Estimating Individualized Treatment Rules Using Outcome Weighted Learning

There is increasing interest in discovering individualized treatment rules (ITRs) for patients who have heterogeneous responses to treatment. In particular, one aims to find an optimal ITR that is a deterministic function of patient-specific characteristics maximizing expected clinical outcome. In t...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 107; no. 499; pp. 1106 - 1118
Main Authors Zhao, Yingqi, Zeng, Donglin, Rush, A. John, Kosorok, Michael R
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis Group 01.09.2012
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1537-274X
0162-1459
1537-274X
DOI10.1080/01621459.2012.695674

Cover

Abstract There is increasing interest in discovering individualized treatment rules (ITRs) for patients who have heterogeneous responses to treatment. In particular, one aims to find an optimal ITR that is a deterministic function of patient-specific characteristics maximizing expected clinical outcome. In this article, we first show that estimating such an optimal treatment rule is equivalent to a classification problem where each subject is weighted proportional to his or her clinical outcome. We then propose an outcome weighted learning approach based on the support vector machine framework. We show that the resulting estimator of the treatment rule is consistent. We further obtain a finite sample bound for the difference between the expected outcome using the estimated ITR and that of the optimal treatment rule. The performance of the proposed approach is demonstrated via simulation studies and an analysis of chronic depression data.
AbstractList There is increasing interest in discovering individualized treatment rules for patients who have heterogeneous responses to treatment. In particular, one aims to find an optimal individualized treatment rule which is a deterministic function of patient specific characteristics maximizing expected clinical outcome. In this paper, we first show that estimating such an optimal treatment rule is equivalent to a classification problem where each subject is weighted proportional to his or her clinical outcome. We then propose an outcome weighted learning approach based on the support vector machine framework. We show that the resulting estimator of the treatment rule is consistent. We further obtain a finite sample bound for the difference between the expected outcome using the estimated individualized treatment rule and that of the optimal treatment rule. The performance of the proposed approach is demonstrated via simulation studies and an analysis of chronic depression data.There is increasing interest in discovering individualized treatment rules for patients who have heterogeneous responses to treatment. In particular, one aims to find an optimal individualized treatment rule which is a deterministic function of patient specific characteristics maximizing expected clinical outcome. In this paper, we first show that estimating such an optimal treatment rule is equivalent to a classification problem where each subject is weighted proportional to his or her clinical outcome. We then propose an outcome weighted learning approach based on the support vector machine framework. We show that the resulting estimator of the treatment rule is consistent. We further obtain a finite sample bound for the difference between the expected outcome using the estimated individualized treatment rule and that of the optimal treatment rule. The performance of the proposed approach is demonstrated via simulation studies and an analysis of chronic depression data.
There is increasing interest in discovering individualized treatment rules (ITRs) for patients who have heterogeneous responses to treatment. In particular, one aims to find an optimal ITR that is a deterministic function of patient-specific characteristics maximizing expected clinical outcome. In this article, we first show that estimating such an optimal treatment rule is equivalent to a classification problem where each subject is weighted proportional to his or her clinical outcome. We then propose an outcome weighted learning approach based on the support vector machine framework. We show that the resulting estimator of the treatment rule is consistent. We further obtain a finite sample bound for the difference between the expected outcome using the estimated ITR and that of the optimal treatment rule. The performance of the proposed approach is demonstrated via simulation studies and an analysis of chronic depression data. [PUBLICATION ABSTRACT]
There is increasing interest in discovering individualized treatment rules (ITRs) for patients who have heterogeneous responses to treatment. In particular, one aims to find an optimal ITR that is a deterministic function of patient-specific characteristics maximizing expected clinical outcome. In this article, we first show that estimating such an optimal treatment rule is equivalent to a classification problem where each subject is weighted proportional to his or her clinical outcome. We then propose an outcome weighted learning approach based on the support vector machine framework. We show that the resulting estimator of the treatment rule is consistent. We further obtain a finite sample bound for the difference between the expected outcome using the estimated ITR and that of the optimal treatment rule. The performance of the proposed approach is demonstrated via simulation studies and an analysis of chronic depression data.
There is increasing interest in discovering individualized treatment rules for patients who have heterogeneous responses to treatment. In particular, one aims to find an optimal individualized treatment rule which is a deterministic function of patient specific characteristics maximizing expected clinical outcome. In this paper, we first show that estimating such an optimal treatment rule is equivalent to a classification problem where each subject is weighted proportional to his or her clinical outcome. We then propose an outcome weighted learning approach based on the support vector machine framework. We show that the resulting estimator of the treatment rule is consistent. We further obtain a finite sample bound for the difference between the expected outcome using the estimated individualized treatment rule and that of the optimal treatment rule. The performance of the proposed approach is demonstrated via simulation studies and an analysis of chronic depression data.
Author Kosorok, Michael R.
Zhao, Yingqi
Zeng, Donglin
Rush, A. John
Author_xml – sequence: 1
  fullname: Zhao, Yingqi
– sequence: 2
  fullname: Zeng, Donglin
– sequence: 3
  fullname: Rush, A. John
– sequence: 4
  fullname: Kosorok, Michael R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23630406$$D View this record in MEDLINE/PubMed
BookMark eNqNkktvEzEUhUeoiD7gH_CIxIZNgq_fYQFCVYFIkSpBI9hZHo8ndTRjF9tTVH49jqZBoZvgzVi63z2-Z-45rY588LaqngOaAZLoLQKOgbL5DCPAMz5nXNBH1QkwIqZY0B9He_fj6jSlDSpHSPmkOsaEE0QRP6kWFym7Xmfn15OFb9ytawbdud-2mVxFq3NvfZ58HTqbJqu0hS6HbEJvJ9-tW1_ngi2tjr5UnlaPW90l--z-e1atPl1cnX-ZLi8_L84_LqdGIJKnlIOpASHeNIYziTkRgFjT6BYQAcDtHEhdM4KNpRZEyxvNcF1LBsCFIZqcVe9H3Zuh7m1jyoBRd-omFhvxTgXt1L8V767VOtyq4plL4EXgzb1ADD8Hm7LqXTK267S3YUgKylBMAMXsP1BE0FyAlIdRjEHSIksL-voBuglD9OWnKYCyM4kZxYV6ue_zr8Hd7grwbgRMDClF2yrjctlk2Np2nQKktkFRu6CobVDUGJTSTB807_QPtL0Y2zYph7g3Ey0xA1HqH8a6822Ivf4VYteorO-6ENuovXFJkQMvvBoVWh2UXsfSsPpWAF7CKxmFOfkDIEDkzg
CODEN JSTNAL
CitedBy_id crossref_primary_10_1002_sim_6558
crossref_primary_10_1111_biom_12306
crossref_primary_10_1111_biom_12789
crossref_primary_10_2105_AJPH_2022_307135
crossref_primary_10_1111_biom_13511
crossref_primary_10_1287_mnsc_2023_4678
crossref_primary_10_1002_sim_8976
crossref_primary_10_1016_j_progsolidstchem_2020_100283
crossref_primary_10_1177_09622802231154327
crossref_primary_10_1214_23_EJS2158
crossref_primary_10_1214_21_EJS1948
crossref_primary_10_1515_jci_2022_0005
crossref_primary_10_1111_biom_12539
crossref_primary_10_1080_10543406_2015_1092034
crossref_primary_10_1080_10543406_2015_1092033
crossref_primary_10_1287_isre_2022_1149
crossref_primary_10_1111_biom_13864
crossref_primary_10_1093_biostatistics_kxx038
crossref_primary_10_1111_biom_12773
crossref_primary_10_1111_biom_12894
crossref_primary_10_1007_s12561_014_9122_4
crossref_primary_10_1080_10543406_2017_1397009
crossref_primary_10_1137_18M1190975
crossref_primary_10_1002_sim_6564
crossref_primary_10_1007_s41237_021_00140_0
crossref_primary_10_1016_j_spl_2021_109180
crossref_primary_10_1080_24709360_2018_1435608
crossref_primary_10_1371_journal_pone_0269369
crossref_primary_10_1016_j_dss_2015_01_010
crossref_primary_10_1177_0962280217746191
crossref_primary_10_1177_09622802221102624
crossref_primary_10_1080_01621459_2022_2108816
crossref_primary_10_1080_01621459_2016_1242427
crossref_primary_10_3982_ECTA15732
crossref_primary_10_1080_01621459_2015_1093947
crossref_primary_10_1093_biostatistics_kxaa032
crossref_primary_10_1142_S0218213020500050
crossref_primary_10_1214_18_EJS1480
crossref_primary_10_1002_sim_8407
crossref_primary_10_1080_01621459_2021_1923511
crossref_primary_10_1080_07350015_2019_1624293
crossref_primary_10_1093_biostatistics_kxy028
crossref_primary_10_1111_biom_12511
crossref_primary_10_1515_ijb_2022_0073
crossref_primary_10_1002_pst_2455
crossref_primary_10_1111_rssb_12273
crossref_primary_10_1214_18_AOS1750
crossref_primary_10_1007_s12561_022_09343_9
crossref_primary_10_1111_biom_12229
crossref_primary_10_1177_09622802241236954
crossref_primary_10_1111_biom_12346
crossref_primary_10_1177_09622802241310328
crossref_primary_10_1093_biostatistics_kxz026
crossref_primary_10_1177_09622802221144326
crossref_primary_10_1007_s13253_023_00551_4
crossref_primary_10_2139_ssrn_4869436
crossref_primary_10_1111_biom_12354
crossref_primary_10_1111_biom_12593
crossref_primary_10_1111_biom_13320
crossref_primary_10_2139_ssrn_4114765
crossref_primary_10_1214_20_AOAS1356
crossref_primary_10_1007_s12561_023_09370_0
crossref_primary_10_1002_bimj_201800072
crossref_primary_10_1016_j_conctc_2017_02_007
crossref_primary_10_1016_j_cmpb_2022_106927
crossref_primary_10_1021_acsanm_1c04391
crossref_primary_10_1287_mnsc_2015_2363
crossref_primary_10_1515_ijb_2016_0045
crossref_primary_10_1002_sim_8308
crossref_primary_10_1177_1740774514537727
crossref_primary_10_1111_insr_12583
crossref_primary_10_1080_01621459_2020_1801449
crossref_primary_10_1093_biostatistics_kxab010
crossref_primary_10_2217_cer_2020_0230
crossref_primary_10_1093_biostatistics_kxz042
crossref_primary_10_1007_s10985_022_09566_4
crossref_primary_10_1093_biostatistics_kxac007
crossref_primary_10_1186_s13063_022_06064_8
crossref_primary_10_1002_bimj_202300027
crossref_primary_10_1002_bimj_201700322
crossref_primary_10_1111_biom_12204
crossref_primary_10_1111_biom_12322
crossref_primary_10_1080_01621459_2021_1929246
crossref_primary_10_1002_sim_8678
crossref_primary_10_1002_sim_9766
crossref_primary_10_1080_10543406_2023_2275757
crossref_primary_10_1111_biom_13406
crossref_primary_10_1002_sim_9659
crossref_primary_10_1111_biom_12676
crossref_primary_10_1515_jci_2022_0029
crossref_primary_10_1111_biom_13530
crossref_primary_10_1016_j_artmed_2020_101964
crossref_primary_10_1016_j_arcontrol_2018_05_001
crossref_primary_10_1080_10543406_2020_1821705
crossref_primary_10_1214_13_STS450
crossref_primary_10_1080_01621459_2016_1200911
crossref_primary_10_3390_bs14110993
crossref_primary_10_3982_ECTA16437
crossref_primary_10_1002_bimj_202200285
crossref_primary_10_1214_16_AOS1534
crossref_primary_10_1080_10543406_2019_1633657
crossref_primary_10_1016_j_ecosta_2025_02_003
crossref_primary_10_1038_s41380_024_02500_0
crossref_primary_10_1002_bimj_202000392
crossref_primary_10_1002_sta4_78
crossref_primary_10_1007_s43441_021_00329_1
crossref_primary_10_1515_ijb_2016_0068
crossref_primary_10_1016_j_jebo_2020_07_011
crossref_primary_10_1007_s12561_013_9097_6
crossref_primary_10_1016_j_jad_2024_05_028
crossref_primary_10_1111_biom_12811
crossref_primary_10_1093_aje_kwae040
crossref_primary_10_1177_0962280218804569
crossref_primary_10_3390_life14040442
crossref_primary_10_1002_bimj_201900030
crossref_primary_10_1016_j_csda_2022_107508
crossref_primary_10_12944_CRJSSH_5_1_05
crossref_primary_10_1002_wics_1498
crossref_primary_10_1080_10618600_2022_2141752
crossref_primary_10_1093_biomtc_ujad003
crossref_primary_10_1080_01621459_2015_1086353
crossref_primary_10_1515_ijb_2015_0007
crossref_primary_10_21105_joss_02232
crossref_primary_10_1093_jrsssb_qkad141
crossref_primary_10_1214_21_AOAS1473
crossref_primary_10_1214_12_AOAS593
crossref_primary_10_1080_01621459_2016_1243480
crossref_primary_10_1080_10618600_2021_1923521
crossref_primary_10_1214_17_EJS1305
crossref_primary_10_1093_jnci_djv157
crossref_primary_10_1080_01621459_2016_1243479
crossref_primary_10_1177_09622802221115876
crossref_primary_10_1214_21_AOAS1468
crossref_primary_10_1080_01621459_2020_1819294
crossref_primary_10_1093_biomtc_ujad012
crossref_primary_10_1093_jrsssb_qkad016
crossref_primary_10_1515_ijb_2016_0064
crossref_primary_10_1093_jrsssb_qkad011
crossref_primary_10_1145_3331651_3331655
crossref_primary_10_3934_mfc_2024025
crossref_primary_10_1080_01621459_2020_1865167
crossref_primary_10_1186_s12874_020_01145_1
crossref_primary_10_1080_01621459_2022_2068420
crossref_primary_10_2139_ssrn_4372556
crossref_primary_10_1111_rssa_12951
crossref_primary_10_1093_biostatistics_kxae007
crossref_primary_10_1158_1078_0432_CCR_20_0152
crossref_primary_10_3389_fpubh_2023_1202970
crossref_primary_10_1214_22_AOAS1700
crossref_primary_10_1093_biostatistics_kxw035
crossref_primary_10_1002_sim_7844
crossref_primary_10_1111_biom_12865
crossref_primary_10_1177_1740774514525691
crossref_primary_10_1080_19439342_2024_2361008
crossref_primary_10_1111_biom_13711
crossref_primary_10_1007_s11336_023_09937_2
crossref_primary_10_1111_biom_12743
crossref_primary_10_1002_sim_7608
crossref_primary_10_1177_0962280218823036
crossref_primary_10_1111_biom_12990
crossref_primary_10_1080_01621459_2021_2008402
crossref_primary_10_1080_01621459_2020_1736083
crossref_primary_10_3390_stats4040046
crossref_primary_10_1080_24754269_2017_1341012
crossref_primary_10_1111_biom_13826
crossref_primary_10_1080_01621459_2016_1240080
crossref_primary_10_1002_sam_11684
crossref_primary_10_1080_01621459_2020_1844210
crossref_primary_10_1186_s13063_023_07884_y
crossref_primary_10_1002_sta4_641
crossref_primary_10_1093_aje_kwae122
crossref_primary_10_1214_24_AOS2363
crossref_primary_10_1080_01621459_2020_1788948
crossref_primary_10_1080_01621459_2015_1066682
crossref_primary_10_1002_bimj_201500180
crossref_primary_10_1080_19466315_2015_1059354
crossref_primary_10_1515_jci_2023_0059
crossref_primary_10_1080_01621459_2017_1280404
crossref_primary_10_1080_01621459_2020_1828091
crossref_primary_10_1002_bimj_202200340
crossref_primary_10_1002_sim_8714
crossref_primary_10_1080_24754269_2017_1326080
crossref_primary_10_1177_0272989X221100717
crossref_primary_10_1080_24754269_2018_1466096
crossref_primary_10_1002_sam_11475
crossref_primary_10_1016_j_csda_2020_107015
crossref_primary_10_1192_bjo_2019_85
crossref_primary_10_2139_ssrn_4077476
crossref_primary_10_1002_sim_8712
crossref_primary_10_1002_sim_7623
crossref_primary_10_1002_bimj_201500194
crossref_primary_10_1016_j_cct_2017_08_004
crossref_primary_10_1093_jrsssb_qkac001
crossref_primary_10_1177_0962280217735701
crossref_primary_10_1080_10543406_2017_1380036
crossref_primary_10_1111_biom_12836
crossref_primary_10_1080_10543406_2015_1052480
crossref_primary_10_1287_opre_2022_2271
crossref_primary_10_1214_17_AOS1570
crossref_primary_10_1080_19466315_2021_1972832
crossref_primary_10_1016_j_jtbi_2023_111538
crossref_primary_10_1080_01621459_2017_1303386
crossref_primary_10_1016_j_jpsychires_2016_03_001
crossref_primary_10_1002_sim_6783
crossref_primary_10_1214_18_EJS1439
crossref_primary_10_1093_biomet_asab018
crossref_primary_10_1177_0962280220920669
crossref_primary_10_1200_CCI_18_00002
crossref_primary_10_1093_biomet_asy017
crossref_primary_10_1080_01621459_2020_1796359
crossref_primary_10_1371_journal_pntd_0012881
crossref_primary_10_1080_01621459_2017_1345743
crossref_primary_10_1111_rssc_12379
crossref_primary_10_1111_biom_13084
crossref_primary_10_1080_03610926_2020_1808686
crossref_primary_10_1007_s11222_024_10407_7
crossref_primary_10_1177_1740774515580126
crossref_primary_10_1214_19_AOS1908
crossref_primary_10_1080_19466315_2015_1062044
crossref_primary_10_1093_biomet_asw068
crossref_primary_10_1080_01621459_2018_1549050
crossref_primary_10_1111_biom_13199
crossref_primary_10_1177_0272989X241263356
crossref_primary_10_1080_01621459_2020_1785476
crossref_primary_10_1080_10618600_2022_2067552
crossref_primary_10_1080_02664763_2023_2180167
crossref_primary_10_1002_sim_9396
crossref_primary_10_1002_sim_9155
crossref_primary_10_1080_01621459_2020_1753522
crossref_primary_10_1080_01621459_2020_1833887
crossref_primary_10_3233_MAS_170403
crossref_primary_10_1002_sta4_114
crossref_primary_10_1080_01621459_2020_1753521
crossref_primary_10_1080_01621459_2014_951443
crossref_primary_10_1007_s12561_024_09440_x
crossref_primary_10_1111_biom_13186
crossref_primary_10_1111_rssc_12278
crossref_primary_10_1515_jci_2012_0008
crossref_primary_10_1016_j_brat_2019_103412
crossref_primary_10_1080_01621459_2022_2147841
crossref_primary_10_1080_01621459_2020_1770098
crossref_primary_10_1016_j_landusepol_2021_105289
crossref_primary_10_1016_j_jco_2025_101931
crossref_primary_10_1186_s12874_024_02333_z
crossref_primary_10_1080_01621459_2020_1783272
crossref_primary_10_1214_23_AOAS1767
crossref_primary_10_1111_rssc_12266
crossref_primary_10_1186_s13063_020_04901_2
crossref_primary_10_1001_jamanetworkopen_2021_47375
crossref_primary_10_1080_01621459_2017_1321545
crossref_primary_10_1093_bioinformatics_btae592
crossref_primary_10_1002_sta4_343
crossref_primary_10_3390_a16050226
crossref_primary_10_1146_annurev_statistics_040120_025906
crossref_primary_10_1186_s13063_020_4076_y
crossref_primary_10_1093_biomet_asaa087
crossref_primary_10_1146_annurev_statistics_022513_115553
crossref_primary_10_1002_sim_10099
crossref_primary_10_1214_18_AOAS1137
crossref_primary_10_1214_19_AIHP1034
crossref_primary_10_1214_18_BA1110
crossref_primary_10_1038_s41409_020_0871_z
crossref_primary_10_1111_rssc_12175
crossref_primary_10_1002_sta4_493
crossref_primary_10_1002_sta4_374
crossref_primary_10_1515_ijb_2024_0068
crossref_primary_10_1080_01621459_2017_1330204
crossref_primary_10_1080_00031305_2023_2257237
crossref_primary_10_1080_01621459_2016_1148611
crossref_primary_10_1080_01621459_2014_937488
crossref_primary_10_1515_ijb_2015_0015
crossref_primary_10_1080_03610918_2019_1656739
crossref_primary_10_1002_sim_6920
crossref_primary_10_1080_01621459_2020_1745814
crossref_primary_10_2139_ssrn_3444678
crossref_primary_10_1080_01621459_2022_2038180
crossref_primary_10_1002_bimj_70006
crossref_primary_10_1111_rssb_12413
crossref_primary_10_1002_sim_9196
crossref_primary_10_1080_19466315_2016_1206486
crossref_primary_10_1186_s12874_022_01811_6
crossref_primary_10_1214_18_AOAS1154
crossref_primary_10_1002_sim_7902
crossref_primary_10_1093_biostatistics_kxu039
crossref_primary_10_1214_24_EJS2236
crossref_primary_10_1002_sta4_399
crossref_primary_10_1080_10618600_2018_1451337
crossref_primary_10_1515_ijb_2015_0052
crossref_primary_10_1080_01621459_2020_1772080
crossref_primary_10_1200_PO_18_00407
crossref_primary_10_1214_19_EJS1540
crossref_primary_10_1186_s12911_018_0619_5
crossref_primary_10_1186_s12911_022_01774_0
crossref_primary_10_1080_01621459_2020_1832500
crossref_primary_10_1002_sta_411
crossref_primary_10_1214_15_AOAS849
crossref_primary_10_1214_17_EJS1226
crossref_primary_10_1214_22_EJS2025
crossref_primary_10_1016_j_ijar_2024_109190
crossref_primary_10_1007_s10288_023_00561_5
crossref_primary_10_1155_2015_670691
crossref_primary_10_1080_01621459_2018_1529597
crossref_primary_10_1177_09622802241262525
crossref_primary_10_1093_biomet_asad038
crossref_primary_10_1287_ijds_2021_0006
crossref_primary_10_1214_18_AOAS1216
crossref_primary_10_1093_biomet_asu050
crossref_primary_10_1002_sim_10059
crossref_primary_10_1007_s40501_015_0050_9
crossref_primary_10_1093_biomet_asv028
crossref_primary_10_1515_ijb_2020_0127
crossref_primary_10_1080_01621459_2019_1660169
crossref_primary_10_1080_10485252_2024_2367674
crossref_primary_10_1080_01621459_2016_1155993
crossref_primary_10_1111_biom_13365
crossref_primary_10_1002_sim_6397
crossref_primary_10_1002_sim_9426
crossref_primary_10_1007_s12561_021_09310_w
crossref_primary_10_1111_rssc_12533
crossref_primary_10_1002_mco2_745
crossref_primary_10_1007_s10994_023_06484_w
crossref_primary_10_1214_23_AOS2258
crossref_primary_10_1111_rssb_12201
crossref_primary_10_1002_sim_8690
crossref_primary_10_1002_sim_9318
crossref_primary_10_1016_j_jeconom_2024_105945
crossref_primary_10_1287_mnsc_2023_4819
crossref_primary_10_1016_j_conctc_2017_01_007
crossref_primary_10_1016_j_clinthera_2021_11_002
crossref_primary_10_1111_insr_12536
crossref_primary_10_1002_sim_8102
crossref_primary_10_1080_01621459_2022_2027776
crossref_primary_10_1080_01621459_2017_1282372
crossref_primary_10_1111_biom_13232
crossref_primary_10_1002_sim_7497
crossref_primary_10_1371_journal_pone_0242927
crossref_primary_10_1214_14_EJS908
crossref_primary_10_1111_rssb_12216
crossref_primary_10_1093_biomet_asae022
crossref_primary_10_1097_YCO_0000000000000377
crossref_primary_10_1080_01621459_2019_1604368
crossref_primary_10_1111_rssb_12426
crossref_primary_10_1080_01621459_2016_1250573
crossref_primary_10_1177_09622802241259172
crossref_primary_10_2139_ssrn_4012071
crossref_primary_10_2139_ssrn_3322322
crossref_primary_10_1080_19466315_2024_2388520
crossref_primary_10_1111_biom_13337
crossref_primary_10_1039_D1ME00154J
crossref_primary_10_1002_sim_9565
crossref_primary_10_1111_biom_13586
crossref_primary_10_1111_biom_12132
crossref_primary_10_1214_16_EJS1178
crossref_primary_10_2139_ssrn_4293532
crossref_primary_10_1002_sim_8357
crossref_primary_10_1214_22_AOS2171
crossref_primary_10_1002_sim_10161
crossref_primary_10_1093_biomet_asae036
crossref_primary_10_1080_01621459_2022_2139265
crossref_primary_10_1111_jgs_18141
crossref_primary_10_1038_s41598_023_29106_w
crossref_primary_10_1002_sim_10167
crossref_primary_10_1080_01621459_2021_1947306
crossref_primary_10_1007_s10985_016_9376_x
crossref_primary_10_1002_sim_9574
crossref_primary_10_1214_23_AOS2287
crossref_primary_10_1177_1740774514532570
crossref_primary_10_2196_50890
crossref_primary_10_1080_01621459_2020_1725522
crossref_primary_10_1214_22_AOS2188
crossref_primary_10_1002_sim_8363
crossref_primary_10_1080_01621459_2021_1872580
crossref_primary_10_1016_j_cps_2017_05_024
crossref_primary_10_1111_rssc_12459
crossref_primary_10_1177_1740774514557725
crossref_primary_10_1080_01621459_2020_1831925
crossref_primary_10_1111_biom_13288
crossref_primary_10_1214_23_AOAS1836
crossref_primary_10_1093_jrsssc_qlad108
crossref_primary_10_1111_rssb_12483
crossref_primary_10_1111_biom_12191
crossref_primary_10_1111_biom_12192
crossref_primary_10_1080_02664763_2021_2019689
crossref_primary_10_1007_s10015_023_00929_0
crossref_primary_10_1111_biom_12190
crossref_primary_10_1080_03610918_2021_1999473
crossref_primary_10_1200_JCO_21_01957
crossref_primary_10_1002_sim_8372
crossref_primary_10_1146_annurev_statistics_030718_105251
crossref_primary_10_2139_ssrn_4867425
crossref_primary_10_1287_ijoc_2022_0188
crossref_primary_10_1111_biom_12179
crossref_primary_10_1111_biom_13268
crossref_primary_10_1002_sim_9115
crossref_primary_10_1016_j_janxdis_2024_102825
crossref_primary_10_1111_biom_12189
crossref_primary_10_1111_biom_13398
crossref_primary_10_1111_biom_12187
crossref_primary_10_1016_j_spl_2023_109854
crossref_primary_10_1080_19466315_2017_1371069
crossref_primary_10_1007_s11684_013_0245_7
crossref_primary_10_1002_smll_202411311
crossref_primary_10_12677_aam_2025_142074
crossref_primary_10_1080_01621459_2020_1811099
crossref_primary_10_1016_j_jeconom_2021_09_009
crossref_primary_10_1111_rssa_12250
crossref_primary_10_1080_10543406_2019_1684304
crossref_primary_10_1214_14_EJS920REJ
crossref_primary_10_1080_01621459_2023_2284422
crossref_primary_10_1002_sim_7182
crossref_primary_10_1080_01621459_2020_1817751
crossref_primary_10_1177_17407745231174544
crossref_primary_10_1111_rssb_12469
crossref_primary_10_1002_sim_7064
crossref_primary_10_1111_bcp_15441
crossref_primary_10_1214_16_BA1022
crossref_primary_10_1214_23_EJS2127
crossref_primary_10_1002_sim_9377
crossref_primary_10_1080_01621459_2023_2300507
crossref_primary_10_1111_biom_13373
crossref_primary_10_1214_15_AOS1384
crossref_primary_10_1002_sim_9491
crossref_primary_10_1111_rssb_12474
crossref_primary_10_1002_sim_9253
crossref_primary_10_1214_14_EJS920
Cites_doi 10.1164/rccm.200705-664OC
10.1198/jasa.2010.tm10053
10.1214/009053606000001226
10.1001/archgenpsychiatry.2008.540
10.1198/016214502753479202
10.1007/BF00994018
10.1037/0033-3204.32.4.639
10.1214/009053605000000282
10.1001/archpsyc.56.6.493
10.1016/j.drugalcdep.2006.10.001
10.1214/009053607000000839
10.1198/jasa.2009.0011
10.1198/016214505000000907
10.1214/009053604000000463
10.1214/10-AOS864
10.1109/TIT.2004.839514
10.1093/biomet/asq012
10.1001/jama.291.22.2727
10.1093/jnci/95.12.851
10.1111/j.1541-0420.2011.01572.x
10.1007/978-1-4419-9076-1_11
10.1093/annonc/mdn739
10.1056/NEJMoa012914
10.1214/aos/1079120131
10.1214/aos/1079120130
10.1023/A:1015469627679
10.1111/1467-9868.00389
10.1007/978-0-387-84858-7
10.1038/nature06915
10.1056/NEJM200005183422001
10.1198/016214504000000098
10.1198/016214501753382327
10.1111/j.1541-0420.2006.00686.x
10.1016/j.csda.2007.02.006
10.1007/978-1-4757-2440-0
10.1200/JCO.2005.01.112
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2012
2012 American Statistical Association
Copyright American Statistical Association Sep 2012
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2012
– notice: 2012 American Statistical Association
– notice: Copyright American Statistical Association Sep 2012
DBID FBQ
AAYXX
CITATION
NPM
8BJ
FQK
JBE
K9.
7S9
L.6
7X8
5PM
DOI 10.1080/01621459.2012.695674
DatabaseName AGRIS
CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
International Bibliography of the Social Sciences (IBSS)
AGRICOLA
International Bibliography of the Social Sciences (IBSS)



PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 1118
ExternalDocumentID PMC3636816
2799801341
23630406
10_1080_01621459_2012_695674
23427417
695674
US201600085419
Genre Journal Article
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P01 CA142538
– fundername: NCI NIH HHS
  grantid: R01 CA082659
– fundername: NIGMS NIH HHS
  grantid: R37 GM047845
– fundername: National Cancer Institute : NCI
  grantid: P01 CA142538 || CA
GroupedDBID -DZ
-~X
.-4
..I
.7F
.GJ
.QJ
07G
0BK
0R~
1OL
29L
2AX
30N
3R3
4.4
5GY
5RE
692
7WY
7X7
85S
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8FL
8G5
8R4
8R5
AAAVZ
AABCJ
AAENE
AAFWJ
AAHBH
AAIKQ
AAJMT
AAKBW
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABEFU
ABEHJ
ABFAN
ABFIM
ABJCF
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABRLO
ABTAI
ABUWG
ABXSQ
ABXUL
ABXYU
ABYWD
ACAGQ
ACGEE
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACUBG
ADBBV
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
ADYSH
AEISY
AENEX
AEOZL
AEPSL
AEUMN
AEUPB
AEYOC
AFFNX
AFKRA
AFQQW
AFRVT
AFSUE
AFVYC
AFXHP
AGCQS
AGDLA
AGLEN
AGLNM
AGMYJ
AGROQ
AHDZW
AHMOU
AI.
AIHAF
AIJEM
AIYEW
AKBVH
AKOOK
ALCKM
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMATQ
AMEWO
AMXXU
AQRUH
AQUVI
AVBZW
AWYRJ
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BLEHA
BPHCQ
BPLKW
BVXVI
C06
CCCUG
CCPQU
CJ0
CRFIH
CS3
D0L
DGEBU
DKSSO
DMQIW
DQDLB
DSRWC
DU5
DWIFK
DWQXO
E.L
EBS
ECEWR
EJD
E~A
E~B
F5P
FBQ
FEDTE
FJW
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GTTXZ
GUQSH
H13
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZ~
H~9
H~P
IPNFZ
IPSME
IVXBP
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
K9-
KQ8
KYCEM
L6V
LJTGL
LU7
M0C
M0R
M0T
M1P
M2O
M2P
M4Z
M7S
MS~
MVM
MW2
NA5
NHB
NUSFT
NY~
O9-
OFU
OK1
P-O
P2P
PADUT
PHGZT
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RIG
RNANH
RNS
ROSJB
RTWRZ
RWL
RXW
S-T
S0X
SA0
SJN
SNACF
TAE
TAQ
TBQAZ
TDBHL
TEJ
TFL
TFMCV
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UB9
UKHRP
UPT
UQL
UT5
UU3
VH1
VOH
WH7
WHG
WZA
YQT
YXB
YYM
YYP
ZCG
ZGI
ZGOLN
ZUP
ZXP
~S~
ABYAD
ACTWD
AELPN
GROUPED_ABI_INFORM_COMPLETE
IAO
IEA
IGG
IOF
IPO
JSODD
N95
AAGDL
AAHIA
AMPGV
AAYXX
ADXHL
AMVHM
CITATION
PHGZM
NPM
8BJ
FQK
JBE
K9.
TASJS
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c703t-461cb1006ddc6582637105ddaf103112f913bb532ce4e17f6da52bb851167c3a3
ISSN 1537-274X
0162-1459
IngestDate Thu Aug 21 13:57:22 EDT 2025
Fri Sep 05 00:10:56 EDT 2025
Fri Sep 05 17:28:46 EDT 2025
Thu Sep 04 23:34:02 EDT 2025
Sat Sep 06 22:24:19 EDT 2025
Thu Apr 03 07:09:38 EDT 2025
Tue Jul 01 02:39:27 EDT 2025
Thu Apr 24 23:11:34 EDT 2025
Thu May 29 08:44:01 EDT 2025
Wed Dec 25 09:03:29 EST 2024
Thu Apr 03 09:46:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 499
Keywords RKHS
Weighted Support Vector Machine
Risk Bound
Individualized Treatment Rule
Dynamic Treatment Regime
Bayes Classifier
Cross Validation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c703t-461cb1006ddc6582637105ddaf103112f913bb532ce4e17f6da52bb851167c3a3
Notes http://dx.doi.org/10.1080/01621459.2012.695674
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://scholarbank.nus.edu.sg/handle/10635/110062
PMID 23630406
PQID 1115382542
PQPubID 41715
PageCount 13
ParticipantIDs crossref_citationtrail_10_1080_01621459_2012_695674
proquest_miscellaneous_1803097188
pubmed_primary_23630406
jstor_primary_23427417
proquest_miscellaneous_1221847144
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3636816
proquest_miscellaneous_1826571425
proquest_journals_1115382542
informaworld_taylorfrancis_310_1080_01621459_2012_695674
crossref_primary_10_1080_01621459_2012_695674
fao_agris_US201600085419
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-09-01
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationTitleAlternate J Am Stat Assoc
PublicationYear 2012
Publisher Taylor & Francis Group
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
Zhu J. (CIT0040) 2003
Bradley P. S. (CIT0004) 1998
CIT0014
CIT0013
CIT0035
CIT0016
CIT0038
CIT0015
CIT0018
CIT0017
CIT0039
CIT0021
Lugosi G. (CIT0019) 2004; 32
CIT0020
CIT0001
CIT0023
CIT0022
Vert R. (CIT0036) 2006; 7
Wang L. (CIT0037) 2006; 16
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0026
CIT0007
CIT0029
Zou H. (CIT0041) 2008; 18
CIT0006
CIT0028
CIT0009
CIT0008
23049123 - Biometrika. 2010 Jun;97(2):389-404
17071020 - Drug Alcohol Depend. 2007 May;88 Suppl 2:S4-13
21666835 - Ann Stat. 2011 Apr 1;39(2):1180-1210
17761616 - Am J Respir Crit Care Med. 2007 Nov 15;176(10):957-69
12813169 - J Natl Cancer Inst. 2003 Jun 18;95(12 ):851-67
19188534 - Arch Gen Psychiatry. 2009 Feb;66(2):128-33
10816183 - N Engl J Med. 2000 May 18;342(20):1462-70
17688497 - Biometrics. 2007 Jun;63(2):447-55
15774793 - J Clin Oncol. 2005 Mar 20;23(9):2020-7
20019887 - J Am Stat Assoc. 2001 Dec 1;96(456):1410-1423
15187054 - JAMA. 2004 Jun 9;291(22):2727-33
19150946 - Ann Oncol. 2009 Jun;20(6):993-9
10359461 - Arch Gen Psychiatry. 1999 Jun;56(6):493-502
18385730 - Nature. 2008 Apr 3;452(7187):564-70
22053123 - J Am Stat Assoc. 2011 Sep 1;106(495):904-913
12075054 - N Engl J Med. 2002 Jun 20;346(25):1937-47
21385164 - Biometrics. 2011 Dec;67(4):1422-33
References_xml – ident: CIT0010
  doi: 10.1164/rccm.200705-664OC
– ident: CIT0015
  doi: 10.1198/jasa.2010.tm10053
– ident: CIT0031
  doi: 10.1214/009053606000001226
– volume: 16
  start-page: 617
  year: 2006
  ident: CIT0037
  publication-title: Statistica Sinica
– ident: CIT0013
  doi: 10.1001/archgenpsychiatry.2008.540
– ident: CIT0032
  doi: 10.1198/016214502753479202
– ident: CIT0007
  doi: 10.1007/BF00994018
– ident: CIT0025
  doi: 10.1037/0033-3204.32.4.639
– ident: CIT0001
  doi: 10.1214/009053605000000282
– ident: CIT0008
  doi: 10.1001/archpsyc.56.6.493
– ident: CIT0020
  doi: 10.1016/j.drugalcdep.2006.10.001
– ident: CIT0003
  doi: 10.1214/009053607000000839
– ident: CIT0021
  doi: 10.1198/jasa.2009.0011
– ident: CIT0002
  doi: 10.1198/016214505000000907
– volume: 32
  start-page: 30
  year: 2004
  ident: CIT0019
  publication-title: The Annals of Statistics
  doi: 10.1214/009053604000000463
– ident: CIT0026
  doi: 10.1214/10-AOS864
– ident: CIT0030
  doi: 10.1109/TIT.2004.839514
– ident: CIT0006
  doi: 10.1093/biomet/asq012
– ident: CIT0009
  doi: 10.1001/jama.291.22.2727
– ident: CIT0011
  doi: 10.1093/jnci/95.12.851
– ident: CIT0039
  doi: 10.1111/j.1541-0420.2011.01572.x
– ident: CIT0027
  doi: 10.1007/978-1-4419-9076-1_11
– volume: 7
  start-page: 817
  year: 2006
  ident: CIT0036
  publication-title: Journal of Machine Learning Research
– ident: CIT0005
  doi: 10.1093/annonc/mdn739
– ident: CIT0028
  doi: 10.1056/NEJMoa012914
– ident: CIT0033
  doi: 10.1214/aos/1079120131
– ident: CIT0038
  doi: 10.1214/aos/1079120130
– start-page: 82
  volume-title: Proceedings of the 15th International Conference on Machine Learning
  year: 1998
  ident: CIT0004
– ident: CIT0017
  doi: 10.1023/A:1015469627679
– ident: CIT0023
  doi: 10.1111/1467-9868.00389
– start-page: 16
  volume-title: Neural Information Processing Systems
  year: 2003
  ident: CIT0040
– ident: CIT0012
  doi: 10.1007/978-0-387-84858-7
– ident: CIT0034
  doi: 10.1038/nature06915
– ident: CIT0014
  doi: 10.1056/NEJM200005183422001
– volume: 18
  start-page: 379
  year: 2008
  ident: CIT0041
  publication-title: Statistica Sinica
– ident: CIT0016
  doi: 10.1198/016214504000000098
– ident: CIT0024
  doi: 10.1198/016214501753382327
– ident: CIT0022
  doi: 10.1111/j.1541-0420.2006.00686.x
– ident: CIT0018
  doi: 10.1016/j.csda.2007.02.006
– ident: CIT0035
  doi: 10.1007/978-1-4757-2440-0
– ident: CIT0029
  doi: 10.1200/JCO.2005.01.112
– reference: 15774793 - J Clin Oncol. 2005 Mar 20;23(9):2020-7
– reference: 23049123 - Biometrika. 2010 Jun;97(2):389-404
– reference: 17688497 - Biometrics. 2007 Jun;63(2):447-55
– reference: 17761616 - Am J Respir Crit Care Med. 2007 Nov 15;176(10):957-69
– reference: 21666835 - Ann Stat. 2011 Apr 1;39(2):1180-1210
– reference: 12813169 - J Natl Cancer Inst. 2003 Jun 18;95(12 ):851-67
– reference: 10359461 - Arch Gen Psychiatry. 1999 Jun;56(6):493-502
– reference: 15187054 - JAMA. 2004 Jun 9;291(22):2727-33
– reference: 18385730 - Nature. 2008 Apr 3;452(7187):564-70
– reference: 10816183 - N Engl J Med. 2000 May 18;342(20):1462-70
– reference: 21385164 - Biometrics. 2011 Dec;67(4):1422-33
– reference: 19150946 - Ann Oncol. 2009 Jun;20(6):993-9
– reference: 22053123 - J Am Stat Assoc. 2011 Sep 1;106(495):904-913
– reference: 20019887 - J Am Stat Assoc. 2001 Dec 1;96(456):1410-1423
– reference: 19188534 - Arch Gen Psychiatry. 2009 Feb;66(2):128-33
– reference: 17071020 - Drug Alcohol Depend. 2007 May;88 Suppl 2:S4-13
– reference: 12075054 - N Engl J Med. 2002 Jun 20;346(25):1937-47
SSID ssj0000788
Score 2.5841956
Snippet There is increasing interest in discovering individualized treatment rules (ITRs) for patients who have heterogeneous responses to treatment. In particular,...
There is increasing interest in discovering individualized treatment rules for patients who have heterogeneous responses to treatment. In particular, one aims...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
informaworld
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1106
SubjectTerms Approximation
Bayes classifier
Bayesian analysis
Clinical outcomes
Clinical trials
Consistent estimators
Cross-validation
data analysis
Depression
Dynamic treatment regime
Equivalence
Estimation
Estimation methods
Health outcomes
Individualized instruction
Individualized treatment rule
Learning
Mathematical functions
Modeling
Outcomes of education
Patients
Risk bound
RKHS
Sample size
Simulation
Statistical methods
Statistics
support vector machines
Theory and Methods
Weighted support vector machine
Title Estimating Individualized Treatment Rules Using Outcome Weighted Learning
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2012.695674
https://www.jstor.org/stable/23427417
https://www.ncbi.nlm.nih.gov/pubmed/23630406
https://www.proquest.com/docview/1115382542
https://www.proquest.com/docview/1221847144
https://www.proquest.com/docview/1803097188
https://www.proquest.com/docview/1826571425
https://pubmed.ncbi.nlm.nih.gov/PMC3636816
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYeNkL4mssMFCQeJsy1R-x00cEnQaMToJWlCfLTpytYkpgTV_213P-SJpOpQxeosi5OJbvcj6f736H0BuhFSd5ThPGjEoYwWWSacaTzDBNB2U6KAubjfx5zE-n7OMsna3KpbrskkYf5zcb80r-h6vQBny1WbL_wNmuU2iAe-AvXIHDcL0Tj0fwf1qL0x36t4lV8xuwISdd_PiX5ZVZHPnIgPNlA8MwR9-cPxTIArrqxR9M1F7aiSv02zhU5w1M9Z5n53X9Dt39mnetxuuS97VNF15lnS0Xl14r9UOBP9WL-rr-0YvmD-GMwSthwzuGrVciOCo5STALaN-tpvUFboNIMY9VGjQnmCF8o0oPMZDQn-3OBuORYw67Ol_cZx1Be3wuT6ZnZ3Iymk120H0ihDu6p4PxanUWrhZpN742ndLirW_4xpq5slOq-hakbRvGummDcjvOtme4TB6iB4Gd8VsvPo_QPVM9RnsdNxdP0IeVHMXrchR3chQ7OYqdHMVBjuJWjuJWjp6i6clo8u40CSU2khxUfZMwjnONQfMWRQ62KOEULM60KFRpy39gUg4x1TqlJDfMYFHyQqVEa2umc5FTRffRblVX5gDFinNFhpbCmoysgIWBK7jPci14LniEaDuTMg_487YMypXELUxtmH9p51_6-Y9Q0r310-Ov_IX-AJgk1QUskXL6lVgARbutYHgYoazPOdk4l1jp69dIur3XfcflbgiEMov7JCJ02LJdBsWwsJtqMCNIykiEXnePQW3bszhVmXoJNMT6VgRmbAtNZs8_wXjMttEQnkI3JI3QMy9tvUFyCms0zLxYk8OOwELLrz-p5pcOYh7e5Bnmz-_w3Rdob6UADtFuc700L8FQb_Qr9-f9Bu-R4Ww
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-x8cBe-B4LDAgSryn1R5z0EaFNLWxFglbwZtmO001MKVqTl_31u8sXbQVFgrdIPlvO5XL-nX3-HcDbxBrFnRORlN5EkrM8Sq1UUeqlFcM8HuYZ3UY-n6rxXH78HnfZhKs2rZJi6Lwhiqh9Nf3ctBndpcS9Q5hCBNt0z4TxgUKIn8g9uBsjdCcjF8PpL2ec1KUnqUdEXbrbc38YZWN12svNcovBtMta_B0e3U6rXFunTh-A7d6wSU_5MahKO3A3W-SP_6WCh3C_RbHh-8bsHsEdXzyGAwKuDe_zE5ic4AOh4WIRTvpLX5c3PgtnXW57-KW68quwzloIP1clTsGH3-q9WhRrmV8XT2F-ejL7MI7asg2RQ_dRRlIxZxn-zVnmEN9wJRDFxFlmciopwXg-YsLaWHDnpWdJrjITc2sJ-qnECSMOYb9YFv4IQqOU4SOSIBgiM3Q2yuBz6myiXKICEN3n0q7lNKfSGleaddSnrZ406Uk3egog6nv9bDg9_iJ_hJagzQLdrp5_5UTKR1BVslEA6bp56LLeZsmbmiha7B71sDalfgpcSOISSgI47mxLtw5lRYEaLk0YzfMA3vTN6ArofMcUflmhDKd4PcEQeYdMSmdqCEjSXTJcxTgMjwN41pj02iSVQL-Pmk82jL0XILryzZbi8qKmLceeKmXq-b-r7DXcG8_Oz_TZZPrpBRxQS5Pudwz75XXlXyI-LO2r2gPcAsYfU6Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xIaG98L0tMCBIvKbUH3HSRwSrVj4KglXszbIdu0xM6cSSl_313OWjtBUUCd4i-Wy51_P5d8nd7wBeZNYo7pxIpPQmkZyFJLdSJbmXVgxDOgwFVSN_mKqTmXx7lp6tVPFTWiXF0KElimh8NR3uyyL0GXEvEaUQvzaVmTA-UIjwM7kDNxWiE0rqE8PpL1-cNZ0naUZCU_riuT-ssnY57QSz2CAw7ZMWfwdHN7MqV66p8R0w_Q9ss1O-D-rKDtz1Bvfj_2jgLtzuMGz8qjW6e3DDl_dhj2Bry_r8ACbH-EBYuJzHk2XJ1_m1L-LTPrM9_lxf-Ku4yVmIP9YV7sDHX5s3tSjW8b7OH8JsfHz6-iTpmjYkDp1HlUjFnGV4lovCIbrhSiCGSYvCBGoowXgYMWFtKrjz0rMsqMKk3FoCfipzwoh92C0XpT-E2Chl-IgkCITIAl2NMvicO5spl6kIRP9vadcxmlNjjQvNeuLTTk-a9KRbPUWQLGddtowef5E_REPQZo5OV8--cKLkI6Aq2SiCfNU6dNW8ZAltRxQttq-631jScgtcSGISyiI46k1Ld-7kisI0vJgwlucRPF8OoyOgrzum9IsaZThF6xkGyFtkcvqihnAk3ybDVYrL8DSCg9aiVzapBHp91Hy2ZutLASIrXx8pz781pOU4U-VMPfp3lT2DW5_ejPX7yfTdY9ijgTbX7wh2qx-1f4LgsLJPm_P_E0NhUkg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+Individualized+Treatment+Rules+Using+Outcome+Weighted+Learning&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Zhao%2C+Yingqi&rft.au=Zeng%2C+Donglin&rft.au=Rush%2C+A+John&rft.au=Kosorok%2C+Michael+R&rft.date=2012-09-01&rft.issn=0162-1459&rft.volume=107&rft.issue=449&rft.spage=1106&rft_id=info:doi/10.1080%2F01621459.2012.695674&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-274X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-274X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-274X&client=summon