Deletion of both p62 and Nrf2 spontaneously results in the development of nonalcoholic steatohepatitis

Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain unknown. Deletion of both p62/Sqstm1 and Nrf2 genes spontaneously led to the development of NASH in mice fed a normal chow and was associated with l...

Full description

Saved in:
Bibliographic Details
Published inExperimental Animals Vol. 67; no. 2; pp. 201 - 218
Main Authors Akiyama, Kentaro, Warabi, Eiji, Okada, Kosuke, Yanagawa, Toru, Ishii, Tetsuro, Kose, Katsumi, Tokushige, Katsutoshi, Ishige, Kazunori, Mizokami, Yuji, Yamagata, Kenji, Onizawa, Kojiro, Ariizumi, Shun-ichi, Yamamoto, Masakazu, Shoda, Junichi
Format Journal Article
LanguageEnglish
Published Japan Japanese Association for Laboratory Animal Science 2018
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain unknown. Deletion of both p62/Sqstm1 and Nrf2 genes spontaneously led to the development of NASH in mice fed a normal chow and was associated with liver tumorigenesis. The pathogenetic mechanism (s) underlying the NASH development was investigated in p62:Nrf2 double-knockout (DKO) mice. DKO mice showed massive hepatomegaly and steatohepatitis with fat accumulation and had hyperphagia-induced obesity coupled with insulin resistance and adipokine imbalance. They also showed dysbiosis associated with an increased proportion of gram-negative bacteria species and an increased lipopolysaccharide (LPS) level in feces. Intestinal permeability was elevated in association with both epithelial damage and decreased expression levels of tight junction protein zona occludens-1, and thereby LPS levels were increased in serum. For Kupffer cells, the foreign body phagocytic capacity was decreased in magnetic resonance imaging, and the proportion of M1 cells was increased in DKO mice. In vitro experiments showed that the inflammatory response was accelerated in the p62:Nrf2 double-deficient Kupffer cells when challenged with a low dose of LPS. Diet restriction improved the hepatic conditions of NASH in association with improved dysbiosis and decreased LPS levels. The results suggest that in DKO mice, activation of innate immunity by excessive LPS flux from the intestines, occurring both within and outside the liver, is central to the development of hepatic damage in the form of NASH.
AbstractList Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain unknown. Deletion of both p62/Sqstm1 and Nrf2 genes spontaneously led to the development of NASH in mice fed a normal chow and was associated with liver tumorigenesis. The pathogenetic mechanism (s) underlying the NASH development was investigated in p62:Nrf2 double-knockout (DKO) mice. DKO mice showed massive hepatomegaly and steatohepatitis with fat accumulation and had hyperphagia-induced obesity coupled with insulin resistance and adipokine imbalance. They also showed dysbiosis associated with an increased proportion of gram-negative bacteria species and an increased lipopolysaccharide (LPS) level in feces. Intestinal permeability was elevated in association with both epithelial damage and decreased expression levels of tight junction protein zona occludens-1, and thereby LPS levels were increased in serum. For Kupffer cells, the foreign body phagocytic capacity was decreased in magnetic resonance imaging, and the proportion of M1 cells was increased in DKO mice. In vitro experiments showed that the inflammatory response was accelerated in the p62:Nrf2 double-deficient Kupffer cells when challenged with a low dose of LPS. Diet restriction improved the hepatic conditions of NASH in association with improved dysbiosis and decreased LPS levels. The results suggest that in DKO mice, activation of innate immunity by excessive LPS flux from the intestines, occurring both within and outside the liver, is central to the development of hepatic damage in the form of NASH.
Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain unknown. Deletion of both p62/Sqstm1 and Nrf2 genes spontaneously led to the development of NASH in mice fed a normal chow and was associated with liver tumorigenesis. The pathogenetic mechanism (s) underlying the NASH development was investigated in p62:Nrf2 double-knockout (DKO) mice. DKO mice showed massive hepatomegaly and steatohepatitis with fat accumulation and had hyperphagia-induced obesity coupled with insulin resistance and adipokine imbalance. They also showed dysbiosis associated with an increased proportion of gram-negative bacteria species and an increased lipopolysaccharide (LPS) level in feces. Intestinal permeability was elevated in association with both epithelial damage and decreased expression levels of tight junction protein zona occludens-1, and thereby LPS levels were increased in serum. For Kupffer cells, the foreign body phagocytic capacity was decreased in magnetic resonance imaging, and the proportion of M1 cells was increased in DKO mice. In vitro experiments showed that the inflammatory response was accelerated in the p62 : Nrf2 double-deficient Kupffer cells when challenged with a low dose of LPS. Diet restriction improved the hepatic conditions of NASH in association with improved dysbiosis and decreased LPS levels. The results suggest that in DKO mice, activation of innate immunity by excessive LPS flux from the intestines, occurring both within and outside the liver, is central to the development of hepatic damage in the form of NASH.
Author Mizokami, Yuji
Yamamoto, Masakazu
Ishii, Tetsuro
Kose, Katsumi
Yamagata, Kenji
Onizawa, Kojiro
Okada, Kosuke
Ishige, Kazunori
Akiyama, Kentaro
Ariizumi, Shun-ichi
Yanagawa, Toru
Warabi, Eiji
Tokushige, Katsutoshi
Shoda, Junichi
Author_xml – sequence: 1
  fullname: Akiyama, Kentaro
  organization: Doctoral Programs in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan
– sequence: 2
  fullname: Warabi, Eiji
  organization: Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan
– sequence: 3
  fullname: Okada, Kosuke
  organization: Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan
– sequence: 4
  fullname: Yanagawa, Toru
  organization: Division of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan
– sequence: 5
  fullname: Ishii, Tetsuro
  organization: Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan
– sequence: 6
  fullname: Kose, Katsumi
  organization: Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8573, Japan
– sequence: 7
  fullname: Tokushige, Katsutoshi
  organization: Institute of Gastroenterology Internal Medicine, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
– sequence: 8
  fullname: Ishige, Kazunori
  organization: Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan
– sequence: 9
  fullname: Mizokami, Yuji
  organization: Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan
– sequence: 10
  fullname: Yamagata, Kenji
  organization: Division of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan
– sequence: 11
  fullname: Onizawa, Kojiro
  organization: Division of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan
– sequence: 12
  fullname: Ariizumi, Shun-ichi
  organization: Institute of Gastroenterology Surgery, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
– sequence: 13
  fullname: Yamamoto, Masakazu
  organization: Institute of Gastroenterology Surgery, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
– sequence: 14
  fullname: Shoda, Junichi
  organization: Medical Sciences, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29276215$$D View this record in MEDLINE/PubMed
BookMark eNpVkc1vFSEUxYmpsR-6dmdIXE87XB7DzMbE1GpNGt3omlDm0uGFByMwTfvfy8t7TuwGSM7vHg6cc3ISYkBC3rP2kgneX-HTrIPbXTLZtIzBK3LG-p41kgGc1DPfsIZxIU_Jec7btgUpYXhDTmEA2QETZ8R-QY_FxUCjpfexTHTugOow0h_JAs1zDEUHjEv2zzRhXnzJ1AVaJqQjPqKP8w5D2U_XaNqbOEXvDM0FdYkTzrq44vJb8tpqn_Hdcb8gv7_e_Lq-be5-fvt-_fmuMbJlpRH9BuXAxwGMBrSoN9LYHkGj4YJXbRw45yMw2w8WrK6qMaMeUbJusEPLL8ing--83O9wNDVa0l7Nye10elZRO_VSCW5SD_FRiUEIKaAafDwapPhnwVzUNi6pPiwraDcS-vqJXaWuDpRJMeeEdr2BtWpfjDoWo5hU-2LqxIf_g638vyYqcHMAtrnoB1wBnYozHlfDTirYL0fjVTeTTgoD_wvYEamP
CitedBy_id crossref_primary_10_3390_ijms21041525
crossref_primary_10_1371_journal_pone_0291880
crossref_primary_10_1016_j_bbalip_2024_159497
crossref_primary_10_1016_j_redox_2024_103027
crossref_primary_10_1177_1934578X20987095
crossref_primary_10_1538_expanim_20_0028
crossref_primary_10_1007_s12072_018_9860_3
crossref_primary_10_3389_fimmu_2023_1251750
crossref_primary_10_1111_hepr_13543
crossref_primary_10_3390_ijerph18073470
crossref_primary_10_3390_nu11092114
crossref_primary_10_1038_s41419_020_03003_w
crossref_primary_10_1016_j_jff_2019_05_028
crossref_primary_10_1111_febs_16317
crossref_primary_10_1016_j_jhepr_2021_100253
crossref_primary_10_1016_j_freeradbiomed_2020_02_010
crossref_primary_10_3390_antiox11101939
crossref_primary_10_1159_000491763
crossref_primary_10_3390_antiox11010091
crossref_primary_10_3748_wjg_v28_i48_6909
crossref_primary_10_1016_j_freeradbiomed_2022_06_226
crossref_primary_10_14814_phy2_14859
crossref_primary_10_1242_jcs_222836
Cites_doi 10.1182/blood-2010-03-276733
10.1016/S0016-5085(98)70599-2
10.1073/pnas.94.6.2557
10.1186/1476-9255-7-15
10.1038/ncomms11624
10.1016/S1499-3872(15)60026-1
10.1006/bbrc.1996.1377
10.1124/dmd.110.035006
10.1128/MCB.15.8.4184
10.1016/j.cmet.2006.01.011
10.1016/j.jhep.2009.02.032
10.1371/journal.pone.0062885
10.1007/s00535-012-0659-z
10.2174/1574887109666141216104334
10.1002/hep.21744
10.1053/jhep.2003.50048
10.1172/JCI25790
10.1006/bbrc.1997.6943
10.1016/j.advenzreg.2006.01.007
10.1111/j.1440-1746.2011.07057.x
10.1523/JNEUROSCI.2954-12.2013
10.1371/journal.pone.0161635
10.1111/liv.13301
10.1002/hep.24001
10.1097/01.shk.0000112346.38599.10
10.1016/j.cmet.2012.05.012
10.3390/ijms18020434
10.1016/j.ccell.2016.09.004
10.1046/j.1440-1746.1999.01822.x
10.1111/j.1872-034X.2010.00670.x
10.1172/JCI20513
10.1055/s-2001-12927
10.1038/cddis.2014.162
10.1002/hep.22848
10.1089/ars.2010.3222
10.1016/j.ccr.2012.02.007
10.1016/S1471-4906(02)02302-5
10.1007/BF02976748
10.1136/gut.48.2.206
10.1016/j.cell.2007.10.035
10.1002/hep.22603
10.1016/j.jhep.2009.03.008
10.1016/j.bcp.2008.07.036
10.1002/hep.26093
10.1053/gast.2002.34168
10.1126/science.1231143
ContentType Journal Article
Copyright 2018 Japanese Association for Laboratory Animal Science
Copyright Japan Science and Technology Agency 2018
2018 Japanese Association for Laboratory Animal Science 2018
Copyright_xml – notice: 2018 Japanese Association for Laboratory Animal Science
– notice: Copyright Japan Science and Technology Agency 2018
– notice: 2018 Japanese Association for Laboratory Animal Science 2018
DBID NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
RC3
5PM
DOI 10.1538/expanim.17-0112
DatabaseName PubMed
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Genetics Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
PubMed

Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1881-7122
EndPage 218
ExternalDocumentID 10_1538_expanim_17_0112
29276215
article_expanim_67_2_67_17_0112_article_char_en
Genre Journal Article
GroupedDBID ---
.55
29G
2WC
3O-
53G
5GY
AAUGY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
E3Z
EMOBN
FRP
GX1
HYE
JSF
JSH
KQ8
M48
M~E
OK1
P2P
RJT
RNS
RPM
RZJ
TKC
TR2
X7M
XSB
NPM
AAYXX
CITATION
PGMZT
7QO
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c701t-584e793d92ca2efea47cf8e2aec3534e7d9333d21f89f2fa7cfccdade7169f903
IEDL.DBID RPM
ISSN 1341-1357
IngestDate Tue Sep 17 21:17:23 EDT 2024
Thu Oct 10 22:00:14 EDT 2024
Fri Aug 23 03:09:13 EDT 2024
Wed Oct 16 00:59:13 EDT 2024
Thu Aug 17 20:28:52 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords hyperphagia
multiple parallel hits hypothesis
intestinal permeability
lipopolysaccharide
dysbiosis
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c701t-584e793d92ca2efea47cf8e2aec3534e7d9333d21f89f2fa7cfccdade7169f903
Notes These authors contributed equally to this work.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5955752/
PMID 29276215
PQID 2047280026
PQPubID 2048505
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5955752
proquest_journals_2047280026
crossref_primary_10_1538_expanim_17_0112
pubmed_primary_29276215
jstage_primary_article_expanim_67_2_67_17_0112_article_char_en
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Experimental Animals
PublicationTitleAlternate Exp Anim
PublicationYear 2018
Publisher Japanese Association for Laboratory Animal Science
Japan Science and Technology Agency
Publisher_xml – name: Japanese Association for Laboratory Animal Science
– name: Japan Science and Technology Agency
References 4. Chitturi S. and Farrell G.C. 2001. Etiopathogenesis of nonalcoholic steatohepatitis. Semin. Liver Dis. 21: 27–41.
9. Gkolfakis P., Dimitriadis G., and Triantafyllou K. 2015. Gut microbiota and non-alcoholic fatty liver disease. Hepatobiliary Pancreat. Dis. Int. 14: 572–581.
6. Dapito D.H., Mencin A., Gwak G.Y., Pradere J.P., Jang M.K., Mederacke I., Caviglia J.M., Khiabanian H., Adeyemi A., Bataller R., Lefkowitch J.H., Bower M., Friedman R., Sartor R.B., Rabadan R., and Schwabe R.F. 2012. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21: 504–516.
35. Shin J. 1998. P62 and the sequestosome, a novel mechanism for protein metabolism. Arch. Pharm. Res. 21: 629–633.
30. Miele L., Valenza V., La Torre G., Montalto M., Cammarota G., Ricci R., Mascianà R., Forgione A., Gabrieli M.L., Perotti G., Vecchio F.M., Rapaccini G., Gasbarrini G., Day C.P., and Grieco A. 2009. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49: 1877–1887.
11. Han X., Fink M.P., Yang R., and Delude R.L. 2004. Increased iNOS activity is essential for intestinal epithelial tight junction dysfunction in endotoxemic mice. Shock 21: 261–270.
10. González-Rodríguez A., Mayoral R., Agra N., Valdecantos M.P., Pardo V., Miquilena-Colina M.E., Vargas-Castrillón J., Lo Iacono O., Corazzari M., Fimia G.M., Piacentini M., Muntané J., Boscá L., García-Monzón C., Martín-Sanz P., and Valverde A.M. 2014. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 5: e1179.
1. Baffy G. 2009. Kupffer cells in non-alcoholic fatty liver disease: the emerging view. J. Hepatol. 51: 212–223.
3. Bugianesi E., Leone N., Vanni E., Marchesini G., Brunello F., Carucci P., Musso A., De Paolis P., Capussotti L., Salizzoni M., and Rizzetto M. 2002. Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology 123: 134–140.
41. Wigg A.J., Roberts-Thomson I.C., Dymock R.B., McCarthy P.J., Grose R.H., and Cummins A.G. 2001. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut 48: 206–211.
2. Bedossa P. 2017. Pathology of non-alcoholic fatty liver disease. Liver Int. 37:(Suppl 1): 85–89.
14. Harte A.L., da Silva N.F., Creely S.J., McGee K.C., Billyard T., Youssef-Elabd E.M., Tripathi G., Ashour E., Abdalla M.S., Sharada H.M., Amin A.I., Burt A.D., Kumar S., Day C.P., and McTernan P.G. 2010. Elevated endotoxin levels in non-alcoholic fatty liver disease. J. Inflamm. (Lond.) 7: 15.
17. Ishii T., Yanagawa T., Kawane T., Yuki K., Seita J., Yoshida H., and Bannai S. 1996. Murine peritoneal macrophages induce a novel 60-kDa protein with structural similarity to a tyrosine kinase p56lck-associated protein in response to oxidative stress. Biochem. Biophys. Res. Commun. 226: 456–460.
38. Tilg H. and Moschen A.R. 2010. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52: 1836–1846.
44. Yoshikawa S., Iijima H., Saito M., Tanaka H., Imanishi H., Yoshimoto N., Yoshimoto T., Futatsugi-Yumikura S., Nakanishi K., Tsujimura T., Nishigami T., Kudo A., Arii S., and Nishiguchi S. 2010. Crucial role of impaired Kupffer cell phagocytosis on the decreased Sonazoid-enhanced echogenicity in a liver of a nonalchoholic steatohepatitis rat model. Hepatol. Res. 40: 823–831.
18. Itoh K., Chiba T., Takahashi S., Ishii T., Igarashi K., Katoh Y., Oyake T., Hayashi N., Satoh K., Hatayama I., Yamamoto M., and Nabeshima Y. 1997. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236: 313–322.
33. Rodriguez A., Durán A., Selloum M., Champy M.F., Diez-Guerra F.J., Flores J.M., Serrano M., Auwerx J., Diaz-Meco M.T., and Moscat J. 2006. Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metab. 3: 211–222.
5. Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., and Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823.
20. Itoh K., Mimura J., and Yamamoto M. 2010. Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Antioxid. Redox Signal. 13: 1665–1678.
25. Kudo H., Takahara T., Yata Y., Kawai K., Zhang W., and Sugiyama T. 2009. Lipopolysaccharide triggered TNF-alpha-induced hepatocyte apoptosis in a murine non-alcoholic steatohepatitis model. J. Hepatol. 51: 168–175.
22. Kobayashi E.H., Suzuki T., Funayama R., Nagashima T., Hayashi M., Sekine H., Tanaka N., Moriguchi T., Motohashi H., Nakayama K., and Yamamoto M. 2016. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 7: 11624.
27. Lin W., Wu R.T., Wu T., Khor T.O., Wang H., and Kong A.N. 2008. Sulforaphane suppressed LPS-induced inflammation in mouse peritoneal macrophages through Nrf2 dependent pathway. Biochem. Pharmacol. 76: 967–973.
13. Hardwick R.N., Fisher C.D., Canet M.J., Lake A.D., and Cherrington N.J. 2010. Diversity in antioxidant response enzymes in progressive stages of human nonalcoholic fatty liver disease. Drug Metab. Dispos. 38: 2293–2301.
46. Zhao L.F., Jia J.M., and Han D.W. 2004. [The role of enterogenous endotoxemia in the pathogenesis of non-alcoholic steatohepatitis]. Zhonghua Gan Zang Bing Za Zhi 12: 632. (in Chinese)
29. Mantovani A., Sozzani S., Locati M., Allavena P., and Sica A. 2002. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23: 549–555.
24. Komatsu M., Waguri S., Koike M., Sou Y.S., Ueno T
22
44
23
45
24
46
25
47
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
References_xml – ident: 31
  doi: 10.1182/blood-2010-03-276733
– ident: 7
  doi: 10.1016/S0016-5085(98)70599-2
– ident: 43
  doi: 10.1073/pnas.94.6.2557
– ident: 14
  doi: 10.1186/1476-9255-7-15
– ident: 22
  doi: 10.1038/ncomms11624
– ident: 9
  doi: 10.1016/S1499-3872(15)60026-1
– ident: 17
  doi: 10.1006/bbrc.1996.1377
– ident: 13
  doi: 10.1124/dmd.110.035006
– ident: 19
  doi: 10.1128/MCB.15.8.4184
– ident: 33
  doi: 10.1016/j.cmet.2006.01.011
– ident: 25
  doi: 10.1016/j.jhep.2009.02.032
– ident: 42
  doi: 10.1371/journal.pone.0062885
– ident: 32
  doi: 10.1007/s00535-012-0659-z
– ident: 34
  doi: 10.2174/1574887109666141216104334
– ident: 36
  doi: 10.1002/hep.21744
– ident: 26
  doi: 10.1053/jhep.2003.50048
– ident: 37
  doi: 10.1172/JCI25790
– ident: 18
  doi: 10.1006/bbrc.1997.6943
– ident: 23
  doi: 10.1016/j.advenzreg.2006.01.007
– ident: 39
  doi: 10.1111/j.1440-1746.2011.07057.x
– ident: 12
  doi: 10.1523/JNEUROSCI.2954-12.2013
– ident: 28
  doi: 10.1371/journal.pone.0161635
– ident: 2
  doi: 10.1111/liv.13301
– ident: 38
  doi: 10.1002/hep.24001
– ident: 11
  doi: 10.1097/01.shk.0000112346.38599.10
– ident: 16
  doi: 10.1016/j.cmet.2012.05.012
– ident: 21
  doi: 10.3390/ijms18020434
– ident: 8
  doi: 10.1016/j.ccell.2016.09.004
– ident: 45
  doi: 10.1046/j.1440-1746.1999.01822.x
– ident: 44
  doi: 10.1111/j.1872-034X.2010.00670.x
– ident: 15
  doi: 10.1172/JCI20513
– ident: 4
  doi: 10.1055/s-2001-12927
– ident: 10
  doi: 10.1038/cddis.2014.162
– ident: 30
  doi: 10.1002/hep.22848
– ident: 20
  doi: 10.1089/ars.2010.3222
– ident: 6
  doi: 10.1016/j.ccr.2012.02.007
– ident: 29
  doi: 10.1016/S1471-4906(02)02302-5
– ident: 35
  doi: 10.1007/BF02976748
– ident: 41
  doi: 10.1136/gut.48.2.206
– ident: 24
  doi: 10.1016/j.cell.2007.10.035
– ident: 40
  doi: 10.1002/hep.22603
– ident: 46
– ident: 1
  doi: 10.1016/j.jhep.2009.03.008
– ident: 27
  doi: 10.1016/j.bcp.2008.07.036
– ident: 47
  doi: 10.1002/hep.26093
– ident: 3
  doi: 10.1053/gast.2002.34168
– ident: 5
  doi: 10.1126/science.1231143
SSID ssj0027729
Score 2.2973082
Snippet Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain...
Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain...
SourceID pubmedcentral
proquest
crossref
pubmed
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 201
SubjectTerms Clonal deletion
Dietary restrictions
Dysbacteriosis
dysbiosis
Gram-negative bacteria
Hyperphagia
Immunity
Inflammation
Inflammatory response
Innate immunity
Insulin
intestinal permeability
Intestine
Kupffer cells
lipopolysaccharide
Lipopolysaccharides
Liver
Liver diseases
Magnetic permeability
Magnetic resonance imaging
Mice
multiple parallel hits hypothesis
Nutrient deficiency
Original
Permeability
Phagocytes
Proteins
Rodents
Tumorigenesis
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQKRKXCsorbUE-cOCSsrGTtXNoqwqoKiR6YqWKS-T1jGnQkpTdrNT--84k2SyL9sAll7EdZR6ab6zJN0K8V2nIE-tHMUAGcQoeKObQxI6zAeTos3YYzLer8eUk_XqdXa_HAfUKXGwt7Xie1GQ-O777c39GAX_STu_R9iPeUeCUv48TbqLkicOPVUplOvfxpXZdfZl2ZBkTmMWJzkzP87PlgI0UtfuLUNpP3AZA_-2j_CsxXTwTez2ilOedCzwXj7DaF09-1O19-QsRPiPza9eVrIOckl3k7VhJV4G8mgcluUOW8CHWy8XsXlLtvZw1C1lWkoChhHVHEe-uGLW3E3VLL9k7mvoGuSO7KRcvxeTiy_dPl3E_XCH2ZpQ0MQEPpNiEXHmnMKBLjQ8WlUOvM00yyLXWoJJg86CCI6n34ACZXifkI_1K7NBr8Y2QYBI0U0N2bdn4tbMWrAZnQafp1GMkPqz0Wdx2HBoF1x6k-qJXfZGYglUfidNO38PCPoCGhWNTKH70GwY5_6RGkR6Jo5WdipUzFYopMRkZjyPxujPZcL7KFeWDJIuE2TDmsID5tzclVXnT8nBneUZgVx38_-cdiqcEuGx3hXMkdpr5Et8SqGmm71pnfQAQCPv_
  priority: 102
  providerName: Scholars Portal
Title Deletion of both p62 and Nrf2 spontaneously results in the development of nonalcoholic steatohepatitis
URI https://www.jstage.jst.go.jp/article/expanim/67/2/67_17-0112/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/29276215
https://www.proquest.com/docview/2047280026
https://pubmed.ncbi.nlm.nih.gov/PMC5955752
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Experimental Animals, 2018, Vol.67(2), pp.201-218
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB11K5C4IL4JlMoHDlyyu7GTdXJBQoWqQtpVD1SquESOPaapdrOrbirBv2fG-aBFnLj4YjuJ_GbiN9b4DcB7mfoiye08di5zceqsI59DHRveDVyBNgvFYJarxdlF-vUyuzyAbLgLE5L2bVVPm_Vm2tRXIbdyt7GzIU9sdr48yYqMWIacTWBCBjqE6EOUpUNpMhYqixOV6V7Phxx7hj_Jw-rNNOFsy4QL2chC0t-Aa-Le2ZUeXBMx-4H_4px_p07e2YtOn8DjnkSKT93HPoUDbJ7Bw-_bcET-HPxnZEntbSO2XlQEhdgtpDCNE6sbLwUnxRIlRIr5178Ehdu363Yv6kYQFxTuTxIRz26YqIciurUVbBDt9go5Cbut9y_g4vTLt5OzuK-nEFs9T9qYuAaSO7pCWiPRo0m19TlKg1ZlivpcoZRyMvF54aU31GutMw5ZUccXc_USDum1-BqE0wnqShOUQYBfmTx3uXImdypNK4sRfBjWs9x1shklhxuEQtmjUCa6ZBQi-Nit9ziwh3ocuNCl5KafMPbzvTRy7giOBpzK3gH3pWQVTCbDiwhedZCNzx9Aj0DfA3McwJLb93vIEoP0dm95b_575lt4RJQr7w5xjuCwvbnFd0Rr2uoYJss0p3Z1vjwOJv0b9Ij-xQ
link.rule.ids 230,315,730,783,787,888,2228,4031,24330,27935,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VAioX3oXQAj5w4JLsxk7WyQWpKlQLdFccWlRxsRI_aGA3WXWzEvDrmcmLtuICl1zGTuTMjP1N9OUbgFc8cmmY6LFvTGz8yGiDOWeln9FpYFKr46YZzGw-mZ5GH87isy2I-39hGtK-zougXCyDsjhvuJWrpR71PLHRp9lhnMaIMvjoBtzEfB1HfZHe11myaU5GUmV-KGLZKfrg0JH9gTlWLIOQ-JYhtbLhKcf9gLriXjqXbn1DaPbV_g11XidPXjqNju7B534dLQnle7Cp80D_uibx-M8LvQ93O3zKDlrzA9iy5UO4_aVqvr4_AvfWklp3VbLKsRy9zFYTzrLSsPmF44z4tog2bbVZL34yrOQ3i3rNipIhzGTmDz-JZpdUAzT9eQvNKNbq6twSv7su1o_h9OjdyeHU71o1-FqOw9pHGGMx003Kdcats1kktUssz6wWsUCbSYUQhocuSR13GVq1NpmxJNbj0rHYhW18rH0KzMjQylxilDTa_iJLEpMIkyVGRFGurQeve0epVavIoaiSQfeqzr0qlIrc68Gb1pHDwO7lDgMnUnG6dBMGO_3yhvuGB_t9AKgut9eKk8Am4eyJB0_aWBju30eTB_JKlAwDSM37qgV936h6d75-9t8zX8LO9GR2rI7fzz_uwR1Edkn7rWgftuuLjX2O6KnOXzS58hs-IB7q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BeYgLzwJpC_jAgUuSjZ3EyaUSalmVR1c9UKnqJUr8oIHdZNXNSsCvZyavbitOveTicaJkZuxvrC_fALznoU2DRE1crSPthlppzDkj3Zx2A50aFbXNYI5n8dFp-OUsOtto9dWS9lVRetV84VXlRcutXC6UP_DE_JPjgyiNEGVwf6mtfxfuYc5O4qFQH2ot2TYoI7kyNxCR7FV90NQ3vzHPyoUXEOcyoHY2POW4JlBn3I296f5PhGc_zP-Q500C5caONH0C58O7dESUX966KTz194bM461e9ik87nEq-9iZPIM7pnoOD87r9hT-BdhDQ6rddcVqywr0NlvGnOWVZrNLyxnxbhF1mnq9mv9hWNGv582KlRVDuMn0FU-JZldUC7R9ekvFKOaa-sIQz7spV9twOv30_eDI7Vs2uEpOgsZFOGMw43XKVc6NNXkolU0Mz40SkcAxnQohNA9sklpucxxVSufakGiPTSfiJWzhY81rYFoGRhYSo6XV-Bd5kuhE6DzRIgwLZRz4MDgrW3bKHBlVNOjirHdxFsiMXOzAfufM0bD_wKNhLDNOl37COE6_vuH64cDeEARZn-OrjJPQJuHt2IFXXTyM9x8iygF5LVJGA1L1vj6C_m_VvXt_79x65jt4eHI4zb59nn3dhUcI8JLuyGgPtprLtXmDIKop3rbp8g8KuCFq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deletion+of+both+p62+and+Nrf2+spontaneously+results+in+the+development+of+nonalcoholic+steatohepatitis&rft.jtitle=Experimental+animals&rft.au=Akiyama%2C+Kentaro&rft.au=Warabi%2C+Eiji&rft.au=Okada%2C+Kosuke&rft.au=Yanagawa%2C+Toru&rft.date=2018&rft.issn=1341-1357&rft.eissn=1881-7122&rft.volume=67&rft.issue=2&rft.spage=201&rft.epage=218&rft_id=info:doi/10.1538%2Fexpanim.17-0112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1538_expanim_17_0112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-1357&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-1357&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-1357&client=summon