol. Environ., 5, 365-374.
Min, S.K., Zhang, X.B., Zwiers, F.W. & Hegerl, G.C. (2011). Human contribution to more-intense precipitation extremes. Nature, 470, 376-379.
Scherrer, D., Bader, M.K.F. & Körner, C. (2011). Drought sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies. Agric. For. Meteorol., 151, 163-1640.
Shaw, M.R., Zavaleta, E.S., Chiariello, N.R., Cleland, E.E., Mooney, H.A. & Field, C.B. (2002). Grassland responses to global environmental changes suppressed by elevated CO2. Science, 298, 1987-1990.
Pfister, C. (2009). The "Disaster Gap" of the 20th century and the loss of traditional disaster memory. GAIA - Ecol. Perspect. Sci. Soc., 18, 239-246.
Dobbertin, M., Eilmann, B., Bleuler, P., Giuggiola, A., Pannatier, E.G., Landolt, W., Schleppi, P. & Rigling, A. (2010). Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest. Tree Physiol., 30, 346-360.
De Boeck, H.J., Dreesen, F.E., Janssens, I.A. & Nijs, I. (2011). Whole-system responses of experimental plant communities to climate extremes imposed in different seasons. New Phytol., 189, 806-817.
Teuling, A.J., Seneviratne, S.I., Stöckli, R., Reichstein, M., Moors, E. & Ciais, P. (2010). Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci., 3, 722-727.
De Boeck, H.J., Liberloo, M., Gielen, B., Nijs, I. & Ceulemans, R. (2008). The observer effect in plant science. New Phytol., 177, 579-583.
Eriksson, O. (1996). Regional dynamics of plants: a review of evidence for remnant, source-sink and metapopulations. Oikos, 77, 248-258.
Jentsch, A., Kreyling, J., Elmer, M., Gellesch, E., Glaser, B., Grant, K. et al. (2011). Climate extremes initiate ecosystem regulating functions while maintaining productivity. J. Ecol., 99, 689-702.
Sowerby, A., Emmett, B.A., Williams, D., Beier, C. & Evans, C.D. (2010). The response of dissolved organic carbon (DOC) and ecosystem carbon balance to experimental drought in a temperate shrubland. Eur. J. Soil Sci., 61, 697-709.
Granier, A., Reichstein, M., Bréda, N., Janssens, I.A., Falge, E., Ciais, P. et al. (2007). Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric. For. Meteorol., 143, 123-145.
Sowerby, A., Emmett, B.A., Tietema, A. & Beier, C. (2008). Contrasting effects of repeated summer drought on soil carbon efflux in hydric and mesic heathland soils. Glob. Change Biol., 14, 2388-2404.
Larsen, K.S., Andresen, L.C., Beier, C., Jonasson, C., Albert, K.R., Ambus, P. et al. (2011). Reduced N cycling in response to drought, warming, and elevated CO2 in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments. Glob. Change Biol., 17, 1884-1899.
Rustad, L. (2008). The response of terrestrial ecosystems to global climate change: towards an integrated approach. Sci. Total Environ., 404, 222-235.
Leuzinger, S. & Körner, C. (2010). Rainfall distribution is the main driver of runoff under future CO2-concentration in a temperate deciduous forest. Glob. Change Biol., 16, 246-254.
Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I. et al. (2010). Inverstigating soil moisture-climate interactions in a changing climate: a review. Earth Sci. Rev., 99, 125-161.
Zavalloni, C., Gielen, B., Lemmens, C.M.H.M., De Boeck, H.J., Blasi, S., Van den Bergh, S. et al. (2008). Does a warmer climate with frequent mild water shortages protect grassland communities against a prolonged drought?. Plant Soil, 308, 119-130.
Knorr, K.-H. & Blodau, C. (2009). Impact of experimental drought and rewetting on redox transformations and methanogenesis in mesocosms of a northern fen soil. Soil Biol. Biochem., 41, 1187-1198.
Sherry, R.A., Weng, E.S., Arnone, J.A. III, Johnson, D., Schimel, D.S., Verburg, P.S. et al. (2008). Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie. Glob. Change Biol., 14, 2923-2936.
Wipf, S. & Rixen, C. (2010). A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Res., 29, 95-109.
Meinzer, F.C. (2003). Functional convergence in plant response to the environment. Oecologia, 134, 1-11.
Cottingham, K.L., Lennon, J.T. & Brown, B.L. (2005). Knowing when to draw the line: designing more informative ecological experiments. Front. Ecol. Environ., 3, 145-152.
Thomas, C.D., Cameron, A., Green, R.E. et al. (2004). Extinction risk from climate change. Nature, 427, 145-148.
Borken, W. & Matzner, E. (2009). Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob. Change Biol., 15, 808-824.
Dunnett, N.P., Willis, A.J., Hunt, R. & Grime, J.P. (1998). A 38-year study of relations between weather and vegetation dynamics in road verges near Bibury, Gloucestershire. J. Ecol., 86, 610-623.
Huxman, T.E., Snyder, K.A., Tissue, D., Leffler, A.J., Ogle, K., Pockman, W.T. et al. (2004). Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia, 141, 254-268.
Leuzinger, S., Luo, Y., Beier, C., Dieleman, W., Vicca, S. & Körner, C. (2011). Do global change experiments overestimate impacts on terrestrial ecosystems? Trends Ecol. Evol., 26, 236-241.
Scheffer, M. & Carpenter, S.R. (2003). Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecol. Evol., 18, 648-656.
Richter, S., Kipfer, T., Wohlgemuth, T., Calderón Guerrero, C., Ghazoul, J. & Moser, B. (2012). Phenotypic plasticity facilitates resistance to climate change in a highly variable environment. Oecologia, 169, 269-279.
Gutschick, V.P. & BassiriRad, H. (2003). Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytol., 160, 21-42.
Beier, C., Emmett, B.A., Peñuelas, J., Schmidt, I.K., Tietema, A., Estiarte, M. et al. (2008). Carbon and nitrogen cycles in European ecosystems respond differently to global warming. Sci. Total Environ., 407, 692-697.
Singer, M.C. & Parmesan, C. (2010). Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy? Philos. Trans. R. Soc. Lond., 365, 3161-3176.
Kreyling, J., Jentsch, A. & Beierkuhnlein, C. (2011). Stochastic trajectories of succession initiated by extreme climatic events. Ecol. Lett., 14, 758-764.
Gerten, D., Luo, Y., le Maire, G., Parton, W.J., Keough, C., Weng, E. et al. (2008). Modelled effects of precipitation on ecosystem carbon and water dynamics in different climatic zones. Glob. Change Biol., 14, 1-15.
Lamersdorf, N.P., Beier, C., Blanck, K., Bredemeier, M., Cummins, T., Farrell, E.P. et al. (1998). Effect of drought experiments using roof installations on acidification/nitrifaication of soils. For. Ecol. Manage., 101, 95-109.
Katz, W.R. & Brown, G. (1992). Extreme events in a changing climate: variability is more important than averages. Clim. Change, 21, 289-302.
Knapp, A.K., Fay, P.A., Blair, J.M., Collins, S.L., Smith, M.D., Carlisle, J.D. et al. (2002). Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 298, 2202-2205.
Huntington, T.G. (2006). Evidence for intensification of the global water cycle: review and synthesis. J. Hydrol., 319, 83-95.
Rustad, L.E., Campbell, J.L., Marion, G.M., Norby, R.J., Mitchell, M.J., Hartley, A.E. et al. (2001). A meta-analysis of the response of soil respiration, net N mineralisation, and above-ground plant growth to experimental ecosystem warming. Oecologia, 126, 543-562.
Beier, C., Emmett, B., Gundersen, P., Tietema, A., Penuelas, J., Estiarte, M. et al. (2004). Novel approaches to study climate change effects on terrestrial ecosystems in the field - drought and passive night time warming. Ecosystems, 7, 583-597.
Svejcar, T., Angell, R. & Miller, R. (1999). Fixed location rain shelters for studying precipitation effects on rangelands. J. Arid Environ., 42, 187-193.
Morgan, J.A., Pataki, D.E., Körner, C., Clark, H., Del Grosso, S.J., Grünzweig, J.M. et al. (2004). Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia, 140, 11-25.
Ineson, P., Taylor, K., Harrison, A.F., Poskitt, J., Benham, D.G., Tipping, E. & Woof, C. (1998). Effects of climate change on nitrogen dynamics in upland soils. 1. A transplant approach. Glob. Change Biol., 4, 143-152.
Landolt, E., Bäumler, B., Erhardt, A., Hegg, O., Klötzli, F., Lämmler, W., Nobis, M., Rudmann, K., Schweingruber, F.H., Theurillat, J.-P., Urmi, E., Vust, M. & Wohlgemuth, T. (2010). Flora indicativa - Ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen. Verlag Haupt, Bern, 376 S.
Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W. & Paulißen, D. (1991). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, XVIII, 248.
Fay, P.A., Carlisle, J.D., Knapp, A.K., Blair, J.M. & Collins, S.L. (2000). Altering rainfall timing and quantity in a mesic grassland ecosystem: design and performance of rainfall manipulation shelters. Ecosystems, 3, 308-319.
Beierkuhnlein, C., Jentsch, A., Thiel, D., Willner, E. & Kreyling, J. (2011). Ecotypes of European grass species respond specifically to warming and extreme drought. J. Ecol., 99, 703-713.
Körner, C. & Basler, D. (2010). Phenology under global warming. Science, 327, 1461-1462.
Mikkelsen, T.N., Beier, C., Jonasson, S., Holmstrup, M., Schmidt, I.K., Ambus, P. et al. (2008). Experimental design of multifactor climate change experiments with elevated CO2, warming and drought - t
2007; 104
2010; 99
2009; 41
2010; 16
2010; 19
2000; 3
2007; 143
2004; 7
2002; 158
2010; 101
2008; 308
2011; 99
1994; 68
1999; 42
2003; 18
2011; 14
2011; 17
2012; 169
2011; 470
2011; 151
1998; 86
2005; 22
2003; 53
2010; 61
1996; 77
2001; 294
1991; XVIII
2000; 289
2010; 29
2011; 71
2010; 112
2009; 90
2011; 72
2003; 160
2007; 5
2008; 22
2011; 26
2010; 3
2010; 30
2009; 15
2009; 18
2006; 319
2012
2010; 327
1963; 62
2010
2004; 141
2004; 140
2002; 298
2010; 365
2008; 407
2006; 59
2008; 14
2008; 58
2008
2007
2008; 404
2011; 4
2004; 427
1995; 4
2003; 134
2011; 8
2007; 13
2001; 126
2009; 32
2007; 81
2005; 3
2005; 93
2001; 33
2008; 177
1992; 21
1998; 4
1998; 101
2011; 189
e_1_2_8_28_1
Gutowski W.J. (e_1_2_8_31_1) 2008
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Ellenberg H. (e_1_2_8_20_1) 1991
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_87_1
e_1_2_8_62_1
e_1_2_8_85_1
Landolt E. (e_1_2_8_50_1) 2010
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_57_1
Gerten D. (e_1_2_8_27_1) 2008; 14
Pfister C. (e_1_2_8_64_1) 2009; 18
e_1_2_8_70_1
Christensen J.H. (e_1_2_8_13_1) 2007
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_48_1
e_1_2_8_69_1
IPCC (e_1_2_8_37_1) 2007
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_88_1
Bouchet R.J. (e_1_2_8_8_1) 1963; 62
Knapp A. (e_1_2_8_44_1) 2008; 58
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_84_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
IPCC (e_1_2_8_38_1) 2012
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_71_1
References_xml – reference: Luo, Y., Gerten, D., Maire, G.L., Parton, W.J., Weng, E., Zhou, X. et al. (2008). Modelled interactive effects of precipitation, temperature and [CO2] on ecosystem carbon and water dynamics in different climatic zones. Glob. Change Biol., 14, 1986-1999.
– reference: Luo, Y., Melillo, J., Niu, S., Beier, C., Clark, J., Classen, A. et al. (2011). Coordinated approaches to quantify long-term ecosystem dynamics in response to global change. Glob. Change Biol., 17, 843-854.
– reference: Mueller, R.C., Scudder, C.M., Porter, M.E., Trotter, R.T., Gehring, C.A. & Whitham, T.G. (2005). Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. J. Ecol., 93, 1085-1093.
– reference: Thomas, C.D., Cameron, A., Green, R.E. et al. (2004). Extinction risk from climate change. Nature, 427, 145-148.
– reference: Wipf, S. & Rixen, C. (2010). A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Res., 29, 95-109.
– reference: Beier, C., Emmett, B., Gundersen, P., Tietema, A., Penuelas, J., Estiarte, M. et al. (2004). Novel approaches to study climate change effects on terrestrial ecosystems in the field - drought and passive night time warming. Ecosystems, 7, 583-597.
– reference: Mikkelsen, T.N., Beier, C., Jonasson, S., Holmstrup, M., Schmidt, I.K., Ambus, P. et al. (2008). Experimental design of multifactor climate change experiments with elevated CO2, warming and drought - the CLIMAITE project. Funct. Ecol., 22, 185-195.
– reference: Daly, E. & Porporato, A. (2005). A review of soil moisture dynamics: from rainfall infiltration to ecosystem response. Environ. Eng. Sci., 22, 9-24.
– reference: Lamersdorf, N.P., Beier, C., Blanck, K., Bredemeier, M., Cummins, T., Farrell, E.P. et al. (1998). Effect of drought experiments using roof installations on acidification/nitrifaication of soils. For. Ecol. Manage., 101, 95-109.
– reference: Teuling, A.J., Seneviratne, S.I., Stöckli, R., Reichstein, M., Moors, E. & Ciais, P. (2010). Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci., 3, 722-727.
– reference: De Boeck, H.J., Liberloo, M., Gielen, B., Nijs, I. & Ceulemans, R. (2008). The observer effect in plant science. New Phytol., 177, 579-583.
– reference: Pfister, C. (2009). The "Disaster Gap" of the 20th century and the loss of traditional disaster memory. GAIA - Ecol. Perspect. Sci. Soc., 18, 239-246.
– reference: Scherrer, D., Bader, M.K.F. & Körner, C. (2011). Drought sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies. Agric. For. Meteorol., 151, 163-1640.
– reference: Knorr, K.-H. & Blodau, C. (2009). Impact of experimental drought and rewetting on redox transformations and methanogenesis in mesocosms of a northern fen soil. Soil Biol. Biochem., 41, 1187-1198.
– reference: Christensen, J.H. & Christensen, O.B. (2007). A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim. Change, 81, 7-30.
– reference: Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W. & Paulißen, D. (1991). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, XVIII, 248.
– reference: Hegerl, G., Hanlon, H. & Beierkuhnlein, C. (2011). Elusive extremes. Nat. Geosci., 4, 142-143.
– reference: Knapp, A.K., Fay, P.A., Blair, J.M., Collins, S.L., Smith, M.D., Carlisle, J.D. et al. (2002). Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 298, 2202-2205.
– reference: Morgan, J.A., Pataki, D.E., Körner, C., Clark, H., Del Grosso, S.J., Grünzweig, J.M. et al. (2004). Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia, 140, 11-25.
– reference: Walter, J., Nagy, L., Hein, R., Rascher, U., Beierkuhnlein, C., Willner, E. et al. (2011). Do plants remember drought? Hints towards a drought-memory in grasses. Environ. Exp. Bot., 71, 34-40.
– reference: Shaw, M.R., Zavaleta, E.S., Chiariello, N.R., Cleland, E.E., Mooney, H.A. & Field, C.B. (2002). Grassland responses to global environmental changes suppressed by elevated CO2. Science, 298, 1987-1990.
– reference: Zavalloni, C., Gielen, B., Lemmens, C.M.H.M., De Boeck, H.J., Blasi, S., Van den Bergh, S. et al. (2008). Does a warmer climate with frequent mild water shortages protect grassland communities against a prolonged drought?. Plant Soil, 308, 119-130.
– reference: Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I. et al. (2010). Inverstigating soil moisture-climate interactions in a changing climate: a review. Earth Sci. Rev., 99, 125-161.
– reference: Smith, M.D. (2011). The ecological role of climate extremes: current understanding and future prospects. J. Ecol., 99, 651-655.
– reference: Min, S.K., Zhang, X.B., Zwiers, F.W. & Hegerl, G.C. (2011). Human contribution to more-intense precipitation extremes. Nature, 470, 376-379.
– reference: Chesson, P., Gebauer, R.L.E., Schwinning, S., Huntly, N., Wiegand, K., Ernest, M.S.K. et al. (2004). Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia, 141, 236-253.
– reference: Grime, J.P., Brown, V.K., Thompson, K., Masters, G.J., Hillier, S.H., Clarke, I.P. et al. (2000). The response of two contrasting limestone grasslands to simulated climate change. Science, 289, 762-765.
– reference: Jentsch, A., Kreyling, J. & Beierkuhnlein, C. (2007). A new generation of climate change experiments: events, not trends. Front. Ecol. Environ., 5, 365-374.
– reference: Beierkuhnlein, C., Jentsch, A., Thiel, D., Willner, E. & Kreyling, J. (2011). Ecotypes of European grass species respond specifically to warming and extreme drought. J. Ecol., 99, 703-713.
– reference: Larsen, K.S., Andresen, L.C., Beier, C., Jonasson, C., Albert, K.R., Ambus, P. et al. (2011). Reduced N cycling in response to drought, warming, and elevated CO2 in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments. Glob. Change Biol., 17, 1884-1899.
– reference: Richter, S., Kipfer, T., Wohlgemuth, T., Calderón Guerrero, C., Ghazoul, J. & Moser, B. (2012). Phenotypic plasticity facilitates resistance to climate change in a highly variable environment. Oecologia, 169, 269-279.
– reference: Briske, D.D., Fuhlendorf, F.D. & Smeins, F.E. (2006). A unified framework for assessment and application of ecological thresholds. Rangeland Ecol. Manage., 59, 225-236.
– reference: Gu, C. & Riley, W.J. (2010). Combined effects of short term rainfall patterns and soil texture on soil nitrogen cycling A modeling analysis. J. Contam. Hydrol., 112, 141-154.
– reference: Huxman, T.E., Snyder, K.A., Tissue, D., Leffler, A.J., Ogle, K., Pockman, W.T. et al. (2004). Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia, 141, 254-268.
– reference: Granier, A., Reichstein, M., Bréda, N., Janssens, I.A., Falge, E., Ciais, P. et al. (2007). Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric. For. Meteorol., 143, 123-145.
– reference: Albert, K.R., Ro-Poulsen, H., Mikkelsen, T.N., Michelsen, A., Linden, L. & Beier, C. (2011). Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status. Plant Cell Environ., 4, 1207-1222.
– reference: Rustad, L.E., Campbell, J.L., Marion, G.M., Norby, R.J., Mitchell, M.J., Hartley, A.E. et al. (2001). A meta-analysis of the response of soil respiration, net N mineralisation, and above-ground plant growth to experimental ecosystem warming. Oecologia, 126, 543-562.
– reference: Sherry, R.A., Weng, E.S., Arnone, J.A. III, Johnson, D., Schimel, D.S., Verburg, P.S. et al. (2008). Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie. Glob. Change Biol., 14, 2923-2936.
– reference: Weltzin, J.F. et al. (2003). Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience, 53, 941-952.
– reference: Fay, P.A., Blair, J.M., Smith, M.D., Nippert, J.B., Carlisle, J.D. & Knapp, A.K. (2011). Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function. Biogeosciences, 8, 3053-3068.
– reference: Dunnett, N.P., Willis, A.J., Hunt, R. & Grime, J.P. (1998). A 38-year study of relations between weather and vegetation dynamics in road verges near Bibury, Gloucestershire. J. Ecol., 86, 610-623.
– reference: De Boeck, H.J., Dreesen, F.E., Janssens, I.A. & Nijs, I. (2011). Whole-system responses of experimental plant communities to climate extremes imposed in different seasons. New Phytol., 189, 806-817.
– reference: Ineson, P., Taylor, K., Harrison, A.F., Poskitt, J., Benham, D.G., Tipping, E. & Woof, C. (1998). Effects of climate change on nitrogen dynamics in upland soils. 1. A transplant approach. Glob. Change Biol., 4, 143-152.
– reference: Rasmussen, L., Beier, C. & Bergstedt, A. (2002). Experimental manipulations of old pine forest ecosystems to predict the potential tree growth effects of increased CO2 and temperature in a future climate. For. Ecol. Manage., 158, 179-188.
– reference: Singer, M.C. & Parmesan, C. (2010). Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy? Philos. Trans. R. Soc. Lond., 365, 3161-3176.
– reference: Peñuelas, J. & Filella, I. (2001). Phenology: responses to a warming world. Science, 294, 793-795.
– reference: Rustad, L. (2008). The response of terrestrial ecosystems to global climate change: towards an integrated approach. Sci. Total Environ., 404, 222-235.
– reference: Wu, Z., Dijkstra, P., Koch, G.W., Penuelas, J. & Hungate, B.A. (2011). Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob. Change Biol., 17, 927-942.
– reference: Smith, M.D., Knapp, A.K. & Collins, S.L. (2009). A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology, 90, 3279-3289.
– reference: Leuzinger, S., Luo, Y., Beier, C., Dieleman, W., Vicca, S. & Körner, C. (2011). Do global change experiments overestimate impacts on terrestrial ecosystems? Trends Ecol. Evol., 26, 236-241.
– reference: Peñuelas, J., Prieto, P., Beier, C., Cesaraccio, C., De Angelis, P., de Dato, G. et al. (2007). Response of plant species richness and primary productivity in shrublands along a north-south gradient in Europe to seven years of experimental warming and drought. Reductions in primary productivity in the heat and drought year of 2003. Glob. Change Biol., 13, 2563-2581.
– reference: Peterjohn, W.T., Melillo, J.M., Steudler, P.A., Newkirk, K.M., Bowles, F.P. & Aber, J.D. (1995). Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecol. Appl., 4, 617-625.
– reference: Kupper, P., Sõber, J., Sellin, A., Lõhmus, K., Tullus, A., Räim, O. et al. (2011). An experimental facility for free air humidity manipulation (FAHM) can alter water flux through deciduous tree canopy. Environ. Exp. Bot., 72, 432-438.
– reference: Fay, P.A., Carlisle, J.D., Knapp, A.K., Blair, J.M. & Collins, S.L. (2000). Altering rainfall timing and quantity in a mesic grassland ecosystem: design and performance of rainfall manipulation shelters. Ecosystems, 3, 308-319.
– reference: Seastedt, T.R. & Vaccaro, L. (2001). Plant species richness, productivity, and nitrogen and phosphorus limitations across a snowpack gradient in alpine tundra, Colorado, USA. Arct. Antarct. Alp. Res., 33, 100-106.
– reference: Sowerby, A., Emmett, B.A., Williams, D., Beier, C. & Evans, C.D. (2010). The response of dissolved organic carbon (DOC) and ecosystem carbon balance to experimental drought in a temperate shrubland. Eur. J. Soil Sci., 61, 697-709.
– reference: Gerten, D., Luo, Y., le Maire, G., Parton, W.J., Keough, C., Weng, E. et al. (2008). Modelled effects of precipitation on ecosystem carbon and water dynamics in different climatic zones. Glob. Change Biol., 14, 1-15.
– reference: Emmett, B.A., Beier, C., Estiarte, M., Tietema, A., Kristensen, H.L., Williams, D. et al. (2004). The response of soil processes to climate change: results from manipulation studies across an environmental gradient. Ecosystems, 7, 625-637.
– reference: Scheffer, M. & Carpenter, S.R. (2003). Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecol. Evol., 18, 648-656.
– reference: Svejcar, T., Angell, R. & Miller, R. (1999). Fixed location rain shelters for studying precipitation effects on rangelands. J. Arid Environ., 42, 187-193.
– reference: Beier, C., Emmett, B.A., Peñuelas, J., Schmidt, I.K., Tietema, A., Estiarte, M. et al. (2008). Carbon and nitrogen cycles in European ecosystems respond differently to global warming. Sci. Total Environ., 407, 692-697.
– reference: Sowerby, A., Emmett, B.A., Tietema, A. & Beier, C. (2008). Contrasting effects of repeated summer drought on soil carbon efflux in hydric and mesic heathland soils. Glob. Change Biol., 14, 2388-2404.
– reference: Landolt, E., Bäumler, B., Erhardt, A., Hegg, O., Klötzli, F., Lämmler, W., Nobis, M., Rudmann, K., Schweingruber, F.H., Theurillat, J.-P., Urmi, E., Vust, M. & Wohlgemuth, T. (2010). Flora indicativa - Ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen. Verlag Haupt, Bern, 376 S.
– reference: Knapp, A., Beier, C., Briske, D., Classen, A.T., Luo, Y., Reichstein, M. et al. (2008). Consequences of altered precipitation regimes for terrestrial ecosystems. Bioscience, 58, 1-11.
– reference: Jentsch, A., Kreyling, J., Elmer, M., Gellesch, E., Glaser, B., Grant, K. et al. (2011). Climate extremes initiate ecosystem regulating functions while maintaining productivity. J. Ecol., 99, 689-702.
– reference: Kattge, J., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Bönisch, G. et al. (2011). TRY - a global database of plant traits. Glob. Change Biol., 17, 2905-2935.
– reference: Kreyling, J., Jentsch, A. & Beierkuhnlein, C. (2011). Stochastic trajectories of succession initiated by extreme climatic events. Ecol. Lett., 14, 758-764.
– reference: Cottingham, K.L., Lennon, J.T. & Brown, B.L. (2005). Knowing when to draw the line: designing more informative ecological experiments. Front. Ecol. Environ., 3, 145-152.
– reference: Körner, C. & Basler, D. (2010). Phenology under global warming. Science, 327, 1461-1462.
– reference: de Visser, P.H.B., Beier, C., Rasmussen, L., Kreutzer, K., Steinberg, N., Bredemeier, M. et al. (1994). Biological response of forest ecosystems to input changes of water, nutrients and atmospheric loads. For. Ecol. Manage., 68, 15-29.
– reference: Borken, W. & Matzner, E. (2009). Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob. Change Biol., 15, 808-824.
– reference: Dobbertin, M., Eilmann, B., Bleuler, P., Giuggiola, A., Pannatier, E.G., Landolt, W., Schleppi, P. & Rigling, A. (2010). Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest. Tree Physiol., 30, 346-360.
– reference: Meinzer, F.C. (2003). Functional convergence in plant response to the environment. Oecologia, 134, 1-11.
– reference: Eriksson, O. (1996). Regional dynamics of plants: a review of evidence for remnant, source-sink and metapopulations. Oikos, 77, 248-258.
– reference: Leuzinger, S. & Körner, C. (2010). Rainfall distribution is the main driver of runoff under future CO2-concentration in a temperate deciduous forest. Glob. Change Biol., 16, 246-254.
– reference: Boberg, F., Berg, P., Thejll, P., Gutowski, W.J. & Christensen, J.H. (2009). Improved confidence in climate change projections of precipitation evaluated using daily statistics from the PRUDENCE ensemble. Clim. Dyn., 32, 1097-1106.
– reference: Gutschick, V.P. & BassiriRad, H. (2003). Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytol., 160, 21-42.
– reference: Garbulsky, M.F., Penuelas, J., Papale, D., Ardö, J., Goulden, M.L., Kiely, G. et al. (2010). Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems. Glob. Ecol. Biogeogr., 19, 253-267.
– reference: Franks, S.J., Sim, S. & Weis, A.E. (2007). Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. PNAS, 104, 1278-1282.
– reference: Huntington, T.G. (2006). Evidence for intensification of the global water cycle: review and synthesis. J. Hydrol., 319, 83-95.
– reference: Katz, W.R. & Brown, G. (1992). Extreme events in a changing climate: variability is more important than averages. Clim. Change, 21, 289-302.
– reference: Bouchet, R.J. (1963). Evapotranspiration re′elle et potentielle, signification climatique. Int. Assoc. Sci. Hydrol., Proc. Berkeley, Calif. Symp., Publ., 62, 134-142.
– reference: Brazdil, R., Wheeler, D. & Pfister, C. (2010). European climate of the past 500 years based on documentary and instrumental data. Clim. Change, 101, 1-6.
– volume: 26
  start-page: 236
  year: 2011
  end-page: 241
  article-title: Do global change experiments overestimate impacts on terrestrial ecosystems?
  publication-title: Trends Ecol. Evol.
– volume: 59
  start-page: 225
  year: 2006
  end-page: 236
  article-title: A unified framework for assessment and application of ecological thresholds
  publication-title: Rangeland Ecol. Manage.
– volume: 99
  start-page: 125
  year: 2010
  end-page: 161
  article-title: Inverstigating soil moisture‐climate interactions in a changing climate: a review
  publication-title: Earth Sci. Rev.
– volume: 32
  start-page: 1097
  year: 2009
  end-page: 1106
  article-title: Improved confidence in climate change projections of precipitation evaluated using daily statistics from the PRUDENCE ensemble
  publication-title: Clim. Dyn.
– volume: 470
  start-page: 376
  year: 2011
  end-page: 379
  article-title: Human contribution to more‐intense precipitation extremes
  publication-title: Nature
– volume: 143
  start-page: 123
  year: 2007
  end-page: 145
  article-title: Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003
  publication-title: Agric. For. Meteorol.
– volume: 33
  start-page: 100
  year: 2001
  end-page: 106
  article-title: Plant species richness, productivity, and nitrogen and phosphorus limitations across a snowpack gradient in alpine tundra, Colorado, USA
  publication-title: Arct. Antarct. Alp. Res.
– volume: 4
  start-page: 1207
  year: 2011
  end-page: 1222
  article-title: Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status
  publication-title: Plant Cell Environ.
– volume: 99
  start-page: 651
  year: 2011
  end-page: 655
  article-title: The ecological role of climate extremes: current understanding and future prospects
  publication-title: J. Ecol.
– volume: 14
  start-page: 1986
  year: 2008
  end-page: 1999
  article-title: Modelled interactive effects of precipitation, temperature and [CO2] on ecosystem carbon and water dynamics in different climatic zones
  publication-title: Glob. Change Biol.
– volume: 61
  start-page: 697
  year: 2010
  end-page: 709
  article-title: The response of dissolved organic carbon (DOC) and ecosystem carbon balance to experimental drought in a temperate shrubland
  publication-title: Eur. J. Soil Sci.
– volume: 319
  start-page: 83
  year: 2006
  end-page: 95
  article-title: Evidence for intensification of the global water cycle: review and synthesis
  publication-title: J. Hydrol.
– volume: 72
  start-page: 432
  year: 2011
  end-page: 438
  article-title: An experimental facility for free air humidity manipulation (FAHM) can alter water flux through deciduous tree canopy
  publication-title: Environ. Exp. Bot.
– start-page: 81
  year: 2008
  end-page: 116
– volume: 158
  start-page: 179
  year: 2002
  end-page: 188
  article-title: Experimental manipulations of old pine forest ecosystems to predict the potential tree growth effects of increased CO2 and temperature in a future climate
  publication-title: For. Ecol. Manage.
– volume: 14
  start-page: 2388
  year: 2008
  end-page: 2404
  article-title: Contrasting effects of repeated summer drought on soil carbon efflux in hydric and mesic heathland soils
  publication-title: Glob. Change Biol.
– volume: 141
  start-page: 254
  year: 2004
  end-page: 268
  article-title: Precipitation pulses and carbon fluxes in semiarid and arid ecosystems
  publication-title: Oecologia
– volume: 4
  start-page: 617
  year: 1995
  end-page: 625
  article-title: Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures
  publication-title: Ecol. Appl.
– volume: 104
  start-page: 1278
  year: 2007
  end-page: 1282
  article-title: Rapid evolution of flowering time by an annual plant in response to a climate fluctuation
  publication-title: PNAS
– volume: 14
  start-page: 1
  year: 2008
  end-page: 15
  article-title: Modelled effects of precipitation on ecosystem carbon and water dynamics in different climatic zones
  publication-title: Glob. Change Biol.
– volume: 140
  start-page: 11
  year: 2004
  end-page: 25
  article-title: Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2
  publication-title: Oecologia
– volume: 42
  start-page: 187
  year: 1999
  end-page: 193
  article-title: Fixed location rain shelters for studying precipitation effects on rangelands
  publication-title: J. Arid Environ.
– volume: 21
  start-page: 289
  year: 1992
  end-page: 302
  article-title: Extreme events in a changing climate: variability is more important than averages
  publication-title: Clim. Change
– volume: 58
  start-page: 1
  year: 2008
  end-page: 11
  article-title: Consequences of altered precipitation regimes for terrestrial ecosystems
  publication-title: Bioscience
– volume: 29
  start-page: 95
  year: 2010
  end-page: 109
  article-title: A review of snow manipulation experiments in Arctic and alpine tundra ecosystems
  publication-title: Polar Res.
– volume: 14
  start-page: 758
  year: 2011
  end-page: 764
  article-title: Stochastic trajectories of succession initiated by extreme climatic events
  publication-title: Ecol. Lett.
– volume: 101
  start-page: 1
  year: 2010
  end-page: 6
  article-title: European climate of the past 500 years based on documentary and instrumental data
  publication-title: Clim. Change
– volume: 298
  start-page: 2202
  year: 2002
  end-page: 2205
  article-title: Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland
  publication-title: Science
– volume: 99
  start-page: 703
  year: 2011
  end-page: 713
  article-title: Ecotypes of European grass species respond specifically to warming and extreme drought
  publication-title: J. Ecol.
– volume: 3
  start-page: 308
  year: 2000
  end-page: 319
  article-title: Altering rainfall timing and quantity in a mesic grassland ecosystem: design and performance of rainfall manipulation shelters
  publication-title: Ecosystems
– volume: 17
  start-page: 927
  year: 2011
  end-page: 942
  article-title: Responses of terrestrial ecosystems to temperature and precipitation change: a meta‐analysis of experimental manipulation
  publication-title: Glob. Change Biol.
– volume: 62
  start-page: 134
  year: 1963
  end-page: 142
  article-title: Evapotranspiration re′elle et potentielle, signification climatique
  publication-title: Int. Assoc. Sci. Hydrol., Proc. Berkeley, Calif. Symp., Publ.
– volume: 77
  start-page: 248
  year: 1996
  end-page: 258
  article-title: Regional dynamics of plants: a review of evidence for remnant, source‐sink and metapopulations
  publication-title: Oikos
– volume: 126
  start-page: 543
  year: 2001
  end-page: 562
  article-title: A meta‐analysis of the response of soil respiration, net N mineralisation, and above‐ground plant growth to experimental ecosystem warming
  publication-title: Oecologia
– volume: 177
  start-page: 579
  year: 2008
  end-page: 583
  article-title: The observer effect in plant science
  publication-title: New Phytol.
– volume: 86
  start-page: 610
  year: 1998
  end-page: 623
  article-title: A 38‐year study of relations between weather and vegetation dynamics in road verges near Bibury, Gloucestershire
  publication-title: J. Ecol.
– start-page: 996
  year: 2007
– volume: 3
  start-page: 145
  year: 2005
  end-page: 152
  article-title: Knowing when to draw the line: designing more informative ecological experiments
  publication-title: Front. Ecol. Environ.
– volume: 4
  start-page: 143
  year: 1998
  end-page: 152
  article-title: Effects of climate change on nitrogen dynamics in upland soils. 1. A transplant approach
  publication-title: Glob. Change Biol.
– volume: 93
  start-page: 1085
  year: 2005
  end-page: 1093
  article-title: Differential tree mortality in response to severe drought: evidence for long‐term vegetation shifts
  publication-title: J. Ecol.
– volume: 14
  start-page: 2923
  year: 2008
  end-page: 2936
  article-title: Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie
  publication-title: Glob. Change Biol.
– volume: 71
  start-page: 34
  year: 2011
  end-page: 40
  article-title: Do plants remember drought? Hints towards a drought‐memory in grasses
  publication-title: Environ. Exp. Bot.
– volume: 4
  start-page: 142
  year: 2011
  end-page: 143
  article-title: Elusive extremes
  publication-title: Nat. Geosci.
– volume: 13
  start-page: 2563
  year: 2007
  end-page: 2581
  article-title: Response of plant species richness and primary productivity in shrublands along a north‐south gradient in Europe to seven years of experimental warming and drought. Reductions in primary productivity in the heat and drought year of 2003
  publication-title: Glob. Change Biol.
– volume: 141
  start-page: 236
  year: 2004
  end-page: 253
  article-title: Resource pulses, species interactions, and diversity maintenance in arid and semi‐arid environments
  publication-title: Oecologia
– volume: 404
  start-page: 222
  year: 2008
  end-page: 235
  article-title: The response of terrestrial ecosystems to global climate change: towards an integrated approach
  publication-title: Sci. Total Environ.
– volume: 134
  start-page: 1
  year: 2003
  end-page: 11
  article-title: Functional convergence in plant response to the environment
  publication-title: Oecologia
– volume: 112
  start-page: 141
  year: 2010
  end-page: 154
  article-title: Combined effects of short term rainfall patterns and soil texture on soil nitrogen cycling A modeling analysis
  publication-title: J. Contam. Hydrol.
– volume: 169
  start-page: 269
  year: 2012
  end-page: 279
  article-title: Phenotypic plasticity facilitates resistance to climate change in a highly variable environment
  publication-title: Oecologia
– volume: 22
  start-page: 185
  year: 2008
  end-page: 195
  article-title: Experimental design of multifactor climate change experiments with elevated CO2, warming and drought – the CLIMAITE project
  publication-title: Funct. Ecol.
– volume: 7
  start-page: 583
  year: 2004
  end-page: 597
  article-title: Novel approaches to study climate change effects on terrestrial ecosystems in the field – drought and passive night time warming
  publication-title: Ecosystems
– volume: XVIII
  start-page: 248
  year: 1991
  article-title: Zeigerwerte von Pflanzen in Mitteleuropa
  publication-title: Scripta Geobotanica
– volume: 53
  start-page: 941
  year: 2003
  end-page: 952
  article-title: Assessing the response of terrestrial ecosystems to potential changes in precipitation
  publication-title: Bioscience
– volume: 7
  start-page: 625
  year: 2004
  end-page: 637
  article-title: The response of soil processes to climate change: results from manipulation studies across an environmental gradient
  publication-title: Ecosystems
– start-page: 376
  year: 2010
– volume: 99
  start-page: 689
  year: 2011
  end-page: 702
  article-title: Climate extremes initiate ecosystem regulating functions while maintaining productivity
  publication-title: J. Ecol.
– volume: 407
  start-page: 692
  year: 2008
  end-page: 697
  article-title: Carbon and nitrogen cycles in European ecosystems respond differently to global warming
  publication-title: Sci. Total Environ.
– volume: 3
  start-page: 722
  year: 2010
  end-page: 727
  article-title: Contrasting response of European forest and grassland energy exchange to heatwaves
  publication-title: Nat. Geosci.
– volume: 308
  start-page: 119
  year: 2008
  end-page: 130
  article-title: Does a warmer climate with frequent mild water shortages protect grassland communities against a prolonged drought?
  publication-title: Plant Soil
– volume: 151
  start-page: 163
  year: 2011
  end-page: 1640
  article-title: Drought sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies
  publication-title: Agric. For. Meteorol.
– volume: 22
  start-page: 9
  year: 2005
  end-page: 24
  article-title: A review of soil moisture dynamics: from rainfall infiltration to ecosystem response
  publication-title: Environ. Eng. Sci.
– volume: 41
  start-page: 1187
  year: 2009
  end-page: 1198
  article-title: Impact of experimental drought and rewetting on redox transformations and methanogenesis in mesocosms of a northern fen soil
  publication-title: Soil Biol. Biochem.
– volume: 19
  start-page: 253
  year: 2010
  end-page: 267
  article-title: Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems
  publication-title: Glob. Ecol. Biogeogr.
– volume: 289
  start-page: 762
  year: 2000
  end-page: 765
  article-title: The response of two contrasting limestone grasslands to simulated climate change
  publication-title: Science
– volume: 101
  start-page: 95
  year: 1998
  end-page: 109
  article-title: Effect of drought experiments using roof installations on acidification/nitrifaication of soils
  publication-title: For. Ecol. Manage.
– start-page: 847
  year: 2007
  end-page: 940
– volume: 298
  start-page: 1987
  year: 2002
  end-page: 1990
  article-title: Grassland responses to global environmental changes suppressed by elevated CO2
  publication-title: Science
– volume: 294
  start-page: 793
  year: 2001
  end-page: 795
  article-title: Phenology: responses to a warming world
  publication-title: Science
– volume: 15
  start-page: 808
  year: 2009
  end-page: 824
  article-title: Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils
  publication-title: Glob. Change Biol.
– volume: 30
  start-page: 346
  year: 2010
  end-page: 360
  article-title: Effect of irrigation on needle morphology, shoot and stem growth in a drought‐exposed forest
  publication-title: Tree Physiol.
– start-page: 1
  year: 2012
  end-page: 19
– volume: 17
  start-page: 2905
  year: 2011
  end-page: 2935
  article-title: TRY – a global database of plant traits
  publication-title: Glob. Change Biol.
– volume: 17
  start-page: 843
  year: 2011
  end-page: 854
  article-title: Coordinated approaches to quantify long‐term ecosystem dynamics in response to global change
  publication-title: Glob. Change Biol.
– volume: 68
  start-page: 15
  year: 1994
  end-page: 29
  article-title: Biological response of forest ecosystems to input changes of water, nutrients and atmospheric loads
  publication-title: For. Ecol. Manage.
– volume: 81
  start-page: 7
  year: 2007
  end-page: 30
  article-title: A summary of the PRUDENCE model projections of changes in European climate by the end of this century
  publication-title: Clim. Change
– volume: 18
  start-page: 239
  year: 2009
  end-page: 246
  article-title: The “Disaster Gap” of the 20th century and the loss of traditional disaster memory
  publication-title: GAIA – Ecol. Perspect. Sci. Soc.
– volume: 90
  start-page: 3279
  year: 2009
  end-page: 3289
  article-title: A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change
  publication-title: Ecology
– volume: 160
  start-page: 21
  year: 2003
  end-page: 42
  article-title: Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences
  publication-title: New Phytol.
– volume: 327
  start-page: 1461
  year: 2010
  end-page: 1462
  article-title: Phenology under global warming
  publication-title: Science
– volume: 189
  start-page: 806
  year: 2011
  end-page: 817
  article-title: Whole‐system responses of experimental plant communities to climate extremes imposed in different seasons
  publication-title: New Phytol.
– volume: 365
  start-page: 3161
  year: 2010
  end-page: 3176
  article-title: Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre‐existing adaptive strategy?
  publication-title: Philos. Trans. R. Soc. Lond.
– volume: 427
  start-page: 145
  year: 2004
  end-page: 148
  article-title: Extinction risk from climate change
  publication-title: Nature
– volume: 5
  start-page: 365
  year: 2007
  end-page: 374
  article-title: A new generation of climate change experiments: events, not trends
  publication-title: Front. Ecol. Environ.
– volume: 18
  start-page: 648
  year: 2003
  end-page: 656
  article-title: Catastrophic regime shifts in ecosystems: linking theory to observation
  publication-title: Trends in Ecol. Evol.
– volume: 8
  start-page: 3053
  year: 2011
  end-page: 3068
  article-title: Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function
  publication-title: Biogeosciences
– volume: 16
  start-page: 246
  year: 2010
  end-page: 254
  article-title: Rainfall distribution is the main driver of runoff under future CO2‐concentration in a temperate deciduous forest
  publication-title: Glob. Change Biol.
– volume: 17
  start-page: 1884
  year: 2011
  end-page: 1899
  article-title: Reduced N cycling in response to drought, warming, and elevated CO2 in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments
  publication-title: Glob. Change Biol.
– ident: e_1_2_8_17_1
  doi: 10.1111/j.1469-8137.2010.03515.x
– start-page: 81
  volume-title: Weather and Climate Extremes in a Changing Climate: Regions of Focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands
  year: 2008
  ident: e_1_2_8_31_1
– ident: e_1_2_8_49_1
  doi: 10.1016/S0378-1127(97)00128-X
– ident: e_1_2_8_48_1
  doi: 10.1016/j.envexpbot.2010.09.003
– ident: e_1_2_8_73_1
  doi: 10.1126/science.1075312
– ident: e_1_2_8_15_1
  doi: 10.1089/ees.2005.22.9
– ident: e_1_2_8_3_1
  doi: 10.1007/s10021-004-0178-8
– ident: e_1_2_8_47_1
  doi: 10.1111/j.1461-0248.2011.01637.x
– volume: 62
  start-page: 134
  year: 1963
  ident: e_1_2_8_8_1
  article-title: Evapotranspiration re′elle et potentielle, signification climatique
  publication-title: Int. Assoc. Sci. Hydrol., Proc. Berkeley, Calif. Symp., Publ.
– ident: e_1_2_8_26_1
  doi: 10.1111/j.1466-8238.2009.00504.x
– ident: e_1_2_8_74_1
  doi: 10.1111/j.1365-2486.2008.01703.x
– ident: e_1_2_8_65_1
  doi: 10.1016/S0378-1127(00)00677-0
– ident: e_1_2_8_78_1
  doi: 10.1111/j.1365-2486.2008.01643.x
– ident: e_1_2_8_67_1
  doi: 10.1016/j.scitotenv.2008.04.050
– ident: e_1_2_8_4_1
  doi: 10.1016/j.scitotenv.2008.10.001
– start-page: 996
  volume-title: Climate Change 2007: The Physical Science Basis
  year: 2007
  ident: e_1_2_8_37_1
– ident: e_1_2_8_24_1
  doi: 10.5194/bg-8-3053-2011
– ident: e_1_2_8_43_1
  doi: 10.1126/science.1076347
– ident: e_1_2_8_32_1
  doi: 10.1046/j.1469-8137.2003.00866.x
– ident: e_1_2_8_71_1
  doi: 10.2307/1552283
– ident: e_1_2_8_61_1
  doi: 10.1126/science.1066860
– ident: e_1_2_8_80_1
  doi: 10.1006/jare.1999.0514
– volume: 58
  start-page: 1
  year: 2008
  ident: e_1_2_8_44_1
  article-title: Consequences of altered precipitation regimes for terrestrial ecosystems
  publication-title: Bioscience
  doi: 10.1641/B580908
– ident: e_1_2_8_60_1
  doi: 10.1111/j.1365-2745.2005.01042.x
– ident: e_1_2_8_86_1
  doi: 10.1111/j.1751-8369.2010.00153.x
– ident: e_1_2_8_21_1
  doi: 10.1007/s10021-004-0220-x
– ident: e_1_2_8_33_1
  doi: 10.1038/ngeo1090
– ident: e_1_2_8_41_1
  doi: 10.1111/j.1365-2486.2011.02451.x
– ident: e_1_2_8_58_1
  doi: 10.1038/nature09763
– ident: e_1_2_8_16_1
  doi: 10.1111/j.1469-8137.2007.02329.x
– ident: e_1_2_8_22_1
  doi: 10.2307/3546063
– ident: e_1_2_8_25_1
  doi: 10.1073/pnas.0608379104
– ident: e_1_2_8_30_1
  doi: 10.1016/j.jconhyd.2009.12.003
– ident: e_1_2_8_79_1
  doi: 10.1111/j.1365-2389.2010.01276.x
– ident: e_1_2_8_5_1
  doi: 10.1111/j.1365-2745.2011.01809.x
– ident: e_1_2_8_39_1
  doi: 10.1890/1540-9295(2007)5[365:ANGOCE]2.0.CO;2
– ident: e_1_2_8_57_1
  doi: 10.1111/j.1365-2435.2007.01362.x
– ident: e_1_2_8_55_1
  doi: 10.1111/j.1365-2486.2010.02265.x
– ident: e_1_2_8_29_1
  doi: 10.1126/science.289.5480.762
– ident: e_1_2_8_46_1
  doi: 10.1126/science.1186473
– ident: e_1_2_8_34_1
  doi: 10.1016/j.jhydrol.2005.07.003
– ident: e_1_2_8_28_1
  doi: 10.1016/j.agrformet.2006.12.004
– ident: e_1_2_8_53_1
  doi: 10.1016/j.tree.2011.02.011
– ident: e_1_2_8_45_1
  doi: 10.1016/j.soilbio.2009.02.030
– ident: e_1_2_8_7_1
  doi: 10.1111/j.1365-2486.2008.01681.x
– ident: e_1_2_8_62_1
  doi: 10.1111/j.1365-2486.2007.01464.x
– ident: e_1_2_8_59_1
  doi: 10.1007/s00442-004-1550-2
– ident: e_1_2_8_9_1
  doi: 10.1007/s10584-010-9866-x
– start-page: 376
  volume-title: Flora indicativa – Ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen
  year: 2010
  ident: e_1_2_8_50_1
– ident: e_1_2_8_72_1
  doi: 10.1016/j.earscirev.2010.02.004
– ident: e_1_2_8_18_1
  doi: 10.1093/treephys/tpp123
– volume: 14
  start-page: 1
  year: 2008
  ident: e_1_2_8_27_1
  article-title: Modelled effects of precipitation on ecosystem carbon and water dynamics in different climatic zones
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2008.01651.x
– ident: e_1_2_8_63_1
  doi: 10.2307/1941962
– ident: e_1_2_8_82_1
  doi: 10.1038/nature02121
– ident: e_1_2_8_87_1
  doi: 10.1111/j.1365-2486.2010.02302.x
– start-page: 847
  volume-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2007
  ident: e_1_2_8_13_1
– ident: e_1_2_8_84_1
  doi: 10.1016/j.envexpbot.2010.10.020
– ident: e_1_2_8_36_1
  doi: 10.1046/j.1365-2486.1998.00118.x
– ident: e_1_2_8_56_1
  doi: 10.1007/s00442-002-1088-0
– ident: e_1_2_8_85_1
  doi: 10.1641/0006-3568(2003)053[0941:ATROTE]2.0.CO;2
– ident: e_1_2_8_14_1
  doi: 10.1890/1540-9295(2005)003[0145:KWTDTL]2.0.CO;2
– ident: e_1_2_8_23_1
  doi: 10.1007/s100210000028
– start-page: 248
  year: 1991
  ident: e_1_2_8_20_1
  article-title: Zeigerwerte von Pflanzen in Mitteleuropa
  publication-title: Scripta Geobotanica
– ident: e_1_2_8_42_1
  doi: 10.1007/BF00139728
– ident: e_1_2_8_51_1
  doi: 10.1111/j.1365-2486.2010.02351.x
– start-page: 1
  volume-title: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation
  year: 2012
  ident: e_1_2_8_38_1
– ident: e_1_2_8_83_1
  doi: 10.1016/0378-1127(94)90134-1
– ident: e_1_2_8_70_1
  doi: 10.1016/j.agrformet.2011.06.019
– ident: e_1_2_8_75_1
  doi: 10.1098/rstb.2010.0144
– ident: e_1_2_8_52_1
  doi: 10.1111/j.1365-2486.2009.01937.x
– ident: e_1_2_8_35_1
  doi: 10.1007/s00442-004-1682-4
– ident: e_1_2_8_69_1
  doi: 10.1016/j.tree.2003.09.002
– ident: e_1_2_8_88_1
  doi: 10.1007/s11104-008-9612-6
– ident: e_1_2_8_76_1
  doi: 10.1111/j.1365-2745.2011.01833.x
– ident: e_1_2_8_6_1
  doi: 10.1007/s00382-008-0446-y
– ident: e_1_2_8_10_1
  doi: 10.2111/05-115R.1
– ident: e_1_2_8_54_1
  doi: 10.1111/j.1365-2486.2008.01629.x
– ident: e_1_2_8_68_1
  doi: 10.1007/s004420000544
– ident: e_1_2_8_81_1
  doi: 10.1038/ngeo950
– ident: e_1_2_8_40_1
  doi: 10.1111/j.1365-2745.2011.01817.x
– ident: e_1_2_8_11_1
  doi: 10.1007/s00442-004-1551-1
– ident: e_1_2_8_12_1
  doi: 10.1007/s10584-006-9210-7
– volume: 18
  start-page: 239
  year: 2009
  ident: e_1_2_8_64_1
  article-title: The “Disaster Gap” of the 20th century and the loss of traditional disaster memory
  publication-title: GAIA – Ecol. Perspect. Sci. Soc.
– ident: e_1_2_8_66_1
  doi: 10.1007/s00442-011-2191-x
– ident: e_1_2_8_77_1
  doi: 10.1890/08-1815.1
– ident: e_1_2_8_2_1
  doi: 10.1111/j.1365-3040.2011.02320.x
– ident: e_1_2_8_19_1
  doi: 10.1046/j.1365-2745.1998.00297.x
SSID ssj0012971
Score 2.5643456
SecondaryResourceType review_article
Snippet Climatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 899
SubjectTerms Acclimatization
Adaptation, Biological
Animal and plant ecology
Animal, plant and microbial ecology
Biodiversity
Biological and medical sciences
Biomass
Climate Change
Climatic conditions
Climatology. Bioclimatology. Climate change
Earth, ocean, space
Ecosystem
Ecosystem models
Ecosystem resilience
Ecosystems
Environmental regulations
Exact sciences and technology
experimental design
External geophysics
Forecasting
Fundamental and applied biological sciences. Psychology
General aspects
Macroecology
manipulative experiments
Meteorology
Plant communities
Plant Development
Precipitation
precipitation change
precipitation patterns
precipitation scenarios
Rain
Research - trends
Seasonal variations
Soil
Terrestrial ecosystems
Title Precipitation manipulation experiments - challenges and recommendations for the future
URI https://api.istex.fr/ark:/67375/WNG-2H08HKS9-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1461-0248.2012.01793.x
https://www.ncbi.nlm.nih.gov/pubmed/22553898
https://www.proquest.com/docview/1022998241
https://www.proquest.com/docview/1023296963
https://www.proquest.com/docview/1028032131
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hIiQufH8ESmUkxC2rxI6d7BGhLSsKFQIq9mbZXueyJa2aXantqf-Bf8gvYcZOUqWqUIW4RU4miicz9nub2TcAb9SyLuTS2ZTEwdOicllqJSUezw0vubc2dFH4vK_mB8XHhVx09U_0X5ioDzH84EaZEdZrSnBj26tJjlSYxwotPgmxNiE8SaVbhI--DkpSuKtF7hVNxGJc1HPtjUY71W1y-ilVTpoWnVfHrhfXwdIxyg3b1O59WPUTjNUpq8lmbSfu_Ir24__xwAO416FZ9i6G30O45ZtHcCf2tzzDo1nQxD57DIsvpKJx3AmCMxLd6BuHscsmAy37ffGLub6_S8tMs2RE2X_i2dj8qWWIshmiVhbVUJ7Awe7s-_t52jV1SF1JX_prS5ii9Hld2LIuiqmV00w6VSnlloS-LHe-4sI6owSO5Lb2OMuyrhHK2iITT2GrOWr8c2BC4phXlhvkqEpaZG5OKCMRxOaeV1kCZf8CtesmSI03DvWI-eSaPKjJgzp4UJ8mkA-Wx1H14wY2b0OMDAbmZEVVc6XUP_Y_aD7Pqvnet6neS2BnFESDAZJZBEulSmC7jyrdrSitJmaO1BgBVwKvh9O4FtAHHtP4o024RnCSOxJ_vabKBM8F3udZjNjLB0B-iQC2SkCFuLvx3PXs04yOXvyr4Uu4S8OxsnIbttYnG_8K0d7a7oQ8_gMeNUKX
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VVggu_EMDpRgJuGWVOImTPXBAdEvKblcIWrE3N_Y6l9K0anbFLifegcfhVTjxJMzESapUFaqQeuAWJZ7EzszY3ziTbwBeiGkeRlOtXCIHd8NEe66KyPG4n_GYG6WqKgq7Y5Huh-8n0WQFfjb_wlh-iHbDjTyjmq_JwWlD-ryXYyzMbYoW71XG1lvUGZZDs_yK8Vv5emcLlf2S8-3B3tvUrUsMuDqm7865ohUuNn4eqjgPw76K-l6kRSKEnhIWUFybhAdKZyLAM77KDT40znMEVir0ArzvNVijguJE3L_1seWuwnXURnu2j8Gkm0Z0Yc87a-MaqXlBuZpZierKbZ2Ni4BwF1dXC-P2bfjVvFKbD3PYm89UT387xzb5n77zO3CrBuzsjfWwu7Biintw3ZbwXOLRoKL9Xt6HyQciCjmpOc8Z8Yo0tdHYWR2Fkv3-_oPppoRNybJiymhX4giv2vpWJcNAgiEwZ5bw5QHsX8kAH8JqcVyYdWBBhOeMUDzDMFxECoNTHYgsQpzuG554DsSNxUhdD5Bqi3yRneDOl6QxSRqTlcbkwgG_lTyxxCaXkHlVGWUrkJ0eUmJgHMnP43eSp16SDj_15dCBzY7VtgIYryMejIUDG40Zy3rSLCVtPmD0j5jSgeftZZzu6BtWVpjjedUm4MToFPy1TeIF3A_wPo-si5x1AENoxOiJA6Iy9EuPXQ5GAzp6_K-Cz-BGurc7kqOd8fAJ3KQmNpF0A1Znp3PzFMHtTG1WkwiDg6v2oD81pp_m
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VViAu_P8ESjEScMsqcRIne-CA2F22bFlVQMXeTOw4l0K6anbFLifegbfhVbjxJMzESapUFaqQeuAWJZ7EzszY3ziTbwCeiiwPo0wrl8jB3TDRnqsicjzupzzmRqmqisLbqRgfhG9m0WwDfjb_wlh-iHbDjTyjmq_JwedZftrJMRTmNkOL9ypb663qBMuJWX_F8K18sTtAXT_jfDT88Grs1hUGXB3TZ-dc0QIXGz8PVZyHYV9FfS_SIhFCZwQFFNcm4YHSqQjwjK9ygw-N8xxxlQq9AO97CbZC4fWpbMTgXUtdhcuoDfZsH4NZN4vozJ53lsYt0vKKUjXTErWV2zIbZ-HgLqyu1sXRdfjVvFGbDnPYWy5UT387RTb5f77yG3CthuvspfWvm7Bhiltw2RbwXOPRsCL9Xt-G2T7RhMxrxnNGrCJNZTR2UkWhZL-__2C6KWBTsrTIGO1JfMGrtrpVyTCMYAjLmaV7uQMHFzLAu7BZHBXmPrAgwnNGKJ5iEC4ihaGpDkQaIUr3DU88B-LGYKSuB0iVRT7LTmjnS9KYJI3JSmNy5YDfSs4trck5ZJ5XNtkKpMeHlBYYR_Lj9LXkYy8ZT9735cSBnY7RtgIYrSMajIUD240Vy3rKLCVtPWDsj4jSgSftZZzs6AtWWpijZdUm4MTnFPy1TeIF3A_wPvesh5x0AANoROiJA6Ky83OPXQ73hnT04F8FH8OV_cFI7u1OJw_hKrWwWaTbsLk4XppHiGwXaqeaQhh8umgH-gOMSZ6V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precipitation+manipulation+experiments--challenges+and+recommendations+for+the+future&rft.jtitle=Ecology+letters&rft.au=Beier%2C+Claus&rft.au=Beierkuhnlein%2C+Carl&rft.au=Wohlgemuth%2C+Thomas&rft.au=Penuelas%2C+Josep&rft.date=2012-08-01&rft.eissn=1461-0248&rft.volume=15&rft.issue=8&rft.spage=899&rft_id=info:doi/10.1111%2Fj.1461-0248.2012.01793.x&rft_id=info%3Apmid%2F22553898&rft.externalDocID=22553898
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon