Deletion of both p62 and Nrf2 spontaneously results in the development of nonalcoholic steatohepatitis
Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain unknown. Deletion of both p62/Sqstm1 and Nrf2 genes spontaneously led to the development of NASH in mice fed a normal chow and was associated with l...
Saved in:
Published in | Experimental Animals Vol. 67; no. 2; pp. 201 - 218 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
Japanese Association for Laboratory Animal Science
2018
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain unknown. Deletion of both p62/Sqstm1 and Nrf2 genes spontaneously led to the development of NASH in mice fed a normal chow and was associated with liver tumorigenesis. The pathogenetic mechanism (s) underlying the NASH development was investigated in p62:Nrf2 double-knockout (DKO) mice. DKO mice showed massive hepatomegaly and steatohepatitis with fat accumulation and had hyperphagia-induced obesity coupled with insulin resistance and adipokine imbalance. They also showed dysbiosis associated with an increased proportion of gram-negative bacteria species and an increased lipopolysaccharide (LPS) level in feces. Intestinal permeability was elevated in association with both epithelial damage and decreased expression levels of tight junction protein zona occludens-1, and thereby LPS levels were increased in serum. For Kupffer cells, the foreign body phagocytic capacity was decreased in magnetic resonance imaging, and the proportion of M1 cells was increased in DKO mice. In vitro experiments showed that the inflammatory response was accelerated in the p62:Nrf2 double-deficient Kupffer cells when challenged with a low dose of LPS. Diet restriction improved the hepatic conditions of NASH in association with improved dysbiosis and decreased LPS levels. The results suggest that in DKO mice, activation of innate immunity by excessive LPS flux from the intestines, occurring both within and outside the liver, is central to the development of hepatic damage in the form of NASH. |
---|---|
AbstractList | Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain unknown. Deletion of both p62/Sqstm1 and Nrf2 genes spontaneously led to the development of NASH in mice fed a normal chow and was associated with liver tumorigenesis. The pathogenetic mechanism (s) underlying the NASH development was investigated in p62:Nrf2 double-knockout (DKO) mice. DKO mice showed massive hepatomegaly and steatohepatitis with fat accumulation and had hyperphagia-induced obesity coupled with insulin resistance and adipokine imbalance. They also showed dysbiosis associated with an increased proportion of gram-negative bacteria species and an increased lipopolysaccharide (LPS) level in feces. Intestinal permeability was elevated in association with both epithelial damage and decreased expression levels of tight junction protein zona occludens-1, and thereby LPS levels were increased in serum. For Kupffer cells, the foreign body phagocytic capacity was decreased in magnetic resonance imaging, and the proportion of M1 cells was increased in DKO mice. In vitro experiments showed that the inflammatory response was accelerated in the p62:Nrf2 double-deficient Kupffer cells when challenged with a low dose of LPS. Diet restriction improved the hepatic conditions of NASH in association with improved dysbiosis and decreased LPS levels. The results suggest that in DKO mice, activation of innate immunity by excessive LPS flux from the intestines, occurring both within and outside the liver, is central to the development of hepatic damage in the form of NASH. Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain unknown. Deletion of both p62/Sqstm1 and Nrf2 genes spontaneously led to the development of NASH in mice fed a normal chow and was associated with liver tumorigenesis. The pathogenetic mechanism (s) underlying the NASH development was investigated in p62:Nrf2 double-knockout (DKO) mice. DKO mice showed massive hepatomegaly and steatohepatitis with fat accumulation and had hyperphagia-induced obesity coupled with insulin resistance and adipokine imbalance. They also showed dysbiosis associated with an increased proportion of gram-negative bacteria species and an increased lipopolysaccharide (LPS) level in feces. Intestinal permeability was elevated in association with both epithelial damage and decreased expression levels of tight junction protein zona occludens-1, and thereby LPS levels were increased in serum. For Kupffer cells, the foreign body phagocytic capacity was decreased in magnetic resonance imaging, and the proportion of M1 cells was increased in DKO mice. In vitro experiments showed that the inflammatory response was accelerated in the p62 : Nrf2 double-deficient Kupffer cells when challenged with a low dose of LPS. Diet restriction improved the hepatic conditions of NASH in association with improved dysbiosis and decreased LPS levels. The results suggest that in DKO mice, activation of innate immunity by excessive LPS flux from the intestines, occurring both within and outside the liver, is central to the development of hepatic damage in the form of NASH. |
Author | Mizokami, Yuji Yamamoto, Masakazu Ishii, Tetsuro Kose, Katsumi Yamagata, Kenji Onizawa, Kojiro Okada, Kosuke Ishige, Kazunori Akiyama, Kentaro Ariizumi, Shun-ichi Yanagawa, Toru Warabi, Eiji Tokushige, Katsutoshi Shoda, Junichi |
Author_xml | – sequence: 1 fullname: Akiyama, Kentaro organization: Doctoral Programs in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan – sequence: 2 fullname: Warabi, Eiji organization: Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan – sequence: 3 fullname: Okada, Kosuke organization: Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan – sequence: 4 fullname: Yanagawa, Toru organization: Division of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan – sequence: 5 fullname: Ishii, Tetsuro organization: Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan – sequence: 6 fullname: Kose, Katsumi organization: Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8573, Japan – sequence: 7 fullname: Tokushige, Katsutoshi organization: Institute of Gastroenterology Internal Medicine, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan – sequence: 8 fullname: Ishige, Kazunori organization: Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan – sequence: 9 fullname: Mizokami, Yuji organization: Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan – sequence: 10 fullname: Yamagata, Kenji organization: Division of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan – sequence: 11 fullname: Onizawa, Kojiro organization: Division of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan – sequence: 12 fullname: Ariizumi, Shun-ichi organization: Institute of Gastroenterology Surgery, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan – sequence: 13 fullname: Yamamoto, Masakazu organization: Institute of Gastroenterology Surgery, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan – sequence: 14 fullname: Shoda, Junichi organization: Medical Sciences, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29276215$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkc1vFSEUxYmpsR-6dmdIXE87XB7DzMbE1GpNGt3omlDm0uGFByMwTfvfy8t7TuwGSM7vHg6cc3ISYkBC3rP2kgneX-HTrIPbXTLZtIzBK3LG-p41kgGc1DPfsIZxIU_Jec7btgUpYXhDTmEA2QETZ8R-QY_FxUCjpfexTHTugOow0h_JAs1zDEUHjEv2zzRhXnzJ1AVaJqQjPqKP8w5D2U_XaNqbOEXvDM0FdYkTzrq44vJb8tpqn_Hdcb8gv7_e_Lq-be5-fvt-_fmuMbJlpRH9BuXAxwGMBrSoN9LYHkGj4YJXbRw45yMw2w8WrK6qMaMeUbJusEPLL8ing--83O9wNDVa0l7Nye10elZRO_VSCW5SD_FRiUEIKaAafDwapPhnwVzUNi6pPiwraDcS-vqJXaWuDpRJMeeEdr2BtWpfjDoWo5hU-2LqxIf_g638vyYqcHMAtrnoB1wBnYozHlfDTirYL0fjVTeTTgoD_wvYEamP |
CitedBy_id | crossref_primary_10_3390_ijms21041525 crossref_primary_10_1371_journal_pone_0291880 crossref_primary_10_1016_j_bbalip_2024_159497 crossref_primary_10_1016_j_redox_2024_103027 crossref_primary_10_1177_1934578X20987095 crossref_primary_10_1538_expanim_20_0028 crossref_primary_10_1007_s12072_018_9860_3 crossref_primary_10_3389_fimmu_2023_1251750 crossref_primary_10_1111_hepr_13543 crossref_primary_10_3390_ijerph18073470 crossref_primary_10_3390_nu11092114 crossref_primary_10_1038_s41419_020_03003_w crossref_primary_10_1016_j_jff_2019_05_028 crossref_primary_10_1111_febs_16317 crossref_primary_10_1016_j_jhepr_2021_100253 crossref_primary_10_1016_j_freeradbiomed_2020_02_010 crossref_primary_10_3390_antiox11101939 crossref_primary_10_1159_000491763 crossref_primary_10_3390_antiox11010091 crossref_primary_10_3748_wjg_v28_i48_6909 crossref_primary_10_1016_j_freeradbiomed_2022_06_226 crossref_primary_10_14814_phy2_14859 crossref_primary_10_1242_jcs_222836 |
Cites_doi | 10.1182/blood-2010-03-276733 10.1016/S0016-5085(98)70599-2 10.1073/pnas.94.6.2557 10.1186/1476-9255-7-15 10.1038/ncomms11624 10.1016/S1499-3872(15)60026-1 10.1006/bbrc.1996.1377 10.1124/dmd.110.035006 10.1128/MCB.15.8.4184 10.1016/j.cmet.2006.01.011 10.1016/j.jhep.2009.02.032 10.1371/journal.pone.0062885 10.1007/s00535-012-0659-z 10.2174/1574887109666141216104334 10.1002/hep.21744 10.1053/jhep.2003.50048 10.1172/JCI25790 10.1006/bbrc.1997.6943 10.1016/j.advenzreg.2006.01.007 10.1111/j.1440-1746.2011.07057.x 10.1523/JNEUROSCI.2954-12.2013 10.1371/journal.pone.0161635 10.1111/liv.13301 10.1002/hep.24001 10.1097/01.shk.0000112346.38599.10 10.1016/j.cmet.2012.05.012 10.3390/ijms18020434 10.1016/j.ccell.2016.09.004 10.1046/j.1440-1746.1999.01822.x 10.1111/j.1872-034X.2010.00670.x 10.1172/JCI20513 10.1055/s-2001-12927 10.1038/cddis.2014.162 10.1002/hep.22848 10.1089/ars.2010.3222 10.1016/j.ccr.2012.02.007 10.1016/S1471-4906(02)02302-5 10.1007/BF02976748 10.1136/gut.48.2.206 10.1016/j.cell.2007.10.035 10.1002/hep.22603 10.1016/j.jhep.2009.03.008 10.1016/j.bcp.2008.07.036 10.1002/hep.26093 10.1053/gast.2002.34168 10.1126/science.1231143 |
ContentType | Journal Article |
Copyright | 2018 Japanese Association for Laboratory Animal Science Copyright Japan Science and Technology Agency 2018 2018 Japanese Association for Laboratory Animal Science 2018 |
Copyright_xml | – notice: 2018 Japanese Association for Laboratory Animal Science – notice: Copyright Japan Science and Technology Agency 2018 – notice: 2018 Japanese Association for Laboratory Animal Science 2018 |
DBID | NPM AAYXX CITATION 7QO 8FD FR3 P64 RC3 5PM |
DOI | 10.1538/expanim.17-0112 |
DatabaseName | PubMed CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Genetics Abstracts Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | PubMed Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1881-7122 |
EndPage | 218 |
ExternalDocumentID | 10_1538_expanim_17_0112 29276215 article_expanim_67_2_67_17_0112_article_char_en |
Genre | Journal Article |
GroupedDBID | --- .55 29G 2WC 3O- 53G 5GY AAUGY ACGFO ACIWK ACPRK ADBBV ADRAZ AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK DU5 E3Z EMOBN FRP GX1 HYE JSF JSH KQ8 M48 M~E OK1 P2P RJT RNS RPM RZJ TKC TR2 X7M XSB NPM AAYXX CITATION PGMZT 7QO 8FD FR3 P64 RC3 5PM |
ID | FETCH-LOGICAL-c701t-584e793d92ca2efea47cf8e2aec3534e7d9333d21f89f2fa7cfccdade7169f903 |
IEDL.DBID | RPM |
ISSN | 1341-1357 |
IngestDate | Tue Sep 17 21:17:23 EDT 2024 Thu Oct 10 22:00:14 EDT 2024 Fri Aug 23 03:09:13 EDT 2024 Wed Oct 16 00:59:13 EDT 2024 Thu Aug 17 20:28:52 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | hyperphagia multiple parallel hits hypothesis intestinal permeability lipopolysaccharide dysbiosis |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c701t-584e793d92ca2efea47cf8e2aec3534e7d9333d21f89f2fa7cfccdade7169f903 |
Notes | These authors contributed equally to this work. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5955752/ |
PMID | 29276215 |
PQID | 2047280026 |
PQPubID | 2048505 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5955752 proquest_journals_2047280026 crossref_primary_10_1538_expanim_17_0112 pubmed_primary_29276215 jstage_primary_article_expanim_67_2_67_17_0112_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Experimental Animals |
PublicationTitleAlternate | Exp Anim |
PublicationYear | 2018 |
Publisher | Japanese Association for Laboratory Animal Science Japan Science and Technology Agency |
Publisher_xml | – name: Japanese Association for Laboratory Animal Science – name: Japan Science and Technology Agency |
References | 4. Chitturi S. and Farrell G.C. 2001. Etiopathogenesis of nonalcoholic steatohepatitis. Semin. Liver Dis. 21: 27–41. 9. Gkolfakis P., Dimitriadis G., and Triantafyllou K. 2015. Gut microbiota and non-alcoholic fatty liver disease. Hepatobiliary Pancreat. Dis. Int. 14: 572–581. 6. Dapito D.H., Mencin A., Gwak G.Y., Pradere J.P., Jang M.K., Mederacke I., Caviglia J.M., Khiabanian H., Adeyemi A., Bataller R., Lefkowitch J.H., Bower M., Friedman R., Sartor R.B., Rabadan R., and Schwabe R.F. 2012. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21: 504–516. 35. Shin J. 1998. P62 and the sequestosome, a novel mechanism for protein metabolism. Arch. Pharm. Res. 21: 629–633. 30. Miele L., Valenza V., La Torre G., Montalto M., Cammarota G., Ricci R., Mascianà R., Forgione A., Gabrieli M.L., Perotti G., Vecchio F.M., Rapaccini G., Gasbarrini G., Day C.P., and Grieco A. 2009. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49: 1877–1887. 11. Han X., Fink M.P., Yang R., and Delude R.L. 2004. Increased iNOS activity is essential for intestinal epithelial tight junction dysfunction in endotoxemic mice. Shock 21: 261–270. 10. González-Rodríguez A., Mayoral R., Agra N., Valdecantos M.P., Pardo V., Miquilena-Colina M.E., Vargas-Castrillón J., Lo Iacono O., Corazzari M., Fimia G.M., Piacentini M., Muntané J., Boscá L., García-Monzón C., Martín-Sanz P., and Valverde A.M. 2014. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 5: e1179. 1. Baffy G. 2009. Kupffer cells in non-alcoholic fatty liver disease: the emerging view. J. Hepatol. 51: 212–223. 3. Bugianesi E., Leone N., Vanni E., Marchesini G., Brunello F., Carucci P., Musso A., De Paolis P., Capussotti L., Salizzoni M., and Rizzetto M. 2002. Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology 123: 134–140. 41. Wigg A.J., Roberts-Thomson I.C., Dymock R.B., McCarthy P.J., Grose R.H., and Cummins A.G. 2001. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut 48: 206–211. 2. Bedossa P. 2017. Pathology of non-alcoholic fatty liver disease. Liver Int. 37:(Suppl 1): 85–89. 14. Harte A.L., da Silva N.F., Creely S.J., McGee K.C., Billyard T., Youssef-Elabd E.M., Tripathi G., Ashour E., Abdalla M.S., Sharada H.M., Amin A.I., Burt A.D., Kumar S., Day C.P., and McTernan P.G. 2010. Elevated endotoxin levels in non-alcoholic fatty liver disease. J. Inflamm. (Lond.) 7: 15. 17. Ishii T., Yanagawa T., Kawane T., Yuki K., Seita J., Yoshida H., and Bannai S. 1996. Murine peritoneal macrophages induce a novel 60-kDa protein with structural similarity to a tyrosine kinase p56lck-associated protein in response to oxidative stress. Biochem. Biophys. Res. Commun. 226: 456–460. 38. Tilg H. and Moschen A.R. 2010. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52: 1836–1846. 44. Yoshikawa S., Iijima H., Saito M., Tanaka H., Imanishi H., Yoshimoto N., Yoshimoto T., Futatsugi-Yumikura S., Nakanishi K., Tsujimura T., Nishigami T., Kudo A., Arii S., and Nishiguchi S. 2010. Crucial role of impaired Kupffer cell phagocytosis on the decreased Sonazoid-enhanced echogenicity in a liver of a nonalchoholic steatohepatitis rat model. Hepatol. Res. 40: 823–831. 18. Itoh K., Chiba T., Takahashi S., Ishii T., Igarashi K., Katoh Y., Oyake T., Hayashi N., Satoh K., Hatayama I., Yamamoto M., and Nabeshima Y. 1997. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236: 313–322. 33. Rodriguez A., Durán A., Selloum M., Champy M.F., Diez-Guerra F.J., Flores J.M., Serrano M., Auwerx J., Diaz-Meco M.T., and Moscat J. 2006. Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metab. 3: 211–222. 5. Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., and Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823. 20. Itoh K., Mimura J., and Yamamoto M. 2010. Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Antioxid. Redox Signal. 13: 1665–1678. 25. Kudo H., Takahara T., Yata Y., Kawai K., Zhang W., and Sugiyama T. 2009. Lipopolysaccharide triggered TNF-alpha-induced hepatocyte apoptosis in a murine non-alcoholic steatohepatitis model. J. Hepatol. 51: 168–175. 22. Kobayashi E.H., Suzuki T., Funayama R., Nagashima T., Hayashi M., Sekine H., Tanaka N., Moriguchi T., Motohashi H., Nakayama K., and Yamamoto M. 2016. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 7: 11624. 27. Lin W., Wu R.T., Wu T., Khor T.O., Wang H., and Kong A.N. 2008. Sulforaphane suppressed LPS-induced inflammation in mouse peritoneal macrophages through Nrf2 dependent pathway. Biochem. Pharmacol. 76: 967–973. 13. Hardwick R.N., Fisher C.D., Canet M.J., Lake A.D., and Cherrington N.J. 2010. Diversity in antioxidant response enzymes in progressive stages of human nonalcoholic fatty liver disease. Drug Metab. Dispos. 38: 2293–2301. 46. Zhao L.F., Jia J.M., and Han D.W. 2004. [The role of enterogenous endotoxemia in the pathogenesis of non-alcoholic steatohepatitis]. Zhonghua Gan Zang Bing Za Zhi 12: 632. (in Chinese) 29. Mantovani A., Sozzani S., Locati M., Allavena P., and Sica A. 2002. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23: 549–555. 24. Komatsu M., Waguri S., Koike M., Sou Y.S., Ueno T 22 44 23 45 24 46 25 47 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 41 20 42 21 43 |
References_xml | – ident: 31 doi: 10.1182/blood-2010-03-276733 – ident: 7 doi: 10.1016/S0016-5085(98)70599-2 – ident: 43 doi: 10.1073/pnas.94.6.2557 – ident: 14 doi: 10.1186/1476-9255-7-15 – ident: 22 doi: 10.1038/ncomms11624 – ident: 9 doi: 10.1016/S1499-3872(15)60026-1 – ident: 17 doi: 10.1006/bbrc.1996.1377 – ident: 13 doi: 10.1124/dmd.110.035006 – ident: 19 doi: 10.1128/MCB.15.8.4184 – ident: 33 doi: 10.1016/j.cmet.2006.01.011 – ident: 25 doi: 10.1016/j.jhep.2009.02.032 – ident: 42 doi: 10.1371/journal.pone.0062885 – ident: 32 doi: 10.1007/s00535-012-0659-z – ident: 34 doi: 10.2174/1574887109666141216104334 – ident: 36 doi: 10.1002/hep.21744 – ident: 26 doi: 10.1053/jhep.2003.50048 – ident: 37 doi: 10.1172/JCI25790 – ident: 18 doi: 10.1006/bbrc.1997.6943 – ident: 23 doi: 10.1016/j.advenzreg.2006.01.007 – ident: 39 doi: 10.1111/j.1440-1746.2011.07057.x – ident: 12 doi: 10.1523/JNEUROSCI.2954-12.2013 – ident: 28 doi: 10.1371/journal.pone.0161635 – ident: 2 doi: 10.1111/liv.13301 – ident: 38 doi: 10.1002/hep.24001 – ident: 11 doi: 10.1097/01.shk.0000112346.38599.10 – ident: 16 doi: 10.1016/j.cmet.2012.05.012 – ident: 21 doi: 10.3390/ijms18020434 – ident: 8 doi: 10.1016/j.ccell.2016.09.004 – ident: 45 doi: 10.1046/j.1440-1746.1999.01822.x – ident: 44 doi: 10.1111/j.1872-034X.2010.00670.x – ident: 15 doi: 10.1172/JCI20513 – ident: 4 doi: 10.1055/s-2001-12927 – ident: 10 doi: 10.1038/cddis.2014.162 – ident: 30 doi: 10.1002/hep.22848 – ident: 20 doi: 10.1089/ars.2010.3222 – ident: 6 doi: 10.1016/j.ccr.2012.02.007 – ident: 29 doi: 10.1016/S1471-4906(02)02302-5 – ident: 35 doi: 10.1007/BF02976748 – ident: 41 doi: 10.1136/gut.48.2.206 – ident: 24 doi: 10.1016/j.cell.2007.10.035 – ident: 40 doi: 10.1002/hep.22603 – ident: 46 – ident: 1 doi: 10.1016/j.jhep.2009.03.008 – ident: 27 doi: 10.1016/j.bcp.2008.07.036 – ident: 47 doi: 10.1002/hep.26093 – ident: 3 doi: 10.1053/gast.2002.34168 – ident: 5 doi: 10.1126/science.1231143 |
SSID | ssj0027729 |
Score | 2.2973082 |
Snippet | Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain... Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain... |
SourceID | pubmedcentral proquest crossref pubmed jstage |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 201 |
SubjectTerms | Clonal deletion Dietary restrictions Dysbacteriosis dysbiosis Gram-negative bacteria Hyperphagia Immunity Inflammation Inflammatory response Innate immunity Insulin intestinal permeability Intestine Kupffer cells lipopolysaccharide Lipopolysaccharides Liver Liver diseases Magnetic permeability Magnetic resonance imaging Mice multiple parallel hits hypothesis Nutrient deficiency Original Permeability Phagocytes Proteins Rodents Tumorigenesis |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQKRKXCsorbUE-cOCSsrGTtXNoqwqoKiR6YqWKS-T1jGnQkpTdrNT--84k2SyL9sAll7EdZR6ab6zJN0K8V2nIE-tHMUAGcQoeKObQxI6zAeTos3YYzLer8eUk_XqdXa_HAfUKXGwt7Xie1GQ-O777c39GAX_STu_R9iPeUeCUv48TbqLkicOPVUplOvfxpXZdfZl2ZBkTmMWJzkzP87PlgI0UtfuLUNpP3AZA_-2j_CsxXTwTez2ilOedCzwXj7DaF09-1O19-QsRPiPza9eVrIOckl3k7VhJV4G8mgcluUOW8CHWy8XsXlLtvZw1C1lWkoChhHVHEe-uGLW3E3VLL9k7mvoGuSO7KRcvxeTiy_dPl3E_XCH2ZpQ0MQEPpNiEXHmnMKBLjQ8WlUOvM00yyLXWoJJg86CCI6n34ACZXifkI_1K7NBr8Y2QYBI0U0N2bdn4tbMWrAZnQafp1GMkPqz0Wdx2HBoF1x6k-qJXfZGYglUfidNO38PCPoCGhWNTKH70GwY5_6RGkR6Jo5WdipUzFYopMRkZjyPxujPZcL7KFeWDJIuE2TDmsID5tzclVXnT8nBneUZgVx38_-cdiqcEuGx3hXMkdpr5Et8SqGmm71pnfQAQCPv_ priority: 102 providerName: Scholars Portal |
Title | Deletion of both p62 and Nrf2 spontaneously results in the development of nonalcoholic steatohepatitis |
URI | https://www.jstage.jst.go.jp/article/expanim/67/2/67_17-0112/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/29276215 https://www.proquest.com/docview/2047280026 https://pubmed.ncbi.nlm.nih.gov/PMC5955752 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Experimental Animals, 2018, Vol.67(2), pp.201-218 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB11K5C4IL4JlMoHDlyyu7GTdXJBQoWqQtpVD1SquESOPaapdrOrbirBv2fG-aBFnLj4YjuJ_GbiN9b4DcB7mfoiye08di5zceqsI59DHRveDVyBNgvFYJarxdlF-vUyuzyAbLgLE5L2bVVPm_Vm2tRXIbdyt7GzIU9sdr48yYqMWIacTWBCBjqE6EOUpUNpMhYqixOV6V7Phxx7hj_Jw-rNNOFsy4QL2chC0t-Aa-Le2ZUeXBMx-4H_4px_p07e2YtOn8DjnkSKT93HPoUDbJ7Bw-_bcET-HPxnZEntbSO2XlQEhdgtpDCNE6sbLwUnxRIlRIr5178Ehdu363Yv6kYQFxTuTxIRz26YqIciurUVbBDt9go5Cbut9y_g4vTLt5OzuK-nEFs9T9qYuAaSO7pCWiPRo0m19TlKg1ZlivpcoZRyMvF54aU31GutMw5ZUccXc_USDum1-BqE0wnqShOUQYBfmTx3uXImdypNK4sRfBjWs9x1shklhxuEQtmjUCa6ZBQi-Nit9ziwh3ocuNCl5KafMPbzvTRy7giOBpzK3gH3pWQVTCbDiwhedZCNzx9Aj0DfA3McwJLb93vIEoP0dm95b_575lt4RJQr7w5xjuCwvbnFd0Rr2uoYJss0p3Z1vjwOJv0b9Ij-xQ |
link.rule.ids | 230,315,730,783,787,888,2228,4031,24330,27935,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VAioX3oXQAj5w4JLsxk7WyQWpKlQLdFccWlRxsRI_aGA3WXWzEvDrmcmLtuICl1zGTuTMjP1N9OUbgFc8cmmY6LFvTGz8yGiDOWeln9FpYFKr46YZzGw-mZ5GH87isy2I-39hGtK-zougXCyDsjhvuJWrpR71PLHRp9lhnMaIMvjoBtzEfB1HfZHe11myaU5GUmV-KGLZKfrg0JH9gTlWLIOQ-JYhtbLhKcf9gLriXjqXbn1DaPbV_g11XidPXjqNju7B534dLQnle7Cp80D_uibx-M8LvQ93O3zKDlrzA9iy5UO4_aVqvr4_AvfWklp3VbLKsRy9zFYTzrLSsPmF44z4tog2bbVZL34yrOQ3i3rNipIhzGTmDz-JZpdUAzT9eQvNKNbq6twSv7su1o_h9OjdyeHU71o1-FqOw9pHGGMx003Kdcats1kktUssz6wWsUCbSYUQhocuSR13GVq1NpmxJNbj0rHYhW18rH0KzMjQylxilDTa_iJLEpMIkyVGRFGurQeve0epVavIoaiSQfeqzr0qlIrc68Gb1pHDwO7lDgMnUnG6dBMGO_3yhvuGB_t9AKgut9eKk8Am4eyJB0_aWBju30eTB_JKlAwDSM37qgV936h6d75-9t8zX8LO9GR2rI7fzz_uwR1Edkn7rWgftuuLjX2O6KnOXzS58hs-IB7q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BeYgLzwJpC_jAgUuSjZ3EyaUSalmVR1c9UKnqJUr8oIHdZNXNSsCvZyavbitOveTicaJkZuxvrC_fALznoU2DRE1crSPthlppzDkj3Zx2A50aFbXNYI5n8dFp-OUsOtto9dWS9lVRetV84VXlRcutXC6UP_DE_JPjgyiNEGVwf6mtfxfuYc5O4qFQH2ot2TYoI7kyNxCR7FV90NQ3vzHPyoUXEOcyoHY2POW4JlBn3I296f5PhGc_zP-Q500C5caONH0C58O7dESUX966KTz194bM461e9ik87nEq-9iZPIM7pnoOD87r9hT-BdhDQ6rddcVqywr0NlvGnOWVZrNLyxnxbhF1mnq9mv9hWNGv582KlRVDuMn0FU-JZldUC7R9ekvFKOaa-sIQz7spV9twOv30_eDI7Vs2uEpOgsZFOGMw43XKVc6NNXkolU0Mz40SkcAxnQohNA9sklpucxxVSufakGiPTSfiJWzhY81rYFoGRhYSo6XV-Bd5kuhE6DzRIgwLZRz4MDgrW3bKHBlVNOjirHdxFsiMXOzAfufM0bD_wKNhLDNOl37COE6_vuH64cDeEARZn-OrjJPQJuHt2IFXXTyM9x8iygF5LVJGA1L1vj6C_m_VvXt_79x65jt4eHI4zb59nn3dhUcI8JLuyGgPtprLtXmDIKop3rbp8g8KuCFq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deletion+of+both+p62+and+Nrf2+spontaneously+results+in+the+development+of+nonalcoholic+steatohepatitis&rft.jtitle=Experimental+animals&rft.au=Akiyama%2C+Kentaro&rft.au=Warabi%2C+Eiji&rft.au=Okada%2C+Kosuke&rft.au=Yanagawa%2C+Toru&rft.date=2018&rft.issn=1341-1357&rft.eissn=1881-7122&rft.volume=67&rft.issue=2&rft.spage=201&rft.epage=218&rft_id=info:doi/10.1538%2Fexpanim.17-0112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1538_expanim_17_0112 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-1357&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-1357&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-1357&client=summon |