Unveiling the complex electronic structure of amorphous metal oxides

Amorphous materials represent a large and important emerging area of material's science. Amorphous oxides are key technological oxides in applications such as a gate dielectric in Complementary metal-oxide semiconductor devices and in Silicon-Oxide-Nitride-Oxide-Silicon and TANOS (TaN-Al₂O₃...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 108; no. 16; pp. 6355 - 6360
Main Authors Århammar, C, Pietzsch, Annette, Bock, Nicolas, Holmström, Erik, Araujo, C. Moyses, Gråsjö, Johan, Zhao, Shuxi, Green, Sara, Peery, T, Hennies, Franz, Amerioun, Shahrad, Föhlisch, Alexander, Schlappa, Justine, Schmitt, Thorsten, Strocov, Vladimir N, Niklasson, Gunnar A, Wallace, Duane C, Rubensson, Jan-Erik, Johansson, Börje, Ahuja, Rajeev
Format Journal Article
LanguageEnglish
Published Washington National Academy of Sciences 19.04.2011
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Amorphous materials represent a large and important emerging area of material's science. Amorphous oxides are key technological oxides in applications such as a gate dielectric in Complementary metal-oxide semiconductor devices and in Silicon-Oxide-Nitride-Oxide-Silicon and TANOS (TaN-Al₂O₃-Si₃N₄-SiO₂-Silicon) flash memories. These technologies are required for the high packing density of today's integrated circuits. Therefore the investigation of defect states in these structures is crucial. In this work we present X-ray synchrotron measurements, with an energy resolution which is about 5-10 times higher than is attainable with standard spectrometers, of amorphous alumina. We demonstrate that our experimental results are in agreement with calculated spectra of amorphous alumina which we have generated by stochastic quenching. This first principles method, which we have recently developed, is found to be superior to molecular dynamics in simulating the rapid gas to solid transition that takes place as this material is deposited for thin film applications. We detect and analyze in detail states in the band gap that originate from oxygen pairs. Similar states were previously found in amorphous alumina by other spectroscopic methods and were assigned to oxygen vacancies claimed to act mutually as electron and hole traps. The oxygen pairs which we probe in this work act as hole traps only and will influence the information retention in electronic devices. In amorphous silica oxygen pairs have already been found, thus they may be a feature which is characteristic also of other amorphous metal oxides.
AbstractList Amorphous materials represent a large and important emerging area of material's science. Amorphous oxides are key technological oxides in applications such as a gate dielectric in Complementary metal-oxide semiconductor devices and in Silicon-Oxide-Nitride-Oxide-Silicon and TANOS (TaN-Al₂O₃-Si₃N₄-SiO₂-Silicon) flash memories. These technologies are required for the high packing density of today's integrated circuits. Therefore the investigation of defect states in these structures is crucial. In this work we present X-ray synchrotron measurements, with an energy resolution which is about 5-10 times higher than is attainable with standard spectrometers, of amorphous alumina. We demonstrate that our experimental results are in agreement with calculated spectra of amorphous alumina which we have generated by stochastic quenching. This first principles method, which we have recently developed, is found to be superior to molecular dynamics in simulating the rapid gas to solid transition that takes place as this material is deposited for thin film applications. We detect and analyze in detail states in the band gap that originate from oxygen pairs. Similar states were previously found in amorphous alumina by other spectroscopic methods and were assigned to oxygen vacancies claimed to act mutually as electron and hole traps. The oxygen pairs which we probe in this work act as hole traps only and will influence the information retention in electronic devices. In amorphous silica oxygen pairs have already been found, thus they may be a feature which is characteristic also of other amorphous metal oxides.
Amorphous materials represent a large and important emerging area of material's science. Amorphous oxides are key technological oxides in applications such as a gate dielectric in Complementary metal-oxide semiconductor devices and in Silicon-Oxide-Nitride-Oxide-Silicon and TANOS (TaN-Al2O3-Si3N4-SiO2-Silicon) flash memories. These technologies are required for the high packing density of today's integrated circuits. Therefore the investigation of defect states in these structures is crucial. In this work we present X-ray synchrotron measurements, with an energy resolution which is about 5-10 times higher than is attainable with standard spectrometers, of amorphous alumina. We demonstrate that our experimental results are in agreement with calculated spectra of amorphous alumina which we have generated by stochastic quenching. This first principles method, which we have recently developed, is found to be superior to molecular dynamics in simulating the rapid gas to solid transition that takes place as this material is deposited for thin film applications. We detect and analyze in detail states in the band gap that originate from oxygen pairs. Similar states were previously found in amorphous alumina by other spectroscopic methods and were assigned to oxygen vacancies claimed to act mutually as electron and hole traps. The oxygen pairs which we probe in this work act as hole traps only and will influence the information retention in electronic devices. In amorphous silica oxygen pairs have already been found, thus they may be a feature which is characteristic also of other amorphous metal oxides.
Amorphous materials represent a large and important emerging area of material’s science. Amorphous oxides are key technological oxides in applications such as a gate dielectric in Complementary metal-oxide semiconductor devices and in Silicon-Oxide-Nitride-Oxide-Silicon and TANOS (TaN-Al 2 O 3 -Si 3 N 4 -SiO 2 -Silicon) flash memories. These technologies are required for the high packing density of today’s integrated circuits. Therefore the investigation of defect states in these structures is crucial. In this work we present X-ray synchrotron measurements, with an energy resolution which is about 5–10 times higher than is attainable with standard spectrometers, of amorphous alumina. We demonstrate that our experimental results are in agreement with calculated spectra of amorphous alumina which we have generated by stochastic quenching. This first principles method, which we have recently developed, is found to be superior to molecular dynamics in simulating the rapid gas to solid transition that takes place as this material is deposited for thin film applications. We detect and analyze in detail states in the band gap that originate from oxygen pairs. Similar states were previously found in amorphous alumina by other spectroscopic methods and were assigned to oxygen vacancies claimed to act mutually as electron and hole traps. The oxygen pairs which we probe in this work act as hole traps only and will influence the information retention in electronic devices. In amorphous silica oxygen pairs have already been found, thus they may be a feature which is characteristic also of other amorphous metal oxides.
Amorphous materials represent a large and important emerging area of material's science. Amorphous oxides are key technological oxides in applications such as a gate dielectric in Complementary metal-oxide semiconductor devices and in Silicon-Oxide-Nitride-Oxide-Silicon and TANOS (TaN-Al₂O₃-Si₃ N₄-SiOʂ-Silicon) flash memories. These technologies are required for the high packing density of today's integrated circuits. Therefore the investigation of defect states in these structures is crucial. In this work we present X-ray synchrotron measurements, with an energy resolution which is about 5-10 times higher than is attainable with standard spectrometers, of amorphous alumina. We demonstrate that our experimental results are in agreement with calculated spectra of amorphous alumina which we have generated by stochastic quenching. This first principles method, which we have recently developed, is found to be superior to molecular dynamics in simulating the rapid gas to solid transition that takes place as this material is deposited for thin film applications. We detect and analyze in detail states in the band gap that originate from oxygen pairs. Similar states were previously found in amorphous alumina by other spectroscopic methods and were assigned to oxygen vacancies claimed to act mutually as electron and hole traps. The oxygen pairs which we probe in this work act as hole traps only and will influence the information retention in electronic devices. In amorphous silica oxygen pairs have already been found, thus they may be a feature which is characteristic also of other amorphous metal oxides.
Amorphous materials represent a large and important emerging area of material's science. Amorphous oxides are key technological oxides in applications such as a gate dielectric in Complementary metal-oxide semiconductor devices and in Silicon-Oxide-Nitride-Oxide-Silicon and TANOS (...-Silicon) flash memories. These technologies are required for the high packing density of today's integrated circuits. Therefore the investigation of defect states in these structures is crucial. In this work we present X-ray synchrotron measurements, with an energy resolution which is about 5 - 10 times higher than is attainable with standard spectrometers, of amorphous alumina. We demonstrate that our experimental results are in agreement with calculated spectra of amorphous alumina which we have generated by stochastic quenching. This first principles method, which we have recently developed, is found to be superior to molecular dynamics in simulating the rapid gas to solid transition that takes place as this material is deposited for thin film applications. We detect and analyze in detail states in the band gap that originate from oxygen pairs. Similar states were previously found in amorphous alumina by other spectroscopic methods and were assigned to oxygen vacancies claimed to act mutually as electron and hole traps. The oxygen pairs which we probe in this work act as hole traps only and will influence the information retention in electronic devices. In amorphous silica oxygen pairs have already been found, thus they may be a feature which is characteristic also of other amorphous metal oxides. (ProQuest: ... denotes formulae/symbols omitted.)
Amorphous materials represent a large and important emerging area of material's science. Amorphous oxides are key technological oxides in applications such as a gate dielectric in Complementary metal-oxide semiconductor devices and in Silicon-Oxide-Nitride-Oxide-Silicon and TANOS (TaN-Al₂O₃-Si₃N₄-SiO₂-Silicon) flash memories. These technologies are required for the high packing density of today's integrated circuits. Therefore the investigation of defect states in these structures is crucial. In this work we present X-ray synchrotron measurements, with an energy resolution which is about 5-10 times higher than is attainable with standard spectrometers, of amorphous alumina. We demonstrate that our experimental results are in agreement with calculated spectra of amorphous alumina which we have generated by stochastic quenching. This first principles method, which we have recently developed, is found to be superior to molecular dynamics in simulating the rapid gas to solid transition that takes place as this material is deposited for thin film applications. We detect and analyze in detail states in the band gap that originate from oxygen pairs. Similar states were previously found in amorphous alumina by other spectroscopic methods and were assigned to oxygen vacancies claimed to act mutually as electron and hole traps. The oxygen pairs which we probe in this work act as hole traps only and will influence the information retention in electronic devices. In amorphous silica oxygen pairs have already been found, thus they may be a feature which is characteristic also of other amorphous metal oxides.
Amorphous materials represent a large and important emerging area of material’s science. Amorphous oxides are key technological oxides in applications such as a gate dielectric in Complementary metal-oxide semiconductor devices and in Silicon-Oxide-Nitride-Oxide-Silicon and TANOS (TaN-Al 2 O 3 -Si 3 N 4 -SiO 2 -Silicon) flash memories. These technologies are required for the high packing density of today’s integrated circuits. Therefore the investigation of defect states in these structures is crucial. In this work we present X-ray synchrotron measurements, with an energy resolution which is about 5–10 times higher than is attainable with standard spectrometers, of amorphous alumina. We demonstrate that our experimental results are in agreement with calculated spectra of amorphous alumina which we have generated by stochastic quenching. This first principles method, which we have recently developed, is found to be superior to molecular dynamics in simulating the rapid gas to solid transition that takes place as this material is deposited for thin film applications. We detect and analyze in detail states in the band gap that originate from oxygen pairs. Similar states were previously found in amorphous alumina by other spectroscopic methods and were assigned to oxygen vacancies claimed to act mutually as electron and hole traps. The oxygen pairs which we probe in this work act as hole traps only and will influence the information retention in electronic devices. In amorphous silica oxygen pairs have already been found, thus they may be a feature which is characteristic also of other amorphous metal oxides.
Author Schmitt, Thorsten
Peery, T
Föhlisch, Alexander
Niklasson, Gunnar A
Pietzsch, Annette
Holmström, Erik
Ahuja, Rajeev
Green, Sara
Wallace, Duane C
Rubensson, Jan-Erik
Amerioun, Shahrad
Bock, Nicolas
Araujo, C. Moyses
Strocov, Vladimir N
Schlappa, Justine
Zhao, Shuxi
Hennies, Franz
Johansson, Börje
Århammar, C
Gråsjö, Johan
Author_xml – sequence: 1
  fullname: Århammar, C
– sequence: 2
  fullname: Pietzsch, Annette
– sequence: 3
  fullname: Bock, Nicolas
– sequence: 4
  fullname: Holmström, Erik
– sequence: 5
  fullname: Araujo, C. Moyses
– sequence: 6
  fullname: GrÃ¥sjö, Johan
– sequence: 7
  fullname: Zhao, Shuxi
– sequence: 8
  fullname: Green, Sara
– sequence: 9
  fullname: Peery, T
– sequence: 10
  fullname: Hennies, Franz
– sequence: 11
  fullname: Amerioun, Shahrad
– sequence: 12
  fullname: Föhlisch, Alexander
– sequence: 13
  fullname: Schlappa, Justine
– sequence: 14
  fullname: Schmitt, Thorsten
– sequence: 15
  fullname: Strocov, Vladimir N
– sequence: 16
  fullname: Niklasson, Gunnar A
– sequence: 17
  fullname: Wallace, Duane C
– sequence: 18
  fullname: Rubensson, Jan-Erik
– sequence: 19
  fullname: Johansson, Börje
– sequence: 20
  fullname: Ahuja, Rajeev
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-33456$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-153224$$DView record from Swedish Publication Index
https://lup.lub.lu.se/record/1964802$$DView record from Swedish Publication Index
oai:portal.research.lu.se:publications/c9f4f222-0454-4b5c-b755-9a002c7e5f25$$DView record from Swedish Publication Index
BookMark eNqNks1vEzEQxVeoSKSFMyfEihMHQv25a1-QqpYvKRIHCNeR1zubuGzWi-0t5b_HIYGolSL1YNmSf_Nm_PxOi5PBD1gUzyl5S0nNz8fBxHyiutKKEvWomFGi6bwSmpwUM0JYPVeCiSfFaYzXhBAtFZkVV8vhBl3vhlWZ1lhavxl7vC2xR5uCH5wtYwqTTVPA0nel2fgwrv0Uyw0m05f-1rUYnxaPO9NHfLbfz4rlh_ffLj_NF18-fr68WMxtTUiaN9wYJq1EUanKompMRSVta94KpVB2XBuj2lY3baMYEm5QN1XLkVFaScSKnxVmpxt_4Tg1MAa3MeE3eONg9CEPBAEjmmDX0E8QETLVO2uS80MEqzvRMcaACClANNJCU0sJ2mR3bJ0nYDL3WBzt0U9jXs1e-4Fyb47KXbnvF-DDCqYJqOSMiYfhP9IaOBdya8i7HZ7ZDbYWhxSyCXd8uXMzuDWs_A1wooiuVBZ4vRcI_ueEMcHGRYt9bwbMvwxU0TqnpqYko6_uodd-CkP-b1AVl3UOG8uQ3EE2-BgDdmBd-mt_bu96oAS2YYVtWOEQ1lx3fq_u3xuOV7zcj7O9ONAKaAV5nq31L3bEdUw-_EcEZYJqXR8UOuPBrIKLsPzKCK1I7sKY1vwPG18Oqg
CitedBy_id crossref_primary_10_1016_j_matchemphys_2019_05_081
crossref_primary_10_1103_PhysRevB_90_094203
crossref_primary_10_1002_gch2_202000009
crossref_primary_10_1088_1748_605X_adbb46
crossref_primary_10_1002_adfm_202308165
crossref_primary_10_1088_1367_2630_14_2_023025
crossref_primary_10_1103_PhysRevB_84_205414
crossref_primary_10_1038_srep18196
crossref_primary_10_1038_srep01877
crossref_primary_10_1016_j_elspec_2015_02_003
crossref_primary_10_1002_anie_202000768
crossref_primary_10_1021_acsaelm_3c00150
crossref_primary_10_1021_acsanm_2c00378
crossref_primary_10_1116_1_4971991
crossref_primary_10_1021_acs_jpcc_9b01298
crossref_primary_10_1039_D3CS00872J
crossref_primary_10_1038_s41598_018_20537_4
crossref_primary_10_1016_j_conbuildmat_2022_127557
crossref_primary_10_1002_ange_202115552
crossref_primary_10_1016_j_actamat_2014_08_043
crossref_primary_10_1088_0022_3727_49_2_025307
crossref_primary_10_1021_acscatal_0c00759
crossref_primary_10_1021_acs_inorgchem_0c02691
crossref_primary_10_1111_jace_19347
crossref_primary_10_1038_s41578_022_00416_1
crossref_primary_10_1016_j_ensm_2022_05_011
crossref_primary_10_1063_5_0065464
crossref_primary_10_1016_j_surfcoat_2018_12_058
crossref_primary_10_1051_0004_6361_201322376
crossref_primary_10_1016_j_elspec_2012_12_011
crossref_primary_10_1002_ente_201900975
crossref_primary_10_1021_acsami_6b13843
crossref_primary_10_1021_jacs_0c10270
crossref_primary_10_1038_s41563_025_02144_7
crossref_primary_10_1016_j_apsusc_2024_162258
crossref_primary_10_1016_j_ceramint_2014_02_003
crossref_primary_10_1038_s41467_021_23154_4
crossref_primary_10_1016_j_surfcoat_2013_10_054
crossref_primary_10_1016_j_electacta_2016_12_090
crossref_primary_10_1103_PhysRevApplied_11_024040
crossref_primary_10_1016_j_molstruc_2024_138099
crossref_primary_10_1021_acs_chemmater_3c00421
crossref_primary_10_1021_acs_jpcc_6b01352
crossref_primary_10_1149_2162_8777_ab682e
crossref_primary_10_1038_s41560_021_00780_2
crossref_primary_10_1002_ange_202000768
crossref_primary_10_1126_sciadv_adk3114
crossref_primary_10_1038_s41467_022_28793_9
crossref_primary_10_1021_acsnano_4c08959
crossref_primary_10_1039_D4TC03865G
crossref_primary_10_1021_acscatal_8b01120
crossref_primary_10_1038_nature12398
crossref_primary_10_1063_1_4961125
crossref_primary_10_1088_1361_6528_ac5f2e
crossref_primary_10_1063_1_4809978
crossref_primary_10_1063_1_5116274
crossref_primary_10_1364_AO_51_007402
crossref_primary_10_1016_j_actamat_2012_04_044
crossref_primary_10_1021_acsami_2c01482
crossref_primary_10_1002_anie_202115552
crossref_primary_10_1016_j_jnoncrysol_2019_119493
crossref_primary_10_1021_acs_jpcc_7b06887
crossref_primary_10_1038_s41586_019_1854_3
crossref_primary_10_1002_cphc_202400745
crossref_primary_10_1016_j_micron_2020_102954
crossref_primary_10_1038_s41560_020_00697_2
crossref_primary_10_1016_j_elspec_2012_11_004
crossref_primary_10_1016_j_elspec_2012_11_003
crossref_primary_10_1021_acs_jpcc_8b00239
crossref_primary_10_1063_1_5003123
crossref_primary_10_1016_j_corsci_2024_112320
crossref_primary_10_1038_s41560_023_01211_0
crossref_primary_10_1021_acsenergylett_0c02418
crossref_primary_10_1021_acs_jpclett_7b03027
crossref_primary_10_1149_1945_7111_acbee4
crossref_primary_10_2139_ssrn_4049461
crossref_primary_10_1021_jacs_1c08614
crossref_primary_10_1146_annurev_matsci_080222_035533
crossref_primary_10_1016_j_actamat_2016_08_007
crossref_primary_10_1016_j_elspec_2015_05_004
crossref_primary_10_1021_acs_jpcc_5b06843
crossref_primary_10_1016_j_jpowsour_2021_230916
crossref_primary_10_1039_D1CP00701G
crossref_primary_10_1021_acsami_5b08880
crossref_primary_10_1080_00018732_2022_2084006
crossref_primary_10_1016_j_joule_2020_05_004
crossref_primary_10_1063_5_0026289
crossref_primary_10_1111_jace_16405
crossref_primary_10_1002_ange_202404330
crossref_primary_10_1016_j_vacuum_2024_112994
crossref_primary_10_1039_D4TC04157G
crossref_primary_10_1209_0295_5075_99_57010
crossref_primary_10_5802_crchim_114
crossref_primary_10_1021_acs_inorgchem_7b00280
crossref_primary_10_1021_acsaem_1c04112
crossref_primary_10_1002_adfm_201605348
crossref_primary_10_1016_j_matchemphys_2014_01_038
crossref_primary_10_1002_anie_202404330
crossref_primary_10_1021_acs_jpclett_7b00896
crossref_primary_10_1109_TED_2015_2508151
crossref_primary_10_1016_j_ssi_2017_05_016
crossref_primary_10_1016_j_joule_2021_04_006
crossref_primary_10_1021_acsami_7b16068
crossref_primary_10_1002_admt_202400381
crossref_primary_10_1016_j_elspec_2012_05_003
Cites_doi 10.1016/S0022-3093(01)00839-0
10.1103/PhysRevB.82.144101
10.1103/PhysRevE.80.051111
10.1016/S0304-3991(00)00124-8
10.2109/jcersj2.116.835
10.1103/PhysRevLett.96.205506
10.1063/1.3455843
10.1016/j.physb.2009.01.039
10.1103/PhysRevB.65.104202
10.1238/Physica.Topical.109a00040
10.1016/j.cplett.2010.04.029
10.1515/zna-1995-0809
10.1063/1.2901171
10.1103/PhysRevLett.42.1346
10.1103/PhysRevLett.78.464
10.1364/AO.18.001969
10.1063/1.1686905
10.1007/s10853-010-4419-2
10.1103/PhysRevB.21.4427
10.1107/S0021889887087090
10.1107/S0909049510019862
10.1103/PhysRevLett.34.953
10.1103/PhysRevLett.54.1392
10.1016/j.mee.2009.03.006
10.1103/PhysRevE.61.2723
10.1016/0038-1098(79)90719-1
10.1016/0926-2040(95)01188-X
10.1103/PhysRevLett.22.1065
10.1038/35023243
10.1016/j.jlumin.2009.08.002
10.1103/PhysRevB.81.014210
10.1103/PhysRevLett.67.2517
10.1116/1.576273
10.1103/PhysRevLett.103.095501
10.1103/PhysRevB.50.17953
10.1016/S0040-6090(98)01232-2
10.1103/PhysRevB.82.024203
10.1103/PhysRevLett.104.193002
10.1063/1.2372731
10.1063/1.335380
10.1103/PhysRevB.24.4896
10.1103/PhysRevE.56.1981
10.1063/1.1891686
10.1103/PhysRevB.54.11169
10.1103/PhysRevLett.86.4839
10.1142/S0217984906011438
10.1103/PhysRevB.41.5061
ContentType Journal Article
Copyright Copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Apr 19, 2011
Copyright_xml – notice: Copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Apr 19, 2011
CorporateAuthor MAX IV-laboratoriet
Lunds universitet
Lund University
MAX IV Laboratory
CorporateAuthor_xml – name: MAX IV Laboratory
– name: Lund University
– name: MAX IV-laboratoriet
– name: Lunds universitet
DBID FBQ
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
5PM
ADTPV
AOWAS
D8V
DF2
D95
DOI 10.1073/pnas.1019698108
DatabaseName AGRIS
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
SWEPUB Uppsala universitet
SWEPUB Lunds universitet
DatabaseTitle CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


CrossRef


Virology and AIDS Abstracts




Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1091-6490
EndPage 6360
ExternalDocumentID oai_portal_research_lu_se_publications_c9f4f222_0454_4b5c_b755_9a002c7e5f25
oai_lup_lub_lu_se_c9f4f222_0454_4b5c_b755_9a002c7e5f25
oai_DiVA_org_uu_153224
oai_DiVA_org_kth_33456
PMC3080968
2330649051
10_1073_pnas_1019698108
108_16_6355
41241997
US201600192299
Genre Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ADXHL
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
5PM
ADTPV
AOWAS
D8V
DF2
D95
ID FETCH-LOGICAL-c700t-b3aa25c5e4686ce8ba6151d73d488e5f39aa8dd9bdb82e03ae9b6d3e21165ee63
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 06:54:08 EDT 2025
Thu Jul 03 05:06:11 EDT 2025
Thu Aug 21 07:04:26 EDT 2025
Thu Aug 21 06:29:21 EDT 2025
Thu Aug 21 14:10:11 EDT 2025
Fri Jul 11 00:46:33 EDT 2025
Mon Jun 30 08:36:29 EDT 2025
Tue Jul 01 00:47:08 EDT 2025
Thu Apr 24 23:04:52 EDT 2025
Wed Nov 11 00:29:32 EST 2020
Thu May 29 08:40:55 EDT 2025
Thu Apr 03 09:46:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c700t-b3aa25c5e4686ce8ba6151d73d488e5f39aa8dd9bdb82e03ae9b6d3e21165ee63
Notes http://dx.doi.org/10.1073/pnas.1019698108
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Edited* by Ho-Kwang Mao, Carnegie Institution of Washington, Washington, DC, and approved February 4, 2011 (received for review December 30, 2010)
Author contributions: C.A., A.P., N.B., E.H., C.M.A., G.A.N., D.C.W., J.-E.R., B.J., and R.A. designed research; C.A., A.P., N.B., E.H., C.M.A., J.G., S.Z., T.P., G.A.N., D.C.W., S.G., and J.-E.R. performed research; A.P., N.B., E.H., T.P., F.H., S.A., A.F., J.S., T.S., V.N.S., and D.C.W. contributed new reagents/analytic tools; C.A., A.P., N.B., E.H., C.M.A., J.G., S.G., G.A.N., D.C.W., and J.-E.R. analyzed data; and C.A., A.P., N.B., E.H., C.M.A., J.G., T.S., V.N.S., G.A.N., D.C.W., J.-E.R., B.J., and R.A. wrote the paper.
OpenAccessLink http://americanae.aecid.es/americanae/es/registros/registro.do?tipoRegistro=MTD&idBib=3297142
PQID 863570912
PQPubID 42026
PageCount 6
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_c9f4f222_0454_4b5c_b755_9a002c7e5f25
swepub_primary_oai_lup_lub_lu_se_c9f4f222_0454_4b5c_b755_9a002c7e5f25
proquest_miscellaneous_1817842710
crossref_citationtrail_10_1073_pnas_1019698108
crossref_primary_10_1073_pnas_1019698108
swepub_primary_oai_DiVA_org_uu_153224
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3080968
swepub_primary_oai_DiVA_org_kth_33456
proquest_journals_863570912
pnas_primary_108_16_6355
fao_agris_US201600192299
jstor_primary_41241997
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-04-19
PublicationDateYYYYMMDD 2011-04-19
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-19
  day: 19
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationYear 2011
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
Madan A (e_1_3_3_6_2) 1988
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
Mott NF (e_1_3_3_3_2) 1971
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
Perdew JP (e_1_3_3_37_2) 1991
Costina I (e_1_3_3_8_2) 2004; 95
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_24_2
  doi: 10.1016/S0022-3093(01)00839-0
– ident: e_1_3_3_41_2
  doi: 10.1103/PhysRevB.82.144101
– ident: e_1_3_3_40_2
  doi: 10.1103/PhysRevE.80.051111
– ident: e_1_3_3_51_2
  doi: 10.1016/S0304-3991(00)00124-8
– ident: e_1_3_3_13_2
  doi: 10.2109/jcersj2.116.835
– ident: e_1_3_3_15_2
  doi: 10.1103/PhysRevLett.96.205506
– ident: e_1_3_3_10_2
  doi: 10.1063/1.3455843
– ident: e_1_3_3_50_2
  doi: 10.1016/j.physb.2009.01.039
– ident: e_1_3_3_27_2
  doi: 10.1103/PhysRevB.65.104202
– ident: e_1_3_3_48_2
  doi: 10.1238/Physica.Topical.109a00040
– volume-title: Electronic processes in non-crystalline solids
  year: 1971
  ident: e_1_3_3_3_2
– ident: e_1_3_3_31_2
  doi: 10.1016/j.cplett.2010.04.029
– ident: e_1_3_3_21_2
  doi: 10.1515/zna-1995-0809
– ident: e_1_3_3_28_2
  doi: 10.1063/1.2901171
– ident: e_1_3_3_16_2
  doi: 10.1103/PhysRevLett.42.1346
– ident: e_1_3_3_22_2
  doi: 10.1103/PhysRevLett.78.464
– ident: e_1_3_3_33_2
  doi: 10.1364/AO.18.001969
– ident: e_1_3_3_7_2
  doi: 10.1063/1.1686905
– ident: e_1_3_3_43_2
  doi: 10.1007/s10853-010-4419-2
– ident: e_1_3_3_45_2
  doi: 10.1103/PhysRevB.21.4427
– ident: e_1_3_3_32_2
  doi: 10.1107/S0021889887087090
– ident: e_1_3_3_35_2
  doi: 10.1107/S0909049510019862
– ident: e_1_3_3_2_2
  doi: 10.1103/PhysRevLett.34.953
– ident: e_1_3_3_5_2
  doi: 10.1103/PhysRevLett.54.1392
– ident: e_1_3_3_9_2
  doi: 10.1016/j.mee.2009.03.006
– ident: e_1_3_3_26_2
  doi: 10.1103/PhysRevE.61.2723
– volume-title: The physics and applications of amorphous semiconductors
  year: 1988
  ident: e_1_3_3_6_2
– volume: 95
  start-page: 4139
  year: 2004
  ident: e_1_3_3_8_2
  article-title: Band gap of amorphous and well ordered Al2O3 in Ni3Al(100)
  publication-title: Appl Phys Lett
– ident: e_1_3_3_46_2
  doi: 10.1016/0038-1098(79)90719-1
– ident: e_1_3_3_25_2
  doi: 10.1016/0926-2040(95)01188-X
– ident: e_1_3_3_1_2
  doi: 10.1103/PhysRevLett.22.1065
– ident: e_1_3_3_12_2
  doi: 10.1038/35023243
– ident: e_1_3_3_14_2
  doi: 10.1016/j.jlumin.2009.08.002
– ident: e_1_3_3_44_2
  doi: 10.1103/PhysRevB.81.014210
– ident: e_1_3_3_17_2
  doi: 10.1103/PhysRevLett.67.2517
– ident: e_1_3_3_20_2
  doi: 10.1116/1.576273
– ident: e_1_3_3_29_2
  doi: 10.1103/PhysRevLett.103.095501
– ident: e_1_3_3_47_2
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_3_3_19_2
  doi: 10.1016/S0040-6090(98)01232-2
– ident: e_1_3_3_42_2
  doi: 10.1103/PhysRevB.82.024203
– ident: e_1_3_3_30_2
  doi: 10.1103/PhysRevLett.104.193002
– ident: e_1_3_3_34_2
  doi: 10.1063/1.2372731
– ident: e_1_3_3_4_2
  doi: 10.1063/1.335380
– ident: e_1_3_3_18_2
  doi: 10.1103/PhysRevB.24.4896
– start-page: 11
  volume-title: Electronic Structure of Solids ’91
  year: 1991
  ident: e_1_3_3_37_2
– ident: e_1_3_3_39_2
  doi: 10.1103/PhysRevE.56.1981
– ident: e_1_3_3_49_2
  doi: 10.1063/1.1891686
– ident: e_1_3_3_36_2
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_3_3_23_2
  doi: 10.1103/PhysRevLett.86.4839
– ident: e_1_3_3_11_2
  doi: 10.1142/S0217984906011438
– ident: e_1_3_3_38_2
  doi: 10.1103/PhysRevB.41.5061
SSID ssj0009580
Score 2.3819513
Snippet Amorphous materials represent a large and important emerging area of material's science. Amorphous oxides are key technological oxides in applications such as...
Amorphous materials represent a large and important emerging area of material’s science. Amorphous oxides are key technological oxides in applications such as...
SourceID swepub
pubmedcentral
proquest
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6355
SubjectTerms ab initio
Alumina
Aluminum
aluminum oxide
Atoms
Band gap
Band structure
Cells
coating
electronic circuits
Electronic structure
Electrons
energy
Engineering Science with specialization in Solid State Physics
Fysik
Ions
Liquids
molecular dynamics
Molecules
NATURAL SCIENCES
NATURVETENSKAP
Nitric oxide
Oxides
Oxygen
Physical Sciences
Physics
semiconductors
Silica
Silicon
Spectrometers
spectroscopy
Spectrum analysis
stochastic quench
Teknisk fysik med inriktning mot fasta tillståndets fysik
Thin films
traps
X-radiation
X-ray absorption spectroscopy
Title Unveiling the complex electronic structure of amorphous metal oxides
URI https://www.jstor.org/stable/41241997
http://www.pnas.org/content/108/16/6355.abstract
https://www.proquest.com/docview/863570912
https://www.proquest.com/docview/1817842710
https://pubmed.ncbi.nlm.nih.gov/PMC3080968
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-33456
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-153224
https://lup.lub.lu.se/record/1964802
oai:portal.research.lu.se:publications/c9f4f222-0454-4b5c-b755-9a002c7e5f25
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa68cILYsC0MEBBAmmoSmnjOLYfyzY0ITFNYkUTL5aTOGu1Nq3WFk37F_inuUucX1MHg4dGVeJcU9-X851995mQd4bSNIn4wNMp1x7EX74XhXHgJVrIQQrmz-RZlV9Pw5NR8OWCXXQ6vxpZS-tV1ItvN9aV_I9W4RzoFatk_0GzlVA4Ad9Bv3AEDcPxQToeZT_NZFoWPOXZ4eam29jZpmCHxTWCeb6vEHQqprzODJZAzm8mic0gtN7pWTWaLcvcgdNysnBYl55Ye7Dset2z03ojY1xzF-x6rGc2a_uwVxneiVndLotdp4ZYCLSqF_OtQc4hqSsPH0sl4OlR5qdwZi32VXOOAiddA69hCf_0qE3j7MOAGRQl1ZVx7osmCpu2Fl2lxriNxGcbxwQwYriRcaaXOFUhQylKoW2ibdyHG9NutsgjH2IOP7fyTQZnUdQz2acseaI4_XhHdsvF2Ur1vMx1RQJdaNoKZu6m4rYIa3Mn5_wpeWKjE3dYQG2HdEz2jOyUnegeWJLyD8_JUYU9F2DiWuy5NfbcCnvuPHUr7Lk59twCey_I6PPx-eGJZ3fk8GLe76-8iGrts5iZIBRhbESk0SFOOE1gHDAspVJrkSQySiLhmz7VRkZhQo2PJE_GhHSXbGfzzOwRF0KPNDEyFlLwIGVSCMYlY5qBvUhCrh3SKztRxZauHndNmao8bYJThV2p6l53yEF1w6Jgarm_6R5oRelLGEfV6JuPLIsY6oBr5pDdXFWViBIVcE8upRYt1CBUCEKH7Jf6VNY6LJVAokdwxn2HvK2ugunG9TidGehwBc41BySBj-8Q3oJB9StI_t6-kk3GOQk8hVBPhvBX3heAad1yNPk-VPPrS3W1GitKIUj6S7v1WoHrA-68Q443tJuuF_CJ4KOWRsUyDVKIKxTSd6ogYrGKOGNKang5Yg448KFPfmyQU0wpKMtjNrbyFo0FigcJf3mfkvbJ49r8vCLbAHTzGoKGVfQmf5l_A9MmGWE
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+the+complex+electronic+structure+of+amorphous+metal+oxides&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=%C3%85rhammar%2C+C.&rft.au=Pietzsch%2C+Annette&rft.au=Bock%2C+Nicolas&rft.au=Holmstr%C3%B6m%2C+Erik&rft.date=2011-04-19&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=108&rft.issue=16&rft.spage=6355&rft.epage=6360&rft_id=info:doi/10.1073%2Fpnas.1019698108&rft.externalDocID=41241997
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F16.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F16.cover.gif