Recent advances in QM/MM free energy calculations using reference potentials
Recent years have seen enormous progress in the development of methods for modeling (bio)molecular systems. This has allowed for the simulation of ever larger and more complex systems. However, as such complexity increases, the requirements needed for these models to be accurate and physically meani...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1850; no. 5; pp. 954 - 965 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.05.2015
Elsevier Pub. Co |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent years have seen enormous progress in the development of methods for modeling (bio)molecular systems. This has allowed for the simulation of ever larger and more complex systems. However, as such complexity increases, the requirements needed for these models to be accurate and physically meaningful become more and more difficult to fulfill. The use of simplified models to describe complex biological systems has long been shown to be an effective way to overcome some of the limitations associated with this computational cost in a rational way.
Hybrid QM/MM approaches have rapidly become one of the most popular computational tools for studying chemical reactivity in biomolecular systems. However, the high cost involved in performing high-level QM calculations has limited the applicability of these approaches when calculating free energies of chemical processes. In this review, we present some of the advances in using reference potentials and mean field approximations to accelerate high-level QM/MM calculations. We present illustrative applications of these approaches and discuss challenges and future perspectives for the field.
The use of physically-based simplifications has shown to effectively reduce the cost of high-level QM/MM calculations. In particular, lower-level reference potentials enable one to reduce the cost of expensive free energy calculations, thus expanding the scope of problems that can be addressed.
As was already demonstrated 40years ago, the usage of simplified models still allows one to obtain cutting edge results with substantially reduced computational cost. This article is part of a Special Issue entitled Recent developments of molecular dynamics.
•We present some of the advances to accelerate high-level QM/MM calculations.•Quantitative limitations of low-level methods can be overcome by these approaches.•Reference potentials make free energy simulations feasible for large systems.•Automated fitting reduces the need of expensive sampling of high-level approaches.•Application of reference potentials can be extended to a wide range of processes. |
---|---|
AbstractList | Recent years have seen enormous progress in the development of methods for modeling (bio)molecular systems. This has allowed for the simulation of ever larger and more complex systems. However, as such complexity increases, the requirements needed for these models to be accurate and physically meaningful become more and more difficult to fulfill. The use of simplified models to describe complex biological systems has long been shown to be an effective way to overcome some of the limitations associated with this computational cost in a rational way.Hybrid QM/MM approaches have rapidly become one of the most popular computational tools for studying chemical reactivity in biomolecular systems. However, the high cost involved in performing high-level QM calculations has limited the applicability of these approaches when calculating free energies of chemical processes. In this review, we present some of the advances in using reference potentials and mean field approximations to accelerate high-level QM/MM calculations. We present illustrative applications of these approaches and discuss challenges and future perspectives for the field.The use of physically-based simplifications has shown to effectively reduce the cost of high-level QM/MM calculations. In particular, lower-level reference potentials enable one to reduce the cost of expensive free energy calculations, thus expanding the scope of problems that can be addressed.As was already demonstrated 40years ago, the usage of simplified models still allows one to obtain cutting edge results with substantially reduced computational cost. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Recent years have seen enormous progress in the development of methods for modeling (bio)molecular systems. This has allowed for the simulation of ever larger and more complex systems. However, as such complexity increases, the requirements needed for these models to be accurate and physically meaningful become more and more difficult to fulfill. The use of simplified models to describe complex biological systems has long been shown to be an effective way to overcome some of the limitations associated with this computational cost in a rational way. Hybrid QM/MM approaches have rapidly become one of the most popular computational tools for studying chemical reactivity in biomolecular systems. However, the high cost involved in performing high-level QM calculations has limited the applicability of these approaches when calculating free energies of chemical processes. In this review, we present some of the advances in using reference potentials and mean field approximations to accelerate high-level QM/MM calculations. We present illustrative applications of these approaches and discuss challenges and future perspectives for the field. The use of physically-based simplifications has shown to effectively reduce the cost of high-level QM/MM calculations. In particular, lower-level reference potentials enable one to reduce the cost of expensive free energy calculations, thus expanding the scope of problems that can be addressed. As was already demonstrated 40years ago, the usage of simplified models still allows one to obtain cutting edge results with substantially reduced computational cost. This article is part of a Special Issue entitled Recent developments of molecular dynamics. •We present some of the advances to accelerate high-level QM/MM calculations.•Quantitative limitations of low-level methods can be overcome by these approaches.•Reference potentials make free energy simulations feasible for large systems.•Automated fitting reduces the need of expensive sampling of high-level approaches.•Application of reference potentials can be extended to a wide range of processes. • We present some of the advances to accelerate high-level QM/MM calculations. • Quantitative limitations of low-level methods can be overcome by these approaches. • Reference potentials make free energy simulations feasible for large systems. • Automated fitting reduces the need of expensive sampling of high-level approaches. • Application of reference potentials can be extended to a wide range of processes. Background: Recent years have seen enormous progress in the development of methods for modeling (bio)molecular systems. This has allowed for the simulation of ever larger and more complex systems. However, as such complexity increases, the requirements needed for these models to be accurate and physically meaningful become more and more difficult to fulfill. The use of simplified models to describe complex biological systems has long been shown to be an effective way to overcome some of the limitations associated with this computational cost in a rational way. Scope of review: Hybrid QM/MM approaches have rapidly become one of the most popular computational tools for studying chemical reactivity in biomolecular systems. However, the high cost involved in performing high-level QM calculations has limited the applicability of these approaches when calculating free energies of chemical processes. In this review, we present some of the advances in using reference potentials and mean field approximations to accelerate high-level QM/MM calculations. We present illustrative applications of these approaches and discuss challenges and future perspectives for the field. Major conclusions: The use of physically-based simplifications has shown to effectively reduce the cost of high-level QM/MM calculations. In particular, lower-level reference potentials enable one to reduce the cost of expensive free energy calculations, thus expanding the scope of problems that can be addressed. General significance: As was already demonstrated 40 years ago, the usage of simplified models still allows one to obtain cutting edge results with substantially reduced computational cost. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Recent years have seen enormous progress in the development of methods for modeling (bio)molecular systems. This has allowed for the simulation of ever larger and more complex systems. However, as such complexity increases, the requirements needed for these models to be accurate and physically meaningful become more and more difficult to fulfill. The use of simplified models to describe complex biological systems has long been shown to be an effective way to overcome some of the limitations associated with this computational cost in a rational way.BACKGROUNDRecent years have seen enormous progress in the development of methods for modeling (bio)molecular systems. This has allowed for the simulation of ever larger and more complex systems. However, as such complexity increases, the requirements needed for these models to be accurate and physically meaningful become more and more difficult to fulfill. The use of simplified models to describe complex biological systems has long been shown to be an effective way to overcome some of the limitations associated with this computational cost in a rational way.Hybrid QM/MM approaches have rapidly become one of the most popular computational tools for studying chemical reactivity in biomolecular systems. However, the high cost involved in performing high-level QM calculations has limited the applicability of these approaches when calculating free energies of chemical processes. In this review, we present some of the advances in using reference potentials and mean field approximations to accelerate high-level QM/MM calculations. We present illustrative applications of these approaches and discuss challenges and future perspectives for the field.SCOPE OF REVIEWHybrid QM/MM approaches have rapidly become one of the most popular computational tools for studying chemical reactivity in biomolecular systems. However, the high cost involved in performing high-level QM calculations has limited the applicability of these approaches when calculating free energies of chemical processes. In this review, we present some of the advances in using reference potentials and mean field approximations to accelerate high-level QM/MM calculations. We present illustrative applications of these approaches and discuss challenges and future perspectives for the field.The use of physically-based simplifications has shown to effectively reduce the cost of high-level QM/MM calculations. In particular, lower-level reference potentials enable one to reduce the cost of expensive free energy calculations, thus expanding the scope of problems that can be addressed.MAJOR CONCLUSIONSThe use of physically-based simplifications has shown to effectively reduce the cost of high-level QM/MM calculations. In particular, lower-level reference potentials enable one to reduce the cost of expensive free energy calculations, thus expanding the scope of problems that can be addressed.As was already demonstrated 40 years ago, the usage of simplified models still allows one to obtain cutting edge results with substantially reduced computational cost. This article is part of a Special Issue entitled Recent developments of molecular dynamics.GENERAL SIGNIFICANCEAs was already demonstrated 40 years ago, the usage of simplified models still allows one to obtain cutting edge results with substantially reduced computational cost. This article is part of a Special Issue entitled Recent developments of molecular dynamics. times We present some of the advances to accelerate high-level QM/MM calculations. Recent years have seen enormous progress in the development of methods for modeling (bio)molecular systems. This has allowed for the simulation of ever larger and more complex systems. However, as such complexity increases, the requirements needed for these models to be accurate and physically meaningful become more and more difficult to fulfill. The use of simplified models to describe complex biological systems has long been shown to be an effective way to overcome some of the limitations associated with this computational cost in a rational way. Hybrid QM/MM approaches have rapidly become one of the most popular computational tools for studying chemical reactivity in biomolecular systems. However, the high cost involved in performing high-level QM calculations has limited the applicability of these approaches when calculating free energies of chemical processes. In this review, we present some of the advances in using reference potentials and mean field approximations to accelerate high-level QM/MM calculations. We present illustrative applications of these approaches and discuss challenges and future perspectives for the field. The use of physically-based simplifications has shown to effectively reduce the cost of high-level QM/MM calculations. In particular, lower-level reference potentials enable one to reduce the cost of expensive free energy calculations, thus expanding the scope of problems that can be addressed. As was already demonstrated 40 years ago, the usage of simplified models still allows one to obtain cutting edge results with substantially reduced computational cost. This article is part of a Special Issue entitled Recent developments of molecular dynamics. |
Author | Amrein, Beat A. Kamerlin, Shina C.L. Duarte, Fernanda Blaha-Nelson, David |
AuthorAffiliation | Science for Life Laboratory, Department of Cell and Molecular Biology (ICM), Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden |
AuthorAffiliation_xml | – name: Science for Life Laboratory, Department of Cell and Molecular Biology (ICM), Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden |
Author_xml | – sequence: 1 givenname: Fernanda surname: Duarte fullname: Duarte, Fernanda email: fernanda.duarte@icm.uu.se – sequence: 2 givenname: Beat A. surname: Amrein fullname: Amrein, Beat A. – sequence: 3 givenname: David surname: Blaha-Nelson fullname: Blaha-Nelson, David – sequence: 4 givenname: Shina C.L. surname: Kamerlin fullname: Kamerlin, Shina C.L. email: kamerlin@icm.uu.se |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25038480$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-251670$$DView record from Swedish Publication Index |
BookMark | eNqFks2O0zAUhS00iOkMvAFCWbIgmWsnjh0WSKPhV2qFQMDWsp2b4ip1ip0Uzdvj0A5iWFBvvPB3jnzvORfkzA8eCXlKoaBA66tNYYxeoy8Y0KoAUQDIB2RBpWC5BKjPyAJKqPKK1vycXMS4gXR4wx-Rc8ahlJWEBVl-Rot-zHS7195izJzPPq2uVqusC4gZegzr28zq3k69Ht3gYzZF59dZwA4DJkm2G8bk4HQfH5OHXbrwyfG-JF_fvvly8z5ffnz34eZ6mVsBbMwpBzSlpBKE6IxGWTYtUqaNEUwabFtd07I2BmWFULbMdLXk2DSdhgY5hfKSvDj4xp-4m4zaBbfV4VYN2qnX7tu1GsJaTZNinNZixl8d8MRusZ3nDbq_p7r_4t13tR72quKVACmTwfOjQRh-TBhHtXXRYt9rj8MUFUuLZaypmvIkSiUrG55oehoVKUXJeNMk9NnfE_z5-l2OCXh5AGwYYkzZKOvG33mlgVyvKKi5NGqjDqVRc2kUCJVKk8TVP-I7_xOy41oxRb13GFS0bm5E6wLaUbWD-7_BL0cM3XM |
CitedBy_id | crossref_primary_10_1002_qua_25336 crossref_primary_10_1080_07391102_2023_2220830 crossref_primary_10_1021_acs_jcim_0c00613 crossref_primary_10_1063_1_4979895 crossref_primary_10_1021_acs_jctc_5b00920 crossref_primary_10_1021_acs_jctc_9b00401 crossref_primary_10_1016_j_bbagen_2015_01_010 crossref_primary_10_1021_acs_jctc_9b01139 crossref_primary_10_1021_acs_jpca_9b03995 crossref_primary_10_1021_acs_jctc_9b00641 crossref_primary_10_2174_1389557521666211007115250 crossref_primary_10_1021_acs_accounts_0c00545 crossref_primary_10_1021_acs_jctc_9b00084 crossref_primary_10_1021_acs_chemrev_5b00630 crossref_primary_10_1080_00268976_2019_1626929 crossref_primary_10_1021_acs_jctc_8b01128 crossref_primary_10_1063_1_5029879 crossref_primary_10_3390_molecules23092170 crossref_primary_10_1088_0953_8984_28_2_023002 crossref_primary_10_1021_acs_jctc_6b01217 crossref_primary_10_1021_acs_jpca_9b06041 crossref_primary_10_1039_C9CP06792B crossref_primary_10_1002_jcc_25072 crossref_primary_10_1021_acs_jpcb_1c09240 crossref_primary_10_1021_acs_jpcb_4c00104 crossref_primary_10_1002_cphc_202000039 crossref_primary_10_1002_adts_201800084 crossref_primary_10_1002_ange_201507772 crossref_primary_10_1039_D1GC00097G crossref_primary_10_1002_qua_25558 crossref_primary_10_1146_annurev_physchem_052516_050827 crossref_primary_10_1016_j_sbi_2018_01_003 crossref_primary_10_1063_5_0194463 crossref_primary_10_1142_S0219633620400088 crossref_primary_10_1002_jcc_24375 crossref_primary_10_1021_acs_jpca_4c06521 crossref_primary_10_1021_acs_jpca_1c07727 crossref_primary_10_1002_anie_201507772 crossref_primary_10_1021_acsengineeringau_1c00033 crossref_primary_10_1021_acs_jpcb_7b02932 crossref_primary_10_4236_am_2016_717178 crossref_primary_10_1063_1_5000799 crossref_primary_10_1021_acs_chemrev_6b00163 crossref_primary_10_1021_acs_jctc_6b00746 crossref_primary_10_1002_prot_25279 crossref_primary_10_1021_acs_jpcb_7b03102 crossref_primary_10_1147_JRD_2018_2888987 crossref_primary_10_1002_wcms_1515 crossref_primary_10_1021_acs_jctc_8b00081 crossref_primary_10_1021_acs_jcim_2c01448 crossref_primary_10_1002_wcms_1393 crossref_primary_10_1002_wcms_1310 |
Cites_doi | 10.1063/1.1749657 10.1002/1096-987X(200012)21:16<1458::AID-JCC4>3.0.CO;2-2 10.1021/bi400088y 10.1103/PhysRevLett.94.138302 10.1063/1.1861890 10.1039/b925647d 10.1021/jp711496y 10.1021/ct200570u 10.1063/1.1357793 10.1002/anie.200802019 10.1146/annurev-physchem-032210-103335 10.1063/1.2816557 10.1016/S0009-2614(97)01198-6 10.1103/PhysRevB.60.16350 10.1016/j.bpj.2008.11.028 10.1080/00268977500101461 10.1126/science.1158722 10.1021/ct600240y 10.1103/PhysRevB.45.13196 10.1007/s002149900083 10.1088/0034-4885/75/3/036503 10.1021/ct9003004 10.1021/ct200897x 10.1021/jp990629s 10.1039/c0cp02823a 10.1039/c2cp41005b 10.1021/ct6002466 10.1021/ct400520e 10.1016/0022-2836(76)90311-9 10.1021/jp0521757 10.1063/1.1520134 10.1146/annurev.physchem.59.032607.093618 10.1021/ct500109m 10.1021/ct300831t 10.1016/j.jmb.2007.09.069 10.1002/jcc.21253 10.1039/b802300j 10.1021/ja0452830 10.1021/jp0200728 10.1063/1.2965128 10.1002/wcms.10 10.1073/pnas.202427399 10.1021/jp9705075 10.1021/j100065a023 10.1021/ct2005209 10.1021/cr100228r 10.1016/j.theochem.2008.12.025 10.1021/jp057109j 10.1021/cr050293k 10.1021/ct100684s 10.1063/1.1525798 10.1021/ja00287a028 10.1021/jp905886q 10.1126/science.1187409 10.1146/annurev.physchem.040808.090412 10.1063/1.1755656 10.1021/jp710038s 10.1016/j.cplett.2009.04.059 10.1073/pnas.0909150106 10.1021/ct900292r 10.1021/cr200107z 10.1063/1.480503 10.1021/jp109054j 10.1021/jp021625h 10.1038/ncomms1481 10.1002/qua.10392 10.1021/ja026955u 10.1021/jp201217b 10.1007/BF00124016 10.1021/j100132a040 10.1016/j.sbi.2012.11.010 10.1063/1.478009 10.1021/ct300331f 10.1103/RevModPhys.71.1085 10.1021/ic701051h 10.1021/jp8071712 10.1021/bi400215w 10.1002/jcc.540130212 10.1063/1.2805379 10.1063/1.1673124 10.1016/0021-9991(77)90121-8 10.1039/B512969A 10.1529/biophysj.108.131565 10.1021/ct0501102 10.1109/MCSE.2008.148 10.1146/annurev-biophys-042910-155255 10.1021/jp054913x 10.1039/b718795e 10.1007/s00214-005-0066-0 10.1021/cr200148b 10.1021/jp026213n 10.1073/pnas.1220361110 10.1021/jp074853q 10.1021/ja046553h 10.1021/ja212117m 10.1021/j100049a009 10.1063/1.1289534 10.1021/jp405974b 10.1021/jp111104j 10.1021/ct400595k 10.1021/jp2076808 10.1021/ja9090353 10.1016/0022-2836(76)90004-8 10.1021/ct400308n 10.1021/ja047151c 10.1016/S0010-4655(03)00349-7 10.1145/1364782.1364802 10.1063/1.1740604 10.1021/jp004623a 10.1021/ja00771a014 10.1021/ct700347h 10.1073/pnas.1324014111 10.1063/1.1410978 10.1021/ct8001046 10.1063/1.4803143 10.1063/1.4817402 10.1063/1.3582913 10.1063/1.478083 10.1021/jp0673617 10.1073/pnas.1018686108 10.1021/jp404518r 10.1002/chem.201101674 10.1021/jp304678d 10.1021/bi201722j 10.1073/pnas.0803405105 10.1021/bi00374a006 10.1038/253694a0 10.1073/pnas.1117024108 10.1021/ja020243m 10.1016/j.sbi.2012.11.002 10.1021/ct401118k 10.1021/ct100601n 10.1021/ct200909j 10.1021/ar900171c 10.1088/0953-8984/22/7/074207 10.1103/PhysRevB.58.7260 10.1021/jp0550816 10.1021/ct900148e 10.1146/annurev-biophys-042910-155245 10.1016/j.jsb.2006.10.023 10.1021/bi701732a 10.1063/1.3699234 |
ContentType | Journal Article |
Copyright | 2014 Copyright © 2014. Published by Elsevier B.V. 2014 The Authors. Published by Elsevier B.V. 2014 |
Copyright_xml | – notice: 2014 – notice: Copyright © 2014. Published by Elsevier B.V. – notice: 2014 The Authors. Published by Elsevier B.V. 2014 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7S9 L.6 5PM ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
DOI | 10.1016/j.bbagen.2014.07.008 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 965 |
ExternalDocumentID | oai_DiVA_org_uu_251670 PMC4547088 25038480 10_1016_j_bbagen_2014_07_008 S0304416514002463 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM PKN RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7QO 8FD FR3 P64 7S9 EFKBS L.6 5PM ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
ID | FETCH-LOGICAL-c702t-150eb3818077fbae839de12abb728bedda6136bbe84e03d2bf685e99fa09e5103 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 0006-3002 1872-8006 |
IngestDate | Thu Aug 21 07:01:49 EDT 2025 Thu Aug 21 18:17:59 EDT 2025 Tue Aug 05 10:10:32 EDT 2025 Fri Jul 11 16:13:23 EDT 2025 Fri Jul 11 06:47:37 EDT 2025 Wed Feb 19 02:42:55 EST 2025 Tue Jul 01 00:22:03 EDT 2025 Thu Apr 24 23:04:11 EDT 2025 Fri Feb 23 02:34:13 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | RS Mean field approximation CG ABF PMF QM/MM REMD Multiscale modeling EVB FEP PD QTCP MD Reference potential LRA Averaging potential SCC-DFTB QM/MM free energy calculation US TS |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/3.0 Copyright © 2014. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c702t-150eb3818077fbae839de12abb728bedda6136bbe84e03d2bf685e99fa09e5103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0304416514002463 |
PMID | 25038480 |
PQID | 1700682599 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_251670 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4547088 proquest_miscellaneous_2000229493 proquest_miscellaneous_1823950221 proquest_miscellaneous_1700682599 pubmed_primary_25038480 crossref_citationtrail_10_1016_j_bbagen_2014_07_008 crossref_primary_10_1016_j_bbagen_2014_07_008 elsevier_sciencedirect_doi_10_1016_j_bbagen_2014_07_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-05-01 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2015 |
Publisher | Elsevier B.V Elsevier Pub. Co |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Pub. Co |
References | Sánchez, Martín, Fdez. Galván, Olivares del Valle, Aguilar (bb0515) 2002; 106 Soriano, Silla, Tunon, Ruiz-Lopez (bb0670) 2005; 127 Zhang, Kua, McCammon (bb0465) 2002; 124 Zhang, Lee, Yang (bb0575) 1999; 110 Yasuda (bb0340) 2008; 4 Yin, Wang, Valiev (bb0485) 2011; 115 Andrade, Aspuru-Guzik (bb0345) 2013; 9 Lonsdale, Hoyle, Grey, Ridder, Mulholland (bb0490) 2012; 51 Bulo, Ensing, Sikkema, Visscher (bb0725) 2009; 5 van der Kamp, Mulholland (bb0025) 2013; 52 Shaw, Deneroff, Dror, Kuskin, Larson, Salmon, Young, Batson, Bowers, Chao, Eastwood, Gagliardo, Grossman, Ho, Ierardi, Kolossvary, Klepeis, Layman, Mcleavey, Moraes, Mueller, Priest, Shan, Spengler, Theobald, Towles, Wang (bb0040) 2008; 51 Hu, Yang (bb0225) 2008; 59 König, Hudson, Boresch, Woodcock (bb0560) 2014; 10 Warshel, Karplus (bb0365) 1972; 94 Wang, Teter (bb0290) 1992; 45 Muller, Warshel (bb0135) 1995; 99 Klähn, Braun-Sand, Rosta, Warshel (bb0405) 2005; 109 Hansmann (bb0190) 1997; 281 Scuseria (bb0270) 1999; 103 Plotnikov, Warshel (bb0595) 2012; 116 Mo, Gao (bb0395) 2000; 21 Hermann, Ridder, Holtje, Mulholland (bb0475) 2006; 4 Bachorz, Klopper, Gutowski, Li, Bowen (bb0655) 2008; 129 Weber, Thiel (bb0380) 2000; 103 Tapia, Goscinski (bb0505) 1975; 29 Voelz, Bowman, Beauchamp, Pande (bb0060) 2010; 132 Plotnikov, Kamerlin, Warshel (bb0140) 2011; 115 Freddolino, Liu, Gruebele, Schulten (bb0080) 2008; 94 Rychkova, Warshel (bb0685) 2013; 110 Dror, Dirks, Grossman, Xu, Shaw (bb0020) 2012; 41 Cui, Li (bb0525) 2013; 138 Re, Morokuma (bb0645) 2001; 105 Kamerlin, Vicatos, Dryga, Warshel (bb0175) 2011; 62 (bb0370) 2013 Shillcock (bb0130) 2013; vol. 924 Torrie, Valleau (bb0180) 1977; 23 Hyeon, Thirumalai (bb0115) 2011; 2 Gotz, Williamson, Xu, Poole, Le Grand, Walker (bb0045) 2012; 8 Zuckerman (bb0215) 2011; 40 Hung, Carter (bb0075) 2009; 475 Senn, Thiel (bb0100) 2009; 48 Elstner (bb0315) 2006; 116 Nam, Cui, Gao, York (bb0375) 2007; 3 Roca, Liu, Messer, Warshel (bb0170) 2007; 46 Wang, Govind, Carter (bb0295) 1999; 60 Florián, Warshel (bb0500) 1997; 101 Bowler, Miyazaki (bb0325) 2012; 75 Beierlein, Michel, Essex (bb0635) 2011; 115 Levitt, Warshel (bb0110) 1975; 253 Varnai, Bernstein, Mones, Csanyi (bb0715) 2013; 117 Schulz, Lindner, Petridis, Smith (bb0010) 2009; 5 Ensign, Kasson, Pande (bb0085) 2007; 374 Kaukonen, Söderhjelm, Heimdal, Ryde (bb0585) 2008; 4 Hu, Yang (bb0570) 2009; 898 Acevedo, Jorgensen (bb0220) 2009; 43 Wesolowski, Warshel (bb0305) 1993; 97 Hu, Lu, Yang (bb0545) 2007; 3 Warshel, Sussman, King (bb0665) 1986; 25 Thirumalai, Liu, O'Brien, Reddy (bb0120) 2013; 23 Kirkwood (bb0185) 1935; 3 Kamerlin, Warshel (bb0235) 2011; 13 Cao, Bjornsson, Buhl, Thiel, van Mourik (bb0555) 2012; 18 Czub, Grubmuller (bb0690) 2011; 108 Nakano, Yamamoto (bb0540) 2012; 9 Greco, Bruschi, Heimdal, Fantucci, De Gioia, Ryde (bb0455) 2007; 46 Levitt (bb0245) 1976; 104 Galván, Sánchez, Martín, Olivares del Valle, Aguilar (bb0510) 2003; 118 Rosta, Haranczyk, Chu, Warshel (bb0495) 2008; 112 Kosugi, Hayashi (bb0550) 2012; 134 Hu, Yang (bb0530) 2010; 114 Darve, Pohorille (bb0195) 2001; 115 Huber, Torda, Gunsteren (bb0610) 1994; 8 Fox, Pittock, Tautermann, Fox, Christ, Malcolm, Essex, Skylaris (bb0565) 2013; 117 Weinan, Vanden-Eijnden (bb0200) 2010; 61 Woods, Manby, Mulholland (bb0435) 2008; 128 Rod, Ryde (bb0150) 2005; 1 Iftimie, Schofield (bb0460) 2001; 114 Hamelberg, Mongan, McCammon (bb0205) 2004; 120 Shaw, Maragakis, Lindorff-Larsen, Piana, Dror, Eastwood, Bank, Jumper, Salmon, Shan, Wriggers (bb0090) 2010; 330 Devi-Kesavan, Gao (bb0680) 2003; 125 Plotnikov (bb0700) 2014; 10 Bandyopadhyay (bb0420) 2005; 122 Valiev, Yang, Adams, Taylor, Weare (bb0480) 2007; 111 Zink, Grubmuller (bb0050) 2009; 96 Susukita, Ebisuzaki, Elmegreen, Furusawa, Kato, Kawai, Kobayashi, Koishi, McNiven, Narumi, Yasuoka (bb0035) 2003; 155 Laio, Parrinello (bb0210) 2002; 99 Heyden, Lin, Truhlar (bb0705) 2007; 111 Warshel, Levitt (bb0355) 1976; 103 Polyak, Benighaus, Boulanger, Thiel (bb0425) 2013; 139 Lonsdale, Ranaghan, Mulholland (bb0230) 2010; 46 Bowler, Miyazaki (bb0070) 2010; 22 Shih, Arkhipov, Freddolino, Schulten (bb0125) 2006; 110 Luzhkov, Warshel (bb0240) 1992; 13 Iftimie, Salahub, Wei, Schofield (bb0410) 2000; 113 Sena, Miyazaki, Bowler (bb0015) 2011; 7 Kim, Warshel (bb0165) 2014; 111 Ridder, Harvey, Rietjens, Vervoort, Mulholland (bb0470) 2003; 107 Florián, Johnson (bb0630) 1994; 98 Pisliakov, Cao, Kamerlin, Warshel (bb0650) 2009; 106 Ufimtsev, Martinez (bb0330) 2008; 10 Das, Eurenius, Billings, Sherwood, Chatfield, Hodošček, Brooks (bb0580) 2002; 117 Hansen, Hünenberger (bb0615) 2010; 31 Dedikova, Neogrady, Urban (bb0660) 2011; 115 Tuttle, Thiel (bb0385) 2008; 10 Wu, Su, Shaik, Hiberty (bb0390) 2011; 111 Park, Gotz, Walker, Paesani (bb0710) 2012; 8 Pezeshki, Lin (bb0720) 2011; 7 Rod, Ryde (bb0440) 2005; 94 Kaduk, Kowalczyk, Van Voorhis (bb0275) 2011; 112 Zhang, Liu, Yang (bb0445) 2000; 112 VandeVondele, Borstnik, Hutter (bb0065) 2012; 8 Gao, Ma, Major, Nam, Pu, Truhlar (bb0105) 2006; 106 Roca, Messer, Hilvert, Warshel (bb0160) 2008; 105 Olsson, Warshel (bb0675) 2004; 126 Wood, Yezdimer, Sakane, Barriocanal, Doren (bb0430) 1999; 110 Mones, Tang, Florián (bb0605) 2013; 52 Sanbonmatsu, Tung (bb0055) 2007; 157 Elstner, Porezag, Jungnickel, Elsner, Haugk, Frauenheim, Suhai, Seifert (bb0310) 1998; 58 Goedecker (bb0005) 1999; 71 Cohen, Mori-Sanchez, Yang (bb0620) 2008; 321 Crespo, Martí, Estrin, Roitberg (bb0145) 2005; 127 Ufimtsev, Martinez (bb0350) 2009; 5 Hu, Lu, Parks, Burger, Yang (bb0155) 2008; 128 Haranczyk, Gutowski, Warshel (bb0535) 2008; 10 Nitsche, Ferreria, Mocskos, Lebrero (bb0335) 2014; 10 Khaliullin, VandeVondele, Hutter (bb0280) 2013; 9 Lane, Shukla, Beauchamp, Pande (bb0030) 2013; 23 Mukherjee, Warshel (bb0695) 2011; 108 Gaus, Cui, Elstner (bb0320) 2011; 7 Rosta, Klähn, Warshel (bb0255) 2006; 110 Heimdal, Ryde (bb0095) 2012; 14 Goodpaster, Barnes, Miller (bb0300) 2011; 134 Warshel (bb0260) 1991 Rezac, Levy, Demachy, de la Lande (bb0285) 2012; 8 Warshel, Bromberg (bb0360) 1970; 52 Chandrasekhar, Smith, Jorgensen (bb0640) 1985; 107 Kamerlin, Haranczyk, Warshel (bb0590) 2009; 113 Heimdal, Rydberg, Ryde (bb0450) 2008; 112 Zwanzig (bb0265) 1955; 23 Štrajbl, Hong, Warshel (bb0250) 2002; 106 Shurki, Crown (bb0400) 2005; 109 Cohen, Mori-Sanchez, Yang (bb0625) 2012; 112 Nakano, Yamamoto (bb0520) 2012; 136 Kamerlin, Warshel (bb0600) 2011; 1 Iftimie, Schofield (bb0415) 2003; 91 Schulz (10.1016/j.bbagen.2014.07.008_bb0010) 2009; 5 Chandrasekhar (10.1016/j.bbagen.2014.07.008_bb0640) 1985; 107 Ridder (10.1016/j.bbagen.2014.07.008_bb0470) 2003; 107 Hu (10.1016/j.bbagen.2014.07.008_bb0545) 2007; 3 Warshel (10.1016/j.bbagen.2014.07.008_bb0665) 1986; 25 Hamelberg (10.1016/j.bbagen.2014.07.008_bb0205) 2004; 120 Kamerlin (10.1016/j.bbagen.2014.07.008_bb0175) 2011; 62 Yasuda (10.1016/j.bbagen.2014.07.008_bb0340) 2008; 4 Zhang (10.1016/j.bbagen.2014.07.008_bb0445) 2000; 112 Zhang (10.1016/j.bbagen.2014.07.008_bb0465) 2002; 124 König (10.1016/j.bbagen.2014.07.008_bb0560) 2014; 10 Elstner (10.1016/j.bbagen.2014.07.008_bb0315) 2006; 116 Florián (10.1016/j.bbagen.2014.07.008_bb0500) 1997; 101 Galván (10.1016/j.bbagen.2014.07.008_bb0510) 2003; 118 Goedecker (10.1016/j.bbagen.2014.07.008_bb0005) 1999; 71 Bachorz (10.1016/j.bbagen.2014.07.008_bb0655) 2008; 129 Cohen (10.1016/j.bbagen.2014.07.008_bb0620) 2008; 321 Bowler (10.1016/j.bbagen.2014.07.008_bb0325) 2012; 75 Olsson (10.1016/j.bbagen.2014.07.008_bb0675) 2004; 126 Sena (10.1016/j.bbagen.2014.07.008_bb0015) 2011; 7 Zuckerman (10.1016/j.bbagen.2014.07.008_bb0215) 2011; 40 Kaukonen (10.1016/j.bbagen.2014.07.008_bb0585) 2008; 4 Hung (10.1016/j.bbagen.2014.07.008_bb0075) 2009; 475 Roca (10.1016/j.bbagen.2014.07.008_bb0170) 2007; 46 Zink (10.1016/j.bbagen.2014.07.008_bb0050) 2009; 96 Plotnikov (10.1016/j.bbagen.2014.07.008_bb0595) 2012; 116 Devi-Kesavan (10.1016/j.bbagen.2014.07.008_bb0680) 2003; 125 Kirkwood (10.1016/j.bbagen.2014.07.008_bb0185) 1935; 3 Heimdal (10.1016/j.bbagen.2014.07.008_bb0450) 2008; 112 Lane (10.1016/j.bbagen.2014.07.008_bb0030) 2013; 23 Hansmann (10.1016/j.bbagen.2014.07.008_bb0190) 1997; 281 Rosta (10.1016/j.bbagen.2014.07.008_bb0255) 2006; 110 Warshel (10.1016/j.bbagen.2014.07.008_bb0365) 1972; 94 Mukherjee (10.1016/j.bbagen.2014.07.008_bb0695) 2011; 108 Gotz (10.1016/j.bbagen.2014.07.008_bb0045) 2012; 8 Huber (10.1016/j.bbagen.2014.07.008_bb0610) 1994; 8 Freddolino (10.1016/j.bbagen.2014.07.008_bb0080) 2008; 94 Kamerlin (10.1016/j.bbagen.2014.07.008_bb0600) 2011; 1 (10.1016/j.bbagen.2014.07.008_bb0370) 2013 Yin (10.1016/j.bbagen.2014.07.008_bb0485) 2011; 115 Shaw (10.1016/j.bbagen.2014.07.008_bb0040) 2008; 51 Hu (10.1016/j.bbagen.2014.07.008_bb0225) 2008; 59 Susukita (10.1016/j.bbagen.2014.07.008_bb0035) 2003; 155 Woods (10.1016/j.bbagen.2014.07.008_bb0435) 2008; 128 Plotnikov (10.1016/j.bbagen.2014.07.008_bb0700) 2014; 10 Sanbonmatsu (10.1016/j.bbagen.2014.07.008_bb0055) 2007; 157 Greco (10.1016/j.bbagen.2014.07.008_bb0455) 2007; 46 Hu (10.1016/j.bbagen.2014.07.008_bb0570) 2009; 898 Iftimie (10.1016/j.bbagen.2014.07.008_bb0415) 2003; 91 Darve (10.1016/j.bbagen.2014.07.008_bb0195) 2001; 115 Kaduk (10.1016/j.bbagen.2014.07.008_bb0275) 2011; 112 Lonsdale (10.1016/j.bbagen.2014.07.008_bb0490) 2012; 51 Kamerlin (10.1016/j.bbagen.2014.07.008_bb0590) 2009; 113 Park (10.1016/j.bbagen.2014.07.008_bb0710) 2012; 8 Shaw (10.1016/j.bbagen.2014.07.008_bb0090) 2010; 330 Iftimie (10.1016/j.bbagen.2014.07.008_bb0460) 2001; 114 Nam (10.1016/j.bbagen.2014.07.008_bb0375) 2007; 3 Khaliullin (10.1016/j.bbagen.2014.07.008_bb0280) 2013; 9 Beierlein (10.1016/j.bbagen.2014.07.008_bb0635) 2011; 115 Shih (10.1016/j.bbagen.2014.07.008_bb0125) 2006; 110 Wang (10.1016/j.bbagen.2014.07.008_bb0295) 1999; 60 Ufimtsev (10.1016/j.bbagen.2014.07.008_bb0330) 2008; 10 Hu (10.1016/j.bbagen.2014.07.008_bb0155) 2008; 128 Mones (10.1016/j.bbagen.2014.07.008_bb0605) 2013; 52 Re (10.1016/j.bbagen.2014.07.008_bb0645) 2001; 105 Luzhkov (10.1016/j.bbagen.2014.07.008_bb0240) 1992; 13 Muller (10.1016/j.bbagen.2014.07.008_bb0135) 1995; 99 Ensign (10.1016/j.bbagen.2014.07.008_bb0085) 2007; 374 Hyeon (10.1016/j.bbagen.2014.07.008_bb0115) 2011; 2 Senn (10.1016/j.bbagen.2014.07.008_bb0100) 2009; 48 Rod (10.1016/j.bbagen.2014.07.008_bb0440) 2005; 94 Hu (10.1016/j.bbagen.2014.07.008_bb0530) 2010; 114 Cao (10.1016/j.bbagen.2014.07.008_bb0555) 2012; 18 Bowler (10.1016/j.bbagen.2014.07.008_bb0070) 2010; 22 Rosta (10.1016/j.bbagen.2014.07.008_bb0495) 2008; 112 Florián (10.1016/j.bbagen.2014.07.008_bb0630) 1994; 98 Wesolowski (10.1016/j.bbagen.2014.07.008_bb0305) 1993; 97 Dror (10.1016/j.bbagen.2014.07.008_bb0020) 2012; 41 Voelz (10.1016/j.bbagen.2014.07.008_bb0060) 2010; 132 Weinan (10.1016/j.bbagen.2014.07.008_bb0200) 2010; 61 Weber (10.1016/j.bbagen.2014.07.008_bb0380) 2000; 103 Acevedo (10.1016/j.bbagen.2014.07.008_bb0220) 2009; 43 Iftimie (10.1016/j.bbagen.2014.07.008_bb0410) 2000; 113 Levitt (10.1016/j.bbagen.2014.07.008_bb0245) 1976; 104 Varnai (10.1016/j.bbagen.2014.07.008_bb0715) 2013; 117 Nakano (10.1016/j.bbagen.2014.07.008_bb0540) 2012; 9 Nitsche (10.1016/j.bbagen.2014.07.008_bb0335) 2014; 10 Warshel (10.1016/j.bbagen.2014.07.008_bb0360) 1970; 52 Warshel (10.1016/j.bbagen.2014.07.008_bb0355) 1976; 103 Rychkova (10.1016/j.bbagen.2014.07.008_bb0685) 2013; 110 Rezac (10.1016/j.bbagen.2014.07.008_bb0285) 2012; 8 Pezeshki (10.1016/j.bbagen.2014.07.008_bb0720) 2011; 7 Kamerlin (10.1016/j.bbagen.2014.07.008_bb0235) 2011; 13 Rod (10.1016/j.bbagen.2014.07.008_bb0150) 2005; 1 Bandyopadhyay (10.1016/j.bbagen.2014.07.008_bb0420) 2005; 122 Heyden (10.1016/j.bbagen.2014.07.008_bb0705) 2007; 111 Wang (10.1016/j.bbagen.2014.07.008_bb0290) 1992; 45 Das (10.1016/j.bbagen.2014.07.008_bb0580) 2002; 117 Soriano (10.1016/j.bbagen.2014.07.008_bb0670) 2005; 127 van der Kamp (10.1016/j.bbagen.2014.07.008_bb0025) 2013; 52 Klähn (10.1016/j.bbagen.2014.07.008_bb0405) 2005; 109 Wu (10.1016/j.bbagen.2014.07.008_bb0390) 2011; 111 Lonsdale (10.1016/j.bbagen.2014.07.008_bb0230) 2010; 46 Shurki (10.1016/j.bbagen.2014.07.008_bb0400) 2005; 109 Scuseria (10.1016/j.bbagen.2014.07.008_bb0270) 1999; 103 Shillcock (10.1016/j.bbagen.2014.07.008_bb0130) 2013; vol. 924 Heimdal (10.1016/j.bbagen.2014.07.008_bb0095) 2012; 14 Andrade (10.1016/j.bbagen.2014.07.008_bb0345) 2013; 9 Cui (10.1016/j.bbagen.2014.07.008_bb0525) 2013; 138 Pisliakov (10.1016/j.bbagen.2014.07.008_bb0650) 2009; 106 Dedikova (10.1016/j.bbagen.2014.07.008_bb0660) 2011; 115 Czub (10.1016/j.bbagen.2014.07.008_bb0690) 2011; 108 Haranczyk (10.1016/j.bbagen.2014.07.008_bb0535) 2008; 10 VandeVondele (10.1016/j.bbagen.2014.07.008_bb0065) 2012; 8 Kim (10.1016/j.bbagen.2014.07.008_bb0165) 2014; 111 Elstner (10.1016/j.bbagen.2014.07.008_bb0310) 1998; 58 Ufimtsev (10.1016/j.bbagen.2014.07.008_bb0350) 2009; 5 Valiev (10.1016/j.bbagen.2014.07.008_bb0480) 2007; 111 Crespo (10.1016/j.bbagen.2014.07.008_bb0145) 2005; 127 Warshel (10.1016/j.bbagen.2014.07.008_bb0260) 1991 Goodpaster (10.1016/j.bbagen.2014.07.008_bb0300) 2011; 134 Gaus (10.1016/j.bbagen.2014.07.008_bb0320) 2011; 7 Zhang (10.1016/j.bbagen.2014.07.008_bb0575) 1999; 110 Polyak (10.1016/j.bbagen.2014.07.008_bb0425) 2013; 139 Tuttle (10.1016/j.bbagen.2014.07.008_bb0385) 2008; 10 Fox (10.1016/j.bbagen.2014.07.008_bb0565) 2013; 117 Plotnikov (10.1016/j.bbagen.2014.07.008_bb0140) 2011; 115 Nakano (10.1016/j.bbagen.2014.07.008_bb0520) 2012; 136 Gao (10.1016/j.bbagen.2014.07.008_bb0105) 2006; 106 Thirumalai (10.1016/j.bbagen.2014.07.008_bb0120) 2013; 23 Sánchez (10.1016/j.bbagen.2014.07.008_bb0515) 2002; 106 Hermann (10.1016/j.bbagen.2014.07.008_bb0475) 2006; 4 Hansen (10.1016/j.bbagen.2014.07.008_bb0615) 2010; 31 Bulo (10.1016/j.bbagen.2014.07.008_bb0725) 2009; 5 Roca (10.1016/j.bbagen.2014.07.008_bb0160) 2008; 105 Laio (10.1016/j.bbagen.2014.07.008_bb0210) 2002; 99 Wood (10.1016/j.bbagen.2014.07.008_bb0430) 1999; 110 Mo (10.1016/j.bbagen.2014.07.008_bb0395) 2000; 21 Zwanzig (10.1016/j.bbagen.2014.07.008_bb0265) 1955; 23 Cohen (10.1016/j.bbagen.2014.07.008_bb0625) 2012; 112 Štrajbl (10.1016/j.bbagen.2014.07.008_bb0250) 2002; 106 Torrie (10.1016/j.bbagen.2014.07.008_bb0180) 1977; 23 Tapia (10.1016/j.bbagen.2014.07.008_bb0505) 1975; 29 Kosugi (10.1016/j.bbagen.2014.07.008_bb0550) 2012; 134 Levitt (10.1016/j.bbagen.2014.07.008_bb0110) 1975; 253 26589022 - J Chem Theory Comput. 2013 Jan 8;9(1):188-203 18393679 - Annu Rev Phys Chem. 2008;59:573-601 26580175 - J Chem Theory Comput. 2014 Mar 11;10(3):959-67 22582031 - J Chem Theory Comput. 2012 May 8;8(5):1542-1555 15701029 - J Am Chem Soc. 2005 Feb 16;127(6):1946-57 19412904 - J Comput Chem. 2010 Jan 15;31(1):1-23 17950314 - J Mol Biol. 2007 Nov 30;374(3):806-16 24033146 - J Phys Chem B. 2013 Oct 10;117(40):12202-11 23034768 - Methods Mol Biol. 2013;924:659-97 21528951 - J Chem Phys. 2011 Apr 28;134(16):164108 21848344 - Chem Rev. 2011 Nov 9;111(11):7557-93 26631777 - J Chem Theory Comput. 2009 Oct 13;5(10):2619-28 19173328 - Angew Chem Int Ed Engl. 2009;48(7):1198-229 15836102 - J Chem Phys. 2005 Mar 1;122(9):091102 26589159 - J Chem Theory Comput. 2013 Oct 8;9(10):4421-7 21034218 - Annu Rev Phys Chem. 2011;62:41-64 15884923 - J Am Chem Soc. 2005 May 18;127(19):6940-1 21386385 - J Phys Condens Matter. 2010 Feb 24;22(7):074207 18052079 - Biochemistry. 2007 Dec 25;46(51):15076-88 23557014 - Biochemistry. 2013 Apr 23;52(16):2708-28 23237705 - Curr Opin Struct Biol. 2013 Feb;23(1):58-65 21370814 - J Phys Chem A. 2011 Mar 24;115(11):2350-8 19079734 - J Chem Theory Comput. 2007 Mar;3(2):390-406 21942376 - J Phys Chem A. 2011 Nov 3;115(43):12047-52 985660 - J Mol Biol. 1976 May 15;103(2):227-49 17187988 - J Struct Biol. 2007 Mar;157(3):470-80 26598259 - J Chem Theory Comput. 2011 Nov 8;7(11):3625-34 7738605 - J Comput Aided Mol Des. 1994 Dec;8(6):695-708 21618985 - J Phys Chem B. 2011 Jun 23;115(24):7950-62 26606339 - J Chem Theory Comput. 2011 Apr 12;7(4):884-9 17983217 - J Phys Chem B. 2007 Nov 29;111(47):13455-64 21370970 - Annu Rev Biophys. 2011;40:41-62 26592126 - J Chem Theory Comput. 2012 Aug 14;8(8):2868-77 16375342 - J Phys Chem B. 2005 Dec 15;109(49):23638-44 26631668 - J Chem Theory Comput. 2005 Nov;1(6):1240-51 24464485 - Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2128-33 26621239 - J Chem Theory Comput. 2008 Jun;4(6):985-1001 9390256 - Pac Symp Biocomput. 1996;:524-38 23480863 - Biochemistry. 2013 Apr 16;52(15):2672-82 23656121 - J Chem Phys. 2013 May 7;138(17):174114 22191548 - Chem Rev. 2012 Jan 11;112(1):289-320 18404221 - Phys Chem Chem Phys. 2008 Apr 28;10(16):2159-66 12197759 - J Am Chem Soc. 2002 Sep 4;124(35):10572-7 17288477 - J Phys Chem B. 2007 Mar 8;111(9):2231-41 23841453 - J Phys Chem B. 2013 Aug 15;117(32):9478-85 21476567 - J Phys Chem B. 2011 May 5;115(17):4911-26 15548014 - J Am Chem Soc. 2004 Nov 24;126(46):15167-79 12568613 - J Am Chem Soc. 2003 Feb 12;125(6):1532-40 19217853 - Biophys J. 2009 Feb 18;96(4):1350-63 20070076 - J Am Chem Soc. 2010 Feb 10;132(5):1526-8 19055405 - J Phys Chem B. 2009 Feb 5;113(5):1253-72 16391762 - Org Biomol Chem. 2006 Jan 21;4(2):206-10 16895324 - Chem Rev. 2006 Aug;106(8):3188-209 22161781 - Chemistry. 2012 Jan 2;18(1):184-95 16494423 - J Phys Chem B. 2006 Mar 2;110(8):3674-84 21526232 - Phys Chem Chem Phys. 2011 Jun 14;13(22):10401-11 18205486 - J Chem Phys. 2008 Jan 21;128(3):034105 18698902 - J Chem Phys. 2008 Aug 7;129(5):054309 26631699 - J Chem Theory Comput. 2008 Aug;4(8):1230-6 23269832 - Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):495-500 20947758 - Science. 2010 Oct 15;330(6002):341-6 957439 - J Mol Biol. 1976 Jun 14;104(1):59-107 18412414 - J Phys Chem B. 2008 May 8;112(18):5680-92 24146439 - Theochem. 2009 Mar 30;898(1-3):17-30 1167625 - Nature. 1975 Feb 27;253(5494):694-8 16471904 - J Phys Chem B. 2006 Feb 16;110(6):2934-41 22077560 - Chem Rev. 2012 Jan 11;112(1):321-70 21502534 - Proc Natl Acad Sci U S A. 2011 May 3;108(18):7408-13 16852982 - J Phys Chem B. 2005 Aug 18;109(32):15645-50 23947841 - J Chem Phys. 2013 Aug 14;139(6):064105 22482540 - J Chem Phys. 2012 Apr 7;136(13):134107 18339748 - Biophys J. 2008 May 15;94(10):L75-7 26596593 - J Chem Theory Comput. 2012 Feb 14;8(2):418-27 19728702 - Acc Chem Res. 2010 Jan 19;43(1):142-51 22143769 - Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20550-5 18687952 - Science. 2008 Aug 8;321(5890):792-4 22853800 - J Phys Chem B. 2012 Aug 30;116(34):10342-56 18654684 - Phys Chem Chem Phys. 2008 Aug 14;10(30):4442-8 26637030 - J Chem Theory Comput. 2007 Mar;3(2):486-504 19805169 - Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17359-64 23266001 - Curr Opin Struct Biol. 2013 Feb;23(1):22-9 18251539 - J Phys Chem B. 2008 Feb 28;112(8):2501-10 23204947 - J Chem Theory Comput. 2012 Apr 10;7(4):931-948 26631792 - J Chem Theory Comput. 2009 Oct 13;5(10):2798-808 18779576 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13877-82 22577825 - Annu Rev Biophys. 2012;41:429-52 22280021 - Biochemistry. 2012 Feb 28;51(8):1774-86 22797613 - Phys Chem Chem Phys. 2012 Sep 28;14(36):12592-604 22468622 - J Am Chem Soc. 2012 Apr 25;134(16):7045-55 2435316 - Biochemistry. 1986 Dec 30;25(26):8368-72 20309456 - Chem Commun (Camb). 2010 Apr 14;46(14):2354-72 26616607 - J Chem Theory Comput. 2009 Sep 8;5(9):2212-21 15904045 - Phys Rev Lett. 2005 Apr 8;94(13):138302 15268227 - J Chem Phys. 2004 Jun 22;120(24):11919-29 18999998 - Annu Rev Phys Chem. 2010;61:391-420 24803863 - J Chem Theory Comput. 2014 Apr 8;10(4):1406-1419 18190187 - J Chem Phys. 2008 Jan 7;128(1):014109 26593003 - J Chem Theory Comput. 2012 Oct 9;8(10):3565-73 21952221 - Nat Commun. 2011;2:487 26589153 - J Chem Theory Comput. 2013 Oct 8;9(10):4360-73 22790422 - Rep Prog Phys. 2012 Mar;75(3):036503 10001400 - Phys Rev B Condens Matter. 1992 Jun 15;45(23):13196-13220 12271136 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12562-6 25136268 - J Chem Theory Comput. 2014 Aug 12;10(8):2987-3001 17676838 - Inorg Chem. 2007 Sep 3;46(18):7256-8 20121225 - J Phys Chem B. 2010 Mar 4;114(8):2755-9 |
References_xml | – volume: 41 start-page: 429 year: 2012 end-page: 452 ident: bb0020 article-title: Biomolecular simulation: a computational microscope for molecular biology publication-title: Annu. Rev. Biophys. – volume: 374 start-page: 806 year: 2007 end-page: 816 ident: bb0085 article-title: Heterogeneity even at the speed limit of folding: large-scale molecular dynamics study of a fast-folding variant of the villin headpiece publication-title: J. Mol. Biol. – volume: 75 start-page: 036503 year: 2012 ident: bb0325 article-title: O(N) methods in electronic structure calculations publication-title: Rep. Prog. Phys. – volume: 115 start-page: 7950 year: 2011 end-page: 7962 ident: bb0140 article-title: Paradynamics: an effective and reliable model for publication-title: J. Phys. Chem. B – volume: 97 start-page: 8050 year: 1993 end-page: 8053 ident: bb0305 article-title: Frozen density-functional approach for publication-title: J. Phys. Chem. – volume: 3 start-page: 300 year: 1935 end-page: 313 ident: bb0185 article-title: Statistical mechanics of fluid mixtures publication-title: J. Chem. Phys. – year: 2013 ident: bb0370 article-title: The Nobel Prize in Chemistry 2013 — press release publication-title: Nobelprize.org – volume: 157 start-page: 470 year: 2007 end-page: 480 ident: bb0055 article-title: High performance computing in biology: multimillion atom simulations of nanoscale systems publication-title: J. Struct. Biol. – volume: 129 start-page: 54309 year: 2008 end-page: 54319 ident: bb0655 article-title: Photoelectron spectrum of valence anions of uracil and first-principles calculations of excess electron binding energies publication-title: J. Chem. Phys. – volume: 94 start-page: 5612 year: 1972 end-page: 5625 ident: bb0365 article-title: Calculation of ground and excited-state potential surfaces of conjugated molecules. 1. Formulation and parametrization publication-title: J. Am. Chem. Soc. – volume: 116 start-page: 10342 year: 2012 end-page: 10356 ident: bb0595 article-title: Exploring, refining, and validating the paradynamics QM/MM sampling publication-title: J. Phys. Chem. B – volume: 115 start-page: 4911 year: 2011 end-page: 4926 ident: bb0635 article-title: A simple QM/MM approach for capturing polarization effects in protein–ligand binding free energy calculations publication-title: J. Phys. Chem. B – volume: 253 start-page: 694 year: 1975 end-page: 698 ident: bb0110 article-title: Computer-simulation of protein folding publication-title: Nature – volume: 110 start-page: 3674 year: 2006 end-page: 3684 ident: bb0125 article-title: Coarse grained protein–lipid model with application to lipoprotein particles publication-title: J. Phys. Chem. B – volume: 23 start-page: 1915 year: 1955 end-page: 1922 ident: bb0265 article-title: High-temperature equation of state by a perturbation method. 2. Polar gases publication-title: J. Chem. Phys. – volume: 8 start-page: 3565 year: 2012 end-page: 3573 ident: bb0065 article-title: Linear scaling self-consistent field calculations with millions of atoms in the condensed phase publication-title: J. Chem. Theory Comput. – volume: 110 start-page: 46 year: 1999 end-page: 54 ident: bb0575 article-title: A pseudobond approach to combining quantum mechanical and molecular mechanical methods publication-title: J. Chem. Phys. – volume: 321 start-page: 792 year: 2008 end-page: 794 ident: bb0620 article-title: Insights into current limitations of density functional theory publication-title: Science – volume: 1 start-page: 30 year: 2011 end-page: 45 ident: bb0600 article-title: The empirical valence bond model: theory and applications publication-title: WIREs Comput. Mol. Sci. – volume: 117 start-page: 10534 year: 2002 end-page: 10547 ident: bb0580 article-title: Optimization of quantum mechanical molecular mechanical partitioning schemes: Gaussian delocalization of molecular mechanical charges and the double link atom method publication-title: J. Chem. Phys. – volume: 4 start-page: 985 year: 2008 end-page: 1001 ident: bb0585 article-title: Proton transfer at metal sites in proteins studied by quantum mechanical free-energy perturbations publication-title: J. Chem. Theory Comput. – volume: 106 start-page: 13333 year: 2002 end-page: 13343 ident: bb0250 article-title: QM/MM simulation with proper sampling: “first principle” calculations of the free energy of the autodissociation of water in aqueous solution publication-title: J. Phys. Chem. B – volume: 122 start-page: 91102 year: 2005 end-page: 91106 ident: bb0420 article-title: Accelerating quantum mechanical/molecular mechanical sampling using pure molecular mechanical potential as an importance function: the case of effective fragment potential publication-title: J. Chem. Phys. – volume: 9 start-page: 188 year: 2012 end-page: 203 ident: bb0540 article-title: Accurate and efficient treatment of continuous solute charge density in the mean-field QM/MM free energy calculation publication-title: J. Chem. Theory Comput. – volume: 8 start-page: 1542 year: 2012 end-page: 1555 ident: bb0045 article-title: Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized Born publication-title: J. Chem. Theory Comput. – volume: 5 start-page: 2619 year: 2009 end-page: 2628 ident: bb0350 article-title: Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics publication-title: J. Chem. Theory Comput. – volume: 107 start-page: 154 year: 1985 end-page: 163 ident: bb0640 article-title: Theoretical-examination of the S publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 884 year: 2011 end-page: 889 ident: bb0015 article-title: Linear scaling constrained density functional theory in CONQUEST publication-title: J. Chem. Theory Comput. – volume: 114 start-page: 2755 year: 2010 end-page: 2759 ident: bb0530 article-title: Elucidating solvent contributions to solution reactions with publication-title: J. Phys. Chem. B – volume: 94 start-page: L75 year: 2008 end-page: L77 ident: bb0080 article-title: Ten-microsecond molecular dynamics simulation of a fast-folding WW domain publication-title: Biophys. J. – volume: 29 start-page: 1653 year: 1975 end-page: 1661 ident: bb0505 article-title: Self-consistent reaction field theory of solvent effects publication-title: Mol. Phys. – volume: 113 start-page: 1253 year: 2009 end-page: 1272 ident: bb0590 article-title: Progress in publication-title: J. Phys. Chem. B – volume: 96 start-page: 1350 year: 2009 end-page: 1363 ident: bb0050 article-title: Mechanical properties of the icosahedral shell of southern bean mosaic virus: a molecular dynamics study publication-title: Biophys. J. – volume: 116 start-page: 316 year: 2006 end-page: 325 ident: bb0315 article-title: The SCC-DFTB method and its application to biological systems publication-title: Theor. Chem. Acc. – volume: 31 start-page: 1 year: 2010 end-page: 23 ident: bb0615 article-title: Using the local elevation method to construct optimized umbrella sampling potentials: Calculation of the relative free energies and interconversion barriers of glucopyranose ring conformers in water publication-title: J. Comput. Chem. – volume: 134 start-page: 7045 year: 2012 end-page: 7055 ident: bb0550 article-title: Crucial role of protein flexibility in formation of a stable reaction transition state in an α-amylase catalysis publication-title: J. Am. Chem. Soc. – volume: 132 start-page: 1526 year: 2010 end-page: 1528 ident: bb0060 article-title: Molecular simulation of publication-title: J. Am. Chem. Soc. – volume: 125 start-page: 1532 year: 2003 end-page: 1540 ident: bb0680 article-title: Combined QM/MM study of the mechanism and kinetic isotope effect of the nucleophilic substitution reaction in haloalkane dehalogenase publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 4442 year: 2008 end-page: 4448 ident: bb0535 article-title: Solvation free energies of molecules. The most stable anionic tautomers of uracil publication-title: Phys. Chem. Chem. Phys. – volume: 60 start-page: 16350 year: 1999 end-page: 16358 ident: bb0295 article-title: Orbital-free kinetic-energy density functionals with a density-dependent kernel publication-title: Phys. Rev. B – volume: 112 start-page: 321 year: 2011 end-page: 370 ident: bb0275 article-title: Constrained density functional theory publication-title: Chem. Rev. – volume: 138 start-page: 174114 year: 2013 end-page: 174121 ident: bb0525 article-title: Mean field QM/MM method: average position approximation publication-title: J. Chem. Phys. – volume: 94 start-page: 138302 year: 2005 ident: bb0440 article-title: Quantum mechanical free energy barrier for an enzymatic reaction publication-title: Phys. Rev. Lett. – volume: 117 start-page: 9478 year: 2013 end-page: 9485 ident: bb0565 article-title: Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies publication-title: J. Phys. Chem. B – volume: 46 start-page: 2354 year: 2010 end-page: 2372 ident: bb0230 article-title: Computational enzymology publication-title: Chem. Commun. – volume: 127 start-page: 1946 year: 2005 end-page: 1957 ident: bb0670 article-title: Dynamic and electrostatic effects in enzymatic processes. An analysis of the nucleophilic substitution reaction in haloalkane dehalogenase publication-title: J. Am. Chem. Soc. – volume: 898 start-page: 17 year: 2009 end-page: 30 ident: bb0570 article-title: Development and application of publication-title: THEOCHEM – volume: 2 start-page: 487 year: 2011 ident: bb0115 article-title: Capturing the essence of folding and functions of biomolecules using coarse-grained models publication-title: Nat. Commun. – volume: 51 start-page: 91 year: 2008 end-page: 97 ident: bb0040 article-title: Anton, a special-purpose machine for molecular dynamics simulation publication-title: Commun. ACM – volume: 5 start-page: 2798 year: 2009 end-page: 2808 ident: bb0010 article-title: Scaling of multimillion-atom biological molecular dynamics simulation on a petascale supercomputer publication-title: J. Chem. Theory Comput. – volume: 155 start-page: 115 year: 2003 end-page: 131 ident: bb0035 article-title: Hardware accelerator for molecular dynamics: MDGRAPE-2 publication-title: Comput. Phys. Commun. – volume: 8 start-page: 2868 year: 2012 end-page: 2877 ident: bb0710 article-title: Application of adaptive QM/MM methods to molecular dynamics simulations of aqueous systems publication-title: J. Chem. Theory Comput. – volume: 7 start-page: 3625 year: 2011 end-page: 3634 ident: bb0720 article-title: Adaptive-partitioning redistributed charge and dipole schemes for QM/MM dynamics simulations: on-the-fly relocation of boundaries that pass through covalent bonds publication-title: J. Chem. Theory Comput. – volume: 25 start-page: 8368 year: 1986 end-page: 8372 ident: bb0665 article-title: Free-energy of charges in solvated proteins — microscopic calculations using a reversible charging process publication-title: Biochemistry – volume: 111 start-page: 7557 year: 2011 end-page: 7593 ident: bb0390 article-title: Classical valence bond approach by modern methods publication-title: Chem. Rev. – volume: 109 start-page: 15645 year: 2005 end-page: 15650 ident: bb0405 article-title: On possible pitfalls in publication-title: J. Phys. Chem. B – volume: 120 start-page: 11919 year: 2004 end-page: 11929 ident: bb0205 article-title: Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules publication-title: J. Chem. Phys. – volume: 9 start-page: 4421 year: 2013 end-page: 4427 ident: bb0280 article-title: Efficient linear-scaling density functional theory for molecular systems publication-title: J. Chem. Theory Comput. – volume: 112 start-page: 5680 year: 2008 end-page: 5692 ident: bb0495 article-title: Accelerating QM/MM free energy calculations: representing the surroundings by an updated mean charge distribution publication-title: J. Phys. Chem. B – volume: 23 start-page: 58 year: 2013 end-page: 65 ident: bb0030 article-title: To milliseconds and beyond: challenges in the simulation of protein folding publication-title: Curr. Opin. Struct. Biol. – volume: 8 start-page: 695 year: 1994 end-page: 708 ident: bb0610 article-title: Local elevation: a method for improving the searching properties of molecular dynamics simulation publication-title: J. Comput. Aided Mol. Des. – volume: 108 start-page: 7408 year: 2011 end-page: 7413 ident: bb0690 article-title: Torsional elasticity and energetics of F1-ATPase publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 103 start-page: 4782 year: 1999 end-page: 4790 ident: bb0270 article-title: Linear scaling density functional calculations with Gaussian orbitals publication-title: J. Phys. Chem. A – volume: 107 start-page: 2118 year: 2003 end-page: 2126 ident: bb0470 article-title: QM/MM modeling of the hydroxylation step in p-hydroxybenzoate hydroxylase publication-title: J. Phys. Chem. B – volume: 110 start-page: 495 year: 2013 end-page: 500 ident: bb0685 article-title: Exploring the nature of the translocon-assisted protein insertion publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 106 start-page: 3188 year: 2006 end-page: 3209 ident: bb0105 article-title: Mechanisms and free energies of enzymatic reactions publication-title: Chem. Rev. – volume: 4 start-page: 206 year: 2006 end-page: 210 ident: bb0475 article-title: Molecular mechanisms of antibiotic resistance: QM/MM modelling of deacylation in a class A beta-lactamase publication-title: Org. Biomol. Chem. – volume: 128 start-page: 34105 year: 2008 end-page: 34123 ident: bb0155 article-title: Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface publication-title: J. Chem. Phys. – volume: 3 start-page: 486 year: 2007 end-page: 504 ident: bb0375 article-title: Specific reaction parametrization of the AM1/d Hamiltonian for phosphoryl transfer reactions: H, O, and P atoms publication-title: J. Chem. Theory Comput. – volume: 3 start-page: 390 year: 2007 end-page: 406 ident: bb0545 article-title: QM/MM minimum free energy path: methodology and application to triosephosphate isomerase publication-title: J. Chem. Theory Comput. – volume: 105 start-page: 7185 year: 2001 end-page: 7197 ident: bb0645 article-title: ONIOM study of chemical reactions in microsolvation clusters: (H publication-title: J. Phys. Chem. A – volume: 475 start-page: 163 year: 2009 end-page: 170 ident: bb0075 article-title: Accurate simulations of metals at the mesoscale: explicit treatment of 1 million atoms with quantum mechanics publication-title: Chem. Phys. Lett. – volume: 103 start-page: 495 year: 2000 end-page: 506 ident: bb0380 article-title: Orthogonalization corrections for semiempirical methods publication-title: Theor. Chem. Acc. – volume: 98 start-page: 3681 year: 1994 end-page: 3687 ident: bb0630 article-title: Comparison and scaling of Hartree–Fock and density-functional harmonic force-fields. 1. Formamide monomer publication-title: J. Phys. Chem. – volume: 13 start-page: 199 year: 1992 end-page: 213 ident: bb0240 article-title: Microscopic models for quantum mechanical calculations of chemical processes in solutions: LD/AMPAC and SCAAS/AMPAC calculations of solvation energies publication-title: J. Comput. Chem. – volume: 9 start-page: 4360 year: 2013 end-page: 4373 ident: bb0345 article-title: Real-space density functional theory on graphical processing units: computational approach and comparison to gaussian basis set methods publication-title: J. Chem. Theory Comput. – volume: 110 start-page: 1329 year: 1999 end-page: 1337 ident: bb0430 article-title: Free energies of solvation with quantum mechanical interaction energies from classical mechanical simulations publication-title: J. Chem. Phys. – volume: 99 start-page: 17516 year: 1995 end-page: 17524 ident: bb0135 article-title: calculations of free energy barriers for chemical reactions in solution publication-title: J. Phys. Chem. – volume: 43 start-page: 142 year: 2009 end-page: 151 ident: bb0220 article-title: Advances in quantum and molecular mechanical (QM/MM) simulations for organic and enzymatic reactions publication-title: Acc. Chem. Res. – volume: 46 start-page: 15076 year: 2007 end-page: 15088 ident: bb0170 article-title: On the relationship between thermal stability and catalytic power of enzymes publication-title: Biochemistry – volume: 13 start-page: 10401 year: 2011 end-page: 10411 ident: bb0235 article-title: Multiscale modeling of biological functions publication-title: Phys. Chem. Chem. Phys. – volume: 108 start-page: 20550 year: 2011 end-page: 20555 ident: bb0695 article-title: Electrostatic origin of the mechanochemical rotary mechanism and the catalytic dwell of F1-ATPase publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 62 start-page: 41 year: 2011 end-page: 64 ident: bb0175 article-title: Coarse-grained (multiscale) simulations in studies of biophysical and chemical systems publication-title: Annu. Rev. Phys. Chem. – volume: 111 start-page: 2231 year: 2007 end-page: 2241 ident: bb0705 article-title: Adaptive partitioning in combined quantum mechanical and molecular mechanical calculations of potential energy functions for multiscale simulations publication-title: J. Phys. Chem. B – volume: 5 start-page: 2212 year: 2009 end-page: 2221 ident: bb0725 article-title: Toward a practical method for adaptive QM/MM simulations publication-title: J. Chem. Theory Comput. – volume: 10 start-page: 26 year: 2008 end-page: 34 ident: bb0330 article-title: Graphical processing units for quantum chemistry publication-title: Comput. Sci. Eng. – volume: 112 start-page: 2501 year: 2008 end-page: 2510 ident: bb0450 article-title: Protonation of the proximal histidine ligand in heme peroxidases publication-title: J. Phys. Chem. B – volume: 71 start-page: 1085 year: 1999 end-page: 1123 ident: bb0005 article-title: Linear scaling electronic structure methods publication-title: Rev. Mod. Phys. – volume: 59 start-page: 573 year: 2008 end-page: 601 ident: bb0225 article-title: Free energies of chemical reactions in solution and in enzymes with publication-title: Annu. Rev. Phys. Chem. – volume: 124 start-page: 10572 year: 2002 end-page: 10577 ident: bb0465 article-title: Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: an publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 184 year: 2012 end-page: 195 ident: bb0555 article-title: Modelling zwitterions in solution: 3-fluoro-gamma-aminobutyric acid (3F-GABA) publication-title: Chemistry – volume: 22 start-page: 074207 year: 2010 ident: bb0070 article-title: Calculations for millions of atoms with density functional theory: linear scaling shows its potential publication-title: J. Phys. Condens. Matter – volume: 104 start-page: 59 year: 1976 end-page: 107 ident: bb0245 article-title: A simplified representation of protein conformations for rapid simulation of protein folding publication-title: J. Mol. Biol – volume: 45 start-page: 13196 year: 1992 end-page: 13220 ident: bb0290 article-title: Kinetic-energy functional of the electron-density publication-title: Phys. Rev. B – volume: 101 start-page: 5583 year: 1997 end-page: 5595 ident: bb0500 article-title: Langevin dipoles model for ab initio calculations of chemical processes in solution: parametrization and application to hydration free energies of neutral and ionic solutes and conformational analysis in aqueous solution publication-title: J. Phys. Chem. B – volume: 46 start-page: 7256 year: 2007 end-page: 7258 ident: bb0455 article-title: Structural insights into the active-ready form of [FeFe]-hydrogenase and mechanistic details of its inhibition by carbon monoxide publication-title: Inorg. Chem. – year: 1991 ident: bb0260 article-title: Computer Modeling of Chemical Reactions in Enzymes and Solutions – volume: 23 start-page: 187 year: 1977 end-page: 199 ident: bb0180 article-title: Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling publication-title: J. Comput. Phys. – volume: 21 start-page: 1458 year: 2000 end-page: 1469 ident: bb0395 article-title: QM/MM simulations with a molecular orbital-valence bond (MOVB) method: application to an S(N)2 reaction in water publication-title: J. Comput. Chem. – volume: 110 start-page: 2934 year: 2006 end-page: 2941 ident: bb0255 article-title: Towards accurate ab initio QM/MM calculations of free-energy profiles of enzymatic reactions publication-title: J. Phys. Chem. B – volume: 106 start-page: 4813 year: 2002 end-page: 4817 ident: bb0515 article-title: Theoretical calculation of the stark component of the solute–solvent interaction energy. Validity of the mean field approximation in the study of liquids and solutions publication-title: J. Phys. Chem. B – volume: 136 start-page: 134107 year: 2012 end-page: 134124 ident: bb0520 article-title: Variational calculation of quantum mechanical/molecular mechanical free energy with electronic polarization of solvent publication-title: J. Chem. Phys. – volume: 10 start-page: 959 year: 2014 end-page: 967 ident: bb0335 article-title: GPU accelerated implementation of density functional theory for hybrid QM/MM simulations publication-title: J. Chem. Theory Comput. – volume: 112 start-page: 3483 year: 2000 end-page: 3492 ident: bb0445 article-title: Free energy calculation on enzyme reactions with an efficient iterative procedure to determine minimum energy paths on a combined publication-title: J. Chem. Phys. – volume: 52 start-page: 2672 year: 2013 end-page: 2682 ident: bb0605 article-title: Empirical valence bond simulations of the chemical mechanism of ATP to cAMP conversion by anthrax edema factor publication-title: Biochemistry – volume: 109 start-page: 23638 year: 2005 end-page: 23644 ident: bb0400 article-title: Hybrid publication-title: J. Phys. Chem. B – volume: 10 start-page: 2987 year: 2014 end-page: 3001 ident: bb0700 article-title: Computing the free energy barriers for less by sampling with a coarse reference potential while retaining accuracy of the target fine model publication-title: J. Chem. Theory Comput. – volume: 23 start-page: 22 year: 2013 end-page: 29 ident: bb0120 article-title: Protein folding: from theory to practice publication-title: Curr. Opin. Struct. Biol. – volume: 51 start-page: 1774 year: 2012 end-page: 1786 ident: bb0490 article-title: Determinants of reactivity and selectivity in soluble epoxide hydrolase from quantum mechanics/molecular mechanics modeling publication-title: Biochemistry – volume: 118 start-page: 255 year: 2003 end-page: 263 ident: bb0510 article-title: Geometry optimization of molecules in solution: joint use of the mean field approximation and the free-energy gradient method publication-title: J. Chem. Phys. – volume: 106 start-page: 17359 year: 2009 end-page: 17364 ident: bb0650 article-title: Enzyme millisecond conformational dynamics do not catalyze the chemical step publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 115 start-page: 9169 year: 2001 end-page: 9183 ident: bb0195 article-title: Calculating free energies using average force publication-title: J. Chem. Phys. – volume: 103 start-page: 227 year: 1976 end-page: 249 ident: bb0355 article-title: Levitt Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme publication-title: J. Mol. Biol. – volume: 58 start-page: 7260 year: 1998 end-page: 7268 ident: bb0310 article-title: Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties publication-title: Phys. Rev. B – volume: 48 start-page: 1198 year: 2009 end-page: 1229 ident: bb0100 article-title: QM/MM methods for biomolecular systems publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 1240 year: 2005 end-page: 1251 ident: bb0150 article-title: Accurate QM/MM free energy calculations of enzyme reactions: methylation by catechol O-methyltransferase publication-title: J. Chem. Theory Comput. – volume: 134 start-page: 164108 year: 2011 end-page: 164117 ident: bb0300 article-title: Embedded density functional theory for covalently bonded and strongly interacting subsystems publication-title: J. Chem. Phys. – volume: 8 start-page: 418 year: 2012 end-page: 427 ident: bb0285 article-title: Robust and efficient constrained DFT molecular dynamics approach for biochemical modeling publication-title: J. Chem. Theory Comput. – volume: 99 start-page: 12562 year: 2002 end-page: 12566 ident: bb0210 article-title: Escaping free-energy minima publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 40 start-page: 41 year: 2011 end-page: 62 ident: bb0215 article-title: Equilibrium sampling in biomolecular simulations publication-title: Annu. Rev. Biophys. – volume: 52 start-page: 1262 year: 1970 end-page: 1269 ident: bb0360 article-title: Oxidation of 4a,4b-dihydrophenanthrenes. 3. A theoretical study of large kinetic isotope effect of deuterium in the initiation step of the thermal reaction with oxygen publication-title: J. Chem. Phys. – volume: 115 start-page: 2350 year: 2011 end-page: 2358 ident: bb0660 article-title: Electron affinities of small uracil–water complexes: a comparison of benchmark CCSD(T) calculations with DFT publication-title: J. Phys. Chem. A – volume: 14 start-page: 12592 year: 2012 end-page: 12604 ident: bb0095 article-title: Convergence of QM/MM free-energy perturbations based on molecular-mechanics or semiempirical simulations publication-title: Phys. Chem. Chem. Phys. – volume: 128 start-page: 14109 year: 2008 end-page: 14117 ident: bb0435 article-title: An efficient method for the calculation of quantum mechanics/molecular mechanics free energies publication-title: J. Chem. Phys. – volume: 117 start-page: 12202 year: 2013 end-page: 12211 ident: bb0715 article-title: Tests of an adaptive QM/MM calculation on free energy profiles of chemical reactions in solution publication-title: J. Phys. Chem. B – volume: 10 start-page: 1406 year: 2014 end-page: 1419 ident: bb0560 article-title: Multiscale free energy simulations: an efficient method for connecting classical MD simulations to QM or QM/MM free energies using non-Boltzmann Bennett reweighting schemes publication-title: J. Chem. Theory Comput. – volume: 126 start-page: 15167 year: 2004 end-page: 15179 ident: bb0675 article-title: Solute solvent dynamics and energetics in enzyme catalysis: the SN2 reaction of dehalogenase as a general benchmark publication-title: J. Am. Chem. Soc. – volume: 105 start-page: 13877 year: 2008 end-page: 13882 ident: bb0160 article-title: On the relationship between folding and chemical landscapes in enzyme catalysis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 281 start-page: 140 year: 1997 end-page: 150 ident: bb0190 article-title: Parallel tempering algorithm for conformational studies of biological molecules publication-title: Chem. Phys. Lett. – volume: 10 start-page: 2159 year: 2008 end-page: 2166 ident: bb0385 article-title: OMx-D: semiempirical methods with orthogonalization and dispersion corrections. Implementation and biochemical application publication-title: Phys. Chem. Chem. Phys. – volume: 115 start-page: 12047 year: 2011 end-page: 12052 ident: bb0485 article-title: Hybrid quantum mechanical/molecular mechanics study of the S publication-title: J. Phys. Chem. A – volume: 61 start-page: 391 year: 2010 end-page: 420 ident: bb0200 article-title: Transition-path theory and path-finding algorithms for the study of rare events publication-title: Annu. Rev. Phys. Chem. – volume: 7 start-page: 931 year: 2011 end-page: 948 ident: bb0320 article-title: DFTB3: extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB) publication-title: J. Chem. Theory Comput. – volume: 4 start-page: 1230 year: 2008 end-page: 1236 ident: bb0340 article-title: Accelerating density functional calculations with graphics processing unit publication-title: J. Chem. Theory Comput. – volume: 52 start-page: 2708 year: 2013 end-page: 2728 ident: bb0025 article-title: Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology publication-title: Biochemistry – volume: 111 start-page: 13455 year: 2007 end-page: 13464 ident: bb0480 article-title: Phosphorylation reaction in cAPK protein kinase-free energy quantum mechanical/molecular mechanics simulations publication-title: J. Phys. Chem. B – volume: 330 start-page: 341 year: 2010 end-page: 346 ident: bb0090 article-title: Atomic-level characterization of the structural dynamics of proteins publication-title: Science – volume: 111 start-page: 2128 year: 2014 end-page: 2133 ident: bb0165 article-title: Coarse-grained simulations of the gating current in the voltage-activated Kv1.2 channel publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 91 start-page: 404 year: 2003 end-page: 413 ident: bb0415 article-title: Separation of quantum and classical behavior in proton transfer reactions: implications from studies of secondary kinetic isotope effects publication-title: Int. J. Quantum Chem. – volume: 114 start-page: 6763 year: 2001 end-page: 6773 ident: bb0460 article-title: Efficient publication-title: J. Chem. Phys. – volume: 113 start-page: 4852 year: 2000 end-page: 4862 ident: bb0410 article-title: Using a classical potential as an efficient importance function for sampling from an publication-title: J. Chem. Phys. – volume: 112 start-page: 289 year: 2012 end-page: 320 ident: bb0625 article-title: Challenges for density functional theory publication-title: Chem. Rev. – volume: vol. 924 start-page: 659 year: 2013 end-page: 697 ident: bb0130 article-title: Vesicles and vesicle fusion: coarse-grained simulations publication-title: Biomolecular Simulations – volume: 139 start-page: 64105 year: 2013 end-page: 64116 ident: bb0425 article-title: Quantum mechanics/molecular mechanics dual Hamiltonian free energy perturbation publication-title: J. Chem. Phys. – volume: 127 start-page: 6940 year: 2005 end-page: 6941 ident: bb0145 article-title: Multiple-steering QM–MM calculation of the free energy profile in chorismate mutase publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 300 year: 1935 ident: 10.1016/j.bbagen.2014.07.008_bb0185 article-title: Statistical mechanics of fluid mixtures publication-title: J. Chem. Phys. doi: 10.1063/1.1749657 – volume: 21 start-page: 1458 year: 2000 ident: 10.1016/j.bbagen.2014.07.008_bb0395 article-title: Ab initio QM/MM simulations with a molecular orbital-valence bond (MOVB) method: application to an S(N)2 reaction in water publication-title: J. Comput. Chem. doi: 10.1002/1096-987X(200012)21:16<1458::AID-JCC4>3.0.CO;2-2 – volume: 52 start-page: 2672 year: 2013 ident: 10.1016/j.bbagen.2014.07.008_bb0605 article-title: Empirical valence bond simulations of the chemical mechanism of ATP to cAMP conversion by anthrax edema factor publication-title: Biochemistry doi: 10.1021/bi400088y – volume: 94 start-page: 138302 year: 2005 ident: 10.1016/j.bbagen.2014.07.008_bb0440 article-title: Quantum mechanical free energy barrier for an enzymatic reaction publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.138302 – volume: 122 start-page: 91102 year: 2005 ident: 10.1016/j.bbagen.2014.07.008_bb0420 article-title: Accelerating quantum mechanical/molecular mechanical sampling using pure molecular mechanical potential as an importance function: the case of effective fragment potential publication-title: J. Chem. Phys. doi: 10.1063/1.1861890 – volume: 46 start-page: 2354 year: 2010 ident: 10.1016/j.bbagen.2014.07.008_bb0230 article-title: Computational enzymology publication-title: Chem. Commun. doi: 10.1039/b925647d – year: 2013 ident: 10.1016/j.bbagen.2014.07.008_bb0370 article-title: The Nobel Prize in Chemistry 2013 — press release – volume: 112 start-page: 5680 year: 2008 ident: 10.1016/j.bbagen.2014.07.008_bb0495 article-title: Accelerating QM/MM free energy calculations: representing the surroundings by an updated mean charge distribution publication-title: J. Phys. Chem. B doi: 10.1021/jp711496y – volume: 8 start-page: 418 year: 2012 ident: 10.1016/j.bbagen.2014.07.008_bb0285 article-title: Robust and efficient constrained DFT molecular dynamics approach for biochemical modeling publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200570u – volume: 114 start-page: 6763 year: 2001 ident: 10.1016/j.bbagen.2014.07.008_bb0460 article-title: Efficient ab initio sampling methods in rate constant calculations for proton-transfer reactions publication-title: J. Chem. Phys. doi: 10.1063/1.1357793 – volume: 48 start-page: 1198 year: 2009 ident: 10.1016/j.bbagen.2014.07.008_bb0100 article-title: QM/MM methods for biomolecular systems publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200802019 – volume: 62 start-page: 41 year: 2011 ident: 10.1016/j.bbagen.2014.07.008_bb0175 article-title: Coarse-grained (multiscale) simulations in studies of biophysical and chemical systems publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-032210-103335 – volume: 128 start-page: 34105 year: 2008 ident: 10.1016/j.bbagen.2014.07.008_bb0155 article-title: Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface publication-title: J. Chem. Phys. doi: 10.1063/1.2816557 – volume: 281 start-page: 140 year: 1997 ident: 10.1016/j.bbagen.2014.07.008_bb0190 article-title: Parallel tempering algorithm for conformational studies of biological molecules publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(97)01198-6 – volume: 60 start-page: 16350 year: 1999 ident: 10.1016/j.bbagen.2014.07.008_bb0295 article-title: Orbital-free kinetic-energy density functionals with a density-dependent kernel publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.60.16350 – volume: 96 start-page: 1350 year: 2009 ident: 10.1016/j.bbagen.2014.07.008_bb0050 article-title: Mechanical properties of the icosahedral shell of southern bean mosaic virus: a molecular dynamics study publication-title: Biophys. J. doi: 10.1016/j.bpj.2008.11.028 – volume: 29 start-page: 1653 year: 1975 ident: 10.1016/j.bbagen.2014.07.008_bb0505 article-title: Self-consistent reaction field theory of solvent effects publication-title: Mol. Phys. doi: 10.1080/00268977500101461 – volume: 321 start-page: 792 year: 2008 ident: 10.1016/j.bbagen.2014.07.008_bb0620 article-title: Insights into current limitations of density functional theory publication-title: Science doi: 10.1126/science.1158722 – volume: 3 start-page: 390 year: 2007 ident: 10.1016/j.bbagen.2014.07.008_bb0545 article-title: QM/MM minimum free energy path: methodology and application to triosephosphate isomerase publication-title: J. Chem. Theory Comput. doi: 10.1021/ct600240y – volume: 45 start-page: 13196 year: 1992 ident: 10.1016/j.bbagen.2014.07.008_bb0290 article-title: Kinetic-energy functional of the electron-density publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.45.13196 – volume: 103 start-page: 495 year: 2000 ident: 10.1016/j.bbagen.2014.07.008_bb0380 article-title: Orthogonalization corrections for semiempirical methods publication-title: Theor. Chem. Acc. doi: 10.1007/s002149900083 – volume: 75 start-page: 036503 year: 2012 ident: 10.1016/j.bbagen.2014.07.008_bb0325 article-title: O(N) methods in electronic structure calculations publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/75/3/036503 – volume: 5 start-page: 2619 year: 2009 ident: 10.1016/j.bbagen.2014.07.008_bb0350 article-title: Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics publication-title: J. Chem. Theory Comput. doi: 10.1021/ct9003004 – volume: 8 start-page: 3565 year: 2012 ident: 10.1016/j.bbagen.2014.07.008_bb0065 article-title: Linear scaling self-consistent field calculations with millions of atoms in the condensed phase publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200897x – volume: 103 start-page: 4782 year: 1999 ident: 10.1016/j.bbagen.2014.07.008_bb0270 article-title: Linear scaling density functional calculations with Gaussian orbitals publication-title: J. Phys. Chem. A doi: 10.1021/jp990629s – volume: 13 start-page: 10401 year: 2011 ident: 10.1016/j.bbagen.2014.07.008_bb0235 article-title: Multiscale modeling of biological functions publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp02823a – volume: 14 start-page: 12592 year: 2012 ident: 10.1016/j.bbagen.2014.07.008_bb0095 article-title: Convergence of QM/MM free-energy perturbations based on molecular-mechanics or semiempirical simulations publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp41005b – volume: 3 start-page: 486 year: 2007 ident: 10.1016/j.bbagen.2014.07.008_bb0375 article-title: Specific reaction parametrization of the AM1/d Hamiltonian for phosphoryl transfer reactions: H, O, and P atoms publication-title: J. Chem. Theory Comput. doi: 10.1021/ct6002466 – volume: 9 start-page: 4360 year: 2013 ident: 10.1016/j.bbagen.2014.07.008_bb0345 article-title: Real-space density functional theory on graphical processing units: computational approach and comparison to gaussian basis set methods publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400520e – volume: 103 start-page: 227 year: 1976 ident: 10.1016/j.bbagen.2014.07.008_bb0355 article-title: Levitt Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(76)90311-9 – volume: 109 start-page: 15645 year: 2005 ident: 10.1016/j.bbagen.2014.07.008_bb0405 article-title: On possible pitfalls in ab initio quantum mechanics/molecular mechanics minimization approaches for studies of enzymatic reactions publication-title: J. Phys. Chem. B doi: 10.1021/jp0521757 – volume: 117 start-page: 10534 year: 2002 ident: 10.1016/j.bbagen.2014.07.008_bb0580 article-title: Optimization of quantum mechanical molecular mechanical partitioning schemes: Gaussian delocalization of molecular mechanical charges and the double link atom method publication-title: J. Chem. Phys. doi: 10.1063/1.1520134 – volume: 59 start-page: 573 year: 2008 ident: 10.1016/j.bbagen.2014.07.008_bb0225 article-title: Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.59.032607.093618 – volume: 10 start-page: 2987 year: 2014 ident: 10.1016/j.bbagen.2014.07.008_bb0700 article-title: Computing the free energy barriers for less by sampling with a coarse reference potential while retaining accuracy of the target fine model publication-title: J. Chem. Theory Comput. doi: 10.1021/ct500109m – volume: 9 start-page: 188 year: 2012 ident: 10.1016/j.bbagen.2014.07.008_bb0540 article-title: Accurate and efficient treatment of continuous solute charge density in the mean-field QM/MM free energy calculation publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300831t – volume: 374 start-page: 806 year: 2007 ident: 10.1016/j.bbagen.2014.07.008_bb0085 article-title: Heterogeneity even at the speed limit of folding: large-scale molecular dynamics study of a fast-folding variant of the villin headpiece publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.09.069 – volume: 31 start-page: 1 year: 2010 ident: 10.1016/j.bbagen.2014.07.008_bb0615 article-title: Using the local elevation method to construct optimized umbrella sampling potentials: Calculation of the relative free energies and interconversion barriers of glucopyranose ring conformers in water publication-title: J. Comput. Chem. doi: 10.1002/jcc.21253 – volume: 10 start-page: 4442 year: 2008 ident: 10.1016/j.bbagen.2014.07.008_bb0535 article-title: Solvation free energies of molecules. The most stable anionic tautomers of uracil publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b802300j – volume: 127 start-page: 6940 year: 2005 ident: 10.1016/j.bbagen.2014.07.008_bb0145 article-title: Multiple-steering QM–MM calculation of the free energy profile in chorismate mutase publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0452830 – volume: 106 start-page: 4813 year: 2002 ident: 10.1016/j.bbagen.2014.07.008_bb0515 article-title: Theoretical calculation of the stark component of the solute–solvent interaction energy. Validity of the mean field approximation in the study of liquids and solutions publication-title: J. Phys. Chem. B doi: 10.1021/jp0200728 – volume: 129 start-page: 54309 year: 2008 ident: 10.1016/j.bbagen.2014.07.008_bb0655 article-title: Photoelectron spectrum of valence anions of uracil and first-principles calculations of excess electron binding energies publication-title: J. Chem. Phys. doi: 10.1063/1.2965128 – volume: vol. 924 start-page: 659 year: 2013 ident: 10.1016/j.bbagen.2014.07.008_bb0130 article-title: Vesicles and vesicle fusion: coarse-grained simulations – volume: 1 start-page: 30 year: 2011 ident: 10.1016/j.bbagen.2014.07.008_bb0600 article-title: The empirical valence bond model: theory and applications publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.10 – volume: 99 start-page: 12562 year: 2002 ident: 10.1016/j.bbagen.2014.07.008_bb0210 article-title: Escaping free-energy minima publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.202427399 – volume: 101 start-page: 5583 year: 1997 ident: 10.1016/j.bbagen.2014.07.008_bb0500 article-title: Langevin dipoles model for ab initio calculations of chemical processes in solution: parametrization and application to hydration free energies of neutral and ionic solutes and conformational analysis in aqueous solution publication-title: J. Phys. Chem. B doi: 10.1021/jp9705075 – volume: 98 start-page: 3681 year: 1994 ident: 10.1016/j.bbagen.2014.07.008_bb0630 article-title: Comparison and scaling of Hartree–Fock and density-functional harmonic force-fields. 1. Formamide monomer publication-title: J. Phys. Chem. doi: 10.1021/j100065a023 – volume: 7 start-page: 3625 year: 2011 ident: 10.1016/j.bbagen.2014.07.008_bb0720 article-title: Adaptive-partitioning redistributed charge and dipole schemes for QM/MM dynamics simulations: on-the-fly relocation of boundaries that pass through covalent bonds publication-title: J. Chem. Theory Comput. doi: 10.1021/ct2005209 – volume: 111 start-page: 7557 year: 2011 ident: 10.1016/j.bbagen.2014.07.008_bb0390 article-title: Classical valence bond approach by modern methods publication-title: Chem. Rev. doi: 10.1021/cr100228r – volume: 898 start-page: 17 year: 2009 ident: 10.1016/j.bbagen.2014.07.008_bb0570 article-title: Development and application of ab initio QM/MM methods for mechanistic simulation of reactions in solution and in enzymes publication-title: THEOCHEM doi: 10.1016/j.theochem.2008.12.025 – volume: 110 start-page: 2934 year: 2006 ident: 10.1016/j.bbagen.2014.07.008_bb0255 article-title: Towards accurate ab initio QM/MM calculations of free-energy profiles of enzymatic reactions publication-title: J. Phys. Chem. B doi: 10.1021/jp057109j – volume: 106 start-page: 3188 year: 2006 ident: 10.1016/j.bbagen.2014.07.008_bb0105 article-title: Mechanisms and free energies of enzymatic reactions publication-title: Chem. Rev. doi: 10.1021/cr050293k – volume: 7 start-page: 931 year: 2011 ident: 10.1016/j.bbagen.2014.07.008_bb0320 article-title: DFTB3: extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB) publication-title: J. Chem. Theory Comput. doi: 10.1021/ct100684s – volume: 118 start-page: 255 year: 2003 ident: 10.1016/j.bbagen.2014.07.008_bb0510 article-title: Geometry optimization of molecules in solution: joint use of the mean field approximation and the free-energy gradient method publication-title: J. Chem. Phys. doi: 10.1063/1.1525798 – volume: 107 start-page: 154 year: 1985 ident: 10.1016/j.bbagen.2014.07.008_bb0640 article-title: Theoretical-examination of the SN2 reaction involving chloride-ION and methyl-chloride in the GAS-phase and aqueous-solution publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00287a028 – volume: 114 start-page: 2755 year: 2010 ident: 10.1016/j.bbagen.2014.07.008_bb0530 article-title: Elucidating solvent contributions to solution reactions with ab initio QM/MM methods publication-title: J. Phys. Chem. B doi: 10.1021/jp905886q – volume: 330 start-page: 341 year: 2010 ident: 10.1016/j.bbagen.2014.07.008_bb0090 article-title: Atomic-level characterization of the structural dynamics of proteins publication-title: Science doi: 10.1126/science.1187409 – volume: 61 start-page: 391 year: 2010 ident: 10.1016/j.bbagen.2014.07.008_bb0200 article-title: Transition-path theory and path-finding algorithms for the study of rare events publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.040808.090412 – volume: 120 start-page: 11919 year: 2004 ident: 10.1016/j.bbagen.2014.07.008_bb0205 article-title: Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules publication-title: J. Chem. Phys. doi: 10.1063/1.1755656 – volume: 112 start-page: 2501 year: 2008 ident: 10.1016/j.bbagen.2014.07.008_bb0450 article-title: Protonation of the proximal histidine ligand in heme peroxidases publication-title: J. Phys. Chem. B doi: 10.1021/jp710038s – volume: 475 start-page: 163 year: 2009 ident: 10.1016/j.bbagen.2014.07.008_bb0075 article-title: Accurate simulations of metals at the mesoscale: explicit treatment of 1 million atoms with quantum mechanics publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2009.04.059 – volume: 106 start-page: 17359 year: 2009 ident: 10.1016/j.bbagen.2014.07.008_bb0650 article-title: Enzyme millisecond conformational dynamics do not catalyze the chemical step publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0909150106 – volume: 5 start-page: 2798 year: 2009 ident: 10.1016/j.bbagen.2014.07.008_bb0010 article-title: Scaling of multimillion-atom biological molecular dynamics simulation on a petascale supercomputer publication-title: J. Chem. Theory Comput. doi: 10.1021/ct900292r – volume: 112 start-page: 289 year: 2012 ident: 10.1016/j.bbagen.2014.07.008_bb0625 article-title: Challenges for density functional theory publication-title: Chem. Rev. doi: 10.1021/cr200107z – volume: 112 start-page: 3483 year: 2000 ident: 10.1016/j.bbagen.2014.07.008_bb0445 article-title: Free energy calculation on enzyme reactions with an efficient iterative procedure to determine minimum energy paths on a combined ab initio QM/MM potential energy surface publication-title: J. Chem. Phys. doi: 10.1063/1.480503 – volume: 115 start-page: 4911 year: 2011 ident: 10.1016/j.bbagen.2014.07.008_bb0635 article-title: A simple QM/MM approach for capturing polarization effects in protein–ligand binding free energy calculations publication-title: J. Phys. Chem. B doi: 10.1021/jp109054j – volume: 106 start-page: 13333 year: 2002 ident: 10.1016/j.bbagen.2014.07.008_bb0250 article-title: Ab initio QM/MM simulation with proper sampling: “first principle” calculations of the free energy of the autodissociation of water in aqueous solution publication-title: J. Phys. Chem. B doi: 10.1021/jp021625h – volume: 2 start-page: 487 year: 2011 ident: 10.1016/j.bbagen.2014.07.008_bb0115 article-title: Capturing the essence of folding and functions of biomolecules using coarse-grained models publication-title: Nat. Commun. doi: 10.1038/ncomms1481 – volume: 91 start-page: 404 year: 2003 ident: 10.1016/j.bbagen.2014.07.008_bb0415 article-title: Separation of quantum and classical behavior in proton transfer reactions: implications from studies of secondary kinetic isotope effects publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.10392 – volume: 125 start-page: 1532 year: 2003 ident: 10.1016/j.bbagen.2014.07.008_bb0680 article-title: Combined QM/MM study of the mechanism and kinetic isotope effect of the nucleophilic substitution reaction in haloalkane dehalogenase publication-title: J. Am. Chem. Soc. doi: 10.1021/ja026955u – volume: 115 start-page: 7950 year: 2011 ident: 10.1016/j.bbagen.2014.07.008_bb0140 article-title: Paradynamics: an effective and reliable model for ab initio QM/MM free-energy calculations and related tasks publication-title: J. Phys. Chem. B doi: 10.1021/jp201217b – volume: 8 start-page: 695 year: 1994 ident: 10.1016/j.bbagen.2014.07.008_bb0610 article-title: Local elevation: a method for improving the searching properties of molecular dynamics simulation publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/BF00124016 – volume: 97 start-page: 8050 year: 1993 ident: 10.1016/j.bbagen.2014.07.008_bb0305 article-title: Frozen density-functional approach for ab-initio calculations of solvated molecules publication-title: J. Phys. Chem. doi: 10.1021/j100132a040 – volume: 23 start-page: 22 year: 2013 ident: 10.1016/j.bbagen.2014.07.008_bb0120 article-title: Protein folding: from theory to practice publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2012.11.010 – volume: 110 start-page: 1329 year: 1999 ident: 10.1016/j.bbagen.2014.07.008_bb0430 article-title: Free energies of solvation with quantum mechanical interaction energies from classical mechanical simulations publication-title: J. Chem. Phys. doi: 10.1063/1.478009 – volume: 8 start-page: 2868 year: 2012 ident: 10.1016/j.bbagen.2014.07.008_bb0710 article-title: Application of adaptive QM/MM methods to molecular dynamics simulations of aqueous systems publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300331f – volume: 71 start-page: 1085 year: 1999 ident: 10.1016/j.bbagen.2014.07.008_bb0005 article-title: Linear scaling electronic structure methods publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.71.1085 – volume: 46 start-page: 7256 year: 2007 ident: 10.1016/j.bbagen.2014.07.008_bb0455 article-title: Structural insights into the active-ready form of [FeFe]-hydrogenase and mechanistic details of its inhibition by carbon monoxide publication-title: Inorg. Chem. doi: 10.1021/ic701051h – volume: 113 start-page: 1253 year: 2009 ident: 10.1016/j.bbagen.2014.07.008_bb0590 article-title: Progress in ab initio QM/MM free-energy simulations of electrostatic energies in proteins: accelerated QM/MM studies of pKa, redox reactions and solvation free energies publication-title: J. Phys. Chem. B doi: 10.1021/jp8071712 – volume: 52 start-page: 2708 year: 2013 ident: 10.1016/j.bbagen.2014.07.008_bb0025 article-title: Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology publication-title: Biochemistry doi: 10.1021/bi400215w – volume: 13 start-page: 199 year: 1992 ident: 10.1016/j.bbagen.2014.07.008_bb0240 article-title: Microscopic models for quantum mechanical calculations of chemical processes in solutions: LD/AMPAC and SCAAS/AMPAC calculations of solvation energies publication-title: J. Comput. Chem. doi: 10.1002/jcc.540130212 – volume: 128 start-page: 14109 year: 2008 ident: 10.1016/j.bbagen.2014.07.008_bb0435 article-title: An efficient method for the calculation of quantum mechanics/molecular mechanics free energies publication-title: J. Chem. Phys. doi: 10.1063/1.2805379 – volume: 52 start-page: 1262 year: 1970 ident: 10.1016/j.bbagen.2014.07.008_bb0360 article-title: Oxidation of 4a,4b-dihydrophenanthrenes. 3. A theoretical study of large kinetic isotope effect of deuterium in the initiation step of the thermal reaction with oxygen publication-title: J. Chem. Phys. doi: 10.1063/1.1673124 – volume: 23 start-page: 187 year: 1977 ident: 10.1016/j.bbagen.2014.07.008_bb0180 article-title: Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(77)90121-8 – volume: 4 start-page: 206 year: 2006 ident: 10.1016/j.bbagen.2014.07.008_bb0475 article-title: Molecular mechanisms of antibiotic resistance: QM/MM modelling of deacylation in a class A beta-lactamase publication-title: Org. Biomol. Chem. doi: 10.1039/B512969A – volume: 94 start-page: L75 year: 2008 ident: 10.1016/j.bbagen.2014.07.008_bb0080 article-title: Ten-microsecond molecular dynamics simulation of a fast-folding WW domain publication-title: Biophys. J. doi: 10.1529/biophysj.108.131565 – volume: 1 start-page: 1240 year: 2005 ident: 10.1016/j.bbagen.2014.07.008_bb0150 article-title: Accurate QM/MM free energy calculations of enzyme reactions: methylation by catechol O-methyltransferase publication-title: J. Chem. Theory Comput. doi: 10.1021/ct0501102 – volume: 10 start-page: 26 year: 2008 ident: 10.1016/j.bbagen.2014.07.008_bb0330 article-title: Graphical processing units for quantum chemistry publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2008.148 – volume: 40 start-page: 41 year: 2011 ident: 10.1016/j.bbagen.2014.07.008_bb0215 article-title: Equilibrium sampling in biomolecular simulations publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-042910-155255 – volume: 109 start-page: 23638 year: 2005 ident: 10.1016/j.bbagen.2014.07.008_bb0400 article-title: Hybrid ab initio VB/MM method — a valence bond ride through classical landscapes publication-title: J. Phys. Chem. B doi: 10.1021/jp054913x – volume: 10 start-page: 2159 year: 2008 ident: 10.1016/j.bbagen.2014.07.008_bb0385 article-title: OMx-D: semiempirical methods with orthogonalization and dispersion corrections. Implementation and biochemical application publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b718795e – volume: 116 start-page: 316 year: 2006 ident: 10.1016/j.bbagen.2014.07.008_bb0315 article-title: The SCC-DFTB method and its application to biological systems publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-005-0066-0 – volume: 112 start-page: 321 year: 2011 ident: 10.1016/j.bbagen.2014.07.008_bb0275 article-title: Constrained density functional theory publication-title: Chem. Rev. doi: 10.1021/cr200148b – volume: 107 start-page: 2118 year: 2003 ident: 10.1016/j.bbagen.2014.07.008_bb0470 article-title: Ab initio QM/MM modeling of the hydroxylation step in p-hydroxybenzoate hydroxylase publication-title: J. Phys. Chem. B doi: 10.1021/jp026213n – volume: 110 start-page: 495 year: 2013 ident: 10.1016/j.bbagen.2014.07.008_bb0685 article-title: Exploring the nature of the translocon-assisted protein insertion publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1220361110 – volume: 111 start-page: 13455 year: 2007 ident: 10.1016/j.bbagen.2014.07.008_bb0480 article-title: Phosphorylation reaction in cAPK protein kinase-free energy quantum mechanical/molecular mechanics simulations publication-title: J. Phys. Chem. B doi: 10.1021/jp074853q – volume: 127 start-page: 1946 year: 2005 ident: 10.1016/j.bbagen.2014.07.008_bb0670 article-title: Dynamic and electrostatic effects in enzymatic processes. An analysis of the nucleophilic substitution reaction in haloalkane dehalogenase publication-title: J. Am. Chem. Soc. doi: 10.1021/ja046553h – volume: 134 start-page: 7045 year: 2012 ident: 10.1016/j.bbagen.2014.07.008_bb0550 article-title: Crucial role of protein flexibility in formation of a stable reaction transition state in an α-amylase catalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/ja212117m – volume: 99 start-page: 17516 year: 1995 ident: 10.1016/j.bbagen.2014.07.008_bb0135 article-title: Ab initio calculations of free energy barriers for chemical reactions in solution publication-title: J. Phys. Chem. doi: 10.1021/j100049a009 – volume: 113 start-page: 4852 year: 2000 ident: 10.1016/j.bbagen.2014.07.008_bb0410 article-title: Using a classical potential as an efficient importance function for sampling from an ab initio potential publication-title: J. Chem. Phys. doi: 10.1063/1.1289534 – volume: 117 start-page: 12202 year: 2013 ident: 10.1016/j.bbagen.2014.07.008_bb0715 article-title: Tests of an adaptive QM/MM calculation on free energy profiles of chemical reactions in solution publication-title: J. Phys. Chem. B doi: 10.1021/jp405974b – volume: 115 start-page: 2350 year: 2011 ident: 10.1016/j.bbagen.2014.07.008_bb0660 article-title: Electron affinities of small uracil–water complexes: a comparison of benchmark CCSD(T) calculations with DFT publication-title: J. Phys. Chem. A doi: 10.1021/jp111104j – volume: 9 start-page: 4421 year: 2013 ident: 10.1016/j.bbagen.2014.07.008_bb0280 article-title: Efficient linear-scaling density functional theory for molecular systems publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400595k – volume: 115 start-page: 12047 year: 2011 ident: 10.1016/j.bbagen.2014.07.008_bb0485 article-title: Hybrid quantum mechanical/molecular mechanics study of the SN2 reaction of CH3Cl+OH− in water publication-title: J. Phys. Chem. A doi: 10.1021/jp2076808 – volume: 132 start-page: 1526 year: 2010 ident: 10.1016/j.bbagen.2014.07.008_bb0060 article-title: Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1–39) publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9090353 – volume: 104 start-page: 59 year: 1976 ident: 10.1016/j.bbagen.2014.07.008_bb0245 article-title: A simplified representation of protein conformations for rapid simulation of protein folding publication-title: J. Mol. Biol doi: 10.1016/0022-2836(76)90004-8 – volume: 10 start-page: 959 year: 2014 ident: 10.1016/j.bbagen.2014.07.008_bb0335 article-title: GPU accelerated implementation of density functional theory for hybrid QM/MM simulations publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400308n – volume: 126 start-page: 15167 year: 2004 ident: 10.1016/j.bbagen.2014.07.008_bb0675 article-title: Solute solvent dynamics and energetics in enzyme catalysis: the SN2 reaction of dehalogenase as a general benchmark publication-title: J. Am. Chem. Soc. doi: 10.1021/ja047151c – volume: 155 start-page: 115 year: 2003 ident: 10.1016/j.bbagen.2014.07.008_bb0035 article-title: Hardware accelerator for molecular dynamics: MDGRAPE-2 publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(03)00349-7 – volume: 51 start-page: 91 year: 2008 ident: 10.1016/j.bbagen.2014.07.008_bb0040 article-title: Anton, a special-purpose machine for molecular dynamics simulation publication-title: Commun. ACM doi: 10.1145/1364782.1364802 – volume: 23 start-page: 1915 year: 1955 ident: 10.1016/j.bbagen.2014.07.008_bb0265 article-title: High-temperature equation of state by a perturbation method. 2. Polar gases publication-title: J. Chem. Phys. doi: 10.1063/1.1740604 – volume: 105 start-page: 7185 year: 2001 ident: 10.1016/j.bbagen.2014.07.008_bb0645 article-title: ONIOM study of chemical reactions in microsolvation clusters: (H2O)nCH3Cl+OH−(H2O)(n+m=1 and 2) publication-title: J. Phys. Chem. A doi: 10.1021/jp004623a – volume: 94 start-page: 5612 year: 1972 ident: 10.1016/j.bbagen.2014.07.008_bb0365 article-title: Calculation of ground and excited-state potential surfaces of conjugated molecules. 1. Formulation and parametrization publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00771a014 – volume: 4 start-page: 985 year: 2008 ident: 10.1016/j.bbagen.2014.07.008_bb0585 article-title: Proton transfer at metal sites in proteins studied by quantum mechanical free-energy perturbations publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700347h – volume: 111 start-page: 2128 year: 2014 ident: 10.1016/j.bbagen.2014.07.008_bb0165 article-title: Coarse-grained simulations of the gating current in the voltage-activated Kv1.2 channel publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1324014111 – volume: 115 start-page: 9169 year: 2001 ident: 10.1016/j.bbagen.2014.07.008_bb0195 article-title: Calculating free energies using average force publication-title: J. Chem. Phys. doi: 10.1063/1.1410978 – volume: 4 start-page: 1230 year: 2008 ident: 10.1016/j.bbagen.2014.07.008_bb0340 article-title: Accelerating density functional calculations with graphics processing unit publication-title: J. Chem. Theory Comput. doi: 10.1021/ct8001046 – volume: 138 start-page: 174114 year: 2013 ident: 10.1016/j.bbagen.2014.07.008_bb0525 article-title: Mean field QM/MM method: average position approximation publication-title: J. Chem. Phys. doi: 10.1063/1.4803143 – volume: 139 start-page: 64105 year: 2013 ident: 10.1016/j.bbagen.2014.07.008_bb0425 article-title: Quantum mechanics/molecular mechanics dual Hamiltonian free energy perturbation publication-title: J. Chem. Phys. doi: 10.1063/1.4817402 – volume: 134 start-page: 164108 year: 2011 ident: 10.1016/j.bbagen.2014.07.008_bb0300 article-title: Embedded density functional theory for covalently bonded and strongly interacting subsystems publication-title: J. Chem. Phys. doi: 10.1063/1.3582913 – volume: 110 start-page: 46 year: 1999 ident: 10.1016/j.bbagen.2014.07.008_bb0575 article-title: A pseudobond approach to combining quantum mechanical and molecular mechanical methods publication-title: J. Chem. Phys. doi: 10.1063/1.478083 – volume: 111 start-page: 2231 year: 2007 ident: 10.1016/j.bbagen.2014.07.008_bb0705 article-title: Adaptive partitioning in combined quantum mechanical and molecular mechanical calculations of potential energy functions for multiscale simulations publication-title: J. Phys. Chem. B doi: 10.1021/jp0673617 – volume: 108 start-page: 7408 year: 2011 ident: 10.1016/j.bbagen.2014.07.008_bb0690 article-title: Torsional elasticity and energetics of F1-ATPase publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1018686108 – year: 1991 ident: 10.1016/j.bbagen.2014.07.008_bb0260 – volume: 117 start-page: 9478 year: 2013 ident: 10.1016/j.bbagen.2014.07.008_bb0565 article-title: Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies publication-title: J. Phys. Chem. B doi: 10.1021/jp404518r – volume: 18 start-page: 184 year: 2012 ident: 10.1016/j.bbagen.2014.07.008_bb0555 article-title: Modelling zwitterions in solution: 3-fluoro-gamma-aminobutyric acid (3F-GABA) publication-title: Chemistry doi: 10.1002/chem.201101674 – volume: 116 start-page: 10342 year: 2012 ident: 10.1016/j.bbagen.2014.07.008_bb0595 article-title: Exploring, refining, and validating the paradynamics QM/MM sampling publication-title: J. Phys. Chem. B doi: 10.1021/jp304678d – volume: 51 start-page: 1774 year: 2012 ident: 10.1016/j.bbagen.2014.07.008_bb0490 article-title: Determinants of reactivity and selectivity in soluble epoxide hydrolase from quantum mechanics/molecular mechanics modeling publication-title: Biochemistry doi: 10.1021/bi201722j – volume: 105 start-page: 13877 year: 2008 ident: 10.1016/j.bbagen.2014.07.008_bb0160 article-title: On the relationship between folding and chemical landscapes in enzyme catalysis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0803405105 – volume: 25 start-page: 8368 year: 1986 ident: 10.1016/j.bbagen.2014.07.008_bb0665 article-title: Free-energy of charges in solvated proteins — microscopic calculations using a reversible charging process publication-title: Biochemistry doi: 10.1021/bi00374a006 – volume: 253 start-page: 694 year: 1975 ident: 10.1016/j.bbagen.2014.07.008_bb0110 article-title: Computer-simulation of protein folding publication-title: Nature doi: 10.1038/253694a0 – volume: 108 start-page: 20550 year: 2011 ident: 10.1016/j.bbagen.2014.07.008_bb0695 article-title: Electrostatic origin of the mechanochemical rotary mechanism and the catalytic dwell of F1-ATPase publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1117024108 – volume: 124 start-page: 10572 year: 2002 ident: 10.1016/j.bbagen.2014.07.008_bb0465 article-title: Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: an ab initio QM/MM study publication-title: J. Am. Chem. Soc. doi: 10.1021/ja020243m – volume: 23 start-page: 58 year: 2013 ident: 10.1016/j.bbagen.2014.07.008_bb0030 article-title: To milliseconds and beyond: challenges in the simulation of protein folding publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2012.11.002 – volume: 10 start-page: 1406 year: 2014 ident: 10.1016/j.bbagen.2014.07.008_bb0560 article-title: Multiscale free energy simulations: an efficient method for connecting classical MD simulations to QM or QM/MM free energies using non-Boltzmann Bennett reweighting schemes publication-title: J. Chem. Theory Comput. doi: 10.1021/ct401118k – volume: 7 start-page: 884 year: 2011 ident: 10.1016/j.bbagen.2014.07.008_bb0015 article-title: Linear scaling constrained density functional theory in CONQUEST publication-title: J. Chem. Theory Comput. doi: 10.1021/ct100601n – volume: 8 start-page: 1542 year: 2012 ident: 10.1016/j.bbagen.2014.07.008_bb0045 article-title: Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized Born publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200909j – volume: 43 start-page: 142 year: 2009 ident: 10.1016/j.bbagen.2014.07.008_bb0220 article-title: Advances in quantum and molecular mechanical (QM/MM) simulations for organic and enzymatic reactions publication-title: Acc. Chem. Res. doi: 10.1021/ar900171c – volume: 22 start-page: 074207 year: 2010 ident: 10.1016/j.bbagen.2014.07.008_bb0070 article-title: Calculations for millions of atoms with density functional theory: linear scaling shows its potential publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/22/7/074207 – volume: 58 start-page: 7260 year: 1998 ident: 10.1016/j.bbagen.2014.07.008_bb0310 article-title: Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.7260 – volume: 110 start-page: 3674 year: 2006 ident: 10.1016/j.bbagen.2014.07.008_bb0125 article-title: Coarse grained protein–lipid model with application to lipoprotein particles publication-title: J. Phys. Chem. B doi: 10.1021/jp0550816 – volume: 5 start-page: 2212 year: 2009 ident: 10.1016/j.bbagen.2014.07.008_bb0725 article-title: Toward a practical method for adaptive QM/MM simulations publication-title: J. Chem. Theory Comput. doi: 10.1021/ct900148e – volume: 41 start-page: 429 year: 2012 ident: 10.1016/j.bbagen.2014.07.008_bb0020 article-title: Biomolecular simulation: a computational microscope for molecular biology publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-042910-155245 – volume: 157 start-page: 470 year: 2007 ident: 10.1016/j.bbagen.2014.07.008_bb0055 article-title: High performance computing in biology: multimillion atom simulations of nanoscale systems publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2006.10.023 – volume: 46 start-page: 15076 year: 2007 ident: 10.1016/j.bbagen.2014.07.008_bb0170 article-title: On the relationship between thermal stability and catalytic power of enzymes publication-title: Biochemistry doi: 10.1021/bi701732a – volume: 136 start-page: 134107 year: 2012 ident: 10.1016/j.bbagen.2014.07.008_bb0520 article-title: Variational calculation of quantum mechanical/molecular mechanical free energy with electronic polarization of solvent publication-title: J. Chem. Phys. doi: 10.1063/1.3699234 – reference: 22468622 - J Am Chem Soc. 2012 Apr 25;134(16):7045-55 – reference: 17950314 - J Mol Biol. 2007 Nov 30;374(3):806-16 – reference: 15884923 - J Am Chem Soc. 2005 May 18;127(19):6940-1 – reference: 24033146 - J Phys Chem B. 2013 Oct 10;117(40):12202-11 – reference: 19805169 - Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17359-64 – reference: 23557014 - Biochemistry. 2013 Apr 23;52(16):2708-28 – reference: 23034768 - Methods Mol Biol. 2013;924:659-97 – reference: 24803863 - J Chem Theory Comput. 2014 Apr 8;10(4):1406-1419 – reference: 22191548 - Chem Rev. 2012 Jan 11;112(1):289-320 – reference: 22280021 - Biochemistry. 2012 Feb 28;51(8):1774-86 – reference: 23266001 - Curr Opin Struct Biol. 2013 Feb;23(1):22-9 – reference: 17676838 - Inorg Chem. 2007 Sep 3;46(18):7256-8 – reference: 16471904 - J Phys Chem B. 2006 Feb 16;110(6):2934-41 – reference: 26592126 - J Chem Theory Comput. 2012 Aug 14;8(8):2868-77 – reference: 18698902 - J Chem Phys. 2008 Aug 7;129(5):054309 – reference: 22853800 - J Phys Chem B. 2012 Aug 30;116(34):10342-56 – reference: 18393679 - Annu Rev Phys Chem. 2008;59:573-601 – reference: 18412414 - J Phys Chem B. 2008 May 8;112(18):5680-92 – reference: 22161781 - Chemistry. 2012 Jan 2;18(1):184-95 – reference: 20947758 - Science. 2010 Oct 15;330(6002):341-6 – reference: 957439 - J Mol Biol. 1976 Jun 14;104(1):59-107 – reference: 2435316 - Biochemistry. 1986 Dec 30;25(26):8368-72 – reference: 26637030 - J Chem Theory Comput. 2007 Mar;3(2):486-504 – reference: 16494423 - J Phys Chem B. 2006 Mar 2;110(8):3674-84 – reference: 22077560 - Chem Rev. 2012 Jan 11;112(1):321-70 – reference: 23841453 - J Phys Chem B. 2013 Aug 15;117(32):9478-85 – reference: 26589022 - J Chem Theory Comput. 2013 Jan 8;9(1):188-203 – reference: 16895324 - Chem Rev. 2006 Aug;106(8):3188-209 – reference: 19217853 - Biophys J. 2009 Feb 18;96(4):1350-63 – reference: 21848344 - Chem Rev. 2011 Nov 9;111(11):7557-93 – reference: 15836102 - J Chem Phys. 2005 Mar 1;122(9):091102 – reference: 26589159 - J Chem Theory Comput. 2013 Oct 8;9(10):4421-7 – reference: 9390256 - Pac Symp Biocomput. 1996;:524-38 – reference: 15548014 - J Am Chem Soc. 2004 Nov 24;126(46):15167-79 – reference: 18190187 - J Chem Phys. 2008 Jan 7;128(1):014109 – reference: 21942376 - J Phys Chem A. 2011 Nov 3;115(43):12047-52 – reference: 20121225 - J Phys Chem B. 2010 Mar 4;114(8):2755-9 – reference: 20309456 - Chem Commun (Camb). 2010 Apr 14;46(14):2354-72 – reference: 20070076 - J Am Chem Soc. 2010 Feb 10;132(5):1526-8 – reference: 18251539 - J Phys Chem B. 2008 Feb 28;112(8):2501-10 – reference: 26631792 - J Chem Theory Comput. 2009 Oct 13;5(10):2798-808 – reference: 21528951 - J Chem Phys. 2011 Apr 28;134(16):164108 – reference: 21502534 - Proc Natl Acad Sci U S A. 2011 May 3;108(18):7408-13 – reference: 26596593 - J Chem Theory Comput. 2012 Feb 14;8(2):418-27 – reference: 19728702 - Acc Chem Res. 2010 Jan 19;43(1):142-51 – reference: 17983217 - J Phys Chem B. 2007 Nov 29;111(47):13455-64 – reference: 23947841 - J Chem Phys. 2013 Aug 14;139(6):064105 – reference: 16391762 - Org Biomol Chem. 2006 Jan 21;4(2):206-10 – reference: 22482540 - J Chem Phys. 2012 Apr 7;136(13):134107 – reference: 18339748 - Biophys J. 2008 May 15;94(10):L75-7 – reference: 22790422 - Rep Prog Phys. 2012 Mar;75(3):036503 – reference: 23237705 - Curr Opin Struct Biol. 2013 Feb;23(1):58-65 – reference: 18052079 - Biochemistry. 2007 Dec 25;46(51):15076-88 – reference: 23656121 - J Chem Phys. 2013 May 7;138(17):174114 – reference: 26616607 - J Chem Theory Comput. 2009 Sep 8;5(9):2212-21 – reference: 26580175 - J Chem Theory Comput. 2014 Mar 11;10(3):959-67 – reference: 26598259 - J Chem Theory Comput. 2011 Nov 8;7(11):3625-34 – reference: 17288477 - J Phys Chem B. 2007 Mar 8;111(9):2231-41 – reference: 21034218 - Annu Rev Phys Chem. 2011;62:41-64 – reference: 19173328 - Angew Chem Int Ed Engl. 2009;48(7):1198-229 – reference: 15904045 - Phys Rev Lett. 2005 Apr 8;94(13):138302 – reference: 18779576 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13877-82 – reference: 21526232 - Phys Chem Chem Phys. 2011 Jun 14;13(22):10401-11 – reference: 19079734 - J Chem Theory Comput. 2007 Mar;3(2):390-406 – reference: 12568613 - J Am Chem Soc. 2003 Feb 12;125(6):1532-40 – reference: 26621239 - J Chem Theory Comput. 2008 Jun;4(6):985-1001 – reference: 18654684 - Phys Chem Chem Phys. 2008 Aug 14;10(30):4442-8 – reference: 26631777 - J Chem Theory Comput. 2009 Oct 13;5(10):2619-28 – reference: 22577825 - Annu Rev Biophys. 2012;41:429-52 – reference: 21386385 - J Phys Condens Matter. 2010 Feb 24;22(7):074207 – reference: 24146439 - Theochem. 2009 Mar 30;898(1-3):17-30 – reference: 26593003 - J Chem Theory Comput. 2012 Oct 9;8(10):3565-73 – reference: 15701029 - J Am Chem Soc. 2005 Feb 16;127(6):1946-57 – reference: 26606339 - J Chem Theory Comput. 2011 Apr 12;7(4):884-9 – reference: 23204947 - J Chem Theory Comput. 2012 Apr 10;7(4):931-948 – reference: 16375342 - J Phys Chem B. 2005 Dec 15;109(49):23638-44 – reference: 26589153 - J Chem Theory Comput. 2013 Oct 8;9(10):4360-73 – reference: 25136268 - J Chem Theory Comput. 2014 Aug 12;10(8):2987-3001 – reference: 22797613 - Phys Chem Chem Phys. 2012 Sep 28;14(36):12592-604 – reference: 12197759 - J Am Chem Soc. 2002 Sep 4;124(35):10572-7 – reference: 21476567 - J Phys Chem B. 2011 May 5;115(17):4911-26 – reference: 23269832 - Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):495-500 – reference: 19412904 - J Comput Chem. 2010 Jan 15;31(1):1-23 – reference: 1167625 - Nature. 1975 Feb 27;253(5494):694-8 – reference: 21618985 - J Phys Chem B. 2011 Jun 23;115(24):7950-62 – reference: 19055405 - J Phys Chem B. 2009 Feb 5;113(5):1253-72 – reference: 21370970 - Annu Rev Biophys. 2011;40:41-62 – reference: 26631668 - J Chem Theory Comput. 2005 Nov;1(6):1240-51 – reference: 7738605 - J Comput Aided Mol Des. 1994 Dec;8(6):695-708 – reference: 21370814 - J Phys Chem A. 2011 Mar 24;115(11):2350-8 – reference: 17187988 - J Struct Biol. 2007 Mar;157(3):470-80 – reference: 10001400 - Phys Rev B Condens Matter. 1992 Jun 15;45(23):13196-13220 – reference: 985660 - J Mol Biol. 1976 May 15;103(2):227-49 – reference: 18687952 - Science. 2008 Aug 8;321(5890):792-4 – reference: 24464485 - Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2128-33 – reference: 22143769 - Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20550-5 – reference: 21952221 - Nat Commun. 2011;2:487 – reference: 18205486 - J Chem Phys. 2008 Jan 21;128(3):034105 – reference: 23480863 - Biochemistry. 2013 Apr 16;52(15):2672-82 – reference: 26631699 - J Chem Theory Comput. 2008 Aug;4(8):1230-6 – reference: 18404221 - Phys Chem Chem Phys. 2008 Apr 28;10(16):2159-66 – reference: 12271136 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12562-6 – reference: 22582031 - J Chem Theory Comput. 2012 May 8;8(5):1542-1555 – reference: 16852982 - J Phys Chem B. 2005 Aug 18;109(32):15645-50 – reference: 15268227 - J Chem Phys. 2004 Jun 22;120(24):11919-29 – reference: 18999998 - Annu Rev Phys Chem. 2010;61:391-420 |
SSID | ssj0000595 ssj0025309 |
Score | 2.3902478 |
SecondaryResourceType | review_article |
Snippet | Recent years have seen enormous progress in the development of methods for modeling (bio)molecular systems. This has allowed for the simulation of ever larger... times We present some of the advances to accelerate high-level QM/MM calculations. • We present some of the advances to accelerate high-level QM/MM calculations. • Quantitative limitations of low-level methods can be overcome by these... Background: Recent years have seen enormous progress in the development of methods for modeling (bio)molecular systems. This has allowed for the simulation of... |
SourceID | swepub pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 954 |
SubjectTerms | Averaging potential Chlorides - chemistry cost effectiveness Energy Transfer Ethylene Dichlorides - chemistry Gibbs free energy Hydrolases - chemistry Kinetics Mean field approximation Methyl Chloride - chemistry molecular dynamics Molecular Dynamics Simulation - standards Multiscale modeling Protein Conformation Protein Folding Protein Stability Protein Unfolding Proteins - chemistry QM/MM free energy calculation Reference potential Reference Standards Review Structure-Activity Relationship Surface Properties Thermodynamics Uracil - chemistry |
Title | Recent advances in QM/MM free energy calculations using reference potentials |
URI | https://dx.doi.org/10.1016/j.bbagen.2014.07.008 https://www.ncbi.nlm.nih.gov/pubmed/25038480 https://www.proquest.com/docview/1700682599 https://www.proquest.com/docview/1823950221 https://www.proquest.com/docview/2000229493 https://pubmed.ncbi.nlm.nih.gov/PMC4547088 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-251670 |
Volume | 1850 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6tFiG4IFhe5bEyEhxD83Ds-FgVVoXSlXgs7M2Kk8kShNKqjwMXfjszcVIULbASp6jpuEk8E8_nzsw3AM_RkZJTIwNV8F83MqmCvHBRYDJlUIfayZILnBenanYm356n5wcw7WthOK2yW_v9mt6u1t2ZcTeb41Vdjz9yUI_gBHl8djSKGT-l1GzlL3_-TvMg-JD6SIIMWLovn2tzvJyjl5ZZUCPZUnhyk8k_u6fL8PNyFuWAa7T1Tye34VYHLMXE3_sdOMDmCK77VpM_juDGtO_sdhfeEVakXxNd_H8j6ka8X4wXC1GtEQW25YCClFd0vb02gtPjL8S-J4lYLbecZkS2ew_OTl5_ms6CrqtCUOgw3gaEAGkDzSXeWlcuR0JIJUZx7pyOM4dlmZOHV85hJjFMythVKkvRmCoPDTL_3n04bJYNPgSByqQYFWUVhblEg65KTOZoz6W4YFdHI0j6ybRFRznOnS--2z637Jv1KrCsAhtyLDwbQbAftfKUG1fI615PdmA6lrzCFSOf9Wq1pAIOleQNLncby6yF9BCpMf-QyeLEpISBor_LxC3BkJEmGcEDby77Z4qZiUdmId3_wJD2Asz8Pfymqb-2DODMwkbuYQQvvMkNhryqP0_scn1hdzu6RqR0-Oi_Z-gx3KRPqc_wfAKH2_UOnxIK27rj9jU7hmuTN_PZKR_nH77MfwFi3zQY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB2VIlQuqBQoAQqLBEcTf6zX3mOVtgoQV0K0qLeV1x4XI-RE-Thw4bcz47WDrAKVuMazib0zu_OcffMG4A1acnKspacK_utGRpWXFzbwdKo0Jn5iZckFztm5ml7KD1fx1Q5M-loYplV2e7_b09vduvtk3M3meFHX4898qEdwgjI-JxoV3YG7kpYvtzF49_M3z4PwQ-yOEqTH5n39XEvyspZWLcugBrLV8OQuk3_OTzfx500a5UBstE1QZ_vwoEOW4tjd_EPYweYA7rlekz8OYG_St3Z7BDMCi_RtoiMArETdiE_ZOMtEtUQU2NYDCvJe0TX3Wgnmx1-LbVMSsZivmWdEwfsYLs9OLyZTr2ur4BWJH649goD0Bs013klS2RwJIpUYhLm1SZhaLMucUryyFlOJflSGtlJpjFpXua-RBfiewG4zb_ApCFQ6xqAoq8DPJWq0VaRTSy9diit2k2AEUT-Zpug0x7n1xXfTk8u-GecCwy4wPh-GpyPwtqMWTnPjFvuk95MZxI6htHDLyNe9Ww25gM9K8gbnm5Vh2UJ6iFjrf9ikYaRjAkHB323CVmFISx2N4NCFy_aZQpbikalP9z8IpK0BS38PrzT111YCnGXYKD-M4K0LucGQk_rLsZkvr81mQ78RqMR_9t8z9Ar2phfZzMzen398DvfpSuzoni9gd73c4BFBsrV92S65X3q-NAM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+QM%2FMM+free+energy+calculations+using+reference+potentials&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Duarte%2C+Fernanda&rft.au=Amrein%2C+Beat+A.&rft.au=Blaha-Nelson%2C+David&rft.au=Kamerlin%2C+Shina+Caroline+Lynn&rft.date=2015-05-01&rft.issn=1872-8006&rft.volume=1850&rft.issue=5&rft.spage=954&rft_id=info:doi/10.1016%2Fj.bbagen.2014.07.008&rft.externalDocID=oai_DiVA_org_uu_251670 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |