Endothelial-to-mesenchymal transition drives atherosclerosis progression
The molecular mechanisms responsible for the development and progression of atherosclerotic lesions have not been fully established. Here, we investigated the role played by endothelial-to-mesenchymal transition (EndMT) and its key regulator FGF receptor 1 (FGFR1) in atherosclerosis. In cultured hum...
Saved in:
Published in | The Journal of clinical investigation Vol. 125; no. 12; pp. 4514 - 4528 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Clinical Investigation
01.12.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The molecular mechanisms responsible for the development and progression of atherosclerotic lesions have not been fully established. Here, we investigated the role played by endothelial-to-mesenchymal transition (EndMT) and its key regulator FGF receptor 1 (FGFR1) in atherosclerosis. In cultured human endothelial cells, both inflammatory cytokines and oscillatory shear stress reduced endothelial FGFR1 expression and activated TGF-β signaling. We further explored the link between disrupted FGF endothelial signaling and progression of atherosclerosis by introducing endothelial-specific deletion of FGF receptor substrate 2 α (Frs2a) in atherosclerotic (Apoe(-/-)) mice. When placed on a high-fat diet, these double-knockout mice developed atherosclerosis at a much earlier time point compared with that their Apoe(-/-) counterparts, eventually demonstrating an 84% increase in total plaque burden. Moreover, these animals exhibited extensive development of EndMT, deposition of fibronectin, and increased neointima formation. Additionally, we conducted a molecular and morphometric examination of left main coronary arteries from 43 patients with various levels of coronary disease to assess the clinical relevance of these findings. The extent of coronary atherosclerosis in this patient set strongly correlated with loss of endothelial FGFR1 expression, activation of endothelial TGF-β signaling, and the extent of EndMT. These data demonstrate a link between loss of protective endothelial FGFR signaling, development of EndMT, and progression of atherosclerosis. |
---|---|
AbstractList | The molecular mechanisms responsible for the development and progression of atherosclerotic lesions have not been fully established. Here, we investigated the role played by endothelial-to-mesenchymal transition (EndMT) and its key regulator FGF receptor 1 (FGFR1) in atherosclerosis. In cultured human endothelial cells, both inflammatory cytokines and oscillatory shear stress reduced endothelial FGFR1 expression and activated TGF-β signaling. We further explored the link between disrupted FGF endothelial signaling and progression of atherosclerosis by introducing endothelial-specific deletion of FGF receptor substrate 2 α (Frs2a) in atherosclerotic (Apoe(-/-)) mice. When placed on a high-fat diet, these double-knockout mice developed atherosclerosis at a much earlier time point compared with that their Apoe(-/-) counterparts, eventually demonstrating an 84% increase in total plaque burden. Moreover, these animals exhibited extensive development of EndMT, deposition of fibronectin, and increased neointima formation. Additionally, we conducted a molecular and morphometric examination of left main coronary arteries from 43 patients with various levels of coronary disease to assess the clinical relevance of these findings. The extent of coronary atherosclerosis in this patient set strongly correlated with loss of endothelial FGFR1 expression, activation of endothelial TGF-β signaling, and the extent of EndMT. These data demonstrate a link between loss of protective endothelial FGFR signaling, development of EndMT, and progression of atherosclerosis. In this paper, the authors investigated the role played by endothelial-to-mesenchymal transition (EndMT) and its key regulator FGF receptor 1 (FGFR1) in atherosclerosis. In cultured human endothelial cells, both inflammatory cytokines and oscillatory shear stress reduced endothelial FGFR1 expression and activated TGF-β signaling. They further explored the link between disrupted FGF endothelial signaling and progression of atherosclerosis by introducing endothelial-specific deletion of FGF receptor substrate 2 α (Frs2a) in atherosclerotic (Apoe^sup -/-^) mice. When placed on a high-fat diet, these double-knockout mice developed atherosclerosis at a much earlier time point compared with that their Apoe^sup -/-^ counterparts, eventually demonstrating an 84% increase in total plaque burden. Additionally, they conducted a molecular and morphometric examination of left main coronary arteries from 43 patients with various levels of coronary disease to assess the clinical relevance of these findings. These data demonstrate a link between loss of protective endothelial FGFR signaling, development of EndMT, and progression of atherosclerosis. In this paper, the authors investigated the role played by endothelial-to-mesenchymal transition (EndMT) and its key regulator FGF receptor 1 (FGFR1) in atherosclerosis. In cultured human endothelial cells, both inflammatory cytokines and oscillatory shear stress reduced endothelial FGFR1 expression and activated TGF- beta signaling. They further explored the link between disrupted FGF endothelial signaling and progression of atherosclerosis by introducing endothelial-specific deletion of FGF receptor substrate 2 alpha (Frs2a) in atherosclerotic (Apoe super( -/-)) mice. When placed on a high-fat diet, these double-knockout mice developed atherosclerosis at a much earlier time point compared with that their Apoe super( -/-) counterparts, eventually demonstrating an 84% increase in total plaque burden. Additionally, they conducted a molecular and morphometric examination of left main coronary arteries from 43 patients with various levels of coronary disease to assess the clinical relevance of these findings. These data demonstrate a link between loss of protective endothelial FGFR signaling, development of EndMT, and progression of atherosclerosis. The molecular mechanisms responsible for the development and progression of atherosclerotic lesions have not been fully established. Here, we investigated the role played by endothelial-to-mesenchymal transition (EndMT) and its key regulator FGF receptor 1 (FGFR1) in atherosclerosis. In cultured human endothelial cells, both inflammatory cytokines and oscillatory shear stress reduced endothelial FGFR1 expression and activated TGF-β signaling. We further explored the link between disrupted FGF endothelial signaling and progression of atherosclerosis by introducing endothelial-specific deletion of FGF receptor substrate 2α (Frs2α) in atherosclerotic ([Apoe.sup.-/-]) mice. When placed on a high-fat diet, these double-knockout mice developed atherosclerosis at a much earlier time point compared with that their [Apoe.sup.-/-] counterparts, eventually demonstrating an 84% increase in total plaque burden. Moreover, these animals exhibited extensive development of EndMT, deposition of fibronectin, and increased neointima formation. Additionally, we conducted a molecular and morphometric examination of left main coronary arteries from 43 patients with various levels of coronary disease to assess the clinical relevance of these findings. The extent of coronary atherosclerosis in this patient set strongly correlated with loss of endothelial FGFR1 expression, activation of endothelial TGF-β signaling, and the extent of EndMT. These data demonstrate a link between loss of protective endothelial FGFR signaling, development of EndMT, and progression of atherosclerosis. The molecular mechanisms responsible for the development and progression of atherosclerotic lesions have not been fully established. Here, we investigated the role played by endothelial-to-mesenchymal transition (EndMT) and its key regulator FGF receptor 1 (FGFR1) in atherosclerosis. In cultured human endothelial cells, both inflammatory cytokines and oscillatory shear stress reduced endothelial FGFR1 expression and activated TGF-β signaling. We further explored the link between disrupted FGF endothelial signaling and progression of atherosclerosis by introducing endothelial-specific deletion of FGF receptor substrate 2 α ( Frs2a ) in atherosclerotic ( Apoe –/– ) mice. When placed on a high-fat diet, these double-knockout mice developed atherosclerosis at a much earlier time point compared with that their Apoe –/– counterparts, eventually demonstrating an 84% increase in total plaque burden. Moreover, these animals exhibited extensive development of EndMT, deposition of fibronectin, and increased neointima formation. Additionally, we conducted a molecular and morphometric examination of left main coronary arteries from 43 patients with various levels of coronary disease to assess the clinical relevance of these findings. The extent of coronary atherosclerosis in this patient set strongly correlated with loss of endothelial FGFR1 expression, activation of endothelial TGF-β signaling, and the extent of EndMT. These data demonstrate a link between loss of protective endothelial FGFR signaling, development of EndMT, and progression of atherosclerosis. |
Audience | Academic |
Author | Chen, Pei-Yu Simons, Michael Qin, Lingfeng Baeyens, Nicolas Budatha, Madhusudhan Schwartz, Martin A. Li, Guangxin Tellides, George Afolabi, Titilayo |
AuthorAffiliation | 2 Department of Surgery 4 Department of Biomedical Engineering, Yale University School of Medicine, New Haven, Connecticut, USA 1 Yale Cardiovascular Research Center, Department of Internal Medicine 3 Department of Cell Biology, and |
AuthorAffiliation_xml | – name: 4 Department of Biomedical Engineering, Yale University School of Medicine, New Haven, Connecticut, USA – name: 2 Department of Surgery – name: 3 Department of Cell Biology, and – name: 1 Yale Cardiovascular Research Center, Department of Internal Medicine |
Author_xml | – sequence: 1 givenname: Pei-Yu surname: Chen fullname: Chen, Pei-Yu – sequence: 2 givenname: Lingfeng surname: Qin fullname: Qin, Lingfeng – sequence: 3 givenname: Nicolas surname: Baeyens fullname: Baeyens, Nicolas – sequence: 4 givenname: Guangxin surname: Li fullname: Li, Guangxin – sequence: 5 givenname: Titilayo surname: Afolabi fullname: Afolabi, Titilayo – sequence: 6 givenname: Madhusudhan surname: Budatha fullname: Budatha, Madhusudhan – sequence: 7 givenname: George surname: Tellides fullname: Tellides, George – sequence: 8 givenname: Martin A. surname: Schwartz fullname: Schwartz, Martin A. – sequence: 9 givenname: Michael surname: Simons fullname: Simons, Michael |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26517696$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1r2zAUhsXoWNNusF8wAoOxXbiTZH35ZlBCu2YUCvu6FbJynKjIUmrZZf33lVnTNFsuipAE0nNezsd7hA5CDIDQW4JPCJH087fZXFFJqhdoQjhXhaKlOkATjCkpKlmqQ3SU0jXGhDHOXqFDKjiRohITdHEWFrFfgXfGF30sWkgQ7OquNX7adyYk17sYpovO3UKamkx2MVk_ni5N111cdpBSRl6jl43xCd483Mfo1_nZz9lFcXn1dT47vSysxGVfWI6hUnUt-AJLRpUR2NbE1A0FzLgVBkCWAqRkCjcMrCxrlTMFYMBqSWR5jL781V0PdQsLCyGn6fW6c63p7nQ0Tu_-BLfSy3irmRBcSpIFPj4IdPFmgNTr1iUL3psAcUg6N4ZXSlHOnoFSJfLmo-r7f9DrOHQhdyJTTFSUlkxuqaXxoF1oYk7RjqL6lJUiM6xSmSr2UEsIkOvJg29cft7hT_bweS2gdXZvwKedgMz08KdfmiElPf_x_fns1e9d9sMTdgXG96sU_TBaKO2C754O8XF6G19uS7LZaKmDRlvXm1Enl-a8JliPxtcb429H9Riw0fwPvQfp5v45 |
CitedBy_id | crossref_primary_10_1161_CIRCULATIONAHA_118_038362 crossref_primary_10_1161_CIRCRESAHA_120_318124 crossref_primary_10_1161_CIRCRESAHA_122_321538 crossref_primary_10_1042_BSR20200026 crossref_primary_10_1016_j_jep_2023_117414 crossref_primary_10_1016_j_mvr_2022_104337 crossref_primary_10_1016_j_bcp_2018_10_023 crossref_primary_10_1016_j_jrras_2022_07_007 crossref_primary_10_1016_j_rbmo_2020_03_020 crossref_primary_10_1016_j_abb_2022_109321 crossref_primary_10_1186_s13075_016_1122_y crossref_primary_10_1111_omi_12326 crossref_primary_10_1161_CIRCRESAHA_123_324082 crossref_primary_10_1093_cvr_cvx226 crossref_primary_10_1111_ajt_15340 crossref_primary_10_1172_JCI157011 crossref_primary_10_1126_sciadv_abg5060 crossref_primary_10_1007_s11883_022_01023_9 crossref_primary_10_1134_S0022093022030139 crossref_primary_10_1016_j_biopha_2024_117143 crossref_primary_10_7554_eLife_62678 crossref_primary_10_1161_CIRCULATIONAHA_122_063075 crossref_primary_10_1016_j_ejphar_2023_175826 crossref_primary_10_15252_emmm_201506181 crossref_primary_10_1002_btm2_10644 crossref_primary_10_3389_fcvm_2023_1322252 crossref_primary_10_1007_s11886_017_0861_y crossref_primary_10_1016_j_devcel_2021_02_028 crossref_primary_10_1073_pnas_2110374119 crossref_primary_10_1016_j_vph_2023_107178 crossref_primary_10_1007_s12265_023_10463_w crossref_primary_10_3892_etm_2022_11394 crossref_primary_10_1371_journal_pgen_1007826 crossref_primary_10_3892_etm_2021_10876 crossref_primary_10_1002_jcu_23632 crossref_primary_10_1016_j_cytogfr_2016_09_002 crossref_primary_10_1155_2021_8869085 crossref_primary_10_3389_fphar_2021_787541 crossref_primary_10_1093_cvr_cvx253 crossref_primary_10_1038_s41598_021_97127_4 crossref_primary_10_1111_jre_13084 crossref_primary_10_1016_j_omtn_2020_11_021 crossref_primary_10_18632_aging_102850 crossref_primary_10_1016_j_semcdb_2019_10_015 crossref_primary_10_3390_ijms241612566 crossref_primary_10_1093_cvr_cvae131 crossref_primary_10_1016_j_acthis_2016_04_005 crossref_primary_10_1097_HJH_0000000000003427 crossref_primary_10_31083_j_fbl2906223 crossref_primary_10_2139_ssrn_3975295 crossref_primary_10_1038_s41598_018_35119_7 crossref_primary_10_1007_s00403_024_03737_z crossref_primary_10_1038_s44161_023_00276_0 crossref_primary_10_1111_bcp_14793 crossref_primary_10_1096_fj_201801238R crossref_primary_10_3390_ijtm1010004 crossref_primary_10_1016_j_isci_2023_107513 crossref_primary_10_1161_ATVBAHA_124_321772 crossref_primary_10_2174_0929867330666221028144416 crossref_primary_10_1007_s00592_023_02124_w crossref_primary_10_1186_s13059_020_02058_4 crossref_primary_10_3390_biomedicines9010003 crossref_primary_10_1021_acsbiomaterials_8b01253 crossref_primary_10_1172_JCI152716 crossref_primary_10_3389_fcvm_2021_734550 crossref_primary_10_3390_md20120756 crossref_primary_10_1161_CIRCRESAHA_120_318690 crossref_primary_10_3389_fcvm_2023_1279868 crossref_primary_10_1093_cvr_cvaa201 crossref_primary_10_3389_fopht_2023_1230581 crossref_primary_10_1038_s44161_024_00569_y crossref_primary_10_3390_ijms21218312 crossref_primary_10_1042_BJ20150844 crossref_primary_10_1002_path_5193 crossref_primary_10_1038_s41420_023_01697_3 crossref_primary_10_3389_fcell_2022_839109 crossref_primary_10_12688_f1000research_14803_1 crossref_primary_10_1016_j_jare_2024_12_049 crossref_primary_10_1002_stem_2566 crossref_primary_10_3389_fphys_2022_1081881 crossref_primary_10_1038_s41467_018_04447_7 crossref_primary_10_1016_j_bcp_2021_114716 crossref_primary_10_1097_FJC_0000000000001283 crossref_primary_10_3390_ijms21062204 crossref_primary_10_1080_14779072_2016_1207527 crossref_primary_10_1038_s41467_017_01169_0 crossref_primary_10_1016_j_jbc_2023_105244 crossref_primary_10_1155_2022_4136811 crossref_primary_10_3389_fcvm_2023_1273596 crossref_primary_10_1016_j_vph_2018_02_006 crossref_primary_10_1242_jcs_176248 crossref_primary_10_1101_cshperspect_a041220 crossref_primary_10_1093_cvr_cvab046 crossref_primary_10_1371_journal_pone_0230358 crossref_primary_10_1016_j_ymthe_2022_08_024 crossref_primary_10_17802_2306_1278_2024_13_4S_97_106 crossref_primary_10_3390_genes15121575 crossref_primary_10_1038_ncomms11853 crossref_primary_10_1016_j_yexcr_2019_01_005 crossref_primary_10_1073_pnas_2318904121 crossref_primary_10_1124_pharmrev_120_000096 crossref_primary_10_1016_j_vph_2024_107368 crossref_primary_10_1016_j_stem_2019_11_010 crossref_primary_10_3389_fimmu_2023_1103592 crossref_primary_10_1007_s11010_020_03793_9 crossref_primary_10_1016_j_cmet_2023_05_010 crossref_primary_10_1155_2016_6962801 crossref_primary_10_1016_j_bbrc_2021_01_062 crossref_primary_10_3389_fimmu_2018_00294 crossref_primary_10_3390_cells11192946 crossref_primary_10_1016_j_ejphar_2017_09_012 crossref_primary_10_1016_j_lfs_2019_116659 crossref_primary_10_1186_s12929_019_0580_3 crossref_primary_10_1161_ATVBAHA_121_313788 crossref_primary_10_1016_j_jep_2022_115261 crossref_primary_10_1161_CIRCRESAHA_120_316770 crossref_primary_10_3389_fcvm_2023_1186679 crossref_primary_10_1002_wsbm_1549 crossref_primary_10_1007_s12192_023_01333_0 crossref_primary_10_3390_ijms18081615 crossref_primary_10_2174_0929867327999201116194634 crossref_primary_10_3390_biom9090472 crossref_primary_10_1172_JCI131178 crossref_primary_10_3390_biology13040217 crossref_primary_10_2174_1570180820666230719121428 crossref_primary_10_1016_j_pharmthera_2022_108152 crossref_primary_10_2147_COPD_S424712 crossref_primary_10_3390_ijms23179770 crossref_primary_10_3389_fcell_2022_804247 crossref_primary_10_1161_CIRCRESAHA_123_321752 crossref_primary_10_1155_2019_6595437 crossref_primary_10_1093_cvr_cvac036 crossref_primary_10_3389_fcell_2022_1003028 crossref_primary_10_3389_fcvm_2023_1190460 crossref_primary_10_1016_j_mvr_2020_104118 crossref_primary_10_1186_s12964_024_01842_0 crossref_primary_10_1161_ATVBAHA_119_312557 crossref_primary_10_3389_fcell_2020_00260 crossref_primary_10_1016_j_ijcha_2018_09_006 crossref_primary_10_1159_000464321 crossref_primary_10_1155_2018_1864107 crossref_primary_10_1093_cvr_cvac159 crossref_primary_10_18632_aging_202290 crossref_primary_10_1002_dvdy_24589 crossref_primary_10_1016_j_tcm_2017_03_003 crossref_primary_10_1016_j_lfs_2017_07_014 crossref_primary_10_1016_j_intimp_2024_111567 crossref_primary_10_3389_fimmu_2024_1419685 crossref_primary_10_3389_fmolb_2023_1113061 crossref_primary_10_1016_j_ajpath_2023_06_003 crossref_primary_10_3390_biom11020226 crossref_primary_10_1016_j_bone_2020_115542 crossref_primary_10_1161_ATVBAHA_118_311705 crossref_primary_10_1038_s42255_020_00338_8 crossref_primary_10_1093_cvr_cvaa085 crossref_primary_10_5483_BMBRep_2018_51_2_011 crossref_primary_10_3390_cells8060589 crossref_primary_10_1080_21655979_2021_1983975 crossref_primary_10_3390_ijms26052196 crossref_primary_10_1111_jcmm_17325 crossref_primary_10_1161_CIRCRESAHA_116_310233 crossref_primary_10_1126_scisignal_aaz2597 crossref_primary_10_1161_ATVBAHA_118_311276 crossref_primary_10_1016_j_jacc_2018_09_089 crossref_primary_10_1021_acsbiomaterials_1c00459 crossref_primary_10_1007_s10456_020_09761_7 crossref_primary_10_1038_s44161_023_00266_2 crossref_primary_10_1002_1878_0261_12504 crossref_primary_10_1152_physrev_00021_2018 crossref_primary_10_1002_adfm_202203069 crossref_primary_10_1161_ATVBAHA_117_310685 crossref_primary_10_1620_tjem_2024_J031 crossref_primary_10_1016_j_abb_2019_108182 crossref_primary_10_1038_s41569_019_0239_5 crossref_primary_10_3389_fcell_2024_1446964 crossref_primary_10_1016_j_stem_2016_10_011 crossref_primary_10_1161_HYPERTENSIONAHA_123_21382 crossref_primary_10_1002_path_5204 crossref_primary_10_1080_1744666X_2019_1614915 crossref_primary_10_1096_fj_202001494R crossref_primary_10_1016_j_bcp_2022_115290 crossref_primary_10_32604_chd_2023_047689 crossref_primary_10_1016_j_ajpath_2017_05_014 crossref_primary_10_1111_jcmm_15871 crossref_primary_10_1126_sciadv_abl6364 crossref_primary_10_1161_ATVBAHA_123_320330 crossref_primary_10_1111_apha_14038 crossref_primary_10_1186_s12933_023_02039_4 crossref_primary_10_1080_08830185_2020_1866568 crossref_primary_10_3390_cells12121640 crossref_primary_10_1096_fj_202000073RRRRR crossref_primary_10_1016_j_bcp_2023_115579 crossref_primary_10_1038_s42255_019_0100_5 crossref_primary_10_3389_fcvm_2023_1290050 crossref_primary_10_3390_ijms22158088 crossref_primary_10_1016_j_lfs_2020_118816 crossref_primary_10_3390_molecules28041861 crossref_primary_10_1152_ajpheart_00067_2024 crossref_primary_10_1016_j_intimp_2024_113209 crossref_primary_10_1038_s41467_022_31388_z crossref_primary_10_1590_1678_4324_2022210260 crossref_primary_10_1161_CIRCRESAHA_121_320694 crossref_primary_10_1126_sciadv_ado9970 crossref_primary_10_1126_science_aas9432 crossref_primary_10_3892_ijmm_2017_3034 crossref_primary_10_1007_s12035_024_04540_7 crossref_primary_10_3390_ijms21165875 crossref_primary_10_1002_path_5574 crossref_primary_10_1016_j_atherosclerosis_2016_08_046 crossref_primary_10_1152_ajpheart_00677_2016 crossref_primary_10_1016_j_ejcb_2017_04_002 crossref_primary_10_3389_fphar_2022_887253 crossref_primary_10_1161_ATVBAHA_117_309002 crossref_primary_10_1038_s41569_021_00517_4 crossref_primary_10_1038_s41467_021_20905_1 crossref_primary_10_15252_embr_202256135 crossref_primary_10_3389_fcvm_2021_751720 crossref_primary_10_7554_eLife_91729 crossref_primary_10_3390_ijms24097900 crossref_primary_10_1007_s10528_021_10139_7 crossref_primary_10_1038_s41368_019_0054_1 crossref_primary_10_1161_CIRCRESAHA_120_315929 crossref_primary_10_1073_pnas_1913481117 crossref_primary_10_1007_s10557_019_06863_3 crossref_primary_10_1038_srep33407 crossref_primary_10_1186_s13098_022_00966_y crossref_primary_10_1021_acsnano_3c12281 crossref_primary_10_1038_s41419_022_04888_5 crossref_primary_10_1002_med_21970 crossref_primary_10_3390_bioengineering11040325 crossref_primary_10_1016_j_intimp_2021_108240 crossref_primary_10_1371_journal_pone_0167936 crossref_primary_10_1002_path_4814 crossref_primary_10_1016_j_compositesb_2022_110487 crossref_primary_10_1186_s12880_023_00997_5 crossref_primary_10_1161_CIRCRESAHA_118_312704 crossref_primary_10_1016_j_thromres_2024_03_004 crossref_primary_10_3390_ijms25116180 crossref_primary_10_1186_s12944_019_1006_7 crossref_primary_10_1007_s12265_021_10108_w crossref_primary_10_1016_j_bcp_2019_06_021 crossref_primary_10_1161_ATVBAHA_124_320393 crossref_primary_10_1038_s44161_022_00047_3 crossref_primary_10_1134_S0022093024060048 crossref_primary_10_4103_1673_5374_280317 crossref_primary_10_1111_acer_14415 crossref_primary_10_1161_ATVBAHA_123_318237 crossref_primary_10_1177_1721727X221105131 crossref_primary_10_1152_ajpheart_00084_2018 crossref_primary_10_1161_CIRCRESAHA_116_308870 crossref_primary_10_3389_fcvm_2020_00053 crossref_primary_10_3389_fcvm_2023_1187490 crossref_primary_10_1016_j_cjca_2023_09_009 crossref_primary_10_20900_immunometab20210020 crossref_primary_10_1007_s10557_022_07385_1 crossref_primary_10_1164_rccm_201605_0920ED crossref_primary_10_5551_jat_64990 crossref_primary_10_1016_j_phymed_2019_152955 crossref_primary_10_1007_s12265_020_09961_y crossref_primary_10_1073_pnas_2105339118 crossref_primary_10_1093_qjmed_hcae136 crossref_primary_10_1186_s12964_020_00533_w crossref_primary_10_1016_j_jaccao_2022_04_002 crossref_primary_10_3390_cells13171413 crossref_primary_10_1038_s41374_018_0032_9 crossref_primary_10_1186_s10020_024_00798_8 crossref_primary_10_1016_j_nantod_2022_101514 crossref_primary_10_1152_ajpheart_00213_2018 crossref_primary_10_1016_j_atherosclerosis_2018_05_046 crossref_primary_10_1016_j_molcel_2018_01_010 crossref_primary_10_3389_fcvm_2022_938397 crossref_primary_10_3389_fcvm_2018_00027 crossref_primary_10_1016_j_lfs_2020_117837 crossref_primary_10_1126_science_aat3470 crossref_primary_10_3389_fcvm_2022_1054576 crossref_primary_10_1177_0003319717714918 crossref_primary_10_1152_ajpheart_00312_2022 crossref_primary_10_3109_10641963_2016_1163370 crossref_primary_10_1097_MOL_0000000000000542 crossref_primary_10_1159_000512750 crossref_primary_10_1002_jcp_27695 crossref_primary_10_1093_cvr_cvz211 crossref_primary_10_1016_j_jlr_2022_100276 crossref_primary_10_1126_sciadv_abg1694 crossref_primary_10_1161_CIRCRESAHA_119_314989 crossref_primary_10_1063_5_0174825 crossref_primary_10_1016_j_bbadis_2021_166168 crossref_primary_10_3390_cells11111834 crossref_primary_10_1038_s41569_018_0023_y crossref_primary_10_3892_mmr_2019_10249 crossref_primary_10_3390_genes13081338 crossref_primary_10_1016_j_lfs_2022_120706 crossref_primary_10_1016_j_bbrc_2024_150157 crossref_primary_10_31857_S0869813924040087 crossref_primary_10_3390_cimb46080496 crossref_primary_10_7554_eLife_91729_3 crossref_primary_10_1161_ATVBAHA_123_320524 crossref_primary_10_3390_cells10092338 crossref_primary_10_3390_biom7040074 crossref_primary_10_1073_pnas_2112625118 crossref_primary_10_1186_s41232_021_00186_3 crossref_primary_10_1089_ars_2020_8169 crossref_primary_10_1177_00033197211063655 crossref_primary_10_1007_s10456_018_9639_0 crossref_primary_10_1097_FJC_0000000000000480 crossref_primary_10_1016_j_biopha_2018_07_122 crossref_primary_10_1016_j_cophys_2023_100678 crossref_primary_10_1074_mcp_M116_058099 crossref_primary_10_2174_1381612826666200504115045 crossref_primary_10_1007_s00394_019_01920_x crossref_primary_10_1093_cvr_cvae021 crossref_primary_10_1016_j_bbrc_2019_11_181 crossref_primary_10_1016_j_jare_2022_02_017 crossref_primary_10_1161_ATVBAHA_124_320933 crossref_primary_10_1096_fj_201601064R crossref_primary_10_1093_cvr_cvae029 crossref_primary_10_1016_j_stemcr_2017_12_011 crossref_primary_10_1097_CD9_0000000000000126 crossref_primary_10_3389_fcvm_2023_1264479 crossref_primary_10_1161_JAHA_121_025337 crossref_primary_10_1186_s12933_022_01457_0 crossref_primary_10_1016_j_cellsig_2017_06_014 crossref_primary_10_1016_j_kint_2018_01_031 crossref_primary_10_1080_17474124_2018_1477587 crossref_primary_10_1007_s11010_020_03811_w crossref_primary_10_1002_adbi_201800252 crossref_primary_10_1038_s42255_021_00353_3 crossref_primary_10_1161_CIRCRESAHA_121_319590 crossref_primary_10_1016_j_biopha_2024_116589 crossref_primary_10_1016_j_phymed_2025_156520 crossref_primary_10_1038_s41569_023_00883_1 crossref_primary_10_1172_jci_insight_153769 crossref_primary_10_3389_fcell_2018_00082 crossref_primary_10_1089_dna_2017_3779 crossref_primary_10_1093_eurheartj_ehac686 crossref_primary_10_1134_S002209302402025X crossref_primary_10_17116_kardio202316051469 crossref_primary_10_1016_j_biopha_2022_113831 crossref_primary_10_1016_j_phymed_2024_156122 crossref_primary_10_3390_cells10102573 crossref_primary_10_1161_ATVBAHA_119_313248 crossref_primary_10_1038_s41598_017_03532_z crossref_primary_10_1007_s11010_021_04307_x crossref_primary_10_1152_ajpheart_00029_2017 crossref_primary_10_3389_fphar_2022_946193 crossref_primary_10_1080_17476348_2020_1795832 crossref_primary_10_1093_cvr_cvab105 crossref_primary_10_1146_annurev_physiol_032222_080806 crossref_primary_10_1172_JCI141467 crossref_primary_10_1016_j_phrs_2024_107156 crossref_primary_10_1007_s11684_024_1077_3 crossref_primary_10_1016_j_jlr_2021_100066 crossref_primary_10_3389_fcell_2021_689469 crossref_primary_10_1038_s41401_020_0374_x crossref_primary_10_1093_abbs_gmz155 crossref_primary_10_1016_j_cellsig_2019_05_005 crossref_primary_10_53941_ijddp_2024_100010 crossref_primary_10_1038_s41569_024_01115_w crossref_primary_10_1038_s42255_024_01015_w crossref_primary_10_2147_IJN_S374895 crossref_primary_10_1161_CIRCRESAHA_117_312310 crossref_primary_10_1093_cvr_cvad076 crossref_primary_10_1093_ndt_gfy100 crossref_primary_10_1186_s12964_025_02028_y crossref_primary_10_1111_jcmm_13360 crossref_primary_10_3389_fcvm_2021_643519 crossref_primary_10_1016_j_atherosclerosis_2020_08_003 crossref_primary_10_3389_fphys_2021_734215 crossref_primary_10_1098_rsif_2019_0732 crossref_primary_10_1172_JCI83083 crossref_primary_10_1111_cas_14455 crossref_primary_10_1161_ATVBAHA_119_312826 crossref_primary_10_1371_journal_pgen_1008538 crossref_primary_10_15252_emmm_201505943 crossref_primary_10_1016_j_semcdb_2023_06_002 crossref_primary_10_3389_fendo_2023_1050540 crossref_primary_10_3390_biology12050686 crossref_primary_10_1016_j_matt_2020_05_017 crossref_primary_10_1152_ajpheart_00038_2023 crossref_primary_10_1016_j_vph_2018_10_004 crossref_primary_10_1093_g3journal_jkad243 |
Cites_doi | 10.1126/scitranslmed.3006927 10.1182/blood-2003-09-3363 10.1016/j.immuni.2013.06.009 10.1007/s00441-011-1189-3 10.1177/0022034512467352 10.1161/01.ATV.0000019729.39500.2F 10.1172/JCI119465 10.1016/j.ahj.2013.03.018 10.1007/s00441-011-1222-6 10.1097/00041433-200210000-00008 10.1038/nrm2596 10.2353/ajpath.2009.081061 10.1002/emmm.201200237 10.1126/scisignal.2005504 10.1083/jcb.201412052 10.1161/ATVBAHA.113.301220 10.1038/nrcardio.2011.62 10.1161/ATVBAHA.108.179705 10.1038/nature10146 10.1016/j.celrep.2012.10.021 10.1242/jcs.138313 10.1016/j.atherosclerosis.2012.09.013 10.1038/35003221 10.1161/ATVBAHA.111.227827 10.1089/10799900260100141 10.1158/1078-0432.CCR-13-3173 10.1002/dvg.20327 10.1016/j.ajpath.2011.06.001 10.1161/01.ATV.20.5.1262 10.1161/CIRCRESAHA.109.216283 10.1007/s00109-014-1144-3 10.1038/nm1613 10.1073/pnas.1413725111 10.1038/nature12207 10.1038/nm.2252 10.1126/scisignal.2002722 10.1038/nature08938 10.1038/nprot.2010.113 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2015 American Society for Clinical Investigation Copyright American Society for Clinical Investigation Dec 2015 Copyright © 2015, American Society for Clinical Investigation 2015 American Society for Clinical Investigation |
Copyright_xml | – notice: COPYRIGHT 2015 American Society for Clinical Investigation – notice: Copyright American Society for Clinical Investigation Dec 2015 – notice: Copyright © 2015, American Society for Clinical Investigation 2015 American Society for Clinical Investigation |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7RV 7X7 7XB 88A 88E 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BEC BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS S0X 7X8 7T5 H94 5PM |
DOI | 10.1172/JCI82719 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Nursing & Allied Health Database ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection eLibrary (ProQuest) Proquest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China SIRS Editorial MEDLINE - Academic Immunology Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SIRS Editorial elibrary ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1558-8238 |
EndPage | 4528 |
ExternalDocumentID | PMC4665771 3889354671 A436234498 26517696 10_1172_JCI82719 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL053793 – fundername: NIDDK NIH HHS grantid: U24 DK059635 – fundername: NHLBI NIH HHS grantid: P01 HL107205 – fundername: NHLBI NIH HHS grantid: R01 HL075092 |
GroupedDBID | --- -~X .55 .XZ 08G 08P 29K 354 36B 5GY 5RE 5RS 7RV 7X7 88E 8AO 8F7 8FE 8FH 8FI 8FJ 8R4 8R5 AAWTL AAYXX ABOCM ABPMR ABUWG ACGFO ACIHN ACNCT ACPRK ADBBV AEAQA AENEX AFCHL AFKRA AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ASPBG AVWKF AZFZN BAWUL BBNVY BCU BEC BENPR BHPHI BKEYQ BLC BPHCQ BVXVI CCPQU CITATION CS3 D-I DIK DU5 E3Z EBD EBS EJD EMB EMOBN EX3 F5P FRP FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR IHW INH IOF IOV IPO ISR ITC KQ8 L7B LK8 M1P M5~ M7P NAPCQ OBH OCB ODZKP OFXIZ OGEVE OHH OK1 OVD OVIDX OVT P2P P6G PHGZM PHGZT PQQKQ PROAC PSQYO Q2X RPM S0X SJFOW SV3 TEORI TR2 TVE UKHRP VVN W2D WH7 WOQ WOW X7M XSB YFH YHG YKV YOC ZY1 ~H1 CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PMFND 3V. 7XB 88A 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 7T5 H94 5PM |
ID | FETCH-LOGICAL-c703t-c50e98bb65d07428a60cb1abf2e045c6aee736e77480f4ec73b8769ee4e4b7173 |
IEDL.DBID | 7X7 |
ISSN | 0021-9738 |
IngestDate | Thu Aug 21 14:35:37 EDT 2025 Fri Jul 11 11:56:42 EDT 2025 Fri Jul 11 12:11:50 EDT 2025 Fri Jul 25 09:43:57 EDT 2025 Tue Jun 17 21:03:00 EDT 2025 Thu Jun 12 22:51:35 EDT 2025 Tue Jun 10 20:44:49 EDT 2025 Fri Jun 27 03:59:23 EDT 2025 Fri Jun 27 03:56:38 EDT 2025 Thu May 22 21:05:52 EDT 2025 Mon Jul 21 05:59:07 EDT 2025 Thu Apr 24 23:03:23 EDT 2025 Tue Jul 01 00:21:41 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c703t-c50e98bb65d07428a60cb1abf2e045c6aee736e77480f4ec73b8769ee4e4b7173 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Authorship note: Pei-Yu Chen and Lingfeng Qin contributed equally to this work. |
OpenAccessLink | http://www.jci.org/articles/view/82719/files/pdf |
PMID | 26517696 |
PQID | 1746922347 |
PQPubID | 42166 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4665771 proquest_miscellaneous_1765988254 proquest_miscellaneous_1728672851 proquest_journals_1746922347 gale_infotracmisc_A436234498 gale_infotracgeneralonefile_A436234498 gale_infotracacademiconefile_A436234498 gale_incontextgauss_ISR_A436234498 gale_incontextgauss_IOV_A436234498 gale_healthsolutions_A436234498 pubmed_primary_26517696 crossref_citationtrail_10_1172_JCI82719 crossref_primary_10_1172_JCI82719 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-01 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Ann Arbor |
PublicationTitle | The Journal of clinical investigation |
PublicationTitleAlternate | J Clin Invest |
PublicationYear | 2015 |
Publisher | American Society for Clinical Investigation |
Publisher_xml | – name: American Society for Clinical Investigation |
References | B20 B21 B22 B23 B24 B25 B26 Conway (B1) 2013; 126 B27 B28 B29 B30 B31 B10 B32 B11 B33 B12 B34 B13 B35 B14 B36 B37 B16 B38 B17 B18 Ten Dijke (B15) 2012; 5 B19 B2 B3 B4 B5 B6 B7 B8 B9 24190880 - J Cell Sci. 2013 Nov 15;126(Pt 22):5101-9 19197332 - Nat Rev Mol Cell Biol. 2009 Jan;10(1):53-62 20378855 - Circ Res. 2010 Jun 11;106(11):1703-11 12352016 - Curr Opin Lipidol. 2002 Oct;13(5):523-9 23809160 - Immunity. 2013 Jun 27;38(6):1092-104 19608867 - Am J Pathol. 2009 Aug;175(2):616-26 22895665 - Arterioscler Thromb Vasc Biol. 2012 Sep;32(9):2045-51 23748444 - Nature. 2013 Jun 27;498(7455):492-6 21866313 - Cell Tissue Res. 2012 Jan;347(1):177-86 24622514 - Sci Transl Med. 2014 Mar 12;6(227):227ra34 9169506 - J Clin Invest. 1997 Jun 1;99(11):2752-61 23128109 - J Dent Res. 2013 Feb;92(2):114-21 25249657 - Sci Signal. 2014 Sep 23;7(344):ra90 23413429 - Arterioscler Thromb Vasc Biol. 2013 Apr;33(4):795-804 20725067 - Nat Protoc. 2010 Sep;5(9):1518-34 25107915 - Clin Cancer Res. 2015 Mar 1;21(5):962-8 17868091 - Genesis. 2007 Sep;45(9):554-9 17660828 - Nat Med. 2007 Aug;13(8):952-61 21763673 - Am J Pathol. 2011 Sep;179(3):1074-80 21626289 - Cell Tissue Res. 2012 Jan;347(1):155-75 24638861 - J Mol Med (Berl). 2014 Apr;92(4):307-19 12162876 - J Interferon Cytokine Res. 2002 Jun;22(6):661-70 23200853 - Cell Rep. 2012 Dec 27;2(6):1684-96 12067907 - Arterioscler Thromb Vasc Biol. 2002 Jun 1;22(6):975-82 14976060 - Blood. 2004 Jul 1;104(1):11-8 21593864 - Nature. 2011 May 19;473(7347):317-25 21527747 - Arterioscler Thromb Vasc Biol. 2011 Jul;31(7):1625-33 10646607 - Nature. 2000 Jan 13;403(6766):207-11 23895801 - Am Heart J. 2013 Aug;166(2):199-207.e15 22514136 - EMBO Mol Med. 2012 Jul;4(7):564-76 10807742 - Arterioscler Thromb Vasc Biol. 2000 May;20(5):1262-75 21502963 - Nat Rev Cardiol. 2011 Jun;8(6):348-58 25869663 - J Cell Biol. 2015 Apr 13;209(1):13-22 22355187 - Sci Signal. 2012 Feb 21;5(212):pt2 20428172 - Nature. 2010 Apr 29;464(7293):1357-61 23078881 - Atherosclerosis. 2012 Dec;225(2):461-8 25404299 - Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17308-13 21102460 - Nat Med. 2010 Dec;16(12):1400-6 |
References_xml | – ident: B11 doi: 10.1126/scitranslmed.3006927 – ident: B25 doi: 10.1182/blood-2003-09-3363 – ident: B4 doi: 10.1016/j.immuni.2013.06.009 – ident: B34 doi: 10.1007/s00441-011-1189-3 – ident: B24 doi: 10.1177/0022034512467352 – ident: B32 doi: 10.1161/01.ATV.0000019729.39500.2F – ident: B28 doi: 10.1172/JCI119465 – ident: B31 doi: 10.1016/j.ahj.2013.03.018 – ident: B13 doi: 10.1007/s00441-011-1222-6 – ident: B33 doi: 10.1097/00041433-200210000-00008 – ident: B2 doi: 10.1038/nrm2596 – ident: B8 doi: 10.2353/ajpath.2009.081061 – ident: B18 doi: 10.1002/emmm.201200237 – ident: B14 doi: 10.1126/scisignal.2005504 – ident: B5 doi: 10.1083/jcb.201412052 – ident: B37 doi: 10.1161/ATVBAHA.113.301220 – ident: B19 doi: 10.1038/nrcardio.2011.62 – ident: B20 doi: 10.1161/ATVBAHA.108.179705 – ident: B3 doi: 10.1038/nature10146 – ident: B10 doi: 10.1016/j.celrep.2012.10.021 – volume: 126 start-page: 5101 issue: pt 22 year: 2013 ident: B1 article-title: Flow-dependent cellular mechanotransduction in atherosclerosis publication-title: J Cell Sci doi: 10.1242/jcs.138313 – ident: B27 doi: 10.1016/j.atherosclerosis.2012.09.013 – ident: B29 doi: 10.1038/35003221 – ident: B22 doi: 10.1161/ATVBAHA.111.227827 – ident: B30 doi: 10.1089/10799900260100141 – ident: B23 doi: 10.1158/1078-0432.CCR-13-3173 – ident: B36 doi: 10.1002/dvg.20327 – ident: B9 doi: 10.1016/j.ajpath.2011.06.001 – ident: B38 doi: 10.1161/01.ATV.20.5.1262 – ident: B17 doi: 10.1161/CIRCRESAHA.109.216283 – ident: B21 doi: 10.1007/s00109-014-1144-3 – ident: B6 doi: 10.1038/nm1613 – ident: B35 doi: 10.1073/pnas.1413725111 – ident: B7 doi: 10.1038/nature12207 – ident: B12 doi: 10.1038/nm.2252 – volume: 5 issue: 212 year: 2012 ident: B15 article-title: TGF-β signaling in endothelial-to-mesenchymal transition: the role of shear stress and primary cilia publication-title: Sci Signal doi: 10.1126/scisignal.2002722 – ident: B26 doi: 10.1038/nature08938 – ident: B16 doi: 10.1038/nprot.2010.113 – reference: 21502963 - Nat Rev Cardiol. 2011 Jun;8(6):348-58 – reference: 10807742 - Arterioscler Thromb Vasc Biol. 2000 May;20(5):1262-75 – reference: 22514136 - EMBO Mol Med. 2012 Jul;4(7):564-76 – reference: 9169506 - J Clin Invest. 1997 Jun 1;99(11):2752-61 – reference: 17868091 - Genesis. 2007 Sep;45(9):554-9 – reference: 23413429 - Arterioscler Thromb Vasc Biol. 2013 Apr;33(4):795-804 – reference: 23809160 - Immunity. 2013 Jun 27;38(6):1092-104 – reference: 22355187 - Sci Signal. 2012 Feb 21;5(212):pt2 – reference: 24638861 - J Mol Med (Berl). 2014 Apr;92(4):307-19 – reference: 20378855 - Circ Res. 2010 Jun 11;106(11):1703-11 – reference: 21626289 - Cell Tissue Res. 2012 Jan;347(1):155-75 – reference: 12162876 - J Interferon Cytokine Res. 2002 Jun;22(6):661-70 – reference: 12067907 - Arterioscler Thromb Vasc Biol. 2002 Jun 1;22(6):975-82 – reference: 24190880 - J Cell Sci. 2013 Nov 15;126(Pt 22):5101-9 – reference: 25404299 - Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17308-13 – reference: 25249657 - Sci Signal. 2014 Sep 23;7(344):ra90 – reference: 22895665 - Arterioscler Thromb Vasc Biol. 2012 Sep;32(9):2045-51 – reference: 14976060 - Blood. 2004 Jul 1;104(1):11-8 – reference: 19608867 - Am J Pathol. 2009 Aug;175(2):616-26 – reference: 23200853 - Cell Rep. 2012 Dec 27;2(6):1684-96 – reference: 17660828 - Nat Med. 2007 Aug;13(8):952-61 – reference: 23748444 - Nature. 2013 Jun 27;498(7455):492-6 – reference: 21102460 - Nat Med. 2010 Dec;16(12):1400-6 – reference: 23128109 - J Dent Res. 2013 Feb;92(2):114-21 – reference: 21763673 - Am J Pathol. 2011 Sep;179(3):1074-80 – reference: 21527747 - Arterioscler Thromb Vasc Biol. 2011 Jul;31(7):1625-33 – reference: 24622514 - Sci Transl Med. 2014 Mar 12;6(227):227ra34 – reference: 21866313 - Cell Tissue Res. 2012 Jan;347(1):177-86 – reference: 21593864 - Nature. 2011 May 19;473(7347):317-25 – reference: 12352016 - Curr Opin Lipidol. 2002 Oct;13(5):523-9 – reference: 10646607 - Nature. 2000 Jan 13;403(6766):207-11 – reference: 19197332 - Nat Rev Mol Cell Biol. 2009 Jan;10(1):53-62 – reference: 20428172 - Nature. 2010 Apr 29;464(7293):1357-61 – reference: 23078881 - Atherosclerosis. 2012 Dec;225(2):461-8 – reference: 25869663 - J Cell Biol. 2015 Apr 13;209(1):13-22 – reference: 20725067 - Nat Protoc. 2010 Sep;5(9):1518-34 – reference: 23895801 - Am Heart J. 2013 Aug;166(2):199-207.e15 – reference: 25107915 - Clin Cancer Res. 2015 Mar 1;21(5):962-8 |
SSID | ssj0014454 |
Score | 2.6326816 |
Snippet | The molecular mechanisms responsible for the development and progression of atherosclerotic lesions have not been fully established. Here, we investigated the... In this paper, the authors investigated the role played by endothelial-to-mesenchymal transition (EndMT) and its key regulator FGF receptor 1 (FGFR1) in... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4514 |
SubjectTerms | Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism Animals Apolipoproteins E - genetics Apolipoproteins E - metabolism Atherosclerosis Biomechanics Biomedical research Collagen Coronary Artery Disease - genetics Coronary Artery Disease - metabolism Coronary Artery Disease - pathology Coronary vessels Cytokines Development and progression Fibroblast growth factor receptors Gene expression Genetic aspects Health aspects Heart attacks Human Umbilical Vein Endothelial Cells - metabolism Human Umbilical Vein Endothelial Cells - pathology Humans Hypertension Inflammation Membrane Proteins - genetics Membrane Proteins - metabolism Mice Mice, Knockout Proteins Receptor, Fibroblast Growth Factor, Type 1 - genetics Receptor, Fibroblast Growth Factor, Type 1 - metabolism Shear stress Smooth muscle Software Studies Transforming Growth Factor beta - genetics Transforming Growth Factor beta - metabolism Veins & arteries |
Title | Endothelial-to-mesenchymal transition drives atherosclerosis progression |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26517696 https://www.proquest.com/docview/1746922347 https://www.proquest.com/docview/1728672851 https://www.proquest.com/docview/1765988254 https://pubmed.ncbi.nlm.nih.gov/PMC4665771 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEN8oJMYX4zdFxGqMPG24tvvVJ4N45A4DGhRzb83udgtnoAXae_C_d6bdq1dDiA_XpNlfL-10dj46s78l5H2kmQVHI6lIEkeZZoIqLSKqdcJz0GcnDVZ0j47F5JQdzvjMf3CrfVvl0ia2hjqvLH4j34XIWaTgy5j8eHVNcdcorK76LTTuk3WkLkOtlrM-4YJcgXsW5oimMlGefBZ89u4vO1exRH6dFXf0r1Fe8UrDjskVF3TwmDzysWO4173sJ-SeK5-SB0e-Ov6MTMZljguqLkCnaFPRS1xZZM9_X8JFDfqktj0rzG-QajZsQ7-qhn-C47wO206tjqXjOTk9GP_Yn1C_UwK1MGMbavnIpcoYwXPMdUHaI2sibYrYQchmhXZOJsJBqKdGBXNWJgasYOocc8xgHf4FWSur0m2QsCiMlUWeWsU149LBmVA5L3RkkL2vCMjOUmCZ9TTiuJvFRdamEzLODvenrWgD8rZHXnXUGbdg3qDMs27RZz_bsj0GjjVhLFUBedcikKuixGaYM72o62z69ed_gL6fDEA7HlRUcMdW-wUI8NzIgTVAfhggzzoG8NuAWwMgTE07HF6qUuZNQ539VWQQUD-MV2K7W-mqBWJiJeDHo7swgqcKE_yAvOy0sxdzLDgMpyIgcqC3PQBJxYcj5fy8JRdnWIqT0ebdt_6KPITIkXd9PVtkrblZuNcQnTVmu52C22T90_j42wmcfZ5--QN-tjyl |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEN8gJuqL8dsqSjUqTxuu7X71wRiCkDvgMFEw91Z2t1s4Ay3SXgz_lH-jM22vXg0hvvBwl1z212Y7N7sz05n5LSHvAs0sGBpJRRQ5yjQTVGkRUK0jnoI-O2kwozveF8NDtjPhkyXye94Lg2WV8z2x3qjTwuI78nXwnEUMtozJT-c_KZ4ahdnV-REajVrsustfELKVH0ef4f99H4bbWwebQ9qeKkAtaHdFLR-4WBkjeIpxIcxsYE2gTRY6cG-s0M7JSDhwi9QgY87KyMCOETvHHDOYs4b73iK3wfAOMNiTky7Ag9iEt6zPAY1lpFqyW_AR1n_YqQol8vksmL9_jcCCFexXaC6YvO0H5H7rq_objXI9JEsuf0TujNts_GMy3MpTbOA6BR2mVUHPsJPJnlyewUUV2sC6HMxPL5Da1q9dzaKEO8H3tPTryrCGFeQJObwRGT4ly3mRu-fEzzJjZZbGVnHNuHTwS6iUZzowyBaYeWRtLrDEtrTleHrGaVKHLzJMdjZHtWg98qZDnjdUHVdgVlHmSdNk2q3uZIOBIY8Yi5VH3tYI5MbIsfjmWM_KMhl9-f4foG9fe6C1FpQVMGOr24YHeG7k3OohP_SQxw3j-FXAlR4QtgLbH56rUtJuRWXyd-GAgLphvBLL63JXzBATKgEfHlyHETxW-ELBI88a7ezEHAoOw7HwiOzpbQdAEvP-SD49qcnMGab-ZPDi-qmvkrvDg_Fesjfa331J7oHXypuaohWyXF3M3CvwDCvzul6OPjm66fX_BwXbdyk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF7RIKFeqr7rQotbteW0Smzvwz5UFYVECZQU0YK4uev1GoLApjhRxV_rr-uMvXHjCqFeOCRStJ-t9WR2ZtYz8y0h7zzFNDgaSUUQGMoUEzRUwqNKBTwFfTYywYzu3lgMD9nOMT9eIr_nvTBYVjm3iZWhTguN78i7EDmLCHwZk93MlkXsbw8-Xf6keIIUZlrnx2nUKrJrrn_B9q38ONqG__q97w_637eG1J4wQDVo-pRq3jNRmCSCp7hHhFn2dOKpJPMNhDpaKGNkIAyESGEvY0bLIAHrERnDDEswfw33vUeWJe6KOmT5c3-8f9DkMBjjlgPao5EMQkt9CxFD90xPQl8iu8-CM_zXJSz4xHa95oIDHDwkD2zk6m7WqvaILJn8MVnZs7n5J2TYz1Ns5zoHjabTgl5gX5M-vb6Ai6boEaviMDe9QqJbtwo8ixLuBN-T0q3qxGqOkKfk8E6k-Ix08iI3L4ibZYmWWRrpkCvGpYFfIkx5prwEuQMzh2zMBRZrS2KOZ2mcx9VmRvrxztaoEq1D3jTIy5q44wbMOso8rltOm7UebzJw6wFjUeiQtxUCmTJy1LkTNSvLePT16D9A3w5aoA0LygqYsVa2_QGeGxm4WsgPLeRJzT9-E3CtBQTDoNvDc1WKrWEq47_LCATUDOOVWGyXm2KGGD8U8OHebRjBoxBfLzjkea2djZh9wWE4Eg6RLb1tAEhp3h7JJ6cVtTnDRKD0Xt4-9XWyAms__jIa766S-xDC8rrAaI10plcz8wrCxGny2q5Hl_y4axPwB93nfMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Endothelial-to-mesenchymal+transition+drives+atherosclerosis+progression&rft.jtitle=The+Journal+of+clinical+investigation&rft.au=Chen%2C+Pei-Yu&rft.au=Qin%2C+Lingfeng&rft.au=Baeyens%2C+Nicolas&rft.au=Li%2C+Guangxin&rft.date=2015-12-01&rft.pub=American+Society+for+Clinical+Investigation&rft.issn=0021-9738&rft.spage=4514&rft_id=info:doi/10.1172%2FJCI82719&rft.externalDocID=A436234498 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9738&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9738&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9738&client=summon |