Acute Atomoxetine Selectively Modulates Encoding of Reward Value in Ventral Medial Prefrontal Cortex

Background: A recent neurocognitive model of attention-deficit hyperactivity disorder (ADHD) has proposed a primary deficit in reward function as well as in executive function to account for underlying neural substrates of ADHD symptoms. Atomoxetine has been widely used as a non-stimulant medication...

Full description

Saved in:
Bibliographic Details
Published inJournal of Nippon Medical School Vol. 86; no. 2; pp. 98 - 107
Main Authors Suzuki, Chihiro, Ikeda, Yumiko, Tateno, Amane, Okubo, Yoshiro, Fukayama, Haruhisa, Suzuki, Hidenori
Format Journal Article
LanguageEnglish
Published Japan The Medical Association of Nippon Medical School 2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background: A recent neurocognitive model of attention-deficit hyperactivity disorder (ADHD) has proposed a primary deficit in reward function as well as in executive function to account for underlying neural substrates of ADHD symptoms. Atomoxetine has been widely used as a non-stimulant medication for ADHD with little abuse liability. Although animal studies have reported that atomoxetine increases extracellular levels of both noradrenaline and dopamine in the prefrontal cortex, which receives input from a mesocorticolimbic pathway involved in reward function, there have been few studies in humans concerning the effects of atomoxetine in terms of reward function. Therefore, we investigated whether a single dose of atomoxetine (acute atomoxetine) affects reward processing in healthy adults. Methods: We used functional magnetic resonance imaging and adopted the monetary incentive delay task to separately examine neural responses to monetary reward anticipation in the nucleus accumbens and outcome in the ventral medial prefrontal cortex (vmPFC). The experiment was designed as a randomized, placebo-controlled within-subjects cross-over trial. Fourteen healthy adults completed two series of studies, taking either atomoxetine or placebo. Results: Atomoxetine significantly decreased vmPFC activation during gain outcome compared to placebo. In gain anticipation, however, atomoxetine did not show a significant increase in the nucleus accumbens activation compared with placebo. Conclusions: These results suggest that atomoxetine affects reward value encoding through selective modulation of vmPFC activity related to reward outcome. Therefore, such modulatory action may partly contribute to a therapeutic effect of atomoxetine for a group of ADHD patients with increased activity in vmPFC.
AbstractList BACKGROUNDA recent neurocognitive model of attention-deficit hyperactivity disorder (ADHD) has proposed a primary deficit in reward function as well as in executive function to account for underlying neural substrates of ADHD symptoms. Atomoxetine has been widely used as a non-stimulant medication for ADHD with little abuse liability. Although animal studies have reported that atomoxetine increases extracellular levels of both noradrenaline and dopamine in the prefrontal cortex, which receives input from a mesocorticolimbic pathway involved in reward function, there have been few studies in humans concerning the effects of atomoxetine in terms of reward function. Therefore, we investigated whether a single dose of atomoxetine (acute atomoxetine) affects reward processing in healthy adults. METHODSWe used functional magnetic resonance imaging and adopted the monetary incentive delay task to separately examine neural responses to monetary reward anticipation in the nucleus accumbens and outcome in the ventral medial prefrontal cortex (vmPFC). The experiment was designed as a randomized, placebo-controlled within-subjects cross-over trial. Fourteen healthy adults completed two series of studies, taking either atomoxetine or placebo. RESULTSAtomoxetine significantly decreased vmPFC activation during gain outcome compared to placebo. In gain anticipation, however, atomoxetine did not show a significant increase in the nucleus accumbens activation compared with placebo. CONCLUSIONSThese results suggest that atomoxetine affects reward value encoding through selective modulation of vmPFC activity related to reward outcome. Therefore, such modulatory action may partly contribute to a therapeutic effect of atomoxetine for a group of ADHD patients with increased activity in vmPFC.
Background: A recent neurocognitive model of attention-deficit hyperactivity disorder (ADHD) has proposed a primary deficit in reward function as well as in executive function to account for underlying neural substrates of ADHD symptoms. Atomoxetine has been widely used as a non-stimulant medication for ADHD with little abuse liability. Although animal studies have reported that atomoxetine increases extracellular levels of both noradrenaline and dopamine in the prefrontal cortex, which receives input from a mesocorticolimbic pathway involved in reward function, there have been few studies in humans concerning the effects of atomoxetine in terms of reward function. Therefore, we investigated whether a single dose of atomoxetine (acute atomoxetine) affects reward processing in healthy adults. Methods: We used functional magnetic resonance imaging and adopted the monetary incentive delay task to separately examine neural responses to monetary reward anticipation in the nucleus accumbens and outcome in the ventral medial prefrontal cortex (vmPFC). The experiment was designed as a randomized, placebo-controlled within-subjects cross-over trial. Fourteen healthy adults completed two series of studies, taking either atomoxetine or placebo. Results: Atomoxetine significantly decreased vmPFC activation during gain outcome compared to placebo. In gain anticipation, however, atomoxetine did not show a significant increase in the nucleus accumbens activation compared with placebo. Conclusions: These results suggest that atomoxetine affects reward value encoding through selective modulation of vmPFC activity related to reward outcome. Therefore, such modulatory action may partly contribute to a therapeutic effect of atomoxetine for a group of ADHD patients with increased activity in vmPFC.
A recent neurocognitive model of attention-deficit hyperactivity disorder (ADHD) has proposed a primary deficit in reward function as well as in executive function to account for underlying neural substrates of ADHD symptoms. Atomoxetine has been widely used as a non-stimulant medication for ADHD with little abuse liability. Although animal studies have reported that atomoxetine increases extracellular levels of both noradrenaline and dopamine in the prefrontal cortex, which receives input from a mesocorticolimbic pathway involved in reward function, there have been few studies in humans concerning the effects of atomoxetine in terms of reward function. Therefore, we investigated whether a single dose of atomoxetine (acute atomoxetine) affects reward processing in healthy adults. We used functional magnetic resonance imaging and adopted the monetary incentive delay task to separately examine neural responses to monetary reward anticipation in the nucleus accumbens and outcome in the ventral medial prefrontal cortex (vmPFC). The experiment was designed as a randomized, placebo-controlled within-subjects cross-over trial. Fourteen healthy adults completed two series of studies, taking either atomoxetine or placebo. Atomoxetine significantly decreased vmPFC activation during gain outcome compared to placebo. In gain anticipation, however, atomoxetine did not show a significant increase in the nucleus accumbens activation compared with placebo. These results suggest that atomoxetine affects reward value encoding through selective modulation of vmPFC activity related to reward outcome. Therefore, such modulatory action may partly contribute to a therapeutic effect of atomoxetine for a group of ADHD patients with increased activity in vmPFC.
Author Suzuki, Chihiro
Suzuki, Hidenori
Ikeda, Yumiko
Okubo, Yoshiro
Fukayama, Haruhisa
Tateno, Amane
Author_xml – sequence: 1
  fullname: Suzuki, Chihiro
  organization: Anesthesiology and Clinical Physiology, Graduate School, Tokyo Medical and Dental University
– sequence: 2
  fullname: Ikeda, Yumiko
  organization: Department of Pharmacology, Graduate School of Medicine, Nippon Medical School
– sequence: 3
  fullname: Tateno, Amane
  organization: Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School
– sequence: 4
  fullname: Okubo, Yoshiro
  organization: Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School
– sequence: 5
  fullname: Fukayama, Haruhisa
  organization: Anesthesiology and Clinical Physiology, Graduate School, Tokyo Medical and Dental University
– sequence: 6
  fullname: Suzuki, Hidenori
  organization: Department of Pharmacology, Graduate School of Medicine, Nippon Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31130571$$D View this record in MEDLINE/PubMed
BookMark eNpdkEtv1DAUhS1URB_wE0BessngRxxPlqNReXZoRaFby4-bkpFjt7YD7b8n6Uxnweaeu_jOuVfnFB2FGACht5QsKJPswzYMefH1--Z6wQht1bKpGBEv0Anltax4Tdqjp11UdSObY3Sa85YQzoVoXqFjTiknQtIT5FZ2LIBXJQ7xAUofAF-DB1v6P-Af8Sa60esCGZ8HG10fbnHs8A_4q5PDN9qPgPuAbyCUpD3egOsnuUrQpRjKtK5jKvDwGr3stM_wZq9n6NfH85_rz9XF5acv69VFZZu2LVVbCyI7Y2sjdVsb4yRxkloq-ZJL4YypqVgKq4EJwykTrRO0Y8ZN5oaABH6G3u9y71K8HyEXNfTZgvc6QByzYowzShsi6ISKHWpTzHl6WN2lftDpUVGi5oLVXLCaC1b7gicVk-_d_sRoBnAH13OjE_BtB2xz0bdwAHQqvfWwi53D5vF__IGyv3VSEPg_NKuVnA
CitedBy_id crossref_primary_10_1371_journal_pone_0289133
crossref_primary_10_1016_j_neubiorev_2020_11_004
crossref_primary_10_3389_fnins_2020_00127
crossref_primary_10_3389_fpsyt_2021_659527
crossref_primary_10_1053_j_gastro_2020_08_065
crossref_primary_10_1007_s00702_021_02373_5
crossref_primary_10_1272_jnms_JNMS_2021_88_607
Cites_doi 10.1016/j.biopsych.2010.10.018
10.1111/j.2044-8341.1974.tb02285.x
10.1016/S0376-8716(02)00053-4
10.1016/j.neunet.2013.05.008
10.1126/science.1121218
10.1016/S0893-133X(02)00346-9
10.1016/j.neuropharm.2005.11.022
10.1016/j.psyneuen.2014.04.022
10.1037/0033-2909.121.1.65
10.1038/npp.2009.129
10.1016/j.neubiorev.2016.09.001
10.1016/j.biopsych.2004.08.019
10.1152/physrev.00023.2014
10.1016/j.neubiorev.2003.08.005
10.1016/j.neubiorev.2013.07.012
10.1016/j.euroneuro.2015.08.024
10.1111/j.1469-7610.1992.tb00874.x
10.1037/t00742-000
10.1007/s00213-013-2986-z
10.1016/S1053-8119(02)00057-5
10.1002/hbm.24184
10.1016/j.jaac.2015.02.012
10.1016/j.jad.2018.05.021
10.1038/sj.npp.1301164
10.1017/S1461145709990836
10.1371/journal.pone.0176034
10.1093/scan/nsq071
10.1007/s00213-014-3662-7
10.1016/j.biopsych.2007.07.023
10.1038/nn1578
10.1111/cch.12139
10.1093/brain/awy048
10.1007/s00213-014-3499-0
10.1007/s11920-004-0026-8
10.1089/cap.2015.0137
10.1111/1469-7610.00764
10.1016/j.tics.2006.01.011
10.1016/j.biopsych.2006.04.042
10.1016/0028-3932(71)90067-4
10.1016/j.biopsych.2011.03.028
10.1111/ped.12847
10.1016/j.biopsych.2008.10.014
10.1017/S0033291713000676
10.1017/S1461145712001678
10.1016/S0091-3057(01)00464-6
10.1098/rstb.2008.0155
10.1176/appi.ajp.2012.11101521
10.1017/S1461145713000357
10.1523/JNEUROSCI.0642-05.2005
10.1089/104454603321666199
10.1038/nrn896
10.1016/j.biopsycho.2007.11.010
10.1097/00001756-200112040-00016
ContentType Journal Article
Copyright 2019 by the Medical Association of Nippon Medical School
Copyright_xml – notice: 2019 by the Medical Association of Nippon Medical School
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1272/jnms.JNMS.2019_86-205
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1347-3409
EndPage 107
ExternalDocumentID 10_1272_jnms_JNMS_2019_86_205
31130571
article_jnms_86_2_86_JNMS_2019_86_205_article_char_en
Genre Journal Article
GroupedDBID 29L
2WC
53G
5GY
7.U
ABDBF
ABPTK
AEGXH
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMOBN
ESX
F5P
FRP
GX1
JMI
JSF
JSH
KQ8
MK0
MOJWN
M~E
RJT
RNS
RZJ
SV3
TR2
TUS
W2D
XSB
~8M
.55
NPM
TKC
X7M
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c699t-94507fbc4b7a94bbd70d71c1738375dbb41585cae25b31259d51f2bd69960e7e3
ISSN 1345-4676
IngestDate Thu Apr 11 18:30:31 EDT 2024
Fri Aug 23 01:03:44 EDT 2024
Thu May 23 23:55:38 EDT 2024
Wed Apr 05 06:06:59 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords functional MRI
ventral medial prefrontal cortex
atomoxetine
monetary incentive delay task
reward value encoding
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c699t-94507fbc4b7a94bbd70d71c1738375dbb41585cae25b31259d51f2bd69960e7e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-News-1
ObjectType-Feature-3
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/jnms/86/2/86_JNMS.2019_86-205/_article/-char/en
PMID 31130571
PQID 2232116051
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2232116051
crossref_primary_10_1272_jnms_JNMS_2019_86_205
pubmed_primary_31130571
jstage_primary_article_jnms_86_2_86_JNMS_2019_86_205_article_char_en
PublicationCentury 2000
PublicationDate 2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Journal of Nippon Medical School
PublicationTitleAlternate J Nippon Med Sch
PublicationYear 2019
Publisher The Medical Association of Nippon Medical School
Publisher_xml – name: The Medical Association of Nippon Medical School
References 37. Miu AC, Heilman RM, Houser D: Anxiety impairs decision-making: psychophysiological evidence from an Iowa Gambling Task. Biol Psychol 2008; 77: 353-358.
18. Chou TL, Chia S, Shang CY, Gau SS: Differential therapeutic effects of 12-week treatment of atomoxetine and methylphenidate on drug-naive children with attention deficit/hyperactivity disorder: a counting Stroop functional MRI study. Eur Neuropsychopharmacol 2015; 25: 2300-2310.
39. Yu G, Li GF, Markowitz JS: Atomoxetine: a review of its pharmacokinetics and pharmacogenomics relative to drug disposition. J Child Adolesc Psychopharmacol 2016; 26: 314-326.
13. von Rhein D, Cools R, Zwiers MP, van der Schaaf M, Franke B, Luman M, Oosterlaan J, Heslenfeld DJ, Hoekstra PJ, Hartman CA, Faraone SV, van Rooij D, van Dongen EV, Lojowska M, Mennes M, Buitelaar J: Increased neural responses to reward in adolescents and young adults with attention-deficit/hyperactivity disorder and their unaffected siblings. J Am Acad Child Adolesc Psychiatry 2015; 54: 394-402.
12. Scheres A, Milham MP, Knutson B, Castellanos FX: Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder. Biol Psychiatry 2007; 61: 720-724.
15. Wong DT, Threlkeld PG, Best KL, Bymaster FP: A new inhibitor of norepinephrine uptake devoid of affinity for receptors in rat brain. J Pharmacol Exp Ther 1982; 222: 61-65.
17. Ni HC, Shang CY, Gau SS, Lin YJ, Huang HC, Yang LK: A head-to-head randomized clinical trial of methylphenidate and atomoxetine treatment for executive function in adults with attention-deficit hyperactivity disorder. Int J Neuropsychopharmacol 2013; 16: 1959-1973.
55. Arnsten AF, Li BM: Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol Psychiatry 2005; 57: 1377-1384.
8. Schultz W: Neuronal reward and decision signals: from theories to data. Physiol Rev 2015; 95: 853-951.
24. Graf H, Abler B, Freudenmann R, Beschoner P, Schaeffeler E, Spitzer M, Gron G: Neural correlates of error monitoring modulated by atomoxetine in healthy volunteers. Biol Psychiatry 2011; 69: 890-897.
29. McLellan TM, Caldwell JA, Lieberman HR: A review of caffeine's effects on cognitive, physical and occupational performance. Neurosci Biobehav Rev 2016; 71: 294-312.
57. Cools R, D'Esposito M: Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry 2011; 69: e113-e125.
4. Castellanos FX, Sonuga-Barke EJ, Milham MP, Tannock R: Characterizing cognition in ADHD: beyond executive dysfunction. Trends Cogn Sci 2006; 10: 117-123.
1. Tarver J, Daley D, Sayal K: Attention-deficit hyperactivity disorder (ADHD): an updated review of the essential facts. Child Care Health Dev 2014; 40: 762-774.
25. Knutson B, Fong GW, Adams CM, Varner JL, Hommer D: Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 2001; 12: 3683-3687.
41. Knutson B, Greer SM: Anticipatory affect: neural correlates and consequences for choice. Philos Trans R Soc Lond B Biol Sci 2008; 363: 3771-3786.
36. Hägele C, Schlagenhauf F, Rapp M, Sterzer P, Beck A, Bermpohl F, Stoy M, Ströhle A, Wittchen HU, Dolan RJ, Heinz A: Dimensional psychiatry: reward dysfunction and depressive mood across psychiatric disorders. Psychopharmacology (Berl) 2015; 232: 331-341.
45. Snircova E, Marcincakova-Husarova V, Hrtanek I, Kulhan T, Ondrejka I, Nosalova G: Anxiety reduction on atomoxetine and methylphenidate medication in children with ADHD. Pediatr Int 2016; 58: 476-481.
46. Pozzi M, Carnovale C, Peeters G, Gentili M, Antoniazzi S, Radice S, Clementi E, Nobile M: Adverse drug events related to mood and emotion in paediatric patients treated for ADHD: a meta-analysis. J Affect Disord 2018; 238: 161-178.
47. Sonuga-Barke EJ, Taylor E, Sembi S, Smith J: Hyperactivity and delay aversion--I. The effect of delay on choice. J Child Psychol Psychiatry 1992; 33: 387-398.
6. Sonuga-Barke EJ: The dual pathway model of AD/HD: an elaboration of neuro-developmental characteristics. Neurosci Biobehav Rev 2003; 27: 593-604.
31. Ossewaarde L, van Wingen GA, Kooijman SC, Backstrom T, Fernandez G, Hermans EJ: Changes in functioning of mesolimbic incentive processing circuits during the premenstrual phase. Soc Cogn Affect Neurosci 2011; 6: 612-620.
30. Montoya ER, Bos PA, Terburg D, Rosenberger LA, van Honk J: Cortisol administration induces global down-regulation of the brain's reward circuitry. Psychoneuroendocrinology 2014; 47: 31-42.
22. Warren CM, Wilson RC, van der Wee NJ, Giltay EJ, van Noorden MS, Cohen JD, Nieuwenhuis S: The effect of atomoxetine on random and directed exploration in humans. PLoS One 2017; 12: e0176034.
54. Upadhyaya HP, Desaiah D, Schuh KJ, Bymaster FP, Kallman MJ, Clarke DO, Durell TM, Trzepacz PT, Calligaro DO, Nisenbaum ES, Emmerson PJ, Schuh LM, Bickel WK, Allen AJ: A review of the abuse potential assessment of atomoxetine: a nonstimulant medication for attention-deficit/hyperactivity disorder. Psychopharmacology (Berl) 2013; 226: 189-200.
3. Cortese S, Kelly C, Chabernaud C, Proal E, Di Martino A, Milham MP, Castellanos FX: Towards systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. Am J Psychiatry 2012; 169: 1038-1055.
20. Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW: Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 2002; 27: 699-711.
43. Knutson B, Bhanji JP, Cooney RE, Atlas LY, Gotlib IH: Neural responses to monetary incentives in major depression. Biol Psychiatry 2008; 63: 686-692.
51. Nestler EJ: Is there a common molecular pathway for addiction? Nat Neurosci 2005; 8: 1445-1449.
32. Beck AT, Steer RA, Brown GK: Manual for the Beck Depression Inventory, second ed. 1996, Pearson, Texas, USA.
53. Kollins SH, MacDonald EK, Rush CR: Assessing the abuse potential of methylphenidate in nonhuman and human subjects: a review. Pharmacol Biochem Behav 2001; 68: 611-627.
5. Castellanos FX, Tannock R: Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 2002; 3: 617-628.
2. Barkley RA: Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 1997; 121: 65-94.
14. Silvetti M, Wiersema JR, Sonuga-Barke E, Verguts T: Deficient reinforcement learning in medial frontal cortex as a model of dopamine-related motivational deficits in ADHD. Neural Netw 2013; 46: 199-209.
23. Chamberlain SR, Hampshire A, Muller U, Rubia K, Del Campo N, Craig K, Regenthal R, Suckling J, Roiser JP, Grant JE, Bullmore ET, Robbins TW, Sahakian BJ: Atomoxetine modulates right inferior frontal activation during inhibitory control: a pharmacological functional magnetic resonance imaging study. Biol Psychiatry 2009; 65: 550-555.
42. Saji K, Ikeda Y, Kim W, Shingai Y, Tateno A, Takahashi H, Fukayama H, Suzuki H: Acute NK1 receptor antagonist administration affects reward incentive anticipation processing in healthy volunteers. Int J Neuropsychopharmacol 2013; 16: 1461-1471.
28. Oldfield RC: The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971; 9: 97-113.
56. Chamberlain SR, Muller U, Blackwell AD, Clark L, Robbins TW, Sahakian BJ: Neurochemical modulation of response inhibition and probabilistic learning in humans. Science 2006; 311: 861-863.
26. Knutson B, Fong GW, Bennett SM, Adams CM, Hommer D: A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related fMRI. Neuroimage 2003; 18: 263-272.
27. Oldham S, Murawski C, Fornito A, Youssef G, Yucel M, Lorenzetti V: The anticipation and outcome phases of reward and loss processing: a neuroimaging meta-analysis of the monetary incentive delay task. Hum Brain Mapp 2018; 39: 3398-3418.
21. Swanson CJ, Perry KW, Koch-Krueger S, Katner J, Svensson KA, Bymaster FP: Effect of the attention deficit/hyperactivity disorder drug atomoxetine on extracellular concentrations of norepinephrine and dopamine in several brain regions of the rat. Neuropharmacology 2006; 50: 755-760.
19. Cubillo A, Smith AB, Barrett N, Giampietro V, Brammer M, Simmons A, Rubia K: Drug-specific laterality effects on frontal lobe activation of atomoxetine and methylphenidate in attention deficit hyperactivity disorder boys during working memory. Psychol Med 2014; 44: 633-646.
33. Kojima M, Furukawa TA: In Japanese Manual of the Beck Depression Inventory, second ed. 2003; Nihon Bunka Kagakusha, Tokyo, Japan.
11. Plichta MM, Scheres A: Ventral-striatal responsiveness during reward anticipation in ADHD and its relation to trait impulsivity in the healthy population: a meta-analytic review of the fMRI literature. Neurosci Biobehav Rev 2014; 38: 125-134.
48. Knutson B, Taylor J, Kaufman M, Peterson R, Glover G: Distributed neural representation of expected value. J Neurosci 2005; 25: 4806-4812.
10. Sethi A, Voon V, Critchley HD, Cercignani M, Harrison NA: A neurocomputational account of reward and novelty processing and effects of psychostimulants in attention deficit hyperactivity disorder. Brain 2018; 141: 1545-1557.
52. Heil SH, Holmes HW, Bickel WK, Higgins ST, Badger GJ, Laws HF, Faries DE: Comparison of the subjective, physiological, and psychomotor effects of atomoxetine and methylphenidate in light drug users. Drug Alcohol Depend 2002; 67: 149-156.
7. Tripp G, Alsop B: Sensitivity to reward delay in children with attention deficit hyperactivity disorder (ADHD). J Child Psychol Psychiatry 2001; 42: 691-698.
40. Funayama T, Ikeda Y, Tateno A, Takahashi H, Okubo Y, Fukayama H, Suzuki H: Modafinil augments brain activation associated with reward anticipation in the nucleus accumbens. Psychopharmacology (Berl) 2014; 231: 3217-3228.
34. Hidano T, Fukuhara M, Iwawaki M, Soga S, Spielberger CD: In State-Trait Anxiety Inventory - form J
44
45
46
47
48
49
50
51
52
53
10
RC Oldfield (28) 1971; 9
54
11
55
12
56
13
57
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – ident: 24
  doi: 10.1016/j.biopsych.2010.10.018
– ident: 35
  doi: 10.1111/j.2044-8341.1974.tb02285.x
– ident: 52
  doi: 10.1016/S0376-8716(02)00053-4
– ident: 14
  doi: 10.1016/j.neunet.2013.05.008
– ident: 56
  doi: 10.1126/science.1121218
– ident: 20
  doi: 10.1016/S0893-133X(02)00346-9
– ident: 21
  doi: 10.1016/j.neuropharm.2005.11.022
– ident: 30
  doi: 10.1016/j.psyneuen.2014.04.022
– ident: 2
  doi: 10.1037/0033-2909.121.1.65
– ident: 49
  doi: 10.1038/npp.2009.129
– ident: 29
  doi: 10.1016/j.neubiorev.2016.09.001
– ident: 55
  doi: 10.1016/j.biopsych.2004.08.019
– ident: 8
  doi: 10.1152/physrev.00023.2014
– ident: 6
  doi: 10.1016/j.neubiorev.2003.08.005
– ident: 11
  doi: 10.1016/j.neubiorev.2013.07.012
– ident: 18
  doi: 10.1016/j.euroneuro.2015.08.024
– ident: 34
– ident: 47
  doi: 10.1111/j.1469-7610.1992.tb00874.x
– ident: 32
  doi: 10.1037/t00742-000
– ident: 54
  doi: 10.1007/s00213-013-2986-z
– ident: 26
  doi: 10.1016/S1053-8119(02)00057-5
– ident: 27
  doi: 10.1002/hbm.24184
– ident: 13
  doi: 10.1016/j.jaac.2015.02.012
– ident: 46
  doi: 10.1016/j.jad.2018.05.021
– ident: 50
  doi: 10.1038/sj.npp.1301164
– ident: 44
– ident: 16
  doi: 10.1017/S1461145709990836
– ident: 22
  doi: 10.1371/journal.pone.0176034
– ident: 31
  doi: 10.1093/scan/nsq071
– ident: 36
  doi: 10.1007/s00213-014-3662-7
– ident: 43
  doi: 10.1016/j.biopsych.2007.07.023
– ident: 51
  doi: 10.1038/nn1578
– ident: 1
  doi: 10.1111/cch.12139
– ident: 10
  doi: 10.1093/brain/awy048
– ident: 33
– ident: 40
  doi: 10.1007/s00213-014-3499-0
– ident: 9
  doi: 10.1007/s11920-004-0026-8
– ident: 39
  doi: 10.1089/cap.2015.0137
– ident: 7
  doi: 10.1111/1469-7610.00764
– ident: 4
  doi: 10.1016/j.tics.2006.01.011
– ident: 12
  doi: 10.1016/j.biopsych.2006.04.042
– volume: 9
  start-page: 97
  issn: 0028-3932
  year: 1971
  ident: 28
  publication-title: Neuropsychologia
  doi: 10.1016/0028-3932(71)90067-4
  contributor:
    fullname: RC Oldfield
– ident: 57
  doi: 10.1016/j.biopsych.2011.03.028
– ident: 45
  doi: 10.1111/ped.12847
– ident: 23
  doi: 10.1016/j.biopsych.2008.10.014
– ident: 19
  doi: 10.1017/S0033291713000676
– ident: 42
  doi: 10.1017/S1461145712001678
– ident: 53
  doi: 10.1016/S0091-3057(01)00464-6
– ident: 41
  doi: 10.1098/rstb.2008.0155
– ident: 3
  doi: 10.1176/appi.ajp.2012.11101521
– ident: 15
– ident: 17
  doi: 10.1017/S1461145713000357
– ident: 48
  doi: 10.1523/JNEUROSCI.0642-05.2005
– ident: 38
  doi: 10.1089/104454603321666199
– ident: 5
  doi: 10.1038/nrn896
– ident: 37
  doi: 10.1016/j.biopsycho.2007.11.010
– ident: 25
  doi: 10.1097/00001756-200112040-00016
SSID ssj0033556
Score 2.2372248
Snippet Background: A recent neurocognitive model of attention-deficit hyperactivity disorder (ADHD) has proposed a primary deficit in reward function as well as in...
A recent neurocognitive model of attention-deficit hyperactivity disorder (ADHD) has proposed a primary deficit in reward function as well as in executive...
BACKGROUNDA recent neurocognitive model of attention-deficit hyperactivity disorder (ADHD) has proposed a primary deficit in reward function as well as in...
SourceID proquest
crossref
pubmed
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 98
SubjectTerms atomoxetine
functional MRI
monetary incentive delay task
reward value encoding
ventral medial prefrontal cortex
Title Acute Atomoxetine Selectively Modulates Encoding of Reward Value in Ventral Medial Prefrontal Cortex
URI https://www.jstage.jst.go.jp/article/jnms/86/2/86_JNMS.2019_86-205/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/31130571
https://search.proquest.com/docview/2232116051
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Nippon Medical School, 2019/04/26, Vol.86(2), pp.98-107
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKQNNeEN-ULxkJnqqU5sNJ_FhtgzGpBUE3dU9R7Dhr1iap2kQa_SP4mznHThrGKgEvTmW7tuL75Xx3Pt8h9M7ihHDHHRiMyBRmsR0ZoeWbBnG4iCkHkbmy6Y7G7smZczol007nZ8trqSxYn29uvVfyP1SFOqCrvCX7D5RtBoUK-A30hRIoDOVf0XjI5Sn_sMjT_FpeXRbw6S8UB1v8kGnOZG4use4dZzyPtHvzNyH9ZHvn4aKs4oWcK_NudWIDj6-wY8qYBpVNYVWI6x3S6zhZLvPtOY8O5vnePqpbPs9DgFRyGc7L3gYk9FmyPX_alCpZ9uEsmSWrvIHnXESVLHtRpsm8qZ7AO2TqNk4abr0AvsxLVtVe5OtmFG2_0PxRKG5rO8DhnAFts2MdGTtpacWKt6ps1X-wfMuTIWSvsnTdPx2PvktvPRr4LgCFtPsD5ZZphQPbhH2bqMQvN2Jt10130F0LGJd0Ef00bVyGbJDNXH0LDGb9cOucB2i_HuU3UefeFUj7l2K3IlMJNJMH6L6mJR4qWD1EHZE9Qvsj7WvxGEUVunALXbiFLtygC9fownmMFbpwhS6cZFijCyt04S26sELXE3T28XhyeGLonBwGdyktDOqAAhEz7jAvpA5jkTeIPJObnrR0kIgxEAh9wkNhEWaD8EwjYsYWi1wZBUh4wn6K9rI8E88R9uMQdOdYUMp9x_YZaLY0YtRmMqcDaNpd1K-XL1iq0CuBVFlh6QO59IFc-kAvPTxJFx2pRW666y9TdZedZHHzb00vec8R2EoXva1JFACvlQdoAO68XAcgSlum6cI-1kXPFO2aqWqiv9jZ8hIdyFmV_e4V2itWpXgNEm3B3lQw-wWE-6Oo
link.rule.ids 315,783,787,4031,27935,27936,27937
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acute+Atomoxetine+Selectively+Modulates+Encoding+of+Reward+Value+in+Ventral+Medial+Prefrontal+Cortex&rft.jtitle=Journal+of+Nippon+Medical+School+%3D+Nippon+Ika+Daigaku+zasshi&rft.au=Suzuki%2C+Chihiro&rft.au=Ikeda%2C+Yumiko&rft.au=Tateno%2C+Amane&rft.au=Okubo%2C+Yoshiro&rft.date=2019&rft.eissn=1347-3409&rft.volume=86&rft.issue=2&rft.spage=98&rft_id=info:doi/10.1272%2Fjnms.JNMS.2019_86-205&rft_id=info%3Apmid%2F31130571&rft.externalDocID=31130571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-4676&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-4676&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-4676&client=summon