Continuous microalgae cultivation in a photobioreactor
New biomass sources for alternative fuels has become a subject of increasing importance as the nation strives to resolve the economic and strategic impacts of limited fossil fuel resources on our national security, environment, and global climate. Algae are among the most promising non‐food‐crop‐bas...
Saved in:
Published in | Biotechnology and bioengineering Vol. 109; no. 10; pp. 2468 - 2474 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.10.2012
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | New biomass sources for alternative fuels has become a subject of increasing importance as the nation strives to resolve the economic and strategic impacts of limited fossil fuel resources on our national security, environment, and global climate. Algae are among the most promising non‐food‐crop‐based biomass feedstocks. However, there are currently no commercially viable microalgae‐based production systems for biofuel production that have been developed, as limitations include less‐than optimal oil content, growth rates, and cultivation techniques. While batch studies are critical for determining basic growth phases and characteristics of the algal species, steady‐state studies are necessary to better understand and measure the specific growth parameters. This study evaluated the effects of dilution rate on microalgal biomass productivity, lipid content, and fatty acid profile under steady‐state conditions with continuous illumination and carbon dioxide supplemention for two types of algae. Continuous cultures were conducted for more that 3 months. Our results show that the productivity of Chlorella minutissima varied from 39 to 137 mg/L/day (dry mass) when the dilution rate varied from 0.08 to 0.64 day−1. The biomass productivity of C. minutissima reached a maximum value (137 mg/L/day) at a dilution rate of 0.33 day−1, while the productivity of Dunaliella tertiolecta varied from 46 to 91 mg/L/day at a dilution rate of 0.17 to 0.74 day−1. The biomass productivity of D. tertiolecta reached a maximum value of 91 mg/L/day at a dilution rate of 0.42 day−1. Moreover, the lipid content had no significant change with various dilution rates. Biotechnol. Bioeng. 2012; 109: 2468–2474. © 2012 Wiley Periodicals, Inc.
Chlorella minutissima continuous cultivation in a 3L photobioreactor was performed with continuous light of 50 µE/(m2 s) initial light intensity using white LEDs, and 4% CO2, at a temperature of 25°C. The maximum biomass and total FAME productivity were 137 mg/L/day and 6 mg/L/day at an optimal dilution rate of 0.328 day−1. |
---|---|
AbstractList | New biomass sources for alternative fuels has become a subject of increasing importance as the nation strives to resolve the economic and strategic impacts of limited fossil fuel resources on our national security, environment, and global climate. Algae are among the most promising non‐food‐crop‐based biomass feedstocks. However, there are currently no commercially viable microalgae‐based production systems for biofuel production that have been developed, as limitations include less‐than optimal oil content, growth rates, and cultivation techniques. While batch studies are critical for determining basic growth phases and characteristics of the algal species, steady‐state studies are necessary to better understand and measure the specific growth parameters. This study evaluated the effects of dilution rate on microalgal biomass productivity, lipid content, and fatty acid profile under steady‐state conditions with continuous illumination and carbon dioxide supplemention for two types of algae. Continuous cultures were conducted for more that 3 months. Our results show that the productivity of
Chlorella minutissima
varied from 39 to 137 mg/L/day (dry mass) when the dilution rate varied from 0.08 to 0.64 day
−1
. The biomass productivity of
C. minutissima
reached a maximum value (137 mg/L/day) at a dilution rate of 0.33 day
−1
, while the productivity of
Dunaliella tertiolecta
varied from 46 to 91 mg/L/day at a dilution rate of 0.17 to 0.74 day
−1
. The biomass productivity of
D. tertiolecta
reached a maximum value of 91 mg/L/day at a dilution rate of 0.42 day
−1
. Moreover, the lipid content had no significant change with various dilution rates. Biotechnol. Bioeng. 2012; 109: 2468–2474. © 2012 Wiley Periodicals, Inc. New biomass sources for alternative fuels has become a subject of increasing importance as the nation strives to resolve the economic and strategic impacts of limited fossil fuel resources on our national security, environment, and global climate. Algae are among the most promising non-food-crop-based biomass feedstocks. However, there are currently no commercially viable microalgae-based production systems for biofuel production that have been developed, as limitations include less-than optimal oil content, growth rates, and cultivation techniques. While batch studies are critical for determining basic growth phases and characteristics of the algal species, steady-state studies are necessary to better understand and measure the specific growth parameters. This study evaluated the effects of dilution rate on microalgal biomass productivity, lipid content, and fatty acid profile under steady-state conditions with continuous illumination and carbon dioxide supplemention for two types of algae. Continuous cultures were conducted for more that 3 months. Our results show that the productivity of Chlorella minutissima varied from 39 to 137 mg/L/day (dry mass) when the dilution rate varied from 0.08 to 0.64 day(-1). The biomass productivity of C. minutissima reached a maximum value (137 mg/L/day) at a dilution rate of 0.33 day(-1), while the productivity of Dunaliella tertiolecta varied from 46 to 91 mg/L/day at a dilution rate of 0.17 to 0.74 day(-1). The biomass productivity of D. tertiolecta reached a maximum value of 91 mg/L/day at a dilution rate of 0.42 day(-1). Moreover, the lipid content had no significant change with various dilution rates. New biomass sources for alternative fuels has become a subject of increasing importance as the nation strives to resolve the economic and strategic impacts of limited fossil fuel resources on our national security, environment, and global climate. Algae are among the most promising non-food-crop-based biomass feedstocks. However, there are currently no commercially viable microalgae-based production systems for biofuel production that have been developed, as limitations include less-than optimal oil content, growth rates, and cultivation techniques. While batch studies are critical for determining basic growth phases and characteristics of the algal species, steady-state studies are necessary to better understand and measure the specific growth parameters. This study evaluated the effects of dilution rate on microalgal biomass productivity, lipid content, and fatty acid profile under steady-state conditions with continuous illumination and carbon dioxide supplemention for two types of algae. Continuous cultures were conducted for more that 3 months. Our results show that the productivity of Chlorella minutissima varied from 39 to 137 mg/L/day (dry mass) when the dilution rate varied from 0.08 to 0.64 day(-1). The biomass productivity of C. minutissima reached a maximum value (137 mg/L/day) at a dilution rate of 0.33 day(-1), while the productivity of Dunaliella tertiolecta varied from 46 to 91 mg/L/day at a dilution rate of 0.17 to 0.74 day(-1). The biomass productivity of D. tertiolecta reached a maximum value of 91 mg/L/day at a dilution rate of 0.42 day(-1). Moreover, the lipid content had no significant change with various dilution rates.New biomass sources for alternative fuels has become a subject of increasing importance as the nation strives to resolve the economic and strategic impacts of limited fossil fuel resources on our national security, environment, and global climate. Algae are among the most promising non-food-crop-based biomass feedstocks. However, there are currently no commercially viable microalgae-based production systems for biofuel production that have been developed, as limitations include less-than optimal oil content, growth rates, and cultivation techniques. While batch studies are critical for determining basic growth phases and characteristics of the algal species, steady-state studies are necessary to better understand and measure the specific growth parameters. This study evaluated the effects of dilution rate on microalgal biomass productivity, lipid content, and fatty acid profile under steady-state conditions with continuous illumination and carbon dioxide supplemention for two types of algae. Continuous cultures were conducted for more that 3 months. Our results show that the productivity of Chlorella minutissima varied from 39 to 137 mg/L/day (dry mass) when the dilution rate varied from 0.08 to 0.64 day(-1). The biomass productivity of C. minutissima reached a maximum value (137 mg/L/day) at a dilution rate of 0.33 day(-1), while the productivity of Dunaliella tertiolecta varied from 46 to 91 mg/L/day at a dilution rate of 0.17 to 0.74 day(-1). The biomass productivity of D. tertiolecta reached a maximum value of 91 mg/L/day at a dilution rate of 0.42 day(-1). Moreover, the lipid content had no significant change with various dilution rates. New biomass sources for alternative fuels has become a subject of increasing importance as the nation strives to resolve the economic and strategic impacts of limited fossil fuel resources on our national security, environment, and global climate. Algae are among the most promising non-food-crop-based biomass feedstocks. However, there are currently no commercially viable microalgae-based production systems for biofuel production that have been developed, as limitations include less-than optimal oil content, growth rates, and cultivation techniques. While batch studies are critical for determining basic growth phases and characteristics of the algal species, steady-state studies are necessary to better understand and measure the specific growth parameters. This study evaluated the effects of dilution rate on microalgal biomass productivity, lipid content, and fatty acid profile under steady-state conditions with continuous illumination and carbon dioxide supplemention for two types of algae. Continuous cultures were conducted for more that 3 months. Our results show that the productivity of Chlorella minutissima varied from 39 to 137 mg/L/day (dry mass) when the dilution rate varied from 0.08 to 0.64 day-1. The biomass productivity of C. minutissima reached a maximum value (137 mg/L/day) at a dilution rate of 0.33 day-1, while the productivity of Dunaliella tertiolecta varied from 46 to 91 mg/L/day at a dilution rate of 0.17 to 0.74 day-1. The biomass productivity of D. tertiolecta reached a maximum value of 91 mg/L/day at a dilution rate of 0.42 day-1. Moreover, the lipid content had no significant change with various dilution rates. [PUBLICATION ABSTRACT] New biomass sources for alternative fuels has become a subject of increasing importance as the nation strives to resolve the economic and strategic impacts of limited fossil fuel resources on our national security, environment, and global climate. Algae are among the most promising non‐food‐crop‐based biomass feedstocks. However, there are currently no commercially viable microalgae‐based production systems for biofuel production that have been developed, as limitations include less‐than optimal oil content, growth rates, and cultivation techniques. While batch studies are critical for determining basic growth phases and characteristics of the algal species, steady‐state studies are necessary to better understand and measure the specific growth parameters. This study evaluated the effects of dilution rate on microalgal biomass productivity, lipid content, and fatty acid profile under steady‐state conditions with continuous illumination and carbon dioxide supplemention for two types of algae. Continuous cultures were conducted for more that 3 months. Our results show that the productivity of Chlorella minutissima varied from 39 to 137 mg/L/day (dry mass) when the dilution rate varied from 0.08 to 0.64 day−1. The biomass productivity of C. minutissima reached a maximum value (137 mg/L/day) at a dilution rate of 0.33 day−1, while the productivity of Dunaliella tertiolecta varied from 46 to 91 mg/L/day at a dilution rate of 0.17 to 0.74 day−1. The biomass productivity of D. tertiolecta reached a maximum value of 91 mg/L/day at a dilution rate of 0.42 day−1. Moreover, the lipid content had no significant change with various dilution rates. Biotechnol. Bioeng. 2012; 109: 2468–2474. © 2012 Wiley Periodicals, Inc. Chlorella minutissima continuous cultivation in a 3L photobioreactor was performed with continuous light of 50 µE/(m2 s) initial light intensity using white LEDs, and 4% CO2, at a temperature of 25°C. The maximum biomass and total FAME productivity were 137 mg/L/day and 6 mg/L/day at an optimal dilution rate of 0.328 day−1. |
Author | Simon Ng, K.Y. Tang, Haiying Salley, Steven O. Chen, Meng |
Author_xml | – sequence: 1 givenname: Haiying surname: Tang fullname: Tang, Haiying organization: Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202; telephone: 313-577-5216; fax: 313-577-3810 – sequence: 2 givenname: Meng surname: Chen fullname: Chen, Meng organization: Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202; telephone: 313-577-5216; fax: 313-577-3810 – sequence: 3 givenname: K.Y. surname: Simon Ng fullname: Simon Ng, K.Y. organization: Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202; telephone: 313-577-5216; fax: 313-577-3810 – sequence: 4 givenname: Steven O. surname: Salley fullname: Salley, Steven O. email: ssalley@wayne.edu organization: Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202; telephone: 313-577-5216; fax: 313-577-3810 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22488253$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtP3DAUha2KqgzQBX8AReqGLgLXb2dZRoUijajEQ11aHsehhkw82A6Ff18zAyyQWla-lr5zH-dsoY0hDA6hXQwHGIAczn0-IIxj8QFNMDSyBtLABpoAgKgpb8gm2krppnylEuIT2iSEKUU4nSAxDUP2wxjGVC28jcH018ZVduyzvzfZh6HyQ2Wq5e-Qw9yH6IzNIe6gj53pk_v8_G6jq-Pvl9Mf9eznyen026y28ml2p4A1zrQEGixaEC1vOwfSOU55a5WiTnElRSctU1zKZq466xQYYKUQmNFttL_uu4zhbnQp64VP1vW9GVxZWWMpCKZcsuZ9lFEGhGOK30eBMgWkGFTQL2_QmzDGody8ohpRFleF2numxvnCtXoZ_cLER_3icwG-roHicErRda8IBv2UoS4Z6lWGhT18w1qfV1HkaHz_P8Uf37vHf7fWR6eXL4p6rfApu4dXhYm3Wkgquf51dqKP4JzO6MWZxvQv-zq4wA |
CODEN | BIBIAU |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2021_130129 crossref_primary_10_1016_j_biotechadv_2015_03_004 crossref_primary_10_1016_j_renene_2018_06_041 crossref_primary_10_1016_j_fuel_2021_122841 crossref_primary_10_1016_j_jclepro_2015_10_062 crossref_primary_10_1016_j_scitotenv_2022_155110 crossref_primary_10_1016_j_algal_2021_102368 crossref_primary_10_1016_j_biortech_2013_06_007 crossref_primary_10_1016_j_algal_2014_09_002 crossref_primary_10_1002_bbb_1576 crossref_primary_10_1016_j_jclepro_2012_07_044 crossref_primary_10_1016_j_bioactmat_2022_07_012 crossref_primary_10_1002_jctb_4879 crossref_primary_10_2166_wst_2021_606 crossref_primary_10_1016_j_energy_2018_02_146 crossref_primary_10_1063_1_4976555 crossref_primary_10_1016_j_saa_2015_03_035 crossref_primary_10_3390_catal11050573 crossref_primary_10_1016_j_procbio_2013_06_013 crossref_primary_10_1155_2014_310285 crossref_primary_10_1016_j_biortech_2021_124773 crossref_primary_10_1016_j_biombioe_2021_106049 crossref_primary_10_1007_s10811_018_1465_7 crossref_primary_10_1016_j_bej_2013_11_007 crossref_primary_10_1007_s11270_019_4122_0 crossref_primary_10_1016_j_envdev_2018_07_004 crossref_primary_10_1016_j_jwpe_2023_104374 crossref_primary_10_1080_10408398_2022_2130156 crossref_primary_10_1016_j_biortech_2016_01_081 crossref_primary_10_1016_j_fuel_2021_120924 crossref_primary_10_1016_j_biortech_2014_04_012 crossref_primary_10_1016_j_biortech_2013_07_027 crossref_primary_10_1016_j_jbiotec_2014_12_024 crossref_primary_10_1007_s11814_014_0029_z crossref_primary_10_1016_j_rser_2017_05_185 crossref_primary_10_1002_clen_202200044 crossref_primary_10_1016_j_algal_2019_101487 crossref_primary_10_1016_j_jwpe_2024_104895 crossref_primary_10_1155_2014_401265 crossref_primary_10_1016_j_jece_2013_11_005 crossref_primary_10_1016_j_algal_2017_01_003 crossref_primary_10_1016_j_aquaculture_2024_741404 crossref_primary_10_1007_s00253_015_6876_7 crossref_primary_10_1016_j_rser_2015_04_186 crossref_primary_10_1016_j_chemosphere_2023_137987 crossref_primary_10_1186_s13068_018_1181_1 crossref_primary_10_1016_j_biortech_2013_05_026 crossref_primary_10_1016_j_scitotenv_2023_169213 crossref_primary_10_1016_j_biortech_2021_124870 crossref_primary_10_1016_j_algal_2019_101636 crossref_primary_10_1007_s00253_017_8157_0 crossref_primary_10_1016_j_biortech_2015_08_124 crossref_primary_10_1002_jctb_5995 crossref_primary_10_1016_j_renene_2018_11_050 crossref_primary_10_1016_j_jclepro_2015_07_089 crossref_primary_10_1016_j_biortech_2016_03_109 crossref_primary_10_1016_j_rser_2021_111930 crossref_primary_10_1007_s00449_016_1675_9 crossref_primary_10_1080_10408398_2019_1672137 crossref_primary_10_1016_j_ecoleng_2016_03_046 crossref_primary_10_1186_1471_2164_14_926 crossref_primary_10_1002_jctb_5768 crossref_primary_10_1186_s12896_023_00784_8 crossref_primary_10_1007_s40974_018_0105_z crossref_primary_10_1016_j_cjche_2017_08_010 crossref_primary_10_1177_0734242X17708051 crossref_primary_10_1002_jctb_5256 crossref_primary_10_1016_j_algal_2019_101690 crossref_primary_10_1007_s12649_021_01614_8 crossref_primary_10_1016_j_biortech_2014_03_077 crossref_primary_10_1016_j_procbio_2016_09_015 crossref_primary_10_1016_j_biortech_2012_10_139 crossref_primary_10_1016_j_algal_2024_103835 crossref_primary_10_1007_s00449_014_1125_5 crossref_primary_10_1016_j_jprocont_2022_09_001 crossref_primary_10_3390_su12219083 crossref_primary_10_1007_s12010_014_0729_1 crossref_primary_10_1016_j_biortech_2013_10_084 crossref_primary_10_1186_s13068_018_1190_0 crossref_primary_10_1051_e3sconf_202343101021 crossref_primary_10_11001_jksww_2015_29_3_319 crossref_primary_10_1016_j_biortech_2022_126922 crossref_primary_10_1016_j_jclepro_2018_03_045 crossref_primary_10_1016_j_jece_2023_110579 crossref_primary_10_1088_1755_1315_577_1_012002 crossref_primary_10_1088_1755_1315_665_1_012040 crossref_primary_10_1016_j_biortech_2013_08_078 crossref_primary_10_1016_j_jbiosc_2017_09_003 crossref_primary_10_1111_raq_12320 crossref_primary_10_1007_s00253_015_7144_6 crossref_primary_10_1016_j_biotechadv_2014_09_002 crossref_primary_10_1016_j_algal_2018_04_006 crossref_primary_10_3390_en14102952 crossref_primary_10_1016_j_scitotenv_2018_03_157 crossref_primary_10_1088_1755_1315_1069_1_012030 crossref_primary_10_1016_j_jclepro_2017_07_232 crossref_primary_10_4028_www_scientific_net_AMR_777_268 crossref_primary_10_1016_j_cbi_2015_06_013 crossref_primary_10_1007_s10811_017_1374_1 crossref_primary_10_1016_j_biortech_2016_12_100 crossref_primary_10_1016_j_algal_2021_102597 crossref_primary_10_1007_s00253_015_6896_3 crossref_primary_10_1007_s00449_014_1185_6 crossref_primary_10_1016_j_watres_2020_116038 crossref_primary_10_1002_bit_26072 crossref_primary_10_1007_s12649_020_01108_z crossref_primary_10_1016_j_algal_2018_04_019 crossref_primary_10_1016_j_cherd_2013_08_017 crossref_primary_10_1016_j_ifacol_2021_08_319 |
Cites_doi | 10.1139/y59-099 10.1016/j.apenergy.2010.09.013 10.1007/s00253-008-1740-7 10.1139/m60-041 10.1016/S0144-8609(02)00086-9 10.1016/j.jbiosc.2010.02.009 10.1016/j.bej.2007.03.004 10.1007/s10295-008-0495-6 10.1007/s10811-008-9331-7 10.1016/j.biortech.2011.08.016 10.1016/j.biortech.2007.09.073 10.1002/bit.22725 10.1111/j.1749-7345.2002.tb00027.x 10.1002/bit.20884 10.1016/j.biortech.2010.06.017 10.1007/s12010-009-8771-0 10.1016/j.biortech.2010.11.102 10.1080/09670260110001735238 10.1016/0043-1354(91)90009-F 10.1002/jctb.2272 10.1016/j.biortech.2010.10.088 10.1007/s11746-998-0057-0 10.1016/j.fuel.2008.04.030 10.1016/j.asr.2005.03.039 10.1007/s10811-010-9633-4 10.1002/bit.23160 |
ContentType | Journal Article |
Copyright | Copyright © 2012 Wiley Periodicals, Inc. Copyright John Wiley and Sons, Limited Oct 2012 |
Copyright_xml | – notice: Copyright © 2012 Wiley Periodicals, Inc. – notice: Copyright John Wiley and Sons, Limited Oct 2012 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 F1W H95 H98 L.G 7SU |
DOI | 10.1002/bit.24516 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Engineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environmental Engineering Abstracts |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Materials Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology Anatomy & Physiology Economics |
EISSN | 1097-0290 |
EndPage | 2474 |
ExternalDocumentID | 2744399711 22488253 10_1002_bit_24516 BIT24516 ark_67375_WNG_B0R3L3SN_1 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: National Institute of Food and Agriculture |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZGI ZXP ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION CGR CUY CVF ECM EIF NPM PKN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 F1W H95 H98 L.G 7SU |
ID | FETCH-LOGICAL-c7006-f8049ead20916d06d5dfe07ee535dc883e85876f7c485779b8fce80a048fc6143 |
IEDL.DBID | DR2 |
ISSN | 0006-3592 1097-0290 |
IngestDate | Fri Jul 11 09:48:04 EDT 2025 Thu Jul 10 22:36:09 EDT 2025 Fri Jul 11 00:05:21 EDT 2025 Fri Jul 25 19:06:09 EDT 2025 Wed Feb 19 01:51:26 EST 2025 Tue Jul 01 01:08:48 EDT 2025 Thu Apr 24 23:05:36 EDT 2025 Wed Aug 20 07:26:43 EDT 2025 Wed Oct 30 09:48:40 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2012 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c7006-f8049ead20916d06d5dfe07ee535dc883e85876f7c485779b8fce80a048fc6143 |
Notes | ArticleID:BIT24516 National Institute of Food and Agriculture istex:557F9A43FF27C581072F5294BDCB216C6438CE75 ark:/67375/WNG-B0R3L3SN-1 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 22488253 |
PQID | 1034964858 |
PQPubID | 48814 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1762135749 proquest_miscellaneous_1434025131 proquest_miscellaneous_1034802253 proquest_journals_1034964858 pubmed_primary_22488253 crossref_primary_10_1002_bit_24516 crossref_citationtrail_10_1002_bit_24516 wiley_primary_10_1002_bit_24516_BIT24516 istex_primary_ark_67375_WNG_B0R3L3SN_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2012 |
PublicationDateYYYYMMDD | 2012-10-01 |
PublicationDate_xml | – month: 10 year: 2012 text: October 2012 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States – name: New York |
PublicationTitle | Biotechnology and bioengineering |
PublicationTitleAlternate | Biotechnol. Bioeng |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley Subscription Services, Inc |
References | Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911-917. Lamers PP, van de Laak CCW, Kaasenbrood PS, Lorier J, Janssen M, De Vos RCH, Bino RJ, Wijffels RH. 2010. Carotenoid and fatty acid metabolism in light-stressed Dunaliella sauna . Biotechnol Bioeng 106(4): 638-648. Tang HY, Chen M, Garcia MED, Abunasser N, Ng KYS, Salley SO. 2011b. Culture of microalgae Chlorella minutissima for biodiesel feedstock production. Biotechnol Bioeng 108(10): 2280-2287. Luther M, Soeder CJ. 1991. 1-Naphthalenesulfonic acid and sulfate as sulfer sources for the green-alga Scenedesmus obliquus . Water Res 25(3): 299-307. Tang HY, Abunasser N, Gaecia MED, Chen M, Ng KYS, Salley SO. 2011a. Potential resource of microalgae oil for biofuels feedstock production: Dunaliella tertiolecta . Appl Energy 88(10): 3324-3330. Wang CY, Fu CC, Liu YC. 2007. Effects of using light-emitting diodes on the cultivation of Spirulina platensis . Biochem Eng J 37(1): 21-25. Liu J, Huang JC, Sun Z, Zhong YJ, Jiang Y, Chen F. 2011. Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: Assessment of algal oils for biodiesel production. Bioresource Technol 102(1): 106-110. Tang HY, Salley SO, Ng KYS. 2008. Fuel properties and precipitate formation at low temperature in soy-, cottonseed-, and poultry fat-based biodiesel blends. Fuel 87(13-14): 3006-3017. Emdadi D, Berland B, Bonin D. 1989. Realization of a 2-stage continuous culture apparatus (turbidostat), algae rotifers-Growth and lipidic composition. C R Acad Sci III 308(20): 519-525. Kitaya Y, Azuma H, Kiyota M. 2005. Effects of temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis . Adv Space Res 35(9): 1584-1588. Chi ZY, Liu Y, Frear C, Chen SL. 2009. Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Appl Microbiol Biotechnol 81(6): 1141-1148. Vazhappilly R, Chen F. 1998. Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth. J Am Oil Chem Soc 75(3): 393-397. Rusch KA, Christensen JM. 2003. The hydraulically integrated serial turbidostat algal reactor (HISTAR) for microalgal production. Aquacultural Eng 27(4): 249-264. Gardner R, Peters P, Peyton B, Cooksey KE. 2011. Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the chlorophyta. J Appl Phycol 23(6): 1005-1016. Gouveia L, Oliveira AC. 2009. Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36(2): 269-274. Maeda I, Seto Y, Ueda S, Yukoh CG, Hari J, Kawase M, Miyasaka H, Yagi K. 2006. Simultaneous control of turbidity and dilution rate through adjustment of medium composition in semi-continuous Chlamydomonas cultures. Biotechnol Bioeng 94(4): 722-729. Sobczuk TM, Chisti Y. 2010. Potential fuel oils from the microalga Choricystis minor . J Chem Technol Biotechnol 85(1): 100-108. Das P, Lei W, Aziz SS, Obbard JP. 2011. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresource Technol 102(4): 3883-3887. King JM, Liang XM, Rusch KA. 2002. Nutritional properties of the marine rotifer Brachionus plicatilis fed the freshwater microalgae Selenastrum capricornutum . J World Aquaculture Soc 33(4): 478-488. Brindley C, Fernandez FGA, Fernandez-Sevilla JM. 2011. Analysis of light regime in continuous light distributions in photobioreactors. Bioresource Technol 102(3): 3138-3148. Su HY, Zhang YL, Zhang CM, Zhou XF, Li JP. 2011. Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresource Technol 102(21): 9884-9890. Oh SH, Kwon MC, Choi WY, Seo YC, Kim GB, Kang DH, Lee SY, Lee HY. 2010. Long-term outdoor cultivation by perfusing spent medium for biodiesel production from Chlorella minutissima . J Biosci Bioeng 110(2): 194-200. McLachlan J. 1960. The culture of Dunaliella tertiolecta Butcher-A euryhaline organism. Can J Microbiol 6(3): 367-379. Bhatnagar A, Bhatnagar M, Chinnasamy S, Das KC. 2010. Chlorella minutissima-A promising fuel alga for cultivation in municipal wastewaters. Appl Biochem Biotechnol 161(1-8): 523-536. Lippemeier S, Hintze R, Vanselow KH, Hartig P, Colijn F. 2001. In-line recording of PAM fluorescence of phytoplankton cultures as a new tool for studying effects of fluctuating nutrient supply on photosynthesis. Eur J Phycol 36(1): 89-100. Liu ZY, Wang GC, Zhou BC. 2008. Effect of iron on growth and lipid accumulation in Chlorella vulgaris . Bioresource Technol 99(11): 4717-4722. Kitaya Y, Xiao L, Masuda A, Ozawa T, Tsuda M, Omasa K. 2008. Effects of temperature, photosynthetic photon flux density, photoperiod and O-2 and CO2 concentrations on growth rates of the symbiotic dinoflagellate, Amphidinium sp. J Appl Phycol 20(5): 737-742. 1989; 308 2009; 36 2011; 102 1991; 25 2006; 94 2009; 81 1960; 6 2010; 106 2002; 33 2010; 110 2011b; 108 2003; 27 2010; 161 2008; 87 2011; 23 2008; 99 2008; 20 1959; 37 2001; 36 1998; 75 2010; 85 2005; 35 2007; 37 2011a; 88 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 Emdadi D (e_1_2_5_7_1) 1989; 308 |
References_xml | – reference: Das P, Lei W, Aziz SS, Obbard JP. 2011. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresource Technol 102(4): 3883-3887. – reference: Kitaya Y, Azuma H, Kiyota M. 2005. Effects of temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis . Adv Space Res 35(9): 1584-1588. – reference: Lippemeier S, Hintze R, Vanselow KH, Hartig P, Colijn F. 2001. In-line recording of PAM fluorescence of phytoplankton cultures as a new tool for studying effects of fluctuating nutrient supply on photosynthesis. Eur J Phycol 36(1): 89-100. – reference: Maeda I, Seto Y, Ueda S, Yukoh CG, Hari J, Kawase M, Miyasaka H, Yagi K. 2006. Simultaneous control of turbidity and dilution rate through adjustment of medium composition in semi-continuous Chlamydomonas cultures. Biotechnol Bioeng 94(4): 722-729. – reference: Chi ZY, Liu Y, Frear C, Chen SL. 2009. Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Appl Microbiol Biotechnol 81(6): 1141-1148. – reference: Liu ZY, Wang GC, Zhou BC. 2008. Effect of iron on growth and lipid accumulation in Chlorella vulgaris . Bioresource Technol 99(11): 4717-4722. – reference: Wang CY, Fu CC, Liu YC. 2007. Effects of using light-emitting diodes on the cultivation of Spirulina platensis . Biochem Eng J 37(1): 21-25. – reference: Liu J, Huang JC, Sun Z, Zhong YJ, Jiang Y, Chen F. 2011. Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: Assessment of algal oils for biodiesel production. Bioresource Technol 102(1): 106-110. – reference: Tang HY, Chen M, Garcia MED, Abunasser N, Ng KYS, Salley SO. 2011b. Culture of microalgae Chlorella minutissima for biodiesel feedstock production. Biotechnol Bioeng 108(10): 2280-2287. – reference: Tang HY, Abunasser N, Gaecia MED, Chen M, Ng KYS, Salley SO. 2011a. Potential resource of microalgae oil for biofuels feedstock production: Dunaliella tertiolecta . Appl Energy 88(10): 3324-3330. – reference: Vazhappilly R, Chen F. 1998. Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth. J Am Oil Chem Soc 75(3): 393-397. – reference: Kitaya Y, Xiao L, Masuda A, Ozawa T, Tsuda M, Omasa K. 2008. Effects of temperature, photosynthetic photon flux density, photoperiod and O-2 and CO2 concentrations on growth rates of the symbiotic dinoflagellate, Amphidinium sp. J Appl Phycol 20(5): 737-742. – reference: Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911-917. – reference: Lamers PP, van de Laak CCW, Kaasenbrood PS, Lorier J, Janssen M, De Vos RCH, Bino RJ, Wijffels RH. 2010. Carotenoid and fatty acid metabolism in light-stressed Dunaliella sauna . Biotechnol Bioeng 106(4): 638-648. – reference: Tang HY, Salley SO, Ng KYS. 2008. Fuel properties and precipitate formation at low temperature in soy-, cottonseed-, and poultry fat-based biodiesel blends. Fuel 87(13-14): 3006-3017. – reference: Gardner R, Peters P, Peyton B, Cooksey KE. 2011. Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the chlorophyta. J Appl Phycol 23(6): 1005-1016. – reference: Luther M, Soeder CJ. 1991. 1-Naphthalenesulfonic acid and sulfate as sulfer sources for the green-alga Scenedesmus obliquus . Water Res 25(3): 299-307. – reference: Bhatnagar A, Bhatnagar M, Chinnasamy S, Das KC. 2010. Chlorella minutissima-A promising fuel alga for cultivation in municipal wastewaters. Appl Biochem Biotechnol 161(1-8): 523-536. – reference: Sobczuk TM, Chisti Y. 2010. Potential fuel oils from the microalga Choricystis minor . J Chem Technol Biotechnol 85(1): 100-108. – reference: Oh SH, Kwon MC, Choi WY, Seo YC, Kim GB, Kang DH, Lee SY, Lee HY. 2010. Long-term outdoor cultivation by perfusing spent medium for biodiesel production from Chlorella minutissima . J Biosci Bioeng 110(2): 194-200. – reference: Emdadi D, Berland B, Bonin D. 1989. Realization of a 2-stage continuous culture apparatus (turbidostat), algae rotifers-Growth and lipidic composition. C R Acad Sci III 308(20): 519-525. – reference: Su HY, Zhang YL, Zhang CM, Zhou XF, Li JP. 2011. Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresource Technol 102(21): 9884-9890. – reference: Rusch KA, Christensen JM. 2003. The hydraulically integrated serial turbidostat algal reactor (HISTAR) for microalgal production. Aquacultural Eng 27(4): 249-264. – reference: Brindley C, Fernandez FGA, Fernandez-Sevilla JM. 2011. Analysis of light regime in continuous light distributions in photobioreactors. Bioresource Technol 102(3): 3138-3148. – reference: McLachlan J. 1960. The culture of Dunaliella tertiolecta Butcher-A euryhaline organism. Can J Microbiol 6(3): 367-379. – reference: Gouveia L, Oliveira AC. 2009. Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36(2): 269-274. – reference: King JM, Liang XM, Rusch KA. 2002. Nutritional properties of the marine rotifer Brachionus plicatilis fed the freshwater microalgae Selenastrum capricornutum . J World Aquaculture Soc 33(4): 478-488. – volume: 110 start-page: 194 issue: 2 year: 2010 end-page: 200 article-title: Long‐term outdoor cultivation by perfusing spent medium for biodiesel production from publication-title: J Biosci Bioeng – volume: 87 start-page: 3006 issue: 13–14 year: 2008 end-page: 3017 article-title: Fuel properties and precipitate formation at low temperature in soy‐, cottonseed‐, and poultry fat‐based biodiesel blends publication-title: Fuel – volume: 20 start-page: 737 issue: 5 year: 2008 end-page: 742 article-title: Effects of temperature, photosynthetic photon flux density, photoperiod and O‐2 and CO2 concentrations on growth rates of the symbiotic dinoflagellate, sp publication-title: J Appl Phycol – volume: 27 start-page: 249 issue: 4 year: 2003 end-page: 264 article-title: The hydraulically integrated serial turbidostat algal reactor (HISTAR) for microalgal production publication-title: Aquacultural Eng – volume: 85 start-page: 100 issue: 1 year: 2010 end-page: 108 article-title: Potential fuel oils from the microalga publication-title: J Chem Technol Biotechnol – volume: 81 start-page: 1141 issue: 6 year: 2009 end-page: 1148 article-title: Study of a two‐stage growth of DHA‐producing marine algae SR21 with shifting dissolved oxygen level publication-title: Appl Microbiol Biotechnol – volume: 308 start-page: 519 issue: 20 year: 1989 end-page: 525 article-title: Realization of a 2‐stage continuous culture apparatus (turbidostat), algae rotifers—Growth and lipidic composition publication-title: C R Acad Sci III – volume: 94 start-page: 722 issue: 4 year: 2006 end-page: 729 article-title: Simultaneous control of turbidity and dilution rate through adjustment of medium composition in semi‐continuous Chlamydomonas cultures publication-title: Biotechnol Bioeng – volume: 36 start-page: 269 issue: 2 year: 2009 end-page: 274 article-title: Microalgae as a raw material for biofuels production publication-title: J Ind Microbiol Biotechnol – volume: 102 start-page: 3883 issue: 4 year: 2011 end-page: 3887 article-title: Enhanced algae growth in both phototrophic and mixotrophic culture under blue light publication-title: Bioresource Technol – volume: 88 start-page: 3324 issue: 10 year: 2011a end-page: 3330 article-title: Potential resource of microalgae oil for biofuels feedstock production: publication-title: Appl Energy – volume: 108 start-page: 2280 issue: 10 year: 2011b end-page: 2287 article-title: Culture of microalgae for biodiesel feedstock production publication-title: Biotechnol Bioeng – volume: 36 start-page: 89 issue: 1 year: 2001 end-page: 100 article-title: In‐line recording of PAM fluorescence of phytoplankton cultures as a new tool for studying effects of fluctuating nutrient supply on photosynthesis publication-title: Eur J Phycol – volume: 102 start-page: 9884 issue: 21 year: 2011 end-page: 9890 article-title: Cultivation of in soybean processing wastewater publication-title: Bioresource Technol – volume: 161 start-page: 523 issue: 1–8 year: 2010 end-page: 536 article-title: —A promising fuel alga for cultivation in municipal wastewaters publication-title: Appl Biochem Biotechnol – volume: 23 start-page: 1005 issue: 6 year: 2011 end-page: 1016 article-title: Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the chlorophyta publication-title: J Appl Phycol – volume: 25 start-page: 299 issue: 3 year: 1991 end-page: 307 article-title: 1‐Naphthalenesulfonic acid and sulfate as sulfer sources for the green‐alga publication-title: Water Res – volume: 102 start-page: 106 issue: 1 year: 2011 end-page: 110 article-title: Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic : Assessment of algal oils for biodiesel production publication-title: Bioresource Technol – volume: 6 start-page: 367 issue: 3 year: 1960 end-page: 379 article-title: The culture of Butcher—A euryhaline organism publication-title: Can J Microbiol – volume: 75 start-page: 393 issue: 3 year: 1998 end-page: 397 article-title: Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth publication-title: J Am Oil Chem Soc – volume: 37 start-page: 21 issue: 1 year: 2007 end-page: 25 article-title: Effects of using light‐emitting diodes on the cultivation of publication-title: Biochem Eng J – volume: 33 start-page: 478 issue: 4 year: 2002 end-page: 488 article-title: Nutritional properties of the marine rotifer fed the freshwater microalgae publication-title: J World Aquaculture Soc – volume: 106 start-page: 638 issue: 4 year: 2010 end-page: 648 article-title: Carotenoid and fatty acid metabolism in light‐stressed publication-title: Biotechnol Bioeng – volume: 99 start-page: 4717 issue: 11 year: 2008 end-page: 4722 article-title: Effect of iron on growth and lipid accumulation in publication-title: Bioresource Technol – volume: 37 start-page: 911 year: 1959 end-page: 917 article-title: A rapid method of total lipid extraction and purification publication-title: Can J Biochem Physiol – volume: 102 start-page: 3138 issue: 3 year: 2011 end-page: 3148 article-title: Analysis of light regime in continuous light distributions in photobioreactors publication-title: Bioresource Technol – volume: 35 start-page: 1584 issue: 9 year: 2005 end-page: 1588 article-title: Effects of temperature, CO /O concentrations and light intensity on cellular multiplication of microalgae, publication-title: Adv Space Res – ident: e_1_2_5_3_1 doi: 10.1139/y59-099 – ident: e_1_2_5_25_1 doi: 10.1016/j.apenergy.2010.09.013 – ident: e_1_2_5_5_1 doi: 10.1007/s00253-008-1740-7 – ident: e_1_2_5_19_1 doi: 10.1139/m60-041 – ident: e_1_2_5_21_1 doi: 10.1016/S0144-8609(02)00086-9 – ident: e_1_2_5_20_1 doi: 10.1016/j.jbiosc.2010.02.009 – volume: 308 start-page: 519 issue: 20 year: 1989 ident: e_1_2_5_7_1 article-title: Realization of a 2‐stage continuous culture apparatus (turbidostat), algae rotifers—Growth and lipidic composition publication-title: C R Acad Sci III – ident: e_1_2_5_28_1 doi: 10.1016/j.bej.2007.03.004 – ident: e_1_2_5_9_1 doi: 10.1007/s10295-008-0495-6 – ident: e_1_2_5_12_1 doi: 10.1007/s10811-008-9331-7 – ident: e_1_2_5_23_1 doi: 10.1016/j.biortech.2011.08.016 – ident: e_1_2_5_15_1 doi: 10.1016/j.biortech.2007.09.073 – ident: e_1_2_5_13_1 doi: 10.1002/bit.22725 – ident: e_1_2_5_10_1 doi: 10.1111/j.1749-7345.2002.tb00027.x – ident: e_1_2_5_18_1 doi: 10.1002/bit.20884 – ident: e_1_2_5_16_1 doi: 10.1016/j.biortech.2010.06.017 – ident: e_1_2_5_2_1 doi: 10.1007/s12010-009-8771-0 – ident: e_1_2_5_6_1 doi: 10.1016/j.biortech.2010.11.102 – ident: e_1_2_5_14_1 doi: 10.1080/09670260110001735238 – ident: e_1_2_5_17_1 doi: 10.1016/0043-1354(91)90009-F – ident: e_1_2_5_22_1 doi: 10.1002/jctb.2272 – ident: e_1_2_5_4_1 doi: 10.1016/j.biortech.2010.10.088 – ident: e_1_2_5_27_1 doi: 10.1007/s11746-998-0057-0 – ident: e_1_2_5_24_1 doi: 10.1016/j.fuel.2008.04.030 – ident: e_1_2_5_11_1 doi: 10.1016/j.asr.2005.03.039 – ident: e_1_2_5_8_1 doi: 10.1007/s10811-010-9633-4 – ident: e_1_2_5_26_1 doi: 10.1002/bit.23160 |
SSID | ssj0007866 |
Score | 2.4255552 |
Snippet | New biomass sources for alternative fuels has become a subject of increasing importance as the nation strives to resolve the economic and strategic impacts of... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2468 |
SubjectTerms | Algae algae cultivation Alternative fuels Aquaculture Biodiesel fuels biodiesel production Bioengineering Biofuels Biomass Carbon dioxide Carbon Dioxide - metabolism Chlorella - chemistry Chlorella - growth & development Chlorella minutissima continuous system Cultivation Dunaliella tertiolecta Economics Global climate Illumination Light Lipids Lipids - analysis Microalgae Photobioreactors - microbiology Productivity Raw materials Reactors steady state study Volvocida - chemistry Volvocida - growth & development |
Title | Continuous microalgae cultivation in a photobioreactor |
URI | https://api.istex.fr/ark:/67375/WNG-B0R3L3SN-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.24516 https://www.ncbi.nlm.nih.gov/pubmed/22488253 https://www.proquest.com/docview/1034964858 https://www.proquest.com/docview/1034802253 https://www.proquest.com/docview/1434025131 https://www.proquest.com/docview/1762135749 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VRQg4UNhSCC3IIFT1km02jmNHPXUrSkGwh9KKHpAix7HFqjRbdbMS8OuZcT7aolIhblEySezx2H5jj98AvNEa3eQkFSE3zoWJ0iLMuLYh3ipjI2OrDB1w_jRJD46TDyfiZAl2urMwDT9Ev-BGPcOP19TBdTHfviQNLab1MKY0szj-UqwWAaLDS-ooqZp9SvKYucjijlUoirf7N6_NRXdIrT9uAprXcaufePZX4GtX5Cbe5HS4qIuh-fUHm-N_1ukRPGwBKdttLOgxLNlqAKu7FTrjZz_ZJvMhon7tfQB3x93Vvb0uUdwAHlzhNFyFlPiuptVitpizM4r2o8MilhHDR5tIjU0rptn5t1lNFFAIWmnf4Akc77892jsI2-QMoZGkU6fQt0AzjBFwpGWUlqJ0NpLWCi5KoxS3SuBI66RJlJAyK5QzVkUaRwxnEBPwNViuZpV9BsxxJQ1XNHGOEiOywpW25M466WSUuCKAra6ZctMyl1MCje95w7kc56i33OstgNe96HlD13GT0KZv615CX5xSfJsU-ZfJu3wcHfKP_PMkHwWw0RlD3nbtOX6LOPaxUiqAV_1jVDnttOjKonq9DJ1hFvwWmYQn5ODx0S0yOFWNuJBJFsDTxhj7QiP2Qu-I_rDlTerv9c3H74_8xfN_F12H-wgN4yZscQOW64uFfYHwqy5e-n72G5IRKJQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVqhw4LHlESgQEKp6yTYbx7EjcekWyha2eyhb0QuyEscWq9Js1WYl4Ncz4zxKUakQtyiZJPZ4bH9jj78BeJ1l6CbHCQ-YtjaIZcaDlGUmwFtFpEVkpKYDzvuTZHQYfzjiR0vwpj0LU_NDdAtu1DPceE0dnBakty5YQ_NZ1Y8oz-wNWKGM3sSc__bggjxKyHqnknxmxtOo5RUKo63u1Uuz0Qop9vtVUPMycnVTz-5d-NIWuo44Oe4vqryvf_7B5_i_tboHdxpM6m_XRnQflkzZg7XtEv3xkx_-hu-iRN3yew9uDtur1Z02V1wPbv9Ga7gGCVFezcrFfHHun1DAH50XMT6RfDS51PxZ6Wf-6dd5RSxQiFtp6-ABHO6-m-6MgiY_Q6AFKdVKdC_QEiPEHEkRJgUvrAmFMZzxQkvJjOQ42FqhY8mFSHNptZFhhoOG1QgL2ENYLueleQy-ZVJoJmnuHMSap7ktTMGsscKKMLa5B5ttOyndkJdTDo1vqqZdjhTqTTm9efCqEz2tGTuuEtpwjd1JZGfHFOImuPo8ea-G4QEbs08TNfBgvbUG1fTuc_wW0exjpaQHL7vHqHLabMlKg-p1MnSMmbNrZGIWk4_HBtfI4Gw1YFzEqQePamvsCo3wCx0k-sOms6m_11cN96bu4sm_i76A1dF0f6zGe5OPT-EWIsWojmJch-XqbGGeIRqr8ueu0_0CCusssA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVlwPHFuOQIGAUNWXbLOxHTviqduytFBWqIfoA5KVOLZYlWZXbVYCfj0zuUpRqRBvUTJJ7PHY_sYefwPwOk3RTeaxCJhxLuAqFUHCUhvgrTwyMrLK0AHnj-N4-5C_PxJHC_CmPQtT80N0C27UM6rxmjr4LHfr56Sh2aTsR5Rm9hos8ThMKG_D1t45d5RU9UYlucxMJFFLKxRG692rFyajJdLr98uQ5kXgWs08o7vwpS1zHXBy3J-XWd_8_IPO8T8rdQ_uNIjU36hN6D4s2KIHyxsFeuMnP_xVv4oRrRbfe3B92F7d3GwzxfXg9m-khssQE-HVpJhP52f-CYX70WkR6xPFR5NJzZ8UfurPvk5L4oBC1EobBw_gcPT2YHM7aLIzBEaSTp1C5wLtMELEEedhnIvc2VBaK5jIjVLMKoFDrZOGKyFlkilnrApTHDKcQVDAHsJiMS3sY_AdU9IwRTPngBuRZC63OXPWSSdD7jIP1tpm0qahLqcMGt90TbocadSbrvTmwatOdFbzdVwmtFq1dSeRnh5TgJsU-vP4nR6Ge2yX7Y_1wIOV1hh007fP8FtEso-VUh687B6jymmrJS0sqreSoUPMgl0hwxknD48NrpDBuWrAhOSJB49qY-wKjeAL3SP6w1plUn-vrx7uHFQXT_5d9AXc-LQ10rs74w9P4RbCxKgOYVyBxfJ0bp8hFCuz51WX-wVdXytf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+microalgae+cultivation+in+a+photobioreactor&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Tang%2C+Haiying&rft.au=Chen%2C+Meng&rft.au=Ng%2C+KY+Simon&rft.au=Salley%2C+Steven+O&rft.date=2012-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=109&rft.issue=10&rft.spage=2468&rft_id=info:doi/10.1002%2Fbit.24516&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2744399711 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon |