A system for the continuous directed evolution of biomolecules

Speedy route to new biomolecules Many biomolecules with useful properties have been generated by laboratory molecular evolution experiments, but the processes typically take days and require frequent human intervention. Esvelt et al . now describe a phage-assisted continuous evolution system that en...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 472; no. 7344; pp. 499 - 503
Main Authors Esvelt, Kevin M., Carlson, Jacob C., Liu, David R.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 28.04.2011
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Speedy route to new biomolecules Many biomolecules with useful properties have been generated by laboratory molecular evolution experiments, but the processes typically take days and require frequent human intervention. Esvelt et al . now describe a phage-assisted continuous evolution system that enables the continuous, directed evolution of gene-encoded molecules that can be linked to protein production in Escherichia coli . Dozens of rounds of evolution can occur in a single day using this method, as demonstrated by the evolution of novel types of T7 RNA polymerase. Laboratory evolution has generated many biomolecules with desired properties, but a single round of mutation, gene expression, screening or selection, and replication typically requires days or longer with frequent human intervention 1 . Because evolutionary success is dependent on the total number of rounds performed 2 , a means of performing laboratory evolution continuously and rapidly could dramatically enhance its effectiveness 3 . Although researchers have accelerated individual steps in the evolutionary cycle 4 , 5 , 6 , 7 , 8 , 9 , the only previous example of continuous directed evolution was the landmark study of Wright and Joyce 10 , who continuously evolved RNA ligase ribozymes with an in vitro replication cycle that unfortunately cannot be easily adapted to other biomolecules. Here we describe a system that enables the continuous directed evolution of gene-encoded molecules that can be linked to protein production in Escherichia coli . During phage-assisted continuous evolution (PACE), evolving genes are transferred from host cell to host cell through a modified bacteriophage life cycle in a manner that is dependent on the activity of interest. Dozens of rounds of evolution can occur in a single day of PACE without human intervention. Using PACE, we evolved T7 RNA polymerase (RNAP) variants that recognize a distinct promoter, initiate transcripts with ATP instead of GTP, and initiate transcripts with CTP. In one example, PACE executed 200 rounds of protein evolution over the course of 8 days. Starting from undetectable activity levels in two of these cases, enzymes with each of the three target activities emerged in less than 1 week of PACE. In all three cases, PACE-evolved polymerase activities exceeded or were comparable to that of the wild-type T7 RNAP on its wild-type promoter, representing improvements of up to several hundred-fold. By greatly accelerating laboratory evolution, PACE may provide solutions to otherwise intractable directed evolution problems and address novel questions about molecular evolution.
AbstractList Laboratory evolution has generated many biomolecules with desired properties, but a single round of mutation, gene expression, screening or selection, and replication typically requires days or longer with frequent human intervention. 1 Since evolutionary success is dependent on the total number of rounds performed, 2 a means of performing laboratory evolution continuously and rapidly could dramatically enhance its effectiveness. 3 While researchers have accelerated individual steps in the evolutionary cycle, 4 – 9 the only previous example of continuous directed evolution was the landmark study of Joyce, 10 who continuously evolved RNA ligase ribozymes with an in vitro replication cycle that unfortunately cannot be easily adapted to other biomolecules. Here we describe a system that enables the continuous directed evolution of gene-encoded molecules that can be linked to protein production in E. coli . During phage-assisted continuous evolution (PACE), evolving genes are transferred from host cell to host cell through a modified bacteriophage life cycle in a manner that is dependent on the activity of interest. Dozens of rounds of evolution can occur in a single day of PACE without human intervention. Using PACE, we evolved T7 RNA polymerases that recognize a distinct promoter, initiate transcripts with A instead of G, and initiate transcripts with C. In one example, PACE executed 200 rounds of protein evolution over the course of eight days. Starting from undetectable activity levels in two of these cases, enzymes with each of the three target activities emerged in less than one week of PACE. In all three cases, PACE-evolved polymerase activities exceeded or were comparable to that of the wild-type T7 RNAP on its wild-type promoter, representing improvements of up to several hundred-fold. By greatly accelerating laboratory evolution, PACE may provide solutions to otherwise intractable directed evolution problems and address novel questions about molecular evolution.
Laboratory evolution has generated many biomolecules with desired properties, but a single round of mutation, gene expression, screening or selection, and replication typically requires days or longer with frequent human intervention. Because evolutionary success is dependent on the total number of rounds performed, a means of performing laboratory evolution continuously and rapidly could dramatically enhance its effectiveness. Although researchers have accelerated individual steps in the evolutionary cycle, the only previous example of continuous directed evolution was the landmark study of Wright and Joyce, who continuously evolved RNA ligase ribozymes with an in vitro replication cycle that unfortunately cannot be easily adapted to other biomolecules. Here we describe a system that enables the continuous directed evolution of gene-encoded molecules that can be linked to protein production in Escherichia coli. During phage-assisted continuous evolution (PACE), evolving genes are transferred from host cell to host cell through a modified bacteriophage life cycle in a manner that is dependent on the activity of interest. Dozens of rounds of evolution can occur in a single day of PACE without human intervention. Using PACE, we evolved T7 RNA polymerase (RNAP) variants that recognize a distinct promoter, initiate transcripts with ATP instead of GTP, and initiate transcripts with CTP. In one example, PACE executed 200 rounds of protein evolution over the course of 8 days. Starting from undetectable activity levels in two of these cases, enzymes with each of the three target activities emerged in less than 1 week of PACE. In all three cases, PACE-evolved polymerase activities exceeded or were comparable to that of the wild-type T7 RNAP on its wild-type promoter, representing improvements of up to several hundred-fold. By greatly accelerating laboratory evolution, PACE may provide solutions to otherwise intractable directed evolution problems and address novel questions about molecular evolution.Laboratory evolution has generated many biomolecules with desired properties, but a single round of mutation, gene expression, screening or selection, and replication typically requires days or longer with frequent human intervention. Because evolutionary success is dependent on the total number of rounds performed, a means of performing laboratory evolution continuously and rapidly could dramatically enhance its effectiveness. Although researchers have accelerated individual steps in the evolutionary cycle, the only previous example of continuous directed evolution was the landmark study of Wright and Joyce, who continuously evolved RNA ligase ribozymes with an in vitro replication cycle that unfortunately cannot be easily adapted to other biomolecules. Here we describe a system that enables the continuous directed evolution of gene-encoded molecules that can be linked to protein production in Escherichia coli. During phage-assisted continuous evolution (PACE), evolving genes are transferred from host cell to host cell through a modified bacteriophage life cycle in a manner that is dependent on the activity of interest. Dozens of rounds of evolution can occur in a single day of PACE without human intervention. Using PACE, we evolved T7 RNA polymerase (RNAP) variants that recognize a distinct promoter, initiate transcripts with ATP instead of GTP, and initiate transcripts with CTP. In one example, PACE executed 200 rounds of protein evolution over the course of 8 days. Starting from undetectable activity levels in two of these cases, enzymes with each of the three target activities emerged in less than 1 week of PACE. In all three cases, PACE-evolved polymerase activities exceeded or were comparable to that of the wild-type T7 RNAP on its wild-type promoter, representing improvements of up to several hundred-fold. By greatly accelerating laboratory evolution, PACE may provide solutions to otherwise intractable directed evolution problems and address novel questions about molecular evolution.
Speedy route to new biomolecules Many biomolecules with useful properties have been generated by laboratory molecular evolution experiments, but the processes typically take days and require frequent human intervention. Esvelt et al . now describe a phage-assisted continuous evolution system that enables the continuous, directed evolution of gene-encoded molecules that can be linked to protein production in Escherichia coli . Dozens of rounds of evolution can occur in a single day using this method, as demonstrated by the evolution of novel types of T7 RNA polymerase. Laboratory evolution has generated many biomolecules with desired properties, but a single round of mutation, gene expression, screening or selection, and replication typically requires days or longer with frequent human intervention 1 . Because evolutionary success is dependent on the total number of rounds performed 2 , a means of performing laboratory evolution continuously and rapidly could dramatically enhance its effectiveness 3 . Although researchers have accelerated individual steps in the evolutionary cycle 4 , 5 , 6 , 7 , 8 , 9 , the only previous example of continuous directed evolution was the landmark study of Wright and Joyce 10 , who continuously evolved RNA ligase ribozymes with an in vitro replication cycle that unfortunately cannot be easily adapted to other biomolecules. Here we describe a system that enables the continuous directed evolution of gene-encoded molecules that can be linked to protein production in Escherichia coli . During phage-assisted continuous evolution (PACE), evolving genes are transferred from host cell to host cell through a modified bacteriophage life cycle in a manner that is dependent on the activity of interest. Dozens of rounds of evolution can occur in a single day of PACE without human intervention. Using PACE, we evolved T7 RNA polymerase (RNAP) variants that recognize a distinct promoter, initiate transcripts with ATP instead of GTP, and initiate transcripts with CTP. In one example, PACE executed 200 rounds of protein evolution over the course of 8 days. Starting from undetectable activity levels in two of these cases, enzymes with each of the three target activities emerged in less than 1 week of PACE. In all three cases, PACE-evolved polymerase activities exceeded or were comparable to that of the wild-type T7 RNAP on its wild-type promoter, representing improvements of up to several hundred-fold. By greatly accelerating laboratory evolution, PACE may provide solutions to otherwise intractable directed evolution problems and address novel questions about molecular evolution.
Laboratory evolution has generated many biomolecules with desired properties, but a single round of mutation, gene expression, screening or selection, and replication typically requires days or longer with frequent human intervention. Because evolutionary success is dependent on the total number of rounds performed, a means of performing laboratory evolution continuously and rapidly could dramatically enhance its effectiveness. Although researchers have accelerated individual steps in the evolutionary cycle, the only previous example of continuous directed evolution was the landmark study of Wright and Joyce, who continuously evolved RNA ligase ribozymes with an in vitro replication cycle that unfortunately cannot be easily adapted to other biomolecules. Here we describe a system that enables the continuous directed evolution of gene-encoded molecules that can be linked to protein production in Escherichia coli. During phage-assisted continuous evolution (PACE), evolving genes are transferred from host cell to host cell through a modified bacteriophage life cycle in a manner that is dependent on the activity of interest. Dozens of rounds of evolution can occur in a single day of PACE without human intervention. Using PACE, we evolved T7 RNA polymerase (RNAP) variants that recognize a distinct promoter, initiate transcripts with ATP instead of GTP, and initiate transcripts with CTP. In one example, PACE executed 200 rounds of protein evolution over the course of 8days. Starting from undetectable activity levels in two of these cases, enzymes with each of the three target activities emerged in less than 1week of PACE. In all three cases, PACE-evolved polymerase activities exceeded or were comparable to that of the wild-type T7 RNAP on its wild-type promoter, representing improvements of up to several hundred-fold. By greatly accelerating laboratory evolution, PACE may provide solutions to otherwise intractable directed evolution problems and address novel questions about molecular evolution.
Laboratory evolution has generated many biomolecules with desired properties, but a single round of mutation, gene expression, screening or selection, and replication typically requires days or longer with frequent human intervention. Because evolutionary success is dependent on the total number of rounds performed, a means of performing laboratory evolution continuously and rapidly could dramatically enhance its effectiveness. Although researchers have accelerated individual steps in the evolutionary cycle, the only previous example of continuous directed evolution was the landmark study of Wright and Joyce, who continuously evolved RNA ligase ribozymes with an in vitro replication cycle that unfortunately cannot be easily adapted to other biomolecules. Here we describe a system that enables the continuous directed evolution of gene-encoded molecules that can be linked to protein production in Escherichia coli. During phage-assisted continuous evolution (PACE), evolving genes are transferred from host cell to host cell through a modified bacteriophage life cycle in a manner that is dependent on the activity of interest. Dozens of rounds of evolution can occur in a single day of PACE without human intervention. Using PACE, we evolved T7 RNA polymerase (RNAP) variants that recognize a distinct promoter, initiate transcripts with ATP instead of GTP, and initiate transcripts with CTP. In one example, PACE executed 200 rounds of protein evolution over the course of 8 days. Starting from undetectable activity levels in two of these cases, enzymes with each of the three target activities emerged in less than 1 week of PACE. In all three cases, PACE-evolved polymerase activities exceeded or were comparable to that of the wild-type T7 RNAP on its wild-type promoter, representing improvements of up to several hundred-fold. By greatly accelerating laboratory evolution, PACE may provide solutions to otherwise intractable directed evolution problems and address novel questions about molecular evolution.
Laboratory evolution has generated many biomolecules with desired properties, but a single round of mutation, gene expression, screening or selection, and replication typically requires days or longer with frequent human intervention (1). Because evolutionary success is dependent on the total number of rounds performed (2), a means of performing laboratory evolution continuously and rapidly could dramatically enhance its effectiveness (3). Although researchers have accelerated individual steps in the evolutionary cycle (4-9), the only previous example of continuous directed evolution was the landmark study of Wright and Joyce (10), who continuously evolved RNA ligase ribozymes with an in vitro replication cycle that unfortunately cannot be easily adapted to other biomolecules. Here we describe a system that enables the continuous directed evolution of gene-encoded molecules that can be linked to protein production in Escherichia coli. During phage-assisted continuous evolution (PACE), evolving genes are transferred from host cell to host cell through a modified bacteriophage life cycle in a manner that is dependent on the activity of interest. Dozens of rounds of evolution can occur in a single day of PACE without human intervention. Using PACE, we evolved T7 RNA polymerase (RNAP) variants that recognize a distinct promoter, initiate transcripts with ATP instead of GTP, and initiate transcripts with CTP. In one example, PACE executed 200 rounds of protein evolution over the course of 8 days. Starting from undetectable activity levels in two of these cases, enzymes with each of the three target activities emerged in less than 1 week of PACE. In all three cases, PACE-evolved polymerase activities exceeded or were comparable to that of the wild-type T7 RNAP on its wild-type promoter, representing improvements of up to several hundred-fold. By greatly accelerating laboratory evolution, PACE may provide solutions to otherwise intractable directed evolution problems and address novel questions about molecular evolution.
Laboratory evolution has generated many biomolecules with desired properties, but a single round of mutation, gene expression, screening or selection, and replication typically requires days or longer with frequent human intervention. Because evolutionary success is dependent on the total number of rounds performed, a means of performing laboratory evolution continuously and rapidly could dramatically enhance its effectiveness. Although researchers have accelerated individual steps in the evolutionary cycle, the only previous example of continuous directed evolution was the landmark study of Wright and Joyce, who continuously evolved RNA ligase ribozymes with an in vitro replication cycle that unfortunately cannot be easily adapted to other biomolecules. Here we describe a system that enables the continuous directed evolution of gene-encoded molecules that can be linked to protein production in Escherichia coli. During phage-assisted continuous evolution (PACE), evolving genes are transferred from host cell to host cell through a modified bacteriophage life cycle in a manner that is dependent on the activity of interest. Dozens of rounds of evolution can occur in a single day of PACE without human intervention. Using PACE, we evolved T7 RNA polymerase (RNAP) variants that recognize a distinct promoter, initiate transcripts with ATP instead of GTP, and initiate transcripts with CTP. In one example, PACE executed 200 rounds of protein evolution over the course of 8 days. Starting from undetectable activity levels in two of these cases, enzymes with each of the three target activities emerged in less than 1 week of PACE. In all three cases, PACE-evolved polymerase activities exceeded or were comparable to that of the wild-type T7 RNAP on its wild-type promoter, representing improvements of up to several hundred-fold. By greatly accelerating laboratory evolution, PACE may provide solutions to otherwise intractable directed evolution problems and address novel questions about molecular evolution. [PUBLICATION ABSTRACT]
Audience Academic
Author Esvelt, Kevin M.
Liu, David R.
Carlson, Jacob C.
AuthorAffiliation 1 Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
3 Howard Hughes Medical Institute, Cambridge, Massachusetts 02138, USA
2 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
AuthorAffiliation_xml – name: 1 Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
– name: 3 Howard Hughes Medical Institute, Cambridge, Massachusetts 02138, USA
– name: 2 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
Author_xml – sequence: 1
  givenname: Kevin M.
  surname: Esvelt
  fullname: Esvelt, Kevin M.
  organization: Department of Molecular and Cellular Biology, Harvard University
– sequence: 2
  givenname: Jacob C.
  surname: Carlson
  fullname: Carlson, Jacob C.
  organization: Department of Chemistry and Chemical Biology, Harvard University
– sequence: 3
  givenname: David R.
  surname: Liu
  fullname: Liu, David R.
  email: drliu@fas.harvard.edu
  organization: Department of Chemistry and Chemical Biology, Harvard University, Howard Hughes Medical Institute
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24124453$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21478873$$D View this record in MEDLINE/PubMed
BookMark eNqF0k1r3DAQBmBRUppk21PvxSSUUlqnkm1Z0iWwhH4EAoV-nIUsjzYKtrSR7ND8-8rsptkNhuKDsf3o1cgzx-jAeQcIvSb4jOCSf3JqGANgIQrxDB2RitV5VXN2gI4wLniOeVkfouMYbzDGlLDqBToskuKclUfofJnF-zhAnxkfsuEaMu3dYN3ox5i1NoAeoM3gznfjYL3LvMka63vfgR47iC_Rc6O6CK-29wX6_eXzr4tv-dX3r5cXy6tcM0yG3BhelC0R2mjMuTaCtZgICq3C0LKyEcw0ZaqJgW4JVbwRDVZUCaoqkR6KcoHON7nrsemh1eCGoDq5DrZX4V56ZeX-F2ev5crfyRLzqqRTwLttQPC3I8RB9jZq6DrlIB1Vpj0KTEte_1fyuiKCCDbJkyfyxo_Bpf8gOSMFKxglCZ1u0Ep1IK0zPtWnp0i5LCgVtShShQuUz6gVOEiHSe02Nr3e8yczXq_trdxFZzMoXS30Vs-mvt9bMI0C_BlWaoxRXv78sW_f7HbkXyseRiuBt1ugoladCcppGx9dRYqqopMjG6eDjzGAkdoOahq2VK3tJMFyGnO5M-ZpzYcnax5i5_XHjY5JuRWExz7N8b98wQrV
CODEN NATUAS
CitedBy_id crossref_primary_10_1016_j_chembiol_2021_05_008
crossref_primary_10_1038_ncomms6352
crossref_primary_10_1021_acs_jafc_4c03025
crossref_primary_10_1002_ange_201900055
crossref_primary_10_1016_j_mib_2016_07_005
crossref_primary_10_1021_acschembio_0c00684
crossref_primary_10_1038_s44222_022_00013_5
crossref_primary_10_3390_toxins12090600
crossref_primary_10_1016_j_ymben_2023_12_012
crossref_primary_10_3390_ijms232314969
crossref_primary_10_1007_s10529_017_2297_2
crossref_primary_10_1038_s41589_018_0012_9
crossref_primary_10_1038_s41589_018_0121_5
crossref_primary_10_1007_s00521_022_07532_7
crossref_primary_10_1021_acssynbio_0c00135
crossref_primary_10_1016_j_copbio_2018_03_007
crossref_primary_10_1038_s41467_020_20633_y
crossref_primary_10_1038_nmeth_2649
crossref_primary_10_3390_ijms26010250
crossref_primary_10_1126_sciadv_adi3621
crossref_primary_10_1016_j_bpj_2022_01_007
crossref_primary_10_1038_s41467_024_45969_7
crossref_primary_10_3109_07388551_2012_716810
crossref_primary_10_1021_acssynbio_6b00293
crossref_primary_10_1038_nrd_2017_146
crossref_primary_10_1089_crispr_2019_0001
crossref_primary_10_1089_hum_2020_166
crossref_primary_10_1038_s41587_022_01533_6
crossref_primary_10_1002_bit_28684
crossref_primary_10_1021_acssynbio_0c00149
crossref_primary_10_1021_acssynbio_8b00273
crossref_primary_10_1038_s41578_022_00460_x
crossref_primary_10_1016_j_cobme_2023_100514
crossref_primary_10_1016_j_copbio_2013_08_016
crossref_primary_10_1021_acs_chemrev_4c00730
crossref_primary_10_1038_nrg3956
crossref_primary_10_1093_abbs_gmab006
crossref_primary_10_1002_1873_3468_12333
crossref_primary_10_5650_jos_ess20222
crossref_primary_10_1016_j_biortech_2013_09_077
crossref_primary_10_1016_j_tim_2012_05_001
crossref_primary_10_1016_j_tig_2013_06_005
crossref_primary_10_1016_j_cbpa_2021_02_008
crossref_primary_10_1016_j_cbpa_2020_07_003
crossref_primary_10_1016_j_cbpa_2021_02_004
crossref_primary_10_3390_molecules24162879
crossref_primary_10_1038_s41596_020_00410_3
crossref_primary_10_1093_jimb_kuac022
crossref_primary_10_3390_life10090179
crossref_primary_10_1016_j_molcel_2018_10_027
crossref_primary_10_1016_j_jgg_2019_11_002
crossref_primary_10_1038_nmeth_1654
crossref_primary_10_1016_j_biosystems_2015_08_006
crossref_primary_10_1016_j_biotechadv_2012_12_005
crossref_primary_10_1038_s41467_019_13232_z
crossref_primary_10_1002_gcc_22702
crossref_primary_10_15252_msb_202210934
crossref_primary_10_1016_j_chemosphere_2021_131535
crossref_primary_10_1088_1478_3975_abde8d
crossref_primary_10_1021_acs_biochem_7b00886
crossref_primary_10_1021_sb4000542
crossref_primary_10_1557_mrs_2013_133
crossref_primary_10_1016_j_biortech_2012_01_054
crossref_primary_10_1016_j_jbiotec_2014_04_009
crossref_primary_10_1038_s41589_023_01387_2
crossref_primary_10_1016_j_addr_2016_04_032
crossref_primary_10_1002_bit_27542
crossref_primary_10_1002_bit_26455
crossref_primary_10_1016_j_ymben_2014_02_010
crossref_primary_10_1371_journal_pone_0130582
crossref_primary_10_1021_cr2004844
crossref_primary_10_1016_j_mib_2014_05_022
crossref_primary_10_1038_s41589_024_01823_x
crossref_primary_10_1021_acssynbio_2c00235
crossref_primary_10_1002_biot_201300021
crossref_primary_10_1038_nbt_1884
crossref_primary_10_1038_nrg3927
crossref_primary_10_1039_c2mb05492b
crossref_primary_10_1261_rna_071720_119
crossref_primary_10_1002_bit_28763
crossref_primary_10_1016_j_ymben_2021_08_009
crossref_primary_10_1002_adbi_201800098
crossref_primary_10_1021_sb3000904
crossref_primary_10_3389_fmed_2023_1292452
crossref_primary_10_1042_BST20200001
crossref_primary_10_1002_psc_2907
crossref_primary_10_1038_nature17893
crossref_primary_10_1016_j_yexcr_2020_112244
crossref_primary_10_1021_jacs_9b03705
crossref_primary_10_1126_sciadv_abg8712
crossref_primary_10_1021_sb400055h
crossref_primary_10_1002_bit_27329
crossref_primary_10_1021_acs_biochem_8b00185
crossref_primary_10_1016_j_bidere_2025_100009
crossref_primary_10_1038_nmeth_3515
crossref_primary_10_1371_journal_pone_0066429
crossref_primary_10_1038_s41587_019_0193_0
crossref_primary_10_1016_j_tibtech_2014_10_007
crossref_primary_10_1016_j_ymthe_2020_11_009
crossref_primary_10_1016_j_bidere_2025_100005
crossref_primary_10_1038_s41551_024_01267_7
crossref_primary_10_1021_ja405051f
crossref_primary_10_1371_journal_pone_0184730
crossref_primary_10_1038_s41434_023_00434_w
crossref_primary_10_1016_j_cbpa_2021_04_004
crossref_primary_10_1021_acscatal_0c01618
crossref_primary_10_1049_enb2_12021
crossref_primary_10_1016_j_biotechadv_2024_108366
crossref_primary_10_1038_s41467_021_23573_3
crossref_primary_10_1016_j_tibs_2022_08_012
crossref_primary_10_1186_s13068_024_02457_w
crossref_primary_10_1021_acs_chemrev_1c00877
crossref_primary_10_1021_cbe_4c00115
crossref_primary_10_1007_s11427_024_2707_9
crossref_primary_10_1038_s41589_020_0532_y
crossref_primary_10_2144_000114616
crossref_primary_10_1016_j_copbio_2017_11_004
crossref_primary_10_2217_nnm_13_86
crossref_primary_10_1007_s11705_022_2141_7
crossref_primary_10_1038_nchembio_1474
crossref_primary_10_1016_j_biotechadv_2018_01_005
crossref_primary_10_3389_fbioe_2020_00863
crossref_primary_10_1021_acschembio_7b00532
crossref_primary_10_4161_21597073_2014_961869
crossref_primary_10_1146_annurev_biophys_101220_072829
crossref_primary_10_1016_j_molcel_2018_08_033
crossref_primary_10_1038_s41576_023_00623_8
crossref_primary_10_4155_pbp_13_14
crossref_primary_10_1002_adbi_202000252
crossref_primary_10_1038_s41467_019_11648_1
crossref_primary_10_1371_journal_pone_0232330
crossref_primary_10_1002_cbic_201600303
crossref_primary_10_1016_j_biotechadv_2017_07_005
crossref_primary_10_1016_j_cbpa_2014_09_040
crossref_primary_10_1093_nar_gkab472
crossref_primary_10_1007_s00446_021_00404_8
crossref_primary_10_1016_j_cbpa_2014_09_022
crossref_primary_10_1038_ncomms13051
crossref_primary_10_1111_gcb_15359
crossref_primary_10_1126_science_abf5972
crossref_primary_10_1146_annurev_anchem_061516_045205
crossref_primary_10_1021_acssynbio_1c00276
crossref_primary_10_1038_msb_2012_66
crossref_primary_10_3390_antibiotics11050653
crossref_primary_10_1038_s41589_023_01481_5
crossref_primary_10_1021_acssynbio_3c00250
crossref_primary_10_1016_j_cell_2018_10_021
crossref_primary_10_1016_j_cbpa_2014_09_013
crossref_primary_10_1038_nchembio_1453
crossref_primary_10_1162_ARTL_a_00160
crossref_primary_10_1038_s41589_021_00876_6
crossref_primary_10_1038_s41467_021_25948_y
crossref_primary_10_1016_j_tibtech_2019_09_005
crossref_primary_10_1126_science_1232033
crossref_primary_10_1186_s40643_019_0288_y
crossref_primary_10_7554_eLife_03401
crossref_primary_10_1016_j_tibtech_2019_09_010
crossref_primary_10_1038_gt_2017_99
crossref_primary_10_1016_j_copbio_2017_12_020
crossref_primary_10_1016_j_jmb_2016_02_018
crossref_primary_10_1007_s40484_017_0094_5
crossref_primary_10_1021_ie503060a
crossref_primary_10_1038_nbt_2714
crossref_primary_10_1146_annurev_micro_090817_062535
crossref_primary_10_1146_annurev_virology_100220_112120
crossref_primary_10_1049_enb2_12011
crossref_primary_10_1093_nar_gkad510
crossref_primary_10_4161_mabs_28421
crossref_primary_10_1007_s12257_022_0330_3
crossref_primary_10_1038_s41467_024_46574_4
crossref_primary_10_1039_C9NP00071B
crossref_primary_10_1016_j_jbiotec_2016_04_003
crossref_primary_10_1038_nature26155
crossref_primary_10_1016_j_tplants_2019_08_004
crossref_primary_10_1007_s11047_016_9595_9
crossref_primary_10_1016_j_tibtech_2019_01_003
crossref_primary_10_1007_s00239_020_09932_6
crossref_primary_10_1038_nrg3540
crossref_primary_10_3390_biom14091073
crossref_primary_10_3390_cells9071608
crossref_primary_10_1038_nprot_2017_084
crossref_primary_10_1093_nar_gkae1256
crossref_primary_10_1093_nar_gkae534
crossref_primary_10_1093_gbe_evaf010
crossref_primary_10_1016_j_biotechadv_2023_108282
crossref_primary_10_3390_ijms20092294
crossref_primary_10_1038_s41467_021_24183_9
crossref_primary_10_1002_bit_24792
crossref_primary_10_1146_annurev_micro_090816_093247
crossref_primary_10_1074_jbc_M113_511469
crossref_primary_10_7554_eLife_03703
crossref_primary_10_1016_j_jtice_2023_105065
crossref_primary_10_1021_acscentsci_1c00811
crossref_primary_10_1080_19420862_2022_2164459
crossref_primary_10_1002_cbic_201600100
crossref_primary_10_1021_acs_chemrev_3c00878
crossref_primary_10_1093_nar_gks597
crossref_primary_10_1039_C2MD20242E
crossref_primary_10_1039_D4CB00024B
crossref_primary_10_1038_nchembio_1439
crossref_primary_10_1016_j_biortech_2024_130502
crossref_primary_10_1016_j_csbj_2019_05_001
crossref_primary_10_34133_bdr_0037
crossref_primary_10_7554_eLife_79665
crossref_primary_10_1038_s41587_022_01410_2
crossref_primary_10_1016_j_tibtech_2025_02_011
crossref_primary_10_1002_adma_202307499
crossref_primary_10_1016_j_biotechadv_2024_108343
crossref_primary_10_1016_j_envres_2023_115428
crossref_primary_10_3389_fimmu_2021_747267
crossref_primary_10_1073_pnas_1222670110
crossref_primary_10_1038_nchembio_2516
crossref_primary_10_1038_s41592_021_01090_x
crossref_primary_10_1038_s41587_019_0393_7
crossref_primary_10_1002_ange_202213942
crossref_primary_10_1021_acsomega_0c03508
crossref_primary_10_1038_nnano_2011_187
crossref_primary_10_1016_j_tibtech_2021_04_002
crossref_primary_10_1021_acs_chemrev_3c00894
crossref_primary_10_3389_fbioe_2022_918659
crossref_primary_10_1002_anie_201900055
crossref_primary_10_1126_sciadv_aau0766
crossref_primary_10_1016_j_sbi_2011_05_003
crossref_primary_10_1016_j_tim_2016_12_009
crossref_primary_10_3390_molecules26185599
crossref_primary_10_1002_ange_202409746
crossref_primary_10_1016_j_cell_2019_05_051
crossref_primary_10_1016_j_trechm_2022_02_004
crossref_primary_10_1093_nar_gkad1125
crossref_primary_10_1002_anie_202215542
crossref_primary_10_1093_genetics_iyac189
crossref_primary_10_1103_PhysRevE_91_042704
crossref_primary_10_1016_j_copbio_2016_03_016
crossref_primary_10_1038_nchembio_2299
crossref_primary_10_1021_acs_jmedchem_2c01541
crossref_primary_10_1021_acssynbio_9b00226
crossref_primary_10_1007_s42994_021_00052_3
crossref_primary_10_1016_j_cell_2018_11_015
crossref_primary_10_1186_s13068_019_1460_5
crossref_primary_10_1007_s12268_017_0779_3
crossref_primary_10_1021_ac501265y
crossref_primary_10_1002_cbic_202400564
crossref_primary_10_1002_ange_202215542
crossref_primary_10_1073_pnas_1220670110
crossref_primary_10_7554_eLife_67336
crossref_primary_10_1021_acssynbio_7b00289
crossref_primary_10_1038_s41467_024_44867_2
crossref_primary_10_1093_procel_pwad051
crossref_primary_10_1038_s41467_024_52595_w
crossref_primary_10_1038_s41598_017_15621_0
crossref_primary_10_1002_ange_201808956
crossref_primary_10_1016_j_copbio_2017_05_012
crossref_primary_10_1142_S233954781640001X
crossref_primary_10_1038_s41589_023_01427_x
crossref_primary_10_1002_pro_4919
crossref_primary_10_1038_nmeth_4027
crossref_primary_10_1146_annurev_bioeng_071811_150118
crossref_primary_10_1016_j_biotechadv_2023_108238
crossref_primary_10_1002_chem_201904808
crossref_primary_10_1126_science_adk4422
crossref_primary_10_1021_acschembio_9b00669
crossref_primary_10_1021_acs_chemrev_1c00260
crossref_primary_10_1016_j_synbio_2017_07_001
crossref_primary_10_1002_jez_b_22562
crossref_primary_10_1016_j_biotechadv_2020_107578
crossref_primary_10_1007_s11274_024_03957_5
crossref_primary_10_1016_j_cbpa_2018_07_015
crossref_primary_10_1016_j_cell_2023_07_039
crossref_primary_10_1126_science_adk1281
crossref_primary_10_1002_cbic_202000203
crossref_primary_10_1002_jctb_5746
crossref_primary_10_1021_acssynbio_1c00314
crossref_primary_10_1039_C5IB00286A
crossref_primary_10_26508_lsa_202201538
crossref_primary_10_1016_j_cbpa_2023_102375
crossref_primary_10_1038_s41467_020_18018_2
crossref_primary_10_1126_sciadv_aba2728
crossref_primary_10_1177_24725552211000669
crossref_primary_10_1016_j_jbiosc_2021_03_011
crossref_primary_10_1146_annurev_phyto_082718_100301
crossref_primary_10_1002_cbic_202400536
crossref_primary_10_1371_journal_pone_0311438
crossref_primary_10_34133_bdr_0005
crossref_primary_10_1038_nature24644
crossref_primary_10_1016_j_febslet_2013_10_040
crossref_primary_10_1126_science_aan0797
crossref_primary_10_1021_acs_chemrev_9b00372
crossref_primary_10_1111_1751_7915_13987
crossref_primary_10_1038_s42003_024_06848_5
crossref_primary_10_1038_s41598_018_30374_0
crossref_primary_10_1146_annurev_chembioeng_061312_103351
crossref_primary_10_1038_s41467_021_26279_8
crossref_primary_10_1038_s41551_024_01227_1
crossref_primary_10_3389_fmolb_2022_850613
crossref_primary_10_12688_f1000research_9705_1
crossref_primary_10_1016_j_tim_2024_02_006
crossref_primary_10_1007_s00253_018_8893_9
crossref_primary_10_1038_nchembio_2497
crossref_primary_10_1093_nar_gkaa1231
crossref_primary_10_1038_s41467_017_00425_7
crossref_primary_10_1016_j_biotechadv_2019_04_011
crossref_primary_10_1021_acs_chemrev_4c00275
crossref_primary_10_1016_j_biotechadv_2014_12_007
crossref_primary_10_1021_sb500299c
crossref_primary_10_1016_j_bmc_2014_06_033
crossref_primary_10_1073_pnas_2408303121
crossref_primary_10_1080_02648725_2021_2017638
crossref_primary_10_1002_pmic_201700471
crossref_primary_10_1093_nar_gkt150
crossref_primary_10_3389_fbioe_2014_00060
crossref_primary_10_1016_j_mib_2011_08_001
crossref_primary_10_1039_D2OB00443G
crossref_primary_10_1038_s41587_022_01256_8
crossref_primary_10_1038_s43586_022_00119_5
crossref_primary_10_1038_nmeth0611_451
crossref_primary_10_1021_sb500165g
crossref_primary_10_1093_nar_gkz1011
crossref_primary_10_1038_s41467_021_27266_9
crossref_primary_10_3390_biomedicines10010050
crossref_primary_10_1038_s41467_024_46107_z
crossref_primary_10_3389_fmicb_2015_00755
crossref_primary_10_1007_s10295_019_02191_5
crossref_primary_10_1038_s41598_024_52049_9
crossref_primary_10_1016_j_cbpa_2012_05_186
crossref_primary_10_3389_fbioe_2023_1118702
crossref_primary_10_1021_sb300054p
crossref_primary_10_1146_annurev_virology_092917_043544
crossref_primary_10_1002_chem_202400880
crossref_primary_10_3389_fbioe_2014_00087
crossref_primary_10_1038_nbt_4151
crossref_primary_10_1038_nchembio_2474
crossref_primary_10_1093_nar_gkae228
crossref_primary_10_1016_j_chembiol_2015_12_004
crossref_primary_10_1186_s12934_020_01345_w
crossref_primary_10_1007_s00253_015_6400_0
crossref_primary_10_1002_pro_2926
crossref_primary_10_1557_mrc_2019_28
crossref_primary_10_1002_adma_202208309
crossref_primary_10_1016_j_biotechadv_2022_108023
crossref_primary_10_1080_15476286_2021_1954808
crossref_primary_10_1093_nar_gkad266
crossref_primary_10_1021_acs_chemrev_4c00243
crossref_primary_10_1016_j_chempr_2024_07_007
crossref_primary_10_2116_analsci_28_95
crossref_primary_10_1021_acs_chemrev_4c00004
crossref_primary_10_1134_S1062359023605013
crossref_primary_10_3389_fmicb_2024_1372325
crossref_primary_10_1039_D3CB00084B
crossref_primary_10_1038_s41587_020_0453_z
crossref_primary_10_1039_D0SC06823C
crossref_primary_10_1021_jacs_5b10290
crossref_primary_10_5483_BMBRep_2023_0086
crossref_primary_10_1016_j_biotechadv_2014_11_007
crossref_primary_10_4155_fmc_14_134
crossref_primary_10_1038_s41589_022_00967_y
crossref_primary_10_1016_j_copbio_2020_06_001
crossref_primary_10_1371_journal_pone_0133384
crossref_primary_10_1016_j_ijbiomac_2024_133978
crossref_primary_10_1186_s12934_019_1132_y
crossref_primary_10_3390_genes9050249
crossref_primary_10_1038_s41592_021_01348_4
crossref_primary_10_1021_acs_chemrev_8b00430
crossref_primary_10_1021_jacs_8b10937
crossref_primary_10_1126_science_1256272
crossref_primary_10_1055_a_2520_3833
crossref_primary_10_1089_crispr_2021_0109
crossref_primary_10_1038_s41587_019_0331_8
crossref_primary_10_1039_D2CB00231K
crossref_primary_10_3390_jof8060635
crossref_primary_10_1016_j_cels_2022_02_005
crossref_primary_10_1038_s41467_022_35228_y
crossref_primary_10_1038_s41467_021_27836_x
crossref_primary_10_1016_j_chembiol_2024_05_018
crossref_primary_10_1016_j_tibs_2022_01_001
crossref_primary_10_1038_s41467_023_39087_z
crossref_primary_10_1038_nmeth_2926
crossref_primary_10_1038_s41598_019_57221_0
crossref_primary_10_3390_ijms19102989
crossref_primary_10_1007_s11426_024_2072_4
crossref_primary_10_1016_j_addr_2018_06_015
crossref_primary_10_1021_bi3016185
crossref_primary_10_1016_j_jbiosc_2012_02_017
crossref_primary_10_1371_journal_pone_0181923
crossref_primary_10_1021_jacsau_4c00738
crossref_primary_10_1186_s13068_019_1551_3
crossref_primary_10_1093_nar_gkac094
crossref_primary_10_1016_j_cels_2019_11_008
crossref_primary_10_1038_ncomms13858
crossref_primary_10_1371_journal_pone_0040408
crossref_primary_10_1016_j_cell_2016_05_047
crossref_primary_10_1021_acssynbio_5b00230
crossref_primary_10_1038_nature11117
crossref_primary_10_1371_journal_pcbi_1010956
crossref_primary_10_3389_fpls_2020_584151
crossref_primary_10_1016_j_cell_2021_01_017
crossref_primary_10_1038_s41587_019_0157_4
crossref_primary_10_3390_microorganisms12081578
crossref_primary_10_1002_biot_201700014
crossref_primary_10_1016_j_trac_2021_116210
crossref_primary_10_1038_s41592_024_02504_2
crossref_primary_10_1038_s41587_020_0412_8
crossref_primary_10_1128_JVI_00534_18
crossref_primary_10_1038_s41467_021_25852_5
crossref_primary_10_1038_s41434_022_00379_6
crossref_primary_10_1146_annurev_bioeng_071812_152412
crossref_primary_10_1002_anie_201808956
crossref_primary_10_1016_j_copbio_2013_03_001
crossref_primary_10_1002_bit_28170
crossref_primary_10_1038_s41586_018_0384_8
crossref_primary_10_3390_v16111745
crossref_primary_10_1038_s41467_024_48000_1
crossref_primary_10_1038_ncomms9425
crossref_primary_10_1016_j_biotechadv_2018_10_001
crossref_primary_10_1038_s41589_021_00838_y
crossref_primary_10_1021_acssynbio_7b00247
crossref_primary_10_1080_07388551_2021_1921690
crossref_primary_10_1016_j_coisb_2017_08_008
crossref_primary_10_1016_j_cbpa_2013_10_003
crossref_primary_10_1042_BST20221413
crossref_primary_10_1016_j_sbi_2012_03_010
crossref_primary_10_1134_S1068162019060426
crossref_primary_10_1016_j_nbt_2023_09_003
crossref_primary_10_1021_acssynbio_6b00136
crossref_primary_10_1038_s41586_022_04456_z
crossref_primary_10_1021_acschembio_8b00919
crossref_primary_10_1016_j_cbpa_2017_02_018
crossref_primary_10_1103_PhysRevX_11_011044
crossref_primary_10_1016_j_bbagen_2017_03_012
crossref_primary_10_1016_j_tibtech_2024_10_005
crossref_primary_10_1002_anie_202213942
crossref_primary_10_1093_nar_gkaa1179
crossref_primary_10_1039_C5IB00267B
crossref_primary_10_1002_bit_25096
crossref_primary_10_3389_fmicb_2022_961093
crossref_primary_10_1002_bit_26066
crossref_primary_10_1016_j_tibtech_2023_03_010
crossref_primary_10_1039_c2mb25091h
crossref_primary_10_1002_cbic_201700117
crossref_primary_10_1111_1751_7915_13774
crossref_primary_10_1002_bit_28009
crossref_primary_10_1093_nar_gky785
crossref_primary_10_1038_s41467_017_01055_9
crossref_primary_10_1146_annurev_biochem_062917_012034
crossref_primary_10_1002_aic_16716
crossref_primary_10_1039_D2CB00116K
crossref_primary_10_1002_anie_202409746
crossref_primary_10_1038_nature17938
crossref_primary_10_1248_bpb_b19_00914
crossref_primary_10_1021_sb300101g
crossref_primary_10_1021_acssynbio_8b00481
crossref_primary_10_1021_acssynbio_3c00607
crossref_primary_10_1002_mco2_639
crossref_primary_10_1103_PhysRevE_99_062416
crossref_primary_10_1007_s12257_018_0394_2
crossref_primary_10_1016_j_cbpa_2016_09_021
crossref_primary_10_1016_j_coisb_2019_02_002
crossref_primary_10_1039_C9CP05912A
crossref_primary_10_1128_microbiolspec_RWR_0027_2018
crossref_primary_10_1016_j_cels_2025_101236
crossref_primary_10_1016_j_coisb_2019_02_006
crossref_primary_10_1021_acschembio_3c00493
crossref_primary_10_1088_2399_1984_ab4b78
Cites_doi 10.1073/pnas.58.1.217
10.1074/jbc.M313895200
10.1128/JVI.78.4.2114-2120.2004
10.1021/bi00086a016
10.1038/19999
10.1021/bi000365w
10.1128/MMBR.69.3.373-392.2005
10.1126/science.276.5312.614
10.1074/jbc.272.52.33009
10.1073/pnas.93.7.2856
10.1073/pnas.90.8.3147
10.1038/nature08187
10.1016/S0092-8674(00)80342-6
10.1016/0042-6822(81)90442-6
10.1016/0065-227X(89)90003-8
10.1021/bi016057v
10.1038/nmeth.1318
10.1073/pnas.0407752101
10.1093/nar/27.4.919
10.1073/pnas.96.16.9218
10.1073/pnas.1333928100
10.1073/pnas.120163297
10.1074/jbc.M208405200
10.1016/S0065-3233(01)55003-2
10.1073/pnas.262420099
10.1128/JVI.01747-09
10.1006/jmbi.1998.2006
10.1016/0022-2836(92)90838-B
10.1021/bi00384a006
10.1126/science.4001944
10.2144/000112145
ContentType Journal Article
Copyright Springer Nature Limited 2011
2015 INIST-CNRS
COPYRIGHT 2011 Nature Publishing Group
Copyright Nature Publishing Group Apr 28, 2011
Copyright_xml – notice: Springer Nature Limited 2011
– notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2011 Nature Publishing Group
– notice: Copyright Nature Publishing Group Apr 28, 2011
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
DOI 10.1038/nature09929
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Database
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

AIDS and Cancer Research Abstracts
MEDLINE

Agricultural Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 503
ExternalDocumentID PMC3084352
2371871981
A255969284
21478873
24124453
10_1038_nature09929
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Howard Hughes Medical Institute
– fundername: NIGMS NIH HHS
  grantid: R01 GM065400
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.HR
.XZ
00M
07C
08P
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
4.4
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
ABAWZ
ABDBF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABNNU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACRPL
ACUHS
ACWUS
ADBBV
ADFRT
ADNMO
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGCDD
AGGDT
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BENPR
BES
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L-9
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OHT
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PEA
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
ZKB
~02
~7V
~88
~8M
~G0
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADGHP
ADXHL
AETEA
AFANA
AGQPQ
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
1CY
1VW
354
3EH
3O-
41~
42X
4R4
663
79B
9M8
AAJYS
AAVBQ
ABDPE
ABEFU
ACBNA
ACBTR
ACTDY
ADRHT
AEZWR
AFBBN
AFFDN
AFHIU
AFHKK
AHWEU
AIXLP
AJUXI
BKOMP
DB5
FA8
FAC
HG6
IQODW
J5H
LGEZI
LOTEE
MVM
N4W
NADUK
NFIDA
NXXTH
ODYON
PJZUB
PPXIY
PQGLB
PV9
QS-
R4F
RHI
SKT
TUD
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZGI
ZHY
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c701t-ff823d19cfc088cf97d0195eda0ed73b97fb31477ecd15a8b9b0a5a95a498b923
IEDL.DBID 8FG
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 14:09:23 EDT 2025
Fri Jul 11 06:37:42 EDT 2025
Fri Jul 11 03:40:38 EDT 2025
Sat Aug 23 12:53:26 EDT 2025
Tue Jun 17 22:06:50 EDT 2025
Fri Jun 13 00:08:09 EDT 2025
Tue Jun 10 15:39:32 EDT 2025
Tue Jun 10 21:07:25 EDT 2025
Fri Jun 27 05:34:24 EDT 2025
Mon Jul 21 06:04:05 EDT 2025
Mon Jul 21 09:15:10 EDT 2025
Tue Jul 01 02:00:31 EDT 2025
Thu Apr 24 23:13:04 EDT 2025
Fri Feb 21 02:37:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7344
Keywords Virus
Directed molecular evolution
Escherichia coli
Bacteria
Method
Gram negative bacteria
Enterobacteriaceae
Phage
Language English
License CC BY 4.0
Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c701t-ff823d19cfc088cf97d0195eda0ed73b97fb31477ecd15a8b9b0a5a95a498b923
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3084352
PMID 21478873
PQID 871272751
PQPubID 40569
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3084352
proquest_miscellaneous_923205386
proquest_miscellaneous_864191976
proquest_journals_871272751
gale_infotracmisc_A255969284
gale_infotracgeneralonefile_A255969284
gale_infotraccpiq_255969284
gale_infotracacademiconefile_A255969284
gale_incontextgauss_ISR_A255969284
pubmed_primary_21478873
pascalfrancis_primary_24124453
crossref_citationtrail_10_1038_nature09929
crossref_primary_10_1038_nature09929
springer_journals_10_1038_nature09929
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-04-28
PublicationDateYYYYMMDD 2011-04-28
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-28
  day: 28
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2011
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Martin, Coleman (CR29) 1987; 26
Yuan, Kurek, English, Keenan (CR1) 2005; 69
Baker (CR18) 2002; 99
Voigt, Kauffman, Wang (CR2) 2000; 55
Ichetovkin, Abramochkin, Shrader (CR32) 1997; 272
Riechmann, Holliger (CR13) 1997; 90
Cheetham, Jeruzalmi, Steitz (CR28) 1999; 399
Camps, Naukkarinen, Johnson, Loeb (CR5) 2003; 100
Mills, Peterson, Spiegelman (CR3) 1967; 58
Husimi (CR11) 1989; 25
Vidal, Legrain (CR17) 1999; 27
Raskin, Diaz, Joho, McAllister (CR21) 1992; 228
Gibson (CR30) 2009; 6
Nelson, Friedman, Smith (CR14) 1981; 108
Calendar (CR16) 2006
Opperman, Murli, Smith, Walker (CR20) 1999; 96
Wright, Joyce (CR10) 1997; 276
Raskin, Diaz, McAllister (CR23) 1993; 90
Datsenko, Wanner (CR31) 2000; 97
Fijalkowska, Schaaper (CR19) 1996; 93
Imburgio, Rong, Ma, McAllister (CR25) 2000; 39
Davis, van den Pol (CR7) 2009; 84
Wang (CR9) 2009; 460
Wang, Jackson, Steinbach, Tsien (CR4) 2004; 101
Makeyev, Bamford (CR6) 2004; 78
Ikeda, Chang, Warshamana (CR22) 1993; 32
Rakonjac, Model (CR15) 1998; 282
Vidal-Aroca (CR24) 2006; 40
Kuzmine, Gottlieb, Martin (CR27) 2003; 278
Brieba, Padilla, Sousa (CR26) 2002; 41
Das (CR8) 2004; 279
Smith (CR12) 1985; 228
M Camps (BFnature09929_CR5) 2003; 100
CA Raskin (BFnature09929_CR21) 1992; 228
MC Wright (BFnature09929_CR10) 1997; 276
D Imburgio (BFnature09929_CR25) 2000; 39
J Rakonjac (BFnature09929_CR15) 1998; 282
IE Ichetovkin (BFnature09929_CR32) 1997; 272
FK Nelson (BFnature09929_CR14) 1981; 108
L Yuan (BFnature09929_CR1) 2005; 69
L Wang (BFnature09929_CR4) 2004; 101
GP Smith (BFnature09929_CR12) 1985; 228
EV Makeyev (BFnature09929_CR6) 2004; 78
I Kuzmine (BFnature09929_CR27) 2003; 278
RA Ikeda (BFnature09929_CR22) 1993; 32
M Vidal (BFnature09929_CR17) 1999; 27
LG Brieba (BFnature09929_CR26) 2002; 41
CT Martin (BFnature09929_CR29) 1987; 26
CA Voigt (BFnature09929_CR2) 2000; 55
DR Mills (BFnature09929_CR3) 1967; 58
F Vidal-Aroca (BFnature09929_CR24) 2006; 40
AT Das (BFnature09929_CR8) 2004; 279
JN Davis (BFnature09929_CR7) 2009; 84
CA Raskin (BFnature09929_CR23) 1993; 90
KA Datsenko (BFnature09929_CR31) 2000; 97
DG Gibson (BFnature09929_CR30) 2009; 6
IJ Fijalkowska (BFnature09929_CR19) 1996; 93
L Riechmann (BFnature09929_CR13) 1997; 90
GM Cheetham (BFnature09929_CR28) 1999; 399
T Opperman (BFnature09929_CR20) 1999; 96
Y Husimi (BFnature09929_CR11) 1989; 25
R Calendar (BFnature09929_CR16) 2006
K Baker (BFnature09929_CR18) 2002; 99
HH Wang (BFnature09929_CR9) 2009; 460
References_xml – volume: 58
  start-page: 217
  year: 1967
  end-page: 224
  ident: CR3
  article-title: An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.58.1.217
– volume: 279
  start-page: 18776
  year: 2004
  end-page: 18782
  ident: CR8
  article-title: Viral evolution as a tool to improve the tetracycline-regulated gene expression system
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M313895200
– volume: 78
  start-page: 2114
  year: 2004
  end-page: 2120
  ident: CR6
  article-title: Evolutionary potential of an RNA virus
  publication-title: J. Virol.
  doi: 10.1128/JVI.78.4.2114-2120.2004
– volume: 32
  start-page: 9115
  year: 1993
  end-page: 9124
  ident: CR22
  article-title: Selection and characterization of a mutant T7 RNA polymerase that recognizes an expanded range of T7 promoter-like sequences
  publication-title: Biochemistry
  doi: 10.1021/bi00086a016
– volume: 399
  start-page: 80
  year: 1999
  end-page: 83
  ident: CR28
  article-title: Structural basis for initiation of transcription from an RNA polymerase-promoter complex
  publication-title: Nature
  doi: 10.1038/19999
– volume: 39
  start-page: 10419
  year: 2000
  end-page: 10430
  ident: CR25
  article-title: Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants
  publication-title: Biochemistry
  doi: 10.1021/bi000365w
– volume: 69
  start-page: 373
  year: 2005
  end-page: 392
  ident: CR1
  article-title: Laboratory-directed protein evolution
  publication-title: Microbiol. Mol. Biol. Rev
  doi: 10.1128/MMBR.69.3.373-392.2005
– volume: 276
  start-page: 614
  year: 1997
  end-page: 617
  ident: CR10
  article-title: Continuous evolution of catalytic function
  publication-title: Science
  doi: 10.1126/science.276.5312.614
– volume: 272
  start-page: 33009
  year: 1997
  end-page: 33014
  ident: CR32
  article-title: Substrate recognition by the leucyl/phenylalanyl-tRNA-protein transferase. Conservation within the enzyme family and localization to the trypsin-resistant domain
  publication-title: J Biol Chem
  doi: 10.1074/jbc.272.52.33009
– volume: 93
  start-page: 2856
  year: 1996
  end-page: 2861
  ident: CR19
  article-title: Mutants in the Exo I motif of dnaQ: defective proofreading and inviability due to error catastrophe
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.93.7.2856
– volume: 90
  start-page: 3147
  year: 1993
  end-page: 3151
  ident: CR23
  article-title: T7 RNA polymerase mutants with altered promoter specificities
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.90.8.3147
– volume: 460
  start-page: 894
  year: 2009
  end-page: 898
  ident: CR9
  article-title: Programming cells by multiplex genome engineering and accelerated evolution
  publication-title: Nature
  doi: 10.1038/nature08187
– volume: 90
  start-page: 351
  year: 1997
  end-page: 360
  ident: CR13
  article-title: The C-terminal domain of TolA is the coreceptor for filamentous phage infection of
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80342-6
– volume: 108
  start-page: 338
  year: 1981
  end-page: 350
  ident: CR14
  article-title: Filamentous phage DNA cloning vectors: a noninfective mutant with a nonpolar deletion in gene III
  publication-title: Virology
  doi: 10.1016/0042-6822(81)90442-6
– volume: 25
  start-page: 1
  year: 1989
  end-page: 43
  ident: CR11
  article-title: Selection and evolution of bacteriophages in cellstat
  publication-title: Adv. Biophys.
  doi: 10.1016/0065-227X(89)90003-8
– volume: 41
  start-page: 5144
  year: 2002
  end-page: 5149
  ident: CR26
  article-title: Role of T7 RNA polymerase His784 in start site selection and initial transcription
  publication-title: Biochemistry
  doi: 10.1021/bi016057v
– volume: 6
  start-page: 343
  year: 2009
  end-page: 345
  ident: CR30
  article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1318
– volume: 101
  start-page: 16745
  year: 2004
  end-page: 16749
  ident: CR4
  article-title: Evolution of new nonantibody proteins via iterative somatic hypermutation
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0407752101
– volume: 27
  start-page: 919
  year: 1999
  end-page: 929
  ident: CR17
  article-title: Yeast forward and reverse ‘n’-hybrid systems
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.4.919
– volume: 96
  start-page: 9218
  year: 1999
  end-page: 9223
  ident: CR20
  article-title: A model for a umuDC-dependent prokaryotic DNA damage checkpoint
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.96.16.9218
– volume: 100
  start-page: 9727
  year: 2003
  end-page: 9732
  ident: CR5
  article-title: Targeted gene evolution in using a highly error-prone DNA polymerase I
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1333928100
– volume: 97
  start-page: 6640
  year: 2000
  end-page: 6645
  ident: CR31
  article-title: One-step inactivation of chromosomal genes in K-12 using PCR products
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.120163297
– volume: 278
  start-page: 2819
  year: 2003
  end-page: 2823
  ident: CR27
  article-title: Binding of the priming nucleotide in the initiation of transcription by T7 RNA polymerase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M208405200
– year: 2006
  ident: CR16
  publication-title: The Bacteriophages
– volume: 55
  start-page: 79
  year: 2000
  end-page: 160
  ident: CR2
  article-title: Rational evolutionary design: the theory of protein evolution
  publication-title: Adv. Protein Chem.
  doi: 10.1016/S0065-3233(01)55003-2
– volume: 99
  start-page: 16537
  year: 2002
  end-page: 16542
  ident: CR18
  article-title: Chemical complementation: a reaction-independent genetic assay for enzyme catalysis
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.262420099
– volume: 84
  start-page: 1625
  year: 2009
  end-page: 1630
  ident: CR7
  article-title: Viral mutagenesis as a means for generating novel proteins
  publication-title: J. Virol.
  doi: 10.1128/JVI.01747-09
– volume: 282
  start-page: 25
  year: 1998
  end-page: 41
  ident: CR15
  article-title: Roles of pIII in filamentous phage assembly
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1998.2006
– volume: 228
  start-page: 506
  year: 1992
  end-page: 515
  ident: CR21
  article-title: Substitution of a single bacteriophage T3 residue in bacteriophage T7 RNA polymerase at position 748 results in a switch in promoter specificity
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(92)90838-B
– volume: 26
  start-page: 2690
  year: 1987
  end-page: 2696
  ident: CR29
  article-title: Kinetic analysis of T7 RNA polymerase-promoter interactions with small synthetic promoters
  publication-title: Biochemistry
  doi: 10.1021/bi00384a006
– volume: 228
  start-page: 1315
  year: 1985
  end-page: 1317
  ident: CR12
  article-title: Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface
  publication-title: Science
  doi: 10.1126/science.4001944
– volume: 40
  start-page: 433
  year: 2006
  end-page: 438
  ident: CR24
  article-title: One-step high-throughput assay for quantitative detection of beta-galactosidase activity in intact Gram-negative bacteria, yeast, and mammalian cells
  publication-title: Biotechniques
  doi: 10.2144/000112145
– volume: 84
  start-page: 1625
  year: 2009
  ident: BFnature09929_CR7
  publication-title: J. Virol.
  doi: 10.1128/JVI.01747-09
– volume: 276
  start-page: 614
  year: 1997
  ident: BFnature09929_CR10
  publication-title: Science
  doi: 10.1126/science.276.5312.614
– volume: 99
  start-page: 16537
  year: 2002
  ident: BFnature09929_CR18
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.262420099
– volume: 272
  start-page: 33009
  year: 1997
  ident: BFnature09929_CR32
  publication-title: J Biol Chem
  doi: 10.1074/jbc.272.52.33009
– volume: 78
  start-page: 2114
  year: 2004
  ident: BFnature09929_CR6
  publication-title: J. Virol.
  doi: 10.1128/JVI.78.4.2114-2120.2004
– volume: 460
  start-page: 894
  year: 2009
  ident: BFnature09929_CR9
  publication-title: Nature
  doi: 10.1038/nature08187
– volume: 96
  start-page: 9218
  year: 1999
  ident: BFnature09929_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.96.16.9218
– volume: 90
  start-page: 351
  year: 1997
  ident: BFnature09929_CR13
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80342-6
– volume: 278
  start-page: 2819
  year: 2003
  ident: BFnature09929_CR27
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M208405200
– volume: 93
  start-page: 2856
  year: 1996
  ident: BFnature09929_CR19
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.93.7.2856
– volume: 90
  start-page: 3147
  year: 1993
  ident: BFnature09929_CR23
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.90.8.3147
– volume: 39
  start-page: 10419
  year: 2000
  ident: BFnature09929_CR25
  publication-title: Biochemistry
  doi: 10.1021/bi000365w
– volume-title: The Bacteriophages
  year: 2006
  ident: BFnature09929_CR16
– volume: 40
  start-page: 433
  year: 2006
  ident: BFnature09929_CR24
  publication-title: Biotechniques
  doi: 10.2144/000112145
– volume: 97
  start-page: 6640
  year: 2000
  ident: BFnature09929_CR31
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.120163297
– volume: 55
  start-page: 79
  year: 2000
  ident: BFnature09929_CR2
  publication-title: Adv. Protein Chem.
  doi: 10.1016/S0065-3233(01)55003-2
– volume: 26
  start-page: 2690
  year: 1987
  ident: BFnature09929_CR29
  publication-title: Biochemistry
  doi: 10.1021/bi00384a006
– volume: 32
  start-page: 9115
  year: 1993
  ident: BFnature09929_CR22
  publication-title: Biochemistry
  doi: 10.1021/bi00086a016
– volume: 69
  start-page: 373
  year: 2005
  ident: BFnature09929_CR1
  publication-title: Microbiol. Mol. Biol. Rev
  doi: 10.1128/MMBR.69.3.373-392.2005
– volume: 282
  start-page: 25
  year: 1998
  ident: BFnature09929_CR15
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1998.2006
– volume: 6
  start-page: 343
  year: 2009
  ident: BFnature09929_CR30
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1318
– volume: 279
  start-page: 18776
  year: 2004
  ident: BFnature09929_CR8
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M313895200
– volume: 41
  start-page: 5144
  year: 2002
  ident: BFnature09929_CR26
  publication-title: Biochemistry
  doi: 10.1021/bi016057v
– volume: 58
  start-page: 217
  year: 1967
  ident: BFnature09929_CR3
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.58.1.217
– volume: 100
  start-page: 9727
  year: 2003
  ident: BFnature09929_CR5
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1333928100
– volume: 399
  start-page: 80
  year: 1999
  ident: BFnature09929_CR28
  publication-title: Nature
  doi: 10.1038/19999
– volume: 228
  start-page: 1315
  year: 1985
  ident: BFnature09929_CR12
  publication-title: Science
  doi: 10.1126/science.4001944
– volume: 27
  start-page: 919
  year: 1999
  ident: BFnature09929_CR17
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.4.919
– volume: 108
  start-page: 338
  year: 1981
  ident: BFnature09929_CR14
  publication-title: Virology
  doi: 10.1016/0042-6822(81)90442-6
– volume: 101
  start-page: 16745
  year: 2004
  ident: BFnature09929_CR4
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0407752101
– volume: 228
  start-page: 506
  year: 1992
  ident: BFnature09929_CR21
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(92)90838-B
– volume: 25
  start-page: 1
  year: 1989
  ident: BFnature09929_CR11
  publication-title: Adv. Biophys.
  doi: 10.1016/0065-227X(89)90003-8
SSID ssj0005174
Score 2.545644
Snippet Speedy route to new biomolecules Many biomolecules with useful properties have been generated by laboratory molecular evolution experiments, but the processes...
Laboratory evolution has generated many biomolecules with desired properties, but a single round of mutation, gene expression, screening or selection, and...
SourceID pubmedcentral
proquest
gale
pubmed
pascalfrancis
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 499
SubjectTerms 631/181/2475
631/181/735
Adenosine Triphosphate - metabolism
Bacteria
Bacteriology
Bacteriophage T3 - genetics
Bacteriophage T7 - enzymology
Bacteriophage T7 - genetics
Bacteriophages
Bacteriophages - enzymology
Bacteriophages - genetics
Bacteriophages - physiology
Binding sites
Biological and medical sciences
Cloning
Cytidine Triphosphate - metabolism
Directed Molecular Evolution - methods
Diverse techniques
DNA-Directed RNA Polymerases - biosynthesis
DNA-Directed RNA Polymerases - chemistry
DNA-Directed RNA Polymerases - genetics
DNA-Directed RNA Polymerases - metabolism
E coli
Escherichia coli
Escherichia coli - genetics
Escherichia coli - growth & development
Escherichia coli - metabolism
Escherichia coli - virology
Evolution
Fundamental and applied biological sciences. Psychology
Gene mutations
Genetic aspects
Genetic engineering
Genetic transcription
Guanosine Triphosphate - metabolism
Humanities and Social Sciences
Identification and classification
letter
Molecular and cellular biology
multidisciplinary
Mutagenesis
Mutation
Physiological aspects
Plasmids
Promoter Regions, Genetic - genetics
Promoters (Genetics)
Properties
Science
Science (multidisciplinary)
Viral Proteins - biosynthesis
Viral Proteins - chemistry
Viral Proteins - genetics
Viral Proteins - metabolism
Title A system for the continuous directed evolution of biomolecules
URI https://link.springer.com/article/10.1038/nature09929
https://www.ncbi.nlm.nih.gov/pubmed/21478873
https://www.proquest.com/docview/871272751
https://www.proquest.com/docview/864191976
https://www.proquest.com/docview/923205386
https://pubmed.ncbi.nlm.nih.gov/PMC3084352
Volume 472
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ta9swEBZry2Awxtq9ee2CGN0rmFqSHclfNrLSrBusjG6FfBOyXrrAsNM52e_fyVKSusv2JRB0SLLudPfYOj2H0CGAVFqBJaTOZirNHWdpWRiVOp45khtObXfQ_uVseHqRf54Uk5ib08a0yqVP7By1abT_Rn4EwJ5CrC3I-9lV6otG-cPVWEFjC-0QCDQ-o0uMP64zPG6QMMfreRkTR4E1E9BRBy3XASm65bsz1cISuVDbYhP4_DuH8sZBahefxvfRvQgs8ShYwi66Zes9dLtL8NTtHtqNm7jFryPT9JsH6N0IByZnDNAVAxTEPnN9Wi-aRYtDsLMG29_RPHHjsL-uHyrq2vYhuhiffD8-TWNBhVTzjMxT5wRlhpTaaXAu2pXc-PuC1qjMGs6qkruKkZxzqw0plKjKKlOFKguVl_CHskdou25q-wRhARsfeiJaeXobVgjNhMkzXTFmqNI6QW-Xqyp1ZBv3RS9-yu7Umwl5TQUJOlwJzwLJxmax51490tNW1D4v5lIt2lZ--nYuR_7NaFhCrE3QqyjkGhhQq3jNAKbtma56kvs9ST2bXslrrS97rZdBN5u6OegJwvbUveZBz5hWD0h93e-8YDCNpXXJ6D9aubL2BOFVq-_Zp8TVFqxAimEO6w9o8t8ioDEKTlaAyONgrevRia-bwGF03rPjlYCnHe-31NMfHf04ywRgbJqgF0uLX897g9ae_vf59tGd8JU-T6k4QNvzXwv7DGDevBqgLT7h8CuOyaDb2AO08-Hk7Ov5H4oOVdw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIQQSQmx8lY1hoQ0YUrTETmrnAVAFlJZ9PMAm7c04_hiVUNqRFsQfxf_IOXbaZRTe9hj5ZDu-890v8fl3CG0DSCUFWEJkTSyj1DIa5ZmWkWWxTVLNiKkP2g-PuoOT9ONpdrqCfjd3YVxaZeMTa0etx8r9I98DYE8g1mbJm8l55IpGucPVpoKGt4p98-snfLFVr4bvQL07hPTfH78dRKGoQKRYnEwjazmhOsmVVbDBlM2ZdnfmjJax0YwWObMFTVLGjNJJJnmRF7HMZJ7JNIcHx3MAHv9aSiGQu4vp_Q-LjJJLpM_hOmBM-Z5n6QQ0VkPZRQAMYeDWRFagEutraSwDu3_nbF46uK3jYf8Ouh2ALO55y1tDK6ZcR9frhFJVraO14DQq_CIwW-_eRa972DNHY4DKGKAndpnyo3I2nlXYB1ejsfkRtgMeW-zoAXwFX1PdQydXstb30Wo5Ls1DhDk4GugpUdLR6dCMK8p1GquCUk2kUh30sllVoQK7uSuy8U3Up-yUiwsq6KDtufDEk3osF3vq1CMcTUbp8nDO5KyqxPDzJ9FzX2LdHGJ7Bz0PQnYMAyoZrjXAtB2zVktyoyWpJqNzcaH1Wav1zOtmWTebLUFwB6rVvNUypvkLEldnPM0oTKOxLhH8VSXmu6uD8LzV9exS8EoDViB4N4X1B_T6bxHQGAGnzkHkgbfWxeiJq9PAYHTWsuO5gKM5b7eUo6813TmNOWB60kE7jcUv5r1Ea4_--35P0I3B8eGBOBge7W-gm_6EII0I30Sr0-8z8xgg5rTYqjc2Rl-u2pP8AcenkIA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELamIRASQmy8lY1hoY03KWpiJ7XzAVC1Ua0MJgRM2jfj-GVUQmlHWhA_jX_HOXbaZhS-7WPkk-34zndP4vNzCO0CSCUFWEJkTSyj1DIa5ZmWkWWxTVLNiKkP2t8f9w5P0ren2eka-t3chXFplY1PrB21Hiv3j7wLwJ5ArM2Srg1ZER8OBq8n55ErIOUOWptqGt5Cjsyvn_D1Vr0cHoCq9wgZvPm8fxiFAgORYnEyjazlhOokV1bBZlM2Z9rdnzNaxkYzWuTMFjRJGTNKJ5nkRV7EMpN5JtMcHhznAXj_K4wy7rYY31_KLrlAAB2uBsaUdz1jJyCzGtYugmEICTcmsgL1WF9XYxXw_Tt_88Ihbh0bB7fQzQBqcd9b4QZaM-Umulonl6pqE20EB1LhZ4Hl-vlt9KqPPYs0BtiMAYZilzU_KmfjWYV9oDUamx9ha-CxxY4qwFfzNdUddHIpa30XrZfj0txHmIPTgZ4SJR21Ds24olynsSoo1UQq1UEvmlUVKjCdu4Ib30R94k65WFJBB-3OhSee4GO12GOnHuEoM0pnfWdyVlVi-Omj6Luvsl4Ocb6DngYhO4YBlQxXHGDajmWrJbnVklST0blYan3Saj3zulnVzXZLEFyDajXvtIxp_oLE1RxPMwrTaKxLBN9ViflO6yA8b3U9u3S80oAVCN5LYf0Byf5bBDRGwMFzELnnrXUxeuJqNjAYnbXseC7gKM_bLeXoa019TmMO-J500F5j8Yt5r9Dag_--3yN0DXyIeDc8PtpC1_1hQRoRvo3Wp99n5iGgzWmxU-9rjL5ctiP5A_1MlIE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+system+for+the+continuous+directed+evolution+of+biomolecules&rft.jtitle=Nature+%28London%29&rft.au=Esvelt%2C+Kevin+M&rft.au=Carlson%2C+Jacob+C&rft.au=Liu%2C+David+R&rft.date=2011-04-28&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=472&rft.issue=7344&rft.spage=499&rft_id=info:doi/10.1038%2Fnature09929&rft.externalDBID=ISR&rft.externalDocID=A255969284
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon