Capillary Electrophoretic Characterization of Water-soluble Carbon Nanodots Formed from Glutamic Acid and Boric Acid under Microwave Irradiation
Water-soluble carbon nanodots (CND) were synthesized under microwave irradiation from glutamic acid or glutamic acid–boric acid mixture. The CNDs were collected in an aqueous solution through size fractionation by centrifugal filtration. The CNDs thus prepared were subjected to characterization by c...
Saved in:
Published in | Analytical Sciences Vol. 36; no. 8; pp. 941 - 946 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
The Japan Society for Analytical Chemistry
10.08.2020
Springer Nature Singapore Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Water-soluble carbon nanodots (CND) were synthesized under microwave irradiation from glutamic acid or glutamic acid–boric acid mixture. The CNDs were collected in an aqueous solution through size fractionation by centrifugal filtration. The CNDs thus prepared were subjected to characterization by capillary electrophoresis (CE). A peak signal of anionic substance was detected in the electropherogram, and it was found to be a major component of the CNDs. The effective electrophoretic mobility of the major component was almost identical over the pH range between 6.7 and 11.6, suggesting that the functional group of amine or boric acid moiety was not included in the CNDs. The effective electrophoretic mobility decreased at an acidic pH of less than 5, and it was suggested that carboxylate moiety was included in the CNDs. A signal of less-charged CNDs was also detected in the electropherogram, and the CNDs were characterized by a CE format of micellar electrokinetic chromatography. Two or four peaks were detected just after the electroosmotic flow; the less-charged CNDs were thus hydrophilic. The affinity interaction was also examined between the major anionic CNDs and a hydrophobic pairing cation. The peak signal of the major anionic CNDs broadened, and its theoretical number of plates decreased in the presence of tetrabutylammonium ion in the separation buffer. A small portion of the anionic CNDs were a little hydrophobic at different degrees, and their effective electrophoretic mobility decreased by the hydrophobic interaction, resulting in peak broadening of the anionic CNDs. |
---|---|
AbstractList | Water-soluble carbon nanodots (CND) were synthesized under microwave irradiation from glutamic acid or glutamic acid–boric acid mixture. The CNDs were collected in an aqueous solution through size fractionation by centrifugal filtration. The CNDs thus prepared were subjected to characterization by capillary electrophoresis (CE). A peak signal of anionic substance was detected in the electropherogram, and it was found to be a major component of the CNDs. The effective electrophoretic mobility of the major component was almost identical over the pH range between 6.7 and 11.6, suggesting that the functional group of amine or boric acid moiety was not included in the CNDs. The effective electrophoretic mobility decreased at an acidic pH of less than 5, and it was suggested that carboxylate moiety was included in the CNDs. A signal of less-charged CNDs was also detected in the electropherogram, and the CNDs were characterized by a CE format of micellar electrokinetic chromatography. Two or four peaks were detected just after the electroosmotic flow; the less-charged CNDs were thus hydrophilic. The affinity interaction was also examined between the major anionic CNDs and a hydrophobic pairing cation. The peak signal of the major anionic CNDs broadened, and its theoretical number of plates decreased in the presence of tetrabutylammonium ion in the separation buffer. A small portion of the anionic CNDs were a little hydrophobic at different degrees, and their effective electrophoretic mobility decreased by the hydrophobic interaction, resulting in peak broadening of the anionic CNDs. Abstact Water-soluble carbon nanodots (CND) were synthesized under microwave irradiation from glutamic acid or glutamic acid-boric acid mixture. The CNDs were collected in an aqueous solution through size fractionation by centrifugal filtration. The CNDs thus prepared were subjected to characterization by capillary electrophoresis (CE). A peak signal of anionic substance was detected in the electropherogram, and it was found to be a major component of the CNDs. The effective electrophoretic mobility of the major component was almost identical over the pH range between 6.7 and 11.6, suggesting that the functional group of amine or boric acid moiety was not included in the CNDs. The effective electrophoretic mobility decreased at an acidic pH of less than 5, and it was suggested that carboxylate moiety was included in the CNDs. A signal of less-charged CNDs was also detected in the electropherogram, and the CNDs were characterized by a CE format of micellar electrokinetic chromatography. Two or four peaks were detected just after the electroosmotic flow; the less-charged CNDs were thus hydrophilic. The affinity interaction was also examined between the major anionic CNDs and a hydrophobic pairing cation. The peak signal of the major anionic CNDs broadened, and its theoretical number of plates decreased in the presence of tetrabutylammonium ion in the separation buffer. A small portion of the anionic CNDs were a little hydrophobic at different degrees, and their effective electrophoretic mobility decreased by the hydrophobic interaction, resulting in peak broadening of the anionic CNDs. Water-soluble carbon nanodots (CND) were synthesized under microwave irradiation from glutamic acid or glutamic acid-boric acid mixture. The CNDs were collected in an aqueous solution through size fractionation by centrifugal filtration. The CNDs thus prepared were subjected to characterization by capillary electrophoresis (CE). A peak signal of anionic substance was detected in the electropherogram, and it was found to be a major component of the CNDs. The effective electrophoretic mobility of the major component was almost identical over the pH range between 6.7 and 11.6, suggesting that the functional group of amine or boric acid moiety was not included in the CNDs. The effective electrophoretic mobility decreased at an acidic pH of less than 5, and it was suggested that carboxylate moiety was included in the CNDs. A signal of less-charged CNDs was also detected in the electropherogram, and the CNDs were characterized by a CE format of micellar electrokinetic chromatography. Two or four peaks were detected just after the electroosmotic flow; the less-charged CNDs were thus hydrophilic. The affinity interaction was also examined between the major anionic CNDs and a hydrophobic pairing cation. The peak signal of the major anionic CNDs broadened, and its theoretical number of plates decreased in the presence of tetrabutylammonium ion in the separation buffer. A small portion of the anionic CNDs were a little hydrophobic at different degrees, and their effective electrophoretic mobility decreased by the hydrophobic interaction, resulting in peak broadening of the anionic CNDs.Water-soluble carbon nanodots (CND) were synthesized under microwave irradiation from glutamic acid or glutamic acid-boric acid mixture. The CNDs were collected in an aqueous solution through size fractionation by centrifugal filtration. The CNDs thus prepared were subjected to characterization by capillary electrophoresis (CE). A peak signal of anionic substance was detected in the electropherogram, and it was found to be a major component of the CNDs. The effective electrophoretic mobility of the major component was almost identical over the pH range between 6.7 and 11.6, suggesting that the functional group of amine or boric acid moiety was not included in the CNDs. The effective electrophoretic mobility decreased at an acidic pH of less than 5, and it was suggested that carboxylate moiety was included in the CNDs. A signal of less-charged CNDs was also detected in the electropherogram, and the CNDs were characterized by a CE format of micellar electrokinetic chromatography. Two or four peaks were detected just after the electroosmotic flow; the less-charged CNDs were thus hydrophilic. The affinity interaction was also examined between the major anionic CNDs and a hydrophobic pairing cation. The peak signal of the major anionic CNDs broadened, and its theoretical number of plates decreased in the presence of tetrabutylammonium ion in the separation buffer. A small portion of the anionic CNDs were a little hydrophobic at different degrees, and their effective electrophoretic mobility decreased by the hydrophobic interaction, resulting in peak broadening of the anionic CNDs. |
Author | TAKAYANAGI, Toshio MIZUGUCHI, Hitoshi IWASAKI, Sota MORITA, Kotaro HIRAYAMA, Naoki YABE, Shun BECCHAKU, Yuta |
Author_xml | – sequence: 1 fullname: TAKAYANAGI, Toshio organization: Graduate School of Technology, Industrial and Social Sciences, Tokushima University – sequence: 2 fullname: IWASAKI, Sota organization: Graduate School of Advanced Technology and Science, Tokushima University – sequence: 3 fullname: BECCHAKU, Yuta organization: Graduate School of Advanced Technology and Science, Tokushima University – sequence: 4 fullname: YABE, Shun organization: Department of Chemistry, Faculty of Science, Toho University – sequence: 5 fullname: MORITA, Kotaro organization: Department of Chemistry, Faculty of Science, Toho University – sequence: 6 fullname: MIZUGUCHI, Hitoshi organization: Graduate School of Technology, Industrial and Social Sciences, Tokushima University – sequence: 7 fullname: HIRAYAMA, Naoki organization: Department of Chemistry, Faculty of Science, Toho University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32009023$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1v1DAQhi1URLeFK0dkiQuXbP21iXMs6QeVyscBxNGaOE7rVWIvtgOiv6I_GW-zXaRKvYxl-3nHM-_4CB047wxCbylZMkrLE3AwRG2XtP4mpHiBFpQLWTAmygO0IDUlRckFOURHMa4JoUwy9godckZITRhfoPsGNnYYIPzF54PRKfjNrQ8mWY2bWwigkwn2DpL1Dvse_4S8L6IfpnYwuIHQ5vMv4HznU8QXPoymw33wI74cpgRjTnOqbYfBdfijD4_byXUm4M9WB_8Hfht8FQJ09uGV1-hln1syb3brMfpxcf69-VRcf728ak6vC10RlgrBOiElh7JuaS1IW_GVJG0HggmoBABrmSG6rkRpapkDb3tWE01o5sq66vkx-jDn3QT_azIxqdFGbbIVzvgpKsZXhK94Wa4y-v4JuvZT2BqvmOA1l5JWLFPvdtTUZhfUJtgx26oevc7AcgZy1zEG0-8RStR2mGo3TDUPMwvEE4G26cGkFMAOz8tOZlnM-d2NCf_LfVZxNivWMcGN2dcFIf-DwexxXiq5DbNsf63zR1HG8X9_0M5_ |
CitedBy_id | crossref_primary_10_15583_jpchrom_2021_022 |
Cites_doi | 10.1021/ja062677d 10.1016/j.chroma.2013.07.035 10.1002/anie.200906623 10.1039/c2jm33414c 10.1016/j.talanta.2016.09.031 10.1016/0165-9936(89)85022-8 10.1002/elps.201300488 10.2116/analsci.29.769 10.2116/analsci.31.1193 10.1016/j.microc.2013.08.002 10.1039/a605047f 10.1021/ja040082h 10.2116/analsci.31.481 10.2116/analsci.18P433 10.1016/j.ab.2016.01.024 10.1016/j.chroma.2010.09.069 10.1021/ac202667x 10.1002/elps.201600478 10.1016/j.carbon.2015.08.096 10.2116/analsci.33.1461 10.1021/ac00265a031 |
ContentType | Journal Article |
Copyright | 2020 by The Japan Society for Analytical Chemistry The Japan Society for Analytical Chemistry 2020 Copyright Japan Science and Technology Agency 2020 |
Copyright_xml | – notice: 2020 by The Japan Society for Analytical Chemistry – notice: The Japan Society for Analytical Chemistry 2020 – notice: Copyright Japan Science and Technology Agency 2020 |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SE 7SR 7U5 8BQ 8FD FR3 H8G JG9 L7M P64 7X8 |
DOI | 10.2116/analsci.19P484 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Corrosion Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Copper Technical Reference Library Materials Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Aluminium Industry Abstracts Technology Research Database Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1348-2246 |
EndPage | 946 |
ExternalDocumentID | 32009023 10_2116_analsci_19P484 article_analsci_36_8_36_19P484_article_char_en |
Genre | Journal Article |
GroupedDBID | --- 23M 2WC 406 5GY 6J9 7.U AATNV AAYFA ACGFO ACIWK ACPRK ADBBV ADOXG AENEX AESKC AFRAH AIAKS ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF BAWUL CS3 DIK E3Z EBS EJD F5P GX1 HH5 IWAJR JSF JSH JZLTJ KQ8 LLZTM M~E NPVJJ OK1 P2P RDB RJT RNS RSV RZJ RZV SOJ TN5 TR2 UPT XSB ZMTXR ~02 0R~ 3O- 53G AACDK AAJBT AASML ABAKF ABJNI ABTKH ACAOD ACDTI ACPIV ACZOJ AEFQL AEMSY AFBBN AGMZJ AGQEE AI. AIGIU DPUIP EBLON FIGPU ROL SJYHP TKC VH1 AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION OVT NPM 7QF 7QO 7QQ 7SE 7SR 7U5 8BQ 8FD ABRTQ FR3 H8G JG9 L7M P64 7X8 |
ID | FETCH-LOGICAL-c702t-42d4883a69b1940b73580bda424a74aa2b2e0c9746e9846e3bf290c01358697f3 |
ISSN | 0910-6340 1348-2246 |
IngestDate | Fri Jul 11 07:29:27 EDT 2025 Wed Aug 27 14:45:28 EDT 2025 Wed Feb 19 02:23:58 EST 2025 Tue Jul 01 01:11:38 EDT 2025 Thu Apr 24 23:07:56 EDT 2025 Fri Feb 21 02:42:22 EST 2025 Thu Aug 17 20:29:00 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | affinity capillary electrophoresis micellar electrokinetic chromatography characterization Carbon nanodot capillary electrophoresis |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c702t-42d4883a69b1940b73580bda424a74aa2b2e0c9746e9846e3bf290c01358697f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/analsci/36/8/36_19P484/_article/-char/en |
PMID | 32009023 |
PQID | 2439388172 |
PQPubID | 1966371 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2350353665 proquest_journals_2439388172 pubmed_primary_32009023 crossref_primary_10_2116_analsci_19P484 crossref_citationtrail_10_2116_analsci_19P484 springer_journals_10_2116_analsci_19P484 jstage_primary_article_analsci_36_8_36_19P484_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-Aug-10 |
PublicationDateYYYYMMDD | 2020-08-10 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-Aug-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Switzerland – name: Tokyo |
PublicationTitle | Analytical Sciences |
PublicationTitleAbbrev | ANAL. SCI |
PublicationTitleAlternate | Anal Sci |
PublicationYear | 2020 |
Publisher | The Japan Society for Analytical Chemistry Springer Nature Singapore Nature Publishing Group |
Publisher_xml | – name: The Japan Society for Analytical Chemistry – name: Springer Nature Singapore – name: Nature Publishing Group |
References | 2. Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. Shiral Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. Monica Veca, and S.-Y. Xie, J. Am. Chem. Soc., 2006, 128, 7756. 12. E. Duffy, D. P. Mitev, P. N. Nesterenko, A. A. Kazarian, and B. Paull, Electrophoresis, 2014, 35, 1864. 17. M. B. Müller, J. P. Quirino, P. N. Nesterenko, P. R. Haddad, S. Gambhir, D. Li, and G. G. Wallace, J. Chromatogr. A, 2010, 1217, 7593. 14. Q. Hu, M. C. Paau, Y. Zhang, W. Chan, X. Gong, L. Zhang, and M. M. F. Choi, J. Chromatogr. A, 2013, 1304, 234. 25. T. Takayanagi, E. Wada, and S. Motomizu, Analyst [London], 1997, 122, 57. 20. T. Takayanagi, M. Amiya, N. Shimakami, and T. Yabutani, Anal. Sci., 2015, 31, 1193. 13. Z. Markova, A. B. Bourlinos, K. Safarova, K. Polakova, J. Tucek, I. Medrik, K. Siskova, J. Petr, M. Krysmann, E. P. Giannelis, and R. Zboril, J. Mater. Chem., 2012, 22, 16219. 4. Q.-L. Zhao, Z.-L. Zhang, B.-H. Huang, J. Peng, M. Zhang, and D.-W. Pang, Chem. Commun., 2008, 5116. 19. T. Takayanagi, Y. Becchaku, Y. Tomiyama, M. Kurashina, and H. Mizuguchi, Anal. Sci., 2019, 35, 307. 24. R. Ciriello, P. T. Iallorenzi, A. Laurita, and A. Guerrieri, Electrophoresis, 2017, 38, 922. 15. Y. Wu and V. T. Remcho, Talanta, 2016, 161, 854. 1. X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, and W. A. Scrivens, J. Am. Chem. Soc., 2004, 126, 12736. 8. Y. Sun, Q. Bi, X. Zhang, L. Wang, X. Zhang, S. Dong, and L. Zhao, Anal. Biochem., 2016, 500, 38. 11. J. C. Vinci and L. A. Colón, Microchem. J., 2013, 110, 660. 21. The R Project for Statistical Computing, http://www.r-project.org/. 18. T. Takayanagi, M. Morimoto, and T. Yabutani, Anal. Sci., 2013, 29, 769. 16. H. K. Sadhanala and K. K. Nanda, Carbon, 2016, 96, 166. 3. S. N. Baker and G. A. Baker, Angew. Chem. Int. Ed., 2010, 49, 6726. 10. J. C. Vinci and L. A. Colon, Anal. Chem., 2012, 84, 1178. 6. K. Morita, A. Kobayashi, H. Nagatani, and H. Imura, Anal. Sci., 2015, 31, 481. 22. S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya, and A. Ando, Anal. Chem., 1984, 56, 111. 5. H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, and X. Yang, Chem. Commun., 2009, 5118. 7. K. Morita, S. Kurusu, H. Kodama, and N. Hirayama, Anal. Sci., 2017, 33, 1461. 9. Q. Hu, X. Gong, L. Liu, and M. M. F. Choi, J. Nanomater., 2017, 1804178. 23. S. Terabe, TrAC—Trends Anal. Chem., 1989, 8, 129. 26. Understanding your ChemStation, https://www.agilent.com/cs/library/usermanuals/Public/G2070-91126_Understanding.pdf, 240. TakayanagiTWadaEMotomizuSAnalyst1997122571:CAS:528:DyaK2sXos1SgtQ%3D%3D10.1039/a605047f ZhuHWangXLiYWangZYangFYangXChem. Commun.20095118 TakayanagiTBecchakuYTomiyamaYKurashinaMMizuguchiHAnal. Sci.2019353071:CAS:528:DC%2BC1MXhtVSkt7zO10.2116/analsci.18P43330416168 MüllerM BQuirinoJ PNesterenkoP NHaddadP RGambhirSLiDWallaceG GJ. Chromatogr. A20101217759310.1016/j.chroma.2010.09.06920980009 HuQGongXLiuLChoiM M FJ. Nanomater.20171804178 WuYRemchoV TTalanta20161618541:CAS:528:DC%2BC28XhsFymsb3K10.1016/j.talanta.2016.09.03127769493 TerabeSOtsukaKIchikawaKTsuchiyaAAndoAAnal. Chem.1984561111:CAS:528:DyaL2cXis1ekug%3D%3D10.1021/ac00265a031 XuXRayRGuYPloehnH JGearheartLRakerKScrivensW AJ. Am. Chem. Soc.2004126127361:CAS:528:DC%2BD2cXns1KmtL0%3D10.1021/ja040082h15469243 MarkovaZBourlinosA BSafarovaKPolakovaKTucekJMedrikISiskovaKPetrJKrysmannMGiannelisE PZborilRJ. Mater. Chem.201222162191:CAS:528:DC%2BC38XhtVOrt7%2FF10.1039/c2jm33414c ZhaoQ-LZhangZ-LHuangB-HPengJZhangMPangD-WChem. Commun.20085116 The R Project for Statistical Computing, http://www.r-project.org/. TakayanagiTAmiyaMShimakamiNYabutaniTAnal. Sci.20153111931:CAS:528:DC%2BC28XmvFGitr0%3D10.2116/analsci.31.119326561266 VinciJ CColónL AMicrochem. J.20131106601:CAS:528:DC%2BC3sXhs1agu77I10.1016/j.microc.2013.08.002 DuffyEMitevD PNesterenkoP NKazarianA APaullBElectrophoresis20143518641:CAS:528:DC%2BC2cXosFaqsLg%3D10.1002/elps.20130048824648270 MoritaKKurusuSKodamaHHirayamaNAnal. Sci.20173314611:CAS:528:DC%2BC1cXhsVKktbc%3D10.2116/analsci.33.146129225241 SadhanalaH KNandaK KCarbon2016961661:CAS:528:DC%2BC2MXhsFGqs77L10.1016/j.carbon.2015.08.096 SunY-PZhouBLinYWangWShiral FernandoK APathakPMezianiM JHarruffB AWangXWangHLuoP GYangHKoseM EChenBMonica VecaLXieS-YJ. Am. Chem. Soc.200612877561:CAS:528:DC%2BD28XkvVehur0%3D10.1021/ja062677d16771487 TerabeSTrAC—Trends Anal. Chem.198981291:CAS:528:DyaK3cXmvFWhtQ%3D%3D10.1016/0165-9936(89)85022-8 TakayanagiTMorimotoMYabutaniTAnal. Sci.2013297691:CAS:528:DC%2BC3sXhsVSqtLjF10.2116/analsci.29.76923934555 Understanding your ChemStation, https://www.agilent.com/cs/library/usermanuals/Public/G2070-91126_Understanding.pdf, 240. BakerS NBakerG AAngew. Chem. Int. Ed.20104967261:CAS:528:DC%2BC3cXhtFGnsbnI10.1002/anie.200906623 CirielloRIallorenziP TLauritaAGuerrieriAElectrophoresis2017389221:CAS:528:DC%2BC2sXltVamtw%3D%3D10.1002/elps.20160047827935082 MoritaKKobayashiANagataniHImuraHAnal. Sci.2015314811:CAS:528:DC%2BC2MXhtFyktbbJ10.2116/analsci.31.48126063009 SunYBiQZhangXWangLZhangXDongSZhaoLAnal. Biochem.2016500381:CAS:528:DC%2BC28Xjs1yitrs%3D10.1016/j.ab.2016.01.02426893106 HuQPaauM CZhangYChanWGongXZhangLChoiM M FJ. Chromatogr. A201313042341:CAS:528:DC%2BC3sXhtFCqtrzJ10.1016/j.chroma.2013.07.03523885674 VinciJ CColonL AAnal. Chem.20128411781:CAS:528:DC%2BC3MXhsFKhu7zO10.1021/ac202667x22132780 Y Sun (3608008_CR8) 2016; 500 Z Markova (3608008_CR13) 2012; 22 J C Vinci (3608008_CR11) 2013; 110 T Takayanagi (3608008_CR20) 2015; 31 S Terabe (3608008_CR22) 1984; 56 X Xu (3608008_CR1) 2004; 126 Q Hu (3608008_CR14) 2013; 1304 E Duffy (3608008_CR12) 2014; 35 T Takayanagi (3608008_CR25) 1997; 122 S Terabe (3608008_CR23) 1989; 8 Y-P Sun (3608008_CR2) 2006; 128 H K Sadhanala (3608008_CR16) 2016; 96 S N Baker (3608008_CR3) 2010; 49 M B Müller (3608008_CR17) 2010; 1217 Q Hu (3608008_CR9) 2017 3608008_CR26 T Takayanagi (3608008_CR18) 2013; 29 3608008_CR21 K Morita (3608008_CR6) 2015; 31 T Takayanagi (3608008_CR19) 2019; 35 K Morita (3608008_CR7) 2017; 33 R Ciriello (3608008_CR24) 2017; 38 H Zhu (3608008_CR5) 2009 J C Vinci (3608008_CR10) 2012; 84 Q-L Zhao (3608008_CR4) 2008 Y Wu (3608008_CR15) 2016; 161 |
References_xml | – reference: 7. K. Morita, S. Kurusu, H. Kodama, and N. Hirayama, Anal. Sci., 2017, 33, 1461. – reference: 13. Z. Markova, A. B. Bourlinos, K. Safarova, K. Polakova, J. Tucek, I. Medrik, K. Siskova, J. Petr, M. Krysmann, E. P. Giannelis, and R. Zboril, J. Mater. Chem., 2012, 22, 16219. – reference: 11. J. C. Vinci and L. A. Colón, Microchem. J., 2013, 110, 660. – reference: 21. The R Project for Statistical Computing, http://www.r-project.org/. – reference: 15. Y. Wu and V. T. Remcho, Talanta, 2016, 161, 854. – reference: 14. Q. Hu, M. C. Paau, Y. Zhang, W. Chan, X. Gong, L. Zhang, and M. M. F. Choi, J. Chromatogr. A, 2013, 1304, 234. – reference: 25. T. Takayanagi, E. Wada, and S. Motomizu, Analyst [London], 1997, 122, 57. – reference: 5. H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, and X. Yang, Chem. Commun., 2009, 5118. – reference: 6. K. Morita, A. Kobayashi, H. Nagatani, and H. Imura, Anal. Sci., 2015, 31, 481. – reference: 22. S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya, and A. Ando, Anal. Chem., 1984, 56, 111. – reference: 12. E. Duffy, D. P. Mitev, P. N. Nesterenko, A. A. Kazarian, and B. Paull, Electrophoresis, 2014, 35, 1864. – reference: 10. J. C. Vinci and L. A. Colon, Anal. Chem., 2012, 84, 1178. – reference: 16. H. K. Sadhanala and K. K. Nanda, Carbon, 2016, 96, 166. – reference: 9. Q. Hu, X. Gong, L. Liu, and M. M. F. Choi, J. Nanomater., 2017, 1804178. – reference: 20. T. Takayanagi, M. Amiya, N. Shimakami, and T. Yabutani, Anal. Sci., 2015, 31, 1193. – reference: 23. S. Terabe, TrAC—Trends Anal. Chem., 1989, 8, 129. – reference: 26. Understanding your ChemStation, https://www.agilent.com/cs/library/usermanuals/Public/G2070-91126_Understanding.pdf, 240. – reference: 24. R. Ciriello, P. T. Iallorenzi, A. Laurita, and A. Guerrieri, Electrophoresis, 2017, 38, 922. – reference: 1. X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, and W. A. Scrivens, J. Am. Chem. Soc., 2004, 126, 12736. – reference: 2. Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. Shiral Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. Monica Veca, and S.-Y. Xie, J. Am. Chem. Soc., 2006, 128, 7756. – reference: 18. T. Takayanagi, M. Morimoto, and T. Yabutani, Anal. Sci., 2013, 29, 769. – reference: 19. T. Takayanagi, Y. Becchaku, Y. Tomiyama, M. Kurashina, and H. Mizuguchi, Anal. Sci., 2019, 35, 307. – reference: 8. Y. Sun, Q. Bi, X. Zhang, L. Wang, X. Zhang, S. Dong, and L. Zhao, Anal. Biochem., 2016, 500, 38. – reference: 4. Q.-L. Zhao, Z.-L. Zhang, B.-H. Huang, J. Peng, M. Zhang, and D.-W. Pang, Chem. Commun., 2008, 5116. – reference: 3. S. N. Baker and G. A. Baker, Angew. Chem. Int. Ed., 2010, 49, 6726. – reference: 17. M. B. Müller, J. P. Quirino, P. N. Nesterenko, P. R. Haddad, S. Gambhir, D. Li, and G. G. Wallace, J. Chromatogr. A, 2010, 1217, 7593. – reference: TakayanagiTAmiyaMShimakamiNYabutaniTAnal. Sci.20153111931:CAS:528:DC%2BC28XmvFGitr0%3D10.2116/analsci.31.119326561266 – reference: MoritaKKurusuSKodamaHHirayamaNAnal. Sci.20173314611:CAS:528:DC%2BC1cXhsVKktbc%3D10.2116/analsci.33.146129225241 – reference: MarkovaZBourlinosA BSafarovaKPolakovaKTucekJMedrikISiskovaKPetrJKrysmannMGiannelisE PZborilRJ. Mater. Chem.201222162191:CAS:528:DC%2BC38XhtVOrt7%2FF10.1039/c2jm33414c – reference: SadhanalaH KNandaK KCarbon2016961661:CAS:528:DC%2BC2MXhsFGqs77L10.1016/j.carbon.2015.08.096 – reference: VinciJ CColonL AAnal. Chem.20128411781:CAS:528:DC%2BC3MXhsFKhu7zO10.1021/ac202667x22132780 – reference: MoritaKKobayashiANagataniHImuraHAnal. Sci.2015314811:CAS:528:DC%2BC2MXhtFyktbbJ10.2116/analsci.31.48126063009 – reference: ZhaoQ-LZhangZ-LHuangB-HPengJZhangMPangD-WChem. Commun.20085116 – reference: The R Project for Statistical Computing, http://www.r-project.org/. – reference: ZhuHWangXLiYWangZYangFYangXChem. Commun.20095118 – reference: SunYBiQZhangXWangLZhangXDongSZhaoLAnal. Biochem.2016500381:CAS:528:DC%2BC28Xjs1yitrs%3D10.1016/j.ab.2016.01.02426893106 – reference: XuXRayRGuYPloehnH JGearheartLRakerKScrivensW AJ. Am. Chem. Soc.2004126127361:CAS:528:DC%2BD2cXns1KmtL0%3D10.1021/ja040082h15469243 – reference: TakayanagiTMorimotoMYabutaniTAnal. Sci.2013297691:CAS:528:DC%2BC3sXhsVSqtLjF10.2116/analsci.29.76923934555 – reference: BakerS NBakerG AAngew. Chem. Int. Ed.20104967261:CAS:528:DC%2BC3cXhtFGnsbnI10.1002/anie.200906623 – reference: MüllerM BQuirinoJ PNesterenkoP NHaddadP RGambhirSLiDWallaceG GJ. Chromatogr. A20101217759310.1016/j.chroma.2010.09.06920980009 – reference: Understanding your ChemStation, https://www.agilent.com/cs/library/usermanuals/Public/G2070-91126_Understanding.pdf, 240. – reference: HuQGongXLiuLChoiM M FJ. Nanomater.20171804178 – reference: TakayanagiTBecchakuYTomiyamaYKurashinaMMizuguchiHAnal. Sci.2019353071:CAS:528:DC%2BC1MXhtVSkt7zO10.2116/analsci.18P43330416168 – reference: TerabeSOtsukaKIchikawaKTsuchiyaAAndoAAnal. Chem.1984561111:CAS:528:DyaL2cXis1ekug%3D%3D10.1021/ac00265a031 – reference: DuffyEMitevD PNesterenkoP NKazarianA APaullBElectrophoresis20143518641:CAS:528:DC%2BC2cXosFaqsLg%3D10.1002/elps.20130048824648270 – reference: VinciJ CColónL AMicrochem. J.20131106601:CAS:528:DC%2BC3sXhs1agu77I10.1016/j.microc.2013.08.002 – reference: TakayanagiTWadaEMotomizuSAnalyst1997122571:CAS:528:DyaK2sXos1SgtQ%3D%3D10.1039/a605047f – reference: CirielloRIallorenziP TLauritaAGuerrieriAElectrophoresis2017389221:CAS:528:DC%2BC2sXltVamtw%3D%3D10.1002/elps.20160047827935082 – reference: TerabeSTrAC—Trends Anal. Chem.198981291:CAS:528:DyaK3cXmvFWhtQ%3D%3D10.1016/0165-9936(89)85022-8 – reference: HuQPaauM CZhangYChanWGongXZhangLChoiM M FJ. Chromatogr. A201313042341:CAS:528:DC%2BC3sXhtFCqtrzJ10.1016/j.chroma.2013.07.03523885674 – reference: SunY-PZhouBLinYWangWShiral FernandoK APathakPMezianiM JHarruffB AWangXWangHLuoP GYangHKoseM EChenBMonica VecaLXieS-YJ. Am. Chem. Soc.200612877561:CAS:528:DC%2BD28XkvVehur0%3D10.1021/ja062677d16771487 – reference: WuYRemchoV TTalanta20161618541:CAS:528:DC%2BC28XhsFymsb3K10.1016/j.talanta.2016.09.03127769493 – volume: 128 start-page: 7756 year: 2006 ident: 3608008_CR2 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja062677d – volume: 1304 start-page: 234 year: 2013 ident: 3608008_CR14 publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2013.07.035 – start-page: 1804178 volume-title: J. Nanomater. year: 2017 ident: 3608008_CR9 – volume: 49 start-page: 6726 year: 2010 ident: 3608008_CR3 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200906623 – volume: 22 start-page: 16219 year: 2012 ident: 3608008_CR13 publication-title: J. Mater. Chem. doi: 10.1039/c2jm33414c – volume: 161 start-page: 854 year: 2016 ident: 3608008_CR15 publication-title: Talanta doi: 10.1016/j.talanta.2016.09.031 – volume: 8 start-page: 129 year: 1989 ident: 3608008_CR23 publication-title: TrAC—Trends Anal. Chem. doi: 10.1016/0165-9936(89)85022-8 – volume: 35 start-page: 1864 year: 2014 ident: 3608008_CR12 publication-title: Electrophoresis doi: 10.1002/elps.201300488 – ident: 3608008_CR21 – volume: 29 start-page: 769 year: 2013 ident: 3608008_CR18 publication-title: Anal. Sci. doi: 10.2116/analsci.29.769 – volume: 31 start-page: 1193 year: 2015 ident: 3608008_CR20 publication-title: Anal. Sci. doi: 10.2116/analsci.31.1193 – volume: 110 start-page: 660 year: 2013 ident: 3608008_CR11 publication-title: Microchem. J. doi: 10.1016/j.microc.2013.08.002 – volume: 122 start-page: 57 year: 1997 ident: 3608008_CR25 publication-title: Analyst doi: 10.1039/a605047f – volume: 126 start-page: 12736 year: 2004 ident: 3608008_CR1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja040082h – volume: 31 start-page: 481 year: 2015 ident: 3608008_CR6 publication-title: Anal. Sci. doi: 10.2116/analsci.31.481 – volume: 35 start-page: 307 year: 2019 ident: 3608008_CR19 publication-title: Anal. Sci. doi: 10.2116/analsci.18P433 – volume: 500 start-page: 38 year: 2016 ident: 3608008_CR8 publication-title: Anal. Biochem. doi: 10.1016/j.ab.2016.01.024 – ident: 3608008_CR26 – volume: 1217 start-page: 7593 year: 2010 ident: 3608008_CR17 publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2010.09.069 – volume: 84 start-page: 1178 year: 2012 ident: 3608008_CR10 publication-title: Anal. Chem. doi: 10.1021/ac202667x – volume: 38 start-page: 922 year: 2017 ident: 3608008_CR24 publication-title: Electrophoresis doi: 10.1002/elps.201600478 – volume: 96 start-page: 166 year: 2016 ident: 3608008_CR16 publication-title: Carbon doi: 10.1016/j.carbon.2015.08.096 – volume: 33 start-page: 1461 year: 2017 ident: 3608008_CR7 publication-title: Anal. Sci. doi: 10.2116/analsci.33.1461 – volume: 56 start-page: 111 year: 1984 ident: 3608008_CR22 publication-title: Anal. Chem. doi: 10.1021/ac00265a031 – start-page: 5118 volume-title: Chem. Commun. year: 2009 ident: 3608008_CR5 – start-page: 5116 volume-title: Chem. Commun. year: 2008 ident: 3608008_CR4 |
SSID | ssj0012822 |
Score | 2.2532828 |
Snippet | Water-soluble carbon nanodots (CND) were synthesized under microwave irradiation from glutamic acid or glutamic acid–boric acid mixture. The CNDs were... Abstact Water-soluble carbon nanodots (CND) were synthesized under microwave irradiation from glutamic acid or glutamic acid-boric acid mixture. The CNDs were... Water-soluble carbon nanodots (CND) were synthesized under microwave irradiation from glutamic acid or glutamic acid-boric acid mixture. The CNDs were... |
SourceID | proquest pubmed crossref springer jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 941 |
SubjectTerms | Acids affinity capillary electrophoresis Analytical Chemistry Aqueous solutions Boric acid Capillary electrophoresis Carbon Carbon nanodot Centrifugal filtration characterization Chemistry Electrokinetics Electroosmosis Electrophoresis Electrophoretic mobility Fractionation Functional groups Glutamic acid Hydrophobicity Irradiation micellar electrokinetic chromatography pH effects Water chemistry |
Title | Capillary Electrophoretic Characterization of Water-soluble Carbon Nanodots Formed from Glutamic Acid and Boric Acid under Microwave Irradiation |
URI | https://www.jstage.jst.go.jp/article/analsci/36/8/36_19P484/_article/-char/en https://link.springer.com/article/10.2116/analsci.19P484 https://www.ncbi.nlm.nih.gov/pubmed/32009023 https://www.proquest.com/docview/2439388172 https://www.proquest.com/docview/2350353665 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Analytical Sciences, 2020/08/10, Vol.36(8), pp.941-946 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKQIIXxH8KAxkJCaQqWxrn7wMPWdXS0TFAbbXuKXIchw5NbZW2D9un4FvwNbmz3aQtBQEvUeNYltP75Xxn3_2OkNc8D4Ujc2kFgtmWCzcWt7PMCvMgFKGbe5pL7-Op3x26H0beqFb7sRa1tFykB-J6Z17J_0gV2kCumCX7D5ItB4UG-A3yhStIGK5_JeMWn2HRoOKq0dbVbGZjnZWoTtE1D_N1aROegVlZWDgjzJZq8SKFdtCu6JjOGx0wXsH4VOkm72HSWKe-EYsLReXaOEIqEX2LWWcFhtuDA4-li46LAvkNSgGXzMz88mpRJV2KKlhxEPfic6wkcKzQMp2PdTCYguhZ3I976kF_uqh2C9qtVjfuDdWKsazaz-MjFc7ZHy8n6xsYjgqfM6Gshv8bj0p27rqZnUpYKnymWZ0OpNbTzAUoOGb30ihyzaRiABuuaeVIc2ttrxbg-2qaZICDuDhoRp81r-oWLffpp6QzPDlJBu3R4Aa56YA_ggq196U6rsJYXEXqaGaq2UFx_MPN0Tesn1vfwAH4Knf5Nr-cyytzZ3CP3DV-Co016O6Tmpw8ILdbq_KAD8n3Enx0C3x0G3x0mtMN8FENProCH9Xgowg-ugIfRbRRAB9V4NO3Cny0BB9dA98jMuy0B62uZcp7WCKwnYXlOhmsHoz7UdqMXDsN8EQ-zbjruDxwOXdSR9oC_F1fRmAlS5bmTmQL8Fm80I-CnD0me5PpRD4lNJKBn7mRZJmfuzJs8maaCXBEvMwJcy6adWKt_vZEGO57LMFymYAPjGJKjJgSLaY6eVP2n2nWl9_2fKelWPYz2qDsx_wkxIvuXz7GpErQYXWyvxJ-YjTLPHHAS2BhCL5FnbwqH4N88TCPT-R0CX2YZzOP-b5XJ080aMopMDzyBGO8Tt6uUFQNvvs9nv15Hs_JnerT3Sd7i2IpX4A1vkhfqi_hJxLM59g |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capillary+Electrophoretic+Characterization+of+Water-soluble+Carbon+Nanodots+Formed+from+Glutamic+Acid+and+Boric+Acid+under+Microwave+Irradiation&rft.jtitle=Analytical+sciences&rft.au=TAKAYANAGI%2C+Toshio&rft.au=IWASAKI%2C+Sota&rft.au=BECCHAKU%2C+Yuta&rft.au=YABE%2C+Shun&rft.date=2020-08-10&rft.pub=Nature+Publishing+Group&rft.issn=0910-6340&rft.eissn=1348-2246&rft.volume=36&rft.issue=8&rft.spage=941&rft_id=info:doi/10.2116%2Fanalsci.19P484&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0910-6340&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0910-6340&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0910-6340&client=summon |