Deletion of both p62 and Nrf2 spontaneously results in the development of nonalcoholic steatohepatitis

Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain unknown. Deletion of both p62/Sqstm1 and Nrf2 genes spontaneously led to the development of NASH in mice fed a normal chow and was associated with l...

Full description

Saved in:
Bibliographic Details
Published inExperimental Animals Vol. 67; no. 2; pp. 201 - 218
Main Authors Mizokami, Yuji, Tokushige, Katsutoshi, Ariizumi, Shun-ichi, Ishii, Tetsuro, Yanagawa, Toru, Ishige, Kazunori, Shoda, Junichi, Yamagata, Kenji, Warabi, Eiji, Akiyama, Kentaro, Kose, Katsumi, Yamamoto, Masakazu, Onizawa, Kojiro, Okada, Kosuke
Format Journal Article
LanguageEnglish
Published Japan Japanese Association for Laboratory Animal Science 2018
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1341-1357
1881-7122
DOI10.1538/expanim.17-0112

Cover

Abstract Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain unknown. Deletion of both p62/Sqstm1 and Nrf2 genes spontaneously led to the development of NASH in mice fed a normal chow and was associated with liver tumorigenesis. The pathogenetic mechanism (s) underlying the NASH development was investigated in p62:Nrf2 double-knockout (DKO) mice. DKO mice showed massive hepatomegaly and steatohepatitis with fat accumulation and had hyperphagia-induced obesity coupled with insulin resistance and adipokine imbalance. They also showed dysbiosis associated with an increased proportion of gram-negative bacteria species and an increased lipopolysaccharide (LPS) level in feces. Intestinal permeability was elevated in association with both epithelial damage and decreased expression levels of tight junction protein zona occludens-1, and thereby LPS levels were increased in serum. For Kupffer cells, the foreign body phagocytic capacity was decreased in magnetic resonance imaging, and the proportion of M1 cells was increased in DKO mice. In vitro experiments showed that the inflammatory response was accelerated in the p62:Nrf2 double-deficient Kupffer cells when challenged with a low dose of LPS. Diet restriction improved the hepatic conditions of NASH in association with improved dysbiosis and decreased LPS levels. The results suggest that in DKO mice, activation of innate immunity by excessive LPS flux from the intestines, occurring both within and outside the liver, is central to the development of hepatic damage in the form of NASH.
AbstractList Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain unknown. Deletion of both p62/Sqstm1 and Nrf2 genes spontaneously led to the development of NASH in mice fed a normal chow and was associated with liver tumorigenesis. The pathogenetic mechanism (s) underlying the NASH development was investigated in p62:Nrf2 double-knockout (DKO) mice. DKO mice showed massive hepatomegaly and steatohepatitis with fat accumulation and had hyperphagia-induced obesity coupled with insulin resistance and adipokine imbalance. They also showed dysbiosis associated with an increased proportion of gram-negative bacteria species and an increased lipopolysaccharide (LPS) level in feces. Intestinal permeability was elevated in association with both epithelial damage and decreased expression levels of tight junction protein zona occludens-1, and thereby LPS levels were increased in serum. For Kupffer cells, the foreign body phagocytic capacity was decreased in magnetic resonance imaging, and the proportion of M1 cells was increased in DKO mice. In vitro experiments showed that the inflammatory response was accelerated in the p62:Nrf2 double-deficient Kupffer cells when challenged with a low dose of LPS. Diet restriction improved the hepatic conditions of NASH in association with improved dysbiosis and decreased LPS levels. The results suggest that in DKO mice, activation of innate immunity by excessive LPS flux from the intestines, occurring both within and outside the liver, is central to the development of hepatic damage in the form of NASH.
Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain unknown. Deletion of both p62/Sqstm1 and Nrf2 genes spontaneously led to the development of NASH in mice fed a normal chow and was associated with liver tumorigenesis. The pathogenetic mechanism (s) underlying the NASH development was investigated in p62:Nrf2 double-knockout (DKO) mice. DKO mice showed massive hepatomegaly and steatohepatitis with fat accumulation and had hyperphagia-induced obesity coupled with insulin resistance and adipokine imbalance. They also showed dysbiosis associated with an increased proportion of gram-negative bacteria species and an increased lipopolysaccharide (LPS) level in feces. Intestinal permeability was elevated in association with both epithelial damage and decreased expression levels of tight junction protein zona occludens-1, and thereby LPS levels were increased in serum. For Kupffer cells, the foreign body phagocytic capacity was decreased in magnetic resonance imaging, and the proportion of M1 cells was increased in DKO mice. In vitro experiments showed that the inflammatory response was accelerated in the p62 : Nrf2 double-deficient Kupffer cells when challenged with a low dose of LPS. Diet restriction improved the hepatic conditions of NASH in association with improved dysbiosis and decreased LPS levels. The results suggest that in DKO mice, activation of innate immunity by excessive LPS flux from the intestines, occurring both within and outside the liver, is central to the development of hepatic damage in the form of NASH.
Author Mizokami, Yuji
Yamamoto, Masakazu
Ishii, Tetsuro
Kose, Katsumi
Yamagata, Kenji
Onizawa, Kojiro
Okada, Kosuke
Ishige, Kazunori
Akiyama, Kentaro
Ariizumi, Shun-ichi
Yanagawa, Toru
Warabi, Eiji
Tokushige, Katsutoshi
Shoda, Junichi
Author_xml – sequence: 1
  fullname: Mizokami, Yuji
  organization: Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan
– sequence: 1
  fullname: Tokushige, Katsutoshi
  organization: Institute of Gastroenterology Internal Medicine, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
– sequence: 1
  fullname: Ariizumi, Shun-ichi
  organization: Institute of Gastroenterology Surgery, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
– sequence: 1
  fullname: Ishii, Tetsuro
  organization: Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan
– sequence: 1
  fullname: Yanagawa, Toru
  organization: Division of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan
– sequence: 1
  fullname: Ishige, Kazunori
  organization: Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan
– sequence: 1
  fullname: Shoda, Junichi
  organization: Medical Sciences, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan
– sequence: 1
  fullname: Yamagata, Kenji
  organization: Division of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan
– sequence: 1
  fullname: Warabi, Eiji
  organization: Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan
– sequence: 1
  fullname: Akiyama, Kentaro
  organization: Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
– sequence: 1
  fullname: Kose, Katsumi
  organization: Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8573, Japan
– sequence: 1
  fullname: Yamamoto, Masakazu
  organization: Institute of Gastroenterology Surgery, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
– sequence: 1
  fullname: Onizawa, Kojiro
  organization: Division of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan
– sequence: 1
  fullname: Okada, Kosuke
  organization: Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29276215$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtvFSEUJqbGPnTtzpC4nnY4XIaZjYmp9ZE0utE1ocyhww0XRuA27b-Xyb1O1IUbIPke5-N85-QkxICEvGbtJRO8v8LHWQe3u2SyaRmDZ-SM9T1rJAM4qW--YQ3jQp6S85y3bQtSwvCCnMIAsgMmzoj9gB6Li4FGS-9imejcAdVhpF-TBZrnGIoOGPfZP9GEee9Lpi7QMiEd8QF9nHcYyqKu0bQ3cYreGZoL6hInnHVxxeWX5LnVPuOr431Bfny8-X79ubn99unL9fvbxsiWlUb0G5QDHwcwGtCi3khjewSNhgtesXHgnI_AbD9YsLqixox6RMm6wQ4tvyDvDr7z_m6Ho6nRkvZqTm6n05OK2qm_keAmdR8flBiEkAKqwdujQYo_95iL2sZ9qh_LCtqNhL4usausN3-OWf1_77USrg4Ek2LOCe1KYa1amlPH5hSTammuKsQ_CuOKXpqpOZ3_j-7moNvmou9xnaNTccbjyu-kguU46lbcTDopDPwXk2C8AQ
CitedBy_id crossref_primary_10_3390_ijms21041525
crossref_primary_10_1371_journal_pone_0291880
crossref_primary_10_1016_j_bbalip_2024_159497
crossref_primary_10_1177_1934578X20987095
crossref_primary_10_1538_expanim_20_0028
crossref_primary_10_1007_s12072_018_9860_3
crossref_primary_10_3389_fimmu_2023_1251750
crossref_primary_10_1111_hepr_13543
crossref_primary_10_3390_cells13151247
crossref_primary_10_3390_ijerph18073470
crossref_primary_10_3390_nu11092114
crossref_primary_10_1038_s41419_020_03003_w
crossref_primary_10_1016_j_jff_2019_05_028
crossref_primary_10_1111_febs_16317
crossref_primary_10_1016_j_jhepr_2021_100253
crossref_primary_10_1016_j_freeradbiomed_2020_02_010
crossref_primary_10_3390_antiox11101939
crossref_primary_10_1159_000491763
crossref_primary_10_3390_antiox11010091
crossref_primary_10_3748_wjg_v28_i48_6909
crossref_primary_10_1016_j_freeradbiomed_2022_06_226
crossref_primary_10_14814_phy2_14859
crossref_primary_10_1242_jcs_222836
Cites_doi 10.1182/blood-2010-03-276733
10.1016/S0016-5085(98)70599-2
10.1073/pnas.94.6.2557
10.1186/1476-9255-7-15
10.1038/ncomms11624
10.1016/S1499-3872(15)60026-1
10.1006/bbrc.1996.1377
10.1124/dmd.110.035006
10.1128/MCB.15.8.4184
10.1016/j.cmet.2006.01.011
10.1016/j.jhep.2009.02.032
10.1371/journal.pone.0062885
10.1007/s00535-012-0659-z
10.2174/1574887109666141216104334
10.1002/hep.21744
10.1053/jhep.2003.50048
10.1172/JCI25790
10.1006/bbrc.1997.6943
10.1016/j.advenzreg.2006.01.007
10.1111/j.1440-1746.2011.07057.x
10.1523/JNEUROSCI.2954-12.2013
10.1371/journal.pone.0161635
10.1111/liv.13301
10.1002/hep.24001
10.1097/01.shk.0000112346.38599.10
10.1016/j.cmet.2012.05.012
10.3390/ijms18020434
10.1016/j.ccell.2016.09.004
10.1046/j.1440-1746.1999.01822.x
10.1111/j.1872-034X.2010.00670.x
10.1172/JCI20513
10.1055/s-2001-12927
10.1038/cddis.2014.162
10.1002/hep.22848
10.1089/ars.2010.3222
10.1016/j.ccr.2012.02.007
10.1016/S1471-4906(02)02302-5
10.1007/BF02976748
10.1136/gut.48.2.206
10.1016/j.cell.2007.10.035
10.1002/hep.22603
10.1016/j.jhep.2009.03.008
10.1016/j.bcp.2008.07.036
10.1002/hep.26093
10.1053/gast.2002.34168
10.1126/science.1231143
ContentType Journal Article
Copyright 2018 Japanese Association for Laboratory Animal Science
Copyright Japan Science and Technology Agency 2018
2018 Japanese Association for Laboratory Animal Science 2018
Copyright_xml – notice: 2018 Japanese Association for Laboratory Animal Science
– notice: Copyright Japan Science and Technology Agency 2018
– notice: 2018 Japanese Association for Laboratory Animal Science 2018
DBID AAYXX
CITATION
NPM
7QO
8FD
FR3
P64
RC3
5PM
DOI 10.1538/expanim.17-0112
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Genetics Abstracts


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1881-7122
EndPage 218
ExternalDocumentID PMC5955752
29276215
10_1538_expanim_17_0112
article_expanim_67_2_67_17_0112_article_char_en
Genre Journal Article
GroupedDBID ---
.55
29G
2WC
3O-
53G
5GY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
E3Z
EMOBN
GX1
HYE
JSF
JSH
KQ8
M48
OK1
OVT
P2P
PGMZT
RJT
RNS
RPM
RZJ
TKC
TR2
X7M
XSB
AAYXX
CITATION
NPM
7QO
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c701t-584e793d92ca2efea47cf8e2aec3534e7d9333d21f89f2fa7cfccdade7169f903
IEDL.DBID M48
ISSN 1341-1357
IngestDate Thu Aug 21 18:01:54 EDT 2025
Mon Jun 30 16:42:00 EDT 2025
Wed Feb 19 02:44:24 EST 2025
Tue Jul 01 01:21:01 EDT 2025
Thu Apr 24 23:08:27 EDT 2025
Wed Sep 03 06:28:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords hyperphagia
multiple parallel hits hypothesis
intestinal permeability
lipopolysaccharide
dysbiosis
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c701t-584e793d92ca2efea47cf8e2aec3534e7d9333d21f89f2fa7cfccdade7169f903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
These authors contributed equally to this work.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1538/expanim.17-0112
PMID 29276215
PQID 2047280026
PQPubID 2048505
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5955752
proquest_journals_2047280026
pubmed_primary_29276215
crossref_primary_10_1538_expanim_17_0112
crossref_citationtrail_10_1538_expanim_17_0112
jstage_primary_article_expanim_67_2_67_17_0112_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Experimental Animals
PublicationTitleAlternate Exp Anim
PublicationYear 2018
Publisher Japanese Association for Laboratory Animal Science
Japan Science and Technology Agency
Publisher_xml – name: Japanese Association for Laboratory Animal Science
– name: Japan Science and Technology Agency
References 4. Chitturi S. and Farrell G.C. 2001. Etiopathogenesis of nonalcoholic steatohepatitis. Semin. Liver Dis. 21: 27–41.
9. Gkolfakis P., Dimitriadis G., and Triantafyllou K. 2015. Gut microbiota and non-alcoholic fatty liver disease. Hepatobiliary Pancreat. Dis. Int. 14: 572–581.
6. Dapito D.H., Mencin A., Gwak G.Y., Pradere J.P., Jang M.K., Mederacke I., Caviglia J.M., Khiabanian H., Adeyemi A., Bataller R., Lefkowitch J.H., Bower M., Friedman R., Sartor R.B., Rabadan R., and Schwabe R.F. 2012. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21: 504–516.
35. Shin J. 1998. P62 and the sequestosome, a novel mechanism for protein metabolism. Arch. Pharm. Res. 21: 629–633.
30. Miele L., Valenza V., La Torre G., Montalto M., Cammarota G., Ricci R., Mascianà R., Forgione A., Gabrieli M.L., Perotti G., Vecchio F.M., Rapaccini G., Gasbarrini G., Day C.P., and Grieco A. 2009. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49: 1877–1887.
11. Han X., Fink M.P., Yang R., and Delude R.L. 2004. Increased iNOS activity is essential for intestinal epithelial tight junction dysfunction in endotoxemic mice. Shock 21: 261–270.
10. González-Rodríguez A., Mayoral R., Agra N., Valdecantos M.P., Pardo V., Miquilena-Colina M.E., Vargas-Castrillón J., Lo Iacono O., Corazzari M., Fimia G.M., Piacentini M., Muntané J., Boscá L., García-Monzón C., Martín-Sanz P., and Valverde A.M. 2014. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 5: e1179.
1. Baffy G. 2009. Kupffer cells in non-alcoholic fatty liver disease: the emerging view. J. Hepatol. 51: 212–223.
3. Bugianesi E., Leone N., Vanni E., Marchesini G., Brunello F., Carucci P., Musso A., De Paolis P., Capussotti L., Salizzoni M., and Rizzetto M. 2002. Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology 123: 134–140.
41. Wigg A.J., Roberts-Thomson I.C., Dymock R.B., McCarthy P.J., Grose R.H., and Cummins A.G. 2001. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut 48: 206–211.
2. Bedossa P. 2017. Pathology of non-alcoholic fatty liver disease. Liver Int. 37:(Suppl 1): 85–89.
14. Harte A.L., da Silva N.F., Creely S.J., McGee K.C., Billyard T., Youssef-Elabd E.M., Tripathi G., Ashour E., Abdalla M.S., Sharada H.M., Amin A.I., Burt A.D., Kumar S., Day C.P., and McTernan P.G. 2010. Elevated endotoxin levels in non-alcoholic fatty liver disease. J. Inflamm. (Lond.) 7: 15.
17. Ishii T., Yanagawa T., Kawane T., Yuki K., Seita J., Yoshida H., and Bannai S. 1996. Murine peritoneal macrophages induce a novel 60-kDa protein with structural similarity to a tyrosine kinase p56lck-associated protein in response to oxidative stress. Biochem. Biophys. Res. Commun. 226: 456–460.
38. Tilg H. and Moschen A.R. 2010. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52: 1836–1846.
44. Yoshikawa S., Iijima H., Saito M., Tanaka H., Imanishi H., Yoshimoto N., Yoshimoto T., Futatsugi-Yumikura S., Nakanishi K., Tsujimura T., Nishigami T., Kudo A., Arii S., and Nishiguchi S. 2010. Crucial role of impaired Kupffer cell phagocytosis on the decreased Sonazoid-enhanced echogenicity in a liver of a nonalchoholic steatohepatitis rat model. Hepatol. Res. 40: 823–831.
18. Itoh K., Chiba T., Takahashi S., Ishii T., Igarashi K., Katoh Y., Oyake T., Hayashi N., Satoh K., Hatayama I., Yamamoto M., and Nabeshima Y. 1997. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236: 313–322.
33. Rodriguez A., Durán A., Selloum M., Champy M.F., Diez-Guerra F.J., Flores J.M., Serrano M., Auwerx J., Diaz-Meco M.T., and Moscat J. 2006. Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metab. 3: 211–222.
5. Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., and Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823.
20. Itoh K., Mimura J., and Yamamoto M. 2010. Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Antioxid. Redox Signal. 13: 1665–1678.
25. Kudo H., Takahara T., Yata Y., Kawai K., Zhang W., and Sugiyama T. 2009. Lipopolysaccharide triggered TNF-alpha-induced hepatocyte apoptosis in a murine non-alcoholic steatohepatitis model. J. Hepatol. 51: 168–175.
22. Kobayashi E.H., Suzuki T., Funayama R., Nagashima T., Hayashi M., Sekine H., Tanaka N., Moriguchi T., Motohashi H., Nakayama K., and Yamamoto M. 2016. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 7: 11624.
27. Lin W., Wu R.T., Wu T., Khor T.O., Wang H., and Kong A.N. 2008. Sulforaphane suppressed LPS-induced inflammation in mouse peritoneal macrophages through Nrf2 dependent pathway. Biochem. Pharmacol. 76: 967–973.
13. Hardwick R.N., Fisher C.D., Canet M.J., Lake A.D., and Cherrington N.J. 2010. Diversity in antioxidant response enzymes in progressive stages of human nonalcoholic fatty liver disease. Drug Metab. Dispos. 38: 2293–2301.
46. Zhao L.F., Jia J.M., and Han D.W. 2004. [The role of enterogenous endotoxemia in the pathogenesis of non-alcoholic steatohepatitis]. Zhonghua Gan Zang Bing Za Zhi 12: 632. (in Chinese)
29. Mantovani A., Sozzani S., Locati M., Allavena P., and Sica A. 2002. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23: 549–555.
24. Komatsu M., Waguri S., Koike M., Sou Y.S., Ueno T
22
44
23
45
24
46
25
47
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
References_xml – reference: 21. Kakehashi A., Stefanov V.E., Ishii N., Okuno T., Fujii H., Kawai K., Kawada N., and Wanibuchi H. 2017. Proteome characteristics of non-alcoholic steatohepatitis liver tissue and associated hepatocellular carcinomas. Int. J. Mol. Sci. 18: 18.
– reference: 11. Han X., Fink M.P., Yang R., and Delude R.L. 2004. Increased iNOS activity is essential for intestinal epithelial tight junction dysfunction in endotoxemic mice. Shock 21: 261–270.
– reference: 7. Day C.P. and James O.F. 1998. Steatohepatitis: a tale of two “hits”? Gastroenterology 114: 842–845.
– reference: 40. Vuppalanchi R. and Chalasani N. 2009. Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: Selected practical issues in their evaluation and management. Hepatology 49: 306–317.
– reference: 16. Imajo K., Fujita K., Yoneda M., Nozaki Y., Ogawa Y., Shinohara Y., Kato S., Mawatari H., Shibata W., Kitani H., Ikejima K., Kirikoshi H., Nakajima N., Saito S., Maeyama S., Watanabe S., Wada K., and Nakajima A. 2012. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab. 16: 44–54.
– reference: 19. Itoh K., Igarashi K., Hayashi N., Nishizawa M., and Yamamoto M. 1995. Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins. Mol. Cell. Biol. 15: 4184–4193.
– reference: 10. González-Rodríguez A., Mayoral R., Agra N., Valdecantos M.P., Pardo V., Miquilena-Colina M.E., Vargas-Castrillón J., Lo Iacono O., Corazzari M., Fimia G.M., Piacentini M., Muntané J., Boscá L., García-Monzón C., Martín-Sanz P., and Valverde A.M. 2014. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 5: e1179.
– reference: 35. Shin J. 1998. P62 and the sequestosome, a novel mechanism for protein metabolism. Arch. Pharm. Res. 21: 629–633.
– reference: 22. Kobayashi E.H., Suzuki T., Funayama R., Nagashima T., Hayashi M., Sekine H., Tanaka N., Moriguchi T., Motohashi H., Nakayama K., and Yamamoto M. 2016. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 7: 11624.
– reference: 32. Okada K., Warabi E., Sugimoto H., Horie M., Gotoh N., Tokushige K., Hashimoto E., Utsunomiya H., Takahashi H., Ishii T., Yamamoto M., and Shoda J. 2013. Deletion of Nrf2 leads to rapid progression of steatohepatitis in mice fed atherogenic plus high-fat diet. J. Gastroenterol. 48: 620–632.
– reference: 44. Yoshikawa S., Iijima H., Saito M., Tanaka H., Imanishi H., Yoshimoto N., Yoshimoto T., Futatsugi-Yumikura S., Nakanishi K., Tsujimura T., Nishigami T., Kudo A., Arii S., and Nishiguchi S. 2010. Crucial role of impaired Kupffer cell phagocytosis on the decreased Sonazoid-enhanced echogenicity in a liver of a nonalchoholic steatohepatitis rat model. Hepatol. Res. 40: 823–831.
– reference: 27. Lin W., Wu R.T., Wu T., Khor T.O., Wang H., and Kong A.N. 2008. Sulforaphane suppressed LPS-induced inflammation in mouse peritoneal macrophages through Nrf2 dependent pathway. Biochem. Pharmacol. 76: 967–973.
– reference: 33. Rodriguez A., Durán A., Selloum M., Champy M.F., Diez-Guerra F.J., Flores J.M., Serrano M., Auwerx J., Diaz-Meco M.T., and Moscat J. 2006. Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metab. 3: 211–222.
– reference: 23. Kobayashi M. and Yamamoto M. 2006. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv. Enzyme Regul. 46: 113–140.
– reference: 29. Mantovani A., Sozzani S., Locati M., Allavena P., and Sica A. 2002. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23: 549–555.
– reference: 3. Bugianesi E., Leone N., Vanni E., Marchesini G., Brunello F., Carucci P., Musso A., De Paolis P., Capussotti L., Salizzoni M., and Rizzetto M. 2002. Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology 123: 134–140.
– reference: 45. Zhang B.H., Weltman M., and Farrell G.C. 1999. Does steatohepatitis impair liver regeneration? A study in a dietary model of non-alcoholic steatohepatitis in rats. J. Gastroenterol. Hepatol. 14: 133–137.
– reference: 24. Komatsu M., Waguri S., Koike M., Sou Y.S., Ueno T., Hara T., Mizushima N., Iwata J., Ezaki J., Murata S., Hamazaki J., Nishito Y., Iemura S., Natsume T., Yanagawa T., Uwayama J., Warabi E., Yoshida H., Ishii T., Kobayashi A., Yamamoto M., Yue Z., Uchiyama Y., Kominami E., and Tanaka K. 2007. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131: 1149–1163.
– reference: 18. Itoh K., Chiba T., Takahashi S., Ishii T., Igarashi K., Katoh Y., Oyake T., Hayashi N., Satoh K., Hatayama I., Yamamoto M., and Nabeshima Y. 1997. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236: 313–322.
– reference: 41. Wigg A.J., Roberts-Thomson I.C., Dymock R.B., McCarthy P.J., Grose R.H., and Cummins A.G. 2001. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut 48: 206–211.
– reference: 1. Baffy G. 2009. Kupffer cells in non-alcoholic fatty liver disease: the emerging view. J. Hepatol. 51: 212–223.
– reference: 34. Scarpellini E., Lupo M., Iegri C., Gasbarrini A., De Santis A., and Tack J. 2014. Intestinal permeability in non-alcoholic fatty liver disease: the gut-liver axis. Rev. Recent Clin. Trials 9: 141–147.
– reference: 47. Zhu L., Baker S.S., Gill C., Liu W., Alkhouri R., Baker R.D., and Gill S.R. 2013. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57: 601–609.
– reference: 15. Horie Y., Suzuki A., Kataoka E., Sasaki T., Hamada K., Sasaki J., Mizuno K., Hasegawa G., Kishimoto H., Iizuka M., Naito M., Enomoto K., Watanabe S., Mak T.W., and Nakano T. 2004. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J. Clin. Invest. 113: 1774–1783.
– reference: 36. Stumptner C., Fuchsbichler A., Zatloukal K., and Denk H. 2007. In vitro production of Mallory bodies and intracellular hyaline bodies: the central role of sequestosome 1/p62. Hepatology 46: 851–860.
– reference: 12. Harada H., Warabi E., Matsuki T., Yanagawa T., Okada K., Uwayama J., Ikeda A., Nakaso K., Kirii K., Noguchi N., Bukawa H., Siow R.C., Mann G.E., Shoda J., Ishii T., and Sakurai T. 2013. Deficiency of p62/Sequestosome 1 causes hyperphagia due to leptin resistance in the brain. J. Neurosci. 33: 14767–14777.
– reference: 9. Gkolfakis P., Dimitriadis G., and Triantafyllou K. 2015. Gut microbiota and non-alcoholic fatty liver disease. Hepatobiliary Pancreat. Dis. Int. 14: 572–581.
– reference: 26. Li Z., Yang S., Lin H., Huang J., Watkins P.A., Moser A.B., Desimone C., Song X.Y., and Diehl A.M. 2003. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology 37: 343–350.
– reference: 31. Mukhopadhyay S., Varin A., Chen Y., Liu B., Tryggvason K., and Gordon S. 2011. SR-A/MARCO-mediated ligand delivery enhances intracellular TLR and NLR function, but ligand scavenging from cell surface limits TLR4 response to pathogens. Blood 117: 1319–1328.
– reference: 42. Wong V.W., Tse C.H., Lam T.T., Wong G.L., Chim A.M., Chu W.C., Yeung D.K., Law P.T., Kwan H.S., Yu J., Sung J.J., and Chan H.L. 2013. Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis--a longitudinal study. PLoS One 8: e62885.
– reference: 13. Hardwick R.N., Fisher C.D., Canet M.J., Lake A.D., and Cherrington N.J. 2010. Diversity in antioxidant response enzymes in progressive stages of human nonalcoholic fatty liver disease. Drug Metab. Dispos. 38: 2293–2301.
– reference: 25. Kudo H., Takahara T., Yata Y., Kawai K., Zhang W., and Sugiyama T. 2009. Lipopolysaccharide triggered TNF-alpha-induced hepatocyte apoptosis in a murine non-alcoholic steatohepatitis model. J. Hepatol. 51: 168–175.
– reference: 28. Ling X., Linglong P., Weixia D., and Hong W. 2016. Protective effects of bifidobacterium on intestinal barrier function in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. PLoS One 11: e0161635.
– reference: 46. Zhao L.F., Jia J.M., and Han D.W. 2004. [The role of enterogenous endotoxemia in the pathogenesis of non-alcoholic steatohepatitis]. Zhonghua Gan Zang Bing Za Zhi 12: 632. (in Chinese)
– reference: 20. Itoh K., Mimura J., and Yamamoto M. 2010. Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Antioxid. Redox Signal. 13: 1665–1678.
– reference: 17. Ishii T., Yanagawa T., Kawane T., Yuki K., Seita J., Yoshida H., and Bannai S. 1996. Murine peritoneal macrophages induce a novel 60-kDa protein with structural similarity to a tyrosine kinase p56lck-associated protein in response to oxidative stress. Biochem. Biophys. Res. Commun. 226: 456–460.
– reference: 2. Bedossa P. 2017. Pathology of non-alcoholic fatty liver disease. Liver Int. 37:(Suppl 1): 85–89.
– reference: 38. Tilg H. and Moschen A.R. 2010. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52: 1836–1846.
– reference: 8. Duran A., Hernandez E.D., Reina-Campos M., Castilla E.A., Subramaniam S., Raghunandan S., Roberts L.R., Kisseleva T., Karin M., Diaz-Meco M.T., and Moscat J. 2016. p62/SQSTM1 by Binding to Vitamin D Receptor Inhibits Hepatic Stellate Cell Activity, Fibrosis, and Liver Cancer. Cancer Cell 30: 595–609.
– reference: 14. Harte A.L., da Silva N.F., Creely S.J., McGee K.C., Billyard T., Youssef-Elabd E.M., Tripathi G., Ashour E., Abdalla M.S., Sharada H.M., Amin A.I., Burt A.D., Kumar S., Day C.P., and McTernan P.G. 2010. Elevated endotoxin levels in non-alcoholic fatty liver disease. J. Inflamm. (Lond.) 7: 15.
– reference: 5. Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., and Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823.
– reference: 4. Chitturi S. and Farrell G.C. 2001. Etiopathogenesis of nonalcoholic steatohepatitis. Semin. Liver Dis. 21: 27–41.
– reference: 6. Dapito D.H., Mencin A., Gwak G.Y., Pradere J.P., Jang M.K., Mederacke I., Caviglia J.M., Khiabanian H., Adeyemi A., Bataller R., Lefkowitch J.H., Bower M., Friedman R., Sartor R.B., Rabadan R., and Schwabe R.F. 2012. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21: 504–516.
– reference: 39. Tonan T., Fujimoto K., Qayyum A., Morita Y., Nakashima O., Ono N., Kawahara A., Kage M., Hayabuchi N., and Ueno T. 2012. CD14 expression and Kupffer cell dysfunction in non-alcoholic steatohepatitis: superparamagnetic iron oxide-magnetic resonance image and pathologic correlation. J. Gastroenterol. Hepatol. 27: 789–796.
– reference: 30. Miele L., Valenza V., La Torre G., Montalto M., Cammarota G., Ricci R., Mascianà R., Forgione A., Gabrieli M.L., Perotti G., Vecchio F.M., Rapaccini G., Gasbarrini G., Day C.P., and Grieco A. 2009. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49: 1877–1887.
– reference: 37. Thimmulappa R.K., Lee H., Rangasamy T., Reddy S.P., Yamamoto M., Kensler T.W., and Biswal S. 2006. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J. Clin. Invest. 116: 984–995.
– reference: 43. Yang S.Q., Lin H.Z., Lane M.D., Clemens M., and Diehl A.M. 1997. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc. Natl. Acad. Sci. USA 94: 2557–2562.
– ident: 31
  doi: 10.1182/blood-2010-03-276733
– ident: 7
  doi: 10.1016/S0016-5085(98)70599-2
– ident: 43
  doi: 10.1073/pnas.94.6.2557
– ident: 14
  doi: 10.1186/1476-9255-7-15
– ident: 22
  doi: 10.1038/ncomms11624
– ident: 9
  doi: 10.1016/S1499-3872(15)60026-1
– ident: 17
  doi: 10.1006/bbrc.1996.1377
– ident: 13
  doi: 10.1124/dmd.110.035006
– ident: 19
  doi: 10.1128/MCB.15.8.4184
– ident: 33
  doi: 10.1016/j.cmet.2006.01.011
– ident: 25
  doi: 10.1016/j.jhep.2009.02.032
– ident: 42
  doi: 10.1371/journal.pone.0062885
– ident: 32
  doi: 10.1007/s00535-012-0659-z
– ident: 34
  doi: 10.2174/1574887109666141216104334
– ident: 36
  doi: 10.1002/hep.21744
– ident: 26
  doi: 10.1053/jhep.2003.50048
– ident: 37
  doi: 10.1172/JCI25790
– ident: 18
  doi: 10.1006/bbrc.1997.6943
– ident: 23
  doi: 10.1016/j.advenzreg.2006.01.007
– ident: 39
  doi: 10.1111/j.1440-1746.2011.07057.x
– ident: 12
  doi: 10.1523/JNEUROSCI.2954-12.2013
– ident: 28
  doi: 10.1371/journal.pone.0161635
– ident: 2
  doi: 10.1111/liv.13301
– ident: 38
  doi: 10.1002/hep.24001
– ident: 11
  doi: 10.1097/01.shk.0000112346.38599.10
– ident: 16
  doi: 10.1016/j.cmet.2012.05.012
– ident: 21
  doi: 10.3390/ijms18020434
– ident: 8
  doi: 10.1016/j.ccell.2016.09.004
– ident: 45
  doi: 10.1046/j.1440-1746.1999.01822.x
– ident: 44
  doi: 10.1111/j.1872-034X.2010.00670.x
– ident: 15
  doi: 10.1172/JCI20513
– ident: 4
  doi: 10.1055/s-2001-12927
– ident: 10
  doi: 10.1038/cddis.2014.162
– ident: 30
  doi: 10.1002/hep.22848
– ident: 20
  doi: 10.1089/ars.2010.3222
– ident: 6
  doi: 10.1016/j.ccr.2012.02.007
– ident: 29
  doi: 10.1016/S1471-4906(02)02302-5
– ident: 35
  doi: 10.1007/BF02976748
– ident: 41
  doi: 10.1136/gut.48.2.206
– ident: 24
  doi: 10.1016/j.cell.2007.10.035
– ident: 40
  doi: 10.1002/hep.22603
– ident: 46
– ident: 1
  doi: 10.1016/j.jhep.2009.03.008
– ident: 27
  doi: 10.1016/j.bcp.2008.07.036
– ident: 47
  doi: 10.1002/hep.26093
– ident: 3
  doi: 10.1053/gast.2002.34168
– ident: 5
  doi: 10.1126/science.1231143
SSID ssj0027729
Score 2.254889
Snippet Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain...
Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 201
SubjectTerms Clonal deletion
Dietary restrictions
Dysbacteriosis
dysbiosis
Gram-negative bacteria
Hyperphagia
Immunity
Inflammation
Inflammatory response
Innate immunity
Insulin
intestinal permeability
Intestine
Kupffer cells
lipopolysaccharide
Lipopolysaccharides
Liver
Liver diseases
Magnetic permeability
Magnetic resonance imaging
Mice
multiple parallel hits hypothesis
Nutrient deficiency
Original
Permeability
Phagocytes
Proteins
Rodents
Tumorigenesis
Title Deletion of both p62 and Nrf2 spontaneously results in the development of nonalcoholic steatohepatitis
URI https://www.jstage.jst.go.jp/article/expanim/67/2/67_17-0112/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/29276215
https://www.proquest.com/docview/2047280026
https://pubmed.ncbi.nlm.nih.gov/PMC5955752
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Experimental Animals, 2018, Vol.67(2), pp.201-218
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYQtFIvCNpSUh7ygQOXbDd2HDuHghAUIaRdcehKqJfIcWwIWhK6m5Xg33cmyWbZauHiy_ghZWbsb5zxN4QcOSZVKrhDolvuh0I5P-2rzNfaxoxpoVWIb4cHw-hqFF7fittFOaD2A05XhnZYT2o0Gfee_76cgsP_rKv3cPXDPoPj5I-9AJMoseLwBhxLEUZig1Atoi9ZlyxDAjM_4EK2PD8rJlg6oj48AEq7s6sA6P95lK8OpsststkiSnrWmMA2WbPFZ_LxT1nfl38h7sIiv3ZZ0NLRFPRCnyJGdZHR4cQxihmygA9tOZuOXyjE3rNxNaV5QQEY0myRUYSjC0TtdUXd3FC0jqq8t5iRXeXTr2R0-ev3-ZXfFlfwjewHlQ_Aw4JvZjEzmllndSiNU5Zpa7jgIMtiznnGAqdix5wGqTGZzizS67i4z3fIOixrdwkVcaqk0UraVIRGOlX__HQa9mANPm880pt_z8S0zONYAGOcYAQCCkhaBSSBTFABHjnuBjw1pBtvdz1pFNR1bD2u6xjJhGHTDujk-KoNtgaP7M8Vm8ytL2HIoYlQOvLIt0bH3fwsZnCABMIjckn7XQck7F6WFPl9TdwtYgHomH1_f8k98glQmWruefbJejWZ2QNAPlV6WFs0tMObwWF9MfUPQmUJ-A
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deletion+of+both+p62+and+Nrf2+spontaneously+results+in+the+development+of+nonalcoholic+steatohepatitis&rft.jtitle=Experimental+animals&rft.au=Akiyama%2C+Kentaro&rft.au=Warabi%2C+Eiji&rft.au=Okada%2C+Kosuke&rft.au=Yanagawa%2C+Toru&rft.date=2018&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1341-1357&rft.eissn=1881-7122&rft.volume=67&rft.issue=2&rft.spage=201&rft_id=info:doi/10.1538%2Fexpanim.17-0112&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-1357&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-1357&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-1357&client=summon