Estimating Individualized Treatment Rules Using Outcome Weighted Learning
There is increasing interest in discovering individualized treatment rules (ITRs) for patients who have heterogeneous responses to treatment. In particular, one aims to find an optimal ITR that is a deterministic function of patient-specific characteristics maximizing expected clinical outcome. In t...
Saved in:
Published in | Journal of the American Statistical Association Vol. 107; no. 499; pp. 1106 - 1118 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis Group
01.09.2012
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1537-274X 0162-1459 1537-274X |
DOI | 10.1080/01621459.2012.695674 |
Cover
Abstract | There is increasing interest in discovering individualized treatment rules (ITRs) for patients who have heterogeneous responses to treatment. In particular, one aims to find an optimal ITR that is a deterministic function of patient-specific characteristics maximizing expected clinical outcome. In this article, we first show that estimating such an optimal treatment rule is equivalent to a classification problem where each subject is weighted proportional to his or her clinical outcome. We then propose an outcome weighted learning approach based on the support vector machine framework. We show that the resulting estimator of the treatment rule is consistent. We further obtain a finite sample bound for the difference between the expected outcome using the estimated ITR and that of the optimal treatment rule. The performance of the proposed approach is demonstrated via simulation studies and an analysis of chronic depression data. |
---|---|
AbstractList | There is increasing interest in discovering individualized treatment rules for patients who have heterogeneous responses to treatment. In particular, one aims to find an optimal individualized treatment rule which is a deterministic function of patient specific characteristics maximizing expected clinical outcome. In this paper, we first show that estimating such an optimal treatment rule is equivalent to a classification problem where each subject is weighted proportional to his or her clinical outcome. We then propose an outcome weighted learning approach based on the support vector machine framework. We show that the resulting estimator of the treatment rule is consistent. We further obtain a finite sample bound for the difference between the expected outcome using the estimated individualized treatment rule and that of the optimal treatment rule. The performance of the proposed approach is demonstrated via simulation studies and an analysis of chronic depression data.There is increasing interest in discovering individualized treatment rules for patients who have heterogeneous responses to treatment. In particular, one aims to find an optimal individualized treatment rule which is a deterministic function of patient specific characteristics maximizing expected clinical outcome. In this paper, we first show that estimating such an optimal treatment rule is equivalent to a classification problem where each subject is weighted proportional to his or her clinical outcome. We then propose an outcome weighted learning approach based on the support vector machine framework. We show that the resulting estimator of the treatment rule is consistent. We further obtain a finite sample bound for the difference between the expected outcome using the estimated individualized treatment rule and that of the optimal treatment rule. The performance of the proposed approach is demonstrated via simulation studies and an analysis of chronic depression data. There is increasing interest in discovering individualized treatment rules (ITRs) for patients who have heterogeneous responses to treatment. In particular, one aims to find an optimal ITR that is a deterministic function of patient-specific characteristics maximizing expected clinical outcome. In this article, we first show that estimating such an optimal treatment rule is equivalent to a classification problem where each subject is weighted proportional to his or her clinical outcome. We then propose an outcome weighted learning approach based on the support vector machine framework. We show that the resulting estimator of the treatment rule is consistent. We further obtain a finite sample bound for the difference between the expected outcome using the estimated ITR and that of the optimal treatment rule. The performance of the proposed approach is demonstrated via simulation studies and an analysis of chronic depression data. [PUBLICATION ABSTRACT] There is increasing interest in discovering individualized treatment rules (ITRs) for patients who have heterogeneous responses to treatment. In particular, one aims to find an optimal ITR that is a deterministic function of patient-specific characteristics maximizing expected clinical outcome. In this article, we first show that estimating such an optimal treatment rule is equivalent to a classification problem where each subject is weighted proportional to his or her clinical outcome. We then propose an outcome weighted learning approach based on the support vector machine framework. We show that the resulting estimator of the treatment rule is consistent. We further obtain a finite sample bound for the difference between the expected outcome using the estimated ITR and that of the optimal treatment rule. The performance of the proposed approach is demonstrated via simulation studies and an analysis of chronic depression data. There is increasing interest in discovering individualized treatment rules for patients who have heterogeneous responses to treatment. In particular, one aims to find an optimal individualized treatment rule which is a deterministic function of patient specific characteristics maximizing expected clinical outcome. In this paper, we first show that estimating such an optimal treatment rule is equivalent to a classification problem where each subject is weighted proportional to his or her clinical outcome. We then propose an outcome weighted learning approach based on the support vector machine framework. We show that the resulting estimator of the treatment rule is consistent. We further obtain a finite sample bound for the difference between the expected outcome using the estimated individualized treatment rule and that of the optimal treatment rule. The performance of the proposed approach is demonstrated via simulation studies and an analysis of chronic depression data. |
Author | Kosorok, Michael R. Zhao, Yingqi Zeng, Donglin Rush, A. John |
Author_xml | – sequence: 1 fullname: Zhao, Yingqi – sequence: 2 fullname: Zeng, Donglin – sequence: 3 fullname: Rush, A. John – sequence: 4 fullname: Kosorok, Michael R |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23630406$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktvEzEUhUeoiD7gH_CIxIZNgq_fYQFCVYFIkSpBI9hZHo8ndTRjF9tTVH49jqZBoZvgzVi63z2-Z-45rY588LaqngOaAZLoLQKOgbL5DCPAMz5nXNBH1QkwIqZY0B9He_fj6jSlDSpHSPmkOsaEE0QRP6kWFym7Xmfn15OFb9ytawbdud-2mVxFq3NvfZ58HTqbJqu0hS6HbEJvJ9-tW1_ngi2tjr5UnlaPW90l--z-e1atPl1cnX-ZLi8_L84_LqdGIJKnlIOpASHeNIYziTkRgFjT6BYQAcDtHEhdM4KNpRZEyxvNcF1LBsCFIZqcVe9H3Zuh7m1jyoBRd-omFhvxTgXt1L8V767VOtyq4plL4EXgzb1ADD8Hm7LqXTK267S3YUgKylBMAMXsP1BE0FyAlIdRjEHSIksL-voBuglD9OWnKYCyM4kZxYV6ue_zr8Hd7grwbgRMDClF2yrjctlk2Np2nQKktkFRu6CobVDUGJTSTB807_QPtL0Y2zYph7g3Ey0xA1HqH8a6822Ivf4VYteorO-6ENuovXFJkQMvvBoVWh2UXsfSsPpWAF7CKxmFOfkDIEDkzg |
CODEN | JSTNAL |
CitedBy_id | crossref_primary_10_1002_sim_6558 crossref_primary_10_1111_biom_12306 crossref_primary_10_1111_biom_12789 crossref_primary_10_2105_AJPH_2022_307135 crossref_primary_10_1111_biom_13511 crossref_primary_10_1287_mnsc_2023_4678 crossref_primary_10_1002_sim_8976 crossref_primary_10_1016_j_progsolidstchem_2020_100283 crossref_primary_10_1177_09622802231154327 crossref_primary_10_1214_23_EJS2158 crossref_primary_10_1214_21_EJS1948 crossref_primary_10_1515_jci_2022_0005 crossref_primary_10_1111_biom_12539 crossref_primary_10_1080_10543406_2015_1092034 crossref_primary_10_1080_10543406_2015_1092033 crossref_primary_10_1287_isre_2022_1149 crossref_primary_10_1111_biom_13864 crossref_primary_10_1093_biostatistics_kxx038 crossref_primary_10_1111_biom_12773 crossref_primary_10_1111_biom_12894 crossref_primary_10_1007_s12561_014_9122_4 crossref_primary_10_1080_10543406_2017_1397009 crossref_primary_10_1137_18M1190975 crossref_primary_10_1002_sim_6564 crossref_primary_10_1007_s41237_021_00140_0 crossref_primary_10_1016_j_spl_2021_109180 crossref_primary_10_1080_24709360_2018_1435608 crossref_primary_10_1371_journal_pone_0269369 crossref_primary_10_1016_j_dss_2015_01_010 crossref_primary_10_1177_0962280217746191 crossref_primary_10_1177_09622802221102624 crossref_primary_10_1080_01621459_2022_2108816 crossref_primary_10_1080_01621459_2016_1242427 crossref_primary_10_3982_ECTA15732 crossref_primary_10_1080_01621459_2015_1093947 crossref_primary_10_1093_biostatistics_kxaa032 crossref_primary_10_1142_S0218213020500050 crossref_primary_10_1214_18_EJS1480 crossref_primary_10_1002_sim_8407 crossref_primary_10_1080_01621459_2021_1923511 crossref_primary_10_1080_07350015_2019_1624293 crossref_primary_10_1093_biostatistics_kxy028 crossref_primary_10_1111_biom_12511 crossref_primary_10_1515_ijb_2022_0073 crossref_primary_10_1002_pst_2455 crossref_primary_10_1111_rssb_12273 crossref_primary_10_1214_18_AOS1750 crossref_primary_10_1007_s12561_022_09343_9 crossref_primary_10_1111_biom_12229 crossref_primary_10_1177_09622802241236954 crossref_primary_10_1111_biom_12346 crossref_primary_10_1177_09622802241310328 crossref_primary_10_1093_biostatistics_kxz026 crossref_primary_10_1177_09622802221144326 crossref_primary_10_1007_s13253_023_00551_4 crossref_primary_10_2139_ssrn_4869436 crossref_primary_10_1111_biom_12354 crossref_primary_10_1111_biom_12593 crossref_primary_10_1111_biom_13320 crossref_primary_10_2139_ssrn_4114765 crossref_primary_10_1214_20_AOAS1356 crossref_primary_10_1007_s12561_023_09370_0 crossref_primary_10_1002_bimj_201800072 crossref_primary_10_1016_j_conctc_2017_02_007 crossref_primary_10_1016_j_cmpb_2022_106927 crossref_primary_10_1021_acsanm_1c04391 crossref_primary_10_1287_mnsc_2015_2363 crossref_primary_10_1515_ijb_2016_0045 crossref_primary_10_1002_sim_8308 crossref_primary_10_1177_1740774514537727 crossref_primary_10_1111_insr_12583 crossref_primary_10_1080_01621459_2020_1801449 crossref_primary_10_1093_biostatistics_kxab010 crossref_primary_10_2217_cer_2020_0230 crossref_primary_10_1093_biostatistics_kxz042 crossref_primary_10_1007_s10985_022_09566_4 crossref_primary_10_1093_biostatistics_kxac007 crossref_primary_10_1186_s13063_022_06064_8 crossref_primary_10_1002_bimj_202300027 crossref_primary_10_1002_bimj_201700322 crossref_primary_10_1111_biom_12204 crossref_primary_10_1111_biom_12322 crossref_primary_10_1080_01621459_2021_1929246 crossref_primary_10_1002_sim_8678 crossref_primary_10_1002_sim_9766 crossref_primary_10_1080_10543406_2023_2275757 crossref_primary_10_1111_biom_13406 crossref_primary_10_1002_sim_9659 crossref_primary_10_1111_biom_12676 crossref_primary_10_1515_jci_2022_0029 crossref_primary_10_1111_biom_13530 crossref_primary_10_1016_j_artmed_2020_101964 crossref_primary_10_1016_j_arcontrol_2018_05_001 crossref_primary_10_1080_10543406_2020_1821705 crossref_primary_10_1214_13_STS450 crossref_primary_10_1080_01621459_2016_1200911 crossref_primary_10_3390_bs14110993 crossref_primary_10_3982_ECTA16437 crossref_primary_10_1002_bimj_202200285 crossref_primary_10_1214_16_AOS1534 crossref_primary_10_1080_10543406_2019_1633657 crossref_primary_10_1016_j_ecosta_2025_02_003 crossref_primary_10_1038_s41380_024_02500_0 crossref_primary_10_1002_bimj_202000392 crossref_primary_10_1002_sta4_78 crossref_primary_10_1007_s43441_021_00329_1 crossref_primary_10_1515_ijb_2016_0068 crossref_primary_10_1016_j_jebo_2020_07_011 crossref_primary_10_1007_s12561_013_9097_6 crossref_primary_10_1016_j_jad_2024_05_028 crossref_primary_10_1111_biom_12811 crossref_primary_10_1093_aje_kwae040 crossref_primary_10_1177_0962280218804569 crossref_primary_10_3390_life14040442 crossref_primary_10_1002_bimj_201900030 crossref_primary_10_1016_j_csda_2022_107508 crossref_primary_10_12944_CRJSSH_5_1_05 crossref_primary_10_1002_wics_1498 crossref_primary_10_1080_10618600_2022_2141752 crossref_primary_10_1093_biomtc_ujad003 crossref_primary_10_1080_01621459_2015_1086353 crossref_primary_10_1515_ijb_2015_0007 crossref_primary_10_21105_joss_02232 crossref_primary_10_1093_jrsssb_qkad141 crossref_primary_10_1214_21_AOAS1473 crossref_primary_10_1214_12_AOAS593 crossref_primary_10_1080_01621459_2016_1243480 crossref_primary_10_1080_10618600_2021_1923521 crossref_primary_10_1214_17_EJS1305 crossref_primary_10_1093_jnci_djv157 crossref_primary_10_1080_01621459_2016_1243479 crossref_primary_10_1177_09622802221115876 crossref_primary_10_1214_21_AOAS1468 crossref_primary_10_1080_01621459_2020_1819294 crossref_primary_10_1093_biomtc_ujad012 crossref_primary_10_1093_jrsssb_qkad016 crossref_primary_10_1515_ijb_2016_0064 crossref_primary_10_1093_jrsssb_qkad011 crossref_primary_10_1145_3331651_3331655 crossref_primary_10_3934_mfc_2024025 crossref_primary_10_1080_01621459_2020_1865167 crossref_primary_10_1186_s12874_020_01145_1 crossref_primary_10_1080_01621459_2022_2068420 crossref_primary_10_2139_ssrn_4372556 crossref_primary_10_1111_rssa_12951 crossref_primary_10_1093_biostatistics_kxae007 crossref_primary_10_1158_1078_0432_CCR_20_0152 crossref_primary_10_3389_fpubh_2023_1202970 crossref_primary_10_1214_22_AOAS1700 crossref_primary_10_1093_biostatistics_kxw035 crossref_primary_10_1002_sim_7844 crossref_primary_10_1111_biom_12865 crossref_primary_10_1177_1740774514525691 crossref_primary_10_1080_19439342_2024_2361008 crossref_primary_10_1111_biom_13711 crossref_primary_10_1007_s11336_023_09937_2 crossref_primary_10_1111_biom_12743 crossref_primary_10_1002_sim_7608 crossref_primary_10_1177_0962280218823036 crossref_primary_10_1111_biom_12990 crossref_primary_10_1080_01621459_2021_2008402 crossref_primary_10_1080_01621459_2020_1736083 crossref_primary_10_3390_stats4040046 crossref_primary_10_1080_24754269_2017_1341012 crossref_primary_10_1111_biom_13826 crossref_primary_10_1080_01621459_2016_1240080 crossref_primary_10_1002_sam_11684 crossref_primary_10_1080_01621459_2020_1844210 crossref_primary_10_1186_s13063_023_07884_y crossref_primary_10_1002_sta4_641 crossref_primary_10_1093_aje_kwae122 crossref_primary_10_1214_24_AOS2363 crossref_primary_10_1080_01621459_2020_1788948 crossref_primary_10_1080_01621459_2015_1066682 crossref_primary_10_1002_bimj_201500180 crossref_primary_10_1080_19466315_2015_1059354 crossref_primary_10_1515_jci_2023_0059 crossref_primary_10_1080_01621459_2017_1280404 crossref_primary_10_1080_01621459_2020_1828091 crossref_primary_10_1002_bimj_202200340 crossref_primary_10_1002_sim_8714 crossref_primary_10_1080_24754269_2017_1326080 crossref_primary_10_1177_0272989X221100717 crossref_primary_10_1080_24754269_2018_1466096 crossref_primary_10_1002_sam_11475 crossref_primary_10_1016_j_csda_2020_107015 crossref_primary_10_1192_bjo_2019_85 crossref_primary_10_2139_ssrn_4077476 crossref_primary_10_1002_sim_8712 crossref_primary_10_1002_sim_7623 crossref_primary_10_1002_bimj_201500194 crossref_primary_10_1016_j_cct_2017_08_004 crossref_primary_10_1093_jrsssb_qkac001 crossref_primary_10_1177_0962280217735701 crossref_primary_10_1080_10543406_2017_1380036 crossref_primary_10_1111_biom_12836 crossref_primary_10_1080_10543406_2015_1052480 crossref_primary_10_1287_opre_2022_2271 crossref_primary_10_1214_17_AOS1570 crossref_primary_10_1080_19466315_2021_1972832 crossref_primary_10_1016_j_jtbi_2023_111538 crossref_primary_10_1080_01621459_2017_1303386 crossref_primary_10_1016_j_jpsychires_2016_03_001 crossref_primary_10_1002_sim_6783 crossref_primary_10_1214_18_EJS1439 crossref_primary_10_1093_biomet_asab018 crossref_primary_10_1177_0962280220920669 crossref_primary_10_1200_CCI_18_00002 crossref_primary_10_1093_biomet_asy017 crossref_primary_10_1080_01621459_2020_1796359 crossref_primary_10_1371_journal_pntd_0012881 crossref_primary_10_1080_01621459_2017_1345743 crossref_primary_10_1111_rssc_12379 crossref_primary_10_1111_biom_13084 crossref_primary_10_1080_03610926_2020_1808686 crossref_primary_10_1007_s11222_024_10407_7 crossref_primary_10_1177_1740774515580126 crossref_primary_10_1214_19_AOS1908 crossref_primary_10_1080_19466315_2015_1062044 crossref_primary_10_1093_biomet_asw068 crossref_primary_10_1080_01621459_2018_1549050 crossref_primary_10_1111_biom_13199 crossref_primary_10_1177_0272989X241263356 crossref_primary_10_1080_01621459_2020_1785476 crossref_primary_10_1080_10618600_2022_2067552 crossref_primary_10_1080_02664763_2023_2180167 crossref_primary_10_1002_sim_9396 crossref_primary_10_1002_sim_9155 crossref_primary_10_1080_01621459_2020_1753522 crossref_primary_10_1080_01621459_2020_1833887 crossref_primary_10_3233_MAS_170403 crossref_primary_10_1002_sta4_114 crossref_primary_10_1080_01621459_2020_1753521 crossref_primary_10_1080_01621459_2014_951443 crossref_primary_10_1007_s12561_024_09440_x crossref_primary_10_1111_biom_13186 crossref_primary_10_1111_rssc_12278 crossref_primary_10_1515_jci_2012_0008 crossref_primary_10_1016_j_brat_2019_103412 crossref_primary_10_1080_01621459_2022_2147841 crossref_primary_10_1080_01621459_2020_1770098 crossref_primary_10_1016_j_landusepol_2021_105289 crossref_primary_10_1016_j_jco_2025_101931 crossref_primary_10_1186_s12874_024_02333_z crossref_primary_10_1080_01621459_2020_1783272 crossref_primary_10_1214_23_AOAS1767 crossref_primary_10_1111_rssc_12266 crossref_primary_10_1186_s13063_020_04901_2 crossref_primary_10_1001_jamanetworkopen_2021_47375 crossref_primary_10_1080_01621459_2017_1321545 crossref_primary_10_1093_bioinformatics_btae592 crossref_primary_10_1002_sta4_343 crossref_primary_10_3390_a16050226 crossref_primary_10_1146_annurev_statistics_040120_025906 crossref_primary_10_1186_s13063_020_4076_y crossref_primary_10_1093_biomet_asaa087 crossref_primary_10_1146_annurev_statistics_022513_115553 crossref_primary_10_1002_sim_10099 crossref_primary_10_1214_18_AOAS1137 crossref_primary_10_1214_19_AIHP1034 crossref_primary_10_1214_18_BA1110 crossref_primary_10_1038_s41409_020_0871_z crossref_primary_10_1111_rssc_12175 crossref_primary_10_1002_sta4_493 crossref_primary_10_1002_sta4_374 crossref_primary_10_1515_ijb_2024_0068 crossref_primary_10_1080_01621459_2017_1330204 crossref_primary_10_1080_00031305_2023_2257237 crossref_primary_10_1080_01621459_2016_1148611 crossref_primary_10_1080_01621459_2014_937488 crossref_primary_10_1515_ijb_2015_0015 crossref_primary_10_1080_03610918_2019_1656739 crossref_primary_10_1002_sim_6920 crossref_primary_10_1080_01621459_2020_1745814 crossref_primary_10_2139_ssrn_3444678 crossref_primary_10_1080_01621459_2022_2038180 crossref_primary_10_1002_bimj_70006 crossref_primary_10_1111_rssb_12413 crossref_primary_10_1002_sim_9196 crossref_primary_10_1080_19466315_2016_1206486 crossref_primary_10_1186_s12874_022_01811_6 crossref_primary_10_1214_18_AOAS1154 crossref_primary_10_1002_sim_7902 crossref_primary_10_1093_biostatistics_kxu039 crossref_primary_10_1214_24_EJS2236 crossref_primary_10_1002_sta4_399 crossref_primary_10_1080_10618600_2018_1451337 crossref_primary_10_1515_ijb_2015_0052 crossref_primary_10_1080_01621459_2020_1772080 crossref_primary_10_1200_PO_18_00407 crossref_primary_10_1214_19_EJS1540 crossref_primary_10_1186_s12911_018_0619_5 crossref_primary_10_1186_s12911_022_01774_0 crossref_primary_10_1080_01621459_2020_1832500 crossref_primary_10_1002_sta_411 crossref_primary_10_1214_15_AOAS849 crossref_primary_10_1214_17_EJS1226 crossref_primary_10_1214_22_EJS2025 crossref_primary_10_1016_j_ijar_2024_109190 crossref_primary_10_1007_s10288_023_00561_5 crossref_primary_10_1155_2015_670691 crossref_primary_10_1080_01621459_2018_1529597 crossref_primary_10_1177_09622802241262525 crossref_primary_10_1093_biomet_asad038 crossref_primary_10_1287_ijds_2021_0006 crossref_primary_10_1214_18_AOAS1216 crossref_primary_10_1093_biomet_asu050 crossref_primary_10_1002_sim_10059 crossref_primary_10_1007_s40501_015_0050_9 crossref_primary_10_1093_biomet_asv028 crossref_primary_10_1515_ijb_2020_0127 crossref_primary_10_1080_01621459_2019_1660169 crossref_primary_10_1080_10485252_2024_2367674 crossref_primary_10_1080_01621459_2016_1155993 crossref_primary_10_1111_biom_13365 crossref_primary_10_1002_sim_6397 crossref_primary_10_1002_sim_9426 crossref_primary_10_1007_s12561_021_09310_w crossref_primary_10_1111_rssc_12533 crossref_primary_10_1002_mco2_745 crossref_primary_10_1007_s10994_023_06484_w crossref_primary_10_1214_23_AOS2258 crossref_primary_10_1111_rssb_12201 crossref_primary_10_1002_sim_8690 crossref_primary_10_1002_sim_9318 crossref_primary_10_1016_j_jeconom_2024_105945 crossref_primary_10_1287_mnsc_2023_4819 crossref_primary_10_1016_j_conctc_2017_01_007 crossref_primary_10_1016_j_clinthera_2021_11_002 crossref_primary_10_1111_insr_12536 crossref_primary_10_1002_sim_8102 crossref_primary_10_1080_01621459_2022_2027776 crossref_primary_10_1080_01621459_2017_1282372 crossref_primary_10_1111_biom_13232 crossref_primary_10_1002_sim_7497 crossref_primary_10_1371_journal_pone_0242927 crossref_primary_10_1214_14_EJS908 crossref_primary_10_1111_rssb_12216 crossref_primary_10_1093_biomet_asae022 crossref_primary_10_1097_YCO_0000000000000377 crossref_primary_10_1080_01621459_2019_1604368 crossref_primary_10_1111_rssb_12426 crossref_primary_10_1080_01621459_2016_1250573 crossref_primary_10_1177_09622802241259172 crossref_primary_10_2139_ssrn_4012071 crossref_primary_10_2139_ssrn_3322322 crossref_primary_10_1080_19466315_2024_2388520 crossref_primary_10_1111_biom_13337 crossref_primary_10_1039_D1ME00154J crossref_primary_10_1002_sim_9565 crossref_primary_10_1111_biom_13586 crossref_primary_10_1111_biom_12132 crossref_primary_10_1214_16_EJS1178 crossref_primary_10_2139_ssrn_4293532 crossref_primary_10_1002_sim_8357 crossref_primary_10_1214_22_AOS2171 crossref_primary_10_1002_sim_10161 crossref_primary_10_1093_biomet_asae036 crossref_primary_10_1080_01621459_2022_2139265 crossref_primary_10_1111_jgs_18141 crossref_primary_10_1038_s41598_023_29106_w crossref_primary_10_1002_sim_10167 crossref_primary_10_1080_01621459_2021_1947306 crossref_primary_10_1007_s10985_016_9376_x crossref_primary_10_1002_sim_9574 crossref_primary_10_1214_23_AOS2287 crossref_primary_10_1177_1740774514532570 crossref_primary_10_2196_50890 crossref_primary_10_1080_01621459_2020_1725522 crossref_primary_10_1214_22_AOS2188 crossref_primary_10_1002_sim_8363 crossref_primary_10_1080_01621459_2021_1872580 crossref_primary_10_1016_j_cps_2017_05_024 crossref_primary_10_1111_rssc_12459 crossref_primary_10_1177_1740774514557725 crossref_primary_10_1080_01621459_2020_1831925 crossref_primary_10_1111_biom_13288 crossref_primary_10_1214_23_AOAS1836 crossref_primary_10_1093_jrsssc_qlad108 crossref_primary_10_1111_rssb_12483 crossref_primary_10_1111_biom_12191 crossref_primary_10_1111_biom_12192 crossref_primary_10_1080_02664763_2021_2019689 crossref_primary_10_1007_s10015_023_00929_0 crossref_primary_10_1111_biom_12190 crossref_primary_10_1080_03610918_2021_1999473 crossref_primary_10_1200_JCO_21_01957 crossref_primary_10_1002_sim_8372 crossref_primary_10_1146_annurev_statistics_030718_105251 crossref_primary_10_2139_ssrn_4867425 crossref_primary_10_1287_ijoc_2022_0188 crossref_primary_10_1111_biom_12179 crossref_primary_10_1111_biom_13268 crossref_primary_10_1002_sim_9115 crossref_primary_10_1016_j_janxdis_2024_102825 crossref_primary_10_1111_biom_12189 crossref_primary_10_1111_biom_13398 crossref_primary_10_1111_biom_12187 crossref_primary_10_1016_j_spl_2023_109854 crossref_primary_10_1080_19466315_2017_1371069 crossref_primary_10_1007_s11684_013_0245_7 crossref_primary_10_1002_smll_202411311 crossref_primary_10_12677_aam_2025_142074 crossref_primary_10_1080_01621459_2020_1811099 crossref_primary_10_1016_j_jeconom_2021_09_009 crossref_primary_10_1111_rssa_12250 crossref_primary_10_1080_10543406_2019_1684304 crossref_primary_10_1214_14_EJS920REJ crossref_primary_10_1080_01621459_2023_2284422 crossref_primary_10_1002_sim_7182 crossref_primary_10_1080_01621459_2020_1817751 crossref_primary_10_1177_17407745231174544 crossref_primary_10_1111_rssb_12469 crossref_primary_10_1002_sim_7064 crossref_primary_10_1111_bcp_15441 crossref_primary_10_1214_16_BA1022 crossref_primary_10_1214_23_EJS2127 crossref_primary_10_1002_sim_9377 crossref_primary_10_1080_01621459_2023_2300507 crossref_primary_10_1111_biom_13373 crossref_primary_10_1214_15_AOS1384 crossref_primary_10_1002_sim_9491 crossref_primary_10_1111_rssb_12474 crossref_primary_10_1002_sim_9253 crossref_primary_10_1214_14_EJS920 |
Cites_doi | 10.1164/rccm.200705-664OC 10.1198/jasa.2010.tm10053 10.1214/009053606000001226 10.1001/archgenpsychiatry.2008.540 10.1198/016214502753479202 10.1007/BF00994018 10.1037/0033-3204.32.4.639 10.1214/009053605000000282 10.1001/archpsyc.56.6.493 10.1016/j.drugalcdep.2006.10.001 10.1214/009053607000000839 10.1198/jasa.2009.0011 10.1198/016214505000000907 10.1214/009053604000000463 10.1214/10-AOS864 10.1109/TIT.2004.839514 10.1093/biomet/asq012 10.1001/jama.291.22.2727 10.1093/jnci/95.12.851 10.1111/j.1541-0420.2011.01572.x 10.1007/978-1-4419-9076-1_11 10.1093/annonc/mdn739 10.1056/NEJMoa012914 10.1214/aos/1079120131 10.1214/aos/1079120130 10.1023/A:1015469627679 10.1111/1467-9868.00389 10.1007/978-0-387-84858-7 10.1038/nature06915 10.1056/NEJM200005183422001 10.1198/016214504000000098 10.1198/016214501753382327 10.1111/j.1541-0420.2006.00686.x 10.1016/j.csda.2007.02.006 10.1007/978-1-4757-2440-0 10.1200/JCO.2005.01.112 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2012 2012 American Statistical Association Copyright American Statistical Association Sep 2012 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2012 – notice: 2012 American Statistical Association – notice: Copyright American Statistical Association Sep 2012 |
DBID | FBQ AAYXX CITATION NPM 8BJ FQK JBE K9. 7S9 L.6 7X8 5PM |
DOI | 10.1080/01621459.2012.695674 |
DatabaseName | AGRIS CrossRef PubMed International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic International Bibliography of the Social Sciences (IBSS) AGRICOLA International Bibliography of the Social Sciences (IBSS) PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 1537-274X |
EndPage | 1118 |
ExternalDocumentID | PMC3636816 2799801341 23630406 10_1080_01621459_2012_695674 23427417 695674 US201600085419 |
Genre | Journal Article Feature |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P01 CA142538 – fundername: NCI NIH HHS grantid: R01 CA082659 – fundername: NIGMS NIH HHS grantid: R37 GM047845 – fundername: National Cancer Institute : NCI grantid: P01 CA142538 || CA |
GroupedDBID | -DZ -~X .-4 ..I .7F .GJ .QJ 07G 0BK 0R~ 1OL 29L 2AX 30N 3R3 4.4 5GY 5RE 692 7WY 7X7 85S 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8FL 8G5 8R4 8R5 AAAVZ AABCJ AAENE AAFWJ AAHBH AAIKQ AAJMT AAKBW AALDU AAMIU AAPUL AAQRR AAWIL ABAWQ ABBHK ABCCY ABEFU ABEHJ ABFAN ABFIM ABJCF ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABRLO ABTAI ABUWG ABXSQ ABXUL ABXYU ABYWD ACAGQ ACGEE ACGFO ACGFS ACGOD ACHJO ACIWK ACMTB ACNCT ACTIO ACTMH ACUBG ADBBV ADCVX ADGTB ADLSF ADMHG ADODI ADULT ADYSH AEISY AENEX AEOZL AEPSL AEUMN AEUPB AEYOC AFFNX AFKRA AFQQW AFRVT AFSUE AFVYC AFXHP AGCQS AGDLA AGLEN AGLNM AGMYJ AGROQ AHDZW AHMOU AI. AIHAF AIJEM AIYEW AKBVH AKOOK ALCKM ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMATQ AMEWO AMXXU AQRUH AQUVI AVBZW AWYRJ AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BLEHA BPHCQ BPLKW BVXVI C06 CCCUG CCPQU CJ0 CRFIH CS3 D0L DGEBU DKSSO DMQIW DQDLB DSRWC DU5 DWIFK DWQXO E.L EBS ECEWR EJD E~A E~B F5P FBQ FEDTE FJW FRNLG FVMVE FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GTTXZ GUQSH H13 HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZ~ H~9 H~P IPNFZ IPSME IVXBP J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K60 K6~ K9- KQ8 KYCEM L6V LJTGL LU7 M0C M0R M0T M1P M2O M2P M4Z M7S MS~ MVM MW2 NA5 NHB NUSFT NY~ O9- OFU OK1 P-O P2P PADUT PHGZT PQBIZ PQBZA PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RIG RNANH RNS ROSJB RTWRZ RWL RXW S-T S0X SA0 SJN SNACF TAE TAQ TBQAZ TDBHL TEJ TFL TFMCV TFT TFW TN5 TOXWX TTHFI TUROJ U5U UB9 UKHRP UPT UQL UT5 UU3 VH1 VOH WH7 WHG WZA YQT YXB YYM YYP ZCG ZGI ZGOLN ZUP ZXP ~S~ ABYAD ACTWD AELPN GROUPED_ABI_INFORM_COMPLETE IAO IEA IGG IOF IPO JSODD N95 AAGDL AAHIA AMPGV AAYXX ADXHL AMVHM CITATION PHGZM NPM 8BJ FQK JBE K9. TASJS 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c703t-461cb1006ddc6582637105ddaf103112f913bb532ce4e17f6da52bb851167c3a3 |
ISSN | 1537-274X 0162-1459 |
IngestDate | Thu Aug 21 13:57:22 EDT 2025 Fri Sep 05 00:10:56 EDT 2025 Fri Sep 05 17:28:46 EDT 2025 Thu Sep 04 23:34:02 EDT 2025 Sat Sep 06 22:24:19 EDT 2025 Thu Apr 03 07:09:38 EDT 2025 Tue Jul 01 02:39:27 EDT 2025 Thu Apr 24 23:11:34 EDT 2025 Thu May 29 08:44:01 EDT 2025 Wed Dec 25 09:03:29 EST 2024 Thu Apr 03 09:46:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 499 |
Keywords | RKHS Weighted Support Vector Machine Risk Bound Individualized Treatment Rule Dynamic Treatment Regime Bayes Classifier Cross Validation |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c703t-461cb1006ddc6582637105ddaf103112f913bb532ce4e17f6da52bb851167c3a3 |
Notes | http://dx.doi.org/10.1080/01621459.2012.695674 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | http://scholarbank.nus.edu.sg/handle/10635/110062 |
PMID | 23630406 |
PQID | 1115382542 |
PQPubID | 41715 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1080_01621459_2012_695674 proquest_miscellaneous_1803097188 pubmed_primary_23630406 jstor_primary_23427417 proquest_miscellaneous_1221847144 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3636816 proquest_miscellaneous_1826571425 proquest_journals_1115382542 informaworld_taylorfrancis_310_1080_01621459_2012_695674 crossref_primary_10_1080_01621459_2012_695674 fao_agris_US201600085419 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09-01 |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Alexandria |
PublicationTitle | Journal of the American Statistical Association |
PublicationTitleAlternate | J Am Stat Assoc |
PublicationYear | 2012 |
Publisher | Taylor & Francis Group Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis Ltd |
References | CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 Zhu J. (CIT0040) 2003 Bradley P. S. (CIT0004) 1998 CIT0014 CIT0013 CIT0035 CIT0016 CIT0038 CIT0015 CIT0018 CIT0017 CIT0039 CIT0021 Lugosi G. (CIT0019) 2004; 32 CIT0020 CIT0001 CIT0023 CIT0022 Vert R. (CIT0036) 2006; 7 Wang L. (CIT0037) 2006; 16 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0026 CIT0007 CIT0029 Zou H. (CIT0041) 2008; 18 CIT0006 CIT0028 CIT0009 CIT0008 23049123 - Biometrika. 2010 Jun;97(2):389-404 17071020 - Drug Alcohol Depend. 2007 May;88 Suppl 2:S4-13 21666835 - Ann Stat. 2011 Apr 1;39(2):1180-1210 17761616 - Am J Respir Crit Care Med. 2007 Nov 15;176(10):957-69 12813169 - J Natl Cancer Inst. 2003 Jun 18;95(12 ):851-67 19188534 - Arch Gen Psychiatry. 2009 Feb;66(2):128-33 10816183 - N Engl J Med. 2000 May 18;342(20):1462-70 17688497 - Biometrics. 2007 Jun;63(2):447-55 15774793 - J Clin Oncol. 2005 Mar 20;23(9):2020-7 20019887 - J Am Stat Assoc. 2001 Dec 1;96(456):1410-1423 15187054 - JAMA. 2004 Jun 9;291(22):2727-33 19150946 - Ann Oncol. 2009 Jun;20(6):993-9 10359461 - Arch Gen Psychiatry. 1999 Jun;56(6):493-502 18385730 - Nature. 2008 Apr 3;452(7187):564-70 22053123 - J Am Stat Assoc. 2011 Sep 1;106(495):904-913 12075054 - N Engl J Med. 2002 Jun 20;346(25):1937-47 21385164 - Biometrics. 2011 Dec;67(4):1422-33 |
References_xml | – ident: CIT0010 doi: 10.1164/rccm.200705-664OC – ident: CIT0015 doi: 10.1198/jasa.2010.tm10053 – ident: CIT0031 doi: 10.1214/009053606000001226 – volume: 16 start-page: 617 year: 2006 ident: CIT0037 publication-title: Statistica Sinica – ident: CIT0013 doi: 10.1001/archgenpsychiatry.2008.540 – ident: CIT0032 doi: 10.1198/016214502753479202 – ident: CIT0007 doi: 10.1007/BF00994018 – ident: CIT0025 doi: 10.1037/0033-3204.32.4.639 – ident: CIT0001 doi: 10.1214/009053605000000282 – ident: CIT0008 doi: 10.1001/archpsyc.56.6.493 – ident: CIT0020 doi: 10.1016/j.drugalcdep.2006.10.001 – ident: CIT0003 doi: 10.1214/009053607000000839 – ident: CIT0021 doi: 10.1198/jasa.2009.0011 – ident: CIT0002 doi: 10.1198/016214505000000907 – volume: 32 start-page: 30 year: 2004 ident: CIT0019 publication-title: The Annals of Statistics doi: 10.1214/009053604000000463 – ident: CIT0026 doi: 10.1214/10-AOS864 – ident: CIT0030 doi: 10.1109/TIT.2004.839514 – ident: CIT0006 doi: 10.1093/biomet/asq012 – ident: CIT0009 doi: 10.1001/jama.291.22.2727 – ident: CIT0011 doi: 10.1093/jnci/95.12.851 – ident: CIT0039 doi: 10.1111/j.1541-0420.2011.01572.x – ident: CIT0027 doi: 10.1007/978-1-4419-9076-1_11 – volume: 7 start-page: 817 year: 2006 ident: CIT0036 publication-title: Journal of Machine Learning Research – ident: CIT0005 doi: 10.1093/annonc/mdn739 – ident: CIT0028 doi: 10.1056/NEJMoa012914 – ident: CIT0033 doi: 10.1214/aos/1079120131 – ident: CIT0038 doi: 10.1214/aos/1079120130 – start-page: 82 volume-title: Proceedings of the 15th International Conference on Machine Learning year: 1998 ident: CIT0004 – ident: CIT0017 doi: 10.1023/A:1015469627679 – ident: CIT0023 doi: 10.1111/1467-9868.00389 – start-page: 16 volume-title: Neural Information Processing Systems year: 2003 ident: CIT0040 – ident: CIT0012 doi: 10.1007/978-0-387-84858-7 – ident: CIT0034 doi: 10.1038/nature06915 – ident: CIT0014 doi: 10.1056/NEJM200005183422001 – volume: 18 start-page: 379 year: 2008 ident: CIT0041 publication-title: Statistica Sinica – ident: CIT0016 doi: 10.1198/016214504000000098 – ident: CIT0024 doi: 10.1198/016214501753382327 – ident: CIT0022 doi: 10.1111/j.1541-0420.2006.00686.x – ident: CIT0018 doi: 10.1016/j.csda.2007.02.006 – ident: CIT0035 doi: 10.1007/978-1-4757-2440-0 – ident: CIT0029 doi: 10.1200/JCO.2005.01.112 – reference: 15774793 - J Clin Oncol. 2005 Mar 20;23(9):2020-7 – reference: 23049123 - Biometrika. 2010 Jun;97(2):389-404 – reference: 17688497 - Biometrics. 2007 Jun;63(2):447-55 – reference: 17761616 - Am J Respir Crit Care Med. 2007 Nov 15;176(10):957-69 – reference: 21666835 - Ann Stat. 2011 Apr 1;39(2):1180-1210 – reference: 12813169 - J Natl Cancer Inst. 2003 Jun 18;95(12 ):851-67 – reference: 10359461 - Arch Gen Psychiatry. 1999 Jun;56(6):493-502 – reference: 15187054 - JAMA. 2004 Jun 9;291(22):2727-33 – reference: 18385730 - Nature. 2008 Apr 3;452(7187):564-70 – reference: 10816183 - N Engl J Med. 2000 May 18;342(20):1462-70 – reference: 21385164 - Biometrics. 2011 Dec;67(4):1422-33 – reference: 19150946 - Ann Oncol. 2009 Jun;20(6):993-9 – reference: 22053123 - J Am Stat Assoc. 2011 Sep 1;106(495):904-913 – reference: 20019887 - J Am Stat Assoc. 2001 Dec 1;96(456):1410-1423 – reference: 19188534 - Arch Gen Psychiatry. 2009 Feb;66(2):128-33 – reference: 17071020 - Drug Alcohol Depend. 2007 May;88 Suppl 2:S4-13 – reference: 12075054 - N Engl J Med. 2002 Jun 20;346(25):1937-47 |
SSID | ssj0000788 |
Score | 2.5841956 |
Snippet | There is increasing interest in discovering individualized treatment rules (ITRs) for patients who have heterogeneous responses to treatment. In particular,... There is increasing interest in discovering individualized treatment rules for patients who have heterogeneous responses to treatment. In particular, one aims... |
SourceID | pubmedcentral proquest pubmed crossref jstor informaworld fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1106 |
SubjectTerms | Approximation Bayes classifier Bayesian analysis Clinical outcomes Clinical trials Consistent estimators Cross-validation data analysis Depression Dynamic treatment regime Equivalence Estimation Estimation methods Health outcomes Individualized instruction Individualized treatment rule Learning Mathematical functions Modeling Outcomes of education Patients Risk bound RKHS Sample size Simulation Statistical methods Statistics support vector machines Theory and Methods Weighted support vector machine |
Title | Estimating Individualized Treatment Rules Using Outcome Weighted Learning |
URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2012.695674 https://www.jstor.org/stable/23427417 https://www.ncbi.nlm.nih.gov/pubmed/23630406 https://www.proquest.com/docview/1115382542 https://www.proquest.com/docview/1221847144 https://www.proquest.com/docview/1803097188 https://www.proquest.com/docview/1826571425 https://pubmed.ncbi.nlm.nih.gov/PMC3636816 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYeNkL4mssMFCQeJsy1R-x00cEnQaMToJWlCfLTpytYkpgTV_213P-SJpOpQxeosi5OJbvcj6f736H0BuhFSd5ThPGjEoYwWWSacaTzDBNB2U6KAubjfx5zE-n7OMsna3KpbrskkYf5zcb80r-h6vQBny1WbL_wNmuU2iAe-AvXIHDcL0Tj0fwf1qL0x36t4lV8xuwISdd_PiX5ZVZHPnIgPNlA8MwR9-cPxTIArrqxR9M1F7aiSv02zhU5w1M9Z5n53X9Dt39mnetxuuS97VNF15lnS0Xl14r9UOBP9WL-rr-0YvmD-GMwSthwzuGrVciOCo5STALaN-tpvUFboNIMY9VGjQnmCF8o0oPMZDQn-3OBuORYw67Ol_cZx1Be3wuT6ZnZ3Iymk120H0ihDu6p4PxanUWrhZpN742ndLirW_4xpq5slOq-hakbRvGummDcjvOtme4TB6iB4Gd8VsvPo_QPVM9RnsdNxdP0IeVHMXrchR3chQ7OYqdHMVBjuJWjuJWjp6i6clo8u40CSU2khxUfZMwjnONQfMWRQ62KOEULM60KFRpy39gUg4x1TqlJDfMYFHyQqVEa2umc5FTRffRblVX5gDFinNFhpbCmoysgIWBK7jPci14LniEaDuTMg_487YMypXELUxtmH9p51_6-Y9Q0r310-Ov_IX-AJgk1QUskXL6lVgARbutYHgYoazPOdk4l1jp69dIur3XfcflbgiEMov7JCJ02LJdBsWwsJtqMCNIykiEXnePQW3bszhVmXoJNMT6VgRmbAtNZs8_wXjMttEQnkI3JI3QMy9tvUFyCms0zLxYk8OOwELLrz-p5pcOYh7e5Bnmz-_w3Rdob6UADtFuc700L8FQb_Qr9-f9Bu-R4Ww |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-x8cBe-B4LDAgSryn1R5z0EaFNLWxFglbwZtmO001MKVqTl_31u8sXbQVFgrdIPlvO5XL-nX3-HcDbxBrFnRORlN5EkrM8Sq1UUeqlFcM8HuYZ3UY-n6rxXH78HnfZhKs2rZJi6Lwhiqh9Nf3ctBndpcS9Q5hCBNt0z4TxgUKIn8g9uBsjdCcjF8PpL2ec1KUnqUdEXbrbc38YZWN12svNcovBtMta_B0e3U6rXFunTh-A7d6wSU_5MahKO3A3W-SP_6WCh3C_RbHh-8bsHsEdXzyGAwKuDe_zE5ic4AOh4WIRTvpLX5c3PgtnXW57-KW68quwzloIP1clTsGH3-q9WhRrmV8XT2F-ejL7MI7asg2RQ_dRRlIxZxn-zVnmEN9wJRDFxFlmciopwXg-YsLaWHDnpWdJrjITc2sJ-qnECSMOYb9YFv4IQqOU4SOSIBgiM3Q2yuBz6myiXKICEN3n0q7lNKfSGleaddSnrZ406Uk3egog6nv9bDg9_iJ_hJagzQLdrp5_5UTKR1BVslEA6bp56LLeZsmbmiha7B71sDalfgpcSOISSgI47mxLtw5lRYEaLk0YzfMA3vTN6ArofMcUflmhDKd4PcEQeYdMSmdqCEjSXTJcxTgMjwN41pj02iSVQL-Pmk82jL0XILryzZbi8qKmLceeKmXq-b-r7DXcG8_Oz_TZZPrpBRxQS5Pudwz75XXlXyI-LO2r2gPcAsYfU6Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xIaG98L0tMCBIvKbUH3HSRwSrVj4KglXszbIdu0xM6cSSl_313OWjtBUUCd4i-Wy51_P5d8nd7wBeZNYo7pxIpPQmkZyFJLdSJbmXVgxDOgwFVSN_mKqTmXx7lp6tVPFTWiXF0KElimh8NR3uyyL0GXEvEaUQvzaVmTA-UIjwM7kDNxWiE0rqE8PpL1-cNZ0naUZCU_riuT-ssnY57QSz2CAw7ZMWfwdHN7MqV66p8R0w_Q9ss1O-D-rKDtz1Bvfj_2jgLtzuMGz8qjW6e3DDl_dhj2Bry_r8ACbH-EBYuJzHk2XJ1_m1L-LTPrM9_lxf-Ku4yVmIP9YV7sDHX5s3tSjW8b7OH8JsfHz6-iTpmjYkDp1HlUjFnGV4lovCIbrhSiCGSYvCBGoowXgYMWFtKrjz0rMsqMKk3FoCfipzwoh92C0XpT-E2Chl-IgkCITIAl2NMvicO5spl6kIRP9vadcxmlNjjQvNeuLTTk-a9KRbPUWQLGddtowef5E_REPQZo5OV8--cKLkI6Aq2SiCfNU6dNW8ZAltRxQttq-631jScgtcSGISyiI46k1Ld-7kisI0vJgwlucRPF8OoyOgrzum9IsaZThF6xkGyFtkcvqihnAk3ybDVYrL8DSCg9aiVzapBHp91Hy2ZutLASIrXx8pz781pOU4U-VMPfp3lT2DW5_ejPX7yfTdY9ijgTbX7wh2qx-1f4LgsLJPm_P_E0NhUkg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+Individualized+Treatment+Rules+Using+Outcome+Weighted+Learning&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Zhao%2C+Yingqi&rft.au=Zeng%2C+Donglin&rft.au=Rush%2C+A+John&rft.au=Kosorok%2C+Michael+R&rft.date=2012-09-01&rft.issn=0162-1459&rft.volume=107&rft.issue=449&rft.spage=1106&rft_id=info:doi/10.1080%2F01621459.2012.695674&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-274X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-274X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-274X&client=summon |