Deletion of both p62 and Nrf2 spontaneously results in the development of nonalcoholic steatohepatitis
Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain unknown. Deletion of both p62/Sqstm1 and Nrf2 genes spontaneously led to the development of NASH in mice fed a normal chow and was associated with l...
Saved in:
Published in | Experimental Animals Vol. 67; no. 2; pp. 201 - 218 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
Japanese Association for Laboratory Animal Science
2018
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 1341-1357 1881-7122 |
DOI | 10.1538/expanim.17-0112 |
Cover
Abstract | Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain unknown. Deletion of both p62/Sqstm1 and Nrf2 genes spontaneously led to the development of NASH in mice fed a normal chow and was associated with liver tumorigenesis. The pathogenetic mechanism (s) underlying the NASH development was investigated in p62:Nrf2 double-knockout (DKO) mice. DKO mice showed massive hepatomegaly and steatohepatitis with fat accumulation and had hyperphagia-induced obesity coupled with insulin resistance and adipokine imbalance. They also showed dysbiosis associated with an increased proportion of gram-negative bacteria species and an increased lipopolysaccharide (LPS) level in feces. Intestinal permeability was elevated in association with both epithelial damage and decreased expression levels of tight junction protein zona occludens-1, and thereby LPS levels were increased in serum. For Kupffer cells, the foreign body phagocytic capacity was decreased in magnetic resonance imaging, and the proportion of M1 cells was increased in DKO mice. In vitro experiments showed that the inflammatory response was accelerated in the p62:Nrf2 double-deficient Kupffer cells when challenged with a low dose of LPS. Diet restriction improved the hepatic conditions of NASH in association with improved dysbiosis and decreased LPS levels. The results suggest that in DKO mice, activation of innate immunity by excessive LPS flux from the intestines, occurring both within and outside the liver, is central to the development of hepatic damage in the form of NASH. |
---|---|
AbstractList | Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain unknown. Deletion of both p62/Sqstm1 and Nrf2 genes spontaneously led to the development of NASH in mice fed a normal chow and was associated with liver tumorigenesis. The pathogenetic mechanism (s) underlying the NASH development was investigated in p62:Nrf2 double-knockout (DKO) mice. DKO mice showed massive hepatomegaly and steatohepatitis with fat accumulation and had hyperphagia-induced obesity coupled with insulin resistance and adipokine imbalance. They also showed dysbiosis associated with an increased proportion of gram-negative bacteria species and an increased lipopolysaccharide (LPS) level in feces. Intestinal permeability was elevated in association with both epithelial damage and decreased expression levels of tight junction protein zona occludens-1, and thereby LPS levels were increased in serum. For Kupffer cells, the foreign body phagocytic capacity was decreased in magnetic resonance imaging, and the proportion of M1 cells was increased in DKO mice. In vitro experiments showed that the inflammatory response was accelerated in the p62:Nrf2 double-deficient Kupffer cells when challenged with a low dose of LPS. Diet restriction improved the hepatic conditions of NASH in association with improved dysbiosis and decreased LPS levels. The results suggest that in DKO mice, activation of innate immunity by excessive LPS flux from the intestines, occurring both within and outside the liver, is central to the development of hepatic damage in the form of NASH. Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain unknown. Deletion of both p62/Sqstm1 and Nrf2 genes spontaneously led to the development of NASH in mice fed a normal chow and was associated with liver tumorigenesis. The pathogenetic mechanism (s) underlying the NASH development was investigated in p62:Nrf2 double-knockout (DKO) mice. DKO mice showed massive hepatomegaly and steatohepatitis with fat accumulation and had hyperphagia-induced obesity coupled with insulin resistance and adipokine imbalance. They also showed dysbiosis associated with an increased proportion of gram-negative bacteria species and an increased lipopolysaccharide (LPS) level in feces. Intestinal permeability was elevated in association with both epithelial damage and decreased expression levels of tight junction protein zona occludens-1, and thereby LPS levels were increased in serum. For Kupffer cells, the foreign body phagocytic capacity was decreased in magnetic resonance imaging, and the proportion of M1 cells was increased in DKO mice. In vitro experiments showed that the inflammatory response was accelerated in the p62 : Nrf2 double-deficient Kupffer cells when challenged with a low dose of LPS. Diet restriction improved the hepatic conditions of NASH in association with improved dysbiosis and decreased LPS levels. The results suggest that in DKO mice, activation of innate immunity by excessive LPS flux from the intestines, occurring both within and outside the liver, is central to the development of hepatic damage in the form of NASH. |
Author | Mizokami, Yuji Yamamoto, Masakazu Ishii, Tetsuro Kose, Katsumi Yamagata, Kenji Onizawa, Kojiro Okada, Kosuke Ishige, Kazunori Akiyama, Kentaro Ariizumi, Shun-ichi Yanagawa, Toru Warabi, Eiji Tokushige, Katsutoshi Shoda, Junichi |
Author_xml | – sequence: 1 fullname: Mizokami, Yuji organization: Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan – sequence: 1 fullname: Tokushige, Katsutoshi organization: Institute of Gastroenterology Internal Medicine, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan – sequence: 1 fullname: Ariizumi, Shun-ichi organization: Institute of Gastroenterology Surgery, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan – sequence: 1 fullname: Ishii, Tetsuro organization: Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan – sequence: 1 fullname: Yanagawa, Toru organization: Division of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan – sequence: 1 fullname: Ishige, Kazunori organization: Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan – sequence: 1 fullname: Shoda, Junichi organization: Medical Sciences, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan – sequence: 1 fullname: Yamagata, Kenji organization: Division of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan – sequence: 1 fullname: Warabi, Eiji organization: Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan – sequence: 1 fullname: Akiyama, Kentaro organization: Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan – sequence: 1 fullname: Kose, Katsumi organization: Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8573, Japan – sequence: 1 fullname: Yamamoto, Masakazu organization: Institute of Gastroenterology Surgery, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan – sequence: 1 fullname: Onizawa, Kojiro organization: Division of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan – sequence: 1 fullname: Okada, Kosuke organization: Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29276215$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUtvFSEUJqbGPnTtzpC4nnY4XIaZjYmp9ZE0utE1ocyhww0XRuA27b-Xyb1O1IUbIPke5-N85-QkxICEvGbtJRO8v8LHWQe3u2SyaRmDZ-SM9T1rJAM4qW--YQ3jQp6S85y3bQtSwvCCnMIAsgMmzoj9gB6Li4FGS-9imejcAdVhpF-TBZrnGIoOGPfZP9GEee9Lpi7QMiEd8QF9nHcYyqKu0bQ3cYreGZoL6hInnHVxxeWX5LnVPuOr431Bfny8-X79ubn99unL9fvbxsiWlUb0G5QDHwcwGtCi3khjewSNhgtesXHgnI_AbD9YsLqixox6RMm6wQ4tvyDvDr7z_m6Ho6nRkvZqTm6n05OK2qm_keAmdR8flBiEkAKqwdujQYo_95iL2sZ9qh_LCtqNhL4usausN3-OWf1_77USrg4Ek2LOCe1KYa1amlPH5hSTammuKsQ_CuOKXpqpOZ3_j-7moNvmou9xnaNTccbjyu-kguU46lbcTDopDPwXk2C8AQ |
CitedBy_id | crossref_primary_10_3390_ijms21041525 crossref_primary_10_1371_journal_pone_0291880 crossref_primary_10_1016_j_bbalip_2024_159497 crossref_primary_10_1177_1934578X20987095 crossref_primary_10_1538_expanim_20_0028 crossref_primary_10_1007_s12072_018_9860_3 crossref_primary_10_3389_fimmu_2023_1251750 crossref_primary_10_1111_hepr_13543 crossref_primary_10_3390_cells13151247 crossref_primary_10_3390_ijerph18073470 crossref_primary_10_3390_nu11092114 crossref_primary_10_1038_s41419_020_03003_w crossref_primary_10_1016_j_jff_2019_05_028 crossref_primary_10_1111_febs_16317 crossref_primary_10_1016_j_jhepr_2021_100253 crossref_primary_10_1016_j_freeradbiomed_2020_02_010 crossref_primary_10_3390_antiox11101939 crossref_primary_10_1159_000491763 crossref_primary_10_3390_antiox11010091 crossref_primary_10_3748_wjg_v28_i48_6909 crossref_primary_10_1016_j_freeradbiomed_2022_06_226 crossref_primary_10_14814_phy2_14859 crossref_primary_10_1242_jcs_222836 |
Cites_doi | 10.1182/blood-2010-03-276733 10.1016/S0016-5085(98)70599-2 10.1073/pnas.94.6.2557 10.1186/1476-9255-7-15 10.1038/ncomms11624 10.1016/S1499-3872(15)60026-1 10.1006/bbrc.1996.1377 10.1124/dmd.110.035006 10.1128/MCB.15.8.4184 10.1016/j.cmet.2006.01.011 10.1016/j.jhep.2009.02.032 10.1371/journal.pone.0062885 10.1007/s00535-012-0659-z 10.2174/1574887109666141216104334 10.1002/hep.21744 10.1053/jhep.2003.50048 10.1172/JCI25790 10.1006/bbrc.1997.6943 10.1016/j.advenzreg.2006.01.007 10.1111/j.1440-1746.2011.07057.x 10.1523/JNEUROSCI.2954-12.2013 10.1371/journal.pone.0161635 10.1111/liv.13301 10.1002/hep.24001 10.1097/01.shk.0000112346.38599.10 10.1016/j.cmet.2012.05.012 10.3390/ijms18020434 10.1016/j.ccell.2016.09.004 10.1046/j.1440-1746.1999.01822.x 10.1111/j.1872-034X.2010.00670.x 10.1172/JCI20513 10.1055/s-2001-12927 10.1038/cddis.2014.162 10.1002/hep.22848 10.1089/ars.2010.3222 10.1016/j.ccr.2012.02.007 10.1016/S1471-4906(02)02302-5 10.1007/BF02976748 10.1136/gut.48.2.206 10.1016/j.cell.2007.10.035 10.1002/hep.22603 10.1016/j.jhep.2009.03.008 10.1016/j.bcp.2008.07.036 10.1002/hep.26093 10.1053/gast.2002.34168 10.1126/science.1231143 |
ContentType | Journal Article |
Copyright | 2018 Japanese Association for Laboratory Animal Science Copyright Japan Science and Technology Agency 2018 2018 Japanese Association for Laboratory Animal Science 2018 |
Copyright_xml | – notice: 2018 Japanese Association for Laboratory Animal Science – notice: Copyright Japan Science and Technology Agency 2018 – notice: 2018 Japanese Association for Laboratory Animal Science 2018 |
DBID | AAYXX CITATION NPM 7QO 8FD FR3 P64 RC3 5PM |
DOI | 10.1538/expanim.17-0112 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Genetics Abstracts PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1881-7122 |
EndPage | 218 |
ExternalDocumentID | PMC5955752 29276215 10_1538_expanim_17_0112 article_expanim_67_2_67_17_0112_article_char_en |
Genre | Journal Article |
GroupedDBID | --- .55 29G 2WC 3O- 53G 5GY ACGFO ACIWK ACPRK ADBBV ADRAZ AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK DU5 E3Z EMOBN GX1 HYE JSF JSH KQ8 M48 OK1 OVT P2P PGMZT RJT RNS RPM RZJ TKC TR2 X7M XSB AAYXX CITATION NPM 7QO 8FD FR3 P64 RC3 5PM |
ID | FETCH-LOGICAL-c701t-584e793d92ca2efea47cf8e2aec3534e7d9333d21f89f2fa7cfccdade7169f903 |
IEDL.DBID | M48 |
ISSN | 1341-1357 |
IngestDate | Thu Aug 21 18:01:54 EDT 2025 Mon Jun 30 16:42:00 EDT 2025 Wed Feb 19 02:44:24 EST 2025 Tue Jul 01 01:21:01 EDT 2025 Thu Apr 24 23:08:27 EDT 2025 Wed Sep 03 06:28:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | hyperphagia multiple parallel hits hypothesis intestinal permeability lipopolysaccharide dysbiosis |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c701t-584e793d92ca2efea47cf8e2aec3534e7d9333d21f89f2fa7cfccdade7169f903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 These authors contributed equally to this work. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1538/expanim.17-0112 |
PMID | 29276215 |
PQID | 2047280026 |
PQPubID | 2048505 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5955752 proquest_journals_2047280026 pubmed_primary_29276215 crossref_primary_10_1538_expanim_17_0112 crossref_citationtrail_10_1538_expanim_17_0112 jstage_primary_article_expanim_67_2_67_17_0112_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Experimental Animals |
PublicationTitleAlternate | Exp Anim |
PublicationYear | 2018 |
Publisher | Japanese Association for Laboratory Animal Science Japan Science and Technology Agency |
Publisher_xml | – name: Japanese Association for Laboratory Animal Science – name: Japan Science and Technology Agency |
References | 4. Chitturi S. and Farrell G.C. 2001. Etiopathogenesis of nonalcoholic steatohepatitis. Semin. Liver Dis. 21: 27–41. 9. Gkolfakis P., Dimitriadis G., and Triantafyllou K. 2015. Gut microbiota and non-alcoholic fatty liver disease. Hepatobiliary Pancreat. Dis. Int. 14: 572–581. 6. Dapito D.H., Mencin A., Gwak G.Y., Pradere J.P., Jang M.K., Mederacke I., Caviglia J.M., Khiabanian H., Adeyemi A., Bataller R., Lefkowitch J.H., Bower M., Friedman R., Sartor R.B., Rabadan R., and Schwabe R.F. 2012. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21: 504–516. 35. Shin J. 1998. P62 and the sequestosome, a novel mechanism for protein metabolism. Arch. Pharm. Res. 21: 629–633. 30. Miele L., Valenza V., La Torre G., Montalto M., Cammarota G., Ricci R., Mascianà R., Forgione A., Gabrieli M.L., Perotti G., Vecchio F.M., Rapaccini G., Gasbarrini G., Day C.P., and Grieco A. 2009. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49: 1877–1887. 11. Han X., Fink M.P., Yang R., and Delude R.L. 2004. Increased iNOS activity is essential for intestinal epithelial tight junction dysfunction in endotoxemic mice. Shock 21: 261–270. 10. González-Rodríguez A., Mayoral R., Agra N., Valdecantos M.P., Pardo V., Miquilena-Colina M.E., Vargas-Castrillón J., Lo Iacono O., Corazzari M., Fimia G.M., Piacentini M., Muntané J., Boscá L., García-Monzón C., Martín-Sanz P., and Valverde A.M. 2014. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 5: e1179. 1. Baffy G. 2009. Kupffer cells in non-alcoholic fatty liver disease: the emerging view. J. Hepatol. 51: 212–223. 3. Bugianesi E., Leone N., Vanni E., Marchesini G., Brunello F., Carucci P., Musso A., De Paolis P., Capussotti L., Salizzoni M., and Rizzetto M. 2002. Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology 123: 134–140. 41. Wigg A.J., Roberts-Thomson I.C., Dymock R.B., McCarthy P.J., Grose R.H., and Cummins A.G. 2001. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut 48: 206–211. 2. Bedossa P. 2017. Pathology of non-alcoholic fatty liver disease. Liver Int. 37:(Suppl 1): 85–89. 14. Harte A.L., da Silva N.F., Creely S.J., McGee K.C., Billyard T., Youssef-Elabd E.M., Tripathi G., Ashour E., Abdalla M.S., Sharada H.M., Amin A.I., Burt A.D., Kumar S., Day C.P., and McTernan P.G. 2010. Elevated endotoxin levels in non-alcoholic fatty liver disease. J. Inflamm. (Lond.) 7: 15. 17. Ishii T., Yanagawa T., Kawane T., Yuki K., Seita J., Yoshida H., and Bannai S. 1996. Murine peritoneal macrophages induce a novel 60-kDa protein with structural similarity to a tyrosine kinase p56lck-associated protein in response to oxidative stress. Biochem. Biophys. Res. Commun. 226: 456–460. 38. Tilg H. and Moschen A.R. 2010. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52: 1836–1846. 44. Yoshikawa S., Iijima H., Saito M., Tanaka H., Imanishi H., Yoshimoto N., Yoshimoto T., Futatsugi-Yumikura S., Nakanishi K., Tsujimura T., Nishigami T., Kudo A., Arii S., and Nishiguchi S. 2010. Crucial role of impaired Kupffer cell phagocytosis on the decreased Sonazoid-enhanced echogenicity in a liver of a nonalchoholic steatohepatitis rat model. Hepatol. Res. 40: 823–831. 18. Itoh K., Chiba T., Takahashi S., Ishii T., Igarashi K., Katoh Y., Oyake T., Hayashi N., Satoh K., Hatayama I., Yamamoto M., and Nabeshima Y. 1997. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236: 313–322. 33. Rodriguez A., Durán A., Selloum M., Champy M.F., Diez-Guerra F.J., Flores J.M., Serrano M., Auwerx J., Diaz-Meco M.T., and Moscat J. 2006. Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metab. 3: 211–222. 5. Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., and Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823. 20. Itoh K., Mimura J., and Yamamoto M. 2010. Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Antioxid. Redox Signal. 13: 1665–1678. 25. Kudo H., Takahara T., Yata Y., Kawai K., Zhang W., and Sugiyama T. 2009. Lipopolysaccharide triggered TNF-alpha-induced hepatocyte apoptosis in a murine non-alcoholic steatohepatitis model. J. Hepatol. 51: 168–175. 22. Kobayashi E.H., Suzuki T., Funayama R., Nagashima T., Hayashi M., Sekine H., Tanaka N., Moriguchi T., Motohashi H., Nakayama K., and Yamamoto M. 2016. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 7: 11624. 27. Lin W., Wu R.T., Wu T., Khor T.O., Wang H., and Kong A.N. 2008. Sulforaphane suppressed LPS-induced inflammation in mouse peritoneal macrophages through Nrf2 dependent pathway. Biochem. Pharmacol. 76: 967–973. 13. Hardwick R.N., Fisher C.D., Canet M.J., Lake A.D., and Cherrington N.J. 2010. Diversity in antioxidant response enzymes in progressive stages of human nonalcoholic fatty liver disease. Drug Metab. Dispos. 38: 2293–2301. 46. Zhao L.F., Jia J.M., and Han D.W. 2004. [The role of enterogenous endotoxemia in the pathogenesis of non-alcoholic steatohepatitis]. Zhonghua Gan Zang Bing Za Zhi 12: 632. (in Chinese) 29. Mantovani A., Sozzani S., Locati M., Allavena P., and Sica A. 2002. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23: 549–555. 24. Komatsu M., Waguri S., Koike M., Sou Y.S., Ueno T 22 44 23 45 24 46 25 47 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 41 20 42 21 43 |
References_xml | – reference: 21. Kakehashi A., Stefanov V.E., Ishii N., Okuno T., Fujii H., Kawai K., Kawada N., and Wanibuchi H. 2017. Proteome characteristics of non-alcoholic steatohepatitis liver tissue and associated hepatocellular carcinomas. Int. J. Mol. Sci. 18: 18. – reference: 11. Han X., Fink M.P., Yang R., and Delude R.L. 2004. Increased iNOS activity is essential for intestinal epithelial tight junction dysfunction in endotoxemic mice. Shock 21: 261–270. – reference: 7. Day C.P. and James O.F. 1998. Steatohepatitis: a tale of two “hits”? Gastroenterology 114: 842–845. – reference: 40. Vuppalanchi R. and Chalasani N. 2009. Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: Selected practical issues in their evaluation and management. Hepatology 49: 306–317. – reference: 16. Imajo K., Fujita K., Yoneda M., Nozaki Y., Ogawa Y., Shinohara Y., Kato S., Mawatari H., Shibata W., Kitani H., Ikejima K., Kirikoshi H., Nakajima N., Saito S., Maeyama S., Watanabe S., Wada K., and Nakajima A. 2012. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab. 16: 44–54. – reference: 19. Itoh K., Igarashi K., Hayashi N., Nishizawa M., and Yamamoto M. 1995. Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins. Mol. Cell. Biol. 15: 4184–4193. – reference: 10. González-Rodríguez A., Mayoral R., Agra N., Valdecantos M.P., Pardo V., Miquilena-Colina M.E., Vargas-Castrillón J., Lo Iacono O., Corazzari M., Fimia G.M., Piacentini M., Muntané J., Boscá L., García-Monzón C., Martín-Sanz P., and Valverde A.M. 2014. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 5: e1179. – reference: 35. Shin J. 1998. P62 and the sequestosome, a novel mechanism for protein metabolism. Arch. Pharm. Res. 21: 629–633. – reference: 22. Kobayashi E.H., Suzuki T., Funayama R., Nagashima T., Hayashi M., Sekine H., Tanaka N., Moriguchi T., Motohashi H., Nakayama K., and Yamamoto M. 2016. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 7: 11624. – reference: 32. Okada K., Warabi E., Sugimoto H., Horie M., Gotoh N., Tokushige K., Hashimoto E., Utsunomiya H., Takahashi H., Ishii T., Yamamoto M., and Shoda J. 2013. Deletion of Nrf2 leads to rapid progression of steatohepatitis in mice fed atherogenic plus high-fat diet. J. Gastroenterol. 48: 620–632. – reference: 44. Yoshikawa S., Iijima H., Saito M., Tanaka H., Imanishi H., Yoshimoto N., Yoshimoto T., Futatsugi-Yumikura S., Nakanishi K., Tsujimura T., Nishigami T., Kudo A., Arii S., and Nishiguchi S. 2010. Crucial role of impaired Kupffer cell phagocytosis on the decreased Sonazoid-enhanced echogenicity in a liver of a nonalchoholic steatohepatitis rat model. Hepatol. Res. 40: 823–831. – reference: 27. Lin W., Wu R.T., Wu T., Khor T.O., Wang H., and Kong A.N. 2008. Sulforaphane suppressed LPS-induced inflammation in mouse peritoneal macrophages through Nrf2 dependent pathway. Biochem. Pharmacol. 76: 967–973. – reference: 33. Rodriguez A., Durán A., Selloum M., Champy M.F., Diez-Guerra F.J., Flores J.M., Serrano M., Auwerx J., Diaz-Meco M.T., and Moscat J. 2006. Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metab. 3: 211–222. – reference: 23. Kobayashi M. and Yamamoto M. 2006. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv. Enzyme Regul. 46: 113–140. – reference: 29. Mantovani A., Sozzani S., Locati M., Allavena P., and Sica A. 2002. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23: 549–555. – reference: 3. Bugianesi E., Leone N., Vanni E., Marchesini G., Brunello F., Carucci P., Musso A., De Paolis P., Capussotti L., Salizzoni M., and Rizzetto M. 2002. Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology 123: 134–140. – reference: 45. Zhang B.H., Weltman M., and Farrell G.C. 1999. Does steatohepatitis impair liver regeneration? A study in a dietary model of non-alcoholic steatohepatitis in rats. J. Gastroenterol. Hepatol. 14: 133–137. – reference: 24. Komatsu M., Waguri S., Koike M., Sou Y.S., Ueno T., Hara T., Mizushima N., Iwata J., Ezaki J., Murata S., Hamazaki J., Nishito Y., Iemura S., Natsume T., Yanagawa T., Uwayama J., Warabi E., Yoshida H., Ishii T., Kobayashi A., Yamamoto M., Yue Z., Uchiyama Y., Kominami E., and Tanaka K. 2007. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131: 1149–1163. – reference: 18. Itoh K., Chiba T., Takahashi S., Ishii T., Igarashi K., Katoh Y., Oyake T., Hayashi N., Satoh K., Hatayama I., Yamamoto M., and Nabeshima Y. 1997. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236: 313–322. – reference: 41. Wigg A.J., Roberts-Thomson I.C., Dymock R.B., McCarthy P.J., Grose R.H., and Cummins A.G. 2001. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut 48: 206–211. – reference: 1. Baffy G. 2009. Kupffer cells in non-alcoholic fatty liver disease: the emerging view. J. Hepatol. 51: 212–223. – reference: 34. Scarpellini E., Lupo M., Iegri C., Gasbarrini A., De Santis A., and Tack J. 2014. Intestinal permeability in non-alcoholic fatty liver disease: the gut-liver axis. Rev. Recent Clin. Trials 9: 141–147. – reference: 47. Zhu L., Baker S.S., Gill C., Liu W., Alkhouri R., Baker R.D., and Gill S.R. 2013. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57: 601–609. – reference: 15. Horie Y., Suzuki A., Kataoka E., Sasaki T., Hamada K., Sasaki J., Mizuno K., Hasegawa G., Kishimoto H., Iizuka M., Naito M., Enomoto K., Watanabe S., Mak T.W., and Nakano T. 2004. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J. Clin. Invest. 113: 1774–1783. – reference: 36. Stumptner C., Fuchsbichler A., Zatloukal K., and Denk H. 2007. In vitro production of Mallory bodies and intracellular hyaline bodies: the central role of sequestosome 1/p62. Hepatology 46: 851–860. – reference: 12. Harada H., Warabi E., Matsuki T., Yanagawa T., Okada K., Uwayama J., Ikeda A., Nakaso K., Kirii K., Noguchi N., Bukawa H., Siow R.C., Mann G.E., Shoda J., Ishii T., and Sakurai T. 2013. Deficiency of p62/Sequestosome 1 causes hyperphagia due to leptin resistance in the brain. J. Neurosci. 33: 14767–14777. – reference: 9. Gkolfakis P., Dimitriadis G., and Triantafyllou K. 2015. Gut microbiota and non-alcoholic fatty liver disease. Hepatobiliary Pancreat. Dis. Int. 14: 572–581. – reference: 26. Li Z., Yang S., Lin H., Huang J., Watkins P.A., Moser A.B., Desimone C., Song X.Y., and Diehl A.M. 2003. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology 37: 343–350. – reference: 31. Mukhopadhyay S., Varin A., Chen Y., Liu B., Tryggvason K., and Gordon S. 2011. SR-A/MARCO-mediated ligand delivery enhances intracellular TLR and NLR function, but ligand scavenging from cell surface limits TLR4 response to pathogens. Blood 117: 1319–1328. – reference: 42. Wong V.W., Tse C.H., Lam T.T., Wong G.L., Chim A.M., Chu W.C., Yeung D.K., Law P.T., Kwan H.S., Yu J., Sung J.J., and Chan H.L. 2013. Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis--a longitudinal study. PLoS One 8: e62885. – reference: 13. Hardwick R.N., Fisher C.D., Canet M.J., Lake A.D., and Cherrington N.J. 2010. Diversity in antioxidant response enzymes in progressive stages of human nonalcoholic fatty liver disease. Drug Metab. Dispos. 38: 2293–2301. – reference: 25. Kudo H., Takahara T., Yata Y., Kawai K., Zhang W., and Sugiyama T. 2009. Lipopolysaccharide triggered TNF-alpha-induced hepatocyte apoptosis in a murine non-alcoholic steatohepatitis model. J. Hepatol. 51: 168–175. – reference: 28. Ling X., Linglong P., Weixia D., and Hong W. 2016. Protective effects of bifidobacterium on intestinal barrier function in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. PLoS One 11: e0161635. – reference: 46. Zhao L.F., Jia J.M., and Han D.W. 2004. [The role of enterogenous endotoxemia in the pathogenesis of non-alcoholic steatohepatitis]. Zhonghua Gan Zang Bing Za Zhi 12: 632. (in Chinese) – reference: 20. Itoh K., Mimura J., and Yamamoto M. 2010. Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Antioxid. Redox Signal. 13: 1665–1678. – reference: 17. Ishii T., Yanagawa T., Kawane T., Yuki K., Seita J., Yoshida H., and Bannai S. 1996. Murine peritoneal macrophages induce a novel 60-kDa protein with structural similarity to a tyrosine kinase p56lck-associated protein in response to oxidative stress. Biochem. Biophys. Res. Commun. 226: 456–460. – reference: 2. Bedossa P. 2017. Pathology of non-alcoholic fatty liver disease. Liver Int. 37:(Suppl 1): 85–89. – reference: 38. Tilg H. and Moschen A.R. 2010. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52: 1836–1846. – reference: 8. Duran A., Hernandez E.D., Reina-Campos M., Castilla E.A., Subramaniam S., Raghunandan S., Roberts L.R., Kisseleva T., Karin M., Diaz-Meco M.T., and Moscat J. 2016. p62/SQSTM1 by Binding to Vitamin D Receptor Inhibits Hepatic Stellate Cell Activity, Fibrosis, and Liver Cancer. Cancer Cell 30: 595–609. – reference: 14. Harte A.L., da Silva N.F., Creely S.J., McGee K.C., Billyard T., Youssef-Elabd E.M., Tripathi G., Ashour E., Abdalla M.S., Sharada H.M., Amin A.I., Burt A.D., Kumar S., Day C.P., and McTernan P.G. 2010. Elevated endotoxin levels in non-alcoholic fatty liver disease. J. Inflamm. (Lond.) 7: 15. – reference: 5. Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., and Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823. – reference: 4. Chitturi S. and Farrell G.C. 2001. Etiopathogenesis of nonalcoholic steatohepatitis. Semin. Liver Dis. 21: 27–41. – reference: 6. Dapito D.H., Mencin A., Gwak G.Y., Pradere J.P., Jang M.K., Mederacke I., Caviglia J.M., Khiabanian H., Adeyemi A., Bataller R., Lefkowitch J.H., Bower M., Friedman R., Sartor R.B., Rabadan R., and Schwabe R.F. 2012. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21: 504–516. – reference: 39. Tonan T., Fujimoto K., Qayyum A., Morita Y., Nakashima O., Ono N., Kawahara A., Kage M., Hayabuchi N., and Ueno T. 2012. CD14 expression and Kupffer cell dysfunction in non-alcoholic steatohepatitis: superparamagnetic iron oxide-magnetic resonance image and pathologic correlation. J. Gastroenterol. Hepatol. 27: 789–796. – reference: 30. Miele L., Valenza V., La Torre G., Montalto M., Cammarota G., Ricci R., Mascianà R., Forgione A., Gabrieli M.L., Perotti G., Vecchio F.M., Rapaccini G., Gasbarrini G., Day C.P., and Grieco A. 2009. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49: 1877–1887. – reference: 37. Thimmulappa R.K., Lee H., Rangasamy T., Reddy S.P., Yamamoto M., Kensler T.W., and Biswal S. 2006. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J. Clin. Invest. 116: 984–995. – reference: 43. Yang S.Q., Lin H.Z., Lane M.D., Clemens M., and Diehl A.M. 1997. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc. Natl. Acad. Sci. USA 94: 2557–2562. – ident: 31 doi: 10.1182/blood-2010-03-276733 – ident: 7 doi: 10.1016/S0016-5085(98)70599-2 – ident: 43 doi: 10.1073/pnas.94.6.2557 – ident: 14 doi: 10.1186/1476-9255-7-15 – ident: 22 doi: 10.1038/ncomms11624 – ident: 9 doi: 10.1016/S1499-3872(15)60026-1 – ident: 17 doi: 10.1006/bbrc.1996.1377 – ident: 13 doi: 10.1124/dmd.110.035006 – ident: 19 doi: 10.1128/MCB.15.8.4184 – ident: 33 doi: 10.1016/j.cmet.2006.01.011 – ident: 25 doi: 10.1016/j.jhep.2009.02.032 – ident: 42 doi: 10.1371/journal.pone.0062885 – ident: 32 doi: 10.1007/s00535-012-0659-z – ident: 34 doi: 10.2174/1574887109666141216104334 – ident: 36 doi: 10.1002/hep.21744 – ident: 26 doi: 10.1053/jhep.2003.50048 – ident: 37 doi: 10.1172/JCI25790 – ident: 18 doi: 10.1006/bbrc.1997.6943 – ident: 23 doi: 10.1016/j.advenzreg.2006.01.007 – ident: 39 doi: 10.1111/j.1440-1746.2011.07057.x – ident: 12 doi: 10.1523/JNEUROSCI.2954-12.2013 – ident: 28 doi: 10.1371/journal.pone.0161635 – ident: 2 doi: 10.1111/liv.13301 – ident: 38 doi: 10.1002/hep.24001 – ident: 11 doi: 10.1097/01.shk.0000112346.38599.10 – ident: 16 doi: 10.1016/j.cmet.2012.05.012 – ident: 21 doi: 10.3390/ijms18020434 – ident: 8 doi: 10.1016/j.ccell.2016.09.004 – ident: 45 doi: 10.1046/j.1440-1746.1999.01822.x – ident: 44 doi: 10.1111/j.1872-034X.2010.00670.x – ident: 15 doi: 10.1172/JCI20513 – ident: 4 doi: 10.1055/s-2001-12927 – ident: 10 doi: 10.1038/cddis.2014.162 – ident: 30 doi: 10.1002/hep.22848 – ident: 20 doi: 10.1089/ars.2010.3222 – ident: 6 doi: 10.1016/j.ccr.2012.02.007 – ident: 29 doi: 10.1016/S1471-4906(02)02302-5 – ident: 35 doi: 10.1007/BF02976748 – ident: 41 doi: 10.1136/gut.48.2.206 – ident: 24 doi: 10.1016/j.cell.2007.10.035 – ident: 40 doi: 10.1002/hep.22603 – ident: 46 – ident: 1 doi: 10.1016/j.jhep.2009.03.008 – ident: 27 doi: 10.1016/j.bcp.2008.07.036 – ident: 47 doi: 10.1002/hep.26093 – ident: 3 doi: 10.1053/gast.2002.34168 – ident: 5 doi: 10.1126/science.1231143 |
SSID | ssj0027729 |
Score | 2.254889 |
Snippet | Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain... Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 201 |
SubjectTerms | Clonal deletion Dietary restrictions Dysbacteriosis dysbiosis Gram-negative bacteria Hyperphagia Immunity Inflammation Inflammatory response Innate immunity Insulin intestinal permeability Intestine Kupffer cells lipopolysaccharide Lipopolysaccharides Liver Liver diseases Magnetic permeability Magnetic resonance imaging Mice multiple parallel hits hypothesis Nutrient deficiency Original Permeability Phagocytes Proteins Rodents Tumorigenesis |
Title | Deletion of both p62 and Nrf2 spontaneously results in the development of nonalcoholic steatohepatitis |
URI | https://www.jstage.jst.go.jp/article/expanim/67/2/67_17-0112/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/29276215 https://www.proquest.com/docview/2047280026 https://pubmed.ncbi.nlm.nih.gov/PMC5955752 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Experimental Animals, 2018, Vol.67(2), pp.201-218 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYQtFIvCNpSUh7ygQOXbDd2HDuHghAUIaRdcehKqJfIcWwIWhK6m5Xg33cmyWbZauHiy_ghZWbsb5zxN4QcOSZVKrhDolvuh0I5P-2rzNfaxoxpoVWIb4cHw-hqFF7fittFOaD2A05XhnZYT2o0Gfee_76cgsP_rKv3cPXDPoPj5I-9AJMoseLwBhxLEUZig1Atoi9ZlyxDAjM_4EK2PD8rJlg6oj48AEq7s6sA6P95lK8OpsststkiSnrWmMA2WbPFZ_LxT1nfl38h7sIiv3ZZ0NLRFPRCnyJGdZHR4cQxihmygA9tOZuOXyjE3rNxNaV5QQEY0myRUYSjC0TtdUXd3FC0jqq8t5iRXeXTr2R0-ev3-ZXfFlfwjewHlQ_Aw4JvZjEzmllndSiNU5Zpa7jgIMtiznnGAqdix5wGqTGZzizS67i4z3fIOixrdwkVcaqk0UraVIRGOlX__HQa9mANPm880pt_z8S0zONYAGOcYAQCCkhaBSSBTFABHjnuBjw1pBtvdz1pFNR1bD2u6xjJhGHTDujk-KoNtgaP7M8Vm8ytL2HIoYlQOvLIt0bH3fwsZnCABMIjckn7XQck7F6WFPl9TdwtYgHomH1_f8k98glQmWruefbJejWZ2QNAPlV6WFs0tMObwWF9MfUPQmUJ-A |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deletion+of+both+p62+and+Nrf2+spontaneously+results+in+the+development+of+nonalcoholic+steatohepatitis&rft.jtitle=Experimental+animals&rft.au=Akiyama%2C+Kentaro&rft.au=Warabi%2C+Eiji&rft.au=Okada%2C+Kosuke&rft.au=Yanagawa%2C+Toru&rft.date=2018&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1341-1357&rft.eissn=1881-7122&rft.volume=67&rft.issue=2&rft.spage=201&rft_id=info:doi/10.1538%2Fexpanim.17-0112&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-1357&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-1357&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-1357&client=summon |