Gated recurrent unit-based heart sound analysis for heart failure screening

Background Heart failure (HF) is a type of cardiovascular disease caused by abnormal cardiac structure and function. Early screening of HF has important implication for treatment in a timely manner. Heart sound (HS) conveys relevant information related to HF; this study is therefore based on the ana...

Full description

Saved in:
Bibliographic Details
Published inBiomedical engineering online Vol. 19; no. 1; pp. 3 - 17
Main Authors Gao, Shan, Zheng, Yineng, Guo, Xingming
Format Journal Article
LanguageEnglish
Published London BioMed Central 13.01.2020
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1475-925X
1475-925X
DOI10.1186/s12938-020-0747-x

Cover

Abstract Background Heart failure (HF) is a type of cardiovascular disease caused by abnormal cardiac structure and function. Early screening of HF has important implication for treatment in a timely manner. Heart sound (HS) conveys relevant information related to HF; this study is therefore based on the analysis of HS signals. The objective is to develop an efficient tool to identify subjects of normal, HF with preserved ejection fraction and HF with reduced ejection fraction automatically. Methods We proposed a novel HF screening framework based on gated recurrent unit (GRU) model in this study. The logistic regression-based hidden semi-Markov model was adopted to segment HS frames. Normalized frames were taken as the input of the proposed model which can automatically learn the deep features and complete the HF screening without de-nosing and hand-crafted feature extraction. Results To evaluate the performance of proposed model, three methods are used for comparison. The results show that the GRU model gives a satisfactory performance with average accuracy of 98.82%, which is better than other comparison models. Conclusion The proposed GRU model can learn features from HS directly, which means it can be independent of expert knowledge. In addition, the good performance demonstrates the effectiveness of HS analysis for HF early screening.
AbstractList Background Heart failure (HF) is a type of cardiovascular disease caused by abnormal cardiac structure and function. Early screening of HF has important implication for treatment in a timely manner. Heart sound (HS) conveys relevant information related to HF; this study is therefore based on the analysis of HS signals. The objective is to develop an efficient tool to identify subjects of normal, HF with preserved ejection fraction and HF with reduced ejection fraction automatically. Methods We proposed a novel HF screening framework based on gated recurrent unit (GRU) model in this study. The logistic regression-based hidden semi-Markov model was adopted to segment HS frames. Normalized frames were taken as the input of the proposed model which can automatically learn the deep features and complete the HF screening without de-nosing and hand-crafted feature extraction. Results To evaluate the performance of proposed model, three methods are used for comparison. The results show that the GRU model gives a satisfactory performance with average accuracy of 98.82%, which is better than other comparison models. Conclusion The proposed GRU model can learn features from HS directly, which means it can be independent of expert knowledge. In addition, the good performance demonstrates the effectiveness of HS analysis for HF early screening.
Heart failure (HF) is a type of cardiovascular disease caused by abnormal cardiac structure and function. Early screening of HF has important implication for treatment in a timely manner. Heart sound (HS) conveys relevant information related to HF; this study is therefore based on the analysis of HS signals. The objective is to develop an efficient tool to identify subjects of normal, HF with preserved ejection fraction and HF with reduced ejection fraction automatically. We proposed a novel HF screening framework based on gated recurrent unit (GRU) model in this study. The logistic regression-based hidden semi-Markov model was adopted to segment HS frames. Normalized frames were taken as the input of the proposed model which can automatically learn the deep features and complete the HF screening without de-nosing and hand-crafted feature extraction. To evaluate the performance of proposed model, three methods are used for comparison. The results show that the GRU model gives a satisfactory performance with average accuracy of 98.82%, which is better than other comparison models. The proposed GRU model can learn features from HS directly, which means it can be independent of expert knowledge. In addition, the good performance demonstrates the effectiveness of HS analysis for HF early screening.
Background Heart failure (HF) is a type of cardiovascular disease caused by abnormal cardiac structure and function. Early screening of HF has important implication for treatment in a timely manner. Heart sound (HS) conveys relevant information related to HF; this study is therefore based on the analysis of HS signals. The objective is to develop an efficient tool to identify subjects of normal, HF with preserved ejection fraction and HF with reduced ejection fraction automatically. Methods We proposed a novel HF screening framework based on gated recurrent unit (GRU) model in this study. The logistic regression-based hidden semi-Markov model was adopted to segment HS frames. Normalized frames were taken as the input of the proposed model which can automatically learn the deep features and complete the HF screening without de-nosing and hand-crafted feature extraction. Results To evaluate the performance of proposed model, three methods are used for comparison. The results show that the GRU model gives a satisfactory performance with average accuracy of 98.82%, which is better than other comparison models. Conclusion The proposed GRU model can learn features from HS directly, which means it can be independent of expert knowledge. In addition, the good performance demonstrates the effectiveness of HS analysis for HF early screening. Keywords: Heart sound, Heart failure screening, Deep learning, Gated recurrent unit
Background Heart failure (HF) is a type of cardiovascular disease caused by abnormal cardiac structure and function. Early screening of HF has important implication for treatment in a timely manner. Heart sound (HS) conveys relevant information related to HF; this study is therefore based on the analysis of HS signals. The objective is to develop an efficient tool to identify subjects of normal, HF with preserved ejection fraction and HF with reduced ejection fraction automatically. Methods We proposed a novel HF screening framework based on gated recurrent unit (GRU) model in this study. The logistic regression-based hidden semi-Markov model was adopted to segment HS frames. Normalized frames were taken as the input of the proposed model which can automatically learn the deep features and complete the HF screening without de-nosing and hand-crafted feature extraction. Results To evaluate the performance of proposed model, three methods are used for comparison. The results show that the GRU model gives a satisfactory performance with average accuracy of 98.82%, which is better than other comparison models. Conclusion The proposed GRU model can learn features from HS directly, which means it can be independent of expert knowledge. In addition, the good performance demonstrates the effectiveness of HS analysis for HF early screening.
Abstract Background Heart failure (HF) is a type of cardiovascular disease caused by abnormal cardiac structure and function. Early screening of HF has important implication for treatment in a timely manner. Heart sound (HS) conveys relevant information related to HF; this study is therefore based on the analysis of HS signals. The objective is to develop an efficient tool to identify subjects of normal, HF with preserved ejection fraction and HF with reduced ejection fraction automatically. Methods We proposed a novel HF screening framework based on gated recurrent unit (GRU) model in this study. The logistic regression-based hidden semi-Markov model was adopted to segment HS frames. Normalized frames were taken as the input of the proposed model which can automatically learn the deep features and complete the HF screening without de-nosing and hand-crafted feature extraction. Results To evaluate the performance of proposed model, three methods are used for comparison. The results show that the GRU model gives a satisfactory performance with average accuracy of 98.82%, which is better than other comparison models. Conclusion The proposed GRU model can learn features from HS directly, which means it can be independent of expert knowledge. In addition, the good performance demonstrates the effectiveness of HS analysis for HF early screening.
Heart failure (HF) is a type of cardiovascular disease caused by abnormal cardiac structure and function. Early screening of HF has important implication for treatment in a timely manner. Heart sound (HS) conveys relevant information related to HF; this study is therefore based on the analysis of HS signals. The objective is to develop an efficient tool to identify subjects of normal, HF with preserved ejection fraction and HF with reduced ejection fraction automatically. We proposed a novel HF screening framework based on gated recurrent unit (GRU) model in this study. The logistic regression-based hidden semi-Markov model was adopted to segment HS frames. Normalized frames were taken as the input of the proposed model which can automatically learn the deep features and complete the HF screening without de-nosing and hand-crafted feature extraction. To evaluate the performance of proposed model, three methods are used for comparison. The results show that the GRU model gives a satisfactory performance with average accuracy of 98.82%, which is better than other comparison models. The proposed GRU model can learn features from HS directly, which means it can be independent of expert knowledge. In addition, the good performance demonstrates the effectiveness of HS analysis for HF early screening.
Heart failure (HF) is a type of cardiovascular disease caused by abnormal cardiac structure and function. Early screening of HF has important implication for treatment in a timely manner. Heart sound (HS) conveys relevant information related to HF; this study is therefore based on the analysis of HS signals. The objective is to develop an efficient tool to identify subjects of normal, HF with preserved ejection fraction and HF with reduced ejection fraction automatically.BACKGROUNDHeart failure (HF) is a type of cardiovascular disease caused by abnormal cardiac structure and function. Early screening of HF has important implication for treatment in a timely manner. Heart sound (HS) conveys relevant information related to HF; this study is therefore based on the analysis of HS signals. The objective is to develop an efficient tool to identify subjects of normal, HF with preserved ejection fraction and HF with reduced ejection fraction automatically.We proposed a novel HF screening framework based on gated recurrent unit (GRU) model in this study. The logistic regression-based hidden semi-Markov model was adopted to segment HS frames. Normalized frames were taken as the input of the proposed model which can automatically learn the deep features and complete the HF screening without de-nosing and hand-crafted feature extraction.METHODSWe proposed a novel HF screening framework based on gated recurrent unit (GRU) model in this study. The logistic regression-based hidden semi-Markov model was adopted to segment HS frames. Normalized frames were taken as the input of the proposed model which can automatically learn the deep features and complete the HF screening without de-nosing and hand-crafted feature extraction.To evaluate the performance of proposed model, three methods are used for comparison. The results show that the GRU model gives a satisfactory performance with average accuracy of 98.82%, which is better than other comparison models.RESULTSTo evaluate the performance of proposed model, three methods are used for comparison. The results show that the GRU model gives a satisfactory performance with average accuracy of 98.82%, which is better than other comparison models.The proposed GRU model can learn features from HS directly, which means it can be independent of expert knowledge. In addition, the good performance demonstrates the effectiveness of HS analysis for HF early screening.CONCLUSIONThe proposed GRU model can learn features from HS directly, which means it can be independent of expert knowledge. In addition, the good performance demonstrates the effectiveness of HS analysis for HF early screening.
ArticleNumber 3
Audience Academic
Author Gao, Shan
Zheng, Yineng
Guo, Xingming
Author_xml – sequence: 1
  givenname: Shan
  surname: Gao
  fullname: Gao, Shan
  organization: Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University
– sequence: 2
  givenname: Yineng
  surname: Zheng
  fullname: Zheng, Yineng
  organization: Department of Radiology, The First Affiliated Hospital of Chongqing Medical University
– sequence: 3
  givenname: Xingming
  orcidid: 0000-0003-3872-0866
  surname: Guo
  fullname: Guo, Xingming
  email: guoxm@cqu.edu.cn
  organization: Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31931811$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1URNuBH8AGRWJDFyl-xY43SFVFy4hKSDwkdpbj3KQeZexiJ2j673GYKe1UgLJIdP2d45ujc4wOfPCA0EuCTwmpxdtEqGJ1iSkuseSy3DxBR4TLqlS0-n7w4PsQHae0whnEQj1Dh4woRmpCjtDHSzNCW0SwU4zgx2Lybiwbk_LwGkwcixQm3xbGm-E2uVR0Ie4OOuOGKUKRbATwzvfP0dPODAle7N4L9O3i_dfzD-XVp8vl-dlVaSVmY8k6rEyrBPCmAgwt7YALwVjHJWupNUClBcwYrUhl28bWmPKqpbWyVlBhLFug5da3DWalb6Jbm3irg3H69yDEXuf9nB1AS0o7DERKRgW3sql5o1SFCcFUySavs0Dvtl43U7OG1uYIohn2TPdPvLvWffiphapqIWaDNzuDGH5MkEa9dsnCMBgPYUqaMlYTLHAlMvr6EboKU8zBzhTHeUfM2T3Vm_wDznch32tnU30mSC1JzRXN1OlfqPy0sHY216Rzeb4nONkTZGaEzdibKSW9_PJ5n331MJQ_adzVJgNyC9gYUorQaetGM7owZ-QGTbCeC6q3BdW5d3ouqN5kJXmkvDP_n4ZuNSmzvod4n9u_Rb8ACAD1OA
CitedBy_id crossref_primary_10_1016_j_oceaneng_2022_111202
crossref_primary_10_1155_2022_9438159
crossref_primary_10_1186_s12938_021_00925_0
crossref_primary_10_1145_3464423
crossref_primary_10_1111_exsy_13535
crossref_primary_10_1016_j_hfc_2021_11_006
crossref_primary_10_1016_j_bspc_2023_104569
crossref_primary_10_1109_MCI_2024_3401309
crossref_primary_10_1177_09544119221112523
crossref_primary_10_1016_j_ultras_2024_107320
crossref_primary_10_1109_ACCESS_2024_3465540
crossref_primary_10_3389_fcvm_2022_940615
crossref_primary_10_1007_s11042_023_16640_y
crossref_primary_10_1007_s11897_022_00540_7
crossref_primary_10_1007_s11042_024_18740_9
crossref_primary_10_1016_j_apacoust_2022_108900
crossref_primary_10_3389_fncom_2024_1456771
crossref_primary_10_1007_s13246_022_01112_8
crossref_primary_10_1016_j_compbiomed_2024_108557
crossref_primary_10_3389_fcvm_2022_1009821
crossref_primary_10_1109_JBHI_2024_3458430
crossref_primary_10_3233_THC_248029
crossref_primary_10_3390_diagnostics11122349
crossref_primary_10_1088_1361_6579_ac6d40
crossref_primary_10_1093_ehjdh_ztac073
crossref_primary_10_1093_ehjdh_ztac075
crossref_primary_10_3934_mbe_2022447
Cites_doi 10.1016/j.cmpb.2015.09.001
10.1109/ACCESS.2018.2889437
10.1109/isitc.2007.40
10.1145/3194658.3194671
10.1007/s13534-017-0046-z
10.1016/j.ins.2017.04.012
10.1016/j.ijcard.2015.02.001
10.1586/14779072.2014.935339
10.1016/j.jchf.2017.12.014
10.1016/j.bspc.2008.07.003
10.1109/lsc.2018.8572286
10.1109/TMI.2019.2952939
10.1016/j.tcm.2018.01.001
10.1016/j.media.2018.09.001
10.1016/j.artmed.2017.05.005
10.1093/eurheartj/ehs104
10.1016/j.compbiomed.2007.10.006
10.1016/j.medengphy.2010.11.004
10.1016/j.eswa.2014.10.051
10.1016/j.compbiomed.2013.06.016
10.1016/j.compbiomed.2018.09.009
10.1016/j.media.2019.101534
10.3390/s19081868
10.3390/app7070690
10.1109/IJCNN.2017.7966039
10.1016/j.cardfail.2016.06.008
10.1162/neco.1997.9.8.1735
10.1016/j.ijcard.2014.06.027
10.1007/s10554-016-1053-3
10.1016/j.compbiomed.2019.01.013
10.22489/CinC.2016.179-154
10.1109/JBHI.2019.2916667
10.1109/ispa.2007.4383654
10.22489/CinC.2016.161-187
10.1007/s10916-019-1415-1
10.1109/embc.2017.8037877
10.1016/j.media.2017.01.004
10.1088/0967-3334/37/12/2181
10.1016/j.future.2016.01.010
10.1109/JBHI.2016.2635662
10.1109/TMI.2017.2746879
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
ISR
3V.
7QO
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1186/s12938-020-0747-x
DatabaseName Springer Nature OA Free Journals (Freely Accessible)
CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Biological Science Collection
ProQuest Central (New) (NC LIVE)
Technology Collection
ProQuest Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
Health & Medical Collection (Alumni)
Proquest Medical Database
ProQuest Biological Science Database (NC LIVE)
ProQuest Engineering Database (NC LIVE)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

Publicly Available Content Database



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1475-925X
EndPage 17
ExternalDocumentID oai_doaj_org_article_722f0e1773264c7b84b9950110297b70
PMC6958660
A618718492
31931811
10_1186_s12938_020_0747_x
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 31570003; 31870980; 31800823
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 31570003
– fundername: National Natural Science Foundation of China
  grantid: 31800823
– fundername: National Natural Science Foundation of China
  grantid: 31870980
– fundername: ;
  grantid: 31570003; 31870980; 31800823
GroupedDBID ---
0R~
23N
2WC
53G
5GY
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
L6V
LK8
M1P
M48
M7P
M7S
MK~
ML~
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RNS
ROL
RPM
RSV
SEG
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
ALIPV
CITATION
-A0
3V.
ACRMQ
ADINQ
C24
NPM
PMFND
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c703t-3f09ad96e4b5e0ed2fe46633f473d2cae27ce0332515cdbc80245d289cc626ac3
IEDL.DBID M48
ISSN 1475-925X
IngestDate Wed Aug 27 01:15:59 EDT 2025
Thu Aug 21 13:49:24 EDT 2025
Fri Sep 05 04:18:20 EDT 2025
Fri Jul 25 19:12:49 EDT 2025
Tue Jun 17 21:48:18 EDT 2025
Tue Jun 10 20:32:54 EDT 2025
Fri Jun 27 03:45:22 EDT 2025
Wed Feb 19 02:31:51 EST 2025
Thu Apr 24 23:02:06 EDT 2025
Tue Jul 01 00:34:38 EDT 2025
Sat Sep 06 07:30:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Gated recurrent unit
Heart sound
Heart failure screening
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c703t-3f09ad96e4b5e0ed2fe46633f473d2cae27ce0332515cdbc80245d289cc626ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3872-0866
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12938-020-0747-x
PMID 31931811
PQID 2340732043
PQPubID 42562
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_722f0e1773264c7b84b9950110297b70
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6958660
proquest_miscellaneous_2338106056
proquest_journals_2340732043
gale_infotracmisc_A618718492
gale_infotracacademiconefile_A618718492
gale_incontextgauss_ISR_A618718492
pubmed_primary_31931811
crossref_citationtrail_10_1186_s12938_020_0747_x
crossref_primary_10_1186_s12938_020_0747_x
springer_journals_10_1186_s12938_020_0747_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-13
PublicationDateYYYYMMDD 2020-01-13
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Biomedical engineering online
PublicationTitleAbbrev BioMed Eng OnLine
PublicationTitleAlternate Biomed Eng Online
PublicationYear 2020
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References T Mabote (747_CR10) 2014; 12
Y Zhao (747_CR24) 2018; 2018
747_CR29
R Zhang (747_CR18) 2017; 21
N Giordano (747_CR28) 2019; 19
R Yu (747_CR20) 2019
747_CR40
F Safara (747_CR14) 2013; 43
747_CR21
747_CR43
747_CR45
747_CR44
SW Deng (747_CR41) 2016; 60
747_CR46
UR Acharya (747_CR9) 2017; 405
S Chauhan (747_CR16) 2008; 38
AK Dwivedi (747_CR39) 2019; 7
G Eslamizadeh (747_CR13) 2017; 78
Z Gao (747_CR7) 2017; 37
Ö Yıldırım (747_CR8) 2018; 102
747_CR37
S Hochreiter (747_CR42) 1997; 9
N Nair (747_CR4) 2014; 175
Z Gao (747_CR6) 2018; 37
A Xanthopoulos (747_CR26) 2018; 28
Y Zheng (747_CR12) 2015; 122
Z Gao (747_CR17) 2019
747_CR30
C Liu (747_CR36) 2016; 37
747_CR32
N Michielli (747_CR22) 2019; 106
H Tang (747_CR38) 2017; 7
UL Faxén (747_CR5) 2017; 23
747_CR11
C Xu (747_CR23) 2018; 50
747_CR35
G Savarese (747_CR25) 2018; 6
Y Zheng (747_CR15) 2015; 42
Y Liu (747_CR34) 2019; 43
I Ford (747_CR2) 2015; 184
JJV McMurray (747_CR3) 2012; 33
L Xu (747_CR1) 2017; 33
G Amit (747_CR27) 2009; 4
S Sanei (747_CR33) 2011; 33
Z Gao (747_CR19) 2019; 58
F Beritelli (747_CR31) 2018; 8
References_xml – volume: 122
  start-page: 372
  year: 2015
  ident: 747_CR12
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2015.09.001
– volume: 7
  start-page: 8316
  year: 2019
  ident: 747_CR39
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2018.2889437
– ident: 747_CR43
– ident: 747_CR32
  doi: 10.1109/isitc.2007.40
– ident: 747_CR29
  doi: 10.1145/3194658.3194671
– volume: 8
  start-page: 77
  year: 2018
  ident: 747_CR31
  publication-title: Biomed Eng Lett.
  doi: 10.1007/s13534-017-0046-z
– volume: 405
  start-page: 81
  year: 2017
  ident: 747_CR9
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.04.012
– volume: 184
  start-page: 163
  year: 2015
  ident: 747_CR2
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2015.02.001
– volume: 12
  start-page: 923
  year: 2014
  ident: 747_CR10
  publication-title: Expert Rev Cardiovasc Ther.
  doi: 10.1586/14779072.2014.935339
– volume: 6
  start-page: 246
  year: 2018
  ident: 747_CR25
  publication-title: JACC Heart Fail.
  doi: 10.1016/j.jchf.2017.12.014
– volume: 4
  start-page: 26
  year: 2009
  ident: 747_CR27
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2008.07.003
– ident: 747_CR21
  doi: 10.1109/lsc.2018.8572286
– year: 2019
  ident: 747_CR17
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2019.2952939
– ident: 747_CR46
– volume: 28
  start-page: 392
  year: 2018
  ident: 747_CR26
  publication-title: Trends Cardiovasc Med
  doi: 10.1016/j.tcm.2018.01.001
– volume: 50
  start-page: 82
  year: 2018
  ident: 747_CR23
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2018.09.001
– volume: 78
  start-page: 23
  year: 2017
  ident: 747_CR13
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2017.05.005
– volume: 33
  start-page: 1787
  year: 2012
  ident: 747_CR3
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehs104
– volume: 38
  start-page: 221
  year: 2008
  ident: 747_CR16
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2007.10.006
– volume: 33
  start-page: 362
  year: 2011
  ident: 747_CR33
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2010.11.004
– volume: 42
  start-page: 2710
  year: 2015
  ident: 747_CR15
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.10.051
– volume: 43
  start-page: 1407
  year: 2013
  ident: 747_CR14
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2013.06.016
– ident: 747_CR40
– volume: 102
  start-page: 411
  year: 2018
  ident: 747_CR8
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.09.009
– volume: 58
  start-page: 101534
  year: 2019
  ident: 747_CR19
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2019.101534
– volume: 19
  start-page: 1868
  year: 2019
  ident: 747_CR28
  publication-title: Sensors.
  doi: 10.3390/s19081868
– volume: 7
  start-page: 690
  year: 2017
  ident: 747_CR38
  publication-title: Appl Sci.
  doi: 10.3390/app7070690
– ident: 747_CR44
– ident: 747_CR45
  doi: 10.1109/IJCNN.2017.7966039
– volume: 23
  start-page: 293
  year: 2017
  ident: 747_CR5
  publication-title: J Card Fail.
  doi: 10.1016/j.cardfail.2016.06.008
– volume: 9
  start-page: 1735
  year: 1997
  ident: 747_CR42
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 175
  start-page: 395
  year: 2014
  ident: 747_CR4
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2014.06.027
– volume: 33
  start-page: 663
  year: 2017
  ident: 747_CR1
  publication-title: Int J Cardiovasc Imaging
  doi: 10.1007/s10554-016-1053-3
– volume: 106
  start-page: 71
  year: 2019
  ident: 747_CR22
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.01.013
– ident: 747_CR37
  doi: 10.22489/CinC.2016.179-154
– year: 2019
  ident: 747_CR20
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2916667
– ident: 747_CR30
  doi: 10.1109/ispa.2007.4383654
– ident: 747_CR11
  doi: 10.22489/CinC.2016.161-187
– volume: 2018
  start-page: 7316954
  year: 2018
  ident: 747_CR24
  publication-title: Math Probl Eng.
– volume: 43
  start-page: 285
  year: 2019
  ident: 747_CR34
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1415-1
– ident: 747_CR35
  doi: 10.1109/embc.2017.8037877
– volume: 37
  start-page: 1
  year: 2017
  ident: 747_CR7
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.01.004
– volume: 37
  start-page: 2181
  year: 2016
  ident: 747_CR36
  publication-title: Physiol Meas
  doi: 10.1088/0967-3334/37/12/2181
– volume: 60
  start-page: 13
  year: 2016
  ident: 747_CR41
  publication-title: Future Gener Comput Syst.
  doi: 10.1016/j.future.2016.01.010
– volume: 21
  start-page: 41
  year: 2017
  ident: 747_CR18
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2016.2635662
– volume: 37
  start-page: 273
  year: 2018
  ident: 747_CR6
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2746879
SSID ssj0020069
Score 2.4069011
Snippet Background Heart failure (HF) is a type of cardiovascular disease caused by abnormal cardiac structure and function. Early screening of HF has important...
Heart failure (HF) is a type of cardiovascular disease caused by abnormal cardiac structure and function. Early screening of HF has important implication for...
Background Heart failure (HF) is a type of cardiovascular disease caused by abnormal cardiac structure and function. Early screening of HF has important...
Abstract Background Heart failure (HF) is a type of cardiovascular disease caused by abnormal cardiac structure and function. Early screening of HF has...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3
SubjectTerms Accuracy
Artificial neural networks
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
Biotechnology
Cardiovascular diseases
Congestive heart failure
Coronary artery disease
Deep learning
Diagnosis
Disease
Engineering
Feature extraction
Gated recurrent unit
Health aspects
Heart failure
Heart failure screening
Heart sound
Heart sounds
Markov chains
Methods
Mortality
Neural networks
Performance evaluation
Physiology
Regression analysis
Regression models
Screening
Signal processing
Sound
Structure-function relationships
Support vector machines
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hHhAcEJRXoKCAkJBAUeNHbOdYEFUBlQNQqTfLsZ1SCWVRsyv15zPjeJdNEXDhGo-jZB6e-WLnG4AX2nXKtZK21RuDAEXIytU9qyI3MTgmY0iWPv6kjk7kh9PmdKvVF50Jm-iBJ8Xta877OjKtsc6QXndGdm3bUNbire50Qut1W6_BVIZaRMCb9zCZUfsjZTV8HoRKRBhfXc6yUCLr_31J3spJV89LXtk0Tbno8DbcykVkeTA9_B24FodduLlFLbgL14_zpvld-EhfyEJ5QV_WiYupXGEYV5S-Qkn9rJflSL2VSpf5SUqsY_NA787p2HqJawviXbzxPTg5fPf17VGVeyhUHmN5WYm-bl1oVZRdE-sYeB8lFhmil1oE7l3kmjqGCSxzGh86b2grNiAK8x6hjvPiPuwMiyE-hLJ1ptFcidr3XBqsLEPtO9_hvbkUOLWAeq1T6zPBOPW5-G4T0DDKTmawaAZLZrCXBbzaTPkxsWv8TfgNGWojSMTY6QK6i83uYv_lLgU8JzNbor4Y6GzNmVuNo33_5bM9UAzRo5EtL-BlFuoX-Abe5V8VUA_EljWT3JtJYmz6-fDam2xeG0bLBYJoQf8kF_BsM0wz6bzbEBcrkiHmNYSaqoAHk_Nt3hsXTVyIGStAz9xyppj5yHD-LTGHKwxIpVAJr9cO_Oux_qj3R_9D74_hBk_hxyom9mBnebGKT7CcW3ZPU-T-BNCLQXw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFD_oBNEH0flVnVJFEJSy5qNJ-iRTvE5lPqiDvYU0SedA2nl7L-zP95ze3Lt14l6bk9Kcz5yc9HcAXmnXKFdLKqtXBhMUIQtXtqyI3MTgmIxhlPTBN7V_KL8cVUfpwG1I1yrXPnF01KH3dEa-ywWmHoL-5Hx3-qegrlFUXU0tNK7DDYaRhvTczD5tEi6C4U2VTGbU7kCxDb8KEyaCjS_OJrFohOz_1zFfiEyXb01eKp2OEWl2F-6krWS-t5L9PbgWu224fQFgcBtuHqTS-X34SudkIZ_T-TohMuVLNOaCgljIqav1Ih-ow1LuEkpJjrvZNNC6E7q8nqOHwawXX_wADmcff37YL1InhcKjRS8K0Za1C7WKsqliGQNvo0R2iVZqEbh3kWvqGyZws1P50HhDBdmAuZj3mPA4Lx7CVtd38THktTOV5kqUvuXS4P4ylL7xDb6bS4FTMyjXPLU-wYxTt4vfdkw3jLIrMVgUgyUx2LMM3mymnK4wNq4ifk-C2hASPPb4oJ8f22RtVnPelpFpVBglvW6MbOq6oq0Or3WjywxekpgtAWB0dMPm2C2HwX7-8d3uKYY5pJE1z-B1Imp7XIF36YcF5ANhZk0odyaUaKF-OrzWJps8xGDP9TmDF5thmkm33rrYL4mG8Ncw4VQZPFop32bd6DrRHTOWgZ6o5YQx05Hu5NeIH67QLJVCJrxdK_D5Z_2X70-uXsRTuMVHw2IFEzuwtZgv4zPcri2a56NN_gVm0DsE
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals (Freely Accessible)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFD_IBNEH0flVnRJFEJRi89EkfZzDMZX5oA72FtIknQPplfVe8M_3nN7cejs_wNfmJLTn-_QkvwA8N77VvlHUVq8tFihSlb7qeJmETdFzleIo6eOP-uhEvT-tTzNYNJ2F2e7fc6tfDxSPcCUscgjqvcR08WrNpR77svpgqq0IcTc3Lf84bRZ2RnT-333wVhC6vEHyUpd0DD6Ht-BmzhrZ_lrMt-FK6nfhxhaW4C5cO85d8jvwgX6JRXZBv9IJfImt0G5LileR0QXWSzbQZUrMZ0ASholrHuj8Oe1TZ-hMsMDFhe_CyeHbLwdHZb40oQxovMtSdlXjY6OTautUpSi6pDCrkJ0yMorgkzB0RZjEvKYOsQ2Weq8Ry64QsLbxQd6DnX7RpwfAGm9rI7SsQieUxVQyVqENLa4tlMSpBVQbnrqQEcXpYotvbqwsrHZrMTgUgyMxuB8FvJymfF_DafyL-A0JaiIkJOzxASqIy4bljBBdlbgxmIeqYFqr2qapKasRjWlNVcAzErMjrIueNtOc-dUwuHefP7l9zbFctKoRBbzIRN0CvyD4fDYB-UDwWDPKvRklGmOYD2-0yWVnMDghsWqWdAi5gKfTMM2kDW59WqyIhqDWsLbUBdxfK9_03egl0fNyXoCZqeWMMfOR_vzrCBWu0QK1Ria82ijwr9f6K98f_hf1I7guRjvjJZd7sLO8WKXHmKgt2yejif4EISo0KA
  priority: 102
  providerName: Springer Nature
Title Gated recurrent unit-based heart sound analysis for heart failure screening
URI https://link.springer.com/article/10.1186/s12938-020-0747-x
https://www.ncbi.nlm.nih.gov/pubmed/31931811
https://www.proquest.com/docview/2340732043
https://www.proquest.com/docview/2338106056
https://pubmed.ncbi.nlm.nih.gov/PMC6958660
https://doaj.org/article/722f0e1773264c7b84b9950110297b70
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-NTULwgGB8BUYVEBISKJDYjp08ILRVKwPUCQ0q9c1yHGdMmtKtH9L477lz3bKMsZdKrc9Jfefz3c9n3wG8VqaSphQUVs8LBChcJCZtssSxwtUmE672kh4eyoOR-DrOxxuwKm8VGDi7FtpRPanR9PT9xfnvT6jwH73CF_LDjGwWvg2BEKWDT9Cl3ELDJAmLDcU6qEDgufSXjVSelCwfhyDntY_omCmfzf_fNfuS0bp6oPJKVNUbq8F9uBe8zHh3OS0ewIZrt-HupdyD23B7GKLqD-EbbaHV8ZS23ilZU7xAPU_IvtUxFbyexzMqvhSbkMAkRkc3NDTmhM61x7j4ICDGBz-C0WD_Z_8gCUUWEovKPk94k5amLqUTVe5SV7PGCfRCeCMUr5k1jikqKcbRD8ptXdmCYrU1wjRrEQsZyx_DZjtp3VOIS1Pkikme2oaJAl3POrWVrfDZTHDsGkG64qm2IQM5FcI41R6JFFIvxaBRDJrEoC8ieLvucrZMv3ET8R4Jak1ImbP9D5PpsQ6KqBVjTeoypdBvFVZVhajKMicviJWqUmkEr0jMmnJjtHT45tgsZjP95ceR3pUZwstClCyCN4GomeAIrAl3GZAPlE6rQ7nToUTltd3m1WzSq7mvGUeUzenScgQv183Ukw7EtW6yIBpKzYZYVEbwZDn51uPGVRVX6iyLQHWmZYcx3Zb25JdPLS5RY6VEJrxbTeC_f-u_fH928xifwx3mFStLMr4Dm_Ppwr1AT25e9eCWGiv8LAafe7C1t3_4_Qi_9WW_5_dGel5__wB_UEVm
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4ICivQIGAQEhFURPbcZIDQuVR7bLdHqCV9mYcxymVUFI2u6L8KX4jM1lntymit17XY2szM56Hx_4G4GWic6kzQWX1OMUEhYtAh2UUWJbaQkfCFq2kx_tycCg-T-LJGvzp3sLQtcrOJraGuqgNnZFvM46pB6eXnO9OfgbUNYqqq10LjYVajOzvX5iyNW-HH1G-rxjb_XTwYRC4rgKBQe2eBbwMM11k0oo8tqEtWGkFul1eioQXzGjLEuqhxdHxx6bITUrFyQLzEmMw-NeG47pX4Kqgk3HcP8lkleAR7K-rnEap3G7IlyIXMEEjmPrgtOf72hYB_zqCM57w_C3Nc6Xa1gPu3oZbLnT1dxa6dgfWbLUBN88AGm7AtbEr1d-FEZ3LFf6UzvMJAcqfo_EIyGkWPnXRnvkNdXTytUNF8TF6dgOlPqbL8j5aNMyyceF7cHgpPL4P61Vd2YfgZzqNEyZ5aEomUoxni9DkJse1meA41YOw46kyDtacumv8UG16k0q1EINCMSgSgzr1YGs55WSB6XER8XsS1JKQ4LjbH-rpkXK7WyWMlaGNElRQKUySpyLPsphCK5YleRJ68ILErAhwo6IbPUd63jRq-PWL2pER5qypyJgHrx1RWeMXGO0eSCAfCKOrR7nZo0SLYPrDnTYpZ5Eatdo_HjxfDtNMumVX2XpONIT3hgmu9ODBQvmW342mGs1_FHmQ9NSyx5j-SHX8vcUrl2gGpEQmvOkUePW3_sv3Rxd_xDO4PjgY76m94f7oMdxg7SaLgohvwvpsOrdPMFSc5U_b_enDt8s2CH8BNxd4Tw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ta9YwED9kwtAPovOtOrWKIChlbZIm7cc5fdicG6IO9i2kSToH0mc87QP--d61aV3nC_i1uYT2Lpe7611-B_BSmUqaUlBaPS8wQOEiMWmdJZ4V3plMeNdL-uhY7p-ID6f5aehz2o7V7mNKcrjTQChNTbdz4epBxQu505KVwvUx9CEA-ASdyOuCLB9la-XeFHERDm9IZf5x2swY9Zj9v5_Ml0zT1bLJK7nT3iQtbsOt4EvGu4Pw78A132zBzUsIg1uweRRy53fhkH6UuXhFP9gJkileozYnZMVcTG2tu7ilFkuxCTAlMbqzYaA251S9HuMRg2EvLnwPThbvv-7tJ6GVQmJRpbuE12lpXCm9qHKfesdqL9DX4LVQ3DFrPFPUOIyjt5NbV9mCMrIOgzFrMeIxlt-HjWbZ-IcQl6bIFZM8tTUTBTqYLrWVrXBtJjhOjSAdeaptwBmndhffdR9vFFIPYtAoBk1i0D8ieD1NuRhANv5F_JYENRESPnb_YLk600HdtGKsTn2mFHqnwqqqEFVZ5uTrsFJVKo3gBYlZEwJGQyU2Z2bdtvrgy2e9KzMMIgtRsgheBaJ6iV9gTbixgHwg0KwZ5faMElXUzofH3aTDEdFqxjGW5nQ1OYLn0zDNpLK3xi_XREMAbBhxyggeDJtv-m48O_E8zrII1GxbzhgzH2nOv_UA4hL1UkpkwptxA_96rb_y_dF_UT-DzU_vFvrjwfHhY7jBepXLkoxvw0a3Wvsn6Ml11dNeW38Cmfg_XA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gated+recurrent+unit-based+heart+sound+analysis+for+heart+failure+screening&rft.jtitle=Biomedical+engineering+online&rft.au=Gao%2C+Shan&rft.au=Zheng%2C+Yineng&rft.au=Guo%2C+Xingming&rft.date=2020-01-13&rft.pub=BioMed+Central+Ltd&rft.issn=1475-925X&rft.eissn=1475-925X&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs12938-020-0747-x&rft.externalDocID=A618718492
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-925X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-925X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-925X&client=summon