Endothelial-to-mesenchymal transition drives atherosclerosis progression

The molecular mechanisms responsible for the development and progression of atherosclerotic lesions have not been fully established. Here, we investigated the role played by endothelial-to-mesenchymal transition (EndMT) and its key regulator FGF receptor 1 (FGFR1) in atherosclerosis. In cultured hum...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of clinical investigation Vol. 125; no. 12; pp. 4514 - 4528
Main Authors Chen, Pei-Yu, Qin, Lingfeng, Baeyens, Nicolas, Li, Guangxin, Afolabi, Titilayo, Budatha, Madhusudhan, Tellides, George, Schwartz, Martin A., Simons, Michael
Format Journal Article
LanguageEnglish
Published United States American Society for Clinical Investigation 01.12.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The molecular mechanisms responsible for the development and progression of atherosclerotic lesions have not been fully established. Here, we investigated the role played by endothelial-to-mesenchymal transition (EndMT) and its key regulator FGF receptor 1 (FGFR1) in atherosclerosis. In cultured human endothelial cells, both inflammatory cytokines and oscillatory shear stress reduced endothelial FGFR1 expression and activated TGF-β signaling. We further explored the link between disrupted FGF endothelial signaling and progression of atherosclerosis by introducing endothelial-specific deletion of FGF receptor substrate 2 α (Frs2a) in atherosclerotic (Apoe(-/-)) mice. When placed on a high-fat diet, these double-knockout mice developed atherosclerosis at a much earlier time point compared with that their Apoe(-/-) counterparts, eventually demonstrating an 84% increase in total plaque burden. Moreover, these animals exhibited extensive development of EndMT, deposition of fibronectin, and increased neointima formation. Additionally, we conducted a molecular and morphometric examination of left main coronary arteries from 43 patients with various levels of coronary disease to assess the clinical relevance of these findings. The extent of coronary atherosclerosis in this patient set strongly correlated with loss of endothelial FGFR1 expression, activation of endothelial TGF-β signaling, and the extent of EndMT. These data demonstrate a link between loss of protective endothelial FGFR signaling, development of EndMT, and progression of atherosclerosis.
AbstractList The molecular mechanisms responsible for the development and progression of atherosclerotic lesions have not been fully established. Here, we investigated the role played by endothelial-to-mesenchymal transition (EndMT) and its key regulator FGF receptor 1 (FGFR1) in atherosclerosis. In cultured human endothelial cells, both inflammatory cytokines and oscillatory shear stress reduced endothelial FGFR1 expression and activated TGF-β signaling. We further explored the link between disrupted FGF endothelial signaling and progression of atherosclerosis by introducing endothelial-specific deletion of FGF receptor substrate 2 α (Frs2a) in atherosclerotic (Apoe(-/-)) mice. When placed on a high-fat diet, these double-knockout mice developed atherosclerosis at a much earlier time point compared with that their Apoe(-/-) counterparts, eventually demonstrating an 84% increase in total plaque burden. Moreover, these animals exhibited extensive development of EndMT, deposition of fibronectin, and increased neointima formation. Additionally, we conducted a molecular and morphometric examination of left main coronary arteries from 43 patients with various levels of coronary disease to assess the clinical relevance of these findings. The extent of coronary atherosclerosis in this patient set strongly correlated with loss of endothelial FGFR1 expression, activation of endothelial TGF-β signaling, and the extent of EndMT. These data demonstrate a link between loss of protective endothelial FGFR signaling, development of EndMT, and progression of atherosclerosis.
In this paper, the authors investigated the role played by endothelial-to-mesenchymal transition (EndMT) and its key regulator FGF receptor 1 (FGFR1) in atherosclerosis. In cultured human endothelial cells, both inflammatory cytokines and oscillatory shear stress reduced endothelial FGFR1 expression and activated TGF-β signaling. They further explored the link between disrupted FGF endothelial signaling and progression of atherosclerosis by introducing endothelial-specific deletion of FGF receptor substrate 2 α (Frs2a) in atherosclerotic (Apoe^sup -/-^) mice. When placed on a high-fat diet, these double-knockout mice developed atherosclerosis at a much earlier time point compared with that their Apoe^sup -/-^ counterparts, eventually demonstrating an 84% increase in total plaque burden. Additionally, they conducted a molecular and morphometric examination of left main coronary arteries from 43 patients with various levels of coronary disease to assess the clinical relevance of these findings. These data demonstrate a link between loss of protective endothelial FGFR signaling, development of EndMT, and progression of atherosclerosis.
In this paper, the authors investigated the role played by endothelial-to-mesenchymal transition (EndMT) and its key regulator FGF receptor 1 (FGFR1) in atherosclerosis. In cultured human endothelial cells, both inflammatory cytokines and oscillatory shear stress reduced endothelial FGFR1 expression and activated TGF- beta signaling. They further explored the link between disrupted FGF endothelial signaling and progression of atherosclerosis by introducing endothelial-specific deletion of FGF receptor substrate 2 alpha (Frs2a) in atherosclerotic (Apoe super( -/-)) mice. When placed on a high-fat diet, these double-knockout mice developed atherosclerosis at a much earlier time point compared with that their Apoe super( -/-) counterparts, eventually demonstrating an 84% increase in total plaque burden. Additionally, they conducted a molecular and morphometric examination of left main coronary arteries from 43 patients with various levels of coronary disease to assess the clinical relevance of these findings. These data demonstrate a link between loss of protective endothelial FGFR signaling, development of EndMT, and progression of atherosclerosis.
The molecular mechanisms responsible for the development and progression of atherosclerotic lesions have not been fully established. Here, we investigated the role played by endothelial-to-mesenchymal transition (EndMT) and its key regulator FGF receptor 1 (FGFR1) in atherosclerosis. In cultured human endothelial cells, both inflammatory cytokines and oscillatory shear stress reduced endothelial FGFR1 expression and activated TGF-β signaling. We further explored the link between disrupted FGF endothelial signaling and progression of atherosclerosis by introducing endothelial-specific deletion of FGF receptor substrate 2α (Frs2α) in atherosclerotic ([Apoe.sup.-/-]) mice. When placed on a high-fat diet, these double-knockout mice developed atherosclerosis at a much earlier time point compared with that their [Apoe.sup.-/-] counterparts, eventually demonstrating an 84% increase in total plaque burden. Moreover, these animals exhibited extensive development of EndMT, deposition of fibronectin, and increased neointima formation. Additionally, we conducted a molecular and morphometric examination of left main coronary arteries from 43 patients with various levels of coronary disease to assess the clinical relevance of these findings. The extent of coronary atherosclerosis in this patient set strongly correlated with loss of endothelial FGFR1 expression, activation of endothelial TGF-β signaling, and the extent of EndMT. These data demonstrate a link between loss of protective endothelial FGFR signaling, development of EndMT, and progression of atherosclerosis.
The molecular mechanisms responsible for the development and progression of atherosclerotic lesions have not been fully established. Here, we investigated the role played by endothelial-to-mesenchymal transition (EndMT) and its key regulator FGF receptor 1 (FGFR1) in atherosclerosis. In cultured human endothelial cells, both inflammatory cytokines and oscillatory shear stress reduced endothelial FGFR1 expression and activated TGF-β signaling. We further explored the link between disrupted FGF endothelial signaling and progression of atherosclerosis by introducing endothelial-specific deletion of FGF receptor substrate 2 α ( Frs2a ) in atherosclerotic ( Apoe –/– ) mice. When placed on a high-fat diet, these double-knockout mice developed atherosclerosis at a much earlier time point compared with that their Apoe –/– counterparts, eventually demonstrating an 84% increase in total plaque burden. Moreover, these animals exhibited extensive development of EndMT, deposition of fibronectin, and increased neointima formation. Additionally, we conducted a molecular and morphometric examination of left main coronary arteries from 43 patients with various levels of coronary disease to assess the clinical relevance of these findings. The extent of coronary atherosclerosis in this patient set strongly correlated with loss of endothelial FGFR1 expression, activation of endothelial TGF-β signaling, and the extent of EndMT. These data demonstrate a link between loss of protective endothelial FGFR signaling, development of EndMT, and progression of atherosclerosis.
Audience Academic
Author Chen, Pei-Yu
Simons, Michael
Qin, Lingfeng
Baeyens, Nicolas
Budatha, Madhusudhan
Schwartz, Martin A.
Li, Guangxin
Tellides, George
Afolabi, Titilayo
AuthorAffiliation 2 Department of Surgery
4 Department of Biomedical Engineering, Yale University School of Medicine, New Haven, Connecticut, USA
1 Yale Cardiovascular Research Center, Department of Internal Medicine
3 Department of Cell Biology, and
AuthorAffiliation_xml – name: 4 Department of Biomedical Engineering, Yale University School of Medicine, New Haven, Connecticut, USA
– name: 2 Department of Surgery
– name: 3 Department of Cell Biology, and
– name: 1 Yale Cardiovascular Research Center, Department of Internal Medicine
Author_xml – sequence: 1
  givenname: Pei-Yu
  surname: Chen
  fullname: Chen, Pei-Yu
– sequence: 2
  givenname: Lingfeng
  surname: Qin
  fullname: Qin, Lingfeng
– sequence: 3
  givenname: Nicolas
  surname: Baeyens
  fullname: Baeyens, Nicolas
– sequence: 4
  givenname: Guangxin
  surname: Li
  fullname: Li, Guangxin
– sequence: 5
  givenname: Titilayo
  surname: Afolabi
  fullname: Afolabi, Titilayo
– sequence: 6
  givenname: Madhusudhan
  surname: Budatha
  fullname: Budatha, Madhusudhan
– sequence: 7
  givenname: George
  surname: Tellides
  fullname: Tellides, George
– sequence: 8
  givenname: Martin A.
  surname: Schwartz
  fullname: Schwartz, Martin A.
– sequence: 9
  givenname: Michael
  surname: Simons
  fullname: Simons, Michael
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26517696$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1r2zAUhsXoWNNusF8wAoOxXbiTZH35ZlBCu2YUCvu6FbJynKjIUmrZZf33lVnTNFsuipAE0nNezsd7hA5CDIDQW4JPCJH087fZXFFJqhdoQjhXhaKlOkATjCkpKlmqQ3SU0jXGhDHOXqFDKjiRohITdHEWFrFfgXfGF30sWkgQ7OquNX7adyYk17sYpovO3UKamkx2MVk_ni5N111cdpBSRl6jl43xCd483Mfo1_nZz9lFcXn1dT47vSysxGVfWI6hUnUt-AJLRpUR2NbE1A0FzLgVBkCWAqRkCjcMrCxrlTMFYMBqSWR5jL781V0PdQsLCyGn6fW6c63p7nQ0Tu_-BLfSy3irmRBcSpIFPj4IdPFmgNTr1iUL3psAcUg6N4ZXSlHOnoFSJfLmo-r7f9DrOHQhdyJTTFSUlkxuqaXxoF1oYk7RjqL6lJUiM6xSmSr2UEsIkOvJg29cft7hT_bweS2gdXZvwKedgMz08KdfmiElPf_x_fns1e9d9sMTdgXG96sU_TBaKO2C754O8XF6G19uS7LZaKmDRlvXm1Enl-a8JliPxtcb429H9Riw0fwPvQfp5v45
CitedBy_id crossref_primary_10_1161_CIRCULATIONAHA_118_038362
crossref_primary_10_1161_CIRCRESAHA_120_318124
crossref_primary_10_1161_CIRCRESAHA_122_321538
crossref_primary_10_1042_BSR20200026
crossref_primary_10_1016_j_jep_2023_117414
crossref_primary_10_1016_j_mvr_2022_104337
crossref_primary_10_1016_j_bcp_2018_10_023
crossref_primary_10_1016_j_jrras_2022_07_007
crossref_primary_10_1016_j_rbmo_2020_03_020
crossref_primary_10_1016_j_abb_2022_109321
crossref_primary_10_1186_s13075_016_1122_y
crossref_primary_10_1111_omi_12326
crossref_primary_10_1161_CIRCRESAHA_123_324082
crossref_primary_10_1093_cvr_cvx226
crossref_primary_10_1111_ajt_15340
crossref_primary_10_1172_JCI157011
crossref_primary_10_1126_sciadv_abg5060
crossref_primary_10_1007_s11883_022_01023_9
crossref_primary_10_1134_S0022093022030139
crossref_primary_10_1016_j_biopha_2024_117143
crossref_primary_10_7554_eLife_62678
crossref_primary_10_1161_CIRCULATIONAHA_122_063075
crossref_primary_10_1016_j_ejphar_2023_175826
crossref_primary_10_15252_emmm_201506181
crossref_primary_10_1002_btm2_10644
crossref_primary_10_3389_fcvm_2023_1322252
crossref_primary_10_1007_s11886_017_0861_y
crossref_primary_10_1016_j_devcel_2021_02_028
crossref_primary_10_1073_pnas_2110374119
crossref_primary_10_1016_j_vph_2023_107178
crossref_primary_10_1007_s12265_023_10463_w
crossref_primary_10_3892_etm_2022_11394
crossref_primary_10_1371_journal_pgen_1007826
crossref_primary_10_3892_etm_2021_10876
crossref_primary_10_1002_jcu_23632
crossref_primary_10_1016_j_cytogfr_2016_09_002
crossref_primary_10_1155_2021_8869085
crossref_primary_10_3389_fphar_2021_787541
crossref_primary_10_1093_cvr_cvx253
crossref_primary_10_1038_s41598_021_97127_4
crossref_primary_10_1111_jre_13084
crossref_primary_10_1016_j_omtn_2020_11_021
crossref_primary_10_18632_aging_102850
crossref_primary_10_1016_j_semcdb_2019_10_015
crossref_primary_10_3390_ijms241612566
crossref_primary_10_1093_cvr_cvae131
crossref_primary_10_1016_j_acthis_2016_04_005
crossref_primary_10_1097_HJH_0000000000003427
crossref_primary_10_31083_j_fbl2906223
crossref_primary_10_2139_ssrn_3975295
crossref_primary_10_1038_s41598_018_35119_7
crossref_primary_10_1007_s00403_024_03737_z
crossref_primary_10_1038_s44161_023_00276_0
crossref_primary_10_1111_bcp_14793
crossref_primary_10_1096_fj_201801238R
crossref_primary_10_3390_ijtm1010004
crossref_primary_10_1016_j_isci_2023_107513
crossref_primary_10_1161_ATVBAHA_124_321772
crossref_primary_10_2174_0929867330666221028144416
crossref_primary_10_1007_s00592_023_02124_w
crossref_primary_10_1186_s13059_020_02058_4
crossref_primary_10_3390_biomedicines9010003
crossref_primary_10_1021_acsbiomaterials_8b01253
crossref_primary_10_1172_JCI152716
crossref_primary_10_3389_fcvm_2021_734550
crossref_primary_10_3390_md20120756
crossref_primary_10_1161_CIRCRESAHA_120_318690
crossref_primary_10_3389_fcvm_2023_1279868
crossref_primary_10_1093_cvr_cvaa201
crossref_primary_10_3389_fopht_2023_1230581
crossref_primary_10_1038_s44161_024_00569_y
crossref_primary_10_3390_ijms21218312
crossref_primary_10_1042_BJ20150844
crossref_primary_10_1002_path_5193
crossref_primary_10_1038_s41420_023_01697_3
crossref_primary_10_3389_fcell_2022_839109
crossref_primary_10_12688_f1000research_14803_1
crossref_primary_10_1016_j_jare_2024_12_049
crossref_primary_10_1002_stem_2566
crossref_primary_10_3389_fphys_2022_1081881
crossref_primary_10_1038_s41467_018_04447_7
crossref_primary_10_1016_j_bcp_2021_114716
crossref_primary_10_1097_FJC_0000000000001283
crossref_primary_10_3390_ijms21062204
crossref_primary_10_1080_14779072_2016_1207527
crossref_primary_10_1038_s41467_017_01169_0
crossref_primary_10_1016_j_jbc_2023_105244
crossref_primary_10_1155_2022_4136811
crossref_primary_10_3389_fcvm_2023_1273596
crossref_primary_10_1016_j_vph_2018_02_006
crossref_primary_10_1242_jcs_176248
crossref_primary_10_1101_cshperspect_a041220
crossref_primary_10_1093_cvr_cvab046
crossref_primary_10_1371_journal_pone_0230358
crossref_primary_10_1016_j_ymthe_2022_08_024
crossref_primary_10_17802_2306_1278_2024_13_4S_97_106
crossref_primary_10_3390_genes15121575
crossref_primary_10_1038_ncomms11853
crossref_primary_10_1016_j_yexcr_2019_01_005
crossref_primary_10_1073_pnas_2318904121
crossref_primary_10_1124_pharmrev_120_000096
crossref_primary_10_1016_j_vph_2024_107368
crossref_primary_10_1016_j_stem_2019_11_010
crossref_primary_10_3389_fimmu_2023_1103592
crossref_primary_10_1007_s11010_020_03793_9
crossref_primary_10_1016_j_cmet_2023_05_010
crossref_primary_10_1155_2016_6962801
crossref_primary_10_1016_j_bbrc_2021_01_062
crossref_primary_10_3389_fimmu_2018_00294
crossref_primary_10_3390_cells11192946
crossref_primary_10_1016_j_ejphar_2017_09_012
crossref_primary_10_1016_j_lfs_2019_116659
crossref_primary_10_1186_s12929_019_0580_3
crossref_primary_10_1161_ATVBAHA_121_313788
crossref_primary_10_1016_j_jep_2022_115261
crossref_primary_10_1161_CIRCRESAHA_120_316770
crossref_primary_10_3389_fcvm_2023_1186679
crossref_primary_10_1002_wsbm_1549
crossref_primary_10_1007_s12192_023_01333_0
crossref_primary_10_3390_ijms18081615
crossref_primary_10_2174_0929867327999201116194634
crossref_primary_10_3390_biom9090472
crossref_primary_10_1172_JCI131178
crossref_primary_10_3390_biology13040217
crossref_primary_10_2174_1570180820666230719121428
crossref_primary_10_1016_j_pharmthera_2022_108152
crossref_primary_10_2147_COPD_S424712
crossref_primary_10_3390_ijms23179770
crossref_primary_10_3389_fcell_2022_804247
crossref_primary_10_1161_CIRCRESAHA_123_321752
crossref_primary_10_1155_2019_6595437
crossref_primary_10_1093_cvr_cvac036
crossref_primary_10_3389_fcell_2022_1003028
crossref_primary_10_3389_fcvm_2023_1190460
crossref_primary_10_1016_j_mvr_2020_104118
crossref_primary_10_1186_s12964_024_01842_0
crossref_primary_10_1161_ATVBAHA_119_312557
crossref_primary_10_3389_fcell_2020_00260
crossref_primary_10_1016_j_ijcha_2018_09_006
crossref_primary_10_1159_000464321
crossref_primary_10_1155_2018_1864107
crossref_primary_10_1093_cvr_cvac159
crossref_primary_10_18632_aging_202290
crossref_primary_10_1002_dvdy_24589
crossref_primary_10_1016_j_tcm_2017_03_003
crossref_primary_10_1016_j_lfs_2017_07_014
crossref_primary_10_1016_j_intimp_2024_111567
crossref_primary_10_3389_fimmu_2024_1419685
crossref_primary_10_3389_fmolb_2023_1113061
crossref_primary_10_1016_j_ajpath_2023_06_003
crossref_primary_10_3390_biom11020226
crossref_primary_10_1016_j_bone_2020_115542
crossref_primary_10_1161_ATVBAHA_118_311705
crossref_primary_10_1038_s42255_020_00338_8
crossref_primary_10_1093_cvr_cvaa085
crossref_primary_10_5483_BMBRep_2018_51_2_011
crossref_primary_10_3390_cells8060589
crossref_primary_10_1080_21655979_2021_1983975
crossref_primary_10_3390_ijms26052196
crossref_primary_10_1111_jcmm_17325
crossref_primary_10_1161_CIRCRESAHA_116_310233
crossref_primary_10_1126_scisignal_aaz2597
crossref_primary_10_1161_ATVBAHA_118_311276
crossref_primary_10_1016_j_jacc_2018_09_089
crossref_primary_10_1021_acsbiomaterials_1c00459
crossref_primary_10_1007_s10456_020_09761_7
crossref_primary_10_1038_s44161_023_00266_2
crossref_primary_10_1002_1878_0261_12504
crossref_primary_10_1152_physrev_00021_2018
crossref_primary_10_1002_adfm_202203069
crossref_primary_10_1161_ATVBAHA_117_310685
crossref_primary_10_1620_tjem_2024_J031
crossref_primary_10_1016_j_abb_2019_108182
crossref_primary_10_1038_s41569_019_0239_5
crossref_primary_10_3389_fcell_2024_1446964
crossref_primary_10_1016_j_stem_2016_10_011
crossref_primary_10_1161_HYPERTENSIONAHA_123_21382
crossref_primary_10_1002_path_5204
crossref_primary_10_1080_1744666X_2019_1614915
crossref_primary_10_1096_fj_202001494R
crossref_primary_10_1016_j_bcp_2022_115290
crossref_primary_10_32604_chd_2023_047689
crossref_primary_10_1016_j_ajpath_2017_05_014
crossref_primary_10_1111_jcmm_15871
crossref_primary_10_1126_sciadv_abl6364
crossref_primary_10_1161_ATVBAHA_123_320330
crossref_primary_10_1111_apha_14038
crossref_primary_10_1186_s12933_023_02039_4
crossref_primary_10_1080_08830185_2020_1866568
crossref_primary_10_3390_cells12121640
crossref_primary_10_1096_fj_202000073RRRRR
crossref_primary_10_1016_j_bcp_2023_115579
crossref_primary_10_1038_s42255_019_0100_5
crossref_primary_10_3389_fcvm_2023_1290050
crossref_primary_10_3390_ijms22158088
crossref_primary_10_1016_j_lfs_2020_118816
crossref_primary_10_3390_molecules28041861
crossref_primary_10_1152_ajpheart_00067_2024
crossref_primary_10_1016_j_intimp_2024_113209
crossref_primary_10_1038_s41467_022_31388_z
crossref_primary_10_1590_1678_4324_2022210260
crossref_primary_10_1161_CIRCRESAHA_121_320694
crossref_primary_10_1126_sciadv_ado9970
crossref_primary_10_1126_science_aas9432
crossref_primary_10_3892_ijmm_2017_3034
crossref_primary_10_1007_s12035_024_04540_7
crossref_primary_10_3390_ijms21165875
crossref_primary_10_1002_path_5574
crossref_primary_10_1016_j_atherosclerosis_2016_08_046
crossref_primary_10_1152_ajpheart_00677_2016
crossref_primary_10_1016_j_ejcb_2017_04_002
crossref_primary_10_3389_fphar_2022_887253
crossref_primary_10_1161_ATVBAHA_117_309002
crossref_primary_10_1038_s41569_021_00517_4
crossref_primary_10_1038_s41467_021_20905_1
crossref_primary_10_15252_embr_202256135
crossref_primary_10_3389_fcvm_2021_751720
crossref_primary_10_7554_eLife_91729
crossref_primary_10_3390_ijms24097900
crossref_primary_10_1007_s10528_021_10139_7
crossref_primary_10_1038_s41368_019_0054_1
crossref_primary_10_1161_CIRCRESAHA_120_315929
crossref_primary_10_1073_pnas_1913481117
crossref_primary_10_1007_s10557_019_06863_3
crossref_primary_10_1038_srep33407
crossref_primary_10_1186_s13098_022_00966_y
crossref_primary_10_1021_acsnano_3c12281
crossref_primary_10_1038_s41419_022_04888_5
crossref_primary_10_1002_med_21970
crossref_primary_10_3390_bioengineering11040325
crossref_primary_10_1016_j_intimp_2021_108240
crossref_primary_10_1371_journal_pone_0167936
crossref_primary_10_1002_path_4814
crossref_primary_10_1016_j_compositesb_2022_110487
crossref_primary_10_1186_s12880_023_00997_5
crossref_primary_10_1161_CIRCRESAHA_118_312704
crossref_primary_10_1016_j_thromres_2024_03_004
crossref_primary_10_3390_ijms25116180
crossref_primary_10_1186_s12944_019_1006_7
crossref_primary_10_1007_s12265_021_10108_w
crossref_primary_10_1016_j_bcp_2019_06_021
crossref_primary_10_1161_ATVBAHA_124_320393
crossref_primary_10_1038_s44161_022_00047_3
crossref_primary_10_1134_S0022093024060048
crossref_primary_10_4103_1673_5374_280317
crossref_primary_10_1111_acer_14415
crossref_primary_10_1161_ATVBAHA_123_318237
crossref_primary_10_1177_1721727X221105131
crossref_primary_10_1152_ajpheart_00084_2018
crossref_primary_10_1161_CIRCRESAHA_116_308870
crossref_primary_10_3389_fcvm_2020_00053
crossref_primary_10_3389_fcvm_2023_1187490
crossref_primary_10_1016_j_cjca_2023_09_009
crossref_primary_10_20900_immunometab20210020
crossref_primary_10_1007_s10557_022_07385_1
crossref_primary_10_1164_rccm_201605_0920ED
crossref_primary_10_5551_jat_64990
crossref_primary_10_1016_j_phymed_2019_152955
crossref_primary_10_1007_s12265_020_09961_y
crossref_primary_10_1073_pnas_2105339118
crossref_primary_10_1093_qjmed_hcae136
crossref_primary_10_1186_s12964_020_00533_w
crossref_primary_10_1016_j_jaccao_2022_04_002
crossref_primary_10_3390_cells13171413
crossref_primary_10_1038_s41374_018_0032_9
crossref_primary_10_1186_s10020_024_00798_8
crossref_primary_10_1016_j_nantod_2022_101514
crossref_primary_10_1152_ajpheart_00213_2018
crossref_primary_10_1016_j_atherosclerosis_2018_05_046
crossref_primary_10_1016_j_molcel_2018_01_010
crossref_primary_10_3389_fcvm_2022_938397
crossref_primary_10_3389_fcvm_2018_00027
crossref_primary_10_1016_j_lfs_2020_117837
crossref_primary_10_1126_science_aat3470
crossref_primary_10_3389_fcvm_2022_1054576
crossref_primary_10_1177_0003319717714918
crossref_primary_10_1152_ajpheart_00312_2022
crossref_primary_10_3109_10641963_2016_1163370
crossref_primary_10_1097_MOL_0000000000000542
crossref_primary_10_1159_000512750
crossref_primary_10_1002_jcp_27695
crossref_primary_10_1093_cvr_cvz211
crossref_primary_10_1016_j_jlr_2022_100276
crossref_primary_10_1126_sciadv_abg1694
crossref_primary_10_1161_CIRCRESAHA_119_314989
crossref_primary_10_1063_5_0174825
crossref_primary_10_1016_j_bbadis_2021_166168
crossref_primary_10_3390_cells11111834
crossref_primary_10_1038_s41569_018_0023_y
crossref_primary_10_3892_mmr_2019_10249
crossref_primary_10_3390_genes13081338
crossref_primary_10_1016_j_lfs_2022_120706
crossref_primary_10_1016_j_bbrc_2024_150157
crossref_primary_10_31857_S0869813924040087
crossref_primary_10_3390_cimb46080496
crossref_primary_10_7554_eLife_91729_3
crossref_primary_10_1161_ATVBAHA_123_320524
crossref_primary_10_3390_cells10092338
crossref_primary_10_3390_biom7040074
crossref_primary_10_1073_pnas_2112625118
crossref_primary_10_1186_s41232_021_00186_3
crossref_primary_10_1089_ars_2020_8169
crossref_primary_10_1177_00033197211063655
crossref_primary_10_1007_s10456_018_9639_0
crossref_primary_10_1097_FJC_0000000000000480
crossref_primary_10_1016_j_biopha_2018_07_122
crossref_primary_10_1016_j_cophys_2023_100678
crossref_primary_10_1074_mcp_M116_058099
crossref_primary_10_2174_1381612826666200504115045
crossref_primary_10_1007_s00394_019_01920_x
crossref_primary_10_1093_cvr_cvae021
crossref_primary_10_1016_j_bbrc_2019_11_181
crossref_primary_10_1016_j_jare_2022_02_017
crossref_primary_10_1161_ATVBAHA_124_320933
crossref_primary_10_1096_fj_201601064R
crossref_primary_10_1093_cvr_cvae029
crossref_primary_10_1016_j_stemcr_2017_12_011
crossref_primary_10_1097_CD9_0000000000000126
crossref_primary_10_3389_fcvm_2023_1264479
crossref_primary_10_1161_JAHA_121_025337
crossref_primary_10_1186_s12933_022_01457_0
crossref_primary_10_1016_j_cellsig_2017_06_014
crossref_primary_10_1016_j_kint_2018_01_031
crossref_primary_10_1080_17474124_2018_1477587
crossref_primary_10_1007_s11010_020_03811_w
crossref_primary_10_1002_adbi_201800252
crossref_primary_10_1038_s42255_021_00353_3
crossref_primary_10_1161_CIRCRESAHA_121_319590
crossref_primary_10_1016_j_biopha_2024_116589
crossref_primary_10_1016_j_phymed_2025_156520
crossref_primary_10_1038_s41569_023_00883_1
crossref_primary_10_1172_jci_insight_153769
crossref_primary_10_3389_fcell_2018_00082
crossref_primary_10_1089_dna_2017_3779
crossref_primary_10_1093_eurheartj_ehac686
crossref_primary_10_1134_S002209302402025X
crossref_primary_10_17116_kardio202316051469
crossref_primary_10_1016_j_biopha_2022_113831
crossref_primary_10_1016_j_phymed_2024_156122
crossref_primary_10_3390_cells10102573
crossref_primary_10_1161_ATVBAHA_119_313248
crossref_primary_10_1038_s41598_017_03532_z
crossref_primary_10_1007_s11010_021_04307_x
crossref_primary_10_1152_ajpheart_00029_2017
crossref_primary_10_3389_fphar_2022_946193
crossref_primary_10_1080_17476348_2020_1795832
crossref_primary_10_1093_cvr_cvab105
crossref_primary_10_1146_annurev_physiol_032222_080806
crossref_primary_10_1172_JCI141467
crossref_primary_10_1016_j_phrs_2024_107156
crossref_primary_10_1007_s11684_024_1077_3
crossref_primary_10_1016_j_jlr_2021_100066
crossref_primary_10_3389_fcell_2021_689469
crossref_primary_10_1038_s41401_020_0374_x
crossref_primary_10_1093_abbs_gmz155
crossref_primary_10_1016_j_cellsig_2019_05_005
crossref_primary_10_53941_ijddp_2024_100010
crossref_primary_10_1038_s41569_024_01115_w
crossref_primary_10_1038_s42255_024_01015_w
crossref_primary_10_2147_IJN_S374895
crossref_primary_10_1161_CIRCRESAHA_117_312310
crossref_primary_10_1093_cvr_cvad076
crossref_primary_10_1093_ndt_gfy100
crossref_primary_10_1186_s12964_025_02028_y
crossref_primary_10_1111_jcmm_13360
crossref_primary_10_3389_fcvm_2021_643519
crossref_primary_10_1016_j_atherosclerosis_2020_08_003
crossref_primary_10_3389_fphys_2021_734215
crossref_primary_10_1098_rsif_2019_0732
crossref_primary_10_1172_JCI83083
crossref_primary_10_1111_cas_14455
crossref_primary_10_1161_ATVBAHA_119_312826
crossref_primary_10_1371_journal_pgen_1008538
crossref_primary_10_15252_emmm_201505943
crossref_primary_10_1016_j_semcdb_2023_06_002
crossref_primary_10_3389_fendo_2023_1050540
crossref_primary_10_3390_biology12050686
crossref_primary_10_1016_j_matt_2020_05_017
crossref_primary_10_1152_ajpheart_00038_2023
crossref_primary_10_1016_j_vph_2018_10_004
crossref_primary_10_1093_g3journal_jkad243
Cites_doi 10.1126/scitranslmed.3006927
10.1182/blood-2003-09-3363
10.1016/j.immuni.2013.06.009
10.1007/s00441-011-1189-3
10.1177/0022034512467352
10.1161/01.ATV.0000019729.39500.2F
10.1172/JCI119465
10.1016/j.ahj.2013.03.018
10.1007/s00441-011-1222-6
10.1097/00041433-200210000-00008
10.1038/nrm2596
10.2353/ajpath.2009.081061
10.1002/emmm.201200237
10.1126/scisignal.2005504
10.1083/jcb.201412052
10.1161/ATVBAHA.113.301220
10.1038/nrcardio.2011.62
10.1161/ATVBAHA.108.179705
10.1038/nature10146
10.1016/j.celrep.2012.10.021
10.1242/jcs.138313
10.1016/j.atherosclerosis.2012.09.013
10.1038/35003221
10.1161/ATVBAHA.111.227827
10.1089/10799900260100141
10.1158/1078-0432.CCR-13-3173
10.1002/dvg.20327
10.1016/j.ajpath.2011.06.001
10.1161/01.ATV.20.5.1262
10.1161/CIRCRESAHA.109.216283
10.1007/s00109-014-1144-3
10.1038/nm1613
10.1073/pnas.1413725111
10.1038/nature12207
10.1038/nm.2252
10.1126/scisignal.2002722
10.1038/nature08938
10.1038/nprot.2010.113
ContentType Journal Article
Copyright COPYRIGHT 2015 American Society for Clinical Investigation
Copyright American Society for Clinical Investigation Dec 2015
Copyright © 2015, American Society for Clinical Investigation 2015 American Society for Clinical Investigation
Copyright_xml – notice: COPYRIGHT 2015 American Society for Clinical Investigation
– notice: Copyright American Society for Clinical Investigation Dec 2015
– notice: Copyright © 2015, American Society for Clinical Investigation 2015 American Society for Clinical Investigation
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7RV
7X7
7XB
88A
88E
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BEC
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
S0X
7X8
7T5
H94
5PM
DOI 10.1172/JCI82719
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
eLibrary (ProQuest)
Proquest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
SIRS Editorial
MEDLINE - Academic
Immunology Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SIRS Editorial
elibrary
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
DatabaseTitleList MEDLINE
MEDLINE - Academic
ProQuest Central Student
AIDS and Cancer Research Abstracts



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1558-8238
EndPage 4528
ExternalDocumentID PMC4665771
3889354671
A436234498
26517696
10_1172_JCI82719
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL053793
– fundername: NIDDK NIH HHS
  grantid: U24 DK059635
– fundername: NHLBI NIH HHS
  grantid: P01 HL107205
– fundername: NHLBI NIH HHS
  grantid: R01 HL075092
GroupedDBID ---
-~X
.55
.XZ
08G
08P
29K
354
36B
5GY
5RE
5RS
7RV
7X7
88E
8AO
8F7
8FE
8FH
8FI
8FJ
8R4
8R5
AAWTL
AAYXX
ABOCM
ABPMR
ABUWG
ACGFO
ACIHN
ACNCT
ACPRK
ADBBV
AEAQA
AENEX
AFCHL
AFKRA
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BCU
BEC
BENPR
BHPHI
BKEYQ
BLC
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D-I
DIK
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
EX3
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
IHW
INH
IOF
IOV
IPO
ISR
ITC
KQ8
L7B
LK8
M1P
M5~
M7P
NAPCQ
OBH
OCB
ODZKP
OFXIZ
OGEVE
OHH
OK1
OVD
OVIDX
OVT
P2P
P6G
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RPM
S0X
SJFOW
SV3
TEORI
TR2
TVE
UKHRP
VVN
W2D
WH7
WOQ
WOW
X7M
XSB
YFH
YHG
YKV
YOC
ZY1
~H1
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
7XB
88A
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
7T5
H94
5PM
ID FETCH-LOGICAL-c703t-c50e98bb65d07428a60cb1abf2e045c6aee736e77480f4ec73b8769ee4e4b7173
IEDL.DBID 7X7
ISSN 0021-9738
IngestDate Thu Aug 21 14:35:37 EDT 2025
Fri Jul 11 11:56:42 EDT 2025
Fri Jul 11 12:11:50 EDT 2025
Fri Jul 25 09:43:57 EDT 2025
Tue Jun 17 21:03:00 EDT 2025
Thu Jun 12 22:51:35 EDT 2025
Tue Jun 10 20:44:49 EDT 2025
Fri Jun 27 03:59:23 EDT 2025
Fri Jun 27 03:56:38 EDT 2025
Thu May 22 21:05:52 EDT 2025
Mon Jul 21 05:59:07 EDT 2025
Thu Apr 24 23:03:23 EDT 2025
Tue Jul 01 00:21:41 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c703t-c50e98bb65d07428a60cb1abf2e045c6aee736e77480f4ec73b8769ee4e4b7173
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Authorship note: Pei-Yu Chen and Lingfeng Qin contributed equally to this work.
OpenAccessLink http://www.jci.org/articles/view/82719/files/pdf
PMID 26517696
PQID 1746922347
PQPubID 42166
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4665771
proquest_miscellaneous_1765988254
proquest_miscellaneous_1728672851
proquest_journals_1746922347
gale_infotracmisc_A436234498
gale_infotracgeneralonefile_A436234498
gale_infotracacademiconefile_A436234498
gale_incontextgauss_ISR_A436234498
gale_incontextgauss_IOV_A436234498
gale_healthsolutions_A436234498
pubmed_primary_26517696
crossref_citationtrail_10_1172_JCI82719
crossref_primary_10_1172_JCI82719
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Ann Arbor
PublicationTitle The Journal of clinical investigation
PublicationTitleAlternate J Clin Invest
PublicationYear 2015
Publisher American Society for Clinical Investigation
Publisher_xml – name: American Society for Clinical Investigation
References B20
B21
B22
B23
B24
B25
B26
Conway (B1) 2013; 126
B27
B28
B29
B30
B31
B10
B32
B11
B33
B12
B34
B13
B35
B14
B36
B37
B16
B38
B17
B18
Ten Dijke (B15) 2012; 5
B19
B2
B3
B4
B5
B6
B7
B8
B9
24190880 - J Cell Sci. 2013 Nov 15;126(Pt 22):5101-9
19197332 - Nat Rev Mol Cell Biol. 2009 Jan;10(1):53-62
20378855 - Circ Res. 2010 Jun 11;106(11):1703-11
12352016 - Curr Opin Lipidol. 2002 Oct;13(5):523-9
23809160 - Immunity. 2013 Jun 27;38(6):1092-104
19608867 - Am J Pathol. 2009 Aug;175(2):616-26
22895665 - Arterioscler Thromb Vasc Biol. 2012 Sep;32(9):2045-51
23748444 - Nature. 2013 Jun 27;498(7455):492-6
21866313 - Cell Tissue Res. 2012 Jan;347(1):177-86
24622514 - Sci Transl Med. 2014 Mar 12;6(227):227ra34
9169506 - J Clin Invest. 1997 Jun 1;99(11):2752-61
23128109 - J Dent Res. 2013 Feb;92(2):114-21
25249657 - Sci Signal. 2014 Sep 23;7(344):ra90
23413429 - Arterioscler Thromb Vasc Biol. 2013 Apr;33(4):795-804
20725067 - Nat Protoc. 2010 Sep;5(9):1518-34
25107915 - Clin Cancer Res. 2015 Mar 1;21(5):962-8
17868091 - Genesis. 2007 Sep;45(9):554-9
17660828 - Nat Med. 2007 Aug;13(8):952-61
21763673 - Am J Pathol. 2011 Sep;179(3):1074-80
21626289 - Cell Tissue Res. 2012 Jan;347(1):155-75
24638861 - J Mol Med (Berl). 2014 Apr;92(4):307-19
12162876 - J Interferon Cytokine Res. 2002 Jun;22(6):661-70
23200853 - Cell Rep. 2012 Dec 27;2(6):1684-96
12067907 - Arterioscler Thromb Vasc Biol. 2002 Jun 1;22(6):975-82
14976060 - Blood. 2004 Jul 1;104(1):11-8
21593864 - Nature. 2011 May 19;473(7347):317-25
21527747 - Arterioscler Thromb Vasc Biol. 2011 Jul;31(7):1625-33
10646607 - Nature. 2000 Jan 13;403(6766):207-11
23895801 - Am Heart J. 2013 Aug;166(2):199-207.e15
22514136 - EMBO Mol Med. 2012 Jul;4(7):564-76
10807742 - Arterioscler Thromb Vasc Biol. 2000 May;20(5):1262-75
21502963 - Nat Rev Cardiol. 2011 Jun;8(6):348-58
25869663 - J Cell Biol. 2015 Apr 13;209(1):13-22
22355187 - Sci Signal. 2012 Feb 21;5(212):pt2
20428172 - Nature. 2010 Apr 29;464(7293):1357-61
23078881 - Atherosclerosis. 2012 Dec;225(2):461-8
25404299 - Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17308-13
21102460 - Nat Med. 2010 Dec;16(12):1400-6
References_xml – ident: B11
  doi: 10.1126/scitranslmed.3006927
– ident: B25
  doi: 10.1182/blood-2003-09-3363
– ident: B4
  doi: 10.1016/j.immuni.2013.06.009
– ident: B34
  doi: 10.1007/s00441-011-1189-3
– ident: B24
  doi: 10.1177/0022034512467352
– ident: B32
  doi: 10.1161/01.ATV.0000019729.39500.2F
– ident: B28
  doi: 10.1172/JCI119465
– ident: B31
  doi: 10.1016/j.ahj.2013.03.018
– ident: B13
  doi: 10.1007/s00441-011-1222-6
– ident: B33
  doi: 10.1097/00041433-200210000-00008
– ident: B2
  doi: 10.1038/nrm2596
– ident: B8
  doi: 10.2353/ajpath.2009.081061
– ident: B18
  doi: 10.1002/emmm.201200237
– ident: B14
  doi: 10.1126/scisignal.2005504
– ident: B5
  doi: 10.1083/jcb.201412052
– ident: B37
  doi: 10.1161/ATVBAHA.113.301220
– ident: B19
  doi: 10.1038/nrcardio.2011.62
– ident: B20
  doi: 10.1161/ATVBAHA.108.179705
– ident: B3
  doi: 10.1038/nature10146
– ident: B10
  doi: 10.1016/j.celrep.2012.10.021
– volume: 126
  start-page: 5101
  issue: pt 22
  year: 2013
  ident: B1
  article-title: Flow-dependent cellular mechanotransduction in atherosclerosis
  publication-title: J Cell Sci
  doi: 10.1242/jcs.138313
– ident: B27
  doi: 10.1016/j.atherosclerosis.2012.09.013
– ident: B29
  doi: 10.1038/35003221
– ident: B22
  doi: 10.1161/ATVBAHA.111.227827
– ident: B30
  doi: 10.1089/10799900260100141
– ident: B23
  doi: 10.1158/1078-0432.CCR-13-3173
– ident: B36
  doi: 10.1002/dvg.20327
– ident: B9
  doi: 10.1016/j.ajpath.2011.06.001
– ident: B38
  doi: 10.1161/01.ATV.20.5.1262
– ident: B17
  doi: 10.1161/CIRCRESAHA.109.216283
– ident: B21
  doi: 10.1007/s00109-014-1144-3
– ident: B6
  doi: 10.1038/nm1613
– ident: B35
  doi: 10.1073/pnas.1413725111
– ident: B7
  doi: 10.1038/nature12207
– ident: B12
  doi: 10.1038/nm.2252
– volume: 5
  issue: 212
  year: 2012
  ident: B15
  article-title: TGF-β signaling in endothelial-to-mesenchymal transition: the role of shear stress and primary cilia
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2002722
– ident: B26
  doi: 10.1038/nature08938
– ident: B16
  doi: 10.1038/nprot.2010.113
– reference: 21502963 - Nat Rev Cardiol. 2011 Jun;8(6):348-58
– reference: 10807742 - Arterioscler Thromb Vasc Biol. 2000 May;20(5):1262-75
– reference: 22514136 - EMBO Mol Med. 2012 Jul;4(7):564-76
– reference: 9169506 - J Clin Invest. 1997 Jun 1;99(11):2752-61
– reference: 17868091 - Genesis. 2007 Sep;45(9):554-9
– reference: 23413429 - Arterioscler Thromb Vasc Biol. 2013 Apr;33(4):795-804
– reference: 23809160 - Immunity. 2013 Jun 27;38(6):1092-104
– reference: 22355187 - Sci Signal. 2012 Feb 21;5(212):pt2
– reference: 24638861 - J Mol Med (Berl). 2014 Apr;92(4):307-19
– reference: 20378855 - Circ Res. 2010 Jun 11;106(11):1703-11
– reference: 21626289 - Cell Tissue Res. 2012 Jan;347(1):155-75
– reference: 12162876 - J Interferon Cytokine Res. 2002 Jun;22(6):661-70
– reference: 12067907 - Arterioscler Thromb Vasc Biol. 2002 Jun 1;22(6):975-82
– reference: 24190880 - J Cell Sci. 2013 Nov 15;126(Pt 22):5101-9
– reference: 25404299 - Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17308-13
– reference: 25249657 - Sci Signal. 2014 Sep 23;7(344):ra90
– reference: 22895665 - Arterioscler Thromb Vasc Biol. 2012 Sep;32(9):2045-51
– reference: 14976060 - Blood. 2004 Jul 1;104(1):11-8
– reference: 19608867 - Am J Pathol. 2009 Aug;175(2):616-26
– reference: 23200853 - Cell Rep. 2012 Dec 27;2(6):1684-96
– reference: 17660828 - Nat Med. 2007 Aug;13(8):952-61
– reference: 23748444 - Nature. 2013 Jun 27;498(7455):492-6
– reference: 21102460 - Nat Med. 2010 Dec;16(12):1400-6
– reference: 23128109 - J Dent Res. 2013 Feb;92(2):114-21
– reference: 21763673 - Am J Pathol. 2011 Sep;179(3):1074-80
– reference: 21527747 - Arterioscler Thromb Vasc Biol. 2011 Jul;31(7):1625-33
– reference: 24622514 - Sci Transl Med. 2014 Mar 12;6(227):227ra34
– reference: 21866313 - Cell Tissue Res. 2012 Jan;347(1):177-86
– reference: 21593864 - Nature. 2011 May 19;473(7347):317-25
– reference: 12352016 - Curr Opin Lipidol. 2002 Oct;13(5):523-9
– reference: 10646607 - Nature. 2000 Jan 13;403(6766):207-11
– reference: 19197332 - Nat Rev Mol Cell Biol. 2009 Jan;10(1):53-62
– reference: 20428172 - Nature. 2010 Apr 29;464(7293):1357-61
– reference: 23078881 - Atherosclerosis. 2012 Dec;225(2):461-8
– reference: 25869663 - J Cell Biol. 2015 Apr 13;209(1):13-22
– reference: 20725067 - Nat Protoc. 2010 Sep;5(9):1518-34
– reference: 23895801 - Am Heart J. 2013 Aug;166(2):199-207.e15
– reference: 25107915 - Clin Cancer Res. 2015 Mar 1;21(5):962-8
SSID ssj0014454
Score 2.6326816
Snippet The molecular mechanisms responsible for the development and progression of atherosclerotic lesions have not been fully established. Here, we investigated the...
In this paper, the authors investigated the role played by endothelial-to-mesenchymal transition (EndMT) and its key regulator FGF receptor 1 (FGFR1) in...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4514
SubjectTerms Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
Animals
Apolipoproteins E - genetics
Apolipoproteins E - metabolism
Atherosclerosis
Biomechanics
Biomedical research
Collagen
Coronary Artery Disease - genetics
Coronary Artery Disease - metabolism
Coronary Artery Disease - pathology
Coronary vessels
Cytokines
Development and progression
Fibroblast growth factor receptors
Gene expression
Genetic aspects
Health aspects
Heart attacks
Human Umbilical Vein Endothelial Cells - metabolism
Human Umbilical Vein Endothelial Cells - pathology
Humans
Hypertension
Inflammation
Membrane Proteins - genetics
Membrane Proteins - metabolism
Mice
Mice, Knockout
Proteins
Receptor, Fibroblast Growth Factor, Type 1 - genetics
Receptor, Fibroblast Growth Factor, Type 1 - metabolism
Shear stress
Smooth muscle
Software
Studies
Transforming Growth Factor beta - genetics
Transforming Growth Factor beta - metabolism
Veins & arteries
Title Endothelial-to-mesenchymal transition drives atherosclerosis progression
URI https://www.ncbi.nlm.nih.gov/pubmed/26517696
https://www.proquest.com/docview/1746922347
https://www.proquest.com/docview/1728672851
https://www.proquest.com/docview/1765988254
https://pubmed.ncbi.nlm.nih.gov/PMC4665771
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEN8oJMYX4zdFxGqMPG24tvvVJ4N45A4DGhRzb83udgtnoAXae_C_d6bdq1dDiA_XpNlfL-10dj46s78l5H2kmQVHI6lIEkeZZoIqLSKqdcJz0GcnDVZ0j47F5JQdzvjMf3CrfVvl0ia2hjqvLH4j34XIWaTgy5j8eHVNcdcorK76LTTuk3WkLkOtlrM-4YJcgXsW5oimMlGefBZ89u4vO1exRH6dFXf0r1Fe8UrDjskVF3TwmDzysWO4173sJ-SeK5-SB0e-Ov6MTMZljguqLkCnaFPRS1xZZM9_X8JFDfqktj0rzG-QajZsQ7-qhn-C47wO206tjqXjOTk9GP_Yn1C_UwK1MGMbavnIpcoYwXPMdUHaI2sibYrYQchmhXZOJsJBqKdGBXNWJgasYOocc8xgHf4FWSur0m2QsCiMlUWeWsU149LBmVA5L3RkkL2vCMjOUmCZ9TTiuJvFRdamEzLODvenrWgD8rZHXnXUGbdg3qDMs27RZz_bsj0GjjVhLFUBedcikKuixGaYM72o62z69ed_gL6fDEA7HlRUcMdW-wUI8NzIgTVAfhggzzoG8NuAWwMgTE07HF6qUuZNQ539VWQQUD-MV2K7W-mqBWJiJeDHo7swgqcKE_yAvOy0sxdzLDgMpyIgcqC3PQBJxYcj5fy8JRdnWIqT0ebdt_6KPITIkXd9PVtkrblZuNcQnTVmu52C22T90_j42wmcfZ5--QN-tjyl
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEN8gJuqL8dsqSjUqTxuu7X71wRiCkDvgMFEw91Z2t1s4Ay3SXgz_lH-jM22vXg0hvvBwl1z212Y7N7sz05n5LSHvAs0sGBpJRRQ5yjQTVGkRUK0jnoI-O2kwozveF8NDtjPhkyXye94Lg2WV8z2x3qjTwuI78nXwnEUMtozJT-c_KZ4ahdnV-REajVrsustfELKVH0ef4f99H4bbWwebQ9qeKkAtaHdFLR-4WBkjeIpxIcxsYE2gTRY6cG-s0M7JSDhwi9QgY87KyMCOETvHHDOYs4b73iK3wfAOMNiTky7Ag9iEt6zPAY1lpFqyW_AR1n_YqQol8vksmL9_jcCCFexXaC6YvO0H5H7rq_objXI9JEsuf0TujNts_GMy3MpTbOA6BR2mVUHPsJPJnlyewUUV2sC6HMxPL5Da1q9dzaKEO8H3tPTryrCGFeQJObwRGT4ly3mRu-fEzzJjZZbGVnHNuHTwS6iUZzowyBaYeWRtLrDEtrTleHrGaVKHLzJMdjZHtWg98qZDnjdUHVdgVlHmSdNk2q3uZIOBIY8Yi5VH3tYI5MbIsfjmWM_KMhl9-f4foG9fe6C1FpQVMGOr24YHeG7k3OohP_SQxw3j-FXAlR4QtgLbH56rUtJuRWXyd-GAgLphvBLL63JXzBATKgEfHlyHETxW-ELBI88a7ezEHAoOw7HwiOzpbQdAEvP-SD49qcnMGab-ZPDi-qmvkrvDg_Fesjfa331J7oHXypuaohWyXF3M3CvwDCvzul6OPjm66fX_BwXbdyk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF7RIKFeqr7rQotbteW0Smzvwz5UFYVECZQU0YK4uev1GoLApjhRxV_rr-uMvXHjCqFeOCRStJ-t9WR2ZtYz8y0h7zzFNDgaSUUQGMoUEzRUwqNKBTwFfTYywYzu3lgMD9nOMT9eIr_nvTBYVjm3iZWhTguN78i7EDmLCHwZk93MlkXsbw8-Xf6keIIUZlrnx2nUKrJrrn_B9q38ONqG__q97w_637eG1J4wQDVo-pRq3jNRmCSCp7hHhFn2dOKpJPMNhDpaKGNkIAyESGEvY0bLIAHrERnDDEswfw33vUeWJe6KOmT5c3-8f9DkMBjjlgPao5EMQkt9CxFD90xPQl8iu8-CM_zXJSz4xHa95oIDHDwkD2zk6m7WqvaILJn8MVnZs7n5J2TYz1Ns5zoHjabTgl5gX5M-vb6Ai6boEaviMDe9QqJbtwo8ixLuBN-T0q3qxGqOkKfk8E6k-Ix08iI3L4ibZYmWWRrpkCvGpYFfIkx5prwEuQMzh2zMBRZrS2KOZ2mcx9VmRvrxztaoEq1D3jTIy5q44wbMOso8rltOm7UebzJw6wFjUeiQtxUCmTJy1LkTNSvLePT16D9A3w5aoA0LygqYsVa2_QGeGxm4WsgPLeRJzT9-E3CtBQTDoNvDc1WKrWEq47_LCATUDOOVWGyXm2KGGD8U8OHebRjBoxBfLzjkea2djZh9wWE4Eg6RLb1tAEhp3h7JJ6cVtTnDRKD0Xt4-9XWyAms__jIa766S-xDC8rrAaI10plcz8wrCxGny2q5Hl_y4axPwB93nfMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Endothelial-to-mesenchymal+transition+drives+atherosclerosis+progression&rft.jtitle=The+Journal+of+clinical+investigation&rft.au=Chen%2C+Pei-Yu&rft.au=Qin%2C+Lingfeng&rft.au=Baeyens%2C+Nicolas&rft.au=Li%2C+Guangxin&rft.date=2015-12-01&rft.pub=American+Society+for+Clinical+Investigation&rft.issn=0021-9738&rft.spage=4514&rft_id=info:doi/10.1172%2FJCI82719&rft.externalDocID=A436234498
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9738&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9738&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9738&client=summon