Distinct predictive biomarker candidates for response to anti-CTLA-4 and anti-PD-1 immunotherapy in melanoma patients

Background While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers to determine who will likely benefit most from which therapy. To date, most biomarkers of response have been identified in the tumors themse...

Full description

Saved in:
Bibliographic Details
Published inJournal for immunotherapy of cancer Vol. 6; no. 1; pp. 18 - 14
Main Authors Subrahmanyam, Priyanka B., Dong, Zhiwan, Gusenleitner, Daniel, Giobbie-Hurder, Anita, Severgnini, Mariano, Zhou, Jun, Manos, Michael, Eastman, Lauren M., Maecker, Holden T., Hodi, F. Stephen
Format Journal Article
LanguageEnglish
Published London BioMed Central 06.03.2018
BioMed Central Ltd
BMJ Publishing Group LTD
BMJ Publishing Group
Subjects
Online AccessGet full text
ISSN2051-1426
2051-1426
DOI10.1186/s40425-018-0328-8

Cover

Abstract Background While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers to determine who will likely benefit most from which therapy. To date, most biomarkers of response have been identified in the tumors themselves. Biomarkers that could be assessed from peripheral blood would be even more desirable, because of ease of access and reproducibility of sampling. Methods We used mass cytometry (CyTOF) to comprehensively profile peripheral blood of melanoma patients, in order to find predictive biomarkers of response to anti-CTLA-4 or anti-PD-1 therapy. Using a panel of ~ 40 surface and intracellular markers, we performed in-depth phenotypic and functional immune profiling to identify potential predictive biomarker candidates. Results Immune profiling of baseline peripheral blood samples using CyTOF revealed that anti-CTLA-4 and anti-PD-1 therapies have distinct sets of candidate biomarkers. The distribution of CD4 + and CD8 + memory/non-memory cells and other memory subsets was different between responders and non-responders to anti-CTLA-4 therapy. In anti-PD-1 (but not anti-CTLA-4) treated patients, we discovered differences in CD69 and MIP-1β expressing NK cells between responders and non-responders. Finally, multivariate analysis was used to develop a model for the prediction of response. Conclusions Our results indicate that anti-CTLA-4 and anti-PD-1 have distinct predictive biomarker candidates. CD4 + and CD8 + memory T cell subsets play an important role in response to anti-CTLA-4, and are potential biomarker candidates. For anti-PD-1 therapy, NK cell subsets (but not memory T cell subsets) correlated with clinical response to therapy. These functionally active NK cell subsets likely play a critical role in the anti-tumor response triggered by anti-PD-1.
AbstractList Background While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers to determine who will likely benefit most from which therapy. To date, most biomarkers of response have been identified in the tumors themselves. Biomarkers that could be assessed from peripheral blood would be even more desirable, because of ease of access and reproducibility of sampling. Methods We used mass cytometry (CyTOF) to comprehensively profile peripheral blood of melanoma patients, in order to find predictive biomarkers of response to anti-CTLA-4 or anti-PD-1 therapy. Using a panel of ~ 40 surface and intracellular markers, we performed in-depth phenotypic and functional immune profiling to identify potential predictive biomarker candidates. Results Immune profiling of baseline peripheral blood samples using CyTOF revealed that anti-CTLA-4 and anti-PD-1 therapies have distinct sets of candidate biomarkers. The distribution of CD4.sup.+ and CD8.sup.+ memory/non-memory cells and other memory subsets was different between responders and non-responders to anti-CTLA-4 therapy. In anti-PD-1 (but not anti-CTLA-4) treated patients, we discovered differences in CD69 and MIP-1[beta] expressing NK cells between responders and non-responders. Finally, multivariate analysis was used to develop a model for the prediction of response. Conclusions Our results indicate that anti-CTLA-4 and anti-PD-1 have distinct predictive biomarker candidates. CD4.sup.+ and CD8.sup.+ memory T cell subsets play an important role in response to anti-CTLA-4, and are potential biomarker candidates. For anti-PD-1 therapy, NK cell subsets (but not memory T cell subsets) correlated with clinical response to therapy. These functionally active NK cell subsets likely play a critical role in the anti-tumor response triggered by anti-PD-1.
While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers to determine who will likely benefit most from which therapy. To date, most biomarkers of response have been identified in the tumors themselves. Biomarkers that could be assessed from peripheral blood would be even more desirable, because of ease of access and reproducibility of sampling.BACKGROUNDWhile immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers to determine who will likely benefit most from which therapy. To date, most biomarkers of response have been identified in the tumors themselves. Biomarkers that could be assessed from peripheral blood would be even more desirable, because of ease of access and reproducibility of sampling.We used mass cytometry (CyTOF) to comprehensively profile peripheral blood of melanoma patients, in order to find predictive biomarkers of response to anti-CTLA-4 or anti-PD-1 therapy. Using a panel of ~ 40 surface and intracellular markers, we performed in-depth phenotypic and functional immune profiling to identify potential predictive biomarker candidates.METHODSWe used mass cytometry (CyTOF) to comprehensively profile peripheral blood of melanoma patients, in order to find predictive biomarkers of response to anti-CTLA-4 or anti-PD-1 therapy. Using a panel of ~ 40 surface and intracellular markers, we performed in-depth phenotypic and functional immune profiling to identify potential predictive biomarker candidates.Immune profiling of baseline peripheral blood samples using CyTOF revealed that anti-CTLA-4 and anti-PD-1 therapies have distinct sets of candidate biomarkers. The distribution of CD4+ and CD8+ memory/non-memory cells and other memory subsets was different between responders and non-responders to anti-CTLA-4 therapy. In anti-PD-1 (but not anti-CTLA-4) treated patients, we discovered differences in CD69 and MIP-1β expressing NK cells between responders and non-responders. Finally, multivariate analysis was used to develop a model for the prediction of response.RESULTSImmune profiling of baseline peripheral blood samples using CyTOF revealed that anti-CTLA-4 and anti-PD-1 therapies have distinct sets of candidate biomarkers. The distribution of CD4+ and CD8+ memory/non-memory cells and other memory subsets was different between responders and non-responders to anti-CTLA-4 therapy. In anti-PD-1 (but not anti-CTLA-4) treated patients, we discovered differences in CD69 and MIP-1β expressing NK cells between responders and non-responders. Finally, multivariate analysis was used to develop a model for the prediction of response.Our results indicate that anti-CTLA-4 and anti-PD-1 have distinct predictive biomarker candidates. CD4+ and CD8+ memory T cell subsets play an important role in response to anti-CTLA-4, and are potential biomarker candidates. For anti-PD-1 therapy, NK cell subsets (but not memory T cell subsets) correlated with clinical response to therapy. These functionally active NK cell subsets likely play a critical role in the anti-tumor response triggered by anti-PD-1.CONCLUSIONSOur results indicate that anti-CTLA-4 and anti-PD-1 have distinct predictive biomarker candidates. CD4+ and CD8+ memory T cell subsets play an important role in response to anti-CTLA-4, and are potential biomarker candidates. For anti-PD-1 therapy, NK cell subsets (but not memory T cell subsets) correlated with clinical response to therapy. These functionally active NK cell subsets likely play a critical role in the anti-tumor response triggered by anti-PD-1.
Abstract Background While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers to determine who will likely benefit most from which therapy. To date, most biomarkers of response have been identified in the tumors themselves. Biomarkers that could be assessed from peripheral blood would be even more desirable, because of ease of access and reproducibility of sampling. Methods We used mass cytometry (CyTOF) to comprehensively profile peripheral blood of melanoma patients, in order to find predictive biomarkers of response to anti-CTLA-4 or anti-PD-1 therapy. Using a panel of ~ 40 surface and intracellular markers, we performed in-depth phenotypic and functional immune profiling to identify potential predictive biomarker candidates. Results Immune profiling of baseline peripheral blood samples using CyTOF revealed that anti-CTLA-4 and anti-PD-1 therapies have distinct sets of candidate biomarkers. The distribution of CD4+ and CD8+ memory/non-memory cells and other memory subsets was different between responders and non-responders to anti-CTLA-4 therapy. In anti-PD-1 (but not anti-CTLA-4) treated patients, we discovered differences in CD69 and MIP-1β expressing NK cells between responders and non-responders. Finally, multivariate analysis was used to develop a model for the prediction of response. Conclusions Our results indicate that anti-CTLA-4 and anti-PD-1 have distinct predictive biomarker candidates. CD4+ and CD8+ memory T cell subsets play an important role in response to anti-CTLA-4, and are potential biomarker candidates. For anti-PD-1 therapy, NK cell subsets (but not memory T cell subsets) correlated with clinical response to therapy. These functionally active NK cell subsets likely play a critical role in the anti-tumor response triggered by anti-PD-1.
Background While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers to determine who will likely benefit most from which therapy. To date, most biomarkers of response have been identified in the tumors themselves. Biomarkers that could be assessed from peripheral blood would be even more desirable, because of ease of access and reproducibility of sampling. Methods We used mass cytometry (CyTOF) to comprehensively profile peripheral blood of melanoma patients, in order to find predictive biomarkers of response to anti-CTLA-4 or anti-PD-1 therapy. Using a panel of ~ 40 surface and intracellular markers, we performed in-depth phenotypic and functional immune profiling to identify potential predictive biomarker candidates. Results Immune profiling of baseline peripheral blood samples using CyTOF revealed that anti-CTLA-4 and anti-PD-1 therapies have distinct sets of candidate biomarkers. The distribution of CD4 + and CD8 + memory/non-memory cells and other memory subsets was different between responders and non-responders to anti-CTLA-4 therapy. In anti-PD-1 (but not anti-CTLA-4) treated patients, we discovered differences in CD69 and MIP-1β expressing NK cells between responders and non-responders. Finally, multivariate analysis was used to develop a model for the prediction of response. Conclusions Our results indicate that anti-CTLA-4 and anti-PD-1 have distinct predictive biomarker candidates. CD4 + and CD8 + memory T cell subsets play an important role in response to anti-CTLA-4, and are potential biomarker candidates. For anti-PD-1 therapy, NK cell subsets (but not memory T cell subsets) correlated with clinical response to therapy. These functionally active NK cell subsets likely play a critical role in the anti-tumor response triggered by anti-PD-1.
While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers to determine who will likely benefit most from which therapy. To date, most biomarkers of response have been identified in the tumors themselves. Biomarkers that could be assessed from peripheral blood would be even more desirable, because of ease of access and reproducibility of sampling. We used mass cytometry (CyTOF) to comprehensively profile peripheral blood of melanoma patients, in order to find predictive biomarkers of response to anti-CTLA-4 or anti-PD-1 therapy. Using a panel of ~ 40 surface and intracellular markers, we performed in-depth phenotypic and functional immune profiling to identify potential predictive biomarker candidates. Immune profiling of baseline peripheral blood samples using CyTOF revealed that anti-CTLA-4 and anti-PD-1 therapies have distinct sets of candidate biomarkers. The distribution of CD4.sup.+ and CD8.sup.+ memory/non-memory cells and other memory subsets was different between responders and non-responders to anti-CTLA-4 therapy. In anti-PD-1 (but not anti-CTLA-4) treated patients, we discovered differences in CD69 and MIP-1[beta] expressing NK cells between responders and non-responders. Finally, multivariate analysis was used to develop a model for the prediction of response. Our results indicate that anti-CTLA-4 and anti-PD-1 have distinct predictive biomarker candidates. CD4.sup.+ and CD8.sup.+ memory T cell subsets play an important role in response to anti-CTLA-4, and are potential biomarker candidates. For anti-PD-1 therapy, NK cell subsets (but not memory T cell subsets) correlated with clinical response to therapy. These functionally active NK cell subsets likely play a critical role in the anti-tumor response triggered by anti-PD-1.
While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers to determine who will likely benefit most from which therapy. To date, most biomarkers of response have been identified in the tumors themselves. Biomarkers that could be assessed from peripheral blood would be even more desirable, because of ease of access and reproducibility of sampling. We used mass cytometry (CyTOF) to comprehensively profile peripheral blood of melanoma patients, in order to find predictive biomarkers of response to anti-CTLA-4 or anti-PD-1 therapy. Using a panel of ~ 40 surface and intracellular markers, we performed in-depth phenotypic and functional immune profiling to identify potential predictive biomarker candidates. Immune profiling of baseline peripheral blood samples using CyTOF revealed that anti-CTLA-4 and anti-PD-1 therapies have distinct sets of candidate biomarkers. The distribution of CD4 and CD8 memory/non-memory cells and other memory subsets was different between responders and non-responders to anti-CTLA-4 therapy. In anti-PD-1 (but not anti-CTLA-4) treated patients, we discovered differences in CD69 and MIP-1β expressing NK cells between responders and non-responders. Finally, multivariate analysis was used to develop a model for the prediction of response. Our results indicate that anti-CTLA-4 and anti-PD-1 have distinct predictive biomarker candidates. CD4 and CD8 memory T cell subsets play an important role in response to anti-CTLA-4, and are potential biomarker candidates. For anti-PD-1 therapy, NK cell subsets (but not memory T cell subsets) correlated with clinical response to therapy. These functionally active NK cell subsets likely play a critical role in the anti-tumor response triggered by anti-PD-1.
BackgroundWhile immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers to determine who will likely benefit most from which therapy. To date, most biomarkers of response have been identified in the tumors themselves. Biomarkers that could be assessed from peripheral blood would be even more desirable, because of ease of access and reproducibility of sampling.MethodsWe used mass cytometry (CyTOF) to comprehensively profile peripheral blood of melanoma patients, in order to find predictive biomarkers of response to anti-CTLA-4 or anti-PD-1 therapy. Using a panel of ~ 40 surface and intracellular markers, we performed in-depth phenotypic and functional immune profiling to identify potential predictive biomarker candidates.ResultsImmune profiling of baseline peripheral blood samples using CyTOF revealed that anti-CTLA-4 and anti-PD-1 therapies have distinct sets of candidate biomarkers. The distribution of CD4+ and CD8+ memory/non-memory cells and other memory subsets was different between responders and non-responders to anti-CTLA-4 therapy. In anti-PD-1 (but not anti-CTLA-4) treated patients, we discovered differences in CD69 and MIP-1β expressing NK cells between responders and non-responders. Finally, multivariate analysis was used to develop a model for the prediction of response.ConclusionsOur results indicate that anti-CTLA-4 and anti-PD-1 have distinct predictive biomarker candidates. CD4+ and CD8+ memory T cell subsets play an important role in response to anti-CTLA-4, and are potential biomarker candidates. For anti-PD-1 therapy, NK cell subsets (but not memory T cell subsets) correlated with clinical response to therapy. These functionally active NK cell subsets likely play a critical role in the anti-tumor response triggered by anti-PD-1.
ArticleNumber 18
Audience Academic
Author Maecker, Holden T.
Zhou, Jun
Manos, Michael
Subrahmanyam, Priyanka B.
Hodi, F. Stephen
Dong, Zhiwan
Eastman, Lauren M.
Gusenleitner, Daniel
Severgnini, Mariano
Giobbie-Hurder, Anita
Author_xml – sequence: 1
  givenname: Priyanka B.
  surname: Subrahmanyam
  fullname: Subrahmanyam, Priyanka B.
  organization: Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine
– sequence: 2
  givenname: Zhiwan
  surname: Dong
  fullname: Dong, Zhiwan
  organization: Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School
– sequence: 3
  givenname: Daniel
  surname: Gusenleitner
  fullname: Gusenleitner, Daniel
  organization: Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School
– sequence: 4
  givenname: Anita
  surname: Giobbie-Hurder
  fullname: Giobbie-Hurder, Anita
  organization: Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute
– sequence: 5
  givenname: Mariano
  surname: Severgnini
  fullname: Severgnini, Mariano
  organization: Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School
– sequence: 6
  givenname: Jun
  surname: Zhou
  fullname: Zhou, Jun
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School
– sequence: 7
  givenname: Michael
  surname: Manos
  fullname: Manos, Michael
  organization: Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School
– sequence: 8
  givenname: Lauren M.
  surname: Eastman
  fullname: Eastman, Lauren M.
  organization: Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School
– sequence: 9
  givenname: Holden T.
  surname: Maecker
  fullname: Maecker, Holden T.
  organization: Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine
– sequence: 10
  givenname: F. Stephen
  surname: Hodi
  fullname: Hodi, F. Stephen
  email: stephen_hodi@dfci.harvard.edu
  organization: Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Dana-Farber Cancer Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29510697$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9v1DAQxSNUREvpB-CCIiFVXFLGiZ04F6TVlj-VVoJDOVuOPdl1SezFdir12-MlLd2tAOUQ23nvN5nxe5kdWWcxy14TuCCE1-8DBVqyAggvoCp5wZ9lJyUwUhBa1kd76-PsLIQbACBQVZzzF9lx2TICdducZNOlCdFYFfOtR21UNLeYd8aN0v9AnytptdEyYsh753OPYetswDy6XNpoiuX1alHQtNbz_ttlQXIzjpN1cYNebu9yY_MRB2kTMt_KaNDG8Cp73ssh4Nn9-zT7_unj9fJLsfr6-Wq5WBWqAYgF1oAdkUA5tgyrXpOak04CdJoSTjVrgddU9cAQWVc3PdFVT6oOGOcaUVan2dXM1U7eiK03qa074aQRvw-cXwvpo1EDCugotg3oUnWMylRQJVbTomyRIVdtYn2YWdupG1Gr1IeXwwH08Is1G7F2t4JxCk3LEuDdPcC7nxOGKEYTFA5pNuimIEogpCZVySBJ3z6R3rjJ2zQqUdYVT_ff1s2jai1TA8b2LtVVO6hYMFqXtCJkV_biL6r0aByNSpnqTTo_MJzvGTYoh7gJbpiiSVd_KHyzP5E_o3hIVxI0s0B5F4LHXigT5Y6TfsEMgoDYRVnMURYpymIXZcGTkzxxPsD_5ylnT0hau0b_OLR_m34B9N0D4A
CitedBy_id crossref_primary_10_1172_JCI121229
crossref_primary_10_52711_2231_5691_2022_00017
crossref_primary_10_1038_s41590_020_0769_3
crossref_primary_10_1186_s40425_019_0799_2
crossref_primary_10_3389_fimmu_2020_576914
crossref_primary_10_3389_fendo_2021_649863
crossref_primary_10_1016_j_canlet_2025_217620
crossref_primary_10_31083_j_fbl2804069
crossref_primary_10_1002_ctm2_206
crossref_primary_10_3389_fimmu_2020_00372
crossref_primary_10_1186_s40364_020_00209_0
crossref_primary_10_3390_cancers16132427
crossref_primary_10_1038_s41435_021_00138_4
crossref_primary_10_1016_j_eng_2021_06_022
crossref_primary_10_1172_jci_insight_160398
crossref_primary_10_3389_fimmu_2023_1227756
crossref_primary_10_1007_s00262_023_03626_w
crossref_primary_10_3389_fphar_2022_990445
crossref_primary_10_3389_fimmu_2023_1199513
crossref_primary_10_1016_j_ijrobp_2020_08_018
crossref_primary_10_1016_j_intimp_2024_111663
crossref_primary_10_1186_s13046_021_02133_z
crossref_primary_10_3389_fimmu_2023_1198665
crossref_primary_10_1146_annurev_pathol_042020_042741
crossref_primary_10_3389_fimmu_2018_01613
crossref_primary_10_1038_s41568_024_00705_7
crossref_primary_10_1097_CMR_0000000000000631
crossref_primary_10_1016_j_xcrm_2023_100939
crossref_primary_10_1111_1440_1681_13028
crossref_primary_10_3389_fgene_2022_867880
crossref_primary_10_1016_j_patol_2019_08_001
crossref_primary_10_1177_1078155218785238
crossref_primary_10_1007_s00281_022_00980_2
crossref_primary_10_1016_j_ctarc_2021_100489
crossref_primary_10_21682_2311_1267_2021_8_2_73_83
crossref_primary_10_1186_s40164_024_00511_9
crossref_primary_10_1002_1878_0261_13015
crossref_primary_10_1038_s41568_020_0285_7
crossref_primary_10_1007_s00262_018_2285_y
crossref_primary_10_1136_jitc_2022_006007
crossref_primary_10_1002_path_5907
crossref_primary_10_1126_scitranslmed_aat7807
crossref_primary_10_3390_cancers13061363
crossref_primary_10_1016_j_critrevonc_2020_103161
crossref_primary_10_1016_j_eclinm_2021_101134
crossref_primary_10_1136_jitc_2021_003853
crossref_primary_10_1007_s00262_019_02391_z
crossref_primary_10_1136_jitc_2023_006802
crossref_primary_10_1111_febs_14730
crossref_primary_10_1186_s40425_019_0549_5
crossref_primary_10_1016_j_yexcr_2020_112445
crossref_primary_10_3389_fcell_2022_874429
crossref_primary_10_1038_s41467_022_30863_x
crossref_primary_10_1016_j_xcrm_2022_100543
crossref_primary_10_1111_cas_15195
crossref_primary_10_1158_1078_0432_CCR_24_0090
crossref_primary_10_1002_eji_202149608
crossref_primary_10_1007_s10549_021_06128_4
crossref_primary_10_1007_s00335_018_9757_4
crossref_primary_10_1016_j_crmeth_2023_100670
crossref_primary_10_3390_diagnostics12020539
crossref_primary_10_4049_jimmunol_2000523
crossref_primary_10_3389_fgene_2022_1011390
crossref_primary_10_1111_imcb_12456
crossref_primary_10_3389_fimmu_2018_01474
crossref_primary_10_3389_fimmu_2019_01336
crossref_primary_10_1126_sciimmunol_abi5072
crossref_primary_10_1016_j_it_2024_02_005
crossref_primary_10_1080_2162402X_2020_1786888
crossref_primary_10_3389_fimmu_2021_672031
crossref_primary_10_1007_s00432_023_05083_5
crossref_primary_10_1016_j_lungcan_2018_11_038
crossref_primary_10_1136_jitc_2024_010928
crossref_primary_10_18632_oncotarget_27308
crossref_primary_10_3389_fimmu_2020_00164
crossref_primary_10_1200_JCO_19_01056
crossref_primary_10_1158_2159_8290_CD_24_0190
crossref_primary_10_1016_j_mcpro_2023_100569
crossref_primary_10_1080_14737140_2023_2208351
crossref_primary_10_1158_1541_7786_MCR_18_0429
crossref_primary_10_1093_immhor_vlae013
crossref_primary_10_52711_2321_5836_2022_00008
crossref_primary_10_1136_jitc_2019_000432
crossref_primary_10_1186_s12885_023_11699_0
crossref_primary_10_3390_ijms21072411
crossref_primary_10_3390_ijms232113241
crossref_primary_10_1136_jitc_2020_000705
crossref_primary_10_3390_cells9061525
crossref_primary_10_1136_jitc_2023_008056
crossref_primary_10_1002_cyto_a_24901
crossref_primary_10_1186_s12967_023_04184_6
crossref_primary_10_3390_jcm11061500
crossref_primary_10_3390_cancers12102786
crossref_primary_10_1016_j_onano_2022_100107
crossref_primary_10_1016_j_ijrobp_2019_08_053
crossref_primary_10_1186_s13059_021_02526_5
crossref_primary_10_1186_s12967_021_03044_5
crossref_primary_10_1002_path_5306
crossref_primary_10_1007_s40278_018_44599_y
crossref_primary_10_1016_j_cllc_2020_10_018
crossref_primary_10_3390_cancers12061677
crossref_primary_10_3389_fonc_2021_617335
crossref_primary_10_1007_s11427_020_1861_5
crossref_primary_10_2174_1573394715666190913184853
crossref_primary_10_1016_j_ccell_2021_07_004
crossref_primary_10_1002_cti2_1267
crossref_primary_10_1038_s41598_019_42237_3
crossref_primary_10_1186_s40425_019_0608_y
crossref_primary_10_3389_fimmu_2023_1142614
crossref_primary_10_3390_cancers15133448
crossref_primary_10_1080_2162402X_2023_2233403
crossref_primary_10_1111_imr_12766
crossref_primary_10_3389_fonc_2023_1145667
crossref_primary_10_3389_fimmu_2020_586907
crossref_primary_10_3389_fimmu_2021_685370
crossref_primary_10_1111_1759_7714_13677
crossref_primary_10_1158_1078_0432_CCR_19_3936
crossref_primary_10_1126_scitranslmed_abf5107
crossref_primary_10_3390_cancers13081819
crossref_primary_10_1097_CJI_0000000000000408
crossref_primary_10_3390_life12020229
crossref_primary_10_1111_bcp_14352
crossref_primary_10_1007_s00428_018_2435_9
crossref_primary_10_1186_s13046_020_01601_2
crossref_primary_10_21294_1814_4861_2022_21_2_109_117
crossref_primary_10_3389_fimmu_2021_810388
crossref_primary_10_1146_annurev_cancerbio_030419_033604
crossref_primary_10_1007_s10561_018_9734_x
crossref_primary_10_1016_j_gpb_2021_02_004
crossref_primary_10_1155_2020_1938704
crossref_primary_10_1002_jcla_23155
crossref_primary_10_1172_jci_insight_122264
crossref_primary_10_1038_s12276_018_0191_1
crossref_primary_10_3390_cancers13246366
crossref_primary_10_1016_j_patter_2021_100372
crossref_primary_10_1186_s12885_022_10320_0
crossref_primary_10_1158_1078_0432_CCR_23_1572
Cites_doi 10.1016/S0140-6736(14)60958-2
10.1002/cpcy.27
10.1038/nbt.2594
10.1126/science.1198704
10.1056/NEJMoa1305133
10.1111/j.1467-9868.2005.00503.x
10.1126/science.271.5256.1734
10.1056/NEJMoa1503093
10.1056/NEJMoa1104621
10.1200/JCO.2014.56.2736
10.1158/1078-0432.CCR-15-2412
10.1056/NEJMoa1003466
10.1158/1078-0432.CCR-16-0127
10.1038/44385
10.1371/journal.pone.0130142
10.1016/j.ejca.2008.10.026
10.1073/pnas.1408792111
10.1016/j.ejca.2016.12.031
10.1111/j.2517-6161.1995.tb02031.x
10.1002/eji.1830220418
10.1002/cyto.a.23001
10.1016/j.ijrobp.2016.07.005
10.1016/j.biocel.2003.10.019
10.1038/85330
10.1158/2326-6066.CIR-14-0053
10.1016/1074-7613(95)90125-6
10.4049/jimmunol.1100978
10.1084/jem.192.7.1027
10.1023/A:1010933404324
10.1002/cyto.a.22271
ContentType Journal Article
Copyright The Author(s). 2018
COPYRIGHT 2018 BioMed Central Ltd.
2018 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2018
– notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: 2018 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s40425-018-0328-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic




MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2051-1426
EndPage 14
ExternalDocumentID oai_doaj_org_article_0b4e970d2cb54a8e9cd3f79ea9e5e8c9
PMC5840795
A546243115
29510697
10_1186_s40425_018_0328_8
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Cancer Institute
  grantid: 1R21CA205430
  funderid: http://dx.doi.org/10.13039/100000054
– fundername: NCI NIH HHS
  grantid: 1R21CA205430
– fundername: ;
  grantid: 1R21CA205430
GroupedDBID 4.4
53G
5VS
7X7
88E
8FI
8FJ
9YT
ABUWG
ACGFS
ADBBV
ADRAZ
ADUKV
AFKRA
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ASPBG
AVWKF
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBS
EJD
FYUFA
GROUPED_DOAJ
H13
HMCUK
HYE
IAO
IHR
IHW
INH
INR
ITC
KQ8
M1P
M48
M~E
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RMJ
ROL
RPM
RSV
SOJ
UKHRP
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c700t-e60eb1a048e95e3fd1681ba00bd4184d590864cf05ee5b67f1d3f13b0588deea3
IEDL.DBID C6C
ISSN 2051-1426
IngestDate Wed Aug 27 01:32:18 EDT 2025
Thu Aug 21 14:26:22 EDT 2025
Thu Sep 04 23:41:26 EDT 2025
Fri Jul 25 06:39:51 EDT 2025
Tue Jun 17 21:36:48 EDT 2025
Tue Jun 10 20:22:37 EDT 2025
Thu May 22 21:23:45 EDT 2025
Mon Jul 21 06:04:26 EDT 2025
Tue Jul 01 01:55:44 EDT 2025
Thu Apr 24 22:56:06 EDT 2025
Sat Sep 06 07:27:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cytobank
Memory Cell Subsets
Ionomycin Stimulation
Fluidigm
Checkpoint Blockade
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c700t-e60eb1a048e95e3fd1681ba00bd4184d590864cf05ee5b67f1d3f13b0588deea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1186/s40425-018-0328-8
PMID 29510697
PQID 2638118967
PQPubID 2040222
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_0b4e970d2cb54a8e9cd3f79ea9e5e8c9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5840795
proquest_miscellaneous_2011613250
proquest_journals_2638118967
gale_infotracmisc_A546243115
gale_infotracacademiconefile_A546243115
gale_healthsolutions_A546243115
pubmed_primary_29510697
crossref_citationtrail_10_1186_s40425_018_0328_8
crossref_primary_10_1186_s40425_018_0328_8
springer_journals_10_1186_s40425_018_0328_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-06
PublicationDateYYYYMMDD 2018-03-06
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-06
  day: 06
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Journal for immunotherapy of cancer
PublicationTitleAbbrev j. immunotherapy cancer
PublicationTitleAlternate J Immunother Cancer
PublicationYear 2018
Publisher BioMed Central
BioMed Central Ltd
BMJ Publishing Group LTD
BMJ Publishing Group
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMJ Publishing Group LTD
– name: BMJ Publishing Group
References A Martens (328_CR18) 2016; 22
B Weide (328_CR19) 2016; 22
328_CR21
R De Jong (328_CR25) 1992; 22
PB Subrahmanyam (328_CR10) 2017; 82
EA Eisenhauer (328_CR8) 2009; 45
Y Benjamini (328_CR14) 1995; 57
FS Hodi (328_CR1) 2010; 363
C Robert (328_CR2) 2011; 364
O Hamid (328_CR3) 2013; 369
328_CR7
JK Tietze (328_CR29) 2017; 75
D Di Mitri (328_CR26) 2011; 187
C Robert (328_CR4) 2015; 372
FS Hodi (328_CR30) 2014; 2
M Maurer (328_CR32) 2004; 36
H Zou (328_CR15) 2005; 67
L Breiman (328_CR16) 2001; 45
D Lin (328_CR9) 2015; 5
R Melchiotti (328_CR27) 2017; 91
F Sallusto (328_CR24) 1999; 401
T Hastie (328_CR17) 2011
Y Latchman (328_CR23) 2001; 2
EA Tivol (328_CR20) 1995; 3
RV Bruggner (328_CR13) 2014; 111
D Schadendorf (328_CR6) 2015; 33
SM Hiniker (328_CR28) 2016; 96
L Carbognin (328_CR31) 2015; 10
GJ Freeman (328_CR22) 2000; 192
R Finck (328_CR11) 2013; 83
C Robert (328_CR5) 2014; 384
ED Amir (328_CR12) 2013; 31
References_xml – volume: 384
  start-page: 1109
  year: 2014
  ident: 328_CR5
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)60958-2
– volume: 82
  start-page: 9.54.1
  year: 2017
  ident: 328_CR10
  publication-title: Curr Protoc Cytom
  doi: 10.1002/cpcy.27
– volume: 31
  start-page: 545
  year: 2013
  ident: 328_CR12
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2594
– ident: 328_CR7
  doi: 10.1126/science.1198704
– volume: 369
  start-page: 134
  year: 2013
  ident: 328_CR3
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1305133
– volume: 67
  start-page: 301
  year: 2005
  ident: 328_CR15
  publication-title: J Royal Statistical Soc B
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: 328_CR21
  doi: 10.1126/science.271.5256.1734
– volume: 372
  start-page: 2521
  year: 2015
  ident: 328_CR4
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1503093
– volume: 364
  start-page: 2517
  issue: 26
  year: 2011
  ident: 328_CR2
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1104621
– volume: 33
  start-page: 1889
  year: 2015
  ident: 328_CR6
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2014.56.2736
– volume-title: Pam: prediction analysis for microarrays
  year: 2011
  ident: 328_CR17
– volume: 22
  start-page: 2908
  year: 2016
  ident: 328_CR18
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-15-2412
– volume: 363
  start-page: 711
  year: 2010
  ident: 328_CR1
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1003466
– volume: 22
  start-page: 5487
  year: 2016
  ident: 328_CR19
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-16-0127
– volume: 5
  start-page: 1370
  year: 2015
  ident: 328_CR9
  publication-title: Bio Protoc
– volume: 401
  start-page: 708
  year: 1999
  ident: 328_CR24
  publication-title: Nature
  doi: 10.1038/44385
– volume: 10
  start-page: e0130142
  year: 2015
  ident: 328_CR31
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0130142
– volume: 45
  start-page: 228
  year: 2009
  ident: 328_CR8
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2008.10.026
– volume: 111
  start-page: E2770
  year: 2014
  ident: 328_CR13
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1408792111
– volume: 75
  start-page: 268
  year: 2017
  ident: 328_CR29
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2016.12.031
– volume: 57
  start-page: 289
  year: 1995
  ident: 328_CR14
  publication-title: J R Stat Soc Ser B Methodol
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 22
  start-page: 993
  year: 1992
  ident: 328_CR25
  publication-title: Eur J Immunol
  doi: 10.1002/eji.1830220418
– volume: 91
  start-page: 73
  year: 2017
  ident: 328_CR27
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.23001
– volume: 96
  start-page: 578
  year: 2016
  ident: 328_CR28
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2016.07.005
– volume: 36
  start-page: 1882
  year: 2004
  ident: 328_CR32
  publication-title: Int J Biochem Cell Biol
  doi: 10.1016/j.biocel.2003.10.019
– volume: 2
  start-page: 261
  year: 2001
  ident: 328_CR23
  publication-title: Nat Immunol
  doi: 10.1038/85330
– volume: 2
  start-page: 632
  year: 2014
  ident: 328_CR30
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-14-0053
– volume: 3
  start-page: 541
  year: 1995
  ident: 328_CR20
  publication-title: Immunity
  doi: 10.1016/1074-7613(95)90125-6
– volume: 187
  start-page: 2093
  year: 2011
  ident: 328_CR26
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1100978
– volume: 192
  start-page: 1027
  year: 2000
  ident: 328_CR22
  publication-title: J Exp Med
  doi: 10.1084/jem.192.7.1027
– volume: 45
  start-page: 5
  year: 2001
  ident: 328_CR16
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 83
  start-page: 483
  year: 2013
  ident: 328_CR11
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.22271
SSID ssj0001033888
Score 2.465017
Snippet Background While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers...
While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers to...
Background While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers...
BackgroundWhile immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers...
Abstract Background While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18
SubjectTerms Adult
Age
Aged
Analysis
Antibodies
Antineoplastic Agents, Immunological - therapeutic use
Biological markers
Biomarkers
Biomarkers - blood
Cancer
Care and treatment
CD4-Positive T-Lymphocytes - immunology
CD8-Positive T-Lymphocytes - immunology
Chemotherapy
CTLA-4 Antigen - antagonists & inhibitors
Female
Flow cytometry
Gender
Humans
Immune system
Immunology
Immunotherapy
Immunotherapy Biomarkers
Killer Cells, Natural - immunology
Male
Medicine
Medicine & Public Health
Melanoma
Melanoma - blood
Melanoma - drug therapy
Melanoma - immunology
Middle Aged
Oncology
Patient outcomes
Patients
Programmed Cell Death 1 Receptor - antagonists & inhibitors
Research Article
Skin Neoplasms - blood
Skin Neoplasms - drug therapy
Skin Neoplasms - immunology
Treatment Outcome
Tumors
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDI_QHhAviG8KA4KEhASKlrRpmjweG9OEGOJhk_YWpakrThq96a73sP9-dtM7rkPAC29t41Sp87NjN7bD2LsmxgiqBoGrTSO0aoMIEJQwDooaTHSqpGzk02_m5Fx_uSgvdo76opiwVB44Me5A1hpcJZs81qUOFlxsirZyEByUYOOQuied3HGmhr8rEl0va8dtTGXNwUoTPNFzpoyy3Ao7WYiGev2_a-WdZel2yOStfdNhOTp-wO6PdiSfpfE_ZHege8Tuno475Y_Z-oiEt4s9v1rSQ9JqnHLtKRxnySNls5Czv-JotfJlipQF3i84snouDs--zoTG6ybdfz8Sis8pl2TM2Lrm847_hMvQ4Sv5WJ119YSdH38-OzwR4xELIlZS9gKMRGUdUIzBlVC0jTJoxwYp60aj79fQiehGx1aWAGVtqlYh91VRy9LaBiAUT9let-jgOeOtrCAWdRNq9BhbW1pVRKugimgQyLbVGZMbfvs41h-nYzAu_eCHWOPTFHmcIk9T5G3GPmy7XKXiG38j_kSTuCWkutnDA0STH9Hk_4WmjL0hCPiUhLqVfj8rtck1VSbK2PuBguQfhx_DmMaATKBKWhPK_Qklym2cNm9g5ke9sfI5qkP8PGeqjL3dNlNPioXrYLFGGto7UwXarhl7llC5_eicDGbjsHc1weuEK9OWbv5jqCqOlqisHA7r4wbZv4b1R6a_-B9Mf8nu5UkuhTT7bK9fruEVmnp9_XqQ6hvJS1EB
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1db9QwLIIhIV4Q3xQGBAkJCRQtadMkfULHxjQhhnjYpL1FbeLCSaN33McD_x67zd3RIfbWNk6VOLZjxx9h7E0MIYBqQOBuE4VWbS1qqJUwFRQNmFCpkrKRT7-ak3P9-aK8SAduyxRWuZGJvaCOs0Bn5Ac5Egoqw5WxH-a_BN0aRd7VdIXGTXarL12G9Gwv7O6MRaIB5lxyZipnDpaaiBTtZ8ory51wo-2or9r_r2z-a3O6Gjh5xXvab0rH99jdpE3yybD899kN6B6w26fJX_6QrY-Ihbuw4vMFfSTZxinjnoJyFjxQTguZ_EuOuitfDPGywFczjgifisOzLxOh8TkO79-OhOJTyihJeVu_-bTjP-Gy7vCXPNVoXT5i58efzg5PRLpoQQQr5UqAkSiya2RmqEoo2qgMarO1lE3UaAFGuhfd6NDKEqBsjG1VLFpVNLJ0LgLUxWO21806eMp4Ky2Eool1g3Zj60qniuAU2IBqgWxbnTG5wbcPqQo5XYZx6XtrxBk_LJHHJfK0RN5l7N22y3wowXEd8EdaxC0gVc_uP8wW331iRi8bDZWVMQ9NqWucdMD52ArqCkpwocrYKyIBP6SibmWAn5Ta5JrqE2XsbQ9BUgCHH-qUzIBIoHpaI8j9ESRybxg3b8jMJ-mx9Dtaz9jrbTP1pIi4DmZrhCEPmipQg83Yk4Eqt5POSW02Ffa2I3odYWXc0k1_9LXFUR-VtsJhvd9Q9m5Y_0X6s-sn8ZzdyQeOE9Lss73VYg0vUJVbNS97fv0DVxVHLw
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1di9QwMJwniC_it9VTIwiCEi9p0zR9EFnvPA5xxYdbuLfQplNdWLtntwvev3emza72PAXf2mZSksl8JpkZxp5X3ntQJQjUNpXQqi5EAYUSJoekBONzlVI08vSTOZ7pD6fp6Q7blLcKCFxd6tpRPalZu3j94_v5W2T4Nz3DW7O_0kR56BRTsFhshb3CrqJiMuSLTYO132-5SPTHrA1nm5f2HGmnPon_n6L6N1118R7lhcPUXkcd3WQ3gnHJJwM13GI70Nxm16bh-PwOWx8SRze-42ctfSRRxykAn-7otNxTiAvtAKw4mrK8Ha7PAu-WHPE_FwcnHydC43M1vH8-FIrPKcAkhHGd83nDv8GiaPCXPKRsXd1ls6P3JwfHItRdED6TshNgJErwAnkb8hSSulIGjdtCyrLS6BBWVCbdaF_LFCAtTVarKqlVUsrU2gqgSO6x3WbZwAPGa5mBT8qqKNGNrG1qVeKtgsyjlSDrWkdMbvDtfEhKTrUxFq53TqxxwxI5XCJHS-RsxF5uu5wNGTn-BfyOFnELSMm0-w_L9osLvOlkqSHPZBX7MtUFTtrjfLIcihxSsD6P2FMiATdEpm5Fgpuk2sSa0hVF7EUPQWSKw_dFiG1AJFB6rRHk3ggSmdmPmzdk5ja84GKUkTi93GQRe7Ztpp50Qa6B5Rph6EBNJWjQRuz-QJXbScdkRZsce2cjeh1hZdzSzL_2qcbRPJVZjsN6taHsX8P6K9If_hf0I3Y9HhhQSLPHdrt2DY_R0OvKJz37_gSf7E4k
  priority: 102
  providerName: Scholars Portal
Title Distinct predictive biomarker candidates for response to anti-CTLA-4 and anti-PD-1 immunotherapy in melanoma patients
URI https://link.springer.com/article/10.1186/s40425-018-0328-8
https://www.ncbi.nlm.nih.gov/pubmed/29510697
https://www.proquest.com/docview/2638118967
https://www.proquest.com/docview/2011613250
https://pubmed.ncbi.nlm.nih.gov/PMC5840795
https://doaj.org/article/0b4e970d2cb54a8e9cd3f79ea9e5e8c9
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LatwwUDQJlF5K33WbblUoFFpEJVuS5eNmkxBKN4SSQG5Clsd0IfWGfRz6952xvZs4fUAvxrZGRpqXZjyaEWPvqxgjqBIErjaV0KoOIkBQwhaQlWBjoQxlI09P7cmF_nJpLvti0ZQLczt-r5z9vNTEVejwUiJY6oTbYXtGZbaNy9rJze8Uib6Wc33c8o89BytPW6D_dzV8ax26u0fyTqC0XX-OH7GHveHIxx2lH7N70Dxh96d9aPwpWx-StDZxxa8X9JLUGKfketp_s-CR0lfIu19yNFP5otsaC3w154jbmZicfx0LjfdV93x2KBSfUfJIn6L1k88a_gOuQoOf5H051uUzdnF8dD45Ef2ZCiLmUq4EWInaOaDcQmEgqytl0XANUpaVRmevoiPQrY61NACmtHmtqqxWWSmNcxVAyJ6z3WbewEvGa5lDzMoqlOgi1s44lUWnII9oAci61gmTG3z72Bccp3MvrnzreDjrOxJ5JJEnEnmXsI_bLtddtY1_AR8QEbeAVCi7fYH843u587LUUOSySmNpdMBJR5xPXkAowICLRcLeEgv4Lut0K-5-bLRNNZUiStiHFoIEHocfQ5-3gEig0lkDyP0BJApqHDZv2Mz3imLpU9R_OL3C5gl7t22mnrT5rYH5GmEoWKYyNFYT9qLjyu2kU7KQbYG98wG_DrAybGlm39sy4mh6yrzAYX3acPbNsP6K9Ff_Bf2aPUg7ARTS7rPd1WINb9CIW5UjtpNf5iO2d3B0evZt1ArzqP0hgtepdr8ApM5D5Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1rb9Mw0BqdBHxBvAkMZiQQEsia83KcDwh166aOtdWEOmnfTOJcoNJISx9C-1P8Ru7yaMkQ-7ZvSXyObN_b9t0x9iaz1oKbgkBtk4nAzRORQOIKFYOfgrKxG1I08nCk-mfB5_PwfIv9bmJh6FplIxNLQZ1NLe2R73lIKGgMxyr6NPspqGoUna42JTQqsjiBy1_osi0-HvcQv2897-hwfNAXdVUBYSMplwKURPmUIOVCHIKfZ65C0y2RMs0CdHcyKgKuApvLECBMVZS7mZ-7fipDrTOAxMf_3mLbAUW0dtj2_uHo9MtmV0eiy6d1fXzqarW3CIgt0GOnSDZPC91SgGWdgH-1wV_q8OpVzSvntaUaPLrP7tX2K-9WBPeAbUHxkN0e1if0j9iqR0KjsEs-m9NHkqacYvzpGtCcW4qioU2GBUdrmc-rG7rAl1OOKJ6Ig_GgKwJ8zqr3055w-YRiWOpIsUs-KfgPuEgK_CWvs8IuHrOzG0HCE9YppgU8YzyXEVg_zZIUPdVch9r1rXYhsmiIyDwPHCab9Ta2zntO5TcuTOn_aGUqFBlEkSEUGe2w9-susyrpx3XA-4TENSDl6y4_TOffTM3-RqYBxJHMPJuGQYKTtjifKIYkhhC0jR22SyRgquDXtdQx3TBQXkAZkRz2roQguYPDt0kdPoGLQBm8WpA7LUiUF7bd3JCZqeXVwmy4y2Gv183Uk-7gFTBdIQyd2bk-2swOe1pR5XrSHhnqKsbeUYteW6vSbikm38ts5mgByyjGYX1oKHszrP8u-vPrJ7HL7vTHw4EZHI9OXrC7XsV9Qqod1lnOV_ASDcll-qrmXs6-3rTA-AM5YIXq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSouiDeBQo0EQgJZa-dhOweEli6rlj7UQyv1ZhJnAiuV7LIPof41fh0zSXaXFNFbb7vxJLI9488z9jwYe11470HlIHC3KUSsykxkkCmhU4hy0D5VCUUjHx3rvbP4y3lyvsF-L2NhyK1yiYk1UBdjT2fkvRAFBZXhVJte2bpFnAyGHyc_BVWQopvWZTmNRkQO4PIXmm-zD_sD5PWbMBx-Pt3dE22FAeGNlHMBWiJWZSjFkCYQlYXSqMZlUuZFjKZPQQXBdexLmQAkuTalKqJSRblMrC0Asgi_e4vdNhFqVbiWzLlZn-9INP6sbS9SldW9WUwLBG13imkLrbCdrbCuGPDvvvDXxnjVafPKzW29IQ7vsbutJsv7jejdZxtQPWBbR-1d_UO2GBB8VH7OJ1N6SLjKKdqfHIKm3FM8DR03zDjqzXza-OoCn485Mnskdk8P-yLG30Xz_2QgFB9RNEsbM3bJRxX_ARdZhZ_kbX7Y2SN2diMseMw2q3EFTxkvpQEf5UWWo81a2sSqyFsFxqNKIssyDphczrfzbQZ0KsRx4WpLyGrXsMghixyxyNmAvVu9MmnSf1xH_ImYuCKkzN31g_H0m2uBwMk8htTIIvR5Emc4aI_jMSlkKSRgfRqwHRIB14TBrvDH9ZNYhzHlRgrY25qCEAi777M2kAIngXJ5dSi3O5SIHL7bvBQz1yLXzK3XWcBerZrpTfLGq2C8QBq6vVMRas8Be9JI5WrQIansOsW3TUdeO7PSbalG3-u85qgLS5Nit94vJXvdrf9O-rPrB7HDthAm3OH-8cFzdidsFp-QepttzqcLeIEa5Tx_WS9dzr7eNFb8AdaOiLE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinct+predictive+biomarker+candidates+for+response+to+anti-CTLA-4+and+anti-PD-1+immunotherapy+in+melanoma+patients&rft.jtitle=Journal+for+immunotherapy+of+cancer&rft.au=Subrahmanyam%2C+Priyanka+B.&rft.au=Dong%2C+Zhiwan&rft.au=Gusenleitner%2C+Daniel&rft.au=Giobbie-Hurder%2C+Anita&rft.date=2018-03-06&rft.pub=BioMed+Central&rft.eissn=2051-1426&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1186%2Fs40425-018-0328-8&rft.externalDocID=10_1186_s40425_018_0328_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-1426&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-1426&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-1426&client=summon