A system for the continuous directed evolution of biomolecules
Speedy route to new biomolecules Many biomolecules with useful properties have been generated by laboratory molecular evolution experiments, but the processes typically take days and require frequent human intervention. Esvelt et al . now describe a phage-assisted continuous evolution system that en...
Saved in:
Published in | Nature (London) Vol. 472; no. 7344; pp. 499 - 503 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
28.04.2011
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Speedy route to new biomolecules
Many biomolecules with useful properties have been generated by laboratory molecular evolution experiments, but the processes typically take days and require frequent human intervention. Esvelt
et al
. now describe a phage-assisted continuous evolution system that enables the continuous, directed evolution of gene-encoded molecules that can be linked to protein production in
Escherichia coli
. Dozens of rounds of evolution can occur in a single day using this method, as demonstrated by the evolution of novel types of T7 RNA polymerase.
Laboratory evolution has generated many biomolecules with desired properties, but a single round of mutation, gene expression, screening or selection, and replication typically requires days or longer with frequent human intervention
1
. Because evolutionary success is dependent on the total number of rounds performed
2
, a means of performing laboratory evolution continuously and rapidly could dramatically enhance its effectiveness
3
. Although researchers have accelerated individual steps in the evolutionary cycle
4
,
5
,
6
,
7
,
8
,
9
, the only previous example of continuous directed evolution was the landmark study of Wright and Joyce
10
, who continuously evolved RNA ligase ribozymes with an
in vitro
replication cycle that unfortunately cannot be easily adapted to other biomolecules. Here we describe a system that enables the continuous directed evolution of gene-encoded molecules that can be linked to protein production in
Escherichia coli
. During phage-assisted continuous evolution (PACE), evolving genes are transferred from host cell to host cell through a modified bacteriophage life cycle in a manner that is dependent on the activity of interest. Dozens of rounds of evolution can occur in a single day of PACE without human intervention. Using PACE, we evolved T7 RNA polymerase (RNAP) variants that recognize a distinct promoter, initiate transcripts with ATP instead of GTP, and initiate transcripts with CTP. In one example, PACE executed 200 rounds of protein evolution over the course of 8 days. Starting from undetectable activity levels in two of these cases, enzymes with each of the three target activities emerged in less than 1 week of PACE. In all three cases, PACE-evolved polymerase activities exceeded or were comparable to that of the wild-type T7 RNAP on its wild-type promoter, representing improvements of up to several hundred-fold. By greatly accelerating laboratory evolution, PACE may provide solutions to otherwise intractable directed evolution problems and address novel questions about molecular evolution. |
---|---|
AbstractList | Laboratory evolution has generated many biomolecules with desired properties, but a single round of mutation, gene expression, screening or selection, and replication typically requires days or longer with frequent human intervention.
1
Since evolutionary success is dependent on the total number of rounds performed,
2
a means of performing laboratory evolution continuously and rapidly could dramatically enhance its effectiveness.
3
While researchers have accelerated individual steps in the evolutionary cycle,
4
–
9
the only previous example of continuous directed evolution was the landmark study of Joyce,
10
who continuously evolved RNA ligase ribozymes with an in vitro replication cycle that unfortunately cannot be easily adapted to other biomolecules. Here we describe a system that enables the continuous directed evolution of gene-encoded molecules that can be linked to protein production in
E. coli
. During phage-assisted continuous evolution (PACE), evolving genes are transferred from host cell to host cell through a modified bacteriophage life cycle in a manner that is dependent on the activity of interest. Dozens of rounds of evolution can occur in a single day of PACE without human intervention. Using PACE, we evolved T7 RNA polymerases that recognize a distinct promoter, initiate transcripts with A instead of G, and initiate transcripts with C. In one example, PACE executed 200 rounds of protein evolution over the course of eight days. Starting from undetectable activity levels in two of these cases, enzymes with each of the three target activities emerged in less than one week of PACE. In all three cases, PACE-evolved polymerase activities exceeded or were comparable to that of the wild-type T7 RNAP on its wild-type promoter, representing improvements of up to several hundred-fold. By greatly accelerating laboratory evolution, PACE may provide solutions to otherwise intractable directed evolution problems and address novel questions about molecular evolution. Laboratory evolution has generated many biomolecules with desired properties, but a single round of mutation, gene expression, screening or selection, and replication typically requires days or longer with frequent human intervention. Because evolutionary success is dependent on the total number of rounds performed, a means of performing laboratory evolution continuously and rapidly could dramatically enhance its effectiveness. Although researchers have accelerated individual steps in the evolutionary cycle, the only previous example of continuous directed evolution was the landmark study of Wright and Joyce, who continuously evolved RNA ligase ribozymes with an in vitro replication cycle that unfortunately cannot be easily adapted to other biomolecules. Here we describe a system that enables the continuous directed evolution of gene-encoded molecules that can be linked to protein production in Escherichia coli. During phage-assisted continuous evolution (PACE), evolving genes are transferred from host cell to host cell through a modified bacteriophage life cycle in a manner that is dependent on the activity of interest. Dozens of rounds of evolution can occur in a single day of PACE without human intervention. Using PACE, we evolved T7 RNA polymerase (RNAP) variants that recognize a distinct promoter, initiate transcripts with ATP instead of GTP, and initiate transcripts with CTP. In one example, PACE executed 200 rounds of protein evolution over the course of 8 days. Starting from undetectable activity levels in two of these cases, enzymes with each of the three target activities emerged in less than 1 week of PACE. In all three cases, PACE-evolved polymerase activities exceeded or were comparable to that of the wild-type T7 RNAP on its wild-type promoter, representing improvements of up to several hundred-fold. By greatly accelerating laboratory evolution, PACE may provide solutions to otherwise intractable directed evolution problems and address novel questions about molecular evolution.Laboratory evolution has generated many biomolecules with desired properties, but a single round of mutation, gene expression, screening or selection, and replication typically requires days or longer with frequent human intervention. Because evolutionary success is dependent on the total number of rounds performed, a means of performing laboratory evolution continuously and rapidly could dramatically enhance its effectiveness. Although researchers have accelerated individual steps in the evolutionary cycle, the only previous example of continuous directed evolution was the landmark study of Wright and Joyce, who continuously evolved RNA ligase ribozymes with an in vitro replication cycle that unfortunately cannot be easily adapted to other biomolecules. Here we describe a system that enables the continuous directed evolution of gene-encoded molecules that can be linked to protein production in Escherichia coli. During phage-assisted continuous evolution (PACE), evolving genes are transferred from host cell to host cell through a modified bacteriophage life cycle in a manner that is dependent on the activity of interest. Dozens of rounds of evolution can occur in a single day of PACE without human intervention. Using PACE, we evolved T7 RNA polymerase (RNAP) variants that recognize a distinct promoter, initiate transcripts with ATP instead of GTP, and initiate transcripts with CTP. In one example, PACE executed 200 rounds of protein evolution over the course of 8 days. Starting from undetectable activity levels in two of these cases, enzymes with each of the three target activities emerged in less than 1 week of PACE. In all three cases, PACE-evolved polymerase activities exceeded or were comparable to that of the wild-type T7 RNAP on its wild-type promoter, representing improvements of up to several hundred-fold. By greatly accelerating laboratory evolution, PACE may provide solutions to otherwise intractable directed evolution problems and address novel questions about molecular evolution. Speedy route to new biomolecules Many biomolecules with useful properties have been generated by laboratory molecular evolution experiments, but the processes typically take days and require frequent human intervention. Esvelt et al . now describe a phage-assisted continuous evolution system that enables the continuous, directed evolution of gene-encoded molecules that can be linked to protein production in Escherichia coli . Dozens of rounds of evolution can occur in a single day using this method, as demonstrated by the evolution of novel types of T7 RNA polymerase. Laboratory evolution has generated many biomolecules with desired properties, but a single round of mutation, gene expression, screening or selection, and replication typically requires days or longer with frequent human intervention 1 . Because evolutionary success is dependent on the total number of rounds performed 2 , a means of performing laboratory evolution continuously and rapidly could dramatically enhance its effectiveness 3 . Although researchers have accelerated individual steps in the evolutionary cycle 4 , 5 , 6 , 7 , 8 , 9 , the only previous example of continuous directed evolution was the landmark study of Wright and Joyce 10 , who continuously evolved RNA ligase ribozymes with an in vitro replication cycle that unfortunately cannot be easily adapted to other biomolecules. Here we describe a system that enables the continuous directed evolution of gene-encoded molecules that can be linked to protein production in Escherichia coli . During phage-assisted continuous evolution (PACE), evolving genes are transferred from host cell to host cell through a modified bacteriophage life cycle in a manner that is dependent on the activity of interest. Dozens of rounds of evolution can occur in a single day of PACE without human intervention. Using PACE, we evolved T7 RNA polymerase (RNAP) variants that recognize a distinct promoter, initiate transcripts with ATP instead of GTP, and initiate transcripts with CTP. In one example, PACE executed 200 rounds of protein evolution over the course of 8 days. Starting from undetectable activity levels in two of these cases, enzymes with each of the three target activities emerged in less than 1 week of PACE. In all three cases, PACE-evolved polymerase activities exceeded or were comparable to that of the wild-type T7 RNAP on its wild-type promoter, representing improvements of up to several hundred-fold. By greatly accelerating laboratory evolution, PACE may provide solutions to otherwise intractable directed evolution problems and address novel questions about molecular evolution. Laboratory evolution has generated many biomolecules with desired properties, but a single round of mutation, gene expression, screening or selection, and replication typically requires days or longer with frequent human intervention. Because evolutionary success is dependent on the total number of rounds performed, a means of performing laboratory evolution continuously and rapidly could dramatically enhance its effectiveness. Although researchers have accelerated individual steps in the evolutionary cycle, the only previous example of continuous directed evolution was the landmark study of Wright and Joyce, who continuously evolved RNA ligase ribozymes with an in vitro replication cycle that unfortunately cannot be easily adapted to other biomolecules. Here we describe a system that enables the continuous directed evolution of gene-encoded molecules that can be linked to protein production in Escherichia coli. During phage-assisted continuous evolution (PACE), evolving genes are transferred from host cell to host cell through a modified bacteriophage life cycle in a manner that is dependent on the activity of interest. Dozens of rounds of evolution can occur in a single day of PACE without human intervention. Using PACE, we evolved T7 RNA polymerase (RNAP) variants that recognize a distinct promoter, initiate transcripts with ATP instead of GTP, and initiate transcripts with CTP. In one example, PACE executed 200 rounds of protein evolution over the course of 8days. Starting from undetectable activity levels in two of these cases, enzymes with each of the three target activities emerged in less than 1week of PACE. In all three cases, PACE-evolved polymerase activities exceeded or were comparable to that of the wild-type T7 RNAP on its wild-type promoter, representing improvements of up to several hundred-fold. By greatly accelerating laboratory evolution, PACE may provide solutions to otherwise intractable directed evolution problems and address novel questions about molecular evolution. Laboratory evolution has generated many biomolecules with desired properties, but a single round of mutation, gene expression, screening or selection, and replication typically requires days or longer with frequent human intervention. Because evolutionary success is dependent on the total number of rounds performed, a means of performing laboratory evolution continuously and rapidly could dramatically enhance its effectiveness. Although researchers have accelerated individual steps in the evolutionary cycle, the only previous example of continuous directed evolution was the landmark study of Wright and Joyce, who continuously evolved RNA ligase ribozymes with an in vitro replication cycle that unfortunately cannot be easily adapted to other biomolecules. Here we describe a system that enables the continuous directed evolution of gene-encoded molecules that can be linked to protein production in Escherichia coli. During phage-assisted continuous evolution (PACE), evolving genes are transferred from host cell to host cell through a modified bacteriophage life cycle in a manner that is dependent on the activity of interest. Dozens of rounds of evolution can occur in a single day of PACE without human intervention. Using PACE, we evolved T7 RNA polymerase (RNAP) variants that recognize a distinct promoter, initiate transcripts with ATP instead of GTP, and initiate transcripts with CTP. In one example, PACE executed 200 rounds of protein evolution over the course of 8 days. Starting from undetectable activity levels in two of these cases, enzymes with each of the three target activities emerged in less than 1 week of PACE. In all three cases, PACE-evolved polymerase activities exceeded or were comparable to that of the wild-type T7 RNAP on its wild-type promoter, representing improvements of up to several hundred-fold. By greatly accelerating laboratory evolution, PACE may provide solutions to otherwise intractable directed evolution problems and address novel questions about molecular evolution. Laboratory evolution has generated many biomolecules with desired properties, but a single round of mutation, gene expression, screening or selection, and replication typically requires days or longer with frequent human intervention (1). Because evolutionary success is dependent on the total number of rounds performed (2), a means of performing laboratory evolution continuously and rapidly could dramatically enhance its effectiveness (3). Although researchers have accelerated individual steps in the evolutionary cycle (4-9), the only previous example of continuous directed evolution was the landmark study of Wright and Joyce (10), who continuously evolved RNA ligase ribozymes with an in vitro replication cycle that unfortunately cannot be easily adapted to other biomolecules. Here we describe a system that enables the continuous directed evolution of gene-encoded molecules that can be linked to protein production in Escherichia coli. During phage-assisted continuous evolution (PACE), evolving genes are transferred from host cell to host cell through a modified bacteriophage life cycle in a manner that is dependent on the activity of interest. Dozens of rounds of evolution can occur in a single day of PACE without human intervention. Using PACE, we evolved T7 RNA polymerase (RNAP) variants that recognize a distinct promoter, initiate transcripts with ATP instead of GTP, and initiate transcripts with CTP. In one example, PACE executed 200 rounds of protein evolution over the course of 8 days. Starting from undetectable activity levels in two of these cases, enzymes with each of the three target activities emerged in less than 1 week of PACE. In all three cases, PACE-evolved polymerase activities exceeded or were comparable to that of the wild-type T7 RNAP on its wild-type promoter, representing improvements of up to several hundred-fold. By greatly accelerating laboratory evolution, PACE may provide solutions to otherwise intractable directed evolution problems and address novel questions about molecular evolution. Laboratory evolution has generated many biomolecules with desired properties, but a single round of mutation, gene expression, screening or selection, and replication typically requires days or longer with frequent human intervention. Because evolutionary success is dependent on the total number of rounds performed, a means of performing laboratory evolution continuously and rapidly could dramatically enhance its effectiveness. Although researchers have accelerated individual steps in the evolutionary cycle, the only previous example of continuous directed evolution was the landmark study of Wright and Joyce, who continuously evolved RNA ligase ribozymes with an in vitro replication cycle that unfortunately cannot be easily adapted to other biomolecules. Here we describe a system that enables the continuous directed evolution of gene-encoded molecules that can be linked to protein production in Escherichia coli. During phage-assisted continuous evolution (PACE), evolving genes are transferred from host cell to host cell through a modified bacteriophage life cycle in a manner that is dependent on the activity of interest. Dozens of rounds of evolution can occur in a single day of PACE without human intervention. Using PACE, we evolved T7 RNA polymerase (RNAP) variants that recognize a distinct promoter, initiate transcripts with ATP instead of GTP, and initiate transcripts with CTP. In one example, PACE executed 200 rounds of protein evolution over the course of 8 days. Starting from undetectable activity levels in two of these cases, enzymes with each of the three target activities emerged in less than 1 week of PACE. In all three cases, PACE-evolved polymerase activities exceeded or were comparable to that of the wild-type T7 RNAP on its wild-type promoter, representing improvements of up to several hundred-fold. By greatly accelerating laboratory evolution, PACE may provide solutions to otherwise intractable directed evolution problems and address novel questions about molecular evolution. [PUBLICATION ABSTRACT] |
Audience | Academic |
Author | Esvelt, Kevin M. Liu, David R. Carlson, Jacob C. |
AuthorAffiliation | 1 Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA 3 Howard Hughes Medical Institute, Cambridge, Massachusetts 02138, USA 2 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA |
AuthorAffiliation_xml | – name: 1 Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA – name: 3 Howard Hughes Medical Institute, Cambridge, Massachusetts 02138, USA – name: 2 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA |
Author_xml | – sequence: 1 givenname: Kevin M. surname: Esvelt fullname: Esvelt, Kevin M. organization: Department of Molecular and Cellular Biology, Harvard University – sequence: 2 givenname: Jacob C. surname: Carlson fullname: Carlson, Jacob C. organization: Department of Chemistry and Chemical Biology, Harvard University – sequence: 3 givenname: David R. surname: Liu fullname: Liu, David R. email: drliu@fas.harvard.edu organization: Department of Chemistry and Chemical Biology, Harvard University, Howard Hughes Medical Institute |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24124453$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21478873$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0k1r3DAQBmBRUppk21PvxSSUUlqnkm1Z0iWwhH4EAoV-nIUsjzYKtrSR7ND8-8rsptkNhuKDsf3o1cgzx-jAeQcIvSb4jOCSf3JqGANgIQrxDB2RitV5VXN2gI4wLniOeVkfouMYbzDGlLDqBToskuKclUfofJnF-zhAnxkfsuEaMu3dYN3ox5i1NoAeoM3gznfjYL3LvMka63vfgR47iC_Rc6O6CK-29wX6_eXzr4tv-dX3r5cXy6tcM0yG3BhelC0R2mjMuTaCtZgICq3C0LKyEcw0ZaqJgW4JVbwRDVZUCaoqkR6KcoHON7nrsemh1eCGoDq5DrZX4V56ZeX-F2ev5crfyRLzqqRTwLttQPC3I8RB9jZq6DrlIB1Vpj0KTEte_1fyuiKCCDbJkyfyxo_Bpf8gOSMFKxglCZ1u0Ep1IK0zPtWnp0i5LCgVtShShQuUz6gVOEiHSe02Nr3e8yczXq_trdxFZzMoXS30Vs-mvt9bMI0C_BlWaoxRXv78sW_f7HbkXyseRiuBt1ugoladCcppGx9dRYqqopMjG6eDjzGAkdoOahq2VK3tJMFyGnO5M-ZpzYcnax5i5_XHjY5JuRWExz7N8b98wQrV |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1016_j_chembiol_2021_05_008 crossref_primary_10_1038_ncomms6352 crossref_primary_10_1021_acs_jafc_4c03025 crossref_primary_10_1002_ange_201900055 crossref_primary_10_1016_j_mib_2016_07_005 crossref_primary_10_1021_acschembio_0c00684 crossref_primary_10_1038_s44222_022_00013_5 crossref_primary_10_3390_toxins12090600 crossref_primary_10_1016_j_ymben_2023_12_012 crossref_primary_10_3390_ijms232314969 crossref_primary_10_1007_s10529_017_2297_2 crossref_primary_10_1038_s41589_018_0012_9 crossref_primary_10_1038_s41589_018_0121_5 crossref_primary_10_1007_s00521_022_07532_7 crossref_primary_10_1021_acssynbio_0c00135 crossref_primary_10_1016_j_copbio_2018_03_007 crossref_primary_10_1038_s41467_020_20633_y crossref_primary_10_1038_nmeth_2649 crossref_primary_10_3390_ijms26010250 crossref_primary_10_1126_sciadv_adi3621 crossref_primary_10_1016_j_bpj_2022_01_007 crossref_primary_10_1038_s41467_024_45969_7 crossref_primary_10_3109_07388551_2012_716810 crossref_primary_10_1021_acssynbio_6b00293 crossref_primary_10_1038_nrd_2017_146 crossref_primary_10_1089_crispr_2019_0001 crossref_primary_10_1089_hum_2020_166 crossref_primary_10_1038_s41587_022_01533_6 crossref_primary_10_1002_bit_28684 crossref_primary_10_1021_acssynbio_0c00149 crossref_primary_10_1021_acssynbio_8b00273 crossref_primary_10_1038_s41578_022_00460_x crossref_primary_10_1016_j_cobme_2023_100514 crossref_primary_10_1016_j_copbio_2013_08_016 crossref_primary_10_1021_acs_chemrev_4c00730 crossref_primary_10_1038_nrg3956 crossref_primary_10_1093_abbs_gmab006 crossref_primary_10_1002_1873_3468_12333 crossref_primary_10_5650_jos_ess20222 crossref_primary_10_1016_j_biortech_2013_09_077 crossref_primary_10_1016_j_tim_2012_05_001 crossref_primary_10_1016_j_tig_2013_06_005 crossref_primary_10_1016_j_cbpa_2021_02_008 crossref_primary_10_1016_j_cbpa_2020_07_003 crossref_primary_10_1016_j_cbpa_2021_02_004 crossref_primary_10_3390_molecules24162879 crossref_primary_10_1038_s41596_020_00410_3 crossref_primary_10_1093_jimb_kuac022 crossref_primary_10_3390_life10090179 crossref_primary_10_1016_j_molcel_2018_10_027 crossref_primary_10_1016_j_jgg_2019_11_002 crossref_primary_10_1038_nmeth_1654 crossref_primary_10_1016_j_biosystems_2015_08_006 crossref_primary_10_1016_j_biotechadv_2012_12_005 crossref_primary_10_1038_s41467_019_13232_z crossref_primary_10_1002_gcc_22702 crossref_primary_10_15252_msb_202210934 crossref_primary_10_1016_j_chemosphere_2021_131535 crossref_primary_10_1088_1478_3975_abde8d crossref_primary_10_1021_acs_biochem_7b00886 crossref_primary_10_1021_sb4000542 crossref_primary_10_1557_mrs_2013_133 crossref_primary_10_1016_j_biortech_2012_01_054 crossref_primary_10_1016_j_jbiotec_2014_04_009 crossref_primary_10_1038_s41589_023_01387_2 crossref_primary_10_1016_j_addr_2016_04_032 crossref_primary_10_1002_bit_27542 crossref_primary_10_1002_bit_26455 crossref_primary_10_1016_j_ymben_2014_02_010 crossref_primary_10_1371_journal_pone_0130582 crossref_primary_10_1021_cr2004844 crossref_primary_10_1016_j_mib_2014_05_022 crossref_primary_10_1038_s41589_024_01823_x crossref_primary_10_1021_acssynbio_2c00235 crossref_primary_10_1002_biot_201300021 crossref_primary_10_1038_nbt_1884 crossref_primary_10_1038_nrg3927 crossref_primary_10_1039_c2mb05492b crossref_primary_10_1261_rna_071720_119 crossref_primary_10_1002_bit_28763 crossref_primary_10_1016_j_ymben_2021_08_009 crossref_primary_10_1002_adbi_201800098 crossref_primary_10_1021_sb3000904 crossref_primary_10_3389_fmed_2023_1292452 crossref_primary_10_1042_BST20200001 crossref_primary_10_1002_psc_2907 crossref_primary_10_1038_nature17893 crossref_primary_10_1016_j_yexcr_2020_112244 crossref_primary_10_1021_jacs_9b03705 crossref_primary_10_1126_sciadv_abg8712 crossref_primary_10_1021_sb400055h crossref_primary_10_1002_bit_27329 crossref_primary_10_1021_acs_biochem_8b00185 crossref_primary_10_1016_j_bidere_2025_100009 crossref_primary_10_1038_nmeth_3515 crossref_primary_10_1371_journal_pone_0066429 crossref_primary_10_1038_s41587_019_0193_0 crossref_primary_10_1016_j_tibtech_2014_10_007 crossref_primary_10_1016_j_ymthe_2020_11_009 crossref_primary_10_1016_j_bidere_2025_100005 crossref_primary_10_1038_s41551_024_01267_7 crossref_primary_10_1021_ja405051f crossref_primary_10_1371_journal_pone_0184730 crossref_primary_10_1038_s41434_023_00434_w crossref_primary_10_1016_j_cbpa_2021_04_004 crossref_primary_10_1021_acscatal_0c01618 crossref_primary_10_1049_enb2_12021 crossref_primary_10_1016_j_biotechadv_2024_108366 crossref_primary_10_1038_s41467_021_23573_3 crossref_primary_10_1016_j_tibs_2022_08_012 crossref_primary_10_1186_s13068_024_02457_w crossref_primary_10_1021_acs_chemrev_1c00877 crossref_primary_10_1021_cbe_4c00115 crossref_primary_10_1007_s11427_024_2707_9 crossref_primary_10_1038_s41589_020_0532_y crossref_primary_10_2144_000114616 crossref_primary_10_1016_j_copbio_2017_11_004 crossref_primary_10_2217_nnm_13_86 crossref_primary_10_1007_s11705_022_2141_7 crossref_primary_10_1038_nchembio_1474 crossref_primary_10_1016_j_biotechadv_2018_01_005 crossref_primary_10_3389_fbioe_2020_00863 crossref_primary_10_1021_acschembio_7b00532 crossref_primary_10_4161_21597073_2014_961869 crossref_primary_10_1146_annurev_biophys_101220_072829 crossref_primary_10_1016_j_molcel_2018_08_033 crossref_primary_10_1038_s41576_023_00623_8 crossref_primary_10_4155_pbp_13_14 crossref_primary_10_1002_adbi_202000252 crossref_primary_10_1038_s41467_019_11648_1 crossref_primary_10_1371_journal_pone_0232330 crossref_primary_10_1002_cbic_201600303 crossref_primary_10_1016_j_biotechadv_2017_07_005 crossref_primary_10_1016_j_cbpa_2014_09_040 crossref_primary_10_1093_nar_gkab472 crossref_primary_10_1007_s00446_021_00404_8 crossref_primary_10_1016_j_cbpa_2014_09_022 crossref_primary_10_1038_ncomms13051 crossref_primary_10_1111_gcb_15359 crossref_primary_10_1126_science_abf5972 crossref_primary_10_1146_annurev_anchem_061516_045205 crossref_primary_10_1021_acssynbio_1c00276 crossref_primary_10_1038_msb_2012_66 crossref_primary_10_3390_antibiotics11050653 crossref_primary_10_1038_s41589_023_01481_5 crossref_primary_10_1021_acssynbio_3c00250 crossref_primary_10_1016_j_cell_2018_10_021 crossref_primary_10_1016_j_cbpa_2014_09_013 crossref_primary_10_1038_nchembio_1453 crossref_primary_10_1162_ARTL_a_00160 crossref_primary_10_1038_s41589_021_00876_6 crossref_primary_10_1038_s41467_021_25948_y crossref_primary_10_1016_j_tibtech_2019_09_005 crossref_primary_10_1126_science_1232033 crossref_primary_10_1186_s40643_019_0288_y crossref_primary_10_7554_eLife_03401 crossref_primary_10_1016_j_tibtech_2019_09_010 crossref_primary_10_1038_gt_2017_99 crossref_primary_10_1016_j_copbio_2017_12_020 crossref_primary_10_1016_j_jmb_2016_02_018 crossref_primary_10_1007_s40484_017_0094_5 crossref_primary_10_1021_ie503060a crossref_primary_10_1038_nbt_2714 crossref_primary_10_1146_annurev_micro_090817_062535 crossref_primary_10_1146_annurev_virology_100220_112120 crossref_primary_10_1049_enb2_12011 crossref_primary_10_1093_nar_gkad510 crossref_primary_10_4161_mabs_28421 crossref_primary_10_1007_s12257_022_0330_3 crossref_primary_10_1038_s41467_024_46574_4 crossref_primary_10_1039_C9NP00071B crossref_primary_10_1016_j_jbiotec_2016_04_003 crossref_primary_10_1038_nature26155 crossref_primary_10_1016_j_tplants_2019_08_004 crossref_primary_10_1007_s11047_016_9595_9 crossref_primary_10_1016_j_tibtech_2019_01_003 crossref_primary_10_1007_s00239_020_09932_6 crossref_primary_10_1038_nrg3540 crossref_primary_10_3390_biom14091073 crossref_primary_10_3390_cells9071608 crossref_primary_10_1038_nprot_2017_084 crossref_primary_10_1093_nar_gkae1256 crossref_primary_10_1093_nar_gkae534 crossref_primary_10_1093_gbe_evaf010 crossref_primary_10_1016_j_biotechadv_2023_108282 crossref_primary_10_3390_ijms20092294 crossref_primary_10_1038_s41467_021_24183_9 crossref_primary_10_1002_bit_24792 crossref_primary_10_1146_annurev_micro_090816_093247 crossref_primary_10_1074_jbc_M113_511469 crossref_primary_10_7554_eLife_03703 crossref_primary_10_1016_j_jtice_2023_105065 crossref_primary_10_1021_acscentsci_1c00811 crossref_primary_10_1080_19420862_2022_2164459 crossref_primary_10_1002_cbic_201600100 crossref_primary_10_1021_acs_chemrev_3c00878 crossref_primary_10_1093_nar_gks597 crossref_primary_10_1039_C2MD20242E crossref_primary_10_1039_D4CB00024B crossref_primary_10_1038_nchembio_1439 crossref_primary_10_1016_j_biortech_2024_130502 crossref_primary_10_1016_j_csbj_2019_05_001 crossref_primary_10_34133_bdr_0037 crossref_primary_10_7554_eLife_79665 crossref_primary_10_1038_s41587_022_01410_2 crossref_primary_10_1016_j_tibtech_2025_02_011 crossref_primary_10_1002_adma_202307499 crossref_primary_10_1016_j_biotechadv_2024_108343 crossref_primary_10_1016_j_envres_2023_115428 crossref_primary_10_3389_fimmu_2021_747267 crossref_primary_10_1073_pnas_1222670110 crossref_primary_10_1038_nchembio_2516 crossref_primary_10_1038_s41592_021_01090_x crossref_primary_10_1038_s41587_019_0393_7 crossref_primary_10_1002_ange_202213942 crossref_primary_10_1021_acsomega_0c03508 crossref_primary_10_1038_nnano_2011_187 crossref_primary_10_1016_j_tibtech_2021_04_002 crossref_primary_10_1021_acs_chemrev_3c00894 crossref_primary_10_3389_fbioe_2022_918659 crossref_primary_10_1002_anie_201900055 crossref_primary_10_1126_sciadv_aau0766 crossref_primary_10_1016_j_sbi_2011_05_003 crossref_primary_10_1016_j_tim_2016_12_009 crossref_primary_10_3390_molecules26185599 crossref_primary_10_1002_ange_202409746 crossref_primary_10_1016_j_cell_2019_05_051 crossref_primary_10_1016_j_trechm_2022_02_004 crossref_primary_10_1093_nar_gkad1125 crossref_primary_10_1002_anie_202215542 crossref_primary_10_1093_genetics_iyac189 crossref_primary_10_1103_PhysRevE_91_042704 crossref_primary_10_1016_j_copbio_2016_03_016 crossref_primary_10_1038_nchembio_2299 crossref_primary_10_1021_acs_jmedchem_2c01541 crossref_primary_10_1021_acssynbio_9b00226 crossref_primary_10_1007_s42994_021_00052_3 crossref_primary_10_1016_j_cell_2018_11_015 crossref_primary_10_1186_s13068_019_1460_5 crossref_primary_10_1007_s12268_017_0779_3 crossref_primary_10_1021_ac501265y crossref_primary_10_1002_cbic_202400564 crossref_primary_10_1002_ange_202215542 crossref_primary_10_1073_pnas_1220670110 crossref_primary_10_7554_eLife_67336 crossref_primary_10_1021_acssynbio_7b00289 crossref_primary_10_1038_s41467_024_44867_2 crossref_primary_10_1093_procel_pwad051 crossref_primary_10_1038_s41467_024_52595_w crossref_primary_10_1038_s41598_017_15621_0 crossref_primary_10_1002_ange_201808956 crossref_primary_10_1016_j_copbio_2017_05_012 crossref_primary_10_1142_S233954781640001X crossref_primary_10_1038_s41589_023_01427_x crossref_primary_10_1002_pro_4919 crossref_primary_10_1038_nmeth_4027 crossref_primary_10_1146_annurev_bioeng_071811_150118 crossref_primary_10_1016_j_biotechadv_2023_108238 crossref_primary_10_1002_chem_201904808 crossref_primary_10_1126_science_adk4422 crossref_primary_10_1021_acschembio_9b00669 crossref_primary_10_1021_acs_chemrev_1c00260 crossref_primary_10_1016_j_synbio_2017_07_001 crossref_primary_10_1002_jez_b_22562 crossref_primary_10_1016_j_biotechadv_2020_107578 crossref_primary_10_1007_s11274_024_03957_5 crossref_primary_10_1016_j_cbpa_2018_07_015 crossref_primary_10_1016_j_cell_2023_07_039 crossref_primary_10_1126_science_adk1281 crossref_primary_10_1002_cbic_202000203 crossref_primary_10_1002_jctb_5746 crossref_primary_10_1021_acssynbio_1c00314 crossref_primary_10_1039_C5IB00286A crossref_primary_10_26508_lsa_202201538 crossref_primary_10_1016_j_cbpa_2023_102375 crossref_primary_10_1038_s41467_020_18018_2 crossref_primary_10_1126_sciadv_aba2728 crossref_primary_10_1177_24725552211000669 crossref_primary_10_1016_j_jbiosc_2021_03_011 crossref_primary_10_1146_annurev_phyto_082718_100301 crossref_primary_10_1002_cbic_202400536 crossref_primary_10_1371_journal_pone_0311438 crossref_primary_10_34133_bdr_0005 crossref_primary_10_1038_nature24644 crossref_primary_10_1016_j_febslet_2013_10_040 crossref_primary_10_1126_science_aan0797 crossref_primary_10_1021_acs_chemrev_9b00372 crossref_primary_10_1111_1751_7915_13987 crossref_primary_10_1038_s42003_024_06848_5 crossref_primary_10_1038_s41598_018_30374_0 crossref_primary_10_1146_annurev_chembioeng_061312_103351 crossref_primary_10_1038_s41467_021_26279_8 crossref_primary_10_1038_s41551_024_01227_1 crossref_primary_10_3389_fmolb_2022_850613 crossref_primary_10_12688_f1000research_9705_1 crossref_primary_10_1016_j_tim_2024_02_006 crossref_primary_10_1007_s00253_018_8893_9 crossref_primary_10_1038_nchembio_2497 crossref_primary_10_1093_nar_gkaa1231 crossref_primary_10_1038_s41467_017_00425_7 crossref_primary_10_1016_j_biotechadv_2019_04_011 crossref_primary_10_1021_acs_chemrev_4c00275 crossref_primary_10_1016_j_biotechadv_2014_12_007 crossref_primary_10_1021_sb500299c crossref_primary_10_1016_j_bmc_2014_06_033 crossref_primary_10_1073_pnas_2408303121 crossref_primary_10_1080_02648725_2021_2017638 crossref_primary_10_1002_pmic_201700471 crossref_primary_10_1093_nar_gkt150 crossref_primary_10_3389_fbioe_2014_00060 crossref_primary_10_1016_j_mib_2011_08_001 crossref_primary_10_1039_D2OB00443G crossref_primary_10_1038_s41587_022_01256_8 crossref_primary_10_1038_s43586_022_00119_5 crossref_primary_10_1038_nmeth0611_451 crossref_primary_10_1021_sb500165g crossref_primary_10_1093_nar_gkz1011 crossref_primary_10_1038_s41467_021_27266_9 crossref_primary_10_3390_biomedicines10010050 crossref_primary_10_1038_s41467_024_46107_z crossref_primary_10_3389_fmicb_2015_00755 crossref_primary_10_1007_s10295_019_02191_5 crossref_primary_10_1038_s41598_024_52049_9 crossref_primary_10_1016_j_cbpa_2012_05_186 crossref_primary_10_3389_fbioe_2023_1118702 crossref_primary_10_1021_sb300054p crossref_primary_10_1146_annurev_virology_092917_043544 crossref_primary_10_1002_chem_202400880 crossref_primary_10_3389_fbioe_2014_00087 crossref_primary_10_1038_nbt_4151 crossref_primary_10_1038_nchembio_2474 crossref_primary_10_1093_nar_gkae228 crossref_primary_10_1016_j_chembiol_2015_12_004 crossref_primary_10_1186_s12934_020_01345_w crossref_primary_10_1007_s00253_015_6400_0 crossref_primary_10_1002_pro_2926 crossref_primary_10_1557_mrc_2019_28 crossref_primary_10_1002_adma_202208309 crossref_primary_10_1016_j_biotechadv_2022_108023 crossref_primary_10_1080_15476286_2021_1954808 crossref_primary_10_1093_nar_gkad266 crossref_primary_10_1021_acs_chemrev_4c00243 crossref_primary_10_1016_j_chempr_2024_07_007 crossref_primary_10_2116_analsci_28_95 crossref_primary_10_1021_acs_chemrev_4c00004 crossref_primary_10_1134_S1062359023605013 crossref_primary_10_3389_fmicb_2024_1372325 crossref_primary_10_1039_D3CB00084B crossref_primary_10_1038_s41587_020_0453_z crossref_primary_10_1039_D0SC06823C crossref_primary_10_1021_jacs_5b10290 crossref_primary_10_5483_BMBRep_2023_0086 crossref_primary_10_1016_j_biotechadv_2014_11_007 crossref_primary_10_4155_fmc_14_134 crossref_primary_10_1038_s41589_022_00967_y crossref_primary_10_1016_j_copbio_2020_06_001 crossref_primary_10_1371_journal_pone_0133384 crossref_primary_10_1016_j_ijbiomac_2024_133978 crossref_primary_10_1186_s12934_019_1132_y crossref_primary_10_3390_genes9050249 crossref_primary_10_1038_s41592_021_01348_4 crossref_primary_10_1021_acs_chemrev_8b00430 crossref_primary_10_1021_jacs_8b10937 crossref_primary_10_1126_science_1256272 crossref_primary_10_1055_a_2520_3833 crossref_primary_10_1089_crispr_2021_0109 crossref_primary_10_1038_s41587_019_0331_8 crossref_primary_10_1039_D2CB00231K crossref_primary_10_3390_jof8060635 crossref_primary_10_1016_j_cels_2022_02_005 crossref_primary_10_1038_s41467_022_35228_y crossref_primary_10_1038_s41467_021_27836_x crossref_primary_10_1016_j_chembiol_2024_05_018 crossref_primary_10_1016_j_tibs_2022_01_001 crossref_primary_10_1038_s41467_023_39087_z crossref_primary_10_1038_nmeth_2926 crossref_primary_10_1038_s41598_019_57221_0 crossref_primary_10_3390_ijms19102989 crossref_primary_10_1007_s11426_024_2072_4 crossref_primary_10_1016_j_addr_2018_06_015 crossref_primary_10_1021_bi3016185 crossref_primary_10_1016_j_jbiosc_2012_02_017 crossref_primary_10_1371_journal_pone_0181923 crossref_primary_10_1021_jacsau_4c00738 crossref_primary_10_1186_s13068_019_1551_3 crossref_primary_10_1093_nar_gkac094 crossref_primary_10_1016_j_cels_2019_11_008 crossref_primary_10_1038_ncomms13858 crossref_primary_10_1371_journal_pone_0040408 crossref_primary_10_1016_j_cell_2016_05_047 crossref_primary_10_1021_acssynbio_5b00230 crossref_primary_10_1038_nature11117 crossref_primary_10_1371_journal_pcbi_1010956 crossref_primary_10_3389_fpls_2020_584151 crossref_primary_10_1016_j_cell_2021_01_017 crossref_primary_10_1038_s41587_019_0157_4 crossref_primary_10_3390_microorganisms12081578 crossref_primary_10_1002_biot_201700014 crossref_primary_10_1016_j_trac_2021_116210 crossref_primary_10_1038_s41592_024_02504_2 crossref_primary_10_1038_s41587_020_0412_8 crossref_primary_10_1128_JVI_00534_18 crossref_primary_10_1038_s41467_021_25852_5 crossref_primary_10_1038_s41434_022_00379_6 crossref_primary_10_1146_annurev_bioeng_071812_152412 crossref_primary_10_1002_anie_201808956 crossref_primary_10_1016_j_copbio_2013_03_001 crossref_primary_10_1002_bit_28170 crossref_primary_10_1038_s41586_018_0384_8 crossref_primary_10_3390_v16111745 crossref_primary_10_1038_s41467_024_48000_1 crossref_primary_10_1038_ncomms9425 crossref_primary_10_1016_j_biotechadv_2018_10_001 crossref_primary_10_1038_s41589_021_00838_y crossref_primary_10_1021_acssynbio_7b00247 crossref_primary_10_1080_07388551_2021_1921690 crossref_primary_10_1016_j_coisb_2017_08_008 crossref_primary_10_1016_j_cbpa_2013_10_003 crossref_primary_10_1042_BST20221413 crossref_primary_10_1016_j_sbi_2012_03_010 crossref_primary_10_1134_S1068162019060426 crossref_primary_10_1016_j_nbt_2023_09_003 crossref_primary_10_1021_acssynbio_6b00136 crossref_primary_10_1038_s41586_022_04456_z crossref_primary_10_1021_acschembio_8b00919 crossref_primary_10_1016_j_cbpa_2017_02_018 crossref_primary_10_1103_PhysRevX_11_011044 crossref_primary_10_1016_j_bbagen_2017_03_012 crossref_primary_10_1016_j_tibtech_2024_10_005 crossref_primary_10_1002_anie_202213942 crossref_primary_10_1093_nar_gkaa1179 crossref_primary_10_1039_C5IB00267B crossref_primary_10_1002_bit_25096 crossref_primary_10_3389_fmicb_2022_961093 crossref_primary_10_1002_bit_26066 crossref_primary_10_1016_j_tibtech_2023_03_010 crossref_primary_10_1039_c2mb25091h crossref_primary_10_1002_cbic_201700117 crossref_primary_10_1111_1751_7915_13774 crossref_primary_10_1002_bit_28009 crossref_primary_10_1093_nar_gky785 crossref_primary_10_1038_s41467_017_01055_9 crossref_primary_10_1146_annurev_biochem_062917_012034 crossref_primary_10_1002_aic_16716 crossref_primary_10_1039_D2CB00116K crossref_primary_10_1002_anie_202409746 crossref_primary_10_1038_nature17938 crossref_primary_10_1248_bpb_b19_00914 crossref_primary_10_1021_sb300101g crossref_primary_10_1021_acssynbio_8b00481 crossref_primary_10_1021_acssynbio_3c00607 crossref_primary_10_1002_mco2_639 crossref_primary_10_1103_PhysRevE_99_062416 crossref_primary_10_1007_s12257_018_0394_2 crossref_primary_10_1016_j_cbpa_2016_09_021 crossref_primary_10_1016_j_coisb_2019_02_002 crossref_primary_10_1039_C9CP05912A crossref_primary_10_1128_microbiolspec_RWR_0027_2018 crossref_primary_10_1016_j_cels_2025_101236 crossref_primary_10_1016_j_coisb_2019_02_006 crossref_primary_10_1021_acschembio_3c00493 crossref_primary_10_1088_2399_1984_ab4b78 |
Cites_doi | 10.1073/pnas.58.1.217 10.1074/jbc.M313895200 10.1128/JVI.78.4.2114-2120.2004 10.1021/bi00086a016 10.1038/19999 10.1021/bi000365w 10.1128/MMBR.69.3.373-392.2005 10.1126/science.276.5312.614 10.1074/jbc.272.52.33009 10.1073/pnas.93.7.2856 10.1073/pnas.90.8.3147 10.1038/nature08187 10.1016/S0092-8674(00)80342-6 10.1016/0042-6822(81)90442-6 10.1016/0065-227X(89)90003-8 10.1021/bi016057v 10.1038/nmeth.1318 10.1073/pnas.0407752101 10.1093/nar/27.4.919 10.1073/pnas.96.16.9218 10.1073/pnas.1333928100 10.1073/pnas.120163297 10.1074/jbc.M208405200 10.1016/S0065-3233(01)55003-2 10.1073/pnas.262420099 10.1128/JVI.01747-09 10.1006/jmbi.1998.2006 10.1016/0022-2836(92)90838-B 10.1021/bi00384a006 10.1126/science.4001944 10.2144/000112145 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2011 2015 INIST-CNRS COPYRIGHT 2011 Nature Publishing Group Copyright Nature Publishing Group Apr 28, 2011 |
Copyright_xml | – notice: Springer Nature Limited 2011 – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2011 Nature Publishing Group – notice: Copyright Nature Publishing Group Apr 28, 2011 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM |
DOI | 10.1038/nature09929 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Database Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic AIDS and Cancer Research Abstracts MEDLINE Agricultural Science Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 503 |
ExternalDocumentID | PMC3084352 2371871981 A255969284 21478873 24124453 10_1038_nature09929 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: Howard Hughes Medical Institute – fundername: NIGMS NIH HHS grantid: R01 GM065400 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .HR .XZ 00M 07C 08P 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH ABAWZ ABDBF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABNNU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACRPL ACUHS ACWUS ADBBV ADFRT ADNMO ADUKH ADYSU ADZCM AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGCDD AGGDT AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCR BCU BDKGC BEC BENPR BES BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L-9 L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OHT OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PEA PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~G0 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADGHP ADXHL AETEA AFANA AGQPQ ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ 1CY 1VW 354 3EH 3O- 41~ 42X 4R4 663 79B 9M8 AAJYS AAVBQ ABDPE ABEFU ACBNA ACBTR ACTDY ADRHT AEZWR AFBBN AFFDN AFHIU AFHKK AHWEU AIXLP AJUXI BKOMP DB5 FA8 FAC HG6 IQODW J5H LGEZI LOTEE MVM N4W NADUK NFIDA NXXTH ODYON PJZUB PPXIY PQGLB PV9 QS- R4F RHI SKT TUD UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZGI ZHY ZY4 CGR CUY CVF ECM EIF NPM AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c701t-ff823d19cfc088cf97d0195eda0ed73b97fb31477ecd15a8b9b0a5a95a498b923 |
IEDL.DBID | 8FG |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 14:09:23 EDT 2025 Fri Jul 11 06:37:42 EDT 2025 Fri Jul 11 03:40:38 EDT 2025 Sat Aug 23 12:53:26 EDT 2025 Tue Jun 17 22:06:50 EDT 2025 Fri Jun 13 00:08:09 EDT 2025 Tue Jun 10 15:39:32 EDT 2025 Tue Jun 10 21:07:25 EDT 2025 Fri Jun 27 05:34:24 EDT 2025 Mon Jul 21 06:04:05 EDT 2025 Mon Jul 21 09:15:10 EDT 2025 Tue Jul 01 02:00:31 EDT 2025 Thu Apr 24 23:13:04 EDT 2025 Fri Feb 21 02:37:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7344 |
Keywords | Virus Directed molecular evolution Escherichia coli Bacteria Method Gram negative bacteria Enterobacteriaceae Phage |
Language | English |
License | CC BY 4.0 Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c701t-ff823d19cfc088cf97d0195eda0ed73b97fb31477ecd15a8b9b0a5a95a498b923 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3084352 |
PMID | 21478873 |
PQID | 871272751 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3084352 proquest_miscellaneous_923205386 proquest_miscellaneous_864191976 proquest_journals_871272751 gale_infotracmisc_A255969284 gale_infotracgeneralonefile_A255969284 gale_infotraccpiq_255969284 gale_infotracacademiconefile_A255969284 gale_incontextgauss_ISR_A255969284 pubmed_primary_21478873 pascalfrancis_primary_24124453 crossref_citationtrail_10_1038_nature09929 crossref_primary_10_1038_nature09929 springer_journals_10_1038_nature09929 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-04-28 |
PublicationDateYYYYMMDD | 2011-04-28 |
PublicationDate_xml | – month: 04 year: 2011 text: 2011-04-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2011 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Martin, Coleman (CR29) 1987; 26 Yuan, Kurek, English, Keenan (CR1) 2005; 69 Baker (CR18) 2002; 99 Voigt, Kauffman, Wang (CR2) 2000; 55 Ichetovkin, Abramochkin, Shrader (CR32) 1997; 272 Riechmann, Holliger (CR13) 1997; 90 Cheetham, Jeruzalmi, Steitz (CR28) 1999; 399 Camps, Naukkarinen, Johnson, Loeb (CR5) 2003; 100 Mills, Peterson, Spiegelman (CR3) 1967; 58 Husimi (CR11) 1989; 25 Vidal, Legrain (CR17) 1999; 27 Raskin, Diaz, Joho, McAllister (CR21) 1992; 228 Gibson (CR30) 2009; 6 Nelson, Friedman, Smith (CR14) 1981; 108 Calendar (CR16) 2006 Opperman, Murli, Smith, Walker (CR20) 1999; 96 Wright, Joyce (CR10) 1997; 276 Raskin, Diaz, McAllister (CR23) 1993; 90 Datsenko, Wanner (CR31) 2000; 97 Fijalkowska, Schaaper (CR19) 1996; 93 Imburgio, Rong, Ma, McAllister (CR25) 2000; 39 Davis, van den Pol (CR7) 2009; 84 Wang (CR9) 2009; 460 Wang, Jackson, Steinbach, Tsien (CR4) 2004; 101 Makeyev, Bamford (CR6) 2004; 78 Ikeda, Chang, Warshamana (CR22) 1993; 32 Rakonjac, Model (CR15) 1998; 282 Vidal-Aroca (CR24) 2006; 40 Kuzmine, Gottlieb, Martin (CR27) 2003; 278 Brieba, Padilla, Sousa (CR26) 2002; 41 Das (CR8) 2004; 279 Smith (CR12) 1985; 228 M Camps (BFnature09929_CR5) 2003; 100 CA Raskin (BFnature09929_CR21) 1992; 228 MC Wright (BFnature09929_CR10) 1997; 276 D Imburgio (BFnature09929_CR25) 2000; 39 J Rakonjac (BFnature09929_CR15) 1998; 282 IE Ichetovkin (BFnature09929_CR32) 1997; 272 FK Nelson (BFnature09929_CR14) 1981; 108 L Yuan (BFnature09929_CR1) 2005; 69 L Wang (BFnature09929_CR4) 2004; 101 GP Smith (BFnature09929_CR12) 1985; 228 EV Makeyev (BFnature09929_CR6) 2004; 78 I Kuzmine (BFnature09929_CR27) 2003; 278 RA Ikeda (BFnature09929_CR22) 1993; 32 M Vidal (BFnature09929_CR17) 1999; 27 LG Brieba (BFnature09929_CR26) 2002; 41 CT Martin (BFnature09929_CR29) 1987; 26 CA Voigt (BFnature09929_CR2) 2000; 55 DR Mills (BFnature09929_CR3) 1967; 58 F Vidal-Aroca (BFnature09929_CR24) 2006; 40 AT Das (BFnature09929_CR8) 2004; 279 JN Davis (BFnature09929_CR7) 2009; 84 CA Raskin (BFnature09929_CR23) 1993; 90 KA Datsenko (BFnature09929_CR31) 2000; 97 DG Gibson (BFnature09929_CR30) 2009; 6 IJ Fijalkowska (BFnature09929_CR19) 1996; 93 L Riechmann (BFnature09929_CR13) 1997; 90 GM Cheetham (BFnature09929_CR28) 1999; 399 T Opperman (BFnature09929_CR20) 1999; 96 Y Husimi (BFnature09929_CR11) 1989; 25 R Calendar (BFnature09929_CR16) 2006 K Baker (BFnature09929_CR18) 2002; 99 HH Wang (BFnature09929_CR9) 2009; 460 |
References_xml | – volume: 58 start-page: 217 year: 1967 end-page: 224 ident: CR3 article-title: An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.58.1.217 – volume: 279 start-page: 18776 year: 2004 end-page: 18782 ident: CR8 article-title: Viral evolution as a tool to improve the tetracycline-regulated gene expression system publication-title: J. Biol. Chem. doi: 10.1074/jbc.M313895200 – volume: 78 start-page: 2114 year: 2004 end-page: 2120 ident: CR6 article-title: Evolutionary potential of an RNA virus publication-title: J. Virol. doi: 10.1128/JVI.78.4.2114-2120.2004 – volume: 32 start-page: 9115 year: 1993 end-page: 9124 ident: CR22 article-title: Selection and characterization of a mutant T7 RNA polymerase that recognizes an expanded range of T7 promoter-like sequences publication-title: Biochemistry doi: 10.1021/bi00086a016 – volume: 399 start-page: 80 year: 1999 end-page: 83 ident: CR28 article-title: Structural basis for initiation of transcription from an RNA polymerase-promoter complex publication-title: Nature doi: 10.1038/19999 – volume: 39 start-page: 10419 year: 2000 end-page: 10430 ident: CR25 article-title: Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants publication-title: Biochemistry doi: 10.1021/bi000365w – volume: 69 start-page: 373 year: 2005 end-page: 392 ident: CR1 article-title: Laboratory-directed protein evolution publication-title: Microbiol. Mol. Biol. Rev doi: 10.1128/MMBR.69.3.373-392.2005 – volume: 276 start-page: 614 year: 1997 end-page: 617 ident: CR10 article-title: Continuous evolution of catalytic function publication-title: Science doi: 10.1126/science.276.5312.614 – volume: 272 start-page: 33009 year: 1997 end-page: 33014 ident: CR32 article-title: Substrate recognition by the leucyl/phenylalanyl-tRNA-protein transferase. Conservation within the enzyme family and localization to the trypsin-resistant domain publication-title: J Biol Chem doi: 10.1074/jbc.272.52.33009 – volume: 93 start-page: 2856 year: 1996 end-page: 2861 ident: CR19 article-title: Mutants in the Exo I motif of dnaQ: defective proofreading and inviability due to error catastrophe publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.93.7.2856 – volume: 90 start-page: 3147 year: 1993 end-page: 3151 ident: CR23 article-title: T7 RNA polymerase mutants with altered promoter specificities publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.90.8.3147 – volume: 460 start-page: 894 year: 2009 end-page: 898 ident: CR9 article-title: Programming cells by multiplex genome engineering and accelerated evolution publication-title: Nature doi: 10.1038/nature08187 – volume: 90 start-page: 351 year: 1997 end-page: 360 ident: CR13 article-title: The C-terminal domain of TolA is the coreceptor for filamentous phage infection of publication-title: Cell doi: 10.1016/S0092-8674(00)80342-6 – volume: 108 start-page: 338 year: 1981 end-page: 350 ident: CR14 article-title: Filamentous phage DNA cloning vectors: a noninfective mutant with a nonpolar deletion in gene III publication-title: Virology doi: 10.1016/0042-6822(81)90442-6 – volume: 25 start-page: 1 year: 1989 end-page: 43 ident: CR11 article-title: Selection and evolution of bacteriophages in cellstat publication-title: Adv. Biophys. doi: 10.1016/0065-227X(89)90003-8 – volume: 41 start-page: 5144 year: 2002 end-page: 5149 ident: CR26 article-title: Role of T7 RNA polymerase His784 in start site selection and initial transcription publication-title: Biochemistry doi: 10.1021/bi016057v – volume: 6 start-page: 343 year: 2009 end-page: 345 ident: CR30 article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases publication-title: Nature Methods doi: 10.1038/nmeth.1318 – volume: 101 start-page: 16745 year: 2004 end-page: 16749 ident: CR4 article-title: Evolution of new nonantibody proteins via iterative somatic hypermutation publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0407752101 – volume: 27 start-page: 919 year: 1999 end-page: 929 ident: CR17 article-title: Yeast forward and reverse ‘n’-hybrid systems publication-title: Nucleic Acids Res. doi: 10.1093/nar/27.4.919 – volume: 96 start-page: 9218 year: 1999 end-page: 9223 ident: CR20 article-title: A model for a umuDC-dependent prokaryotic DNA damage checkpoint publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.96.16.9218 – volume: 100 start-page: 9727 year: 2003 end-page: 9732 ident: CR5 article-title: Targeted gene evolution in using a highly error-prone DNA polymerase I publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1333928100 – volume: 97 start-page: 6640 year: 2000 end-page: 6645 ident: CR31 article-title: One-step inactivation of chromosomal genes in K-12 using PCR products publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.120163297 – volume: 278 start-page: 2819 year: 2003 end-page: 2823 ident: CR27 article-title: Binding of the priming nucleotide in the initiation of transcription by T7 RNA polymerase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M208405200 – year: 2006 ident: CR16 publication-title: The Bacteriophages – volume: 55 start-page: 79 year: 2000 end-page: 160 ident: CR2 article-title: Rational evolutionary design: the theory of protein evolution publication-title: Adv. Protein Chem. doi: 10.1016/S0065-3233(01)55003-2 – volume: 99 start-page: 16537 year: 2002 end-page: 16542 ident: CR18 article-title: Chemical complementation: a reaction-independent genetic assay for enzyme catalysis publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.262420099 – volume: 84 start-page: 1625 year: 2009 end-page: 1630 ident: CR7 article-title: Viral mutagenesis as a means for generating novel proteins publication-title: J. Virol. doi: 10.1128/JVI.01747-09 – volume: 282 start-page: 25 year: 1998 end-page: 41 ident: CR15 article-title: Roles of pIII in filamentous phage assembly publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1998.2006 – volume: 228 start-page: 506 year: 1992 end-page: 515 ident: CR21 article-title: Substitution of a single bacteriophage T3 residue in bacteriophage T7 RNA polymerase at position 748 results in a switch in promoter specificity publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(92)90838-B – volume: 26 start-page: 2690 year: 1987 end-page: 2696 ident: CR29 article-title: Kinetic analysis of T7 RNA polymerase-promoter interactions with small synthetic promoters publication-title: Biochemistry doi: 10.1021/bi00384a006 – volume: 228 start-page: 1315 year: 1985 end-page: 1317 ident: CR12 article-title: Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface publication-title: Science doi: 10.1126/science.4001944 – volume: 40 start-page: 433 year: 2006 end-page: 438 ident: CR24 article-title: One-step high-throughput assay for quantitative detection of beta-galactosidase activity in intact Gram-negative bacteria, yeast, and mammalian cells publication-title: Biotechniques doi: 10.2144/000112145 – volume: 84 start-page: 1625 year: 2009 ident: BFnature09929_CR7 publication-title: J. Virol. doi: 10.1128/JVI.01747-09 – volume: 276 start-page: 614 year: 1997 ident: BFnature09929_CR10 publication-title: Science doi: 10.1126/science.276.5312.614 – volume: 99 start-page: 16537 year: 2002 ident: BFnature09929_CR18 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.262420099 – volume: 272 start-page: 33009 year: 1997 ident: BFnature09929_CR32 publication-title: J Biol Chem doi: 10.1074/jbc.272.52.33009 – volume: 78 start-page: 2114 year: 2004 ident: BFnature09929_CR6 publication-title: J. Virol. doi: 10.1128/JVI.78.4.2114-2120.2004 – volume: 460 start-page: 894 year: 2009 ident: BFnature09929_CR9 publication-title: Nature doi: 10.1038/nature08187 – volume: 96 start-page: 9218 year: 1999 ident: BFnature09929_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.96.16.9218 – volume: 90 start-page: 351 year: 1997 ident: BFnature09929_CR13 publication-title: Cell doi: 10.1016/S0092-8674(00)80342-6 – volume: 278 start-page: 2819 year: 2003 ident: BFnature09929_CR27 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M208405200 – volume: 93 start-page: 2856 year: 1996 ident: BFnature09929_CR19 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.93.7.2856 – volume: 90 start-page: 3147 year: 1993 ident: BFnature09929_CR23 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.90.8.3147 – volume: 39 start-page: 10419 year: 2000 ident: BFnature09929_CR25 publication-title: Biochemistry doi: 10.1021/bi000365w – volume-title: The Bacteriophages year: 2006 ident: BFnature09929_CR16 – volume: 40 start-page: 433 year: 2006 ident: BFnature09929_CR24 publication-title: Biotechniques doi: 10.2144/000112145 – volume: 97 start-page: 6640 year: 2000 ident: BFnature09929_CR31 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.120163297 – volume: 55 start-page: 79 year: 2000 ident: BFnature09929_CR2 publication-title: Adv. Protein Chem. doi: 10.1016/S0065-3233(01)55003-2 – volume: 26 start-page: 2690 year: 1987 ident: BFnature09929_CR29 publication-title: Biochemistry doi: 10.1021/bi00384a006 – volume: 32 start-page: 9115 year: 1993 ident: BFnature09929_CR22 publication-title: Biochemistry doi: 10.1021/bi00086a016 – volume: 69 start-page: 373 year: 2005 ident: BFnature09929_CR1 publication-title: Microbiol. Mol. Biol. Rev doi: 10.1128/MMBR.69.3.373-392.2005 – volume: 282 start-page: 25 year: 1998 ident: BFnature09929_CR15 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1998.2006 – volume: 6 start-page: 343 year: 2009 ident: BFnature09929_CR30 publication-title: Nature Methods doi: 10.1038/nmeth.1318 – volume: 279 start-page: 18776 year: 2004 ident: BFnature09929_CR8 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M313895200 – volume: 41 start-page: 5144 year: 2002 ident: BFnature09929_CR26 publication-title: Biochemistry doi: 10.1021/bi016057v – volume: 58 start-page: 217 year: 1967 ident: BFnature09929_CR3 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.58.1.217 – volume: 100 start-page: 9727 year: 2003 ident: BFnature09929_CR5 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1333928100 – volume: 399 start-page: 80 year: 1999 ident: BFnature09929_CR28 publication-title: Nature doi: 10.1038/19999 – volume: 228 start-page: 1315 year: 1985 ident: BFnature09929_CR12 publication-title: Science doi: 10.1126/science.4001944 – volume: 27 start-page: 919 year: 1999 ident: BFnature09929_CR17 publication-title: Nucleic Acids Res. doi: 10.1093/nar/27.4.919 – volume: 108 start-page: 338 year: 1981 ident: BFnature09929_CR14 publication-title: Virology doi: 10.1016/0042-6822(81)90442-6 – volume: 101 start-page: 16745 year: 2004 ident: BFnature09929_CR4 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0407752101 – volume: 228 start-page: 506 year: 1992 ident: BFnature09929_CR21 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(92)90838-B – volume: 25 start-page: 1 year: 1989 ident: BFnature09929_CR11 publication-title: Adv. Biophys. doi: 10.1016/0065-227X(89)90003-8 |
SSID | ssj0005174 |
Score | 2.545644 |
Snippet | Speedy route to new biomolecules
Many biomolecules with useful properties have been generated by laboratory molecular evolution experiments, but the processes... Laboratory evolution has generated many biomolecules with desired properties, but a single round of mutation, gene expression, screening or selection, and... |
SourceID | pubmedcentral proquest gale pubmed pascalfrancis crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 499 |
SubjectTerms | 631/181/2475 631/181/735 Adenosine Triphosphate - metabolism Bacteria Bacteriology Bacteriophage T3 - genetics Bacteriophage T7 - enzymology Bacteriophage T7 - genetics Bacteriophages Bacteriophages - enzymology Bacteriophages - genetics Bacteriophages - physiology Binding sites Biological and medical sciences Cloning Cytidine Triphosphate - metabolism Directed Molecular Evolution - methods Diverse techniques DNA-Directed RNA Polymerases - biosynthesis DNA-Directed RNA Polymerases - chemistry DNA-Directed RNA Polymerases - genetics DNA-Directed RNA Polymerases - metabolism E coli Escherichia coli Escherichia coli - genetics Escherichia coli - growth & development Escherichia coli - metabolism Escherichia coli - virology Evolution Fundamental and applied biological sciences. Psychology Gene mutations Genetic aspects Genetic engineering Genetic transcription Guanosine Triphosphate - metabolism Humanities and Social Sciences Identification and classification letter Molecular and cellular biology multidisciplinary Mutagenesis Mutation Physiological aspects Plasmids Promoter Regions, Genetic - genetics Promoters (Genetics) Properties Science Science (multidisciplinary) Viral Proteins - biosynthesis Viral Proteins - chemistry Viral Proteins - genetics Viral Proteins - metabolism |
Title | A system for the continuous directed evolution of biomolecules |
URI | https://link.springer.com/article/10.1038/nature09929 https://www.ncbi.nlm.nih.gov/pubmed/21478873 https://www.proquest.com/docview/871272751 https://www.proquest.com/docview/864191976 https://www.proquest.com/docview/923205386 https://pubmed.ncbi.nlm.nih.gov/PMC3084352 |
Volume | 472 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ta9swEBZry2Awxtq9ee2CGN0rmFqSHclfNrLSrBusjG6FfBOyXrrAsNM52e_fyVKSusv2JRB0SLLudPfYOj2H0CGAVFqBJaTOZirNHWdpWRiVOp45khtObXfQ_uVseHqRf54Uk5ib08a0yqVP7By1abT_Rn4EwJ5CrC3I-9lV6otG-cPVWEFjC-0QCDQ-o0uMP64zPG6QMMfreRkTR4E1E9BRBy3XASm65bsz1cISuVDbYhP4_DuH8sZBahefxvfRvQgs8ShYwi66Zes9dLtL8NTtHtqNm7jFryPT9JsH6N0IByZnDNAVAxTEPnN9Wi-aRYtDsLMG29_RPHHjsL-uHyrq2vYhuhiffD8-TWNBhVTzjMxT5wRlhpTaaXAu2pXc-PuC1qjMGs6qkruKkZxzqw0plKjKKlOFKguVl_CHskdou25q-wRhARsfeiJaeXobVgjNhMkzXTFmqNI6QW-Xqyp1ZBv3RS9-yu7Umwl5TQUJOlwJzwLJxmax51490tNW1D4v5lIt2lZ--nYuR_7NaFhCrE3QqyjkGhhQq3jNAKbtma56kvs9ST2bXslrrS97rZdBN5u6OegJwvbUveZBz5hWD0h93e-8YDCNpXXJ6D9aubL2BOFVq-_Zp8TVFqxAimEO6w9o8t8ioDEKTlaAyONgrevRia-bwGF03rPjlYCnHe-31NMfHf04ywRgbJqgF0uLX897g9ae_vf59tGd8JU-T6k4QNvzXwv7DGDevBqgLT7h8CuOyaDb2AO08-Hk7Ov5H4oOVdw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIQQSQmx8lY1hoQ0YUrTETmrnAVAFlJZ9PMAm7c04_hiVUNqRFsQfxf_IOXbaZRTe9hj5ZDu-890v8fl3CG0DSCUFWEJkTSyj1DIa5ZmWkWWxTVLNiKkP2g-PuoOT9ONpdrqCfjd3YVxaZeMTa0etx8r9I98DYE8g1mbJm8l55IpGucPVpoKGt4p98-snfLFVr4bvQL07hPTfH78dRKGoQKRYnEwjazmhOsmVVbDBlM2ZdnfmjJax0YwWObMFTVLGjNJJJnmRF7HMZJ7JNIcHx3MAHv9aSiGQu4vp_Q-LjJJLpM_hOmBM-Z5n6QQ0VkPZRQAMYeDWRFagEutraSwDu3_nbF46uK3jYf8Ouh2ALO55y1tDK6ZcR9frhFJVraO14DQq_CIwW-_eRa972DNHY4DKGKAndpnyo3I2nlXYB1ejsfkRtgMeW-zoAXwFX1PdQydXstb30Wo5Ls1DhDk4GugpUdLR6dCMK8p1GquCUk2kUh30sllVoQK7uSuy8U3Up-yUiwsq6KDtufDEk3osF3vq1CMcTUbp8nDO5KyqxPDzJ9FzX2LdHGJ7Bz0PQnYMAyoZrjXAtB2zVktyoyWpJqNzcaH1Wav1zOtmWTebLUFwB6rVvNUypvkLEldnPM0oTKOxLhH8VSXmu6uD8LzV9exS8EoDViB4N4X1B_T6bxHQGAGnzkHkgbfWxeiJq9PAYHTWsuO5gKM5b7eUo6813TmNOWB60kE7jcUv5r1Ea4_--35P0I3B8eGBOBge7W-gm_6EII0I30Sr0-8z8xgg5rTYqjc2Rl-u2pP8AcenkIA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELamIRASQmy8lY1hoY03KWpiJ7XzAVC1Ua0MJgRM2jfj-GVUQmlHWhA_jX_HOXbaZhS-7WPkk-34zndP4vNzCO0CSCUFWEJkTSyj1DIa5ZmWkWWxTVLNiKkP2t8f9w5P0ren2eka-t3chXFplY1PrB21Hiv3j7wLwJ5ArM2Srg1ZER8OBq8n55ErIOUOWptqGt5Cjsyvn_D1Vr0cHoCq9wgZvPm8fxiFAgORYnEyjazlhOokV1bBZlM2Z9rdnzNaxkYzWuTMFjRJGTNKJ5nkRV7EMpN5JtMcHhznAXj_K4wy7rYY31_KLrlAAB2uBsaUdz1jJyCzGtYugmEICTcmsgL1WF9XYxXw_Tt_88Ihbh0bB7fQzQBqcd9b4QZaM-Umulonl6pqE20EB1LhZ4Hl-vlt9KqPPYs0BtiMAYZilzU_KmfjWYV9oDUamx9ha-CxxY4qwFfzNdUddHIpa30XrZfj0txHmIPTgZ4SJR21Ds24olynsSoo1UQq1UEvmlUVKjCdu4Ib30R94k65WFJBB-3OhSee4GO12GOnHuEoM0pnfWdyVlVi-Omj6Luvsl4Ocb6DngYhO4YBlQxXHGDajmWrJbnVklST0blYan3Saj3zulnVzXZLEFyDajXvtIxp_oLE1RxPMwrTaKxLBN9ViflO6yA8b3U9u3S80oAVCN5LYf0Byf5bBDRGwMFzELnnrXUxeuJqNjAYnbXseC7gKM_bLeXoa019TmMO-J500F5j8Yt5r9Dag_--3yN0DXyIeDc8PtpC1_1hQRoRvo3Wp99n5iGgzWmxU-9rjL5ctiP5A_1MlIE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+system+for+the+continuous+directed+evolution+of+biomolecules&rft.jtitle=Nature+%28London%29&rft.au=Esvelt%2C+Kevin+M&rft.au=Carlson%2C+Jacob+C&rft.au=Liu%2C+David+R&rft.date=2011-04-28&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=472&rft.issue=7344&rft.spage=499&rft_id=info:doi/10.1038%2Fnature09929&rft.externalDBID=ISR&rft.externalDocID=A255969284 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |