Precipitation manipulation experiments - challenges and recommendations for the future
Climatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experi...
Saved in:
Published in | Ecology letters Vol. 15; no. 8; pp. 899 - 911 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.08.2012
Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Climatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experiments indicates that they have provided important information on how water regulates ecosystem processes. However, they do not adequately represent global biomes nor forecasted precipitation scenarios and their potential contribution to advance our understanding of ecosystem responses to precipitation changes is therefore limited, as is their potential value for the development and testing of ecosystem models. This highlights the need for new precipitation experiments in biomes and ambient climatic conditions hitherto poorly studied applying relevant complex scenarios including changes in precipitation frequency and amplitude, seasonality, extremity and interactions with other global change drivers. A systematic and holistic approach to investigate how soil and plant community characteristics change with altered precipitation regimes and the consequent effects on ecosystem processes and functioning within these experiments will greatly increase their value to the climate change and ecosystem research communities. Experiments should specifically test how changes in precipitation leading to exceedance of biological thresholds affect ecosystem resilience and acclimation. |
---|---|
AbstractList | Climatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experiments indicates that they have provided important information on how water regulates ecosystem processes. However, they do not adequately represent global biomes nor forecasted precipitation scenarios and their potential contribution to advance our understanding of ecosystem responses to precipitation changes is therefore limited, as is their potential value for the development and testing of ecosystem models. This highlights the need for new precipitation experiments in biomes and ambient climatic conditions hitherto poorly studied applying relevant complex scenarios including changes in precipitation frequency and amplitude, seasonality, extremity and interactions with other global change drivers. A systematic and holistic approach to investigate how soil and plant community characteristics change with altered precipitation regimes and the consequent effects on ecosystem processes and functioning within these experiments will greatly increase their value to the climate change and ecosystem research communities. Experiments should specifically test how changes in precipitation leading to exceedance of biological thresholds affect ecosystem resilience and acclimation. Climatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experiments indicates that they have provided important information on how water regulates ecosystem processes. However, they do not adequately represent global biomes nor forecasted precipitation scenarios and their potential contribution to advance our understanding of ecosystem responses to precipitation changes is therefore limited, as is their potential value for the development and testing of ecosystem models. This highlights the need for new precipitation experiments in biomes and ambient climatic conditions hitherto poorly studied applying relevant complex scenarios including changes in precipitation frequency and amplitude, seasonality, extremity and interactions with other global change drivers. A systematic and holistic approach to investigate how soil and plant community characteristics change with altered precipitation regimes and the consequent effects on ecosystem processes and functioning within these experiments will greatly increase their value to the climate change and ecosystem research communities. Experiments should specifically test how changes in precipitation leading to exceedance of biological thresholds affect ecosystem resilience and acclimation. [PUBLICATION ABSTRACT] Climatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experiments indicates that they have provided important information on how water regulates ecosystem processes. However, they do not adequately represent global biomes nor forecasted precipitation scenarios and their potential contribution to advance our understanding of ecosystem responses to precipitation changes is therefore limited, as is their potential value for the development and testing of ecosystem models. This highlights the need for new precipitation experiments in biomes and ambient climatic conditions hitherto poorly studied applying relevant complex scenarios including changes in precipitation frequency and amplitude, seasonality, extremity and interactions with other global change drivers. A systematic and holistic approach to investigate how soil and plant community characteristics change with altered precipitation regimes and the consequent effects on ecosystem processes and functioning within these experiments will greatly increase their value to the climate change and ecosystem research communities. Experiments should specifically test how changes in precipitation leading to exceedance of biological thresholds affect ecosystem resilience and acclimation.Climatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experiments indicates that they have provided important information on how water regulates ecosystem processes. However, they do not adequately represent global biomes nor forecasted precipitation scenarios and their potential contribution to advance our understanding of ecosystem responses to precipitation changes is therefore limited, as is their potential value for the development and testing of ecosystem models. This highlights the need for new precipitation experiments in biomes and ambient climatic conditions hitherto poorly studied applying relevant complex scenarios including changes in precipitation frequency and amplitude, seasonality, extremity and interactions with other global change drivers. A systematic and holistic approach to investigate how soil and plant community characteristics change with altered precipitation regimes and the consequent effects on ecosystem processes and functioning within these experiments will greatly increase their value to the climate change and ecosystem research communities. Experiments should specifically test how changes in precipitation leading to exceedance of biological thresholds affect ecosystem resilience and acclimation. |
Author | Beier, Claus de Boeck, Hans Beierkuhnlein, Carl Wohlgemuth, Thomas Emmett, Bridget Christensen, Jens Hesselbjerg Körner, Christian Penuelas, Josep Janssens, Ivan A. Leuzinger, Sebastian Hansen, Karin |
Author_xml | – sequence: 1 givenname: Claus surname: Beier fullname: Beier, Claus email: clbe@kt.dtu.dk organization: Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark – sequence: 2 givenname: Carl surname: Beierkuhnlein fullname: Beierkuhnlein, Carl organization: Department of Biogeography, University of Bayreuth, Universitaetsstr. 25, D-95440, Bayreuth, Germany – sequence: 3 givenname: Thomas surname: Wohlgemuth fullname: Wohlgemuth, Thomas organization: Forest Dynamics, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland – sequence: 4 givenname: Josep surname: Penuelas fullname: Penuelas, Josep organization: Department Global Ecology, CREAF-CSIC Barcelona, Edifici C, UAB o8193, Bellaterra, Spain – sequence: 5 givenname: Bridget surname: Emmett fullname: Emmett, Bridget organization: Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, UK-LL57 2UW, Wales, Bangor, UK – sequence: 6 givenname: Christian surname: Körner fullname: Körner, Christian organization: Institute of Botany, University of Basel, Schoenbeinstr. 6, CH-4056, Basel, Switzerland – sequence: 7 givenname: Hans surname: de Boeck fullname: de Boeck, Hans organization: Plant and Vegetation Ecology, University of Antwerp, Universiteitsplein 1, BE-2610, Wilrijk, Belgium – sequence: 8 givenname: Jens Hesselbjerg surname: Christensen fullname: Christensen, Jens Hesselbjerg organization: Danish Climate Centre, Danish Meteorological Institute, Lyngbyvej 100, DK-2100, Copenhagen Ø, Denmark – sequence: 9 givenname: Sebastian surname: Leuzinger fullname: Leuzinger, Sebastian organization: Environmental Sciences, ETH Zurich Forest Ecology, Universitätstrasse 16, CH-8092, Basel, Switzerland – sequence: 10 givenname: Ivan A. surname: Janssens fullname: Janssens, Ivan A. organization: Plant and Vegetation Ecology, University of Antwerp, Universiteitsplein 1, BE-2610, Wilrijk, Belgium – sequence: 11 givenname: Karin surname: Hansen fullname: Hansen, Karin organization: IVL Swedish Environmental Research Institute, P.O. Box 210 60, SE-100 31, Stockholm, Sweden |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26161476$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22553898$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkdtu1DAQhi1URA_wCigSQuImwYfEsS9Aqqqli7oCJI53luMdUy9ZJ9iJ2L49TrMsUq_WNx57vn_smf8cnfjOA0IZwQVJ6_WmICUnOaalKCgmtMCklqzYPUJnh8TJIWY_TtF5jBucSFmTJ-iU0qpiQooz9O1TAON6N-jBdT7bau_6sZ0PsOshuC34IWZ5Zm5124L_CTHTfp0lWbdNufU9GzPbhWy4hcyOwxjgKXpsdRvh2X6_QF_fLb5cLfPVx-v3V5er3NS4ZLltiCC0BmLLprZlKZtK4spwwblZ8_TfhhoQlDVGc5ZuSGMh9VRbK6VsSswu0Ku5bh-63yPEQW1dNNC22kM3RkUwFZhRwsgxKKOSS84S-uIBuunG4FMjE0WlFLScCj7fU2OzhbXq06x0uFP_hpuAl3tAR6NbG7Q3Lv7nOOGkrHnixMyZ0MUYwB4QgtXkt9qoyUo12aomv9W932qXpG8fSM3eyiFo1x5T4M1c4I9r4e7oh9VitZiipM9nvYsD7A56HX4pXrO6Ut8_XCu6xGJ581mqG_YXgq7RSw |
CitedBy_id | crossref_primary_10_5194_acp_14_6345_2014 crossref_primary_10_1002_rse2_148 crossref_primary_10_1111_een_12403 crossref_primary_10_1139_cjss_2018_0002 crossref_primary_10_1038_ncomms7682 crossref_primary_10_1111_gcb_12225 crossref_primary_10_1038_s41467_021_22766_0 crossref_primary_10_7717_peerj_9040 crossref_primary_10_1002_ece3_433 crossref_primary_10_1111_1365_2656_12451 crossref_primary_10_1007_s10021_016_0025_8 crossref_primary_10_1111_1365_2745_13226 crossref_primary_10_1111_1365_2745_13102 crossref_primary_10_1111_1365_2745_12253 crossref_primary_10_1371_journal_pone_0188260 crossref_primary_10_1016_j_atmosenv_2019_116951 crossref_primary_10_1016_j_mex_2021_101331 crossref_primary_10_1111_2041_210X_12582 crossref_primary_10_1111_gcb_12215 crossref_primary_10_1038_s41559_019_0958_3 crossref_primary_10_3389_fmicb_2017_01384 crossref_primary_10_1007_s10705_021_10155_4 crossref_primary_10_1139_cjss_2018_0114 crossref_primary_10_1111_1365_2745_14426 crossref_primary_10_1007_s10661_024_13393_5 crossref_primary_10_5194_hess_26_2277_2022 crossref_primary_10_1016_j_agrformet_2021_108337 crossref_primary_10_1016_j_foreco_2021_119970 crossref_primary_10_1007_s00468_014_1011_4 crossref_primary_10_1016_j_scitotenv_2020_141222 crossref_primary_10_1007_s11104_023_06348_1 crossref_primary_10_1016_j_ppees_2016_08_001 crossref_primary_10_1093_jpe_rtae011 crossref_primary_10_3390_f12020165 crossref_primary_10_1080_15427528_2020_1750521 crossref_primary_10_3389_fpls_2016_00663 crossref_primary_10_1111_gcb_13662 crossref_primary_10_1080_02626667_2014_950582 crossref_primary_10_1080_17550874_2022_2101154 crossref_primary_10_1093_femsec_fiaa205 crossref_primary_10_1016_j_apsoil_2014_03_007 crossref_primary_10_1007_s00374_023_01716_6 crossref_primary_10_3389_fpls_2025_1519879 crossref_primary_10_1007_s10021_023_00842_4 crossref_primary_10_1016_j_ejsobi_2020_103170 crossref_primary_10_11648_j_fem_20241001_13 crossref_primary_10_1007_s11104_014_2137_2 crossref_primary_10_1016_j_scib_2019_03_012 crossref_primary_10_1038_s41598_018_34969_5 crossref_primary_10_1016_j_agrformet_2021_108472 crossref_primary_10_1093_treephys_tpu114 crossref_primary_10_1002_wat2_1481 crossref_primary_10_1016_j_foreco_2023_121212 crossref_primary_10_1038_srep20120 crossref_primary_10_1111_2041_210X_13331 crossref_primary_10_5194_bg_11_2991_2014 crossref_primary_10_1093_treephys_tpt027 crossref_primary_10_1111_gcb_16959 crossref_primary_10_1016_j_envexpbot_2013_10_004 crossref_primary_10_1111_gcb_15501 crossref_primary_10_1080_23311843_2018_1549799 crossref_primary_10_1007_s10811_019_01838_1 crossref_primary_10_1038_ncomms6102 crossref_primary_10_1002_ece3_5635 crossref_primary_10_3390_f13081194 crossref_primary_10_1016_j_scitotenv_2020_140272 crossref_primary_10_1093_jpe_rtz011 crossref_primary_10_1016_j_catena_2022_106652 crossref_primary_10_1111_2041_210X_12495 crossref_primary_10_1111_gcb_12424 crossref_primary_10_1002_eap_3007 crossref_primary_10_1007_s11258_019_00977_2 crossref_primary_10_1111_nph_17269 crossref_primary_10_21829_abm129_2022_2009 crossref_primary_10_1016_j_indic_2020_100095 crossref_primary_10_1007_s10021_018_0280_y crossref_primary_10_1016_j_soilbio_2018_12_022 crossref_primary_10_3389_ffgc_2019_00010 crossref_primary_10_1007_s00248_022_02092_8 crossref_primary_10_1002_aps3_11325 crossref_primary_10_1111_gcb_13504 crossref_primary_10_1111_nph_18462 crossref_primary_10_1111_gcb_12537 crossref_primary_10_1111_gcb_13620 crossref_primary_10_1007_s11056_019_09716_x crossref_primary_10_1111_ele_12193 crossref_primary_10_1002_2016GL069416 crossref_primary_10_1016_j_envexpbot_2017_02_006 crossref_primary_10_1371_journal_pone_0041493 crossref_primary_10_1016_j_plantsci_2016_07_004 crossref_primary_10_1525_elementa_2022_00116 crossref_primary_10_3389_fpls_2022_974745 crossref_primary_10_1002_gdj3_129 crossref_primary_10_1002_ldr_4576 crossref_primary_10_1016_j_envexpbot_2018_04_012 crossref_primary_10_3389_fpls_2023_1211182 crossref_primary_10_3390_plants12173017 crossref_primary_10_1007_s11104_025_07370_1 crossref_primary_10_1002_ecs2_2088 crossref_primary_10_1017_S096025852400014X crossref_primary_10_1007_s11104_024_07067_x crossref_primary_10_1007_s11430_024_1459_3 crossref_primary_10_1016_j_eja_2025_127568 crossref_primary_10_1007_s00442_015_3396_1 crossref_primary_10_1016_j_ppees_2017_01_002 crossref_primary_10_1111_ele_13134 crossref_primary_10_1016_j_gecco_2018_e00475 crossref_primary_10_1016_j_still_2023_105898 crossref_primary_10_1007_s11258_014_0349_4 crossref_primary_10_1016_j_scitotenv_2023_167007 crossref_primary_10_3389_fenvs_2020_00088 crossref_primary_10_7717_peerj_7044 crossref_primary_10_1088_2752_5295_acb5b8 crossref_primary_10_5194_bg_17_3859_2020 crossref_primary_10_1007_s00442_022_05133_8 crossref_primary_10_1371_journal_pone_0132663 crossref_primary_10_1111_gcb_13763 crossref_primary_10_1002_ece3_6400 crossref_primary_10_1111_oik_10136 crossref_primary_10_1016_j_scitotenv_2024_173098 crossref_primary_10_1016_j_agrformet_2015_08_251 crossref_primary_10_1016_j_soilbio_2022_108783 crossref_primary_10_1016_j_scitotenv_2013_11_122 crossref_primary_10_1002_pei3_10031 crossref_primary_10_1016_j_foreco_2023_121423 crossref_primary_10_1007_s10530_021_02478_8 crossref_primary_10_1007_s10457_024_01092_6 crossref_primary_10_1111_gcb_13399 crossref_primary_10_1111_een_12120 crossref_primary_10_1093_biosci_biv099 crossref_primary_10_1080_17550874_2022_2160674 crossref_primary_10_1111_gcb_13156 crossref_primary_10_1111_jvs_12902 crossref_primary_10_1093_ee_nvx053 crossref_primary_10_1098_rspb_2019_1486 crossref_primary_10_1111_gcb_13029 crossref_primary_10_3389_fmicb_2023_1249036 crossref_primary_10_59717_j_xinn_geo_2024_100117 crossref_primary_10_5194_bg_20_2117_2023 crossref_primary_10_1007_s11104_014_2349_5 crossref_primary_10_1111_gcb_13269 crossref_primary_10_7554_eLife_23255 crossref_primary_10_1111_aje_12881 crossref_primary_10_3161_15052249PJE2015_63_3_003 crossref_primary_10_1111_aec_12527 crossref_primary_10_5194_bg_19_1979_2022 crossref_primary_10_1002_ecm_1262 crossref_primary_10_1111_1365_2435_14460 crossref_primary_10_1086_676304 crossref_primary_10_1111_1365_2435_14100 crossref_primary_10_1111_gcb_14595 crossref_primary_10_3390_f13010037 crossref_primary_10_1111_gcb_16532 crossref_primary_10_3389_fpls_2022_836968 crossref_primary_10_5194_bg_14_2513_2017 crossref_primary_10_1016_j_scitotenv_2024_176835 crossref_primary_10_1890_14_0144_1 crossref_primary_10_1093_femsec_fiy099 crossref_primary_10_1016_j_ecolind_2017_04_011 crossref_primary_10_1007_s10533_022_00963_3 crossref_primary_10_1038_nclimate3114 crossref_primary_10_3390_f11101094 crossref_primary_10_1111_ecog_07018 crossref_primary_10_1002_2015JG003091 crossref_primary_10_1038_srep12344 crossref_primary_10_1016_j_scitotenv_2023_164212 crossref_primary_10_1111_gcb_13177 crossref_primary_10_1016_j_catena_2021_105253 crossref_primary_10_1111_jvs_12807 crossref_primary_10_3389_fpls_2025_1455170 crossref_primary_10_1016_j_scitotenv_2013_12_071 crossref_primary_10_1088_1748_9326_aa7398 crossref_primary_10_1016_j_scienta_2023_112573 crossref_primary_10_3390_agronomy13010220 crossref_primary_10_1007_s42452_024_05640_8 crossref_primary_10_3389_fpls_2017_01200 crossref_primary_10_1186_s40663_019_0181_3 crossref_primary_10_1111_gcb_12194 crossref_primary_10_1111_btp_12829 crossref_primary_10_1111_gcb_13161 crossref_primary_10_1016_j_soilbio_2012_12_012 crossref_primary_10_1111_csp2_475 crossref_primary_10_1002_2014RG000458 crossref_primary_10_1007_s10021_015_9845_1 crossref_primary_10_1111_plb_12461 crossref_primary_10_3389_fpls_2018_01586 crossref_primary_10_1007_s40641_018_0103_4 crossref_primary_10_7717_peerj_8433 crossref_primary_10_1371_journal_pone_0070997 crossref_primary_10_1007_s10265_019_01105_x crossref_primary_10_1111_gcb_12023 crossref_primary_10_1111_jac_12225 crossref_primary_10_3389_fenvs_2023_1117184 crossref_primary_10_1111_1365_2435_13215 crossref_primary_10_1038_s41598_023_39267_3 crossref_primary_10_1016_j_agee_2016_04_030 crossref_primary_10_1093_biosci_biab033 crossref_primary_10_1111_gcb_14797 crossref_primary_10_1111_nph_20144 crossref_primary_10_3389_fevo_2021_708761 crossref_primary_10_1016_j_scitotenv_2021_149604 crossref_primary_10_3389_fpls_2020_564802 crossref_primary_10_5194_bg_12_961_2015 crossref_primary_10_1017_S096025851300038X crossref_primary_10_1111_jvs_13089 crossref_primary_10_1007_s13157_021_01445_2 crossref_primary_10_1016_j_scitotenv_2023_167419 crossref_primary_10_1016_j_agrformet_2016_07_010 crossref_primary_10_1111_1365_2664_12593 crossref_primary_10_1371_journal_pone_0093881 crossref_primary_10_1016_j_agee_2018_12_016 crossref_primary_10_1128_msystems_00247_22 crossref_primary_10_1007_s10021_017_0131_2 crossref_primary_10_1111_1365_2435_12135 crossref_primary_10_1111_ele_12202 crossref_primary_10_1016_j_ecolind_2024_112276 crossref_primary_10_1111_1365_2435_13341 crossref_primary_10_1016_j_scitotenv_2024_174693 crossref_primary_10_1007_s11104_015_2604_4 crossref_primary_10_5194_bg_20_2143_2023 crossref_primary_10_1371_journal_pone_0194242 crossref_primary_10_1111_plb_12245 crossref_primary_10_1111_gcb_13493 crossref_primary_10_1371_journal_pone_0162310 crossref_primary_10_3389_fpls_2017_01478 crossref_primary_10_1029_2022JG007127 crossref_primary_10_1007_s00442_019_04463_4 crossref_primary_10_7717_peerj_6347 crossref_primary_10_1016_j_gecco_2023_e02627 crossref_primary_10_1111_1462_2920_15970 crossref_primary_10_1016_j_envres_2023_117029 crossref_primary_10_1111_geb_12224 crossref_primary_10_1007_s00442_018_4232_1 crossref_primary_10_1002_ecy_2474 crossref_primary_10_3389_fpls_2021_756956 crossref_primary_10_1525_elementa_2021_00110 crossref_primary_10_1016_j_scitotenv_2024_173632 crossref_primary_10_1016_j_agrformet_2013_10_004 crossref_primary_10_1007_s40333_015_0136_7 crossref_primary_10_1002_ajb2_16452 crossref_primary_10_1007_s00442_013_2839_9 crossref_primary_10_1007_s11629_013_2697_2 crossref_primary_10_1016_j_foreco_2022_120538 crossref_primary_10_1659_MRD_JOURNAL_D_16_00097_1 crossref_primary_10_1007_s00442_015_3414_3 crossref_primary_10_1016_j_scitotenv_2024_175805 crossref_primary_10_1002_ecm_1424 crossref_primary_10_1007_s12237_016_0090_4 crossref_primary_10_3389_fpls_2016_01196 crossref_primary_10_1007_s11258_019_00915_2 crossref_primary_10_1016_j_scitotenv_2022_153314 crossref_primary_10_1016_j_scitotenv_2022_155732 crossref_primary_10_2112_JCOASTRES_D_15_00179_1 crossref_primary_10_1007_s11104_023_05949_0 crossref_primary_10_1007_s10021_014_9798_9 crossref_primary_10_1016_j_catena_2024_108402 crossref_primary_10_1525_elementa_2021_00014 crossref_primary_10_1002_fee_2031 crossref_primary_10_1007_s42729_023_01298_0 crossref_primary_10_1111_jvs_12766 crossref_primary_10_1111_jvs_12889 crossref_primary_10_1016_j_jaridenv_2014_11_005 crossref_primary_10_1016_j_agee_2023_108852 crossref_primary_10_1038_s43017_024_00534_0 crossref_primary_10_1016_j_jenvman_2024_122235 crossref_primary_10_1111_gcb_12916 crossref_primary_10_1016_j_soilbio_2018_02_023 crossref_primary_10_1111_plb_12177 crossref_primary_10_3389_fenvs_2018_00014 crossref_primary_10_1093_aobpla_plw026 crossref_primary_10_1111_nph_12662 crossref_primary_10_1111_gcb_14096 crossref_primary_10_1002_ecs2_2543 crossref_primary_10_1111_1365_2435_13677 crossref_primary_10_5194_bg_11_3083_2014 crossref_primary_10_1016_j_geoderma_2023_116432 crossref_primary_10_1186_s12898_017_0133_0 crossref_primary_10_1007_s00374_019_01417_z crossref_primary_10_1016_j_foreco_2014_06_030 crossref_primary_10_1098_rstb_2018_0085 crossref_primary_10_3390_plants11040505 crossref_primary_10_1016_j_catena_2014_11_013 crossref_primary_10_1016_j_ecolind_2020_106843 crossref_primary_10_1016_j_soilbio_2024_109427 crossref_primary_10_1029_2022JG006887 crossref_primary_10_1016_j_geoderma_2022_116318 crossref_primary_10_1038_nclimate1904 crossref_primary_10_1093_treephys_tpx041 crossref_primary_10_5194_bg_19_2025_2022 crossref_primary_10_1016_j_scitotenv_2020_144384 crossref_primary_10_1111_geb_13356 crossref_primary_10_1111_gcb_14046 crossref_primary_10_1007_s11104_017_3377_8 crossref_primary_10_1002_ecs2_2635 crossref_primary_10_1007_s10021_017_0185_1 crossref_primary_10_1111_nph_13693 crossref_primary_10_1016_j_scitotenv_2023_162000 crossref_primary_10_1002_ecy_2444 crossref_primary_10_1002_2016GB005480 crossref_primary_10_3390_plants12051158 crossref_primary_10_3390_rs14102484 crossref_primary_10_1007_s00468_015_1165_8 crossref_primary_10_1016_j_fmre_2022_09_028 crossref_primary_10_1007_s11258_019_00917_0 crossref_primary_10_1111_nph_15860 crossref_primary_10_1016_j_scitotenv_2023_164406 crossref_primary_10_1007_s13280_021_01645_4 crossref_primary_10_1002_ecy_3744 crossref_primary_10_1016_j_gecco_2022_e02152 crossref_primary_10_1016_j_gecco_2023_e02471 crossref_primary_10_1515_biolog_2017_0163 crossref_primary_10_1007_s00442_019_04506_w crossref_primary_10_1007_s11258_015_0488_2 crossref_primary_10_1016_j_ecolmodel_2021_109737 crossref_primary_10_3390_agronomy10040520 crossref_primary_10_1016_j_apsoil_2018_06_014 crossref_primary_10_15377_2410_3624_2020_07_3 crossref_primary_10_1007_s11120_024_01110_9 crossref_primary_10_1016_j_soilbio_2017_08_002 crossref_primary_10_1186_s12862_021_01842_5 crossref_primary_10_12944_CWE_18_2_10 crossref_primary_10_1016_j_scitotenv_2018_01_174 crossref_primary_10_1002_ece3_2729 crossref_primary_10_1007_s11676_018_0733_3 crossref_primary_10_34133_ehs_0261 crossref_primary_10_1093_bioscience_63_9_763 crossref_primary_10_1093_jpe_rtaa035 crossref_primary_10_1111_geb_13039 crossref_primary_10_1007_s00484_023_02502_7 crossref_primary_10_1111_gcb_12626 crossref_primary_10_1016_j_atmosenv_2018_08_010 crossref_primary_10_1016_j_geoderma_2024_117042 crossref_primary_10_3390_microorganisms10040817 crossref_primary_10_1016_j_earscirev_2020_103501 crossref_primary_10_1038_s41467_020_18631_1 crossref_primary_10_1007_s10342_013_0697_y crossref_primary_10_1111_rec_14210 crossref_primary_10_1111_2041_210X_14483 crossref_primary_10_1111_gcb_13941 crossref_primary_10_1111_nph_13134 crossref_primary_10_3389_fpls_2017_00802 crossref_primary_10_1007_s00442_014_3090_8 crossref_primary_10_1111_evo_14131 crossref_primary_10_1007_s00114_013_1132_4 crossref_primary_10_1016_j_soilbio_2017_09_028 crossref_primary_10_1007_s11258_018_0814_6 crossref_primary_10_1016_j_soilbio_2017_09_023 crossref_primary_10_1016_j_foreco_2018_08_022 crossref_primary_10_1186_s12870_021_02920_y crossref_primary_10_1186_s13717_023_00429_w crossref_primary_10_1007_s12665_016_6158_4 crossref_primary_10_1111_jvs_12362 crossref_primary_10_3390_f6062029 crossref_primary_10_1016_j_soilbio_2024_109402 crossref_primary_10_1016_j_rama_2023_05_007 crossref_primary_10_1007_s40333_023_0051_2 crossref_primary_10_3390_f14040796 crossref_primary_10_1016_j_soilbio_2019_107520 crossref_primary_10_1080_20964129_2022_2110523 crossref_primary_10_1016_j_envexpbot_2019_103865 crossref_primary_10_1007_s00374_016_1171_z crossref_primary_10_1007_s11368_018_1998_z crossref_primary_10_1093_plcell_koac324 crossref_primary_10_1111_1365_2435_13957 crossref_primary_10_1007_s10750_014_2129_5 crossref_primary_10_1111_ecog_06835 crossref_primary_10_1016_j_ecoleng_2023_106949 crossref_primary_10_1016_j_apsoil_2023_104805 crossref_primary_10_1002_ecy_2984 crossref_primary_10_1111_nph_13477 crossref_primary_10_1371_journal_pone_0070287 crossref_primary_10_1002_ecm_1507 crossref_primary_10_1007_s10533_020_00651_0 crossref_primary_10_1016_j_agee_2024_109312 crossref_primary_10_1111_nph_15123 crossref_primary_10_1002_saj2_20344 crossref_primary_10_1111_ppl_14160 crossref_primary_10_1002_ecy_3926 crossref_primary_10_1002_ecy_1501 crossref_primary_10_1002_ecy_1506 crossref_primary_10_1016_j_ejsobi_2023_103545 crossref_primary_10_1111_jvs_12783 crossref_primary_10_1016_j_ppees_2020_125530 crossref_primary_10_1111_oik_09415 crossref_primary_10_1111_oik_05297 crossref_primary_10_3389_fpls_2022_998169 crossref_primary_10_3389_fenvs_2014_00044 crossref_primary_10_1016_j_pedobi_2016_04_003 crossref_primary_10_1002_2016JG003370 crossref_primary_10_5194_bg_15_1065_2018 crossref_primary_10_1016_j_agrformet_2024_110151 crossref_primary_10_1016_j_soilbio_2018_04_029 crossref_primary_10_1111_jvs_12558 crossref_primary_10_1093_jpe_rtw058 crossref_primary_10_1111_2041_210X_13094 crossref_primary_10_3389_ffgc_2024_1370934 crossref_primary_10_1016_j_scitotenv_2019_134421 crossref_primary_10_1111_ecog_05671 crossref_primary_10_1016_j_ecolind_2020_106223 crossref_primary_10_1016_j_scitotenv_2018_07_035 crossref_primary_10_1029_2018GL081418 crossref_primary_10_3389_fenvs_2021_686668 crossref_primary_10_3390_agronomy10122004 crossref_primary_10_18822_edgcc134238 crossref_primary_10_3390_su11215954 crossref_primary_10_1360_SSTe_2024_0141 crossref_primary_10_1016_j_scitotenv_2016_03_117 crossref_primary_10_1016_j_agrformet_2021_108557 crossref_primary_10_1038_nature12350 crossref_primary_10_1038_s41598_017_15157_3 crossref_primary_10_1111_jvs_12698 crossref_primary_10_1111_1365_2435_12824 |
Cites_doi | 10.1111/j.1469-8137.2010.03515.x 10.1016/S0378-1127(97)00128-X 10.1016/j.envexpbot.2010.09.003 10.1126/science.1075312 10.1089/ees.2005.22.9 10.1007/s10021-004-0178-8 10.1111/j.1461-0248.2011.01637.x 10.1111/j.1466-8238.2009.00504.x 10.1111/j.1365-2486.2008.01703.x 10.1016/S0378-1127(00)00677-0 10.1111/j.1365-2486.2008.01643.x 10.1016/j.scitotenv.2008.04.050 10.1016/j.scitotenv.2008.10.001 10.5194/bg-8-3053-2011 10.1126/science.1076347 10.1046/j.1469-8137.2003.00866.x 10.2307/1552283 10.1126/science.1066860 10.1006/jare.1999.0514 10.1641/B580908 10.1111/j.1365-2745.2005.01042.x 10.1111/j.1751-8369.2010.00153.x 10.1007/s10021-004-0220-x 10.1038/ngeo1090 10.1111/j.1365-2486.2011.02451.x 10.1038/nature09763 10.1111/j.1469-8137.2007.02329.x 10.2307/3546063 10.1073/pnas.0608379104 10.1016/j.jconhyd.2009.12.003 10.1111/j.1365-2389.2010.01276.x 10.1111/j.1365-2745.2011.01809.x 10.1890/1540-9295(2007)5[365:ANGOCE]2.0.CO;2 10.1111/j.1365-2435.2007.01362.x 10.1111/j.1365-2486.2010.02265.x 10.1126/science.289.5480.762 10.1126/science.1186473 10.1016/j.jhydrol.2005.07.003 10.1016/j.agrformet.2006.12.004 10.1016/j.tree.2011.02.011 10.1016/j.soilbio.2009.02.030 10.1111/j.1365-2486.2008.01681.x 10.1111/j.1365-2486.2007.01464.x 10.1007/s00442-004-1550-2 10.1007/s10584-010-9866-x 10.1016/j.earscirev.2010.02.004 10.1093/treephys/tpp123 10.1111/j.1365-2486.2008.01651.x 10.2307/1941962 10.1038/nature02121 10.1111/j.1365-2486.2010.02302.x 10.1016/j.envexpbot.2010.10.020 10.1046/j.1365-2486.1998.00118.x 10.1007/s00442-002-1088-0 10.1641/0006-3568(2003)053[0941:ATROTE]2.0.CO;2 10.1890/1540-9295(2005)003[0145:KWTDTL]2.0.CO;2 10.1007/s100210000028 10.1007/BF00139728 10.1111/j.1365-2486.2010.02351.x 10.1016/0378-1127(94)90134-1 10.1016/j.agrformet.2011.06.019 10.1098/rstb.2010.0144 10.1111/j.1365-2486.2009.01937.x 10.1007/s00442-004-1682-4 10.1016/j.tree.2003.09.002 10.1007/s11104-008-9612-6 10.1111/j.1365-2745.2011.01833.x 10.1007/s00382-008-0446-y 10.2111/05-115R.1 10.1111/j.1365-2486.2008.01629.x 10.1007/s004420000544 10.1038/ngeo950 10.1111/j.1365-2745.2011.01817.x 10.1007/s00442-004-1551-1 10.1007/s10584-006-9210-7 10.1007/s00442-011-2191-x 10.1890/08-1815.1 10.1111/j.1365-3040.2011.02320.x 10.1046/j.1365-2745.1998.00297.x |
ContentType | Journal Article |
Copyright | 2012 Blackwell Publishing Ltd/CNRS 2015 INIST-CNRS 2012 Blackwell Publishing Ltd/CNRS. Copyright © 2012 Blackwell Publishing Ltd/CNRS |
Copyright_xml | – notice: 2012 Blackwell Publishing Ltd/CNRS – notice: 2015 INIST-CNRS – notice: 2012 Blackwell Publishing Ltd/CNRS. – notice: Copyright © 2012 Blackwell Publishing Ltd/CNRS |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7X8 7ST 7U6 |
DOI | 10.1111/j.1461-0248.2012.01793.x |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Ecology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Environmental Sciences and Pollution Management MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts |
DatabaseTitleList | CrossRef Entomology Abstracts MEDLINE - Academic MEDLINE Ecology Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1461-0248 |
Editor | Arnone, John |
Editor_xml | – sequence: 12 givenname: John surname: Arnone fullname: Arnone, John |
EndPage | 911 |
ExternalDocumentID | 2701270281 22553898 26161476 10_1111_j_1461_0248_2012_01793_x ELE1793 ark_67375_WNG_2H08HKS9_K |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: ClimMani – fundername: ACQWA – fundername: European Science Foundation – fundername: Danish V. Kann Rasmussen Foundation |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ N~3 O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7X8 7ST 7U6 |
ID | FETCH-LOGICAL-c7043-fb18127e1f4b7f449b5905c6866cd6001b2ce823bca63cd61bfe4617ff999b403 |
IEDL.DBID | DR2 |
ISSN | 1461-023X 1461-0248 |
IngestDate | Fri Jul 11 15:17:06 EDT 2025 Fri Jul 11 09:22:33 EDT 2025 Sun Jul 13 04:59:42 EDT 2025 Thu Apr 03 06:58:34 EDT 2025 Mon Jul 21 09:16:24 EDT 2025 Thu Apr 24 23:44:09 EDT 2025 Tue Jul 01 02:29:38 EDT 2025 Wed Jan 22 16:26:46 EST 2025 Wed Oct 30 09:55:34 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Dynamical climatology Climate change Precipitation precipitation patterns Experimental design manipulative experiments Manipulation Experimental study precipitation change precipitation scenarios |
Language | English |
License | CC BY 4.0 2012 Blackwell Publishing Ltd/CNRS. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c7043-fb18127e1f4b7f449b5905c6866cd6001b2ce823bca63cd61bfe4617ff999b403 |
Notes | ArticleID:ELE1793 ark:/67375/WNG-2H08HKS9-K Danish V. Kann Rasmussen Foundation ACQWA ClimMani European Science Foundation istex:484A90DE767044337D067BD26B2918153B5BCA62 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 22553898 |
PQID | 1022998241 |
PQPubID | 32390 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1028032131 proquest_miscellaneous_1023296963 proquest_journals_1022998241 pubmed_primary_22553898 pascalfrancis_primary_26161476 crossref_primary_10_1111_j_1461_0248_2012_01793_x crossref_citationtrail_10_1111_j_1461_0248_2012_01793_x wiley_primary_10_1111_j_1461_0248_2012_01793_x_ELE1793 istex_primary_ark_67375_WNG_2H08HKS9_K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2012 |
PublicationDateYYYYMMDD | 2012-08-01 |
PublicationDate_xml | – month: 08 year: 2012 text: August 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England – name: Paris |
PublicationTitle | Ecology letters |
PublicationTitleAlternate | Ecol Lett |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | Peterjohn, W.T., Melillo, J.M., Steudler, P.A., Newkirk, K.M., Bowles, F.P. & Aber, J.D. (1995). Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecol. Appl., 4, 617-625. Jentsch, A., Kreyling, J. & Beierkuhnlein, C. (2007). A new generation of climate change experiments: events, not trends. Front. Ecol. Environ., 5, 365-374. Min, S.K., Zhang, X.B., Zwiers, F.W. & Hegerl, G.C. (2011). Human contribution to more-intense precipitation extremes. Nature, 470, 376-379. Scherrer, D., Bader, M.K.F. & Körner, C. (2011). Drought sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies. Agric. For. Meteorol., 151, 163-1640. Shaw, M.R., Zavaleta, E.S., Chiariello, N.R., Cleland, E.E., Mooney, H.A. & Field, C.B. (2002). Grassland responses to global environmental changes suppressed by elevated CO2. Science, 298, 1987-1990. Pfister, C. (2009). The "Disaster Gap" of the 20th century and the loss of traditional disaster memory. GAIA - Ecol. Perspect. Sci. Soc., 18, 239-246. Dobbertin, M., Eilmann, B., Bleuler, P., Giuggiola, A., Pannatier, E.G., Landolt, W., Schleppi, P. & Rigling, A. (2010). Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest. Tree Physiol., 30, 346-360. De Boeck, H.J., Dreesen, F.E., Janssens, I.A. & Nijs, I. (2011). Whole-system responses of experimental plant communities to climate extremes imposed in different seasons. New Phytol., 189, 806-817. Teuling, A.J., Seneviratne, S.I., Stöckli, R., Reichstein, M., Moors, E. & Ciais, P. (2010). Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci., 3, 722-727. De Boeck, H.J., Liberloo, M., Gielen, B., Nijs, I. & Ceulemans, R. (2008). The observer effect in plant science. New Phytol., 177, 579-583. Eriksson, O. (1996). Regional dynamics of plants: a review of evidence for remnant, source-sink and metapopulations. Oikos, 77, 248-258. Jentsch, A., Kreyling, J., Elmer, M., Gellesch, E., Glaser, B., Grant, K. et al. (2011). Climate extremes initiate ecosystem regulating functions while maintaining productivity. J. Ecol., 99, 689-702. Sowerby, A., Emmett, B.A., Williams, D., Beier, C. & Evans, C.D. (2010). The response of dissolved organic carbon (DOC) and ecosystem carbon balance to experimental drought in a temperate shrubland. Eur. J. Soil Sci., 61, 697-709. Granier, A., Reichstein, M., Bréda, N., Janssens, I.A., Falge, E., Ciais, P. et al. (2007). Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric. For. Meteorol., 143, 123-145. Sowerby, A., Emmett, B.A., Tietema, A. & Beier, C. (2008). Contrasting effects of repeated summer drought on soil carbon efflux in hydric and mesic heathland soils. Glob. Change Biol., 14, 2388-2404. Larsen, K.S., Andresen, L.C., Beier, C., Jonasson, C., Albert, K.R., Ambus, P. et al. (2011). Reduced N cycling in response to drought, warming, and elevated CO2 in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments. Glob. Change Biol., 17, 1884-1899. Rustad, L. (2008). The response of terrestrial ecosystems to global climate change: towards an integrated approach. Sci. Total Environ., 404, 222-235. Leuzinger, S. & Körner, C. (2010). Rainfall distribution is the main driver of runoff under future CO2-concentration in a temperate deciduous forest. Glob. Change Biol., 16, 246-254. Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I. et al. (2010). Inverstigating soil moisture-climate interactions in a changing climate: a review. Earth Sci. Rev., 99, 125-161. Zavalloni, C., Gielen, B., Lemmens, C.M.H.M., De Boeck, H.J., Blasi, S., Van den Bergh, S. et al. (2008). Does a warmer climate with frequent mild water shortages protect grassland communities against a prolonged drought?. Plant Soil, 308, 119-130. Knorr, K.-H. & Blodau, C. (2009). Impact of experimental drought and rewetting on redox transformations and methanogenesis in mesocosms of a northern fen soil. Soil Biol. Biochem., 41, 1187-1198. Sherry, R.A., Weng, E.S., Arnone, J.A. III, Johnson, D., Schimel, D.S., Verburg, P.S. et al. (2008). Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie. Glob. Change Biol., 14, 2923-2936. Wipf, S. & Rixen, C. (2010). A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Res., 29, 95-109. Meinzer, F.C. (2003). Functional convergence in plant response to the environment. Oecologia, 134, 1-11. Cottingham, K.L., Lennon, J.T. & Brown, B.L. (2005). Knowing when to draw the line: designing more informative ecological experiments. Front. Ecol. Environ., 3, 145-152. Thomas, C.D., Cameron, A., Green, R.E. et al. (2004). Extinction risk from climate change. Nature, 427, 145-148. Borken, W. & Matzner, E. (2009). Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob. Change Biol., 15, 808-824. Dunnett, N.P., Willis, A.J., Hunt, R. & Grime, J.P. (1998). A 38-year study of relations between weather and vegetation dynamics in road verges near Bibury, Gloucestershire. J. Ecol., 86, 610-623. Huxman, T.E., Snyder, K.A., Tissue, D., Leffler, A.J., Ogle, K., Pockman, W.T. et al. (2004). Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia, 141, 254-268. Leuzinger, S., Luo, Y., Beier, C., Dieleman, W., Vicca, S. & Körner, C. (2011). Do global change experiments overestimate impacts on terrestrial ecosystems? Trends Ecol. Evol., 26, 236-241. Scheffer, M. & Carpenter, S.R. (2003). Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecol. Evol., 18, 648-656. Richter, S., Kipfer, T., Wohlgemuth, T., Calderón Guerrero, C., Ghazoul, J. & Moser, B. (2012). Phenotypic plasticity facilitates resistance to climate change in a highly variable environment. Oecologia, 169, 269-279. Gutschick, V.P. & BassiriRad, H. (2003). Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytol., 160, 21-42. Beier, C., Emmett, B.A., Peñuelas, J., Schmidt, I.K., Tietema, A., Estiarte, M. et al. (2008). Carbon and nitrogen cycles in European ecosystems respond differently to global warming. Sci. Total Environ., 407, 692-697. Singer, M.C. & Parmesan, C. (2010). Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy? Philos. Trans. R. Soc. Lond., 365, 3161-3176. Kreyling, J., Jentsch, A. & Beierkuhnlein, C. (2011). Stochastic trajectories of succession initiated by extreme climatic events. Ecol. Lett., 14, 758-764. Gerten, D., Luo, Y., le Maire, G., Parton, W.J., Keough, C., Weng, E. et al. (2008). Modelled effects of precipitation on ecosystem carbon and water dynamics in different climatic zones. Glob. Change Biol., 14, 1-15. Lamersdorf, N.P., Beier, C., Blanck, K., Bredemeier, M., Cummins, T., Farrell, E.P. et al. (1998). Effect of drought experiments using roof installations on acidification/nitrifaication of soils. For. Ecol. Manage., 101, 95-109. Katz, W.R. & Brown, G. (1992). Extreme events in a changing climate: variability is more important than averages. Clim. Change, 21, 289-302. Knapp, A.K., Fay, P.A., Blair, J.M., Collins, S.L., Smith, M.D., Carlisle, J.D. et al. (2002). Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 298, 2202-2205. Huntington, T.G. (2006). Evidence for intensification of the global water cycle: review and synthesis. J. Hydrol., 319, 83-95. Rustad, L.E., Campbell, J.L., Marion, G.M., Norby, R.J., Mitchell, M.J., Hartley, A.E. et al. (2001). A meta-analysis of the response of soil respiration, net N mineralisation, and above-ground plant growth to experimental ecosystem warming. Oecologia, 126, 543-562. Beier, C., Emmett, B., Gundersen, P., Tietema, A., Penuelas, J., Estiarte, M. et al. (2004). Novel approaches to study climate change effects on terrestrial ecosystems in the field - drought and passive night time warming. Ecosystems, 7, 583-597. Svejcar, T., Angell, R. & Miller, R. (1999). Fixed location rain shelters for studying precipitation effects on rangelands. J. Arid Environ., 42, 187-193. Morgan, J.A., Pataki, D.E., Körner, C., Clark, H., Del Grosso, S.J., Grünzweig, J.M. et al. (2004). Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia, 140, 11-25. Ineson, P., Taylor, K., Harrison, A.F., Poskitt, J., Benham, D.G., Tipping, E. & Woof, C. (1998). Effects of climate change on nitrogen dynamics in upland soils. 1. A transplant approach. Glob. Change Biol., 4, 143-152. Landolt, E., Bäumler, B., Erhardt, A., Hegg, O., Klötzli, F., Lämmler, W., Nobis, M., Rudmann, K., Schweingruber, F.H., Theurillat, J.-P., Urmi, E., Vust, M. & Wohlgemuth, T. (2010). Flora indicativa - Ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen. Verlag Haupt, Bern, 376 S. Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W. & Paulißen, D. (1991). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, XVIII, 248. Fay, P.A., Carlisle, J.D., Knapp, A.K., Blair, J.M. & Collins, S.L. (2000). Altering rainfall timing and quantity in a mesic grassland ecosystem: design and performance of rainfall manipulation shelters. Ecosystems, 3, 308-319. Beierkuhnlein, C., Jentsch, A., Thiel, D., Willner, E. & Kreyling, J. (2011). Ecotypes of European grass species respond specifically to warming and extreme drought. J. Ecol., 99, 703-713. Körner, C. & Basler, D. (2010). Phenology under global warming. Science, 327, 1461-1462. Mikkelsen, T.N., Beier, C., Jonasson, S., Holmstrup, M., Schmidt, I.K., Ambus, P. et al. (2008). Experimental design of multifactor climate change experiments with elevated CO2, warming and drought - t 2007; 104 2010; 99 2009; 41 2010; 16 2010; 19 2000; 3 2007; 143 2004; 7 2002; 158 2010; 101 2008; 308 2011; 99 1994; 68 1999; 42 2003; 18 2011; 14 2011; 17 2012; 169 2011; 470 2011; 151 1998; 86 2005; 22 2003; 53 2010; 61 1996; 77 2001; 294 1991; XVIII 2000; 289 2010; 29 2011; 71 2010; 112 2009; 90 2011; 72 2003; 160 2007; 5 2008; 22 2011; 26 2010; 3 2010; 30 2009; 15 2009; 18 2006; 319 2012 2010; 327 1963; 62 2010 2004; 141 2004; 140 2002; 298 2010; 365 2008; 407 2006; 59 2008; 14 2008; 58 2008 2007 2008; 404 2011; 4 2004; 427 1995; 4 2003; 134 2011; 8 2007; 13 2001; 126 2009; 32 2007; 81 2005; 3 2005; 93 2001; 33 2008; 177 1992; 21 1998; 4 1998; 101 2011; 189 e_1_2_8_28_1 Gutowski W.J. (e_1_2_8_31_1) 2008 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Ellenberg H. (e_1_2_8_20_1) 1991 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_87_1 e_1_2_8_62_1 e_1_2_8_85_1 Landolt E. (e_1_2_8_50_1) 2010 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_57_1 Gerten D. (e_1_2_8_27_1) 2008; 14 Pfister C. (e_1_2_8_64_1) 2009; 18 e_1_2_8_70_1 Christensen J.H. (e_1_2_8_13_1) 2007 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_48_1 e_1_2_8_69_1 IPCC (e_1_2_8_37_1) 2007 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_88_1 Bouchet R.J. (e_1_2_8_8_1) 1963; 62 Knapp A. (e_1_2_8_44_1) 2008; 58 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 IPCC (e_1_2_8_38_1) 2012 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_71_1 |
References_xml | – reference: Luo, Y., Gerten, D., Maire, G.L., Parton, W.J., Weng, E., Zhou, X. et al. (2008). Modelled interactive effects of precipitation, temperature and [CO2] on ecosystem carbon and water dynamics in different climatic zones. Glob. Change Biol., 14, 1986-1999. – reference: Luo, Y., Melillo, J., Niu, S., Beier, C., Clark, J., Classen, A. et al. (2011). Coordinated approaches to quantify long-term ecosystem dynamics in response to global change. Glob. Change Biol., 17, 843-854. – reference: Mueller, R.C., Scudder, C.M., Porter, M.E., Trotter, R.T., Gehring, C.A. & Whitham, T.G. (2005). Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. J. Ecol., 93, 1085-1093. – reference: Thomas, C.D., Cameron, A., Green, R.E. et al. (2004). Extinction risk from climate change. Nature, 427, 145-148. – reference: Wipf, S. & Rixen, C. (2010). A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Res., 29, 95-109. – reference: Beier, C., Emmett, B., Gundersen, P., Tietema, A., Penuelas, J., Estiarte, M. et al. (2004). Novel approaches to study climate change effects on terrestrial ecosystems in the field - drought and passive night time warming. Ecosystems, 7, 583-597. – reference: Mikkelsen, T.N., Beier, C., Jonasson, S., Holmstrup, M., Schmidt, I.K., Ambus, P. et al. (2008). Experimental design of multifactor climate change experiments with elevated CO2, warming and drought - the CLIMAITE project. Funct. Ecol., 22, 185-195. – reference: Daly, E. & Porporato, A. (2005). A review of soil moisture dynamics: from rainfall infiltration to ecosystem response. Environ. Eng. Sci., 22, 9-24. – reference: Lamersdorf, N.P., Beier, C., Blanck, K., Bredemeier, M., Cummins, T., Farrell, E.P. et al. (1998). Effect of drought experiments using roof installations on acidification/nitrifaication of soils. For. Ecol. Manage., 101, 95-109. – reference: Teuling, A.J., Seneviratne, S.I., Stöckli, R., Reichstein, M., Moors, E. & Ciais, P. (2010). Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci., 3, 722-727. – reference: De Boeck, H.J., Liberloo, M., Gielen, B., Nijs, I. & Ceulemans, R. (2008). The observer effect in plant science. New Phytol., 177, 579-583. – reference: Pfister, C. (2009). The "Disaster Gap" of the 20th century and the loss of traditional disaster memory. GAIA - Ecol. Perspect. Sci. Soc., 18, 239-246. – reference: Scherrer, D., Bader, M.K.F. & Körner, C. (2011). Drought sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies. Agric. For. Meteorol., 151, 163-1640. – reference: Knorr, K.-H. & Blodau, C. (2009). Impact of experimental drought and rewetting on redox transformations and methanogenesis in mesocosms of a northern fen soil. Soil Biol. Biochem., 41, 1187-1198. – reference: Christensen, J.H. & Christensen, O.B. (2007). A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim. Change, 81, 7-30. – reference: Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W. & Paulißen, D. (1991). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, XVIII, 248. – reference: Hegerl, G., Hanlon, H. & Beierkuhnlein, C. (2011). Elusive extremes. Nat. Geosci., 4, 142-143. – reference: Knapp, A.K., Fay, P.A., Blair, J.M., Collins, S.L., Smith, M.D., Carlisle, J.D. et al. (2002). Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 298, 2202-2205. – reference: Morgan, J.A., Pataki, D.E., Körner, C., Clark, H., Del Grosso, S.J., Grünzweig, J.M. et al. (2004). Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia, 140, 11-25. – reference: Walter, J., Nagy, L., Hein, R., Rascher, U., Beierkuhnlein, C., Willner, E. et al. (2011). Do plants remember drought? Hints towards a drought-memory in grasses. Environ. Exp. Bot., 71, 34-40. – reference: Shaw, M.R., Zavaleta, E.S., Chiariello, N.R., Cleland, E.E., Mooney, H.A. & Field, C.B. (2002). Grassland responses to global environmental changes suppressed by elevated CO2. Science, 298, 1987-1990. – reference: Zavalloni, C., Gielen, B., Lemmens, C.M.H.M., De Boeck, H.J., Blasi, S., Van den Bergh, S. et al. (2008). Does a warmer climate with frequent mild water shortages protect grassland communities against a prolonged drought?. Plant Soil, 308, 119-130. – reference: Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I. et al. (2010). Inverstigating soil moisture-climate interactions in a changing climate: a review. Earth Sci. Rev., 99, 125-161. – reference: Smith, M.D. (2011). The ecological role of climate extremes: current understanding and future prospects. J. Ecol., 99, 651-655. – reference: Min, S.K., Zhang, X.B., Zwiers, F.W. & Hegerl, G.C. (2011). Human contribution to more-intense precipitation extremes. Nature, 470, 376-379. – reference: Chesson, P., Gebauer, R.L.E., Schwinning, S., Huntly, N., Wiegand, K., Ernest, M.S.K. et al. (2004). Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia, 141, 236-253. – reference: Grime, J.P., Brown, V.K., Thompson, K., Masters, G.J., Hillier, S.H., Clarke, I.P. et al. (2000). The response of two contrasting limestone grasslands to simulated climate change. Science, 289, 762-765. – reference: Jentsch, A., Kreyling, J. & Beierkuhnlein, C. (2007). A new generation of climate change experiments: events, not trends. Front. Ecol. Environ., 5, 365-374. – reference: Beierkuhnlein, C., Jentsch, A., Thiel, D., Willner, E. & Kreyling, J. (2011). Ecotypes of European grass species respond specifically to warming and extreme drought. J. Ecol., 99, 703-713. – reference: Larsen, K.S., Andresen, L.C., Beier, C., Jonasson, C., Albert, K.R., Ambus, P. et al. (2011). Reduced N cycling in response to drought, warming, and elevated CO2 in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments. Glob. Change Biol., 17, 1884-1899. – reference: Richter, S., Kipfer, T., Wohlgemuth, T., Calderón Guerrero, C., Ghazoul, J. & Moser, B. (2012). Phenotypic plasticity facilitates resistance to climate change in a highly variable environment. Oecologia, 169, 269-279. – reference: Briske, D.D., Fuhlendorf, F.D. & Smeins, F.E. (2006). A unified framework for assessment and application of ecological thresholds. Rangeland Ecol. Manage., 59, 225-236. – reference: Gu, C. & Riley, W.J. (2010). Combined effects of short term rainfall patterns and soil texture on soil nitrogen cycling A modeling analysis. J. Contam. Hydrol., 112, 141-154. – reference: Huxman, T.E., Snyder, K.A., Tissue, D., Leffler, A.J., Ogle, K., Pockman, W.T. et al. (2004). Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia, 141, 254-268. – reference: Granier, A., Reichstein, M., Bréda, N., Janssens, I.A., Falge, E., Ciais, P. et al. (2007). Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric. For. Meteorol., 143, 123-145. – reference: Albert, K.R., Ro-Poulsen, H., Mikkelsen, T.N., Michelsen, A., Linden, L. & Beier, C. (2011). Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status. Plant Cell Environ., 4, 1207-1222. – reference: Rustad, L.E., Campbell, J.L., Marion, G.M., Norby, R.J., Mitchell, M.J., Hartley, A.E. et al. (2001). A meta-analysis of the response of soil respiration, net N mineralisation, and above-ground plant growth to experimental ecosystem warming. Oecologia, 126, 543-562. – reference: Sherry, R.A., Weng, E.S., Arnone, J.A. III, Johnson, D., Schimel, D.S., Verburg, P.S. et al. (2008). Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie. Glob. Change Biol., 14, 2923-2936. – reference: Weltzin, J.F. et al. (2003). Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience, 53, 941-952. – reference: Fay, P.A., Blair, J.M., Smith, M.D., Nippert, J.B., Carlisle, J.D. & Knapp, A.K. (2011). Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function. Biogeosciences, 8, 3053-3068. – reference: Dunnett, N.P., Willis, A.J., Hunt, R. & Grime, J.P. (1998). A 38-year study of relations between weather and vegetation dynamics in road verges near Bibury, Gloucestershire. J. Ecol., 86, 610-623. – reference: De Boeck, H.J., Dreesen, F.E., Janssens, I.A. & Nijs, I. (2011). Whole-system responses of experimental plant communities to climate extremes imposed in different seasons. New Phytol., 189, 806-817. – reference: Ineson, P., Taylor, K., Harrison, A.F., Poskitt, J., Benham, D.G., Tipping, E. & Woof, C. (1998). Effects of climate change on nitrogen dynamics in upland soils. 1. A transplant approach. Glob. Change Biol., 4, 143-152. – reference: Rasmussen, L., Beier, C. & Bergstedt, A. (2002). Experimental manipulations of old pine forest ecosystems to predict the potential tree growth effects of increased CO2 and temperature in a future climate. For. Ecol. Manage., 158, 179-188. – reference: Singer, M.C. & Parmesan, C. (2010). Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy? Philos. Trans. R. Soc. Lond., 365, 3161-3176. – reference: Peñuelas, J. & Filella, I. (2001). Phenology: responses to a warming world. Science, 294, 793-795. – reference: Rustad, L. (2008). The response of terrestrial ecosystems to global climate change: towards an integrated approach. Sci. Total Environ., 404, 222-235. – reference: Wu, Z., Dijkstra, P., Koch, G.W., Penuelas, J. & Hungate, B.A. (2011). Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob. Change Biol., 17, 927-942. – reference: Smith, M.D., Knapp, A.K. & Collins, S.L. (2009). A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology, 90, 3279-3289. – reference: Leuzinger, S., Luo, Y., Beier, C., Dieleman, W., Vicca, S. & Körner, C. (2011). Do global change experiments overestimate impacts on terrestrial ecosystems? Trends Ecol. Evol., 26, 236-241. – reference: Peñuelas, J., Prieto, P., Beier, C., Cesaraccio, C., De Angelis, P., de Dato, G. et al. (2007). Response of plant species richness and primary productivity in shrublands along a north-south gradient in Europe to seven years of experimental warming and drought. Reductions in primary productivity in the heat and drought year of 2003. Glob. Change Biol., 13, 2563-2581. – reference: Peterjohn, W.T., Melillo, J.M., Steudler, P.A., Newkirk, K.M., Bowles, F.P. & Aber, J.D. (1995). Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecol. Appl., 4, 617-625. – reference: Kupper, P., Sõber, J., Sellin, A., Lõhmus, K., Tullus, A., Räim, O. et al. (2011). An experimental facility for free air humidity manipulation (FAHM) can alter water flux through deciduous tree canopy. Environ. Exp. Bot., 72, 432-438. – reference: Fay, P.A., Carlisle, J.D., Knapp, A.K., Blair, J.M. & Collins, S.L. (2000). Altering rainfall timing and quantity in a mesic grassland ecosystem: design and performance of rainfall manipulation shelters. Ecosystems, 3, 308-319. – reference: Seastedt, T.R. & Vaccaro, L. (2001). Plant species richness, productivity, and nitrogen and phosphorus limitations across a snowpack gradient in alpine tundra, Colorado, USA. Arct. Antarct. Alp. Res., 33, 100-106. – reference: Sowerby, A., Emmett, B.A., Williams, D., Beier, C. & Evans, C.D. (2010). The response of dissolved organic carbon (DOC) and ecosystem carbon balance to experimental drought in a temperate shrubland. Eur. J. Soil Sci., 61, 697-709. – reference: Gerten, D., Luo, Y., le Maire, G., Parton, W.J., Keough, C., Weng, E. et al. (2008). Modelled effects of precipitation on ecosystem carbon and water dynamics in different climatic zones. Glob. Change Biol., 14, 1-15. – reference: Emmett, B.A., Beier, C., Estiarte, M., Tietema, A., Kristensen, H.L., Williams, D. et al. (2004). The response of soil processes to climate change: results from manipulation studies across an environmental gradient. Ecosystems, 7, 625-637. – reference: Scheffer, M. & Carpenter, S.R. (2003). Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecol. Evol., 18, 648-656. – reference: Svejcar, T., Angell, R. & Miller, R. (1999). Fixed location rain shelters for studying precipitation effects on rangelands. J. Arid Environ., 42, 187-193. – reference: Beier, C., Emmett, B.A., Peñuelas, J., Schmidt, I.K., Tietema, A., Estiarte, M. et al. (2008). Carbon and nitrogen cycles in European ecosystems respond differently to global warming. Sci. Total Environ., 407, 692-697. – reference: Sowerby, A., Emmett, B.A., Tietema, A. & Beier, C. (2008). Contrasting effects of repeated summer drought on soil carbon efflux in hydric and mesic heathland soils. Glob. Change Biol., 14, 2388-2404. – reference: Landolt, E., Bäumler, B., Erhardt, A., Hegg, O., Klötzli, F., Lämmler, W., Nobis, M., Rudmann, K., Schweingruber, F.H., Theurillat, J.-P., Urmi, E., Vust, M. & Wohlgemuth, T. (2010). Flora indicativa - Ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen. Verlag Haupt, Bern, 376 S. – reference: Knapp, A., Beier, C., Briske, D., Classen, A.T., Luo, Y., Reichstein, M. et al. (2008). Consequences of altered precipitation regimes for terrestrial ecosystems. Bioscience, 58, 1-11. – reference: Jentsch, A., Kreyling, J., Elmer, M., Gellesch, E., Glaser, B., Grant, K. et al. (2011). Climate extremes initiate ecosystem regulating functions while maintaining productivity. J. Ecol., 99, 689-702. – reference: Kattge, J., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Bönisch, G. et al. (2011). TRY - a global database of plant traits. Glob. Change Biol., 17, 2905-2935. – reference: Kreyling, J., Jentsch, A. & Beierkuhnlein, C. (2011). Stochastic trajectories of succession initiated by extreme climatic events. Ecol. Lett., 14, 758-764. – reference: Cottingham, K.L., Lennon, J.T. & Brown, B.L. (2005). Knowing when to draw the line: designing more informative ecological experiments. Front. Ecol. Environ., 3, 145-152. – reference: Körner, C. & Basler, D. (2010). Phenology under global warming. Science, 327, 1461-1462. – reference: de Visser, P.H.B., Beier, C., Rasmussen, L., Kreutzer, K., Steinberg, N., Bredemeier, M. et al. (1994). Biological response of forest ecosystems to input changes of water, nutrients and atmospheric loads. For. Ecol. Manage., 68, 15-29. – reference: Borken, W. & Matzner, E. (2009). Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob. Change Biol., 15, 808-824. – reference: Dobbertin, M., Eilmann, B., Bleuler, P., Giuggiola, A., Pannatier, E.G., Landolt, W., Schleppi, P. & Rigling, A. (2010). Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest. Tree Physiol., 30, 346-360. – reference: Meinzer, F.C. (2003). Functional convergence in plant response to the environment. Oecologia, 134, 1-11. – reference: Eriksson, O. (1996). Regional dynamics of plants: a review of evidence for remnant, source-sink and metapopulations. Oikos, 77, 248-258. – reference: Leuzinger, S. & Körner, C. (2010). Rainfall distribution is the main driver of runoff under future CO2-concentration in a temperate deciduous forest. Glob. Change Biol., 16, 246-254. – reference: Boberg, F., Berg, P., Thejll, P., Gutowski, W.J. & Christensen, J.H. (2009). Improved confidence in climate change projections of precipitation evaluated using daily statistics from the PRUDENCE ensemble. Clim. Dyn., 32, 1097-1106. – reference: Gutschick, V.P. & BassiriRad, H. (2003). Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytol., 160, 21-42. – reference: Garbulsky, M.F., Penuelas, J., Papale, D., Ardö, J., Goulden, M.L., Kiely, G. et al. (2010). Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems. Glob. Ecol. Biogeogr., 19, 253-267. – reference: Franks, S.J., Sim, S. & Weis, A.E. (2007). Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. PNAS, 104, 1278-1282. – reference: Huntington, T.G. (2006). Evidence for intensification of the global water cycle: review and synthesis. J. Hydrol., 319, 83-95. – reference: Katz, W.R. & Brown, G. (1992). Extreme events in a changing climate: variability is more important than averages. Clim. Change, 21, 289-302. – reference: Bouchet, R.J. (1963). Evapotranspiration re′elle et potentielle, signification climatique. Int. Assoc. Sci. Hydrol., Proc. Berkeley, Calif. Symp., Publ., 62, 134-142. – reference: Brazdil, R., Wheeler, D. & Pfister, C. (2010). European climate of the past 500 years based on documentary and instrumental data. Clim. Change, 101, 1-6. – volume: 26 start-page: 236 year: 2011 end-page: 241 article-title: Do global change experiments overestimate impacts on terrestrial ecosystems? publication-title: Trends Ecol. Evol. – volume: 59 start-page: 225 year: 2006 end-page: 236 article-title: A unified framework for assessment and application of ecological thresholds publication-title: Rangeland Ecol. Manage. – volume: 99 start-page: 125 year: 2010 end-page: 161 article-title: Inverstigating soil moisture‐climate interactions in a changing climate: a review publication-title: Earth Sci. Rev. – volume: 32 start-page: 1097 year: 2009 end-page: 1106 article-title: Improved confidence in climate change projections of precipitation evaluated using daily statistics from the PRUDENCE ensemble publication-title: Clim. Dyn. – volume: 470 start-page: 376 year: 2011 end-page: 379 article-title: Human contribution to more‐intense precipitation extremes publication-title: Nature – volume: 143 start-page: 123 year: 2007 end-page: 145 article-title: Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003 publication-title: Agric. For. Meteorol. – volume: 33 start-page: 100 year: 2001 end-page: 106 article-title: Plant species richness, productivity, and nitrogen and phosphorus limitations across a snowpack gradient in alpine tundra, Colorado, USA publication-title: Arct. Antarct. Alp. Res. – volume: 4 start-page: 1207 year: 2011 end-page: 1222 article-title: Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status publication-title: Plant Cell Environ. – volume: 99 start-page: 651 year: 2011 end-page: 655 article-title: The ecological role of climate extremes: current understanding and future prospects publication-title: J. Ecol. – volume: 14 start-page: 1986 year: 2008 end-page: 1999 article-title: Modelled interactive effects of precipitation, temperature and [CO2] on ecosystem carbon and water dynamics in different climatic zones publication-title: Glob. Change Biol. – volume: 61 start-page: 697 year: 2010 end-page: 709 article-title: The response of dissolved organic carbon (DOC) and ecosystem carbon balance to experimental drought in a temperate shrubland publication-title: Eur. J. Soil Sci. – volume: 319 start-page: 83 year: 2006 end-page: 95 article-title: Evidence for intensification of the global water cycle: review and synthesis publication-title: J. Hydrol. – volume: 72 start-page: 432 year: 2011 end-page: 438 article-title: An experimental facility for free air humidity manipulation (FAHM) can alter water flux through deciduous tree canopy publication-title: Environ. Exp. Bot. – start-page: 81 year: 2008 end-page: 116 – volume: 158 start-page: 179 year: 2002 end-page: 188 article-title: Experimental manipulations of old pine forest ecosystems to predict the potential tree growth effects of increased CO2 and temperature in a future climate publication-title: For. Ecol. Manage. – volume: 14 start-page: 2388 year: 2008 end-page: 2404 article-title: Contrasting effects of repeated summer drought on soil carbon efflux in hydric and mesic heathland soils publication-title: Glob. Change Biol. – volume: 141 start-page: 254 year: 2004 end-page: 268 article-title: Precipitation pulses and carbon fluxes in semiarid and arid ecosystems publication-title: Oecologia – volume: 4 start-page: 617 year: 1995 end-page: 625 article-title: Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures publication-title: Ecol. Appl. – volume: 104 start-page: 1278 year: 2007 end-page: 1282 article-title: Rapid evolution of flowering time by an annual plant in response to a climate fluctuation publication-title: PNAS – volume: 14 start-page: 1 year: 2008 end-page: 15 article-title: Modelled effects of precipitation on ecosystem carbon and water dynamics in different climatic zones publication-title: Glob. Change Biol. – volume: 140 start-page: 11 year: 2004 end-page: 25 article-title: Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2 publication-title: Oecologia – volume: 42 start-page: 187 year: 1999 end-page: 193 article-title: Fixed location rain shelters for studying precipitation effects on rangelands publication-title: J. Arid Environ. – volume: 21 start-page: 289 year: 1992 end-page: 302 article-title: Extreme events in a changing climate: variability is more important than averages publication-title: Clim. Change – volume: 58 start-page: 1 year: 2008 end-page: 11 article-title: Consequences of altered precipitation regimes for terrestrial ecosystems publication-title: Bioscience – volume: 29 start-page: 95 year: 2010 end-page: 109 article-title: A review of snow manipulation experiments in Arctic and alpine tundra ecosystems publication-title: Polar Res. – volume: 14 start-page: 758 year: 2011 end-page: 764 article-title: Stochastic trajectories of succession initiated by extreme climatic events publication-title: Ecol. Lett. – volume: 101 start-page: 1 year: 2010 end-page: 6 article-title: European climate of the past 500 years based on documentary and instrumental data publication-title: Clim. Change – volume: 298 start-page: 2202 year: 2002 end-page: 2205 article-title: Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland publication-title: Science – volume: 99 start-page: 703 year: 2011 end-page: 713 article-title: Ecotypes of European grass species respond specifically to warming and extreme drought publication-title: J. Ecol. – volume: 3 start-page: 308 year: 2000 end-page: 319 article-title: Altering rainfall timing and quantity in a mesic grassland ecosystem: design and performance of rainfall manipulation shelters publication-title: Ecosystems – volume: 17 start-page: 927 year: 2011 end-page: 942 article-title: Responses of terrestrial ecosystems to temperature and precipitation change: a meta‐analysis of experimental manipulation publication-title: Glob. Change Biol. – volume: 62 start-page: 134 year: 1963 end-page: 142 article-title: Evapotranspiration re′elle et potentielle, signification climatique publication-title: Int. Assoc. Sci. Hydrol., Proc. Berkeley, Calif. Symp., Publ. – volume: 77 start-page: 248 year: 1996 end-page: 258 article-title: Regional dynamics of plants: a review of evidence for remnant, source‐sink and metapopulations publication-title: Oikos – volume: 126 start-page: 543 year: 2001 end-page: 562 article-title: A meta‐analysis of the response of soil respiration, net N mineralisation, and above‐ground plant growth to experimental ecosystem warming publication-title: Oecologia – volume: 177 start-page: 579 year: 2008 end-page: 583 article-title: The observer effect in plant science publication-title: New Phytol. – volume: 86 start-page: 610 year: 1998 end-page: 623 article-title: A 38‐year study of relations between weather and vegetation dynamics in road verges near Bibury, Gloucestershire publication-title: J. Ecol. – start-page: 996 year: 2007 – volume: 3 start-page: 145 year: 2005 end-page: 152 article-title: Knowing when to draw the line: designing more informative ecological experiments publication-title: Front. Ecol. Environ. – volume: 4 start-page: 143 year: 1998 end-page: 152 article-title: Effects of climate change on nitrogen dynamics in upland soils. 1. A transplant approach publication-title: Glob. Change Biol. – volume: 93 start-page: 1085 year: 2005 end-page: 1093 article-title: Differential tree mortality in response to severe drought: evidence for long‐term vegetation shifts publication-title: J. Ecol. – volume: 14 start-page: 2923 year: 2008 end-page: 2936 article-title: Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie publication-title: Glob. Change Biol. – volume: 71 start-page: 34 year: 2011 end-page: 40 article-title: Do plants remember drought? Hints towards a drought‐memory in grasses publication-title: Environ. Exp. Bot. – volume: 4 start-page: 142 year: 2011 end-page: 143 article-title: Elusive extremes publication-title: Nat. Geosci. – volume: 13 start-page: 2563 year: 2007 end-page: 2581 article-title: Response of plant species richness and primary productivity in shrublands along a north‐south gradient in Europe to seven years of experimental warming and drought. Reductions in primary productivity in the heat and drought year of 2003 publication-title: Glob. Change Biol. – volume: 141 start-page: 236 year: 2004 end-page: 253 article-title: Resource pulses, species interactions, and diversity maintenance in arid and semi‐arid environments publication-title: Oecologia – volume: 404 start-page: 222 year: 2008 end-page: 235 article-title: The response of terrestrial ecosystems to global climate change: towards an integrated approach publication-title: Sci. Total Environ. – volume: 134 start-page: 1 year: 2003 end-page: 11 article-title: Functional convergence in plant response to the environment publication-title: Oecologia – volume: 112 start-page: 141 year: 2010 end-page: 154 article-title: Combined effects of short term rainfall patterns and soil texture on soil nitrogen cycling A modeling analysis publication-title: J. Contam. Hydrol. – volume: 169 start-page: 269 year: 2012 end-page: 279 article-title: Phenotypic plasticity facilitates resistance to climate change in a highly variable environment publication-title: Oecologia – volume: 22 start-page: 185 year: 2008 end-page: 195 article-title: Experimental design of multifactor climate change experiments with elevated CO2, warming and drought – the CLIMAITE project publication-title: Funct. Ecol. – volume: 7 start-page: 583 year: 2004 end-page: 597 article-title: Novel approaches to study climate change effects on terrestrial ecosystems in the field – drought and passive night time warming publication-title: Ecosystems – volume: XVIII start-page: 248 year: 1991 article-title: Zeigerwerte von Pflanzen in Mitteleuropa publication-title: Scripta Geobotanica – volume: 53 start-page: 941 year: 2003 end-page: 952 article-title: Assessing the response of terrestrial ecosystems to potential changes in precipitation publication-title: Bioscience – volume: 7 start-page: 625 year: 2004 end-page: 637 article-title: The response of soil processes to climate change: results from manipulation studies across an environmental gradient publication-title: Ecosystems – start-page: 376 year: 2010 – volume: 99 start-page: 689 year: 2011 end-page: 702 article-title: Climate extremes initiate ecosystem regulating functions while maintaining productivity publication-title: J. Ecol. – volume: 407 start-page: 692 year: 2008 end-page: 697 article-title: Carbon and nitrogen cycles in European ecosystems respond differently to global warming publication-title: Sci. Total Environ. – volume: 3 start-page: 722 year: 2010 end-page: 727 article-title: Contrasting response of European forest and grassland energy exchange to heatwaves publication-title: Nat. Geosci. – volume: 308 start-page: 119 year: 2008 end-page: 130 article-title: Does a warmer climate with frequent mild water shortages protect grassland communities against a prolonged drought? publication-title: Plant Soil – volume: 151 start-page: 163 year: 2011 end-page: 1640 article-title: Drought sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies publication-title: Agric. For. Meteorol. – volume: 22 start-page: 9 year: 2005 end-page: 24 article-title: A review of soil moisture dynamics: from rainfall infiltration to ecosystem response publication-title: Environ. Eng. Sci. – volume: 41 start-page: 1187 year: 2009 end-page: 1198 article-title: Impact of experimental drought and rewetting on redox transformations and methanogenesis in mesocosms of a northern fen soil publication-title: Soil Biol. Biochem. – volume: 19 start-page: 253 year: 2010 end-page: 267 article-title: Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems publication-title: Glob. Ecol. Biogeogr. – volume: 289 start-page: 762 year: 2000 end-page: 765 article-title: The response of two contrasting limestone grasslands to simulated climate change publication-title: Science – volume: 101 start-page: 95 year: 1998 end-page: 109 article-title: Effect of drought experiments using roof installations on acidification/nitrifaication of soils publication-title: For. Ecol. Manage. – start-page: 847 year: 2007 end-page: 940 – volume: 298 start-page: 1987 year: 2002 end-page: 1990 article-title: Grassland responses to global environmental changes suppressed by elevated CO2 publication-title: Science – volume: 294 start-page: 793 year: 2001 end-page: 795 article-title: Phenology: responses to a warming world publication-title: Science – volume: 15 start-page: 808 year: 2009 end-page: 824 article-title: Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils publication-title: Glob. Change Biol. – volume: 30 start-page: 346 year: 2010 end-page: 360 article-title: Effect of irrigation on needle morphology, shoot and stem growth in a drought‐exposed forest publication-title: Tree Physiol. – start-page: 1 year: 2012 end-page: 19 – volume: 17 start-page: 2905 year: 2011 end-page: 2935 article-title: TRY – a global database of plant traits publication-title: Glob. Change Biol. – volume: 17 start-page: 843 year: 2011 end-page: 854 article-title: Coordinated approaches to quantify long‐term ecosystem dynamics in response to global change publication-title: Glob. Change Biol. – volume: 68 start-page: 15 year: 1994 end-page: 29 article-title: Biological response of forest ecosystems to input changes of water, nutrients and atmospheric loads publication-title: For. Ecol. Manage. – volume: 81 start-page: 7 year: 2007 end-page: 30 article-title: A summary of the PRUDENCE model projections of changes in European climate by the end of this century publication-title: Clim. Change – volume: 18 start-page: 239 year: 2009 end-page: 246 article-title: The “Disaster Gap” of the 20th century and the loss of traditional disaster memory publication-title: GAIA – Ecol. Perspect. Sci. Soc. – volume: 90 start-page: 3279 year: 2009 end-page: 3289 article-title: A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change publication-title: Ecology – volume: 160 start-page: 21 year: 2003 end-page: 42 article-title: Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences publication-title: New Phytol. – volume: 327 start-page: 1461 year: 2010 end-page: 1462 article-title: Phenology under global warming publication-title: Science – volume: 189 start-page: 806 year: 2011 end-page: 817 article-title: Whole‐system responses of experimental plant communities to climate extremes imposed in different seasons publication-title: New Phytol. – volume: 365 start-page: 3161 year: 2010 end-page: 3176 article-title: Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre‐existing adaptive strategy? publication-title: Philos. Trans. R. Soc. Lond. – volume: 427 start-page: 145 year: 2004 end-page: 148 article-title: Extinction risk from climate change publication-title: Nature – volume: 5 start-page: 365 year: 2007 end-page: 374 article-title: A new generation of climate change experiments: events, not trends publication-title: Front. Ecol. Environ. – volume: 18 start-page: 648 year: 2003 end-page: 656 article-title: Catastrophic regime shifts in ecosystems: linking theory to observation publication-title: Trends in Ecol. Evol. – volume: 8 start-page: 3053 year: 2011 end-page: 3068 article-title: Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function publication-title: Biogeosciences – volume: 16 start-page: 246 year: 2010 end-page: 254 article-title: Rainfall distribution is the main driver of runoff under future CO2‐concentration in a temperate deciduous forest publication-title: Glob. Change Biol. – volume: 17 start-page: 1884 year: 2011 end-page: 1899 article-title: Reduced N cycling in response to drought, warming, and elevated CO2 in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments publication-title: Glob. Change Biol. – ident: e_1_2_8_17_1 doi: 10.1111/j.1469-8137.2010.03515.x – start-page: 81 volume-title: Weather and Climate Extremes in a Changing Climate: Regions of Focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands year: 2008 ident: e_1_2_8_31_1 – ident: e_1_2_8_49_1 doi: 10.1016/S0378-1127(97)00128-X – ident: e_1_2_8_48_1 doi: 10.1016/j.envexpbot.2010.09.003 – ident: e_1_2_8_73_1 doi: 10.1126/science.1075312 – ident: e_1_2_8_15_1 doi: 10.1089/ees.2005.22.9 – ident: e_1_2_8_3_1 doi: 10.1007/s10021-004-0178-8 – ident: e_1_2_8_47_1 doi: 10.1111/j.1461-0248.2011.01637.x – volume: 62 start-page: 134 year: 1963 ident: e_1_2_8_8_1 article-title: Evapotranspiration re′elle et potentielle, signification climatique publication-title: Int. Assoc. Sci. Hydrol., Proc. Berkeley, Calif. Symp., Publ. – ident: e_1_2_8_26_1 doi: 10.1111/j.1466-8238.2009.00504.x – ident: e_1_2_8_74_1 doi: 10.1111/j.1365-2486.2008.01703.x – ident: e_1_2_8_65_1 doi: 10.1016/S0378-1127(00)00677-0 – ident: e_1_2_8_78_1 doi: 10.1111/j.1365-2486.2008.01643.x – ident: e_1_2_8_67_1 doi: 10.1016/j.scitotenv.2008.04.050 – ident: e_1_2_8_4_1 doi: 10.1016/j.scitotenv.2008.10.001 – start-page: 996 volume-title: Climate Change 2007: The Physical Science Basis year: 2007 ident: e_1_2_8_37_1 – ident: e_1_2_8_24_1 doi: 10.5194/bg-8-3053-2011 – ident: e_1_2_8_43_1 doi: 10.1126/science.1076347 – ident: e_1_2_8_32_1 doi: 10.1046/j.1469-8137.2003.00866.x – ident: e_1_2_8_71_1 doi: 10.2307/1552283 – ident: e_1_2_8_61_1 doi: 10.1126/science.1066860 – ident: e_1_2_8_80_1 doi: 10.1006/jare.1999.0514 – volume: 58 start-page: 1 year: 2008 ident: e_1_2_8_44_1 article-title: Consequences of altered precipitation regimes for terrestrial ecosystems publication-title: Bioscience doi: 10.1641/B580908 – ident: e_1_2_8_60_1 doi: 10.1111/j.1365-2745.2005.01042.x – ident: e_1_2_8_86_1 doi: 10.1111/j.1751-8369.2010.00153.x – ident: e_1_2_8_21_1 doi: 10.1007/s10021-004-0220-x – ident: e_1_2_8_33_1 doi: 10.1038/ngeo1090 – ident: e_1_2_8_41_1 doi: 10.1111/j.1365-2486.2011.02451.x – ident: e_1_2_8_58_1 doi: 10.1038/nature09763 – ident: e_1_2_8_16_1 doi: 10.1111/j.1469-8137.2007.02329.x – ident: e_1_2_8_22_1 doi: 10.2307/3546063 – ident: e_1_2_8_25_1 doi: 10.1073/pnas.0608379104 – ident: e_1_2_8_30_1 doi: 10.1016/j.jconhyd.2009.12.003 – ident: e_1_2_8_79_1 doi: 10.1111/j.1365-2389.2010.01276.x – ident: e_1_2_8_5_1 doi: 10.1111/j.1365-2745.2011.01809.x – ident: e_1_2_8_39_1 doi: 10.1890/1540-9295(2007)5[365:ANGOCE]2.0.CO;2 – ident: e_1_2_8_57_1 doi: 10.1111/j.1365-2435.2007.01362.x – ident: e_1_2_8_55_1 doi: 10.1111/j.1365-2486.2010.02265.x – ident: e_1_2_8_29_1 doi: 10.1126/science.289.5480.762 – ident: e_1_2_8_46_1 doi: 10.1126/science.1186473 – ident: e_1_2_8_34_1 doi: 10.1016/j.jhydrol.2005.07.003 – ident: e_1_2_8_28_1 doi: 10.1016/j.agrformet.2006.12.004 – ident: e_1_2_8_53_1 doi: 10.1016/j.tree.2011.02.011 – ident: e_1_2_8_45_1 doi: 10.1016/j.soilbio.2009.02.030 – ident: e_1_2_8_7_1 doi: 10.1111/j.1365-2486.2008.01681.x – ident: e_1_2_8_62_1 doi: 10.1111/j.1365-2486.2007.01464.x – ident: e_1_2_8_59_1 doi: 10.1007/s00442-004-1550-2 – ident: e_1_2_8_9_1 doi: 10.1007/s10584-010-9866-x – start-page: 376 volume-title: Flora indicativa – Ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen year: 2010 ident: e_1_2_8_50_1 – ident: e_1_2_8_72_1 doi: 10.1016/j.earscirev.2010.02.004 – ident: e_1_2_8_18_1 doi: 10.1093/treephys/tpp123 – volume: 14 start-page: 1 year: 2008 ident: e_1_2_8_27_1 article-title: Modelled effects of precipitation on ecosystem carbon and water dynamics in different climatic zones publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2008.01651.x – ident: e_1_2_8_63_1 doi: 10.2307/1941962 – ident: e_1_2_8_82_1 doi: 10.1038/nature02121 – ident: e_1_2_8_87_1 doi: 10.1111/j.1365-2486.2010.02302.x – start-page: 847 volume-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change year: 2007 ident: e_1_2_8_13_1 – ident: e_1_2_8_84_1 doi: 10.1016/j.envexpbot.2010.10.020 – ident: e_1_2_8_36_1 doi: 10.1046/j.1365-2486.1998.00118.x – ident: e_1_2_8_56_1 doi: 10.1007/s00442-002-1088-0 – ident: e_1_2_8_85_1 doi: 10.1641/0006-3568(2003)053[0941:ATROTE]2.0.CO;2 – ident: e_1_2_8_14_1 doi: 10.1890/1540-9295(2005)003[0145:KWTDTL]2.0.CO;2 – ident: e_1_2_8_23_1 doi: 10.1007/s100210000028 – start-page: 248 year: 1991 ident: e_1_2_8_20_1 article-title: Zeigerwerte von Pflanzen in Mitteleuropa publication-title: Scripta Geobotanica – ident: e_1_2_8_42_1 doi: 10.1007/BF00139728 – ident: e_1_2_8_51_1 doi: 10.1111/j.1365-2486.2010.02351.x – start-page: 1 volume-title: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation year: 2012 ident: e_1_2_8_38_1 – ident: e_1_2_8_83_1 doi: 10.1016/0378-1127(94)90134-1 – ident: e_1_2_8_70_1 doi: 10.1016/j.agrformet.2011.06.019 – ident: e_1_2_8_75_1 doi: 10.1098/rstb.2010.0144 – ident: e_1_2_8_52_1 doi: 10.1111/j.1365-2486.2009.01937.x – ident: e_1_2_8_35_1 doi: 10.1007/s00442-004-1682-4 – ident: e_1_2_8_69_1 doi: 10.1016/j.tree.2003.09.002 – ident: e_1_2_8_88_1 doi: 10.1007/s11104-008-9612-6 – ident: e_1_2_8_76_1 doi: 10.1111/j.1365-2745.2011.01833.x – ident: e_1_2_8_6_1 doi: 10.1007/s00382-008-0446-y – ident: e_1_2_8_10_1 doi: 10.2111/05-115R.1 – ident: e_1_2_8_54_1 doi: 10.1111/j.1365-2486.2008.01629.x – ident: e_1_2_8_68_1 doi: 10.1007/s004420000544 – ident: e_1_2_8_81_1 doi: 10.1038/ngeo950 – ident: e_1_2_8_40_1 doi: 10.1111/j.1365-2745.2011.01817.x – ident: e_1_2_8_11_1 doi: 10.1007/s00442-004-1551-1 – ident: e_1_2_8_12_1 doi: 10.1007/s10584-006-9210-7 – volume: 18 start-page: 239 year: 2009 ident: e_1_2_8_64_1 article-title: The “Disaster Gap” of the 20th century and the loss of traditional disaster memory publication-title: GAIA – Ecol. Perspect. Sci. Soc. – ident: e_1_2_8_66_1 doi: 10.1007/s00442-011-2191-x – ident: e_1_2_8_77_1 doi: 10.1890/08-1815.1 – ident: e_1_2_8_2_1 doi: 10.1111/j.1365-3040.2011.02320.x – ident: e_1_2_8_19_1 doi: 10.1046/j.1365-2745.1998.00297.x |
SSID | ssj0012971 |
Score | 2.5643456 |
SecondaryResourceType | review_article |
Snippet | Climatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 899 |
SubjectTerms | Acclimatization Adaptation, Biological Animal and plant ecology Animal, plant and microbial ecology Biodiversity Biological and medical sciences Biomass Climate Change Climatic conditions Climatology. Bioclimatology. Climate change Earth, ocean, space Ecosystem Ecosystem models Ecosystem resilience Ecosystems Environmental regulations Exact sciences and technology experimental design External geophysics Forecasting Fundamental and applied biological sciences. Psychology General aspects Macroecology manipulative experiments Meteorology Plant communities Plant Development Precipitation precipitation change precipitation patterns precipitation scenarios Rain Research - trends Seasonal variations Soil Terrestrial ecosystems |
Title | Precipitation manipulation experiments - challenges and recommendations for the future |
URI | https://api.istex.fr/ark:/67375/WNG-2H08HKS9-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1461-0248.2012.01793.x https://www.ncbi.nlm.nih.gov/pubmed/22553898 https://www.proquest.com/docview/1022998241 https://www.proquest.com/docview/1023296963 https://www.proquest.com/docview/1028032131 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hIiQufH8ESmUkxC2rxI6d7BGhLSsKFQIq9mbZXueyJa2aXantqf-Bf8gvYcZOUqWqUIW4RU4miicz9nub2TcAb9SyLuTS2ZTEwdOicllqJSUezw0vubc2dFH4vK_mB8XHhVx09U_0X5ioDzH84EaZEdZrSnBj26tJjlSYxwotPgmxNiE8SaVbhI--DkpSuKtF7hVNxGJc1HPtjUY71W1y-ilVTpoWnVfHrhfXwdIxyg3b1O59WPUTjNUpq8lmbSfu_Ir24__xwAO416FZ9i6G30O45ZtHcCf2tzzDo1nQxD57DIsvpKJx3AmCMxLd6BuHscsmAy37ffGLub6_S8tMs2RE2X_i2dj8qWWIshmiVhbVUJ7Awe7s-_t52jV1SF1JX_prS5ii9Hld2LIuiqmV00w6VSnlloS-LHe-4sI6owSO5Lb2OMuyrhHK2iITT2GrOWr8c2BC4phXlhvkqEpaZG5OKCMRxOaeV1kCZf8CtesmSI03DvWI-eSaPKjJgzp4UJ8mkA-Wx1H14wY2b0OMDAbmZEVVc6XUP_Y_aD7Pqvnet6neS2BnFESDAZJZBEulSmC7jyrdrSitJmaO1BgBVwKvh9O4FtAHHtP4o024RnCSOxJ_vabKBM8F3udZjNjLB0B-iQC2SkCFuLvx3PXs04yOXvyr4Uu4S8OxsnIbttYnG_8K0d7a7oQ8_gMeNUKX |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VVggu_EMDpRgJuGWVOImTPXBAdEvKblcIWrE3N_Y6l9K0anbFLifegcfhVTjxJMzESapUFaqQeuAWJZ7EzszY3ziTbwBeiGkeRlOtXCIHd8NEe66KyPG4n_GYG6WqKgq7Y5Huh-8n0WQFfjb_wlh-iHbDjTyjmq_JwWlD-ryXYyzMbYoW71XG1lvUGZZDs_yK8Vv5emcLlf2S8-3B3tvUrUsMuDqm7865ohUuNn4eqjgPw76K-l6kRSKEnhIWUFybhAdKZyLAM77KDT40znMEVir0ArzvNVijguJE3L_1seWuwnXURnu2j8Gkm0Z0Yc87a-MaqXlBuZpZierKbZ2Ni4BwF1dXC-P2bfjVvFKbD3PYm89UT387xzb5n77zO3CrBuzsjfWwu7Biintw3ZbwXOLRoKL9Xt6HyQciCjmpOc8Z8Yo0tdHYWR2Fkv3-_oPppoRNybJiymhX4giv2vpWJcNAgiEwZ5bw5QHsX8kAH8JqcVyYdWBBhOeMUDzDMFxECoNTHYgsQpzuG554DsSNxUhdD5Bqi3yRneDOl6QxSRqTlcbkwgG_lTyxxCaXkHlVGWUrkJ0eUmJgHMnP43eSp16SDj_15dCBzY7VtgIYryMejIUDG40Zy3rSLCVtPmD0j5jSgeftZZzu6BtWVpjjedUm4MToFPy1TeIF3A_wPo-si5x1AENoxOiJA6Iy9EuPXQ5GAzp6_K-Cz-BGurc7kqOd8fAJ3KQmNpF0A1Znp3PzFMHtTG1WkwiDg6v2oD81pp_m |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VViAu_P8ESjEScMsqcRIne-CA2F22bFlVQMXeTOw4l0K6anbFLifegbfhVbjxJMzESapUFaqQeuAWJZ7EzszY3ziTbwCeiiwPo0wrl8jB3TDRnqsicjzupzzmRqmqisLbqRgfhG9m0WwDfjb_wlh-iHbDjTyjmq_JwedZftrJMRTmNkOL9ypb663qBMuJWX_F8K18sTtAXT_jfDT88Grs1hUGXB3TZ-dc0QIXGz8PVZyHYV9FfS_SIhFCZwQFFNcm4YHSqQjwjK9ygw-N8xxxlQq9AO97CbZC4fWpbMTgXUtdhcuoDfZsH4NZN4vozJ53lsYt0vKKUjXTErWV2zIbZ-HgLqyu1sXRdfjVvFGbDnPYWy5UT387RTb5f77yG3CthuvspfWvm7Bhiltw2RbwXOPRsCL9Xt-G2T7RhMxrxnNGrCJNZTR2UkWhZL-__2C6KWBTsrTIGO1JfMGrtrpVyTCMYAjLmaV7uQMHFzLAu7BZHBXmPrAgwnNGKJ5iEC4ihaGpDkQaIUr3DU88B-LGYKSuB0iVRT7LTmjnS9KYJI3JSmNy5YDfSs4trck5ZJ5XNtkKpMeHlBYYR_Lj9LXkYy8ZT9735cSBnY7RtgIYrSMajIUD240Vy3rKLCVtPWDsj4jSgSftZZzs6AtWWpijZdUm4MTnFPy1TeIF3A_wPvesh5x0AANoROiJA6Ky83OPXQ73hnT04F8FH8OV_cFI7u1OJw_hKrWwWaTbsLk4XppHiGwXaqeaQhh8umgH-gOMSZ6V |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precipitation+manipulation+experiments--challenges+and+recommendations+for+the+future&rft.jtitle=Ecology+letters&rft.au=Beier%2C+Claus&rft.au=Beierkuhnlein%2C+Carl&rft.au=Wohlgemuth%2C+Thomas&rft.au=Penuelas%2C+Josep&rft.date=2012-08-01&rft.eissn=1461-0248&rft.volume=15&rft.issue=8&rft.spage=899&rft_id=info:doi/10.1111%2Fj.1461-0248.2012.01793.x&rft_id=info%3Apmid%2F22553898&rft.externalDocID=22553898 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon |