Distinct predictive biomarker candidates for response to anti-CTLA-4 and anti-PD-1 immunotherapy in melanoma patients
Background While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers to determine who will likely benefit most from which therapy. To date, most biomarkers of response have been identified in the tumors themse...
Saved in:
Published in | Journal for immunotherapy of cancer Vol. 6; no. 1; pp. 18 - 14 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
06.03.2018
BioMed Central Ltd BMJ Publishing Group LTD BMJ Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2051-1426 2051-1426 |
DOI | 10.1186/s40425-018-0328-8 |
Cover
Abstract | Background
While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers to determine who will likely benefit most from which therapy. To date, most biomarkers of response have been identified in the tumors themselves. Biomarkers that could be assessed from peripheral blood would be even more desirable, because of ease of access and reproducibility of sampling.
Methods
We used mass cytometry (CyTOF) to comprehensively profile peripheral blood of melanoma patients, in order to find predictive biomarkers of response to anti-CTLA-4 or anti-PD-1 therapy. Using a panel of ~ 40 surface and intracellular markers, we performed in-depth phenotypic and functional immune profiling to identify potential predictive biomarker candidates.
Results
Immune profiling of baseline peripheral blood samples using CyTOF revealed that anti-CTLA-4 and anti-PD-1 therapies have distinct sets of candidate biomarkers. The distribution of CD4
+
and CD8
+
memory/non-memory cells and other memory subsets was different between responders and non-responders to anti-CTLA-4 therapy. In anti-PD-1 (but not anti-CTLA-4) treated patients, we discovered differences in CD69 and MIP-1β expressing NK cells between responders and non-responders. Finally, multivariate analysis was used to develop a model for the prediction of response.
Conclusions
Our results indicate that anti-CTLA-4 and anti-PD-1 have distinct predictive biomarker candidates. CD4
+
and CD8
+
memory T cell subsets play an important role in response to anti-CTLA-4, and are potential biomarker candidates. For anti-PD-1 therapy, NK cell subsets (but not memory T cell subsets) correlated with clinical response to therapy. These functionally active NK cell subsets likely play a critical role in the anti-tumor response triggered by anti-PD-1. |
---|---|
AbstractList | Background While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers to determine who will likely benefit most from which therapy. To date, most biomarkers of response have been identified in the tumors themselves. Biomarkers that could be assessed from peripheral blood would be even more desirable, because of ease of access and reproducibility of sampling. Methods We used mass cytometry (CyTOF) to comprehensively profile peripheral blood of melanoma patients, in order to find predictive biomarkers of response to anti-CTLA-4 or anti-PD-1 therapy. Using a panel of ~ 40 surface and intracellular markers, we performed in-depth phenotypic and functional immune profiling to identify potential predictive biomarker candidates. Results Immune profiling of baseline peripheral blood samples using CyTOF revealed that anti-CTLA-4 and anti-PD-1 therapies have distinct sets of candidate biomarkers. The distribution of CD4.sup.+ and CD8.sup.+ memory/non-memory cells and other memory subsets was different between responders and non-responders to anti-CTLA-4 therapy. In anti-PD-1 (but not anti-CTLA-4) treated patients, we discovered differences in CD69 and MIP-1[beta] expressing NK cells between responders and non-responders. Finally, multivariate analysis was used to develop a model for the prediction of response. Conclusions Our results indicate that anti-CTLA-4 and anti-PD-1 have distinct predictive biomarker candidates. CD4.sup.+ and CD8.sup.+ memory T cell subsets play an important role in response to anti-CTLA-4, and are potential biomarker candidates. For anti-PD-1 therapy, NK cell subsets (but not memory T cell subsets) correlated with clinical response to therapy. These functionally active NK cell subsets likely play a critical role in the anti-tumor response triggered by anti-PD-1. While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers to determine who will likely benefit most from which therapy. To date, most biomarkers of response have been identified in the tumors themselves. Biomarkers that could be assessed from peripheral blood would be even more desirable, because of ease of access and reproducibility of sampling.BACKGROUNDWhile immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers to determine who will likely benefit most from which therapy. To date, most biomarkers of response have been identified in the tumors themselves. Biomarkers that could be assessed from peripheral blood would be even more desirable, because of ease of access and reproducibility of sampling.We used mass cytometry (CyTOF) to comprehensively profile peripheral blood of melanoma patients, in order to find predictive biomarkers of response to anti-CTLA-4 or anti-PD-1 therapy. Using a panel of ~ 40 surface and intracellular markers, we performed in-depth phenotypic and functional immune profiling to identify potential predictive biomarker candidates.METHODSWe used mass cytometry (CyTOF) to comprehensively profile peripheral blood of melanoma patients, in order to find predictive biomarkers of response to anti-CTLA-4 or anti-PD-1 therapy. Using a panel of ~ 40 surface and intracellular markers, we performed in-depth phenotypic and functional immune profiling to identify potential predictive biomarker candidates.Immune profiling of baseline peripheral blood samples using CyTOF revealed that anti-CTLA-4 and anti-PD-1 therapies have distinct sets of candidate biomarkers. The distribution of CD4+ and CD8+ memory/non-memory cells and other memory subsets was different between responders and non-responders to anti-CTLA-4 therapy. In anti-PD-1 (but not anti-CTLA-4) treated patients, we discovered differences in CD69 and MIP-1β expressing NK cells between responders and non-responders. Finally, multivariate analysis was used to develop a model for the prediction of response.RESULTSImmune profiling of baseline peripheral blood samples using CyTOF revealed that anti-CTLA-4 and anti-PD-1 therapies have distinct sets of candidate biomarkers. The distribution of CD4+ and CD8+ memory/non-memory cells and other memory subsets was different between responders and non-responders to anti-CTLA-4 therapy. In anti-PD-1 (but not anti-CTLA-4) treated patients, we discovered differences in CD69 and MIP-1β expressing NK cells between responders and non-responders. Finally, multivariate analysis was used to develop a model for the prediction of response.Our results indicate that anti-CTLA-4 and anti-PD-1 have distinct predictive biomarker candidates. CD4+ and CD8+ memory T cell subsets play an important role in response to anti-CTLA-4, and are potential biomarker candidates. For anti-PD-1 therapy, NK cell subsets (but not memory T cell subsets) correlated with clinical response to therapy. These functionally active NK cell subsets likely play a critical role in the anti-tumor response triggered by anti-PD-1.CONCLUSIONSOur results indicate that anti-CTLA-4 and anti-PD-1 have distinct predictive biomarker candidates. CD4+ and CD8+ memory T cell subsets play an important role in response to anti-CTLA-4, and are potential biomarker candidates. For anti-PD-1 therapy, NK cell subsets (but not memory T cell subsets) correlated with clinical response to therapy. These functionally active NK cell subsets likely play a critical role in the anti-tumor response triggered by anti-PD-1. Abstract Background While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers to determine who will likely benefit most from which therapy. To date, most biomarkers of response have been identified in the tumors themselves. Biomarkers that could be assessed from peripheral blood would be even more desirable, because of ease of access and reproducibility of sampling. Methods We used mass cytometry (CyTOF) to comprehensively profile peripheral blood of melanoma patients, in order to find predictive biomarkers of response to anti-CTLA-4 or anti-PD-1 therapy. Using a panel of ~ 40 surface and intracellular markers, we performed in-depth phenotypic and functional immune profiling to identify potential predictive biomarker candidates. Results Immune profiling of baseline peripheral blood samples using CyTOF revealed that anti-CTLA-4 and anti-PD-1 therapies have distinct sets of candidate biomarkers. The distribution of CD4+ and CD8+ memory/non-memory cells and other memory subsets was different between responders and non-responders to anti-CTLA-4 therapy. In anti-PD-1 (but not anti-CTLA-4) treated patients, we discovered differences in CD69 and MIP-1β expressing NK cells between responders and non-responders. Finally, multivariate analysis was used to develop a model for the prediction of response. Conclusions Our results indicate that anti-CTLA-4 and anti-PD-1 have distinct predictive biomarker candidates. CD4+ and CD8+ memory T cell subsets play an important role in response to anti-CTLA-4, and are potential biomarker candidates. For anti-PD-1 therapy, NK cell subsets (but not memory T cell subsets) correlated with clinical response to therapy. These functionally active NK cell subsets likely play a critical role in the anti-tumor response triggered by anti-PD-1. Background While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers to determine who will likely benefit most from which therapy. To date, most biomarkers of response have been identified in the tumors themselves. Biomarkers that could be assessed from peripheral blood would be even more desirable, because of ease of access and reproducibility of sampling. Methods We used mass cytometry (CyTOF) to comprehensively profile peripheral blood of melanoma patients, in order to find predictive biomarkers of response to anti-CTLA-4 or anti-PD-1 therapy. Using a panel of ~ 40 surface and intracellular markers, we performed in-depth phenotypic and functional immune profiling to identify potential predictive biomarker candidates. Results Immune profiling of baseline peripheral blood samples using CyTOF revealed that anti-CTLA-4 and anti-PD-1 therapies have distinct sets of candidate biomarkers. The distribution of CD4 + and CD8 + memory/non-memory cells and other memory subsets was different between responders and non-responders to anti-CTLA-4 therapy. In anti-PD-1 (but not anti-CTLA-4) treated patients, we discovered differences in CD69 and MIP-1β expressing NK cells between responders and non-responders. Finally, multivariate analysis was used to develop a model for the prediction of response. Conclusions Our results indicate that anti-CTLA-4 and anti-PD-1 have distinct predictive biomarker candidates. CD4 + and CD8 + memory T cell subsets play an important role in response to anti-CTLA-4, and are potential biomarker candidates. For anti-PD-1 therapy, NK cell subsets (but not memory T cell subsets) correlated with clinical response to therapy. These functionally active NK cell subsets likely play a critical role in the anti-tumor response triggered by anti-PD-1. While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers to determine who will likely benefit most from which therapy. To date, most biomarkers of response have been identified in the tumors themselves. Biomarkers that could be assessed from peripheral blood would be even more desirable, because of ease of access and reproducibility of sampling. We used mass cytometry (CyTOF) to comprehensively profile peripheral blood of melanoma patients, in order to find predictive biomarkers of response to anti-CTLA-4 or anti-PD-1 therapy. Using a panel of ~ 40 surface and intracellular markers, we performed in-depth phenotypic and functional immune profiling to identify potential predictive biomarker candidates. Immune profiling of baseline peripheral blood samples using CyTOF revealed that anti-CTLA-4 and anti-PD-1 therapies have distinct sets of candidate biomarkers. The distribution of CD4.sup.+ and CD8.sup.+ memory/non-memory cells and other memory subsets was different between responders and non-responders to anti-CTLA-4 therapy. In anti-PD-1 (but not anti-CTLA-4) treated patients, we discovered differences in CD69 and MIP-1[beta] expressing NK cells between responders and non-responders. Finally, multivariate analysis was used to develop a model for the prediction of response. Our results indicate that anti-CTLA-4 and anti-PD-1 have distinct predictive biomarker candidates. CD4.sup.+ and CD8.sup.+ memory T cell subsets play an important role in response to anti-CTLA-4, and are potential biomarker candidates. For anti-PD-1 therapy, NK cell subsets (but not memory T cell subsets) correlated with clinical response to therapy. These functionally active NK cell subsets likely play a critical role in the anti-tumor response triggered by anti-PD-1. While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers to determine who will likely benefit most from which therapy. To date, most biomarkers of response have been identified in the tumors themselves. Biomarkers that could be assessed from peripheral blood would be even more desirable, because of ease of access and reproducibility of sampling. We used mass cytometry (CyTOF) to comprehensively profile peripheral blood of melanoma patients, in order to find predictive biomarkers of response to anti-CTLA-4 or anti-PD-1 therapy. Using a panel of ~ 40 surface and intracellular markers, we performed in-depth phenotypic and functional immune profiling to identify potential predictive biomarker candidates. Immune profiling of baseline peripheral blood samples using CyTOF revealed that anti-CTLA-4 and anti-PD-1 therapies have distinct sets of candidate biomarkers. The distribution of CD4 and CD8 memory/non-memory cells and other memory subsets was different between responders and non-responders to anti-CTLA-4 therapy. In anti-PD-1 (but not anti-CTLA-4) treated patients, we discovered differences in CD69 and MIP-1β expressing NK cells between responders and non-responders. Finally, multivariate analysis was used to develop a model for the prediction of response. Our results indicate that anti-CTLA-4 and anti-PD-1 have distinct predictive biomarker candidates. CD4 and CD8 memory T cell subsets play an important role in response to anti-CTLA-4, and are potential biomarker candidates. For anti-PD-1 therapy, NK cell subsets (but not memory T cell subsets) correlated with clinical response to therapy. These functionally active NK cell subsets likely play a critical role in the anti-tumor response triggered by anti-PD-1. BackgroundWhile immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers to determine who will likely benefit most from which therapy. To date, most biomarkers of response have been identified in the tumors themselves. Biomarkers that could be assessed from peripheral blood would be even more desirable, because of ease of access and reproducibility of sampling.MethodsWe used mass cytometry (CyTOF) to comprehensively profile peripheral blood of melanoma patients, in order to find predictive biomarkers of response to anti-CTLA-4 or anti-PD-1 therapy. Using a panel of ~ 40 surface and intracellular markers, we performed in-depth phenotypic and functional immune profiling to identify potential predictive biomarker candidates.ResultsImmune profiling of baseline peripheral blood samples using CyTOF revealed that anti-CTLA-4 and anti-PD-1 therapies have distinct sets of candidate biomarkers. The distribution of CD4+ and CD8+ memory/non-memory cells and other memory subsets was different between responders and non-responders to anti-CTLA-4 therapy. In anti-PD-1 (but not anti-CTLA-4) treated patients, we discovered differences in CD69 and MIP-1β expressing NK cells between responders and non-responders. Finally, multivariate analysis was used to develop a model for the prediction of response.ConclusionsOur results indicate that anti-CTLA-4 and anti-PD-1 have distinct predictive biomarker candidates. CD4+ and CD8+ memory T cell subsets play an important role in response to anti-CTLA-4, and are potential biomarker candidates. For anti-PD-1 therapy, NK cell subsets (but not memory T cell subsets) correlated with clinical response to therapy. These functionally active NK cell subsets likely play a critical role in the anti-tumor response triggered by anti-PD-1. |
ArticleNumber | 18 |
Audience | Academic |
Author | Maecker, Holden T. Zhou, Jun Manos, Michael Subrahmanyam, Priyanka B. Hodi, F. Stephen Dong, Zhiwan Eastman, Lauren M. Gusenleitner, Daniel Severgnini, Mariano Giobbie-Hurder, Anita |
Author_xml | – sequence: 1 givenname: Priyanka B. surname: Subrahmanyam fullname: Subrahmanyam, Priyanka B. organization: Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine – sequence: 2 givenname: Zhiwan surname: Dong fullname: Dong, Zhiwan organization: Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School – sequence: 3 givenname: Daniel surname: Gusenleitner fullname: Gusenleitner, Daniel organization: Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School – sequence: 4 givenname: Anita surname: Giobbie-Hurder fullname: Giobbie-Hurder, Anita organization: Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute – sequence: 5 givenname: Mariano surname: Severgnini fullname: Severgnini, Mariano organization: Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School – sequence: 6 givenname: Jun surname: Zhou fullname: Zhou, Jun organization: Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School – sequence: 7 givenname: Michael surname: Manos fullname: Manos, Michael organization: Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School – sequence: 8 givenname: Lauren M. surname: Eastman fullname: Eastman, Lauren M. organization: Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School – sequence: 9 givenname: Holden T. surname: Maecker fullname: Maecker, Holden T. organization: Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine – sequence: 10 givenname: F. Stephen surname: Hodi fullname: Hodi, F. Stephen email: stephen_hodi@dfci.harvard.edu organization: Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Dana-Farber Cancer Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29510697$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9v1DAQxSNUREvpB-CCIiFVXFLGiZ04F6TVlj-VVoJDOVuOPdl1SezFdir12-MlLd2tAOUQ23nvN5nxe5kdWWcxy14TuCCE1-8DBVqyAggvoCp5wZ9lJyUwUhBa1kd76-PsLIQbACBQVZzzF9lx2TICdducZNOlCdFYFfOtR21UNLeYd8aN0v9AnytptdEyYsh753OPYetswDy6XNpoiuX1alHQtNbz_ttlQXIzjpN1cYNebu9yY_MRB2kTMt_KaNDG8Cp73ssh4Nn9-zT7_unj9fJLsfr6-Wq5WBWqAYgF1oAdkUA5tgyrXpOak04CdJoSTjVrgddU9cAQWVc3PdFVT6oOGOcaUVan2dXM1U7eiK03qa074aQRvw-cXwvpo1EDCugotg3oUnWMylRQJVbTomyRIVdtYn2YWdupG1Gr1IeXwwH08Is1G7F2t4JxCk3LEuDdPcC7nxOGKEYTFA5pNuimIEogpCZVySBJ3z6R3rjJ2zQqUdYVT_ff1s2jai1TA8b2LtVVO6hYMFqXtCJkV_biL6r0aByNSpnqTTo_MJzvGTYoh7gJbpiiSVd_KHyzP5E_o3hIVxI0s0B5F4LHXigT5Y6TfsEMgoDYRVnMURYpymIXZcGTkzxxPsD_5ylnT0hau0b_OLR_m34B9N0D4A |
CitedBy_id | crossref_primary_10_1172_JCI121229 crossref_primary_10_52711_2231_5691_2022_00017 crossref_primary_10_1038_s41590_020_0769_3 crossref_primary_10_1186_s40425_019_0799_2 crossref_primary_10_3389_fimmu_2020_576914 crossref_primary_10_3389_fendo_2021_649863 crossref_primary_10_1016_j_canlet_2025_217620 crossref_primary_10_31083_j_fbl2804069 crossref_primary_10_1002_ctm2_206 crossref_primary_10_3389_fimmu_2020_00372 crossref_primary_10_1186_s40364_020_00209_0 crossref_primary_10_3390_cancers16132427 crossref_primary_10_1038_s41435_021_00138_4 crossref_primary_10_1016_j_eng_2021_06_022 crossref_primary_10_1172_jci_insight_160398 crossref_primary_10_3389_fimmu_2023_1227756 crossref_primary_10_1007_s00262_023_03626_w crossref_primary_10_3389_fphar_2022_990445 crossref_primary_10_3389_fimmu_2023_1199513 crossref_primary_10_1016_j_ijrobp_2020_08_018 crossref_primary_10_1016_j_intimp_2024_111663 crossref_primary_10_1186_s13046_021_02133_z crossref_primary_10_3389_fimmu_2023_1198665 crossref_primary_10_1146_annurev_pathol_042020_042741 crossref_primary_10_3389_fimmu_2018_01613 crossref_primary_10_1038_s41568_024_00705_7 crossref_primary_10_1097_CMR_0000000000000631 crossref_primary_10_1016_j_xcrm_2023_100939 crossref_primary_10_1111_1440_1681_13028 crossref_primary_10_3389_fgene_2022_867880 crossref_primary_10_1016_j_patol_2019_08_001 crossref_primary_10_1177_1078155218785238 crossref_primary_10_1007_s00281_022_00980_2 crossref_primary_10_1016_j_ctarc_2021_100489 crossref_primary_10_21682_2311_1267_2021_8_2_73_83 crossref_primary_10_1186_s40164_024_00511_9 crossref_primary_10_1002_1878_0261_13015 crossref_primary_10_1038_s41568_020_0285_7 crossref_primary_10_1007_s00262_018_2285_y crossref_primary_10_1136_jitc_2022_006007 crossref_primary_10_1002_path_5907 crossref_primary_10_1126_scitranslmed_aat7807 crossref_primary_10_3390_cancers13061363 crossref_primary_10_1016_j_critrevonc_2020_103161 crossref_primary_10_1016_j_eclinm_2021_101134 crossref_primary_10_1136_jitc_2021_003853 crossref_primary_10_1007_s00262_019_02391_z crossref_primary_10_1136_jitc_2023_006802 crossref_primary_10_1111_febs_14730 crossref_primary_10_1186_s40425_019_0549_5 crossref_primary_10_1016_j_yexcr_2020_112445 crossref_primary_10_3389_fcell_2022_874429 crossref_primary_10_1038_s41467_022_30863_x crossref_primary_10_1016_j_xcrm_2022_100543 crossref_primary_10_1111_cas_15195 crossref_primary_10_1158_1078_0432_CCR_24_0090 crossref_primary_10_1002_eji_202149608 crossref_primary_10_1007_s10549_021_06128_4 crossref_primary_10_1007_s00335_018_9757_4 crossref_primary_10_1016_j_crmeth_2023_100670 crossref_primary_10_3390_diagnostics12020539 crossref_primary_10_4049_jimmunol_2000523 crossref_primary_10_3389_fgene_2022_1011390 crossref_primary_10_1111_imcb_12456 crossref_primary_10_3389_fimmu_2018_01474 crossref_primary_10_3389_fimmu_2019_01336 crossref_primary_10_1126_sciimmunol_abi5072 crossref_primary_10_1016_j_it_2024_02_005 crossref_primary_10_1080_2162402X_2020_1786888 crossref_primary_10_3389_fimmu_2021_672031 crossref_primary_10_1007_s00432_023_05083_5 crossref_primary_10_1016_j_lungcan_2018_11_038 crossref_primary_10_1136_jitc_2024_010928 crossref_primary_10_18632_oncotarget_27308 crossref_primary_10_3389_fimmu_2020_00164 crossref_primary_10_1200_JCO_19_01056 crossref_primary_10_1158_2159_8290_CD_24_0190 crossref_primary_10_1016_j_mcpro_2023_100569 crossref_primary_10_1080_14737140_2023_2208351 crossref_primary_10_1158_1541_7786_MCR_18_0429 crossref_primary_10_1093_immhor_vlae013 crossref_primary_10_52711_2321_5836_2022_00008 crossref_primary_10_1136_jitc_2019_000432 crossref_primary_10_1186_s12885_023_11699_0 crossref_primary_10_3390_ijms21072411 crossref_primary_10_3390_ijms232113241 crossref_primary_10_1136_jitc_2020_000705 crossref_primary_10_3390_cells9061525 crossref_primary_10_1136_jitc_2023_008056 crossref_primary_10_1002_cyto_a_24901 crossref_primary_10_1186_s12967_023_04184_6 crossref_primary_10_3390_jcm11061500 crossref_primary_10_3390_cancers12102786 crossref_primary_10_1016_j_onano_2022_100107 crossref_primary_10_1016_j_ijrobp_2019_08_053 crossref_primary_10_1186_s13059_021_02526_5 crossref_primary_10_1186_s12967_021_03044_5 crossref_primary_10_1002_path_5306 crossref_primary_10_1007_s40278_018_44599_y crossref_primary_10_1016_j_cllc_2020_10_018 crossref_primary_10_3390_cancers12061677 crossref_primary_10_3389_fonc_2021_617335 crossref_primary_10_1007_s11427_020_1861_5 crossref_primary_10_2174_1573394715666190913184853 crossref_primary_10_1016_j_ccell_2021_07_004 crossref_primary_10_1002_cti2_1267 crossref_primary_10_1038_s41598_019_42237_3 crossref_primary_10_1186_s40425_019_0608_y crossref_primary_10_3389_fimmu_2023_1142614 crossref_primary_10_3390_cancers15133448 crossref_primary_10_1080_2162402X_2023_2233403 crossref_primary_10_1111_imr_12766 crossref_primary_10_3389_fonc_2023_1145667 crossref_primary_10_3389_fimmu_2020_586907 crossref_primary_10_3389_fimmu_2021_685370 crossref_primary_10_1111_1759_7714_13677 crossref_primary_10_1158_1078_0432_CCR_19_3936 crossref_primary_10_1126_scitranslmed_abf5107 crossref_primary_10_3390_cancers13081819 crossref_primary_10_1097_CJI_0000000000000408 crossref_primary_10_3390_life12020229 crossref_primary_10_1111_bcp_14352 crossref_primary_10_1007_s00428_018_2435_9 crossref_primary_10_1186_s13046_020_01601_2 crossref_primary_10_21294_1814_4861_2022_21_2_109_117 crossref_primary_10_3389_fimmu_2021_810388 crossref_primary_10_1146_annurev_cancerbio_030419_033604 crossref_primary_10_1007_s10561_018_9734_x crossref_primary_10_1016_j_gpb_2021_02_004 crossref_primary_10_1155_2020_1938704 crossref_primary_10_1002_jcla_23155 crossref_primary_10_1172_jci_insight_122264 crossref_primary_10_1038_s12276_018_0191_1 crossref_primary_10_3390_cancers13246366 crossref_primary_10_1016_j_patter_2021_100372 crossref_primary_10_1186_s12885_022_10320_0 crossref_primary_10_1158_1078_0432_CCR_23_1572 |
Cites_doi | 10.1016/S0140-6736(14)60958-2 10.1002/cpcy.27 10.1038/nbt.2594 10.1126/science.1198704 10.1056/NEJMoa1305133 10.1111/j.1467-9868.2005.00503.x 10.1126/science.271.5256.1734 10.1056/NEJMoa1503093 10.1056/NEJMoa1104621 10.1200/JCO.2014.56.2736 10.1158/1078-0432.CCR-15-2412 10.1056/NEJMoa1003466 10.1158/1078-0432.CCR-16-0127 10.1038/44385 10.1371/journal.pone.0130142 10.1016/j.ejca.2008.10.026 10.1073/pnas.1408792111 10.1016/j.ejca.2016.12.031 10.1111/j.2517-6161.1995.tb02031.x 10.1002/eji.1830220418 10.1002/cyto.a.23001 10.1016/j.ijrobp.2016.07.005 10.1016/j.biocel.2003.10.019 10.1038/85330 10.1158/2326-6066.CIR-14-0053 10.1016/1074-7613(95)90125-6 10.4049/jimmunol.1100978 10.1084/jem.192.7.1027 10.1023/A:1010933404324 10.1002/cyto.a.22271 |
ContentType | Journal Article |
Copyright | The Author(s). 2018 COPYRIGHT 2018 BioMed Central Ltd. 2018 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s). 2018 – notice: COPYRIGHT 2018 BioMed Central Ltd. – notice: 2018 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s40425-018-0328-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2051-1426 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_0b4e970d2cb54a8e9cd3f79ea9e5e8c9 PMC5840795 A546243115 29510697 10_1186_s40425_018_0328_8 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Cancer Institute grantid: 1R21CA205430 funderid: http://dx.doi.org/10.13039/100000054 – fundername: NCI NIH HHS grantid: 1R21CA205430 – fundername: ; grantid: 1R21CA205430 |
GroupedDBID | 4.4 53G 5VS 7X7 88E 8FI 8FJ 9YT ABUWG ACGFS ADBBV ADRAZ ADUKV AFKRA AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ASPBG AVWKF BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU DIK EBS EJD FYUFA GROUPED_DOAJ H13 HMCUK HYE IAO IHR IHW INH INR ITC KQ8 M1P M48 M~E OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RMJ ROL RPM RSV SOJ UKHRP AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c700t-e60eb1a048e95e3fd1681ba00bd4184d590864cf05ee5b67f1d3f13b0588deea3 |
IEDL.DBID | C6C |
ISSN | 2051-1426 |
IngestDate | Wed Aug 27 01:32:18 EDT 2025 Thu Aug 21 14:26:22 EDT 2025 Thu Sep 04 23:41:26 EDT 2025 Fri Jul 25 06:39:51 EDT 2025 Tue Jun 17 21:36:48 EDT 2025 Tue Jun 10 20:22:37 EDT 2025 Thu May 22 21:23:45 EDT 2025 Mon Jul 21 06:04:26 EDT 2025 Tue Jul 01 01:55:44 EDT 2025 Thu Apr 24 22:56:06 EDT 2025 Sat Sep 06 07:27:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Cytobank Memory Cell Subsets Ionomycin Stimulation Fluidigm Checkpoint Blockade |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c700t-e60eb1a048e95e3fd1681ba00bd4184d590864cf05ee5b67f1d3f13b0588deea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doi.org/10.1186/s40425-018-0328-8 |
PMID | 29510697 |
PQID | 2638118967 |
PQPubID | 2040222 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0b4e970d2cb54a8e9cd3f79ea9e5e8c9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5840795 proquest_miscellaneous_2011613250 proquest_journals_2638118967 gale_infotracmisc_A546243115 gale_infotracacademiconefile_A546243115 gale_healthsolutions_A546243115 pubmed_primary_29510697 crossref_citationtrail_10_1186_s40425_018_0328_8 crossref_primary_10_1186_s40425_018_0328_8 springer_journals_10_1186_s40425_018_0328_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-06 |
PublicationDateYYYYMMDD | 2018-03-06 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Journal for immunotherapy of cancer |
PublicationTitleAbbrev | j. immunotherapy cancer |
PublicationTitleAlternate | J Immunother Cancer |
PublicationYear | 2018 |
Publisher | BioMed Central BioMed Central Ltd BMJ Publishing Group LTD BMJ Publishing Group |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMJ Publishing Group LTD – name: BMJ Publishing Group |
References | A Martens (328_CR18) 2016; 22 B Weide (328_CR19) 2016; 22 328_CR21 R De Jong (328_CR25) 1992; 22 PB Subrahmanyam (328_CR10) 2017; 82 EA Eisenhauer (328_CR8) 2009; 45 Y Benjamini (328_CR14) 1995; 57 FS Hodi (328_CR1) 2010; 363 C Robert (328_CR2) 2011; 364 O Hamid (328_CR3) 2013; 369 328_CR7 JK Tietze (328_CR29) 2017; 75 D Di Mitri (328_CR26) 2011; 187 C Robert (328_CR4) 2015; 372 FS Hodi (328_CR30) 2014; 2 M Maurer (328_CR32) 2004; 36 H Zou (328_CR15) 2005; 67 L Breiman (328_CR16) 2001; 45 D Lin (328_CR9) 2015; 5 R Melchiotti (328_CR27) 2017; 91 F Sallusto (328_CR24) 1999; 401 T Hastie (328_CR17) 2011 Y Latchman (328_CR23) 2001; 2 EA Tivol (328_CR20) 1995; 3 RV Bruggner (328_CR13) 2014; 111 D Schadendorf (328_CR6) 2015; 33 SM Hiniker (328_CR28) 2016; 96 L Carbognin (328_CR31) 2015; 10 GJ Freeman (328_CR22) 2000; 192 R Finck (328_CR11) 2013; 83 C Robert (328_CR5) 2014; 384 ED Amir (328_CR12) 2013; 31 |
References_xml | – volume: 384 start-page: 1109 year: 2014 ident: 328_CR5 publication-title: Lancet doi: 10.1016/S0140-6736(14)60958-2 – volume: 82 start-page: 9.54.1 year: 2017 ident: 328_CR10 publication-title: Curr Protoc Cytom doi: 10.1002/cpcy.27 – volume: 31 start-page: 545 year: 2013 ident: 328_CR12 publication-title: Nat Biotechnol doi: 10.1038/nbt.2594 – ident: 328_CR7 doi: 10.1126/science.1198704 – volume: 369 start-page: 134 year: 2013 ident: 328_CR3 publication-title: N Engl J Med doi: 10.1056/NEJMoa1305133 – volume: 67 start-page: 301 year: 2005 ident: 328_CR15 publication-title: J Royal Statistical Soc B doi: 10.1111/j.1467-9868.2005.00503.x – ident: 328_CR21 doi: 10.1126/science.271.5256.1734 – volume: 372 start-page: 2521 year: 2015 ident: 328_CR4 publication-title: N Engl J Med doi: 10.1056/NEJMoa1503093 – volume: 364 start-page: 2517 issue: 26 year: 2011 ident: 328_CR2 publication-title: N Engl J Med doi: 10.1056/NEJMoa1104621 – volume: 33 start-page: 1889 year: 2015 ident: 328_CR6 publication-title: J Clin Oncol doi: 10.1200/JCO.2014.56.2736 – volume-title: Pam: prediction analysis for microarrays year: 2011 ident: 328_CR17 – volume: 22 start-page: 2908 year: 2016 ident: 328_CR18 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-15-2412 – volume: 363 start-page: 711 year: 2010 ident: 328_CR1 publication-title: N Engl J Med doi: 10.1056/NEJMoa1003466 – volume: 22 start-page: 5487 year: 2016 ident: 328_CR19 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-16-0127 – volume: 5 start-page: 1370 year: 2015 ident: 328_CR9 publication-title: Bio Protoc – volume: 401 start-page: 708 year: 1999 ident: 328_CR24 publication-title: Nature doi: 10.1038/44385 – volume: 10 start-page: e0130142 year: 2015 ident: 328_CR31 publication-title: PLoS One doi: 10.1371/journal.pone.0130142 – volume: 45 start-page: 228 year: 2009 ident: 328_CR8 publication-title: Eur J Cancer doi: 10.1016/j.ejca.2008.10.026 – volume: 111 start-page: E2770 year: 2014 ident: 328_CR13 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1408792111 – volume: 75 start-page: 268 year: 2017 ident: 328_CR29 publication-title: Eur J Cancer doi: 10.1016/j.ejca.2016.12.031 – volume: 57 start-page: 289 year: 1995 ident: 328_CR14 publication-title: J R Stat Soc Ser B Methodol doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 22 start-page: 993 year: 1992 ident: 328_CR25 publication-title: Eur J Immunol doi: 10.1002/eji.1830220418 – volume: 91 start-page: 73 year: 2017 ident: 328_CR27 publication-title: Cytometry A doi: 10.1002/cyto.a.23001 – volume: 96 start-page: 578 year: 2016 ident: 328_CR28 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2016.07.005 – volume: 36 start-page: 1882 year: 2004 ident: 328_CR32 publication-title: Int J Biochem Cell Biol doi: 10.1016/j.biocel.2003.10.019 – volume: 2 start-page: 261 year: 2001 ident: 328_CR23 publication-title: Nat Immunol doi: 10.1038/85330 – volume: 2 start-page: 632 year: 2014 ident: 328_CR30 publication-title: Cancer Immunol Res doi: 10.1158/2326-6066.CIR-14-0053 – volume: 3 start-page: 541 year: 1995 ident: 328_CR20 publication-title: Immunity doi: 10.1016/1074-7613(95)90125-6 – volume: 187 start-page: 2093 year: 2011 ident: 328_CR26 publication-title: J Immunol doi: 10.4049/jimmunol.1100978 – volume: 192 start-page: 1027 year: 2000 ident: 328_CR22 publication-title: J Exp Med doi: 10.1084/jem.192.7.1027 – volume: 45 start-page: 5 year: 2001 ident: 328_CR16 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 83 start-page: 483 year: 2013 ident: 328_CR11 publication-title: Cytometry A doi: 10.1002/cyto.a.22271 |
SSID | ssj0001033888 |
Score | 2.465017 |
Snippet | Background
While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers... While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers to... Background While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers... BackgroundWhile immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive biomarkers... Abstract Background While immune checkpoint blockade has greatly improved clinical outcomes in diseases such as melanoma, there remains a need for predictive... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18 |
SubjectTerms | Adult Age Aged Analysis Antibodies Antineoplastic Agents, Immunological - therapeutic use Biological markers Biomarkers Biomarkers - blood Cancer Care and treatment CD4-Positive T-Lymphocytes - immunology CD8-Positive T-Lymphocytes - immunology Chemotherapy CTLA-4 Antigen - antagonists & inhibitors Female Flow cytometry Gender Humans Immune system Immunology Immunotherapy Immunotherapy Biomarkers Killer Cells, Natural - immunology Male Medicine Medicine & Public Health Melanoma Melanoma - blood Melanoma - drug therapy Melanoma - immunology Middle Aged Oncology Patient outcomes Patients Programmed Cell Death 1 Receptor - antagonists & inhibitors Research Article Skin Neoplasms - blood Skin Neoplasms - drug therapy Skin Neoplasms - immunology Treatment Outcome Tumors |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDI_QHhAviG8KA4KEhASKlrRpmjweG9OEGOJhk_YWpakrThq96a73sP9-dtM7rkPAC29t41Sp87NjN7bD2LsmxgiqBoGrTSO0aoMIEJQwDooaTHSqpGzk02_m5Fx_uSgvdo76opiwVB44Me5A1hpcJZs81qUOFlxsirZyEByUYOOQuied3HGmhr8rEl0va8dtTGXNwUoTPNFzpoyy3Ao7WYiGev2_a-WdZel2yOStfdNhOTp-wO6PdiSfpfE_ZHege8Tuno475Y_Z-oiEt4s9v1rSQ9JqnHLtKRxnySNls5Czv-JotfJlipQF3i84snouDs--zoTG6ybdfz8Sis8pl2TM2Lrm847_hMvQ4Sv5WJ119YSdH38-OzwR4xELIlZS9gKMRGUdUIzBlVC0jTJoxwYp60aj79fQiehGx1aWAGVtqlYh91VRy9LaBiAUT9let-jgOeOtrCAWdRNq9BhbW1pVRKugimgQyLbVGZMbfvs41h-nYzAu_eCHWOPTFHmcIk9T5G3GPmy7XKXiG38j_kSTuCWkutnDA0STH9Hk_4WmjL0hCPiUhLqVfj8rtck1VSbK2PuBguQfhx_DmMaATKBKWhPK_Qklym2cNm9g5ke9sfI5qkP8PGeqjL3dNlNPioXrYLFGGto7UwXarhl7llC5_eicDGbjsHc1weuEK9OWbv5jqCqOlqisHA7r4wbZv4b1R6a_-B9Mf8nu5UkuhTT7bK9fruEVmnp9_XqQ6hvJS1EB priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1db9QwLIIhIV4Q3xQGBAkJCRQtadMkfULHxjQhhnjYpL1FbeLCSaN33McD_x67zd3RIfbWNk6VOLZjxx9h7E0MIYBqQOBuE4VWbS1qqJUwFRQNmFCpkrKRT7-ak3P9-aK8SAduyxRWuZGJvaCOs0Bn5Ac5Egoqw5WxH-a_BN0aRd7VdIXGTXarL12G9Gwv7O6MRaIB5lxyZipnDpaaiBTtZ8ory51wo-2or9r_r2z-a3O6Gjh5xXvab0rH99jdpE3yybD899kN6B6w26fJX_6QrY-Ihbuw4vMFfSTZxinjnoJyFjxQTguZ_EuOuitfDPGywFczjgifisOzLxOh8TkO79-OhOJTyihJeVu_-bTjP-Gy7vCXPNVoXT5i58efzg5PRLpoQQQr5UqAkSiya2RmqEoo2qgMarO1lE3UaAFGuhfd6NDKEqBsjG1VLFpVNLJ0LgLUxWO21806eMp4Ky2Eool1g3Zj60qniuAU2IBqgWxbnTG5wbcPqQo5XYZx6XtrxBk_LJHHJfK0RN5l7N22y3wowXEd8EdaxC0gVc_uP8wW331iRi8bDZWVMQ9NqWucdMD52ArqCkpwocrYKyIBP6SibmWAn5Ta5JrqE2XsbQ9BUgCHH-qUzIBIoHpaI8j9ESRybxg3b8jMJ-mx9Dtaz9jrbTP1pIi4DmZrhCEPmipQg83Yk4Eqt5POSW02Ffa2I3odYWXc0k1_9LXFUR-VtsJhvd9Q9m5Y_0X6s-sn8ZzdyQeOE9Lss73VYg0vUJVbNS97fv0DVxVHLw priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1di9QwMJwniC_it9VTIwiCEi9p0zR9EFnvPA5xxYdbuLfQplNdWLtntwvev3emza72PAXf2mZSksl8JpkZxp5X3ntQJQjUNpXQqi5EAYUSJoekBONzlVI08vSTOZ7pD6fp6Q7blLcKCFxd6tpRPalZu3j94_v5W2T4Nz3DW7O_0kR56BRTsFhshb3CrqJiMuSLTYO132-5SPTHrA1nm5f2HGmnPon_n6L6N1118R7lhcPUXkcd3WQ3gnHJJwM13GI70Nxm16bh-PwOWx8SRze-42ctfSRRxykAn-7otNxTiAvtAKw4mrK8Ha7PAu-WHPE_FwcnHydC43M1vH8-FIrPKcAkhHGd83nDv8GiaPCXPKRsXd1ls6P3JwfHItRdED6TshNgJErwAnkb8hSSulIGjdtCyrLS6BBWVCbdaF_LFCAtTVarKqlVUsrU2gqgSO6x3WbZwAPGa5mBT8qqKNGNrG1qVeKtgsyjlSDrWkdMbvDtfEhKTrUxFq53TqxxwxI5XCJHS-RsxF5uu5wNGTn-BfyOFnELSMm0-w_L9osLvOlkqSHPZBX7MtUFTtrjfLIcihxSsD6P2FMiATdEpm5Fgpuk2sSa0hVF7EUPQWSKw_dFiG1AJFB6rRHk3ggSmdmPmzdk5ja84GKUkTi93GQRe7Ztpp50Qa6B5Rph6EBNJWjQRuz-QJXbScdkRZsce2cjeh1hZdzSzL_2qcbRPJVZjsN6taHsX8P6K9If_hf0I3Y9HhhQSLPHdrt2DY_R0OvKJz37_gSf7E4k priority: 102 providerName: Scholars Portal |
Title | Distinct predictive biomarker candidates for response to anti-CTLA-4 and anti-PD-1 immunotherapy in melanoma patients |
URI | https://link.springer.com/article/10.1186/s40425-018-0328-8 https://www.ncbi.nlm.nih.gov/pubmed/29510697 https://www.proquest.com/docview/2638118967 https://www.proquest.com/docview/2011613250 https://pubmed.ncbi.nlm.nih.gov/PMC5840795 https://doaj.org/article/0b4e970d2cb54a8e9cd3f79ea9e5e8c9 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LatwwUDQJlF5K33WbblUoFFpEJVuS5eNmkxBKN4SSQG5Clsd0IfWGfRz6952xvZs4fUAvxrZGRpqXZjyaEWPvqxgjqBIErjaV0KoOIkBQwhaQlWBjoQxlI09P7cmF_nJpLvti0ZQLczt-r5z9vNTEVejwUiJY6oTbYXtGZbaNy9rJze8Uib6Wc33c8o89BytPW6D_dzV8ax26u0fyTqC0XX-OH7GHveHIxx2lH7N70Dxh96d9aPwpWx-StDZxxa8X9JLUGKfketp_s-CR0lfIu19yNFP5otsaC3w154jbmZicfx0LjfdV93x2KBSfUfJIn6L1k88a_gOuQoOf5H051uUzdnF8dD45Ef2ZCiLmUq4EWInaOaDcQmEgqytl0XANUpaVRmevoiPQrY61NACmtHmtqqxWWSmNcxVAyJ6z3WbewEvGa5lDzMoqlOgi1s44lUWnII9oAci61gmTG3z72Bccp3MvrnzreDjrOxJ5JJEnEnmXsI_bLtddtY1_AR8QEbeAVCi7fYH843u587LUUOSySmNpdMBJR5xPXkAowICLRcLeEgv4Lut0K-5-bLRNNZUiStiHFoIEHocfQ5-3gEig0lkDyP0BJApqHDZv2Mz3imLpU9R_OL3C5gl7t22mnrT5rYH5GmEoWKYyNFYT9qLjyu2kU7KQbYG98wG_DrAybGlm39sy4mh6yrzAYX3acPbNsP6K9Ff_Bf2aPUg7ARTS7rPd1WINb9CIW5UjtpNf5iO2d3B0evZt1ArzqP0hgtepdr8ApM5D5Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1rb9Mw0BqdBHxBvAkMZiQQEsia83KcDwh166aOtdWEOmnfTOJcoNJISx9C-1P8Ru7yaMkQ-7ZvSXyObN_b9t0x9iaz1oKbgkBtk4nAzRORQOIKFYOfgrKxG1I08nCk-mfB5_PwfIv9bmJh6FplIxNLQZ1NLe2R73lIKGgMxyr6NPspqGoUna42JTQqsjiBy1_osi0-HvcQv2897-hwfNAXdVUBYSMplwKURPmUIOVCHIKfZ65C0y2RMs0CdHcyKgKuApvLECBMVZS7mZ-7fipDrTOAxMf_3mLbAUW0dtj2_uHo9MtmV0eiy6d1fXzqarW3CIgt0GOnSDZPC91SgGWdgH-1wV_q8OpVzSvntaUaPLrP7tX2K-9WBPeAbUHxkN0e1if0j9iqR0KjsEs-m9NHkqacYvzpGtCcW4qioU2GBUdrmc-rG7rAl1OOKJ6Ig_GgKwJ8zqr3055w-YRiWOpIsUs-KfgPuEgK_CWvs8IuHrOzG0HCE9YppgU8YzyXEVg_zZIUPdVch9r1rXYhsmiIyDwPHCab9Ta2zntO5TcuTOn_aGUqFBlEkSEUGe2w9-susyrpx3XA-4TENSDl6y4_TOffTM3-RqYBxJHMPJuGQYKTtjifKIYkhhC0jR22SyRgquDXtdQx3TBQXkAZkRz2roQguYPDt0kdPoGLQBm8WpA7LUiUF7bd3JCZqeXVwmy4y2Gv183Uk-7gFTBdIQyd2bk-2swOe1pR5XrSHhnqKsbeUYteW6vSbikm38ts5mgByyjGYX1oKHszrP8u-vPrJ7HL7vTHw4EZHI9OXrC7XsV9Qqod1lnOV_ASDcll-qrmXs6-3rTA-AM5YIXq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSouiDeBQo0EQgJZa-dhOweEli6rlj7UQyv1ZhJnAiuV7LIPof41fh0zSXaXFNFbb7vxJLI9488z9jwYe11470HlIHC3KUSsykxkkCmhU4hy0D5VCUUjHx3rvbP4y3lyvsF-L2NhyK1yiYk1UBdjT2fkvRAFBZXhVJte2bpFnAyGHyc_BVWQopvWZTmNRkQO4PIXmm-zD_sD5PWbMBx-Pt3dE22FAeGNlHMBWiJWZSjFkCYQlYXSqMZlUuZFjKZPQQXBdexLmQAkuTalKqJSRblMrC0Asgi_e4vdNhFqVbiWzLlZn-9INP6sbS9SldW9WUwLBG13imkLrbCdrbCuGPDvvvDXxnjVafPKzW29IQ7vsbutJsv7jejdZxtQPWBbR-1d_UO2GBB8VH7OJ1N6SLjKKdqfHIKm3FM8DR03zDjqzXza-OoCn485Mnskdk8P-yLG30Xz_2QgFB9RNEsbM3bJRxX_ARdZhZ_kbX7Y2SN2diMseMw2q3EFTxkvpQEf5UWWo81a2sSqyFsFxqNKIssyDphczrfzbQZ0KsRx4WpLyGrXsMghixyxyNmAvVu9MmnSf1xH_ImYuCKkzN31g_H0m2uBwMk8htTIIvR5Emc4aI_jMSlkKSRgfRqwHRIB14TBrvDH9ZNYhzHlRgrY25qCEAi777M2kAIngXJ5dSi3O5SIHL7bvBQz1yLXzK3XWcBerZrpTfLGq2C8QBq6vVMRas8Be9JI5WrQIansOsW3TUdeO7PSbalG3-u85qgLS5Nit94vJXvdrf9O-rPrB7HDthAm3OH-8cFzdidsFp-QepttzqcLeIEa5Tx_WS9dzr7eNFb8AdaOiLE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinct+predictive+biomarker+candidates+for+response+to+anti-CTLA-4+and+anti-PD-1+immunotherapy+in+melanoma+patients&rft.jtitle=Journal+for+immunotherapy+of+cancer&rft.au=Subrahmanyam%2C+Priyanka+B.&rft.au=Dong%2C+Zhiwan&rft.au=Gusenleitner%2C+Daniel&rft.au=Giobbie-Hurder%2C+Anita&rft.date=2018-03-06&rft.pub=BioMed+Central&rft.eissn=2051-1426&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1186%2Fs40425-018-0328-8&rft.externalDocID=10_1186_s40425_018_0328_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-1426&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-1426&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-1426&client=summon |