IFI16 Restricts HSV-1 Replication by Accumulating on the HSV-1 Genome, Repressing HSV-1 Gene Expression, and Directly or Indirectly Modulating Histone Modifications
Interferon-γ inducible factor 16 (IFI16) is a multifunctional nuclear protein involved in transcriptional regulation, induction of interferon-β (IFN-β), and activation of the inflammasome response. It interacts with the sugar-phosphate backbone of dsDNA and modulates viral and cellular transcription...
Saved in:
Published in | PLoS pathogens Vol. 10; no. 11; p. e1004503 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.11.2014
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1553-7374 1553-7366 1553-7374 |
DOI | 10.1371/journal.ppat.1004503 |
Cover
Abstract | Interferon-γ inducible factor 16 (IFI16) is a multifunctional nuclear protein involved in transcriptional regulation, induction of interferon-β (IFN-β), and activation of the inflammasome response. It interacts with the sugar-phosphate backbone of dsDNA and modulates viral and cellular transcription through largely undetermined mechanisms. IFI16 is a restriction factor for human cytomegalovirus (HCMV) and herpes simplex virus (HSV-1), though the mechanisms of HSV-1 restriction are not yet understood. Here, we show that IFI16 has a profound effect on HSV-1 replication in human foreskin fibroblasts, osteosarcoma cells, and breast epithelial cancer cells. IFI16 knockdown increased HSV-1 yield 6-fold and IFI16 overexpression reduced viral yield by over 5-fold. Importantly, HSV-1 gene expression, including the immediate early proteins, ICP0 and ICP4, the early proteins, ICP8 and TK, and the late proteins gB and Us11, was reduced in the presence of IFI16. Depletion of the inflammasome adaptor protein, ASC, or the IFN-inducing transcription factor, IRF-3, did not affect viral yield. ChIP studies demonstrated the presence of IFI16 bound to HSV-1 promoters in osteosarcoma (U2OS) cells and fibroblasts. Using CRISPR gene editing technology, we generated U2OS cells with permanent deletion of IFI16 protein expression. ChIP analysis of these cells and wild-type (wt) U2OS demonstrated increased association of RNA polymerase II, TATA binding protein (TBP) and Oct1 transcription factors with viral promoters in the absence of IFI16 at different times post infection. Although IFI16 did not alter the total histone occupancy at viral or cellular promoters, its absence promoted markers of active chromatin and decreased those of repressive chromatin with viral and cellular gene promoters. Collectively, these studies for the first time demonstrate that IFI16 prevents association of important transcriptional activators with wt HSV-1 promoters and suggest potential mechanisms of IFI16 restriction of wt HSV-1 replication and a direct or indirect role for IFI16 in histone modification. |
---|---|
AbstractList | Interferon-γ inducible factor 16 (IFI16) is a multifunctional nuclear protein involved in transcriptional regulation, induction of interferon-β (IFN-β), and activation of the inflammasome response. It interacts with the sugar-phosphate backbone of dsDNA and modulates viral and cellular transcription through largely undetermined mechanisms. IFI16 is a restriction factor for human cytomegalovirus (HCMV) and herpes simplex virus (HSV-1), though the mechanisms of HSV-1 restriction are not yet understood. Here, we show that IFI16 has a profound effect on HSV-1 replication in human foreskin fibroblasts, osteosarcoma cells, and breast epithelial cancer cells. IFI16 knockdown increased HSV-1 yield 6-fold and IFI16 overexpression reduced viral yield by over 5-fold. Importantly, HSV-1 gene expression, including the immediate early proteins, ICP0 and ICP4, the early proteins, ICP8 and TK, and the late proteins gB and Us11, was reduced in the presence of IFI16. Depletion of the inflammasome adaptor protein, ASC, or the IFN-inducing transcription factor, IRF-3, did not affect viral yield. ChIP studies demonstrated the presence of IFI16 bound to HSV-1 promoters in osteosarcoma (U2OS) cells and fibroblasts. Using CRISPR gene editing technology, we generated U2OS cells with permanent deletion of IFI16 protein expression. ChIP analysis of these cells and wild-type (wt) U2OS demonstrated increased association of RNA polymerase II, TATA binding protein (TBP) and Oct1 transcription factors with viral promoters in the absence of IFI16 at different times post infection. Although IFI16 did not alter the total histone occupancy at viral or cellular promoters, its absence promoted markers of active chromatin and decreased those of repressive chromatin with viral and cellular gene promoters. Collectively, these studies for the first time demonstrate that IFI16 prevents association of important transcriptional activators with wt HSV-1 promoters and suggest potential mechanisms of IFI16 restriction of wt HSV-1 replication and a direct or indirect role for IFI16 in histone modification.Interferon-γ inducible factor 16 (IFI16) is a multifunctional nuclear protein involved in transcriptional regulation, induction of interferon-β (IFN-β), and activation of the inflammasome response. It interacts with the sugar-phosphate backbone of dsDNA and modulates viral and cellular transcription through largely undetermined mechanisms. IFI16 is a restriction factor for human cytomegalovirus (HCMV) and herpes simplex virus (HSV-1), though the mechanisms of HSV-1 restriction are not yet understood. Here, we show that IFI16 has a profound effect on HSV-1 replication in human foreskin fibroblasts, osteosarcoma cells, and breast epithelial cancer cells. IFI16 knockdown increased HSV-1 yield 6-fold and IFI16 overexpression reduced viral yield by over 5-fold. Importantly, HSV-1 gene expression, including the immediate early proteins, ICP0 and ICP4, the early proteins, ICP8 and TK, and the late proteins gB and Us11, was reduced in the presence of IFI16. Depletion of the inflammasome adaptor protein, ASC, or the IFN-inducing transcription factor, IRF-3, did not affect viral yield. ChIP studies demonstrated the presence of IFI16 bound to HSV-1 promoters in osteosarcoma (U2OS) cells and fibroblasts. Using CRISPR gene editing technology, we generated U2OS cells with permanent deletion of IFI16 protein expression. ChIP analysis of these cells and wild-type (wt) U2OS demonstrated increased association of RNA polymerase II, TATA binding protein (TBP) and Oct1 transcription factors with viral promoters in the absence of IFI16 at different times post infection. Although IFI16 did not alter the total histone occupancy at viral or cellular promoters, its absence promoted markers of active chromatin and decreased those of repressive chromatin with viral and cellular gene promoters. Collectively, these studies for the first time demonstrate that IFI16 prevents association of important transcriptional activators with wt HSV-1 promoters and suggest potential mechanisms of IFI16 restriction of wt HSV-1 replication and a direct or indirect role for IFI16 in histone modification. Interferon-γ inducible factor 16 (IFI16) is a multifunctional nuclear protein involved in transcriptional regulation, induction of interferon-β (IFN-β), and activation of the inflammasome response. It interacts with the sugar-phosphate backbone of dsDNA and modulates viral and cellular transcription through largely undetermined mechanisms. IFI16 is a restriction factor for human cytomegalovirus (HCMV) and herpes simplex virus (HSV-1), though the mechanisms of HSV-1 restriction are not yet understood. Here, we show that IFI16 has a profound effect on HSV-1 replication in human foreskin fibroblasts, osteosarcoma cells, and breast epithelial cancer cells. IFI16 knockdown increased HSV-1 yield 6-fold and IFI16 overexpression reduced viral yield by over 5-fold. Importantly, HSV-1 gene expression, including the immediate early proteins, ICP0 and ICP4, the early proteins, ICP8 and TK, and the late proteins gB and Us11, was reduced in the presence of IFI16. Depletion of the inflammasome adaptor protein, ASC, or the IFN-inducing transcription factor, IRF-3, did not affect viral yield. ChIP studies demonstrated the presence of IFI16 bound to HSV-1 promoters in osteosarcoma (U2OS) cells and fibroblasts. Using CRISPR gene editing technology, we generated U2OS cells with permanent deletion of IFI16 protein expression. ChIP analysis of these cells and wild-type (wt) U2OS demonstrated increased association of RNA polymerase II, TATA binding protein (TBP) and Oct1 transcription factors with viral promoters in the absence of IFI16 at different times post infection. Although IFI16 did not alter the total histone occupancy at viral or cellular promoters, its absence promoted markers of active chromatin and decreased those of repressive chromatin with viral and cellular gene promoters. Collectively, these studies for the first time demonstrate that IFI16 prevents association of important transcriptional activators with wt HSV-1 promoters and suggest potential mechanisms of IFI16 restriction of wt HSV-1 replication and a direct or indirect role for IFI16 in histone modification. Interferon-γ inducible factor 16 (IFI16) is a multifunctional nuclear protein involved in transcriptional regulation, induction of interferon-β (IFN-β), and activation of the inflammasome response. It interacts with the sugar-phosphate backbone of dsDNA and modulates viral and cellular transcription through largely undetermined mechanisms. IFI16 is a restriction factor for human cytomegalovirus (HCMV) and herpes simplex virus (HSV-1), though the mechanisms of HSV-1 restriction are not yet understood. Here, we show that IFI16 has a profound effect on HSV-1 replication in human foreskin fibroblasts, osteosarcoma cells, and breast epithelial cancer cells. IFI16 knockdown increased HSV-1 yield 6-fold and IFI16 overexpression reduced viral yield by over 5-fold. Importantly, HSV-1 gene expression, including the immediate early proteins, ICP0 and ICP4, the early proteins, ICP8 and TK, and the late proteins gB and Us11, was reduced in the presence of IFI16. Depletion of the inflammasome adaptor protein, ASC, or the IFN-inducing transcription factor, IRF-3, did not affect viral yield. ChIP studies demonstrated the presence of IFI16 bound to HSV-1 promoters in osteosarcoma (U2OS) cells and fibroblasts. Using CRISPR gene editing technology, we generated U2OS cells with permanent deletion of IFI16 protein expression. ChIP analysis of these cells and wild-type (wt) U2OS demonstrated increased association of RNA polymerase II, TATA binding protein (TBP) and Oct1 transcription factors with viral promoters in the absence of IFI16 at different times post infection. Although IFI16 did not alter the total histone occupancy at viral or cellular promoters, its absence promoted markers of active chromatin and decreased those of repressive chromatin with viral and cellular gene promoters. Collectively, these studies for the first time demonstrate that IFI16 prevents association of important transcriptional activators with wt HSV-1 promoters and suggest potential mechanisms of IFI16 restriction of wt HSV-1 replication and a direct or indirect role for IFI16 in histone modification. Interferon-γ inducible factor 16 (IFI16) is a multifunctional nuclear protein involved in transcriptional regulation, induction of interferon-β (IFN-β), and activation of the inflammasome response. It interacts with the sugar-phosphate backbone of dsDNA and modulates viral and cellular transcription through largely undetermined mechanisms. IFI16 is a restriction factor for human cytomegalovirus (HCMV) and herpes simplex virus (HSV-1), though the mechanisms of HSV-1 restriction are not yet understood. Here, we show that IFI16 has a profound effect on HSV-1 replication in human foreskin fibroblasts, osteosarcoma cells, and breast epithelial cancer cells. IFI16 knockdown increased HSV-1 yield 6-fold and IFI16 overexpression reduced viral yield by over 5-fold. Importantly, HSV-1 gene expression, including the immediate early proteins, ICP0 and ICP4, the early proteins, ICP8 and TK, and the late proteins gB and Us11, was reduced in the presence of IFI16. Depletion of the inflammasome adaptor protein, ASC, or the IFN-inducing transcription factor, IRF-3, did not affect viral yield. ChIP studies demonstrated the presence of IFI16 bound to HSV-1 promoters in osteosarcoma (U2OS) cells and fibroblasts. Using CRISPR gene editing technology, we generated U2OS cells with permanent deletion of IFI16 protein expression. ChIP analysis of these cells and wild-type (wt) U2OS demonstrated increased association of RNA polymerase II, TATA binding protein (TBP) and Oct1 transcription factors with viral promoters in the absence of IFI16 at different times post infection. Although IFI16 did not alter the total histone occupancy at viral or cellular promoters, its absence promoted markers of active chromatin and decreased those of repressive chromatin with viral and cellular gene promoters. Collectively, these studies for the first time demonstrate that IFI16 prevents association of important transcriptional activators with wt HSV-1 promoters and suggest potential mechanisms of IFI16 restriction of wt HSV-1 replication and a direct or indirect role for IFI16 in histone modification. HSV-1, a ubiquitous human pathogen that establishes a life-long infection, has evolved several mechanisms to evade host immune detection and responses. However, it is still subject to regulation by cellular factors. Recently, a host nuclear protein, IFI16, was shown to be involved in the innate defense response to HSV-1 infection. Here, we provide the first evidence that IFI16 inhibits wild-type HSV-1 replication by repressing viral gene expression independent of its roles in the immune response. We show that IFI16 binds the HSV-1 genome at the transcription start sites of several HSV-1 genes. Using a permanently IFI16-negative cell line that we generated, we demonstrate that IFI16 reduces the association of important transcription factors. IFI16 also promotes global histone modifications by increasing the markers of repressive chromatin and decreasing the markers for activating chromatin on viral and cellular genes. These insights into the role of IFI16 in HSV-1 biology suggest that stabilization of IFI16 is an attractive avenue for antiviral drug development. |
Audience | Academic |
Author | Bottero, Virginie Dutta, Sujoy Singh, Vivek Vikram Johnson, Karen E. Flaherty, Stephanie Chandran, Bala |
AuthorAffiliation | H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America University of Glasgow, United Kingdom |
AuthorAffiliation_xml | – name: H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America – name: University of Glasgow, United Kingdom |
Author_xml | – sequence: 1 givenname: Karen E. surname: Johnson fullname: Johnson, Karen E. – sequence: 2 givenname: Virginie surname: Bottero fullname: Bottero, Virginie – sequence: 3 givenname: Stephanie surname: Flaherty fullname: Flaherty, Stephanie – sequence: 4 givenname: Sujoy surname: Dutta fullname: Dutta, Sujoy – sequence: 5 givenname: Vivek Vikram surname: Singh fullname: Singh, Vivek Vikram – sequence: 6 givenname: Bala surname: Chandran fullname: Chandran, Bala |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25375629$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk9tu1DAQhiNURA_wBggicQNSd_Ehide9QFqVthupgNQCt5bjTLauEnuxHdR9Hx4Up5utugghkVzEnvn-P-PDHCZ7xhpIkpcYTTFl-P2t7Z2R7XS1kmGKEcpyRJ8kBzjP6YRRlu09Gu8nh97fRgZTXDxL9klOWV4QfpD8Ks9LXKRX4IPTKvh0cf19guN81Wolg7YmrdbpXKm-69s4N8s0hsINjOAFGNvB8SBw4P2Qf0hAena3iVpznEpTpx-1AxXadWpdWpp6O_tk6635QvsQ1zmEdDNW4J8nTxvZengxfo-Sb-dnX08Xk8svF-Xp_HKiCs7DRKoq4zUBiRtEKJINJYghhjOoSc0ZR4XEGAqeEVrRPG8AKsJYzjCrKkaLGT1KXm98V631YtxgL3AxywknlA9EuSFqK2_FyulOurWwUov7gHVLIV3QqgXBID4NwbxCsQJUVRwIqwiWhGcxUkSvD-Pf-qqDWoEJTrY7prsZo2_E0v4UGYmrm6Fo8HY0cPZHH09QdNoraFtpwPZD3YSgPK6bRvTNBl3KWJo2jY2OasDFnHKa4xniOFLTv1DxraHTKh5Lo2N8R_BuRxCZAHdhKXvvRXl99R_s51321eOtediT7b2NwMkGUM5676ARSof7yxIr1q3ASAxNsj1DMTSJGJskirM_xFv_f8p-AzP8FiU |
CitedBy_id | crossref_primary_10_3390_jcm8091408 crossref_primary_10_1007_s00430_019_00582_0 crossref_primary_10_1128_jvi_01028_22 crossref_primary_10_3390_pathogens6020024 crossref_primary_10_1155_2015_593757 crossref_primary_10_1073_pnas_1919133117 crossref_primary_10_1371_journal_ppat_1006769 crossref_primary_10_1371_journal_ppat_1005953 crossref_primary_10_2139_ssrn_4073010 crossref_primary_10_2217_fvl_2017_0109 crossref_primary_10_3390_v12050495 crossref_primary_10_1186_s12985_016_0518_2 crossref_primary_10_1371_journal_ppat_1005950 crossref_primary_10_1128_JVI_00006_17 crossref_primary_10_1371_journal_ppat_1005030 crossref_primary_10_1586_14789450_2016_1147353 crossref_primary_10_1016_j_bbrc_2023_05_049 crossref_primary_10_1016_j_it_2024_04_009 crossref_primary_10_3390_v10060291 crossref_primary_10_7554_eLife_49500 crossref_primary_10_1016_j_antiviral_2019_104546 crossref_primary_10_1016_j_antiviral_2021_105103 crossref_primary_10_1186_s12985_017_0891_5 crossref_primary_10_1016_j_chom_2019_05_002 crossref_primary_10_3390_pathogens12030437 crossref_primary_10_3390_molecules24030481 crossref_primary_10_3390_v14102113 crossref_primary_10_1128_cmr_00006_24 crossref_primary_10_1186_s13567_022_01077_2 crossref_primary_10_1016_j_immuni_2020_06_014 crossref_primary_10_1128_mBio_02574_19 crossref_primary_10_1016_j_virol_2015_02_009 crossref_primary_10_1126_sciadv_abg6680 crossref_primary_10_18632_oncotarget_16440 crossref_primary_10_3390_biom10121591 crossref_primary_10_3390_v9080218 crossref_primary_10_3390_microorganisms7060183 crossref_primary_10_3389_fimmu_2021_735643 crossref_primary_10_1016_j_it_2024_07_010 crossref_primary_10_1371_journal_ppat_1005019 crossref_primary_10_1016_j_virol_2015_04_003 crossref_primary_10_1128_mBio_02621_18 crossref_primary_10_1038_s41579_020_0382_3 crossref_primary_10_1074_mcp_M114_047068 crossref_primary_10_1128_JVI_00939_16 crossref_primary_10_1371_journal_ppat_1008752 crossref_primary_10_3390_v16020183 crossref_primary_10_1371_journal_ppat_1007667 crossref_primary_10_1128_mBio_01553_16 crossref_primary_10_3390_ijms252212346 crossref_primary_10_1073_pnas_2218825120 crossref_primary_10_1128_mBio_00944_17 crossref_primary_10_1128_mBio_01428_19 crossref_primary_10_7554_eLife_65243 crossref_primary_10_1128_MMBR_00099_20 crossref_primary_10_1016_j_tim_2016_11_009 crossref_primary_10_1371_journal_ppat_1009281 crossref_primary_10_1128_jvi_00110_24 crossref_primary_10_1016_j_coi_2022_102250 crossref_primary_10_1007_s13365_020_00852_1 crossref_primary_10_1002_jmv_70118 crossref_primary_10_3390_v12121464 crossref_primary_10_1073_pnas_2310996120 crossref_primary_10_15252_msb_20145808 crossref_primary_10_1080_14787210_2019_1656064 crossref_primary_10_1128_JVI_02249_15 crossref_primary_10_3390_v13071373 crossref_primary_10_1016_j_sbi_2016_01_011 crossref_primary_10_1038_ncomms14605 crossref_primary_10_1038_s41564_021_00907_x crossref_primary_10_1007_s40588_016_0043_5 crossref_primary_10_1016_j_chom_2016_08_002 crossref_primary_10_3390_ijms23116171 crossref_primary_10_1186_s12985_016_0516_4 crossref_primary_10_1007_s13402_019_00472_w crossref_primary_10_1016_j_celrep_2023_112341 crossref_primary_10_1038_cmi_2015_35 crossref_primary_10_3390_v16060877 crossref_primary_10_1016_j_molcel_2019_09_023 crossref_primary_10_3389_fcimb_2021_647992 crossref_primary_10_2478_am_2023_0009 crossref_primary_10_3389_fimmu_2020_624556 crossref_primary_10_1093_nar_gkad449 crossref_primary_10_3390_v8100290 crossref_primary_10_1089_dna_2017_3668 crossref_primary_10_1128_JVI_00013_15 crossref_primary_10_3389_fcimb_2022_814307 crossref_primary_10_3390_v14040666 crossref_primary_10_1111_imr_12893 crossref_primary_10_3389_fimmu_2020_613799 crossref_primary_10_1128_JVI_03160_15 crossref_primary_10_7554_eLife_11721 crossref_primary_10_1074_jbc_R115_652289 crossref_primary_10_1371_journal_pone_0207358 crossref_primary_10_1016_j_virol_2015_01_026 crossref_primary_10_1128_JVI_01003_16 crossref_primary_10_1371_journal_ppat_1007113 crossref_primary_10_3390_v13091836 crossref_primary_10_1016_j_ymeth_2015_04_004 crossref_primary_10_15252_embr_201845737 crossref_primary_10_1186_s12985_016_0495_5 crossref_primary_10_1155_2018_5214187 crossref_primary_10_1016_j_omtn_2022_11_025 crossref_primary_10_1083_jcb_202304106 crossref_primary_10_3390_v13040681 crossref_primary_10_1128_mBio_00098_16 crossref_primary_10_1016_j_virol_2020_10_013 crossref_primary_10_3389_fmicb_2019_02611 crossref_primary_10_1128_msystems_00198_22 crossref_primary_10_1128_JVI_00057_18 crossref_primary_10_1038_s44321_024_00046_w crossref_primary_10_1371_journal_ppat_1005967 crossref_primary_10_1016_j_imbio_2017_07_002 crossref_primary_10_1080_21505594_2024_2425744 crossref_primary_10_1128_JVI_00099_17 crossref_primary_10_1016_j_cyto_2020_155025 crossref_primary_10_1002_eji_202048975 crossref_primary_10_1128_jvi_01549_24 crossref_primary_10_1515_labmed_2021_0173 |
Cites_doi | 10.1379/1466-1268(1997)002<0119:HSVUPE>2.3.CO;2 10.1128/JVI.01581-13 10.1016/0042-6822(88)90637-X 10.1073/pnas.92.4.1008 10.1038/ni.1932 10.1128/JVI.78.18.9689-9696.2004 10.1126/science.1232033 10.1126/science.1243640 10.1371/journal.ppat.1002498 10.1016/j.virol.2008.01.001 10.4161/cc.10.24.18723 10.1016/j.virol.2009.09.021 10.1006/viro.2000.0275 10.1016/j.bbagrm.2014.02.013 10.1073/pnas.1203447109 10.1006/meth.2001.1262 10.1371/journal.pone.0002277 10.1016/j.chom.2014.03.004 10.1073/pnas.0505850102 10.1038/nprot.2006.37 10.1128/JVI.77.17.9192-9203.2003 10.1128/MCB.19.12.8393 10.1128/JVI.72.11.8620-8626.1998 10.1073/pnas.89.9.3952 10.1128/JVI.78.14.7818-7822.2004 10.1128/JVI.00139-10 10.1128/JVI.78.16.8411-8420.2004 10.1128/JVI.06713-11 10.1128/MCB.18.5.2876 10.1016/j.virol.2006.10.028 10.1152/ajplung.00363.2002 10.1006/viro.2001.0941 10.1074/jbc.M208911200 10.1016/j.stem.2014.04.020 10.1128/JVI.00805-13 10.1371/journal.pone.0019532 10.1038/nature07725 10.1074/jbc.M412604200 10.1128/JVI.07071-11 10.1128/JVI.71.8.6049-6054.1997 10.1007/BF00177824 10.1016/j.chom.2013.10.007 10.1128/JVI.03282-12 10.1128/JVI.00384-14 10.1128/JVI.14.1.8-19.1974 10.1099/0022-1317-69-12-3107 10.1007/BF00218044 10.1038/sj.onc.1207057 10.1073/pnas.1211302109 10.1074/jbc.M400344200 10.1074/jbc.M610943200 10.1186/2042-4280-3-6 10.2741/2673 10.1128/JVI.02474-13 10.1089/jir.1998.18.947 10.1128/JVI.02459-07 10.1016/S0140-6736(02)07681-X 10.1073/pnas.0707266104 10.1128/JVI.78.8.4185-4196.2004 10.1128/JVI.69.10.6249-6258.1995 10.1128/JVI.00082-13 10.1016/j.chom.2011.04.008 10.1074/jbc.M308012200 10.1016/j.immuni.2012.02.014 10.2353/ajpath.2006.050345 10.1128/JVI.43.1.314-324.1982 10.1016/j.bbrc.2012.05.065 10.1016/S0092-8674(00)00188-4 10.1016/j.stem.2014.06.011 10.1128/JVI.16.5.1308-1326.1975 10.1371/journal.pone.0008569 10.2741/2674 10.1099/0022-1317-75-6-1223 10.1158/0008-5472.CAN-13-2020 10.1038/317179a0 10.1073/pnas.1311669110 10.1128/JVI.00115-11 10.1128/JVI.78.18.10178-10186.2004 10.1128/JVI.01727-09 10.1186/1743-422X-1-5 10.1128/JVI.00613-08 10.1128/JVI.01575-08 10.1038/ni.2118 10.1073/pnas.84.7.1926 10.1001/jama.1982.03320280037026 10.1128/JVI.63.2.943-947.1989 10.1128/JVI.00385-11 10.1073/pnas.1323414111 10.1016/S0167-5699(97)01114-6 10.1128/MCB.19.9.5833 10.1083/jcb.150.1.13 10.1074/jbc.273.27.17172 10.1038/sj.onc.1204005 10.1128/JVI.01158-12 10.1128/JVI.01050-10 10.1038/nbt.2889 10.1128/JVI.03126-13 10.1128/JVI.63.5.1897-1906.1989 10.1038/nbt0502-473 10.1073/pnas.1316194110 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2014 Public Library of Science 2014 Johnson et al 2014 Johnson et al 2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Johnson KE, Bottero V, Flaherty S, Dutta S, Singh VV, Chandran B (2014) IFI16 Restricts HSV-1 Replication by Accumulating on the HSV-1 Genome, Repressing HSV-1 Gene Expression, and Directly or Indirectly Modulating Histone Modifications. PLoS Pathog 10(11): e1004503. doi:10.1371/journal.ppat.1004503 |
Copyright_xml | – notice: COPYRIGHT 2014 Public Library of Science – notice: 2014 Johnson et al 2014 Johnson et al – notice: 2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Johnson KE, Bottero V, Flaherty S, Dutta S, Singh VV, Chandran B (2014) IFI16 Restricts HSV-1 Replication by Accumulating on the HSV-1 Genome, Repressing HSV-1 Gene Expression, and Directly or Indirectly Modulating Histone Modifications. PLoS Pathog 10(11): e1004503. doi:10.1371/journal.ppat.1004503 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 7X8 5PM DOA |
DOI | 10.1371/journal.ppat.1004503 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Restriction of HSV-1 Replication by IFI16 |
EISSN | 1553-7374 |
ExternalDocumentID | 1685292398 oai_doaj_org_article_7eeeef219b014e0bb9e27b21a2940146 PMC4223080 A393518091 25375629 10_1371_journal_ppat_1004503 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: CA 180758 – fundername: NCI NIH HHS grantid: R01 CA180758 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO QF4 QN7 RNS RPM SV3 TR2 TUS UKHRP WOW ~8M 3V. CGR CUY CVF ECM EIF H13 IPNFZ M~E NPM PV9 RIG RZL WOQ PMFND 7X8 PJZUB PPXIY PQGLB PUEGO 5PM - AAPBV ABPTK ADACO BBAFP PQEST PQUKI PRINS |
ID | FETCH-LOGICAL-c699t-acb49d2ea1f0230af32070714ed2d97906a11e69423b355feeb2775717bb73683 |
IEDL.DBID | M48 |
ISSN | 1553-7374 1553-7366 |
IngestDate | Fri Nov 26 17:14:12 EST 2021 Wed Aug 27 01:30:02 EDT 2025 Thu Aug 21 18:42:35 EDT 2025 Fri Sep 05 06:36:41 EDT 2025 Tue Jun 17 21:25:46 EDT 2025 Tue Jun 10 20:34:55 EDT 2025 Fri Jun 27 04:19:02 EDT 2025 Fri Jun 27 04:57:15 EDT 2025 Wed Feb 19 02:41:04 EST 2025 Thu Apr 24 23:03:29 EDT 2025 Tue Jul 01 02:41:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c699t-acb49d2ea1f0230af32070714ed2d97906a11e69423b355feeb2775717bb73683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: KEJ BC. Performed the experiments: KEJ VB SF SD VVS. Analyzed the data: KEJ BC. Wrote the paper: KEJ BC. The authors have declared that no competing interests exist. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.ppat.1004503 |
PMID | 25375629 |
PQID | 1622057903 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1685292398 doaj_primary_oai_doaj_org_article_7eeeef219b014e0bb9e27b21a2940146 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4223080 proquest_miscellaneous_1622057903 gale_infotracmisc_A393518091 gale_infotracacademiconefile_A393518091 gale_incontextgauss_ISR_A393518091 gale_incontextgauss_ISN_A393518091 pubmed_primary_25375629 crossref_citationtrail_10_1371_journal_ppat_1004503 crossref_primary_10_1371_journal_ppat_1004503 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-11-01 |
PublicationDateYYYYMMDD | 2014-11-01 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS pathogens |
PublicationTitleAlternate | PLoS Pathog |
PublicationYear | 2014 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | CJ Liu (ref73) 2005; 280 Y Luan (ref74) 2007; 282 KE Johnson (ref26) 2008; 374 RW Johnstone (ref33) 2000; 19 BA McNally (ref102) 2008; 3 JC Kwak (ref34) 2003; 278 C Diaz-Latoud (ref84) 1997; 2 B Chaigne-Delalande (ref90) 2006; 168 VV Singh (ref93) 2014; 88 M Kalamvoki (ref47) 2014; 111 T Li (ref37) 2012; 109 RJ Whitley (ref4) 1982; 247 Y Amrani (ref72) 2003; 284 JA Trapani (ref30) 1992; 36 GR Gariano (ref45) 2012; 8 LL Song (ref75) 2010; 5 B Altinkilic (ref51) 1988; 69 CA Spencer (ref60) 2000; 150 AV Chee (ref27) 2004; 78 V Brazda (ref29) 2012; 422 KA Cassady (ref83) 1998; 72 M Lussignol (ref88) 2013; 87 H Gu (ref18) 2007; 104 MH Hancock (ref14) 2010; 84 GN Barber (ref78) 2011; 12 B Dauber (ref9) 2011; 85 GP Zambetti (ref92) 1992; 89 SL Deshmane (ref15) 1989; 63 MH Orzalli (ref38) 2013; 110 KA Jones (ref64) 1985; 317 IM Cristea (ref70) 2010; 84 WJ Cook (ref101) 2004; 1 A Shah (ref68) 2010; 16 AA Oroskar (ref8) 1989; 63 DM Knipe (ref95) 1982; 43 JT Lester (ref59) 2011; 85 Y Shang (ref99) 2000; 103 L Unterholzner (ref28) 2010; 11 KM Monroe (ref69) 2014; 343 H Tawara (ref35) 2008; 13 M Duc Dodon (ref86) 2000; 270 MA Ansari (ref40) 2013; 87 GG Maul (ref21) 1994; 75 MH Orzalli (ref20) 2012; 109 S Mittnacht (ref52) 1988; 164 F Yao (ref82) 1995; 69 J Xing (ref87) 2012; 86 Y Maruzuru (ref63) 2013; 87 N Kerur (ref39) 2011; 9 KE Johnson (ref19) 2013; 87 D Pan (ref81) 2014; 15 RJ Whitley (ref3) 2002; 359 C Smith (ref56) 2014; 15 FJ Herrera (ref12) 2004; 78 X Duan (ref80) 2011; 6 S Fredriksson (ref58) 2002; 20 HJ Kang (ref76) 2014; 74 VV Singh (ref42) 2013; 87 RW Honess (ref6) 1975; 16 XL Li (ref50) 1998; 18 P Sampath (ref62) 2008; 82 K Rosenke (ref96) 2004; 78 S Yokota (ref24) 2001; 286 L Benboudjema (ref85) 2003; 77 RW Johnstone (ref71) 1999; 19 AD Kwong (ref7) 1987; 84 KE Boyd (ref98) 1999; 19 SC Stein (ref67) 2012; 86 RD Everett (ref49) 2008; 82 JA Aglipay (ref79) 2003; 22 V Hornung (ref53) 2009; 458 SG Swygert (ref17) 2014; 1839 WA Freed-Pastor (ref89) 2011; 10 G Tiscornia (ref97) 2006; 1 M Kalamvoki (ref100) 2010; 84 KE Johnson (ref25) 2010; 396 V Dell'oste (ref77) 2014; 88 B He (ref10) 1997; 71 JR Kent (ref11) 2004; 78 RW Johnstone (ref32) 1998; 273 KJ Livak (ref46) 2001; 25 EG Van Meir (ref91) 1995; 92 JA Trapani (ref31) 1994; 40 P Mali (ref54) 2013; 339 T Li (ref43) 2013; 14 X Wu (ref57) 2014; 32 ref1 D Cuchet-Lourenco (ref44) 2013; 87 RW Honess (ref5) 1974; 14 QY Wang (ref16) 2005; 102 T Jin (ref61) 2012; 36 DB Hall (ref66) 2002; 277 M Ouchi (ref36) 2008; 13 S Soby (ref94) 2012; 3 N Fujiuchi (ref48) 2004; 279 AR Cliffe (ref13) 2008; 82 GT Melroe (ref23) 2007; 360 MR Jakobsen (ref41) 2013; 110 GT Melroe (ref22) 2004; 78 A Veres (ref55) 2014; 15 JW Streilein (ref2) 1997; 18 S He (ref65) 1998; 18 14654789 - Oncogene. 2003 Dec 4;22(55):8931-8 19939931 - J Virol. 2010 Feb;84(3):1366-75 20052289 - PLoS One. 2010;5(1):e8569 6287005 - J Virol. 1982 Jul;43(1):314-24 1570319 - Proc Natl Acad Sci U S A. 1992 May 1;89(9):3952-6 24996165 - Cell Stem Cell. 2014 Jul 3;15(1):12-3 15331750 - J Virol. 2004 Sep;78(18):10178-86 11146555 - Oncogene. 2000 Dec 7;19(52):6033-42 2993923 - Nature. 1985 Sep 12-18;317(6033):179-82 17406239 - Nat Protoc. 2006;1(1):241-5 17939992 - Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):17134-9 2834869 - Virology. 1988 May;164(1):201-10 11136970 - Cell. 2000 Dec 8;103(6):843-52 9566906 - Mol Cell Biol. 1998 May;18(5):2876-83 23388709 - J Virol. 2013 Apr;87(8):4417-31 24352470 - J Virol. 2014 Mar;88(5):2821-34 24449861 - Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):E611-7 22127203 - Cell Cycle. 2011 Dec 15;10(24):4207 18094162 - J Virol. 2008 Mar;82(5):2339-49 11853816 - Lancet. 2002 Feb 9;359(9305):507-13 2539493 - J Virol. 1989 May;63(5):1897-906 21573174 - PLoS One. 2011;6(5):e19532 12297514 - J Biol Chem. 2002 Nov 29;277(48):46043-50 4365321 - J Virol. 1974 Jul;14(1):8-19 18509536 - PLoS One. 2008;3(5):e2277 18842720 - J Virol. 2008 Dec;82(24):12030-8 24752079 - Nat Biotechnol. 2014 Jul;32(7):670-6 15331701 - J Virol. 2004 Sep;78(18):9689-96 24198334 - Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):E4492-501 2536115 - J Virol. 1989 Feb;63(2):943-7 20504932 - J Virol. 2010 Aug;84(15):7803-14 24356113 - Science. 2014 Jan 24;343(6169):428-32 20890285 - Nat Immunol. 2010 Nov;11(11):997-1004 21934672 - Nat Immunol. 2011 Oct;12(10):929-30 14990579 - J Biol Chem. 2004 May 7;279(19):20339-44 171454 - J Virol. 1975 Nov;16(5):1308-26 18579584 - J Virol. 2008 Sep;82(17):8871-81 21450820 - J Virol. 2011 Jun;85(12):5733-44 10454530 - Mol Cell Biol. 1999 Sep;19(9):5833-8 12915535 - J Virol. 2003 Sep;77(17):9192-203 24996167 - Cell Stem Cell. 2014 Jul 3;15(1):27-30 23062757 - Herpesviridae. 2012 Oct 14;3(1):6 1526658 - Immunogenetics. 1992;36(6):369-76 9765401 - J Virol. 1998 Nov;72(11):8620-6 3031658 - Proc Natl Acad Sci U S A. 1987 Apr;84(7):1926-30 7862624 - Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1008-12 7666525 - J Virol. 1995 Oct;69(10):6249-58 24583555 - Biochim Biophys Acta. 2014 Aug;1839(8):728-36 24154727 - Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):E4571-80 10567564 - Mol Cell Biol. 1999 Dec;19(12):8393-9 20660182 - J Virol. 2010 Oct;84(19):9709-17 17439944 - J Biol Chem. 2007 Jun 8;282(23):16860-70 10893252 - J Cell Biol. 2000 Jul 10;150(1):13-26 12588705 - Am J Physiol Lung Cell Mol Physiol. 2003 Jun;284(6):L1063-71 8207389 - J Gen Virol. 1994 Jun;75 ( Pt 6):1223-33 22618232 - Biochem Biophys Res Commun. 2012 Jun 15;422(4):716-20 24089555 - J Virol. 2013 Dec;87(24):13422-32 6275134 - JAMA. 1982 Jan 15;247(3):317-20 23785201 - J Virol. 2013 Aug;87(16):9323-32 16436670 - Am J Pathol. 2006 Feb;168(2):562-73 24696486 - J Virol. 2014 Jun;88(12):6970-82 23115300 - J Virol. 2013 Jan;87(2):859-71 18279905 - Virology. 2008 May 10;374(2):487-94 21139972 - Mol Vis. 2010;16:2476-86 22345436 - J Virol. 2012 Apr;86(8):4527-37 23287722 - Science. 2013 Feb 15;339(6121):823-6 11981560 - Nat Biotechnol. 2002 May;20(5):473-7 22291595 - PLoS Pathog. 2012 Jan;8(1):e1002498 17981542 - Front Biosci. 2008;13:240-8 21430045 - J Virol. 2011 Jun;85(11):5363-73 23720728 - J Virol. 2013 Aug;87(15):8606-23 19879619 - Virology. 2010 Jan 5;396(1):21-9 9250403 - Cell Stress Chaperones. 1997 Jun;2(2):119-31 9642285 - J Biol Chem. 1998 Jul 3;273(27):17172-7 24721573 - Cell Host Microbe. 2014 Apr 9;15(4):446-56 22691496 - Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10558-63 17126870 - Virology. 2007 Apr 10;360(2):305-21 7959953 - Immunogenetics. 1994;40(6):415-24 22483801 - Immunity. 2012 Apr 20;36(4):561-71 15220456 - J Virol. 2004 Jul;78(14):7818-22 24413532 - Cancer Res. 2014 Mar 1;74(5):1484-94 15507126 - Virol J. 2004;1:5 2848929 - J Gen Virol. 1988 Dec;69 ( Pt 12):3107-12 11846609 - Methods. 2001 Dec;25(4):402-8 15047834 - J Virol. 2004 Apr;78(8):4185-96 10772978 - Virology. 2000 Apr 25;270(1):43-53 17981541 - Front Biosci. 2008;13:236-9 19158675 - Nature. 2009 Mar 26;458(7237):514-8 9293161 - Immunol Today. 1997 Sep;18(9):443-9 23027953 - Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):E3008-17 9223497 - J Virol. 1997 Aug;71(8):6049-54 21575908 - Cell Host Microbe. 2011 May 19;9(5):363-75 9858316 - J Interferon Cytokine Res. 1998 Nov;18(11):947-52 24237704 - Cell Host Microbe. 2013 Nov 13;14(5):591-9 15557274 - J Biol Chem. 2005 Jan 28;280(4):2788-96 12925527 - J Biol Chem. 2003 Oct 17;278(42):40899-904 15280450 - J Virol. 2004 Aug;78(16):8411-20 11448165 - Virology. 2001 Jul 20;286(1):119-24 22301138 - J Virol. 2012 Apr;86(7):3528-40 23427152 - J Virol. 2013 May;87(9):5005-18 29874275 - PLoS Pathog. 2018 Jun 6;14 (6):e1007113 16247011 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):16055-9 |
References_xml | – ident: ref1 – volume: 2 start-page: 119 year: 1997 ident: ref84 article-title: Herpes simplex virus Us11 protein enhances recovery of protein synthesis and survival in heat shock treated HeLa cells publication-title: Cell Stress Chaperones doi: 10.1379/1466-1268(1997)002<0119:HSVUPE>2.3.CO;2 – volume: 87 start-page: 9323 year: 2013 ident: ref63 article-title: Roles of p53 in herpes simplex virus 1 replication publication-title: J Virol doi: 10.1128/JVI.01581-13 – volume: 164 start-page: 201 year: 1988 ident: ref52 article-title: Interferon treatment inhibits onset of herpes simplex virus immediate-early transcription publication-title: Virology doi: 10.1016/0042-6822(88)90637-X – volume: 92 start-page: 1008 year: 1995 ident: ref91 article-title: Single cell monitoring of growth arrest and morphological changes induced by transfer of wild-type p53 alleles to glioblastoma cells publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.92.4.1008 – volume: 11 start-page: 997 year: 2010 ident: ref28 article-title: IFI16 is an innate immune sensor for intracellular DNA publication-title: Nat Immunol doi: 10.1038/ni.1932 – volume: 78 start-page: 9689 year: 2004 ident: ref12 article-title: VP16-dependent association of chromatin-modifying coactivators and underrepresentation of histones at immediate-early gene promoters during herpes simplex virus infection publication-title: J Virol doi: 10.1128/JVI.78.18.9689-9696.2004 – volume: 339 start-page: 823 year: 2013 ident: ref54 article-title: RNA-guided human genome engineering via Cas9 publication-title: Science doi: 10.1126/science.1232033 – volume: 343 start-page: 428 year: 2014 ident: ref69 article-title: IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV publication-title: Science doi: 10.1126/science.1243640 – volume: 8 start-page: e1002498 year: 2012 ident: ref45 article-title: The intracellular DNA sensor IFI16 gene acts as restriction factor for human cytomegalovirus replication publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1002498 – volume: 374 start-page: 487 year: 2008 ident: ref26 article-title: Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling publication-title: Virology doi: 10.1016/j.virol.2008.01.001 – volume: 10 start-page: 4207 year: 2011 ident: ref89 article-title: Dissimilar DNA binding by p53 in normal and tumor-derived cells publication-title: Cell Cycle doi: 10.4161/cc.10.24.18723 – volume: 396 start-page: 21 year: 2010 ident: ref25 article-title: Herpes simplex virus-1 infection causes the secretion of a type I interferon-antagonizing protein and inhibits signaling at or before Jak-1 activation publication-title: Virology doi: 10.1016/j.virol.2009.09.021 – volume: 270 start-page: 43 year: 2000 ident: ref86 article-title: The herpes simplex virus 1 Us11 protein cooperates with suboptimal amounts of human immunodeficiency virus type 1 (HIV-1) Rev protein to rescue HIV-1 production publication-title: Virology doi: 10.1006/viro.2000.0275 – volume: 1839 start-page: 728 year: 2014 ident: ref17 article-title: Chromatin dynamics: Interplay between remodeling enzymes and histone modifications publication-title: Biochim Biophys Acta doi: 10.1016/j.bbagrm.2014.02.013 – volume: 109 start-page: 10558 year: 2012 ident: ref37 article-title: Acetylation modulates cellular distribution and DNA sensing ability of interferon-inducible protein IFI16 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1203447109 – volume: 25 start-page: 402 year: 2001 ident: ref46 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 3 start-page: e2277 year: 2008 ident: ref102 article-title: A role for cytoplasmic PML in cellular resistance to viral infection publication-title: PLoS One doi: 10.1371/journal.pone.0002277 – volume: 15 start-page: 446 year: 2014 ident: ref81 article-title: A Neuron-Specific Host MicroRNA Targets Herpes Simplex Virus-1 ICP0 Expression and Promotes Latency publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.03.004 – volume: 102 start-page: 16055 year: 2005 ident: ref16 article-title: Herpesviral latency-associated transcript gene promotes assembly of heterochromatin on viral lytic-gene promoters in latent infection publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0505850102 – volume: 16 start-page: 2476 year: 2010 ident: ref68 article-title: HSV-1 infection of human corneal epithelial cells: receptor-mediated entry and trends of re-infection publication-title: Mol Vis – volume: 1 start-page: 241 year: 2006 ident: ref97 article-title: Production and purification of lentiviral vectors publication-title: Nat Protoc doi: 10.1038/nprot.2006.37 – volume: 77 start-page: 9192 year: 2003 ident: ref85 article-title: Association of the herpes simplex virus type 1 Us11 gene product with the cellular kinesin light-chain-related protein PAT1 results in the redistribution of both polypeptides publication-title: J Virol doi: 10.1128/JVI.77.17.9192-9203.2003 – volume: 19 start-page: 8393 year: 1999 ident: ref98 article-title: Coexamination of site-specific transcription factor binding and promoter activity in living cells publication-title: Mol Cell Biol doi: 10.1128/MCB.19.12.8393 – volume: 72 start-page: 8620 year: 1998 ident: ref83 article-title: The herpes simplex virus US11 protein effectively compensates for the gamma1(34.5) gene if present before activation of protein kinase R by precluding its phosphorylation and that of the alpha subunit of eukaryotic translation initiation factor 2 publication-title: J Virol doi: 10.1128/JVI.72.11.8620-8626.1998 – volume: 89 start-page: 3952 year: 1992 ident: ref92 article-title: A mutant p53 protein is required for maintenance of the transformed phenotype in cells transformed with p53 plus ras cDNAs publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.89.9.3952 – volume: 78 start-page: 7818 year: 2004 ident: ref96 article-title: Bromodeoxyuridine-labeled viral particles as a tool for visualization of the immediate-early events of human cytomegalovirus infection publication-title: J Virol doi: 10.1128/JVI.78.14.7818-7822.2004 – volume: 84 start-page: 7803 year: 2010 ident: ref70 article-title: Human cytomegalovirus pUL83 stimulates activity of the viral immediate-early promoter through its interaction with the cellular IFI16 protein publication-title: J Virol doi: 10.1128/JVI.00139-10 – volume: 78 start-page: 8411 year: 2004 ident: ref22 article-title: Herpes simplex virus 1 has multiple mechanisms for blocking virus-induced interferon production publication-title: J Virol doi: 10.1128/JVI.78.16.8411-8420.2004 – volume: 86 start-page: 3528 year: 2012 ident: ref87 article-title: Herpes simplex virus 1 tegument protein US11 downmodulates the RLR signaling pathway via direct interaction with RIG-I and MDA-5 publication-title: J Virol doi: 10.1128/JVI.06713-11 – volume: 18 start-page: 2876 year: 1998 ident: ref65 article-title: Stepwise recruitment of components of the preinitiation complex by upstream activators in vivo publication-title: Mol Cell Biol doi: 10.1128/MCB.18.5.2876 – volume: 360 start-page: 305 year: 2007 ident: ref23 article-title: Recruitment of activated IRF-3 and CBP/p300 to herpes simplex virus ICP0 nuclear foci: Potential role in blocking IFN-beta induction publication-title: Virology doi: 10.1016/j.virol.2006.10.028 – volume: 284 start-page: L1063 year: 2003 ident: ref72 article-title: IFN-gamma inhibits human airway smooth muscle cell proliferation by modulating the E2F-1/Rb pathway publication-title: Am J Physiol Lung Cell Mol Physiol doi: 10.1152/ajplung.00363.2002 – volume: 286 start-page: 119 year: 2001 ident: ref24 article-title: Herpes simplex virus type 1 suppresses the interferon signaling pathway by inhibiting phosphorylation of STATs and janus kinases during an early infection stage publication-title: Virology doi: 10.1006/viro.2001.0941 – volume: 277 start-page: 46043 year: 2002 ident: ref66 article-title: The VP16 activation domain interacts with multiple transcriptional components as determined by protein-protein cross-linking in vivo publication-title: J Biol Chem doi: 10.1074/jbc.M208911200 – volume: 15 start-page: 27 year: 2014 ident: ref55 article-title: Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.04.020 – volume: 87 start-page: 8606 year: 2013 ident: ref40 article-title: Constitutive interferon-inducible protein 16-inflammasome activation during Epstein-Barr virus latency I, II, and III in B and epithelial cells publication-title: J Virol doi: 10.1128/JVI.00805-13 – volume: 6 start-page: e19532 year: 2011 ident: ref80 article-title: IFI16 induction by glucose restriction in human fibroblasts contributes to autophagy through activation of the ATM/AMPK/p53 pathway publication-title: PLoS One doi: 10.1371/journal.pone.0019532 – volume: 458 start-page: 514 year: 2009 ident: ref53 article-title: AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC publication-title: Nature doi: 10.1038/nature07725 – volume: 280 start-page: 2788 year: 2005 ident: ref73 article-title: The interferon-inducible p204 protein acts as a transcriptional coactivator of Cbfa1 and enhances osteoblast differentiation publication-title: J Biol Chem doi: 10.1074/jbc.M412604200 – volume: 86 start-page: 4527 year: 2012 ident: ref67 article-title: Sensing adenovirus infection: activation of interferon regulatory factor 3 in RAW 264.7 cells publication-title: J Virol doi: 10.1128/JVI.07071-11 – volume: 71 start-page: 6049 year: 1997 ident: ref10 article-title: Suppression of the phenotype of gamma(1)34.5- herpes simplex virus 1: failure of activated RNA-dependent protein kinase to shut off protein synthesis is associated with a deletion in the domain of the alpha47 gene publication-title: J Virol doi: 10.1128/JVI.71.8.6049-6054.1997 – volume: 40 start-page: 415 year: 1994 ident: ref31 article-title: Genomic organization of IFI16, an interferon-inducible gene whose expression is associated with human myeloid cell differentiation: correlation of predicted protein domains with exon organization publication-title: Immunogenetics doi: 10.1007/BF00177824 – volume: 14 start-page: 591 year: 2013 ident: ref43 article-title: Human cytomegalovirus tegument protein pUL83 inhibits IFI16-mediated DNA sensing for immune evasion publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.10.007 – volume: 87 start-page: 4417 year: 2013 ident: ref42 article-title: Kaposi's Sarcoma-Associated Herpesvirus Latency in Endothelial and B cells Activates Interferon Gamma-Inducible Protein 16 (IFI16) Mediated Inflammasomes publication-title: J Virol doi: 10.1128/JVI.03282-12 – volume: 88 start-page: 6970 year: 2014 ident: ref77 article-title: Innate nuclear sensor IFI16 translocates into the cytoplasm during early stage of in vitro HCMV infection and is entrapped in the egressing virions during late stage publication-title: J Virol doi: 10.1128/JVI.00384-14 – volume: 14 start-page: 8 year: 1974 ident: ref5 article-title: Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins publication-title: J Virol doi: 10.1128/JVI.14.1.8-19.1974 – volume: 69 start-page: 3107 year: 1988 ident: ref51 article-title: Interferon inhibits herpes simplex virus-specific translation: a reinvestigation publication-title: J Gen Virol doi: 10.1099/0022-1317-69-12-3107 – volume: 36 start-page: 369 year: 1992 ident: ref30 article-title: A novel gene constitutively expressed in human lymphoid cells is inducible with interferon-gamma in myeloid cells publication-title: Immunogenetics doi: 10.1007/BF00218044 – volume: 22 start-page: 8931 year: 2003 ident: ref79 article-title: A member of the Pyrin family, IFI16, is a novel BRCA1-associated protein involved in the p53-mediated apoptosis pathway publication-title: Oncogene doi: 10.1038/sj.onc.1207057 – volume: 109 start-page: E3008 year: 2012 ident: ref20 article-title: Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1211302109 – volume: 279 start-page: 20339 year: 2004 ident: ref48 article-title: Requirement of IFI16 for the maximal activation of p53 induced by ionizing radiation publication-title: J Biol Chem doi: 10.1074/jbc.M400344200 – volume: 282 start-page: 16860 year: 2007 ident: ref74 article-title: The retinoblastoma protein is an essential mediator of osteogenesis that links the p204 protein to the Cbfa1 transcription factor thereby increasing its activity publication-title: J Biol Chem doi: 10.1074/jbc.M610943200 – volume: 3 start-page: 6 year: 2012 ident: ref94 article-title: HSV-1-induced chemokine expression via IFI16-dependent and IFI16-independent pathways in human monocyte-derived macrophages publication-title: Herpesviridae doi: 10.1186/2042-4280-3-6 – volume: 13 start-page: 236 year: 2008 ident: ref36 article-title: Role of IFI16 in DNA damage and checkpoint publication-title: Front Biosci doi: 10.2741/2673 – volume: 87 start-page: 13422 year: 2013 ident: ref44 article-title: The viral ubiquitin ligase ICP0 is neither sufficient nor necessary for degradation of the cellular DNA sensor IFI16 during herpes simplex virus 1 infection publication-title: J Virol doi: 10.1128/JVI.02474-13 – volume: 18 start-page: 947 year: 1998 ident: ref50 article-title: Induction of interferon synthesis and activation of interferon-stimulated genes by liposomal transfection reagents publication-title: J Interferon Cytokine Res doi: 10.1089/jir.1998.18.947 – volume: 82 start-page: 2339 year: 2008 ident: ref62 article-title: Binding of ICP4, TATA-binding protein, and RNA polymerase II to herpes simplex virus type 1 immediate-early, early, and late promoters in virus-infected cells publication-title: J Virol doi: 10.1128/JVI.02459-07 – volume: 359 start-page: 507 year: 2002 ident: ref3 article-title: Viral encephalitis: familiar infections and emerging pathogens publication-title: Lancet doi: 10.1016/S0140-6736(02)07681-X – volume: 104 start-page: 17134 year: 2007 ident: ref18 article-title: Herpes simplex virus-infected cell protein 0 blocks the silencing of viral DNA by dissociating histone deacetylases from the CoREST-REST complex publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0707266104 – volume: 78 start-page: 4185 year: 2004 ident: ref27 article-title: Herpes simplex virus 1 gene products occlude the interferon signaling pathway at multiple sites publication-title: J Virol doi: 10.1128/JVI.78.8.4185-4196.2004 – volume: 69 start-page: 6249 year: 1995 ident: ref82 article-title: An activity specified by the osteosarcoma line U2OS can substitute functionally for ICP0, a major regulatory protein of herpes simplex virus type 1 publication-title: J Virol doi: 10.1128/JVI.69.10.6249-6258.1995 – volume: 87 start-page: 5005 year: 2013 ident: ref19 article-title: HSV-1 Infection Induces Activation and Subsequent Inhibition of the IFI16 and NLRP3 Inflammasomes publication-title: J Virol doi: 10.1128/JVI.00082-13 – volume: 9 start-page: 363 year: 2011 ident: ref39 article-title: IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection publication-title: Cell Host Microbe doi: 10.1016/j.chom.2011.04.008 – volume: 278 start-page: 40899 year: 2003 ident: ref34 article-title: IFI16 as a negative regulator in the regulation of p53 and p21(Waf1) publication-title: J Biol Chem doi: 10.1074/jbc.M308012200 – volume: 36 start-page: 561 year: 2012 ident: ref61 article-title: Structures of the HIN domain:DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor publication-title: Immunity doi: 10.1016/j.immuni.2012.02.014 – volume: 168 start-page: 562 year: 2006 ident: ref90 article-title: RhoGTPases and p53 are involved in the morphological appearance and interferon-alpha response of hairy cells publication-title: Am J Pathol doi: 10.2353/ajpath.2006.050345 – volume: 43 start-page: 314 year: 1982 ident: ref95 article-title: Definition of a series of stages in the association of two herpesviral proteins with the cell nucleus publication-title: J Virol doi: 10.1128/JVI.43.1.314-324.1982 – volume: 422 start-page: 716 year: 2012 ident: ref29 article-title: Preferential binding of IFI16 protein to cruciform structure and superhelical DNA publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2012.05.065 – volume: 103 start-page: 843 year: 2000 ident: ref99 article-title: Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription publication-title: Cell doi: 10.1016/S0092-8674(00)00188-4 – volume: 15 start-page: 12 year: 2014 ident: ref56 article-title: Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.06.011 – volume: 16 start-page: 1308 year: 1975 ident: ref6 article-title: Proteins specified by herpes simplex virus. XIII. Glycosylation of viral polypeptides publication-title: J Virol doi: 10.1128/JVI.16.5.1308-1326.1975 – volume: 5 start-page: e8569 year: 2010 ident: ref75 article-title: Interferon-inducible IFI16, a negative regulator of cell growth, down-regulates expression of human telomerase reverse transcriptase (hTERT) gene publication-title: PLoS One doi: 10.1371/journal.pone.0008569 – volume: 13 start-page: 240 year: 2008 ident: ref35 article-title: Loss of p53-regulatory protein IFI16 induces NBS1 leading to activation of p53-mediated checkpoint by phosphorylation of p53 SER37 publication-title: Front Biosci doi: 10.2741/2674 – volume: 75 start-page: 1223 year: 1994 ident: ref21 article-title: The nuclear location of PML, a cellular member of the C3HC4 zinc-binding domain protein family, is rearranged during herpes simplex virus infection by the C3HC4 viral protein ICP0 publication-title: J Gen Virol doi: 10.1099/0022-1317-75-6-1223 – volume: 74 start-page: 1484 year: 2014 ident: ref76 article-title: Differential regulation of estrogen receptor alpha expression in breast cancer cells by metastasis-associated protein 1 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-13-2020 – volume: 317 start-page: 179 year: 1985 ident: ref64 article-title: Sp1 binds to promoter sequences and activates herpes simplex virus ‘immediate-early’ gene transcription in vitro publication-title: Nature doi: 10.1038/317179a0 – volume: 110 start-page: E4571 year: 2013 ident: ref41 article-title: IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1311669110 – volume: 85 start-page: 5363 year: 2011 ident: ref9 article-title: The herpes simplex virus 1 vhs protein enhances translation of viral true late mRNAs and virus production in a cell type-dependent manner publication-title: J Virol doi: 10.1128/JVI.00115-11 – volume: 78 start-page: 10178 year: 2004 ident: ref11 article-title: During lytic infection herpes simplex virus type 1 is associated with histones bearing modifications that correlate with active transcription publication-title: J Virol doi: 10.1128/JVI.78.18.10178-10186.2004 – volume: 84 start-page: 1366 year: 2010 ident: ref14 article-title: Herpes simplex virus VP16, but not ICP0, is required to reduce histone occupancy and enhance histone acetylation on viral genomes in U2OS osteosarcoma cells publication-title: J Virol doi: 10.1128/JVI.01727-09 – volume: 1 start-page: 5 year: 2004 ident: ref101 article-title: Persistent expression of chemokine and chemokine receptor RNAs at primary and latent sites of herpes simplex virus 1 infection publication-title: Virol J doi: 10.1186/1743-422X-1-5 – volume: 82 start-page: 8871 year: 2008 ident: ref49 article-title: STAT-1- and IRF-3-dependent pathways are not essential for repression of ICP0-null mutant herpes simplex virus type 1 in human fibroblasts publication-title: J Virol doi: 10.1128/JVI.00613-08 – volume: 82 start-page: 12030 year: 2008 ident: ref13 article-title: Herpes simplex virus ICP0 promotes both histone removal and acetylation on viral DNA during lytic infection publication-title: J Virol doi: 10.1128/JVI.01575-08 – volume: 12 start-page: 929 year: 2011 ident: ref78 article-title: STING-dependent signaling publication-title: Nat Immunol doi: 10.1038/ni.2118 – volume: 84 start-page: 1926 year: 1987 ident: ref7 article-title: Herpes simplex virus-infected cells contain a function(s) that destabilizes both host and viral mRNAs publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.84.7.1926 – volume: 247 start-page: 317 year: 1982 ident: ref4 article-title: Herpes simplex encephalitis. Clinical Assessment publication-title: JAMA doi: 10.1001/jama.1982.03320280037026 – volume: 63 start-page: 943 year: 1989 ident: ref15 article-title: During latency, herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure publication-title: J Virol doi: 10.1128/JVI.63.2.943-947.1989 – volume: 85 start-page: 5733 year: 2011 ident: ref59 article-title: Herpes simplex virus 1 ICP4 forms complexes with TFIID and mediator in virus-infected cells publication-title: J Virol doi: 10.1128/JVI.00385-11 – volume: 111 start-page: E611 year: 2014 ident: ref47 article-title: HSV-1 degrades, stabilizes, requires, or is stung by STING depending on ICP0, the US3 protein kinase, and cell derivation publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1323414111 – volume: 18 start-page: 443 year: 1997 ident: ref2 article-title: Immunity causing blindness: five different paths to herpes stromal keratitis publication-title: Immunol Today doi: 10.1016/S0167-5699(97)01114-6 – volume: 19 start-page: 5833 year: 1999 ident: ref71 article-title: Transcription and growth regulatory functions of the HIN-200 family of proteins publication-title: Mol Cell Biol doi: 10.1128/MCB.19.9.5833 – volume: 150 start-page: 13 year: 2000 ident: ref60 article-title: Mitotic transcription repression in vivo in the absence of nucleosomal chromatin condensation publication-title: J Cell Biol doi: 10.1083/jcb.150.1.13 – volume: 273 start-page: 17172 year: 1998 ident: ref32 article-title: The human interferon-inducible protein, IFI 16, is a repressor of transcription publication-title: J Biol Chem doi: 10.1074/jbc.273.27.17172 – volume: 19 start-page: 6033 year: 2000 ident: ref33 article-title: Functional interaction between p53 and the interferon-inducible nucleoprotein IFI 16 publication-title: Oncogene doi: 10.1038/sj.onc.1204005 – volume: 87 start-page: 859 year: 2013 ident: ref88 article-title: The herpes simplex virus 1 Us11 protein inhibits autophagy through its interaction with the protein kinase PKR publication-title: J Virol doi: 10.1128/JVI.01158-12 – volume: 84 start-page: 9709 year: 2010 ident: ref100 article-title: Interwoven roles of cyclin D3 and cdk4 recruited by ICP0 and ICP4 in the expression of herpes simplex virus genes publication-title: J Virol doi: 10.1128/JVI.01050-10 – volume: 32 start-page: 670 year: 2014 ident: ref57 article-title: Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells publication-title: Nat Biotechnol doi: 10.1038/nbt.2889 – volume: 88 start-page: 2821 year: 2014 ident: ref93 article-title: Kaposi's sarcoma-associated herpesvirus induces the ATM and H2AX DNA damage response early during de novo infection of primary endothelial cells, which play roles in latency establishment publication-title: J Virol doi: 10.1128/JVI.03126-13 – volume: 63 start-page: 1897 year: 1989 ident: ref8 article-title: Control of mRNA stability by the virion host shutoff function of herpes simplex virus publication-title: J Virol doi: 10.1128/JVI.63.5.1897-1906.1989 – volume: 20 start-page: 473 year: 2002 ident: ref58 article-title: Protein detection using proximity-dependent DNA ligation assays publication-title: Nat Biotechnol doi: 10.1038/nbt0502-473 – volume: 110 start-page: E4492 year: 2013 ident: ref38 article-title: Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1316194110 – reference: 18509536 - PLoS One. 2008;3(5):e2277 – reference: 15507126 - Virol J. 2004;1:5 – reference: 8207389 - J Gen Virol. 1994 Jun;75 ( Pt 6):1223-33 – reference: 171454 - J Virol. 1975 Nov;16(5):1308-26 – reference: 10772978 - Virology. 2000 Apr 25;270(1):43-53 – reference: 24413532 - Cancer Res. 2014 Mar 1;74(5):1484-94 – reference: 23062757 - Herpesviridae. 2012 Oct 14;3(1):6 – reference: 9223497 - J Virol. 1997 Aug;71(8):6049-54 – reference: 24154727 - Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):E4571-80 – reference: 20504932 - J Virol. 2010 Aug;84(15):7803-14 – reference: 23427152 - J Virol. 2013 May;87(9):5005-18 – reference: 24721573 - Cell Host Microbe. 2014 Apr 9;15(4):446-56 – reference: 7862624 - Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1008-12 – reference: 23388709 - J Virol. 2013 Apr;87(8):4417-31 – reference: 15331750 - J Virol. 2004 Sep;78(18):10178-86 – reference: 22483801 - Immunity. 2012 Apr 20;36(4):561-71 – reference: 22301138 - J Virol. 2012 Apr;86(7):3528-40 – reference: 7666525 - J Virol. 1995 Oct;69(10):6249-58 – reference: 6275134 - JAMA. 1982 Jan 15;247(3):317-20 – reference: 17981541 - Front Biosci. 2008;13:236-9 – reference: 19879619 - Virology. 2010 Jan 5;396(1):21-9 – reference: 18094162 - J Virol. 2008 Mar;82(5):2339-49 – reference: 21139972 - Mol Vis. 2010;16:2476-86 – reference: 24237704 - Cell Host Microbe. 2013 Nov 13;14(5):591-9 – reference: 2993923 - Nature. 1985 Sep 12-18;317(6033):179-82 – reference: 11853816 - Lancet. 2002 Feb 9;359(9305):507-13 – reference: 17939992 - Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):17134-9 – reference: 10893252 - J Cell Biol. 2000 Jul 10;150(1):13-26 – reference: 24089555 - J Virol. 2013 Dec;87(24):13422-32 – reference: 18842720 - J Virol. 2008 Dec;82(24):12030-8 – reference: 22618232 - Biochem Biophys Res Commun. 2012 Jun 15;422(4):716-20 – reference: 9566906 - Mol Cell Biol. 1998 May;18(5):2876-83 – reference: 24752079 - Nat Biotechnol. 2014 Jul;32(7):670-6 – reference: 23287722 - Science. 2013 Feb 15;339(6121):823-6 – reference: 23027953 - Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):E3008-17 – reference: 10567564 - Mol Cell Biol. 1999 Dec;19(12):8393-9 – reference: 15331701 - J Virol. 2004 Sep;78(18):9689-96 – reference: 21575908 - Cell Host Microbe. 2011 May 19;9(5):363-75 – reference: 20890285 - Nat Immunol. 2010 Nov;11(11):997-1004 – reference: 2834869 - Virology. 1988 May;164(1):201-10 – reference: 22127203 - Cell Cycle. 2011 Dec 15;10(24):4207 – reference: 29874275 - PLoS Pathog. 2018 Jun 6;14 (6):e1007113 – reference: 24583555 - Biochim Biophys Acta. 2014 Aug;1839(8):728-36 – reference: 2848929 - J Gen Virol. 1988 Dec;69 ( Pt 12):3107-12 – reference: 22691496 - Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10558-63 – reference: 20052289 - PLoS One. 2010;5(1):e8569 – reference: 9293161 - Immunol Today. 1997 Sep;18(9):443-9 – reference: 9765401 - J Virol. 1998 Nov;72(11):8620-6 – reference: 15047834 - J Virol. 2004 Apr;78(8):4185-96 – reference: 24198334 - Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):E4492-501 – reference: 18279905 - Virology. 2008 May 10;374(2):487-94 – reference: 6287005 - J Virol. 1982 Jul;43(1):314-24 – reference: 12925527 - J Biol Chem. 2003 Oct 17;278(42):40899-904 – reference: 20660182 - J Virol. 2010 Oct;84(19):9709-17 – reference: 23785201 - J Virol. 2013 Aug;87(16):9323-32 – reference: 16436670 - Am J Pathol. 2006 Feb;168(2):562-73 – reference: 15220456 - J Virol. 2004 Jul;78(14):7818-22 – reference: 11448165 - Virology. 2001 Jul 20;286(1):119-24 – reference: 11981560 - Nat Biotechnol. 2002 May;20(5):473-7 – reference: 7959953 - Immunogenetics. 1994;40(6):415-24 – reference: 11146555 - Oncogene. 2000 Dec 7;19(52):6033-42 – reference: 17406239 - Nat Protoc. 2006;1(1):241-5 – reference: 1526658 - Immunogenetics. 1992;36(6):369-76 – reference: 21934672 - Nat Immunol. 2011 Oct;12(10):929-30 – reference: 21450820 - J Virol. 2011 Jun;85(12):5733-44 – reference: 15557274 - J Biol Chem. 2005 Jan 28;280(4):2788-96 – reference: 24996167 - Cell Stem Cell. 2014 Jul 3;15(1):27-30 – reference: 21573174 - PLoS One. 2011;6(5):e19532 – reference: 17126870 - Virology. 2007 Apr 10;360(2):305-21 – reference: 4365321 - J Virol. 1974 Jul;14(1):8-19 – reference: 16247011 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):16055-9 – reference: 21430045 - J Virol. 2011 Jun;85(11):5363-73 – reference: 22345436 - J Virol. 2012 Apr;86(8):4527-37 – reference: 22291595 - PLoS Pathog. 2012 Jan;8(1):e1002498 – reference: 12297514 - J Biol Chem. 2002 Nov 29;277(48):46043-50 – reference: 24356113 - Science. 2014 Jan 24;343(6169):428-32 – reference: 1570319 - Proc Natl Acad Sci U S A. 1992 May 1;89(9):3952-6 – reference: 24996165 - Cell Stem Cell. 2014 Jul 3;15(1):12-3 – reference: 3031658 - Proc Natl Acad Sci U S A. 1987 Apr;84(7):1926-30 – reference: 24449861 - Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):E611-7 – reference: 19939931 - J Virol. 2010 Feb;84(3):1366-75 – reference: 17439944 - J Biol Chem. 2007 Jun 8;282(23):16860-70 – reference: 2539493 - J Virol. 1989 May;63(5):1897-906 – reference: 9250403 - Cell Stress Chaperones. 1997 Jun;2(2):119-31 – reference: 9858316 - J Interferon Cytokine Res. 1998 Nov;18(11):947-52 – reference: 14654789 - Oncogene. 2003 Dec 4;22(55):8931-8 – reference: 11846609 - Methods. 2001 Dec;25(4):402-8 – reference: 12588705 - Am J Physiol Lung Cell Mol Physiol. 2003 Jun;284(6):L1063-71 – reference: 24352470 - J Virol. 2014 Mar;88(5):2821-34 – reference: 14990579 - J Biol Chem. 2004 May 7;279(19):20339-44 – reference: 9642285 - J Biol Chem. 1998 Jul 3;273(27):17172-7 – reference: 12915535 - J Virol. 2003 Sep;77(17):9192-203 – reference: 23115300 - J Virol. 2013 Jan;87(2):859-71 – reference: 11136970 - Cell. 2000 Dec 8;103(6):843-52 – reference: 23720728 - J Virol. 2013 Aug;87(15):8606-23 – reference: 19158675 - Nature. 2009 Mar 26;458(7237):514-8 – reference: 17981542 - Front Biosci. 2008;13:240-8 – reference: 15280450 - J Virol. 2004 Aug;78(16):8411-20 – reference: 10454530 - Mol Cell Biol. 1999 Sep;19(9):5833-8 – reference: 2536115 - J Virol. 1989 Feb;63(2):943-7 – reference: 18579584 - J Virol. 2008 Sep;82(17):8871-81 – reference: 24696486 - J Virol. 2014 Jun;88(12):6970-82 |
SSID | ssj0041316 |
Score | 2.4813669 |
Snippet | Interferon-γ inducible factor 16 (IFI16) is a multifunctional nuclear protein involved in transcriptional regulation, induction of interferon-β (IFN-β), and... Interferon-γ inducible factor 16 (IFI16) is a multifunctional nuclear protein involved in transcriptional regulation, induction of interferon-β (IFN-β), and... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1004503 |
SubjectTerms | Biology and Life Sciences Bone cancer Cell Line, Tumor Colleges & universities Deoxyribonucleic acid DNA Experiments Gene expression Gene Expression Regulation, Viral Genetic aspects Genome, Viral Genomes Health aspects HEK293 Cells Herpes simplex virus Herpes viruses Herpesvirus 1, Human - physiology Histones Histones - genetics Histones - metabolism Humans Infections Interferon Microscopy Nuclear Proteins - genetics Nuclear Proteins - metabolism Phosphoproteins - genetics Phosphoproteins - metabolism Protein Processing, Post-Translational Protein research Proteins RNA polymerase Transcription factors Viral Proteins - biosynthesis Viral Proteins - genetics Virus Replication Virus research |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQJSReEL9XGMggJF4WFjuuXT8ORNUisQfG0N4sO3G2SW1SNS2i_w9_KHexEy0ItBf6lviSynfn8-f4_B0hb6cwpwOqlQm3YAbBizKZOpkm1qbC5aWFQYaHk7-cyvm5-HwxubhR6gtzwgI9cFDcsfLwK2FcOQDzPnVOe64cZ5ZrgcQnGH1TnXaLqRCDITK3RU-xKE6iMinjoblMseNoo_frtUX6aIA0XcGsOCm13P19hB6tl3XzN_j5ZxbljWlp9oDcj3iSnoR-PCR3fPWI3A0VJvePya_FbMEkxQIcEPC2DZ2ffU8YXPfb1tTtqc3z3aqt41VdUrgFoJBeNT9AEClcV_6IbmLCLLSHN0CDp_5nTKOtjqitChrmx-We1huKe-HxalUX3ctbemN4Em5hjlL4XPiEnM8-ffs4T2JhhiSXWm8TmzuhC-4tK3EJY8uMI2sQ2KfghVY6lZYxLzVANQd4pvSwfFdqAitH58Aa0-wpGVXwZweEloVXVkxY7qeF4E65HAEsfpxNU-tFOiZZZxmTR9ZyLJ6xNO1WnILVS1C0QXuaaM8xSfqn1oG14xb5D2j0XhY5t9sb4IkmeqK5zRPH5A26jEFWjQrTdi7trmnM4uzUnOABaGRKY_8U-joQeheFyho6m9t4VAJUhmxdA8nDgSTEhnzQfIDu2_W5MUzC4NTI-TgmrzuXNvgU5tpVvt6hDB6-BiuCWp4FF-8VwyeZAsSsx0QNnH-guWFLdX3VspYLAKKwPHn-P1T9gtwD4CrCmdBDMtpudv4lgMOte9XGgd8-lGH7 priority: 102 providerName: Directory of Open Access Journals |
Title | IFI16 Restricts HSV-1 Replication by Accumulating on the HSV-1 Genome, Repressing HSV-1 Gene Expression, and Directly or Indirectly Modulating Histone Modifications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25375629 https://www.proquest.com/docview/1622057903 https://pubmed.ncbi.nlm.nih.gov/PMC4223080 https://doaj.org/article/7eeeef219b014e0bb9e27b21a2940146 http://dx.doi.org/10.1371/journal.ppat.1004503 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swEBddymAvY_-brQvaGOylLpajSPHDGOlIlgwSRrqMvAnJltNBamdxAs332QfdnS2bebQMljdbd3Z8d5LuJN3vCHnXhzkdvFrhBRrUwIM48fpG-J7WPjdRoqGTYXLydCbGC_5l2VsekapmqxNgfmtoh_WkFtv1-c3Pw0fo8B-Kqg2SVUznm41GQGhwUhD-8xjmJoHh2JTX-wowYhfFULFYjie7QrhkurueglDBva4EHyFszFsFvH89iLc26yy_zUP9-6DlHzPX6BF56FxOOiht5DE5sukTcr8sQnl4Sn5NRhMm6NxiBY9ol9Px5XePwXW9s03NgQ6iaH9dlPpKVxRugd_oCD_bNLu2Z8hQnKmF9rrB0uGNO2mbnlGdxrQcYtcHmm3pJI2rq2kWVw8vgEuAE27hMaZyRfEZWYyG3z6NPVe7wYtEGO48HRkexoHVLMEoRyfdAIGFGLdxEIcy9IVmzIoQvDkDLk9iIcKXsgfBpTGgmH73OWml8LITQpPYSs17LLL9mAdGmgh9XFy_9X1tud8m3UozKnLA5lhfY62K3ToJAU4paIWqVU61beLVXJsS2OMf9Beo9JoWYbmLG9l2pVwvV9LCL4FJAP4dt74xoQ2kCZgOQo4oPW3yFk1GIfBGiid7Vnqf52pyOVMDzJFGMDV2J9G8QfTeESUZfGykXTYFiAwBvRqUpw1KGD6iRvMJmm_1zbliAvpviLCQbfKmMmmFXHgcL7XZHmkwPxu0CGJ5UZp4LZiqw7SJbBh_Q3LNlvTHVQFszsFXhQjm5X9zviIPwKHlZa7oKWnttnv7GpzGnemQe3IpO-T4Yjj7Ou8USy-dYmz4Df73bjE |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IFI16+Restricts+HSV-1+Replication+by+Accumulating+on+the+HSV-1+Genome%2C+Repressing+HSV-1+Gene+Expression%2C+and+Directly+or+Indirectly+Modulating+Histone+Modifications&rft.jtitle=PLoS+pathogens&rft.au=Johnson%2C+Karen+E.&rft.au=Bottero%2C+Virginie&rft.au=Flaherty%2C+Stephanie&rft.au=Dutta%2C+Sujoy&rft.date=2014-11-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft.eissn=1553-7374&rft.volume=10&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.ppat.1004503&rft_id=info%3Apmid%2F25375629&rft.externalDocID=PMC4223080 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |