Capillary Electrophoretic Characterization of Water-soluble Carbon Nanodots Formed from Glutamic Acid and Boric Acid under Microwave Irradiation

Water-soluble carbon nanodots (CND) were synthesized under microwave irradiation from glutamic acid or glutamic acid–boric acid mixture. The CNDs were collected in an aqueous solution through size fractionation by centrifugal filtration. The CNDs thus prepared were subjected to characterization by c...

Full description

Saved in:
Bibliographic Details
Published inAnalytical Sciences Vol. 36; no. 8; pp. 941 - 946
Main Authors TAKAYANAGI, Toshio, IWASAKI, Sota, BECCHAKU, Yuta, YABE, Shun, MORITA, Kotaro, MIZUGUCHI, Hitoshi, HIRAYAMA, Naoki
Format Journal Article
LanguageEnglish
Published Singapore The Japan Society for Analytical Chemistry 10.08.2020
Springer Nature Singapore
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Water-soluble carbon nanodots (CND) were synthesized under microwave irradiation from glutamic acid or glutamic acid–boric acid mixture. The CNDs were collected in an aqueous solution through size fractionation by centrifugal filtration. The CNDs thus prepared were subjected to characterization by capillary electrophoresis (CE). A peak signal of anionic substance was detected in the electropherogram, and it was found to be a major component of the CNDs. The effective electrophoretic mobility of the major component was almost identical over the pH range between 6.7 and 11.6, suggesting that the functional group of amine or boric acid moiety was not included in the CNDs. The effective electrophoretic mobility decreased at an acidic pH of less than 5, and it was suggested that carboxylate moiety was included in the CNDs. A signal of less-charged CNDs was also detected in the electropherogram, and the CNDs were characterized by a CE format of micellar electrokinetic chromatography. Two or four peaks were detected just after the electroosmotic flow; the less-charged CNDs were thus hydrophilic. The affinity interaction was also examined between the major anionic CNDs and a hydrophobic pairing cation. The peak signal of the major anionic CNDs broadened, and its theoretical number of plates decreased in the presence of tetrabutylammonium ion in the separation buffer. A small portion of the anionic CNDs were a little hydrophobic at different degrees, and their effective electrophoretic mobility decreased by the hydrophobic interaction, resulting in peak broadening of the anionic CNDs.
AbstractList Water-soluble carbon nanodots (CND) were synthesized under microwave irradiation from glutamic acid or glutamic acid–boric acid mixture. The CNDs were collected in an aqueous solution through size fractionation by centrifugal filtration. The CNDs thus prepared were subjected to characterization by capillary electrophoresis (CE). A peak signal of anionic substance was detected in the electropherogram, and it was found to be a major component of the CNDs. The effective electrophoretic mobility of the major component was almost identical over the pH range between 6.7 and 11.6, suggesting that the functional group of amine or boric acid moiety was not included in the CNDs. The effective electrophoretic mobility decreased at an acidic pH of less than 5, and it was suggested that carboxylate moiety was included in the CNDs. A signal of less-charged CNDs was also detected in the electropherogram, and the CNDs were characterized by a CE format of micellar electrokinetic chromatography. Two or four peaks were detected just after the electroosmotic flow; the less-charged CNDs were thus hydrophilic. The affinity interaction was also examined between the major anionic CNDs and a hydrophobic pairing cation. The peak signal of the major anionic CNDs broadened, and its theoretical number of plates decreased in the presence of tetrabutylammonium ion in the separation buffer. A small portion of the anionic CNDs were a little hydrophobic at different degrees, and their effective electrophoretic mobility decreased by the hydrophobic interaction, resulting in peak broadening of the anionic CNDs.
Abstact Water-soluble carbon nanodots (CND) were synthesized under microwave irradiation from glutamic acid or glutamic acid-boric acid mixture. The CNDs were collected in an aqueous solution through size fractionation by centrifugal filtration. The CNDs thus prepared were subjected to characterization by capillary electrophoresis (CE). A peak signal of anionic substance was detected in the electropherogram, and it was found to be a major component of the CNDs. The effective electrophoretic mobility of the major component was almost identical over the pH range between 6.7 and 11.6, suggesting that the functional group of amine or boric acid moiety was not included in the CNDs. The effective electrophoretic mobility decreased at an acidic pH of less than 5, and it was suggested that carboxylate moiety was included in the CNDs. A signal of less-charged CNDs was also detected in the electropherogram, and the CNDs were characterized by a CE format of micellar electrokinetic chromatography. Two or four peaks were detected just after the electroosmotic flow; the less-charged CNDs were thus hydrophilic. The affinity interaction was also examined between the major anionic CNDs and a hydrophobic pairing cation. The peak signal of the major anionic CNDs broadened, and its theoretical number of plates decreased in the presence of tetrabutylammonium ion in the separation buffer. A small portion of the anionic CNDs were a little hydrophobic at different degrees, and their effective electrophoretic mobility decreased by the hydrophobic interaction, resulting in peak broadening of the anionic CNDs.
Water-soluble carbon nanodots (CND) were synthesized under microwave irradiation from glutamic acid or glutamic acid-boric acid mixture. The CNDs were collected in an aqueous solution through size fractionation by centrifugal filtration. The CNDs thus prepared were subjected to characterization by capillary electrophoresis (CE). A peak signal of anionic substance was detected in the electropherogram, and it was found to be a major component of the CNDs. The effective electrophoretic mobility of the major component was almost identical over the pH range between 6.7 and 11.6, suggesting that the functional group of amine or boric acid moiety was not included in the CNDs. The effective electrophoretic mobility decreased at an acidic pH of less than 5, and it was suggested that carboxylate moiety was included in the CNDs. A signal of less-charged CNDs was also detected in the electropherogram, and the CNDs were characterized by a CE format of micellar electrokinetic chromatography. Two or four peaks were detected just after the electroosmotic flow; the less-charged CNDs were thus hydrophilic. The affinity interaction was also examined between the major anionic CNDs and a hydrophobic pairing cation. The peak signal of the major anionic CNDs broadened, and its theoretical number of plates decreased in the presence of tetrabutylammonium ion in the separation buffer. A small portion of the anionic CNDs were a little hydrophobic at different degrees, and their effective electrophoretic mobility decreased by the hydrophobic interaction, resulting in peak broadening of the anionic CNDs.Water-soluble carbon nanodots (CND) were synthesized under microwave irradiation from glutamic acid or glutamic acid-boric acid mixture. The CNDs were collected in an aqueous solution through size fractionation by centrifugal filtration. The CNDs thus prepared were subjected to characterization by capillary electrophoresis (CE). A peak signal of anionic substance was detected in the electropherogram, and it was found to be a major component of the CNDs. The effective electrophoretic mobility of the major component was almost identical over the pH range between 6.7 and 11.6, suggesting that the functional group of amine or boric acid moiety was not included in the CNDs. The effective electrophoretic mobility decreased at an acidic pH of less than 5, and it was suggested that carboxylate moiety was included in the CNDs. A signal of less-charged CNDs was also detected in the electropherogram, and the CNDs were characterized by a CE format of micellar electrokinetic chromatography. Two or four peaks were detected just after the electroosmotic flow; the less-charged CNDs were thus hydrophilic. The affinity interaction was also examined between the major anionic CNDs and a hydrophobic pairing cation. The peak signal of the major anionic CNDs broadened, and its theoretical number of plates decreased in the presence of tetrabutylammonium ion in the separation buffer. A small portion of the anionic CNDs were a little hydrophobic at different degrees, and their effective electrophoretic mobility decreased by the hydrophobic interaction, resulting in peak broadening of the anionic CNDs.
Author TAKAYANAGI, Toshio
MIZUGUCHI, Hitoshi
IWASAKI, Sota
MORITA, Kotaro
HIRAYAMA, Naoki
YABE, Shun
BECCHAKU, Yuta
Author_xml – sequence: 1
  fullname: TAKAYANAGI, Toshio
  organization: Graduate School of Technology, Industrial and Social Sciences, Tokushima University
– sequence: 2
  fullname: IWASAKI, Sota
  organization: Graduate School of Advanced Technology and Science, Tokushima University
– sequence: 3
  fullname: BECCHAKU, Yuta
  organization: Graduate School of Advanced Technology and Science, Tokushima University
– sequence: 4
  fullname: YABE, Shun
  organization: Department of Chemistry, Faculty of Science, Toho University
– sequence: 5
  fullname: MORITA, Kotaro
  organization: Department of Chemistry, Faculty of Science, Toho University
– sequence: 6
  fullname: MIZUGUCHI, Hitoshi
  organization: Graduate School of Technology, Industrial and Social Sciences, Tokushima University
– sequence: 7
  fullname: HIRAYAMA, Naoki
  organization: Department of Chemistry, Faculty of Science, Toho University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32009023$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1v1DAQhi1URLeFK0dkiQuXbP21iXMs6QeVyscBxNGaOE7rVWIvtgOiv6I_GW-zXaRKvYxl-3nHM-_4CB047wxCbylZMkrLE3AwRG2XtP4mpHiBFpQLWTAmygO0IDUlRckFOURHMa4JoUwy9godckZITRhfoPsGNnYYIPzF54PRKfjNrQ8mWY2bWwigkwn2DpL1Dvse_4S8L6IfpnYwuIHQ5vMv4HznU8QXPoymw33wI74cpgRjTnOqbYfBdfijD4_byXUm4M9WB_8Hfht8FQJ09uGV1-hln1syb3brMfpxcf69-VRcf728ak6vC10RlgrBOiElh7JuaS1IW_GVJG0HggmoBABrmSG6rkRpapkDb3tWE01o5sq66vkx-jDn3QT_azIxqdFGbbIVzvgpKsZXhK94Wa4y-v4JuvZT2BqvmOA1l5JWLFPvdtTUZhfUJtgx26oevc7AcgZy1zEG0-8RStR2mGo3TDUPMwvEE4G26cGkFMAOz8tOZlnM-d2NCf_LfVZxNivWMcGN2dcFIf-DwexxXiq5DbNsf63zR1HG8X9_0M5_
CitedBy_id crossref_primary_10_15583_jpchrom_2021_022
Cites_doi 10.1021/ja062677d
10.1016/j.chroma.2013.07.035
10.1002/anie.200906623
10.1039/c2jm33414c
10.1016/j.talanta.2016.09.031
10.1016/0165-9936(89)85022-8
10.1002/elps.201300488
10.2116/analsci.29.769
10.2116/analsci.31.1193
10.1016/j.microc.2013.08.002
10.1039/a605047f
10.1021/ja040082h
10.2116/analsci.31.481
10.2116/analsci.18P433
10.1016/j.ab.2016.01.024
10.1016/j.chroma.2010.09.069
10.1021/ac202667x
10.1002/elps.201600478
10.1016/j.carbon.2015.08.096
10.2116/analsci.33.1461
10.1021/ac00265a031
ContentType Journal Article
Copyright 2020 by The Japan Society for Analytical Chemistry
The Japan Society for Analytical Chemistry 2020
Copyright Japan Science and Technology Agency 2020
Copyright_xml – notice: 2020 by The Japan Society for Analytical Chemistry
– notice: The Japan Society for Analytical Chemistry 2020
– notice: Copyright Japan Science and Technology Agency 2020
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SE
7SR
7U5
8BQ
8FD
FR3
H8G
JG9
L7M
P64
7X8
DOI 10.2116/analsci.19P484
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Corrosion Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Copper Technical Reference Library
Materials Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Aluminium Industry Abstracts
Technology Research Database
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1348-2246
EndPage 946
ExternalDocumentID 32009023
10_2116_analsci_19P484
article_analsci_36_8_36_19P484_article_char_en
Genre Journal Article
GroupedDBID ---
23M
2WC
406
5GY
6J9
7.U
AATNV
AAYFA
ACGFO
ACIWK
ACPRK
ADBBV
ADOXG
AENEX
AESKC
AFRAH
AIAKS
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
BAWUL
CS3
DIK
E3Z
EBS
EJD
F5P
GX1
HH5
IWAJR
JSF
JSH
JZLTJ
KQ8
LLZTM
M~E
NPVJJ
OK1
P2P
RDB
RJT
RNS
RSV
RZJ
RZV
SOJ
TN5
TR2
UPT
XSB
ZMTXR
~02
0R~
3O-
53G
AACDK
AAJBT
AASML
ABAKF
ABJNI
ABTKH
ACAOD
ACDTI
ACPIV
ACZOJ
AEFQL
AEMSY
AFBBN
AGMZJ
AGQEE
AI.
AIGIU
DPUIP
EBLON
FIGPU
ROL
SJYHP
TKC
VH1
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
OVT
NPM
7QF
7QO
7QQ
7SE
7SR
7U5
8BQ
8FD
ABRTQ
FR3
H8G
JG9
L7M
P64
7X8
ID FETCH-LOGICAL-c702t-42d4883a69b1940b73580bda424a74aa2b2e0c9746e9846e3bf290c01358697f3
ISSN 0910-6340
1348-2246
IngestDate Fri Jul 11 07:29:27 EDT 2025
Wed Aug 27 14:45:28 EDT 2025
Wed Feb 19 02:23:58 EST 2025
Tue Jul 01 01:11:38 EDT 2025
Thu Apr 24 23:07:56 EDT 2025
Fri Feb 21 02:42:22 EST 2025
Thu Aug 17 20:29:00 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords affinity capillary electrophoresis
micellar electrokinetic chromatography
characterization
Carbon nanodot
capillary electrophoresis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c702t-42d4883a69b1940b73580bda424a74aa2b2e0c9746e9846e3bf290c01358697f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/analsci/36/8/36_19P484/_article/-char/en
PMID 32009023
PQID 2439388172
PQPubID 1966371
PageCount 6
ParticipantIDs proquest_miscellaneous_2350353665
proquest_journals_2439388172
pubmed_primary_32009023
crossref_primary_10_2116_analsci_19P484
crossref_citationtrail_10_2116_analsci_19P484
springer_journals_10_2116_analsci_19P484
jstage_primary_article_analsci_36_8_36_19P484_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-Aug-10
PublicationDateYYYYMMDD 2020-08-10
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-Aug-10
  day: 10
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Switzerland
– name: Tokyo
PublicationTitle Analytical Sciences
PublicationTitleAbbrev ANAL. SCI
PublicationTitleAlternate Anal Sci
PublicationYear 2020
Publisher The Japan Society for Analytical Chemistry
Springer Nature Singapore
Nature Publishing Group
Publisher_xml – name: The Japan Society for Analytical Chemistry
– name: Springer Nature Singapore
– name: Nature Publishing Group
References 2. Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. Shiral Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. Monica Veca, and S.-Y. Xie, J. Am. Chem. Soc., 2006, 128, 7756.
12. E. Duffy, D. P. Mitev, P. N. Nesterenko, A. A. Kazarian, and B. Paull, Electrophoresis, 2014, 35, 1864.
17. M. B. Müller, J. P. Quirino, P. N. Nesterenko, P. R. Haddad, S. Gambhir, D. Li, and G. G. Wallace, J. Chromatogr. A, 2010, 1217, 7593.
14. Q. Hu, M. C. Paau, Y. Zhang, W. Chan, X. Gong, L. Zhang, and M. M. F. Choi, J. Chromatogr. A, 2013, 1304, 234.
25. T. Takayanagi, E. Wada, and S. Motomizu, Analyst [London], 1997, 122, 57.
20. T. Takayanagi, M. Amiya, N. Shimakami, and T. Yabutani, Anal. Sci., 2015, 31, 1193.
13. Z. Markova, A. B. Bourlinos, K. Safarova, K. Polakova, J. Tucek, I. Medrik, K. Siskova, J. Petr, M. Krysmann, E. P. Giannelis, and R. Zboril, J. Mater. Chem., 2012, 22, 16219.
4. Q.-L. Zhao, Z.-L. Zhang, B.-H. Huang, J. Peng, M. Zhang, and D.-W. Pang, Chem. Commun., 2008, 5116.
19. T. Takayanagi, Y. Becchaku, Y. Tomiyama, M. Kurashina, and H. Mizuguchi, Anal. Sci., 2019, 35, 307.
24. R. Ciriello, P. T. Iallorenzi, A. Laurita, and A. Guerrieri, Electrophoresis, 2017, 38, 922.
15. Y. Wu and V. T. Remcho, Talanta, 2016, 161, 854.
1. X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, and W. A. Scrivens, J. Am. Chem. Soc., 2004, 126, 12736.
8. Y. Sun, Q. Bi, X. Zhang, L. Wang, X. Zhang, S. Dong, and L. Zhao, Anal. Biochem., 2016, 500, 38.
11. J. C. Vinci and L. A. Colón, Microchem. J., 2013, 110, 660.
21. The R Project for Statistical Computing, http://www.r-project.org/.
18. T. Takayanagi, M. Morimoto, and T. Yabutani, Anal. Sci., 2013, 29, 769.
16. H. K. Sadhanala and K. K. Nanda, Carbon, 2016, 96, 166.
3. S. N. Baker and G. A. Baker, Angew. Chem. Int. Ed., 2010, 49, 6726.
10. J. C. Vinci and L. A. Colon, Anal. Chem., 2012, 84, 1178.
6. K. Morita, A. Kobayashi, H. Nagatani, and H. Imura, Anal. Sci., 2015, 31, 481.
22. S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya, and A. Ando, Anal. Chem., 1984, 56, 111.
5. H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, and X. Yang, Chem. Commun., 2009, 5118.
7. K. Morita, S. Kurusu, H. Kodama, and N. Hirayama, Anal. Sci., 2017, 33, 1461.
9. Q. Hu, X. Gong, L. Liu, and M. M. F. Choi, J. Nanomater., 2017, 1804178.
23. S. Terabe, TrAC—Trends Anal. Chem., 1989, 8, 129.
26. Understanding your ChemStation, https://www.agilent.com/cs/library/usermanuals/Public/G2070-91126_Understanding.pdf, 240.
TakayanagiTWadaEMotomizuSAnalyst1997122571:CAS:528:DyaK2sXos1SgtQ%3D%3D10.1039/a605047f
ZhuHWangXLiYWangZYangFYangXChem. Commun.20095118
TakayanagiTBecchakuYTomiyamaYKurashinaMMizuguchiHAnal. Sci.2019353071:CAS:528:DC%2BC1MXhtVSkt7zO10.2116/analsci.18P43330416168
MüllerM BQuirinoJ PNesterenkoP NHaddadP RGambhirSLiDWallaceG GJ. Chromatogr. A20101217759310.1016/j.chroma.2010.09.06920980009
HuQGongXLiuLChoiM M FJ. Nanomater.20171804178
WuYRemchoV TTalanta20161618541:CAS:528:DC%2BC28XhsFymsb3K10.1016/j.talanta.2016.09.03127769493
TerabeSOtsukaKIchikawaKTsuchiyaAAndoAAnal. Chem.1984561111:CAS:528:DyaL2cXis1ekug%3D%3D10.1021/ac00265a031
XuXRayRGuYPloehnH JGearheartLRakerKScrivensW AJ. Am. Chem. Soc.2004126127361:CAS:528:DC%2BD2cXns1KmtL0%3D10.1021/ja040082h15469243
MarkovaZBourlinosA BSafarovaKPolakovaKTucekJMedrikISiskovaKPetrJKrysmannMGiannelisE PZborilRJ. Mater. Chem.201222162191:CAS:528:DC%2BC38XhtVOrt7%2FF10.1039/c2jm33414c
ZhaoQ-LZhangZ-LHuangB-HPengJZhangMPangD-WChem. Commun.20085116
The R Project for Statistical Computing, http://www.r-project.org/.
TakayanagiTAmiyaMShimakamiNYabutaniTAnal. Sci.20153111931:CAS:528:DC%2BC28XmvFGitr0%3D10.2116/analsci.31.119326561266
VinciJ CColónL AMicrochem. J.20131106601:CAS:528:DC%2BC3sXhs1agu77I10.1016/j.microc.2013.08.002
DuffyEMitevD PNesterenkoP NKazarianA APaullBElectrophoresis20143518641:CAS:528:DC%2BC2cXosFaqsLg%3D10.1002/elps.20130048824648270
MoritaKKurusuSKodamaHHirayamaNAnal. Sci.20173314611:CAS:528:DC%2BC1cXhsVKktbc%3D10.2116/analsci.33.146129225241
SadhanalaH KNandaK KCarbon2016961661:CAS:528:DC%2BC2MXhsFGqs77L10.1016/j.carbon.2015.08.096
SunY-PZhouBLinYWangWShiral FernandoK APathakPMezianiM JHarruffB AWangXWangHLuoP GYangHKoseM EChenBMonica VecaLXieS-YJ. Am. Chem. Soc.200612877561:CAS:528:DC%2BD28XkvVehur0%3D10.1021/ja062677d16771487
TerabeSTrAC—Trends Anal. Chem.198981291:CAS:528:DyaK3cXmvFWhtQ%3D%3D10.1016/0165-9936(89)85022-8
TakayanagiTMorimotoMYabutaniTAnal. Sci.2013297691:CAS:528:DC%2BC3sXhsVSqtLjF10.2116/analsci.29.76923934555
Understanding your ChemStation, https://www.agilent.com/cs/library/usermanuals/Public/G2070-91126_Understanding.pdf, 240.
BakerS NBakerG AAngew. Chem. Int. Ed.20104967261:CAS:528:DC%2BC3cXhtFGnsbnI10.1002/anie.200906623
CirielloRIallorenziP TLauritaAGuerrieriAElectrophoresis2017389221:CAS:528:DC%2BC2sXltVamtw%3D%3D10.1002/elps.20160047827935082
MoritaKKobayashiANagataniHImuraHAnal. Sci.2015314811:CAS:528:DC%2BC2MXhtFyktbbJ10.2116/analsci.31.48126063009
SunYBiQZhangXWangLZhangXDongSZhaoLAnal. Biochem.2016500381:CAS:528:DC%2BC28Xjs1yitrs%3D10.1016/j.ab.2016.01.02426893106
HuQPaauM CZhangYChanWGongXZhangLChoiM M FJ. Chromatogr. A201313042341:CAS:528:DC%2BC3sXhtFCqtrzJ10.1016/j.chroma.2013.07.03523885674
VinciJ CColonL AAnal. Chem.20128411781:CAS:528:DC%2BC3MXhsFKhu7zO10.1021/ac202667x22132780
Y Sun (3608008_CR8) 2016; 500
Z Markova (3608008_CR13) 2012; 22
J C Vinci (3608008_CR11) 2013; 110
T Takayanagi (3608008_CR20) 2015; 31
S Terabe (3608008_CR22) 1984; 56
X Xu (3608008_CR1) 2004; 126
Q Hu (3608008_CR14) 2013; 1304
E Duffy (3608008_CR12) 2014; 35
T Takayanagi (3608008_CR25) 1997; 122
S Terabe (3608008_CR23) 1989; 8
Y-P Sun (3608008_CR2) 2006; 128
H K Sadhanala (3608008_CR16) 2016; 96
S N Baker (3608008_CR3) 2010; 49
M B Müller (3608008_CR17) 2010; 1217
Q Hu (3608008_CR9) 2017
3608008_CR26
T Takayanagi (3608008_CR18) 2013; 29
3608008_CR21
K Morita (3608008_CR6) 2015; 31
T Takayanagi (3608008_CR19) 2019; 35
K Morita (3608008_CR7) 2017; 33
R Ciriello (3608008_CR24) 2017; 38
H Zhu (3608008_CR5) 2009
J C Vinci (3608008_CR10) 2012; 84
Q-L Zhao (3608008_CR4) 2008
Y Wu (3608008_CR15) 2016; 161
References_xml – reference: 7. K. Morita, S. Kurusu, H. Kodama, and N. Hirayama, Anal. Sci., 2017, 33, 1461.
– reference: 13. Z. Markova, A. B. Bourlinos, K. Safarova, K. Polakova, J. Tucek, I. Medrik, K. Siskova, J. Petr, M. Krysmann, E. P. Giannelis, and R. Zboril, J. Mater. Chem., 2012, 22, 16219.
– reference: 11. J. C. Vinci and L. A. Colón, Microchem. J., 2013, 110, 660.
– reference: 21. The R Project for Statistical Computing, http://www.r-project.org/.
– reference: 15. Y. Wu and V. T. Remcho, Talanta, 2016, 161, 854.
– reference: 14. Q. Hu, M. C. Paau, Y. Zhang, W. Chan, X. Gong, L. Zhang, and M. M. F. Choi, J. Chromatogr. A, 2013, 1304, 234.
– reference: 25. T. Takayanagi, E. Wada, and S. Motomizu, Analyst [London], 1997, 122, 57.
– reference: 5. H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, and X. Yang, Chem. Commun., 2009, 5118.
– reference: 6. K. Morita, A. Kobayashi, H. Nagatani, and H. Imura, Anal. Sci., 2015, 31, 481.
– reference: 22. S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya, and A. Ando, Anal. Chem., 1984, 56, 111.
– reference: 12. E. Duffy, D. P. Mitev, P. N. Nesterenko, A. A. Kazarian, and B. Paull, Electrophoresis, 2014, 35, 1864.
– reference: 10. J. C. Vinci and L. A. Colon, Anal. Chem., 2012, 84, 1178.
– reference: 16. H. K. Sadhanala and K. K. Nanda, Carbon, 2016, 96, 166.
– reference: 9. Q. Hu, X. Gong, L. Liu, and M. M. F. Choi, J. Nanomater., 2017, 1804178.
– reference: 20. T. Takayanagi, M. Amiya, N. Shimakami, and T. Yabutani, Anal. Sci., 2015, 31, 1193.
– reference: 23. S. Terabe, TrAC—Trends Anal. Chem., 1989, 8, 129.
– reference: 26. Understanding your ChemStation, https://www.agilent.com/cs/library/usermanuals/Public/G2070-91126_Understanding.pdf, 240.
– reference: 24. R. Ciriello, P. T. Iallorenzi, A. Laurita, and A. Guerrieri, Electrophoresis, 2017, 38, 922.
– reference: 1. X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, and W. A. Scrivens, J. Am. Chem. Soc., 2004, 126, 12736.
– reference: 2. Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. Shiral Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. Monica Veca, and S.-Y. Xie, J. Am. Chem. Soc., 2006, 128, 7756.
– reference: 18. T. Takayanagi, M. Morimoto, and T. Yabutani, Anal. Sci., 2013, 29, 769.
– reference: 19. T. Takayanagi, Y. Becchaku, Y. Tomiyama, M. Kurashina, and H. Mizuguchi, Anal. Sci., 2019, 35, 307.
– reference: 8. Y. Sun, Q. Bi, X. Zhang, L. Wang, X. Zhang, S. Dong, and L. Zhao, Anal. Biochem., 2016, 500, 38.
– reference: 4. Q.-L. Zhao, Z.-L. Zhang, B.-H. Huang, J. Peng, M. Zhang, and D.-W. Pang, Chem. Commun., 2008, 5116.
– reference: 3. S. N. Baker and G. A. Baker, Angew. Chem. Int. Ed., 2010, 49, 6726.
– reference: 17. M. B. Müller, J. P. Quirino, P. N. Nesterenko, P. R. Haddad, S. Gambhir, D. Li, and G. G. Wallace, J. Chromatogr. A, 2010, 1217, 7593.
– reference: TakayanagiTAmiyaMShimakamiNYabutaniTAnal. Sci.20153111931:CAS:528:DC%2BC28XmvFGitr0%3D10.2116/analsci.31.119326561266
– reference: MoritaKKurusuSKodamaHHirayamaNAnal. Sci.20173314611:CAS:528:DC%2BC1cXhsVKktbc%3D10.2116/analsci.33.146129225241
– reference: MarkovaZBourlinosA BSafarovaKPolakovaKTucekJMedrikISiskovaKPetrJKrysmannMGiannelisE PZborilRJ. Mater. Chem.201222162191:CAS:528:DC%2BC38XhtVOrt7%2FF10.1039/c2jm33414c
– reference: SadhanalaH KNandaK KCarbon2016961661:CAS:528:DC%2BC2MXhsFGqs77L10.1016/j.carbon.2015.08.096
– reference: VinciJ CColonL AAnal. Chem.20128411781:CAS:528:DC%2BC3MXhsFKhu7zO10.1021/ac202667x22132780
– reference: MoritaKKobayashiANagataniHImuraHAnal. Sci.2015314811:CAS:528:DC%2BC2MXhtFyktbbJ10.2116/analsci.31.48126063009
– reference: ZhaoQ-LZhangZ-LHuangB-HPengJZhangMPangD-WChem. Commun.20085116
– reference: The R Project for Statistical Computing, http://www.r-project.org/.
– reference: ZhuHWangXLiYWangZYangFYangXChem. Commun.20095118
– reference: SunYBiQZhangXWangLZhangXDongSZhaoLAnal. Biochem.2016500381:CAS:528:DC%2BC28Xjs1yitrs%3D10.1016/j.ab.2016.01.02426893106
– reference: XuXRayRGuYPloehnH JGearheartLRakerKScrivensW AJ. Am. Chem. Soc.2004126127361:CAS:528:DC%2BD2cXns1KmtL0%3D10.1021/ja040082h15469243
– reference: TakayanagiTMorimotoMYabutaniTAnal. Sci.2013297691:CAS:528:DC%2BC3sXhsVSqtLjF10.2116/analsci.29.76923934555
– reference: BakerS NBakerG AAngew. Chem. Int. Ed.20104967261:CAS:528:DC%2BC3cXhtFGnsbnI10.1002/anie.200906623
– reference: MüllerM BQuirinoJ PNesterenkoP NHaddadP RGambhirSLiDWallaceG GJ. Chromatogr. A20101217759310.1016/j.chroma.2010.09.06920980009
– reference: Understanding your ChemStation, https://www.agilent.com/cs/library/usermanuals/Public/G2070-91126_Understanding.pdf, 240.
– reference: HuQGongXLiuLChoiM M FJ. Nanomater.20171804178
– reference: TakayanagiTBecchakuYTomiyamaYKurashinaMMizuguchiHAnal. Sci.2019353071:CAS:528:DC%2BC1MXhtVSkt7zO10.2116/analsci.18P43330416168
– reference: TerabeSOtsukaKIchikawaKTsuchiyaAAndoAAnal. Chem.1984561111:CAS:528:DyaL2cXis1ekug%3D%3D10.1021/ac00265a031
– reference: DuffyEMitevD PNesterenkoP NKazarianA APaullBElectrophoresis20143518641:CAS:528:DC%2BC2cXosFaqsLg%3D10.1002/elps.20130048824648270
– reference: VinciJ CColónL AMicrochem. J.20131106601:CAS:528:DC%2BC3sXhs1agu77I10.1016/j.microc.2013.08.002
– reference: TakayanagiTWadaEMotomizuSAnalyst1997122571:CAS:528:DyaK2sXos1SgtQ%3D%3D10.1039/a605047f
– reference: CirielloRIallorenziP TLauritaAGuerrieriAElectrophoresis2017389221:CAS:528:DC%2BC2sXltVamtw%3D%3D10.1002/elps.20160047827935082
– reference: TerabeSTrAC—Trends Anal. Chem.198981291:CAS:528:DyaK3cXmvFWhtQ%3D%3D10.1016/0165-9936(89)85022-8
– reference: HuQPaauM CZhangYChanWGongXZhangLChoiM M FJ. Chromatogr. A201313042341:CAS:528:DC%2BC3sXhtFCqtrzJ10.1016/j.chroma.2013.07.03523885674
– reference: SunY-PZhouBLinYWangWShiral FernandoK APathakPMezianiM JHarruffB AWangXWangHLuoP GYangHKoseM EChenBMonica VecaLXieS-YJ. Am. Chem. Soc.200612877561:CAS:528:DC%2BD28XkvVehur0%3D10.1021/ja062677d16771487
– reference: WuYRemchoV TTalanta20161618541:CAS:528:DC%2BC28XhsFymsb3K10.1016/j.talanta.2016.09.03127769493
– volume: 128
  start-page: 7756
  year: 2006
  ident: 3608008_CR2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja062677d
– volume: 1304
  start-page: 234
  year: 2013
  ident: 3608008_CR14
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2013.07.035
– start-page: 1804178
  volume-title: J. Nanomater.
  year: 2017
  ident: 3608008_CR9
– volume: 49
  start-page: 6726
  year: 2010
  ident: 3608008_CR3
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200906623
– volume: 22
  start-page: 16219
  year: 2012
  ident: 3608008_CR13
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm33414c
– volume: 161
  start-page: 854
  year: 2016
  ident: 3608008_CR15
  publication-title: Talanta
  doi: 10.1016/j.talanta.2016.09.031
– volume: 8
  start-page: 129
  year: 1989
  ident: 3608008_CR23
  publication-title: TrAC—Trends Anal. Chem.
  doi: 10.1016/0165-9936(89)85022-8
– volume: 35
  start-page: 1864
  year: 2014
  ident: 3608008_CR12
  publication-title: Electrophoresis
  doi: 10.1002/elps.201300488
– ident: 3608008_CR21
– volume: 29
  start-page: 769
  year: 2013
  ident: 3608008_CR18
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.29.769
– volume: 31
  start-page: 1193
  year: 2015
  ident: 3608008_CR20
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.31.1193
– volume: 110
  start-page: 660
  year: 2013
  ident: 3608008_CR11
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2013.08.002
– volume: 122
  start-page: 57
  year: 1997
  ident: 3608008_CR25
  publication-title: Analyst
  doi: 10.1039/a605047f
– volume: 126
  start-page: 12736
  year: 2004
  ident: 3608008_CR1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja040082h
– volume: 31
  start-page: 481
  year: 2015
  ident: 3608008_CR6
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.31.481
– volume: 35
  start-page: 307
  year: 2019
  ident: 3608008_CR19
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.18P433
– volume: 500
  start-page: 38
  year: 2016
  ident: 3608008_CR8
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2016.01.024
– ident: 3608008_CR26
– volume: 1217
  start-page: 7593
  year: 2010
  ident: 3608008_CR17
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2010.09.069
– volume: 84
  start-page: 1178
  year: 2012
  ident: 3608008_CR10
  publication-title: Anal. Chem.
  doi: 10.1021/ac202667x
– volume: 38
  start-page: 922
  year: 2017
  ident: 3608008_CR24
  publication-title: Electrophoresis
  doi: 10.1002/elps.201600478
– volume: 96
  start-page: 166
  year: 2016
  ident: 3608008_CR16
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.08.096
– volume: 33
  start-page: 1461
  year: 2017
  ident: 3608008_CR7
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.33.1461
– volume: 56
  start-page: 111
  year: 1984
  ident: 3608008_CR22
  publication-title: Anal. Chem.
  doi: 10.1021/ac00265a031
– start-page: 5118
  volume-title: Chem. Commun.
  year: 2009
  ident: 3608008_CR5
– start-page: 5116
  volume-title: Chem. Commun.
  year: 2008
  ident: 3608008_CR4
SSID ssj0012822
Score 2.2532828
Snippet Water-soluble carbon nanodots (CND) were synthesized under microwave irradiation from glutamic acid or glutamic acid–boric acid mixture. The CNDs were...
Abstact Water-soluble carbon nanodots (CND) were synthesized under microwave irradiation from glutamic acid or glutamic acid-boric acid mixture. The CNDs were...
Water-soluble carbon nanodots (CND) were synthesized under microwave irradiation from glutamic acid or glutamic acid-boric acid mixture. The CNDs were...
SourceID proquest
pubmed
crossref
springer
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 941
SubjectTerms Acids
affinity capillary electrophoresis
Analytical Chemistry
Aqueous solutions
Boric acid
Capillary electrophoresis
Carbon
Carbon nanodot
Centrifugal filtration
characterization
Chemistry
Electrokinetics
Electroosmosis
Electrophoresis
Electrophoretic mobility
Fractionation
Functional groups
Glutamic acid
Hydrophobicity
Irradiation
micellar electrokinetic chromatography
pH effects
Water chemistry
Title Capillary Electrophoretic Characterization of Water-soluble Carbon Nanodots Formed from Glutamic Acid and Boric Acid under Microwave Irradiation
URI https://www.jstage.jst.go.jp/article/analsci/36/8/36_19P484/_article/-char/en
https://link.springer.com/article/10.2116/analsci.19P484
https://www.ncbi.nlm.nih.gov/pubmed/32009023
https://www.proquest.com/docview/2439388172
https://www.proquest.com/docview/2350353665
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Analytical Sciences, 2020/08/10, Vol.36(8), pp.941-946
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKQIIXxH8KAxkJCaQqWxrn7wMPWdXS0TFAbbXuKXIchw5NbZW2D9un4FvwNbmz3aQtBQEvUeNYltP75Xxn3_2OkNc8D4Ujc2kFgtmWCzcWt7PMCvMgFKGbe5pL7-Op3x26H0beqFb7sRa1tFykB-J6Z17J_0gV2kCumCX7D5ItB4UG-A3yhStIGK5_JeMWn2HRoOKq0dbVbGZjnZWoTtE1D_N1aROegVlZWDgjzJZq8SKFdtCu6JjOGx0wXsH4VOkm72HSWKe-EYsLReXaOEIqEX2LWWcFhtuDA4-li46LAvkNSgGXzMz88mpRJV2KKlhxEPfic6wkcKzQMp2PdTCYguhZ3I976kF_uqh2C9qtVjfuDdWKsazaz-MjFc7ZHy8n6xsYjgqfM6Gshv8bj0p27rqZnUpYKnymWZ0OpNbTzAUoOGb30ihyzaRiABuuaeVIc2ttrxbg-2qaZICDuDhoRp81r-oWLffpp6QzPDlJBu3R4Aa56YA_ggq196U6rsJYXEXqaGaq2UFx_MPN0Tesn1vfwAH4Knf5Nr-cyytzZ3CP3DV-Co016O6Tmpw8ILdbq_KAD8n3Enx0C3x0G3x0mtMN8FENProCH9Xgowg-ugIfRbRRAB9V4NO3Cny0BB9dA98jMuy0B62uZcp7WCKwnYXlOhmsHoz7UdqMXDsN8EQ-zbjruDxwOXdSR9oC_F1fRmAlS5bmTmQL8Fm80I-CnD0me5PpRD4lNJKBn7mRZJmfuzJs8maaCXBEvMwJcy6adWKt_vZEGO57LMFymYAPjGJKjJgSLaY6eVP2n2nWl9_2fKelWPYz2qDsx_wkxIvuXz7GpErQYXWyvxJ-YjTLPHHAS2BhCL5FnbwqH4N88TCPT-R0CX2YZzOP-b5XJ080aMopMDzyBGO8Tt6uUFQNvvs9nv15Hs_JnerT3Sd7i2IpX4A1vkhfqi_hJxLM59g
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capillary+Electrophoretic+Characterization+of+Water-soluble+Carbon+Nanodots+Formed+from+Glutamic+Acid+and+Boric+Acid+under+Microwave+Irradiation&rft.jtitle=Analytical+sciences&rft.au=TAKAYANAGI%2C+Toshio&rft.au=IWASAKI%2C+Sota&rft.au=BECCHAKU%2C+Yuta&rft.au=YABE%2C+Shun&rft.date=2020-08-10&rft.pub=Nature+Publishing+Group&rft.issn=0910-6340&rft.eissn=1348-2246&rft.volume=36&rft.issue=8&rft.spage=941&rft_id=info:doi/10.2116%2Fanalsci.19P484&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0910-6340&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0910-6340&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0910-6340&client=summon