Continuous microalgae cultivation in a photobioreactor

New biomass sources for alternative fuels has become a subject of increasing importance as the nation strives to resolve the economic and strategic impacts of limited fossil fuel resources on our national security, environment, and global climate. Algae are among the most promising non‐food‐crop‐bas...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 109; no. 10; pp. 2468 - 2474
Main Authors Tang, Haiying, Chen, Meng, Simon Ng, K.Y., Salley, Steven O.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.10.2012
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract New biomass sources for alternative fuels has become a subject of increasing importance as the nation strives to resolve the economic and strategic impacts of limited fossil fuel resources on our national security, environment, and global climate. Algae are among the most promising non‐food‐crop‐based biomass feedstocks. However, there are currently no commercially viable microalgae‐based production systems for biofuel production that have been developed, as limitations include less‐than optimal oil content, growth rates, and cultivation techniques. While batch studies are critical for determining basic growth phases and characteristics of the algal species, steady‐state studies are necessary to better understand and measure the specific growth parameters. This study evaluated the effects of dilution rate on microalgal biomass productivity, lipid content, and fatty acid profile under steady‐state conditions with continuous illumination and carbon dioxide supplemention for two types of algae. Continuous cultures were conducted for more that 3 months. Our results show that the productivity of Chlorella minutissima varied from 39 to 137 mg/L/day (dry mass) when the dilution rate varied from 0.08 to 0.64 day−1. The biomass productivity of C. minutissima reached a maximum value (137 mg/L/day) at a dilution rate of 0.33 day−1, while the productivity of Dunaliella tertiolecta varied from 46 to 91 mg/L/day at a dilution rate of 0.17 to 0.74 day−1. The biomass productivity of D. tertiolecta reached a maximum value of 91 mg/L/day at a dilution rate of 0.42 day−1. Moreover, the lipid content had no significant change with various dilution rates. Biotechnol. Bioeng. 2012; 109: 2468–2474. © 2012 Wiley Periodicals, Inc. Chlorella minutissima continuous cultivation in a 3L photobioreactor was performed with continuous light of 50 µE/(m2 s) initial light intensity using white LEDs, and 4% CO2, at a temperature of 25°C. The maximum biomass and total FAME productivity were 137 mg/L/day and 6 mg/L/day at an optimal dilution rate of 0.328 day−1.
AbstractList New biomass sources for alternative fuels has become a subject of increasing importance as the nation strives to resolve the economic and strategic impacts of limited fossil fuel resources on our national security, environment, and global climate. Algae are among the most promising non‐food‐crop‐based biomass feedstocks. However, there are currently no commercially viable microalgae‐based production systems for biofuel production that have been developed, as limitations include less‐than optimal oil content, growth rates, and cultivation techniques. While batch studies are critical for determining basic growth phases and characteristics of the algal species, steady‐state studies are necessary to better understand and measure the specific growth parameters. This study evaluated the effects of dilution rate on microalgal biomass productivity, lipid content, and fatty acid profile under steady‐state conditions with continuous illumination and carbon dioxide supplemention for two types of algae. Continuous cultures were conducted for more that 3 months. Our results show that the productivity of Chlorella minutissima varied from 39 to 137 mg/L/day (dry mass) when the dilution rate varied from 0.08 to 0.64 day −1 . The biomass productivity of C. minutissima reached a maximum value (137 mg/L/day) at a dilution rate of 0.33 day −1 , while the productivity of Dunaliella tertiolecta varied from 46 to 91 mg/L/day at a dilution rate of 0.17 to 0.74 day −1 . The biomass productivity of D. tertiolecta reached a maximum value of 91 mg/L/day at a dilution rate of 0.42 day −1 . Moreover, the lipid content had no significant change with various dilution rates. Biotechnol. Bioeng. 2012; 109: 2468–2474. © 2012 Wiley Periodicals, Inc.
New biomass sources for alternative fuels has become a subject of increasing importance as the nation strives to resolve the economic and strategic impacts of limited fossil fuel resources on our national security, environment, and global climate. Algae are among the most promising non-food-crop-based biomass feedstocks. However, there are currently no commercially viable microalgae-based production systems for biofuel production that have been developed, as limitations include less-than optimal oil content, growth rates, and cultivation techniques. While batch studies are critical for determining basic growth phases and characteristics of the algal species, steady-state studies are necessary to better understand and measure the specific growth parameters. This study evaluated the effects of dilution rate on microalgal biomass productivity, lipid content, and fatty acid profile under steady-state conditions with continuous illumination and carbon dioxide supplemention for two types of algae. Continuous cultures were conducted for more that 3 months. Our results show that the productivity of Chlorella minutissima varied from 39 to 137 mg/L/day (dry mass) when the dilution rate varied from 0.08 to 0.64 day(-1). The biomass productivity of C. minutissima reached a maximum value (137 mg/L/day) at a dilution rate of 0.33 day(-1), while the productivity of Dunaliella tertiolecta varied from 46 to 91 mg/L/day at a dilution rate of 0.17 to 0.74 day(-1). The biomass productivity of D. tertiolecta reached a maximum value of 91 mg/L/day at a dilution rate of 0.42 day(-1). Moreover, the lipid content had no significant change with various dilution rates.
New biomass sources for alternative fuels has become a subject of increasing importance as the nation strives to resolve the economic and strategic impacts of limited fossil fuel resources on our national security, environment, and global climate. Algae are among the most promising non-food-crop-based biomass feedstocks. However, there are currently no commercially viable microalgae-based production systems for biofuel production that have been developed, as limitations include less-than optimal oil content, growth rates, and cultivation techniques. While batch studies are critical for determining basic growth phases and characteristics of the algal species, steady-state studies are necessary to better understand and measure the specific growth parameters. This study evaluated the effects of dilution rate on microalgal biomass productivity, lipid content, and fatty acid profile under steady-state conditions with continuous illumination and carbon dioxide supplemention for two types of algae. Continuous cultures were conducted for more that 3 months. Our results show that the productivity of Chlorella minutissima varied from 39 to 137 mg/L/day (dry mass) when the dilution rate varied from 0.08 to 0.64 day(-1). The biomass productivity of C. minutissima reached a maximum value (137 mg/L/day) at a dilution rate of 0.33 day(-1), while the productivity of Dunaliella tertiolecta varied from 46 to 91 mg/L/day at a dilution rate of 0.17 to 0.74 day(-1). The biomass productivity of D. tertiolecta reached a maximum value of 91 mg/L/day at a dilution rate of 0.42 day(-1). Moreover, the lipid content had no significant change with various dilution rates.New biomass sources for alternative fuels has become a subject of increasing importance as the nation strives to resolve the economic and strategic impacts of limited fossil fuel resources on our national security, environment, and global climate. Algae are among the most promising non-food-crop-based biomass feedstocks. However, there are currently no commercially viable microalgae-based production systems for biofuel production that have been developed, as limitations include less-than optimal oil content, growth rates, and cultivation techniques. While batch studies are critical for determining basic growth phases and characteristics of the algal species, steady-state studies are necessary to better understand and measure the specific growth parameters. This study evaluated the effects of dilution rate on microalgal biomass productivity, lipid content, and fatty acid profile under steady-state conditions with continuous illumination and carbon dioxide supplemention for two types of algae. Continuous cultures were conducted for more that 3 months. Our results show that the productivity of Chlorella minutissima varied from 39 to 137 mg/L/day (dry mass) when the dilution rate varied from 0.08 to 0.64 day(-1). The biomass productivity of C. minutissima reached a maximum value (137 mg/L/day) at a dilution rate of 0.33 day(-1), while the productivity of Dunaliella tertiolecta varied from 46 to 91 mg/L/day at a dilution rate of 0.17 to 0.74 day(-1). The biomass productivity of D. tertiolecta reached a maximum value of 91 mg/L/day at a dilution rate of 0.42 day(-1). Moreover, the lipid content had no significant change with various dilution rates.
New biomass sources for alternative fuels has become a subject of increasing importance as the nation strives to resolve the economic and strategic impacts of limited fossil fuel resources on our national security, environment, and global climate. Algae are among the most promising non-food-crop-based biomass feedstocks. However, there are currently no commercially viable microalgae-based production systems for biofuel production that have been developed, as limitations include less-than optimal oil content, growth rates, and cultivation techniques. While batch studies are critical for determining basic growth phases and characteristics of the algal species, steady-state studies are necessary to better understand and measure the specific growth parameters. This study evaluated the effects of dilution rate on microalgal biomass productivity, lipid content, and fatty acid profile under steady-state conditions with continuous illumination and carbon dioxide supplemention for two types of algae. Continuous cultures were conducted for more that 3 months. Our results show that the productivity of Chlorella minutissima varied from 39 to 137 mg/L/day (dry mass) when the dilution rate varied from 0.08 to 0.64 day-1. The biomass productivity of C. minutissima reached a maximum value (137 mg/L/day) at a dilution rate of 0.33 day-1, while the productivity of Dunaliella tertiolecta varied from 46 to 91 mg/L/day at a dilution rate of 0.17 to 0.74 day-1. The biomass productivity of D. tertiolecta reached a maximum value of 91 mg/L/day at a dilution rate of 0.42 day-1. Moreover, the lipid content had no significant change with various dilution rates. [PUBLICATION ABSTRACT]
New biomass sources for alternative fuels has become a subject of increasing importance as the nation strives to resolve the economic and strategic impacts of limited fossil fuel resources on our national security, environment, and global climate. Algae are among the most promising non‐food‐crop‐based biomass feedstocks. However, there are currently no commercially viable microalgae‐based production systems for biofuel production that have been developed, as limitations include less‐than optimal oil content, growth rates, and cultivation techniques. While batch studies are critical for determining basic growth phases and characteristics of the algal species, steady‐state studies are necessary to better understand and measure the specific growth parameters. This study evaluated the effects of dilution rate on microalgal biomass productivity, lipid content, and fatty acid profile under steady‐state conditions with continuous illumination and carbon dioxide supplemention for two types of algae. Continuous cultures were conducted for more that 3 months. Our results show that the productivity of Chlorella minutissima varied from 39 to 137 mg/L/day (dry mass) when the dilution rate varied from 0.08 to 0.64 day−1. The biomass productivity of C. minutissima reached a maximum value (137 mg/L/day) at a dilution rate of 0.33 day−1, while the productivity of Dunaliella tertiolecta varied from 46 to 91 mg/L/day at a dilution rate of 0.17 to 0.74 day−1. The biomass productivity of D. tertiolecta reached a maximum value of 91 mg/L/day at a dilution rate of 0.42 day−1. Moreover, the lipid content had no significant change with various dilution rates. Biotechnol. Bioeng. 2012; 109: 2468–2474. © 2012 Wiley Periodicals, Inc. Chlorella minutissima continuous cultivation in a 3L photobioreactor was performed with continuous light of 50 µE/(m2 s) initial light intensity using white LEDs, and 4% CO2, at a temperature of 25°C. The maximum biomass and total FAME productivity were 137 mg/L/day and 6 mg/L/day at an optimal dilution rate of 0.328 day−1.
Author Simon Ng, K.Y.
Tang, Haiying
Salley, Steven O.
Chen, Meng
Author_xml – sequence: 1
  givenname: Haiying
  surname: Tang
  fullname: Tang, Haiying
  organization: Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202; telephone: 313-577-5216; fax: 313-577-3810
– sequence: 2
  givenname: Meng
  surname: Chen
  fullname: Chen, Meng
  organization: Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202; telephone: 313-577-5216; fax: 313-577-3810
– sequence: 3
  givenname: K.Y.
  surname: Simon Ng
  fullname: Simon Ng, K.Y.
  organization: Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202; telephone: 313-577-5216; fax: 313-577-3810
– sequence: 4
  givenname: Steven O.
  surname: Salley
  fullname: Salley, Steven O.
  email: ssalley@wayne.edu
  organization: Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202; telephone: 313-577-5216; fax: 313-577-3810
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22488253$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtP3DAUha2KqgzQBX8AReqGLgLXb2dZRoUijajEQ11aHsehhkw82A6Ff18zAyyQWla-lr5zH-dsoY0hDA6hXQwHGIAczn0-IIxj8QFNMDSyBtLABpoAgKgpb8gm2krppnylEuIT2iSEKUU4nSAxDUP2wxjGVC28jcH018ZVduyzvzfZh6HyQ2Wq5e-Qw9yH6IzNIe6gj53pk_v8_G6jq-Pvl9Mf9eznyen026y28ml2p4A1zrQEGixaEC1vOwfSOU55a5WiTnElRSctU1zKZq466xQYYKUQmNFttL_uu4zhbnQp64VP1vW9GVxZWWMpCKZcsuZ9lFEGhGOK30eBMgWkGFTQL2_QmzDGody8ohpRFleF2numxvnCtXoZ_cLER_3icwG-roHicErRda8IBv2UoS4Z6lWGhT18w1qfV1HkaHz_P8Uf37vHf7fWR6eXL4p6rfApu4dXhYm3Wkgquf51dqKP4JzO6MWZxvQv-zq4wA
CODEN BIBIAU
CitedBy_id crossref_primary_10_1016_j_chemosphere_2021_130129
crossref_primary_10_1016_j_biotechadv_2015_03_004
crossref_primary_10_1016_j_renene_2018_06_041
crossref_primary_10_1016_j_fuel_2021_122841
crossref_primary_10_1016_j_jclepro_2015_10_062
crossref_primary_10_1016_j_scitotenv_2022_155110
crossref_primary_10_1016_j_algal_2021_102368
crossref_primary_10_1016_j_biortech_2013_06_007
crossref_primary_10_1016_j_algal_2014_09_002
crossref_primary_10_1002_bbb_1576
crossref_primary_10_1016_j_jclepro_2012_07_044
crossref_primary_10_1016_j_bioactmat_2022_07_012
crossref_primary_10_1002_jctb_4879
crossref_primary_10_2166_wst_2021_606
crossref_primary_10_1016_j_energy_2018_02_146
crossref_primary_10_1063_1_4976555
crossref_primary_10_1016_j_saa_2015_03_035
crossref_primary_10_3390_catal11050573
crossref_primary_10_1016_j_procbio_2013_06_013
crossref_primary_10_1155_2014_310285
crossref_primary_10_1016_j_biortech_2021_124773
crossref_primary_10_1016_j_biombioe_2021_106049
crossref_primary_10_1007_s10811_018_1465_7
crossref_primary_10_1016_j_bej_2013_11_007
crossref_primary_10_1007_s11270_019_4122_0
crossref_primary_10_1016_j_envdev_2018_07_004
crossref_primary_10_1016_j_jwpe_2023_104374
crossref_primary_10_1080_10408398_2022_2130156
crossref_primary_10_1016_j_biortech_2016_01_081
crossref_primary_10_1016_j_fuel_2021_120924
crossref_primary_10_1016_j_biortech_2014_04_012
crossref_primary_10_1016_j_biortech_2013_07_027
crossref_primary_10_1016_j_jbiotec_2014_12_024
crossref_primary_10_1007_s11814_014_0029_z
crossref_primary_10_1016_j_rser_2017_05_185
crossref_primary_10_1002_clen_202200044
crossref_primary_10_1016_j_algal_2019_101487
crossref_primary_10_1016_j_jwpe_2024_104895
crossref_primary_10_1155_2014_401265
crossref_primary_10_1016_j_jece_2013_11_005
crossref_primary_10_1016_j_algal_2017_01_003
crossref_primary_10_1016_j_aquaculture_2024_741404
crossref_primary_10_1007_s00253_015_6876_7
crossref_primary_10_1016_j_rser_2015_04_186
crossref_primary_10_1016_j_chemosphere_2023_137987
crossref_primary_10_1186_s13068_018_1181_1
crossref_primary_10_1016_j_biortech_2013_05_026
crossref_primary_10_1016_j_scitotenv_2023_169213
crossref_primary_10_1016_j_biortech_2021_124870
crossref_primary_10_1016_j_algal_2019_101636
crossref_primary_10_1007_s00253_017_8157_0
crossref_primary_10_1016_j_biortech_2015_08_124
crossref_primary_10_1002_jctb_5995
crossref_primary_10_1016_j_renene_2018_11_050
crossref_primary_10_1016_j_jclepro_2015_07_089
crossref_primary_10_1016_j_biortech_2016_03_109
crossref_primary_10_1016_j_rser_2021_111930
crossref_primary_10_1007_s00449_016_1675_9
crossref_primary_10_1080_10408398_2019_1672137
crossref_primary_10_1016_j_ecoleng_2016_03_046
crossref_primary_10_1186_1471_2164_14_926
crossref_primary_10_1002_jctb_5768
crossref_primary_10_1186_s12896_023_00784_8
crossref_primary_10_1007_s40974_018_0105_z
crossref_primary_10_1016_j_cjche_2017_08_010
crossref_primary_10_1177_0734242X17708051
crossref_primary_10_1002_jctb_5256
crossref_primary_10_1016_j_algal_2019_101690
crossref_primary_10_1007_s12649_021_01614_8
crossref_primary_10_1016_j_biortech_2014_03_077
crossref_primary_10_1016_j_procbio_2016_09_015
crossref_primary_10_1016_j_biortech_2012_10_139
crossref_primary_10_1016_j_algal_2024_103835
crossref_primary_10_1007_s00449_014_1125_5
crossref_primary_10_1016_j_jprocont_2022_09_001
crossref_primary_10_3390_su12219083
crossref_primary_10_1007_s12010_014_0729_1
crossref_primary_10_1016_j_biortech_2013_10_084
crossref_primary_10_1186_s13068_018_1190_0
crossref_primary_10_1051_e3sconf_202343101021
crossref_primary_10_11001_jksww_2015_29_3_319
crossref_primary_10_1016_j_biortech_2022_126922
crossref_primary_10_1016_j_jclepro_2018_03_045
crossref_primary_10_1016_j_jece_2023_110579
crossref_primary_10_1088_1755_1315_577_1_012002
crossref_primary_10_1088_1755_1315_665_1_012040
crossref_primary_10_1016_j_biortech_2013_08_078
crossref_primary_10_1016_j_jbiosc_2017_09_003
crossref_primary_10_1111_raq_12320
crossref_primary_10_1007_s00253_015_7144_6
crossref_primary_10_1016_j_biotechadv_2014_09_002
crossref_primary_10_1016_j_algal_2018_04_006
crossref_primary_10_3390_en14102952
crossref_primary_10_1016_j_scitotenv_2018_03_157
crossref_primary_10_1088_1755_1315_1069_1_012030
crossref_primary_10_1016_j_jclepro_2017_07_232
crossref_primary_10_4028_www_scientific_net_AMR_777_268
crossref_primary_10_1016_j_cbi_2015_06_013
crossref_primary_10_1007_s10811_017_1374_1
crossref_primary_10_1016_j_biortech_2016_12_100
crossref_primary_10_1016_j_algal_2021_102597
crossref_primary_10_1007_s00253_015_6896_3
crossref_primary_10_1007_s00449_014_1185_6
crossref_primary_10_1016_j_watres_2020_116038
crossref_primary_10_1002_bit_26072
crossref_primary_10_1007_s12649_020_01108_z
crossref_primary_10_1016_j_algal_2018_04_019
crossref_primary_10_1016_j_cherd_2013_08_017
crossref_primary_10_1016_j_ifacol_2021_08_319
Cites_doi 10.1139/y59-099
10.1016/j.apenergy.2010.09.013
10.1007/s00253-008-1740-7
10.1139/m60-041
10.1016/S0144-8609(02)00086-9
10.1016/j.jbiosc.2010.02.009
10.1016/j.bej.2007.03.004
10.1007/s10295-008-0495-6
10.1007/s10811-008-9331-7
10.1016/j.biortech.2011.08.016
10.1016/j.biortech.2007.09.073
10.1002/bit.22725
10.1111/j.1749-7345.2002.tb00027.x
10.1002/bit.20884
10.1016/j.biortech.2010.06.017
10.1007/s12010-009-8771-0
10.1016/j.biortech.2010.11.102
10.1080/09670260110001735238
10.1016/0043-1354(91)90009-F
10.1002/jctb.2272
10.1016/j.biortech.2010.10.088
10.1007/s11746-998-0057-0
10.1016/j.fuel.2008.04.030
10.1016/j.asr.2005.03.039
10.1007/s10811-010-9633-4
10.1002/bit.23160
ContentType Journal Article
Copyright Copyright © 2012 Wiley Periodicals, Inc.
Copyright John Wiley and Sons, Limited Oct 2012
Copyright_xml – notice: Copyright © 2012 Wiley Periodicals, Inc.
– notice: Copyright John Wiley and Sons, Limited Oct 2012
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
F1W
H95
H98
L.G
7SU
DOI 10.1002/bit.24516
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Engineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environmental Engineering Abstracts
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Materials Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
Economics
EISSN 1097-0290
EndPage 2474
ExternalDocumentID 2744399711
22488253
10_1002_bit_24516
BIT24516
ark_67375_WNG_B0R3L3SN_1
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: National Institute of Food and Agriculture
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
F1W
H95
H98
L.G
7SU
ID FETCH-LOGICAL-c7006-f8049ead20916d06d5dfe07ee535dc883e85876f7c485779b8fce80a048fc6143
IEDL.DBID DR2
ISSN 0006-3592
1097-0290
IngestDate Fri Jul 11 09:48:04 EDT 2025
Thu Jul 10 22:36:09 EDT 2025
Fri Jul 11 00:05:21 EDT 2025
Fri Jul 25 19:06:09 EDT 2025
Wed Feb 19 01:51:26 EST 2025
Tue Jul 01 01:08:48 EDT 2025
Thu Apr 24 23:05:36 EDT 2025
Wed Aug 20 07:26:43 EDT 2025
Wed Oct 30 09:48:40 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2012 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c7006-f8049ead20916d06d5dfe07ee535dc883e85876f7c485779b8fce80a048fc6143
Notes ArticleID:BIT24516
National Institute of Food and Agriculture
istex:557F9A43FF27C581072F5294BDCB216C6438CE75
ark:/67375/WNG-B0R3L3SN-1
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 22488253
PQID 1034964858
PQPubID 48814
PageCount 7
ParticipantIDs proquest_miscellaneous_1762135749
proquest_miscellaneous_1434025131
proquest_miscellaneous_1034802253
proquest_journals_1034964858
pubmed_primary_22488253
crossref_primary_10_1002_bit_24516
crossref_citationtrail_10_1002_bit_24516
wiley_primary_10_1002_bit_24516_BIT24516
istex_primary_ark_67375_WNG_B0R3L3SN_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2012
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: October 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
– name: New York
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol. Bioeng
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services, Inc
References Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911-917.
Lamers PP, van de Laak CCW, Kaasenbrood PS, Lorier J, Janssen M, De Vos RCH, Bino RJ, Wijffels RH. 2010. Carotenoid and fatty acid metabolism in light-stressed Dunaliella sauna . Biotechnol Bioeng 106(4): 638-648.
Tang HY, Chen M, Garcia MED, Abunasser N, Ng KYS, Salley SO. 2011b. Culture of microalgae Chlorella minutissima for biodiesel feedstock production. Biotechnol Bioeng 108(10): 2280-2287.
Luther M, Soeder CJ. 1991. 1-Naphthalenesulfonic acid and sulfate as sulfer sources for the green-alga Scenedesmus obliquus . Water Res 25(3): 299-307.
Tang HY, Abunasser N, Gaecia MED, Chen M, Ng KYS, Salley SO. 2011a. Potential resource of microalgae oil for biofuels feedstock production: Dunaliella tertiolecta . Appl Energy 88(10): 3324-3330.
Wang CY, Fu CC, Liu YC. 2007. Effects of using light-emitting diodes on the cultivation of Spirulina platensis . Biochem Eng J 37(1): 21-25.
Liu J, Huang JC, Sun Z, Zhong YJ, Jiang Y, Chen F. 2011. Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: Assessment of algal oils for biodiesel production. Bioresource Technol 102(1): 106-110.
Tang HY, Salley SO, Ng KYS. 2008. Fuel properties and precipitate formation at low temperature in soy-, cottonseed-, and poultry fat-based biodiesel blends. Fuel 87(13-14): 3006-3017.
Emdadi D, Berland B, Bonin D. 1989. Realization of a 2-stage continuous culture apparatus (turbidostat), algae rotifers-Growth and lipidic composition. C R Acad Sci III 308(20): 519-525.
Kitaya Y, Azuma H, Kiyota M. 2005. Effects of temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis . Adv Space Res 35(9): 1584-1588.
Chi ZY, Liu Y, Frear C, Chen SL. 2009. Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Appl Microbiol Biotechnol 81(6): 1141-1148.
Vazhappilly R, Chen F. 1998. Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth. J Am Oil Chem Soc 75(3): 393-397.
Rusch KA, Christensen JM. 2003. The hydraulically integrated serial turbidostat algal reactor (HISTAR) for microalgal production. Aquacultural Eng 27(4): 249-264.
Gardner R, Peters P, Peyton B, Cooksey KE. 2011. Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the chlorophyta. J Appl Phycol 23(6): 1005-1016.
Gouveia L, Oliveira AC. 2009. Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36(2): 269-274.
Maeda I, Seto Y, Ueda S, Yukoh CG, Hari J, Kawase M, Miyasaka H, Yagi K. 2006. Simultaneous control of turbidity and dilution rate through adjustment of medium composition in semi-continuous Chlamydomonas cultures. Biotechnol Bioeng 94(4): 722-729.
Sobczuk TM, Chisti Y. 2010. Potential fuel oils from the microalga Choricystis minor . J Chem Technol Biotechnol 85(1): 100-108.
Das P, Lei W, Aziz SS, Obbard JP. 2011. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresource Technol 102(4): 3883-3887.
King JM, Liang XM, Rusch KA. 2002. Nutritional properties of the marine rotifer Brachionus plicatilis fed the freshwater microalgae Selenastrum capricornutum . J World Aquaculture Soc 33(4): 478-488.
Brindley C, Fernandez FGA, Fernandez-Sevilla JM. 2011. Analysis of light regime in continuous light distributions in photobioreactors. Bioresource Technol 102(3): 3138-3148.
Su HY, Zhang YL, Zhang CM, Zhou XF, Li JP. 2011. Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresource Technol 102(21): 9884-9890.
Oh SH, Kwon MC, Choi WY, Seo YC, Kim GB, Kang DH, Lee SY, Lee HY. 2010. Long-term outdoor cultivation by perfusing spent medium for biodiesel production from Chlorella minutissima . J Biosci Bioeng 110(2): 194-200.
McLachlan J. 1960. The culture of Dunaliella tertiolecta Butcher-A euryhaline organism. Can J Microbiol 6(3): 367-379.
Bhatnagar A, Bhatnagar M, Chinnasamy S, Das KC. 2010. Chlorella minutissima-A promising fuel alga for cultivation in municipal wastewaters. Appl Biochem Biotechnol 161(1-8): 523-536.
Lippemeier S, Hintze R, Vanselow KH, Hartig P, Colijn F. 2001. In-line recording of PAM fluorescence of phytoplankton cultures as a new tool for studying effects of fluctuating nutrient supply on photosynthesis. Eur J Phycol 36(1): 89-100.
Liu ZY, Wang GC, Zhou BC. 2008. Effect of iron on growth and lipid accumulation in Chlorella vulgaris . Bioresource Technol 99(11): 4717-4722.
Kitaya Y, Xiao L, Masuda A, Ozawa T, Tsuda M, Omasa K. 2008. Effects of temperature, photosynthetic photon flux density, photoperiod and O-2 and CO2 concentrations on growth rates of the symbiotic dinoflagellate, Amphidinium sp. J Appl Phycol 20(5): 737-742.
1989; 308
2009; 36
2011; 102
1991; 25
2006; 94
2009; 81
1960; 6
2010; 106
2002; 33
2010; 110
2011b; 108
2003; 27
2010; 161
2008; 87
2011; 23
2008; 99
2008; 20
1959; 37
2001; 36
1998; 75
2010; 85
2005; 35
2007; 37
2011a; 88
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
Emdadi D (e_1_2_5_7_1) 1989; 308
References_xml – reference: Das P, Lei W, Aziz SS, Obbard JP. 2011. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresource Technol 102(4): 3883-3887.
– reference: Kitaya Y, Azuma H, Kiyota M. 2005. Effects of temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis . Adv Space Res 35(9): 1584-1588.
– reference: Lippemeier S, Hintze R, Vanselow KH, Hartig P, Colijn F. 2001. In-line recording of PAM fluorescence of phytoplankton cultures as a new tool for studying effects of fluctuating nutrient supply on photosynthesis. Eur J Phycol 36(1): 89-100.
– reference: Maeda I, Seto Y, Ueda S, Yukoh CG, Hari J, Kawase M, Miyasaka H, Yagi K. 2006. Simultaneous control of turbidity and dilution rate through adjustment of medium composition in semi-continuous Chlamydomonas cultures. Biotechnol Bioeng 94(4): 722-729.
– reference: Chi ZY, Liu Y, Frear C, Chen SL. 2009. Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Appl Microbiol Biotechnol 81(6): 1141-1148.
– reference: Liu ZY, Wang GC, Zhou BC. 2008. Effect of iron on growth and lipid accumulation in Chlorella vulgaris . Bioresource Technol 99(11): 4717-4722.
– reference: Wang CY, Fu CC, Liu YC. 2007. Effects of using light-emitting diodes on the cultivation of Spirulina platensis . Biochem Eng J 37(1): 21-25.
– reference: Liu J, Huang JC, Sun Z, Zhong YJ, Jiang Y, Chen F. 2011. Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: Assessment of algal oils for biodiesel production. Bioresource Technol 102(1): 106-110.
– reference: Tang HY, Chen M, Garcia MED, Abunasser N, Ng KYS, Salley SO. 2011b. Culture of microalgae Chlorella minutissima for biodiesel feedstock production. Biotechnol Bioeng 108(10): 2280-2287.
– reference: Tang HY, Abunasser N, Gaecia MED, Chen M, Ng KYS, Salley SO. 2011a. Potential resource of microalgae oil for biofuels feedstock production: Dunaliella tertiolecta . Appl Energy 88(10): 3324-3330.
– reference: Vazhappilly R, Chen F. 1998. Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth. J Am Oil Chem Soc 75(3): 393-397.
– reference: Kitaya Y, Xiao L, Masuda A, Ozawa T, Tsuda M, Omasa K. 2008. Effects of temperature, photosynthetic photon flux density, photoperiod and O-2 and CO2 concentrations on growth rates of the symbiotic dinoflagellate, Amphidinium sp. J Appl Phycol 20(5): 737-742.
– reference: Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911-917.
– reference: Lamers PP, van de Laak CCW, Kaasenbrood PS, Lorier J, Janssen M, De Vos RCH, Bino RJ, Wijffels RH. 2010. Carotenoid and fatty acid metabolism in light-stressed Dunaliella sauna . Biotechnol Bioeng 106(4): 638-648.
– reference: Tang HY, Salley SO, Ng KYS. 2008. Fuel properties and precipitate formation at low temperature in soy-, cottonseed-, and poultry fat-based biodiesel blends. Fuel 87(13-14): 3006-3017.
– reference: Gardner R, Peters P, Peyton B, Cooksey KE. 2011. Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the chlorophyta. J Appl Phycol 23(6): 1005-1016.
– reference: Luther M, Soeder CJ. 1991. 1-Naphthalenesulfonic acid and sulfate as sulfer sources for the green-alga Scenedesmus obliquus . Water Res 25(3): 299-307.
– reference: Bhatnagar A, Bhatnagar M, Chinnasamy S, Das KC. 2010. Chlorella minutissima-A promising fuel alga for cultivation in municipal wastewaters. Appl Biochem Biotechnol 161(1-8): 523-536.
– reference: Sobczuk TM, Chisti Y. 2010. Potential fuel oils from the microalga Choricystis minor . J Chem Technol Biotechnol 85(1): 100-108.
– reference: Oh SH, Kwon MC, Choi WY, Seo YC, Kim GB, Kang DH, Lee SY, Lee HY. 2010. Long-term outdoor cultivation by perfusing spent medium for biodiesel production from Chlorella minutissima . J Biosci Bioeng 110(2): 194-200.
– reference: Emdadi D, Berland B, Bonin D. 1989. Realization of a 2-stage continuous culture apparatus (turbidostat), algae rotifers-Growth and lipidic composition. C R Acad Sci III 308(20): 519-525.
– reference: Su HY, Zhang YL, Zhang CM, Zhou XF, Li JP. 2011. Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresource Technol 102(21): 9884-9890.
– reference: Rusch KA, Christensen JM. 2003. The hydraulically integrated serial turbidostat algal reactor (HISTAR) for microalgal production. Aquacultural Eng 27(4): 249-264.
– reference: Brindley C, Fernandez FGA, Fernandez-Sevilla JM. 2011. Analysis of light regime in continuous light distributions in photobioreactors. Bioresource Technol 102(3): 3138-3148.
– reference: McLachlan J. 1960. The culture of Dunaliella tertiolecta Butcher-A euryhaline organism. Can J Microbiol 6(3): 367-379.
– reference: Gouveia L, Oliveira AC. 2009. Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36(2): 269-274.
– reference: King JM, Liang XM, Rusch KA. 2002. Nutritional properties of the marine rotifer Brachionus plicatilis fed the freshwater microalgae Selenastrum capricornutum . J World Aquaculture Soc 33(4): 478-488.
– volume: 110
  start-page: 194
  issue: 2
  year: 2010
  end-page: 200
  article-title: Long‐term outdoor cultivation by perfusing spent medium for biodiesel production from
  publication-title: J Biosci Bioeng
– volume: 87
  start-page: 3006
  issue: 13–14
  year: 2008
  end-page: 3017
  article-title: Fuel properties and precipitate formation at low temperature in soy‐, cottonseed‐, and poultry fat‐based biodiesel blends
  publication-title: Fuel
– volume: 20
  start-page: 737
  issue: 5
  year: 2008
  end-page: 742
  article-title: Effects of temperature, photosynthetic photon flux density, photoperiod and O‐2 and CO2 concentrations on growth rates of the symbiotic dinoflagellate, sp
  publication-title: J Appl Phycol
– volume: 27
  start-page: 249
  issue: 4
  year: 2003
  end-page: 264
  article-title: The hydraulically integrated serial turbidostat algal reactor (HISTAR) for microalgal production
  publication-title: Aquacultural Eng
– volume: 85
  start-page: 100
  issue: 1
  year: 2010
  end-page: 108
  article-title: Potential fuel oils from the microalga
  publication-title: J Chem Technol Biotechnol
– volume: 81
  start-page: 1141
  issue: 6
  year: 2009
  end-page: 1148
  article-title: Study of a two‐stage growth of DHA‐producing marine algae SR21 with shifting dissolved oxygen level
  publication-title: Appl Microbiol Biotechnol
– volume: 308
  start-page: 519
  issue: 20
  year: 1989
  end-page: 525
  article-title: Realization of a 2‐stage continuous culture apparatus (turbidostat), algae rotifers—Growth and lipidic composition
  publication-title: C R Acad Sci III
– volume: 94
  start-page: 722
  issue: 4
  year: 2006
  end-page: 729
  article-title: Simultaneous control of turbidity and dilution rate through adjustment of medium composition in semi‐continuous Chlamydomonas cultures
  publication-title: Biotechnol Bioeng
– volume: 36
  start-page: 269
  issue: 2
  year: 2009
  end-page: 274
  article-title: Microalgae as a raw material for biofuels production
  publication-title: J Ind Microbiol Biotechnol
– volume: 102
  start-page: 3883
  issue: 4
  year: 2011
  end-page: 3887
  article-title: Enhanced algae growth in both phototrophic and mixotrophic culture under blue light
  publication-title: Bioresource Technol
– volume: 88
  start-page: 3324
  issue: 10
  year: 2011a
  end-page: 3330
  article-title: Potential resource of microalgae oil for biofuels feedstock production:
  publication-title: Appl Energy
– volume: 108
  start-page: 2280
  issue: 10
  year: 2011b
  end-page: 2287
  article-title: Culture of microalgae for biodiesel feedstock production
  publication-title: Biotechnol Bioeng
– volume: 36
  start-page: 89
  issue: 1
  year: 2001
  end-page: 100
  article-title: In‐line recording of PAM fluorescence of phytoplankton cultures as a new tool for studying effects of fluctuating nutrient supply on photosynthesis
  publication-title: Eur J Phycol
– volume: 102
  start-page: 9884
  issue: 21
  year: 2011
  end-page: 9890
  article-title: Cultivation of in soybean processing wastewater
  publication-title: Bioresource Technol
– volume: 161
  start-page: 523
  issue: 1–8
  year: 2010
  end-page: 536
  article-title: —A promising fuel alga for cultivation in municipal wastewaters
  publication-title: Appl Biochem Biotechnol
– volume: 23
  start-page: 1005
  issue: 6
  year: 2011
  end-page: 1016
  article-title: Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the chlorophyta
  publication-title: J Appl Phycol
– volume: 25
  start-page: 299
  issue: 3
  year: 1991
  end-page: 307
  article-title: 1‐Naphthalenesulfonic acid and sulfate as sulfer sources for the green‐alga
  publication-title: Water Res
– volume: 102
  start-page: 106
  issue: 1
  year: 2011
  end-page: 110
  article-title: Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic : Assessment of algal oils for biodiesel production
  publication-title: Bioresource Technol
– volume: 6
  start-page: 367
  issue: 3
  year: 1960
  end-page: 379
  article-title: The culture of Butcher—A euryhaline organism
  publication-title: Can J Microbiol
– volume: 75
  start-page: 393
  issue: 3
  year: 1998
  end-page: 397
  article-title: Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth
  publication-title: J Am Oil Chem Soc
– volume: 37
  start-page: 21
  issue: 1
  year: 2007
  end-page: 25
  article-title: Effects of using light‐emitting diodes on the cultivation of
  publication-title: Biochem Eng J
– volume: 33
  start-page: 478
  issue: 4
  year: 2002
  end-page: 488
  article-title: Nutritional properties of the marine rotifer fed the freshwater microalgae
  publication-title: J World Aquaculture Soc
– volume: 106
  start-page: 638
  issue: 4
  year: 2010
  end-page: 648
  article-title: Carotenoid and fatty acid metabolism in light‐stressed
  publication-title: Biotechnol Bioeng
– volume: 99
  start-page: 4717
  issue: 11
  year: 2008
  end-page: 4722
  article-title: Effect of iron on growth and lipid accumulation in
  publication-title: Bioresource Technol
– volume: 37
  start-page: 911
  year: 1959
  end-page: 917
  article-title: A rapid method of total lipid extraction and purification
  publication-title: Can J Biochem Physiol
– volume: 102
  start-page: 3138
  issue: 3
  year: 2011
  end-page: 3148
  article-title: Analysis of light regime in continuous light distributions in photobioreactors
  publication-title: Bioresource Technol
– volume: 35
  start-page: 1584
  issue: 9
  year: 2005
  end-page: 1588
  article-title: Effects of temperature, CO /O concentrations and light intensity on cellular multiplication of microalgae,
  publication-title: Adv Space Res
– ident: e_1_2_5_3_1
  doi: 10.1139/y59-099
– ident: e_1_2_5_25_1
  doi: 10.1016/j.apenergy.2010.09.013
– ident: e_1_2_5_5_1
  doi: 10.1007/s00253-008-1740-7
– ident: e_1_2_5_19_1
  doi: 10.1139/m60-041
– ident: e_1_2_5_21_1
  doi: 10.1016/S0144-8609(02)00086-9
– ident: e_1_2_5_20_1
  doi: 10.1016/j.jbiosc.2010.02.009
– volume: 308
  start-page: 519
  issue: 20
  year: 1989
  ident: e_1_2_5_7_1
  article-title: Realization of a 2‐stage continuous culture apparatus (turbidostat), algae rotifers—Growth and lipidic composition
  publication-title: C R Acad Sci III
– ident: e_1_2_5_28_1
  doi: 10.1016/j.bej.2007.03.004
– ident: e_1_2_5_9_1
  doi: 10.1007/s10295-008-0495-6
– ident: e_1_2_5_12_1
  doi: 10.1007/s10811-008-9331-7
– ident: e_1_2_5_23_1
  doi: 10.1016/j.biortech.2011.08.016
– ident: e_1_2_5_15_1
  doi: 10.1016/j.biortech.2007.09.073
– ident: e_1_2_5_13_1
  doi: 10.1002/bit.22725
– ident: e_1_2_5_10_1
  doi: 10.1111/j.1749-7345.2002.tb00027.x
– ident: e_1_2_5_18_1
  doi: 10.1002/bit.20884
– ident: e_1_2_5_16_1
  doi: 10.1016/j.biortech.2010.06.017
– ident: e_1_2_5_2_1
  doi: 10.1007/s12010-009-8771-0
– ident: e_1_2_5_6_1
  doi: 10.1016/j.biortech.2010.11.102
– ident: e_1_2_5_14_1
  doi: 10.1080/09670260110001735238
– ident: e_1_2_5_17_1
  doi: 10.1016/0043-1354(91)90009-F
– ident: e_1_2_5_22_1
  doi: 10.1002/jctb.2272
– ident: e_1_2_5_4_1
  doi: 10.1016/j.biortech.2010.10.088
– ident: e_1_2_5_27_1
  doi: 10.1007/s11746-998-0057-0
– ident: e_1_2_5_24_1
  doi: 10.1016/j.fuel.2008.04.030
– ident: e_1_2_5_11_1
  doi: 10.1016/j.asr.2005.03.039
– ident: e_1_2_5_8_1
  doi: 10.1007/s10811-010-9633-4
– ident: e_1_2_5_26_1
  doi: 10.1002/bit.23160
SSID ssj0007866
Score 2.4255552
Snippet New biomass sources for alternative fuels has become a subject of increasing importance as the nation strives to resolve the economic and strategic impacts of...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2468
SubjectTerms Algae
algae cultivation
Alternative fuels
Aquaculture
Biodiesel fuels
biodiesel production
Bioengineering
Biofuels
Biomass
Carbon dioxide
Carbon Dioxide - metabolism
Chlorella - chemistry
Chlorella - growth & development
Chlorella minutissima
continuous system
Cultivation
Dunaliella tertiolecta
Economics
Global climate
Illumination
Light
Lipids
Lipids - analysis
Microalgae
Photobioreactors - microbiology
Productivity
Raw materials
Reactors
steady state study
Volvocida - chemistry
Volvocida - growth & development
Title Continuous microalgae cultivation in a photobioreactor
URI https://api.istex.fr/ark:/67375/WNG-B0R3L3SN-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.24516
https://www.ncbi.nlm.nih.gov/pubmed/22488253
https://www.proquest.com/docview/1034964858
https://www.proquest.com/docview/1034802253
https://www.proquest.com/docview/1434025131
https://www.proquest.com/docview/1762135749
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VRQg4UNhSCC3IIFT1km02jmNHPXUrSkGwh9KKHpAix7HFqjRbdbMS8OuZcT7aolIhblEySezx2H5jj98AvNEa3eQkFSE3zoWJ0iLMuLYh3ipjI2OrDB1w_jRJD46TDyfiZAl2urMwDT9Ev-BGPcOP19TBdTHfviQNLab1MKY0szj-UqwWAaLDS-ooqZp9SvKYucjijlUoirf7N6_NRXdIrT9uAprXcaufePZX4GtX5Cbe5HS4qIuh-fUHm-N_1ukRPGwBKdttLOgxLNlqAKu7FTrjZz_ZJvMhon7tfQB3x93Vvb0uUdwAHlzhNFyFlPiuptVitpizM4r2o8MilhHDR5tIjU0rptn5t1lNFFAIWmnf4Akc77892jsI2-QMoZGkU6fQt0AzjBFwpGWUlqJ0NpLWCi5KoxS3SuBI66RJlJAyK5QzVkUaRwxnEBPwNViuZpV9BsxxJQ1XNHGOEiOywpW25M466WSUuCKAra6ZctMyl1MCje95w7kc56i33OstgNe96HlD13GT0KZv615CX5xSfJsU-ZfJu3wcHfKP_PMkHwWw0RlD3nbtOX6LOPaxUiqAV_1jVDnttOjKonq9DJ1hFvwWmYQn5ODx0S0yOFWNuJBJFsDTxhj7QiP2Qu-I_rDlTerv9c3H74_8xfN_F12H-wgN4yZscQOW64uFfYHwqy5e-n72G5IRKJQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVqhw4LHlESgQEKp6yTYbx7EjcekWyha2eyhb0QuyEscWq9Js1WYl4Ncz4zxKUakQtyiZJPZ4bH9jj78BeJ1l6CbHCQ-YtjaIZcaDlGUmwFtFpEVkpKYDzvuTZHQYfzjiR0vwpj0LU_NDdAtu1DPceE0dnBakty5YQ_NZ1Y8oz-wNWKGM3sSc__bggjxKyHqnknxmxtOo5RUKo63u1Uuz0Qop9vtVUPMycnVTz-5d-NIWuo44Oe4vqryvf_7B5_i_tboHdxpM6m_XRnQflkzZg7XtEv3xkx_-hu-iRN3yew9uDtur1Z02V1wPbv9Ga7gGCVFezcrFfHHun1DAH50XMT6RfDS51PxZ6Wf-6dd5RSxQiFtp6-ABHO6-m-6MgiY_Q6AFKdVKdC_QEiPEHEkRJgUvrAmFMZzxQkvJjOQ42FqhY8mFSHNptZFhhoOG1QgL2ENYLueleQy-ZVJoJmnuHMSap7ktTMGsscKKMLa5B5ttOyndkJdTDo1vqqZdjhTqTTm9efCqEz2tGTuuEtpwjd1JZGfHFOImuPo8ea-G4QEbs08TNfBgvbUG1fTuc_wW0exjpaQHL7vHqHLabMlKg-p1MnSMmbNrZGIWk4_HBtfI4Gw1YFzEqQePamvsCo3wCx0k-sOms6m_11cN96bu4sm_i76A1dF0f6zGe5OPT-EWIsWojmJch-XqbGGeIRqr8ueu0_0CCusssA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVlwPHFuOQIGAUNWXbLOxHTviqduytFBWqIfoA5KVOLZYlWZXbVYCfj0zuUpRqRBvUTJJ7PHY_sYefwPwOk3RTeaxCJhxLuAqFUHCUhvgrTwyMrLK0AHnj-N4-5C_PxJHC_CmPQtT80N0C27UM6rxmjr4LHfr56Sh2aTsR5Rm9hos8ThMKG_D1t45d5RU9UYlucxMJFFLKxRG692rFyajJdLr98uQ5kXgWs08o7vwpS1zHXBy3J-XWd_8_IPO8T8rdQ_uNIjU36hN6D4s2KIHyxsFeuMnP_xVv4oRrRbfe3B92F7d3GwzxfXg9m-khssQE-HVpJhP52f-CYX70WkR6xPFR5NJzZ8UfurPvk5L4oBC1EobBw_gcPT2YHM7aLIzBEaSTp1C5wLtMELEEedhnIvc2VBaK5jIjVLMKoFDrZOGKyFlkilnrApTHDKcQVDAHsJiMS3sY_AdU9IwRTPngBuRZC63OXPWSSdD7jIP1tpm0qahLqcMGt90TbocadSbrvTmwatOdFbzdVwmtFq1dSeRnh5TgJsU-vP4nR6Ge2yX7Y_1wIOV1hh007fP8FtEso-VUh687B6jymmrJS0sqreSoUPMgl0hwxknD48NrpDBuWrAhOSJB49qY-wKjeAL3SP6w1plUn-vrx7uHFQXT_5d9AXc-LQ10rs74w9P4RbCxKgOYVyBxfJ0bp8hFCuz51WX-wVdXytf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+microalgae+cultivation+in+a+photobioreactor&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Tang%2C+Haiying&rft.au=Chen%2C+Meng&rft.au=Ng%2C+KY+Simon&rft.au=Salley%2C+Steven+O&rft.date=2012-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=109&rft.issue=10&rft.spage=2468&rft_id=info:doi/10.1002%2Fbit.24516&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2744399711
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon