Acute Atomoxetine Selectively Modulates Encoding of Reward Value in Ventral Medial Prefrontal Cortex
Background: A recent neurocognitive model of attention-deficit hyperactivity disorder (ADHD) has proposed a primary deficit in reward function as well as in executive function to account for underlying neural substrates of ADHD symptoms. Atomoxetine has been widely used as a non-stimulant medication...
Saved in:
Published in | Journal of Nippon Medical School Vol. 86; no. 2; pp. 98 - 107 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Medical Association of Nippon Medical School
2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background: A recent neurocognitive model of attention-deficit hyperactivity disorder (ADHD) has proposed a primary deficit in reward function as well as in executive function to account for underlying neural substrates of ADHD symptoms. Atomoxetine has been widely used as a non-stimulant medication for ADHD with little abuse liability. Although animal studies have reported that atomoxetine increases extracellular levels of both noradrenaline and dopamine in the prefrontal cortex, which receives input from a mesocorticolimbic pathway involved in reward function, there have been few studies in humans concerning the effects of atomoxetine in terms of reward function. Therefore, we investigated whether a single dose of atomoxetine (acute atomoxetine) affects reward processing in healthy adults. Methods: We used functional magnetic resonance imaging and adopted the monetary incentive delay task to separately examine neural responses to monetary reward anticipation in the nucleus accumbens and outcome in the ventral medial prefrontal cortex (vmPFC). The experiment was designed as a randomized, placebo-controlled within-subjects cross-over trial. Fourteen healthy adults completed two series of studies, taking either atomoxetine or placebo. Results: Atomoxetine significantly decreased vmPFC activation during gain outcome compared to placebo. In gain anticipation, however, atomoxetine did not show a significant increase in the nucleus accumbens activation compared with placebo. Conclusions: These results suggest that atomoxetine affects reward value encoding through selective modulation of vmPFC activity related to reward outcome. Therefore, such modulatory action may partly contribute to a therapeutic effect of atomoxetine for a group of ADHD patients with increased activity in vmPFC. |
---|---|
AbstractList | BACKGROUNDA recent neurocognitive model of attention-deficit hyperactivity disorder (ADHD) has proposed a primary deficit in reward function as well as in executive function to account for underlying neural substrates of ADHD symptoms. Atomoxetine has been widely used as a non-stimulant medication for ADHD with little abuse liability. Although animal studies have reported that atomoxetine increases extracellular levels of both noradrenaline and dopamine in the prefrontal cortex, which receives input from a mesocorticolimbic pathway involved in reward function, there have been few studies in humans concerning the effects of atomoxetine in terms of reward function. Therefore, we investigated whether a single dose of atomoxetine (acute atomoxetine) affects reward processing in healthy adults. METHODSWe used functional magnetic resonance imaging and adopted the monetary incentive delay task to separately examine neural responses to monetary reward anticipation in the nucleus accumbens and outcome in the ventral medial prefrontal cortex (vmPFC). The experiment was designed as a randomized, placebo-controlled within-subjects cross-over trial. Fourteen healthy adults completed two series of studies, taking either atomoxetine or placebo. RESULTSAtomoxetine significantly decreased vmPFC activation during gain outcome compared to placebo. In gain anticipation, however, atomoxetine did not show a significant increase in the nucleus accumbens activation compared with placebo. CONCLUSIONSThese results suggest that atomoxetine affects reward value encoding through selective modulation of vmPFC activity related to reward outcome. Therefore, such modulatory action may partly contribute to a therapeutic effect of atomoxetine for a group of ADHD patients with increased activity in vmPFC. Background: A recent neurocognitive model of attention-deficit hyperactivity disorder (ADHD) has proposed a primary deficit in reward function as well as in executive function to account for underlying neural substrates of ADHD symptoms. Atomoxetine has been widely used as a non-stimulant medication for ADHD with little abuse liability. Although animal studies have reported that atomoxetine increases extracellular levels of both noradrenaline and dopamine in the prefrontal cortex, which receives input from a mesocorticolimbic pathway involved in reward function, there have been few studies in humans concerning the effects of atomoxetine in terms of reward function. Therefore, we investigated whether a single dose of atomoxetine (acute atomoxetine) affects reward processing in healthy adults. Methods: We used functional magnetic resonance imaging and adopted the monetary incentive delay task to separately examine neural responses to monetary reward anticipation in the nucleus accumbens and outcome in the ventral medial prefrontal cortex (vmPFC). The experiment was designed as a randomized, placebo-controlled within-subjects cross-over trial. Fourteen healthy adults completed two series of studies, taking either atomoxetine or placebo. Results: Atomoxetine significantly decreased vmPFC activation during gain outcome compared to placebo. In gain anticipation, however, atomoxetine did not show a significant increase in the nucleus accumbens activation compared with placebo. Conclusions: These results suggest that atomoxetine affects reward value encoding through selective modulation of vmPFC activity related to reward outcome. Therefore, such modulatory action may partly contribute to a therapeutic effect of atomoxetine for a group of ADHD patients with increased activity in vmPFC. A recent neurocognitive model of attention-deficit hyperactivity disorder (ADHD) has proposed a primary deficit in reward function as well as in executive function to account for underlying neural substrates of ADHD symptoms. Atomoxetine has been widely used as a non-stimulant medication for ADHD with little abuse liability. Although animal studies have reported that atomoxetine increases extracellular levels of both noradrenaline and dopamine in the prefrontal cortex, which receives input from a mesocorticolimbic pathway involved in reward function, there have been few studies in humans concerning the effects of atomoxetine in terms of reward function. Therefore, we investigated whether a single dose of atomoxetine (acute atomoxetine) affects reward processing in healthy adults. We used functional magnetic resonance imaging and adopted the monetary incentive delay task to separately examine neural responses to monetary reward anticipation in the nucleus accumbens and outcome in the ventral medial prefrontal cortex (vmPFC). The experiment was designed as a randomized, placebo-controlled within-subjects cross-over trial. Fourteen healthy adults completed two series of studies, taking either atomoxetine or placebo. Atomoxetine significantly decreased vmPFC activation during gain outcome compared to placebo. In gain anticipation, however, atomoxetine did not show a significant increase in the nucleus accumbens activation compared with placebo. These results suggest that atomoxetine affects reward value encoding through selective modulation of vmPFC activity related to reward outcome. Therefore, such modulatory action may partly contribute to a therapeutic effect of atomoxetine for a group of ADHD patients with increased activity in vmPFC. |
Author | Suzuki, Chihiro Suzuki, Hidenori Ikeda, Yumiko Okubo, Yoshiro Fukayama, Haruhisa Tateno, Amane |
Author_xml | – sequence: 1 fullname: Suzuki, Chihiro organization: Anesthesiology and Clinical Physiology, Graduate School, Tokyo Medical and Dental University – sequence: 2 fullname: Ikeda, Yumiko organization: Department of Pharmacology, Graduate School of Medicine, Nippon Medical School – sequence: 3 fullname: Tateno, Amane organization: Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School – sequence: 4 fullname: Okubo, Yoshiro organization: Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School – sequence: 5 fullname: Fukayama, Haruhisa organization: Anesthesiology and Clinical Physiology, Graduate School, Tokyo Medical and Dental University – sequence: 6 fullname: Suzuki, Hidenori organization: Department of Pharmacology, Graduate School of Medicine, Nippon Medical School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31130571$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkEtv1DAUhS1URB_wE0BessngRxxPlqNReXZoRaFby4-bkpFjt7YD7b8n6Uxnweaeu_jOuVfnFB2FGACht5QsKJPswzYMefH1--Z6wQht1bKpGBEv0Anltax4Tdqjp11UdSObY3Sa85YQzoVoXqFjTiknQtIT5FZ2LIBXJQ7xAUofAF-DB1v6P-Af8Sa60esCGZ8HG10fbnHs8A_4q5PDN9qPgPuAbyCUpD3egOsnuUrQpRjKtK5jKvDwGr3stM_wZq9n6NfH85_rz9XF5acv69VFZZu2LVVbCyI7Y2sjdVsb4yRxkloq-ZJL4YypqVgKq4EJwykTrRO0Y8ZN5oaABH6G3u9y71K8HyEXNfTZgvc6QByzYowzShsi6ISKHWpTzHl6WN2lftDpUVGi5oLVXLCaC1b7gicVk-_d_sRoBnAH13OjE_BtB2xz0bdwAHQqvfWwi53D5vF__IGyv3VSEPg_NKuVnA |
CitedBy_id | crossref_primary_10_1371_journal_pone_0289133 crossref_primary_10_1016_j_neubiorev_2020_11_004 crossref_primary_10_3389_fnins_2020_00127 crossref_primary_10_3389_fpsyt_2021_659527 crossref_primary_10_1053_j_gastro_2020_08_065 crossref_primary_10_1007_s00702_021_02373_5 crossref_primary_10_1272_jnms_JNMS_2021_88_607 |
Cites_doi | 10.1016/j.biopsych.2010.10.018 10.1111/j.2044-8341.1974.tb02285.x 10.1016/S0376-8716(02)00053-4 10.1016/j.neunet.2013.05.008 10.1126/science.1121218 10.1016/S0893-133X(02)00346-9 10.1016/j.neuropharm.2005.11.022 10.1016/j.psyneuen.2014.04.022 10.1037/0033-2909.121.1.65 10.1038/npp.2009.129 10.1016/j.neubiorev.2016.09.001 10.1016/j.biopsych.2004.08.019 10.1152/physrev.00023.2014 10.1016/j.neubiorev.2003.08.005 10.1016/j.neubiorev.2013.07.012 10.1016/j.euroneuro.2015.08.024 10.1111/j.1469-7610.1992.tb00874.x 10.1037/t00742-000 10.1007/s00213-013-2986-z 10.1016/S1053-8119(02)00057-5 10.1002/hbm.24184 10.1016/j.jaac.2015.02.012 10.1016/j.jad.2018.05.021 10.1038/sj.npp.1301164 10.1017/S1461145709990836 10.1371/journal.pone.0176034 10.1093/scan/nsq071 10.1007/s00213-014-3662-7 10.1016/j.biopsych.2007.07.023 10.1038/nn1578 10.1111/cch.12139 10.1093/brain/awy048 10.1007/s00213-014-3499-0 10.1007/s11920-004-0026-8 10.1089/cap.2015.0137 10.1111/1469-7610.00764 10.1016/j.tics.2006.01.011 10.1016/j.biopsych.2006.04.042 10.1016/0028-3932(71)90067-4 10.1016/j.biopsych.2011.03.028 10.1111/ped.12847 10.1016/j.biopsych.2008.10.014 10.1017/S0033291713000676 10.1017/S1461145712001678 10.1016/S0091-3057(01)00464-6 10.1098/rstb.2008.0155 10.1176/appi.ajp.2012.11101521 10.1017/S1461145713000357 10.1523/JNEUROSCI.0642-05.2005 10.1089/104454603321666199 10.1038/nrn896 10.1016/j.biopsycho.2007.11.010 10.1097/00001756-200112040-00016 |
ContentType | Journal Article |
Copyright | 2019 by the Medical Association of Nippon Medical School |
Copyright_xml | – notice: 2019 by the Medical Association of Nippon Medical School |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1272/jnms.JNMS.2019_86-205 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1347-3409 |
EndPage | 107 |
ExternalDocumentID | 10_1272_jnms_JNMS_2019_86_205 31130571 article_jnms_86_2_86_JNMS_2019_86_205_article_char_en |
Genre | Journal Article |
GroupedDBID | 29L 2WC 53G 5GY 7.U ABDBF ABPTK AEGXH AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DIK DU5 E3Z EBD EBS EJD EMOBN ESX F5P FRP GX1 JMI JSF JSH KQ8 MK0 MOJWN M~E RJT RNS RZJ SV3 TR2 TUS W2D XSB ~8M .55 NPM TKC X7M AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c699t-94507fbc4b7a94bbd70d71c1738375dbb41585cae25b31259d51f2bd69960e7e3 |
ISSN | 1345-4676 |
IngestDate | Thu Apr 11 18:30:31 EDT 2024 Fri Aug 23 01:03:44 EDT 2024 Thu May 23 23:55:38 EDT 2024 Wed Apr 05 06:06:59 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | functional MRI ventral medial prefrontal cortex atomoxetine monetary incentive delay task reward value encoding |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c699t-94507fbc4b7a94bbd70d71c1738375dbb41585cae25b31259d51f2bd69960e7e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-News-1 ObjectType-Feature-3 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jnms/86/2/86_JNMS.2019_86-205/_article/-char/en |
PMID | 31130571 |
PQID | 2232116051 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2232116051 crossref_primary_10_1272_jnms_JNMS_2019_86_205 pubmed_primary_31130571 jstage_primary_article_jnms_86_2_86_JNMS_2019_86_205_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2019-00-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Journal of Nippon Medical School |
PublicationTitleAlternate | J Nippon Med Sch |
PublicationYear | 2019 |
Publisher | The Medical Association of Nippon Medical School |
Publisher_xml | – name: The Medical Association of Nippon Medical School |
References | 37. Miu AC, Heilman RM, Houser D: Anxiety impairs decision-making: psychophysiological evidence from an Iowa Gambling Task. Biol Psychol 2008; 77: 353-358. 18. Chou TL, Chia S, Shang CY, Gau SS: Differential therapeutic effects of 12-week treatment of atomoxetine and methylphenidate on drug-naive children with attention deficit/hyperactivity disorder: a counting Stroop functional MRI study. Eur Neuropsychopharmacol 2015; 25: 2300-2310. 39. Yu G, Li GF, Markowitz JS: Atomoxetine: a review of its pharmacokinetics and pharmacogenomics relative to drug disposition. J Child Adolesc Psychopharmacol 2016; 26: 314-326. 13. von Rhein D, Cools R, Zwiers MP, van der Schaaf M, Franke B, Luman M, Oosterlaan J, Heslenfeld DJ, Hoekstra PJ, Hartman CA, Faraone SV, van Rooij D, van Dongen EV, Lojowska M, Mennes M, Buitelaar J: Increased neural responses to reward in adolescents and young adults with attention-deficit/hyperactivity disorder and their unaffected siblings. J Am Acad Child Adolesc Psychiatry 2015; 54: 394-402. 12. Scheres A, Milham MP, Knutson B, Castellanos FX: Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder. Biol Psychiatry 2007; 61: 720-724. 15. Wong DT, Threlkeld PG, Best KL, Bymaster FP: A new inhibitor of norepinephrine uptake devoid of affinity for receptors in rat brain. J Pharmacol Exp Ther 1982; 222: 61-65. 17. Ni HC, Shang CY, Gau SS, Lin YJ, Huang HC, Yang LK: A head-to-head randomized clinical trial of methylphenidate and atomoxetine treatment for executive function in adults with attention-deficit hyperactivity disorder. Int J Neuropsychopharmacol 2013; 16: 1959-1973. 55. Arnsten AF, Li BM: Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol Psychiatry 2005; 57: 1377-1384. 8. Schultz W: Neuronal reward and decision signals: from theories to data. Physiol Rev 2015; 95: 853-951. 24. Graf H, Abler B, Freudenmann R, Beschoner P, Schaeffeler E, Spitzer M, Gron G: Neural correlates of error monitoring modulated by atomoxetine in healthy volunteers. Biol Psychiatry 2011; 69: 890-897. 29. McLellan TM, Caldwell JA, Lieberman HR: A review of caffeine's effects on cognitive, physical and occupational performance. Neurosci Biobehav Rev 2016; 71: 294-312. 57. Cools R, D'Esposito M: Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry 2011; 69: e113-e125. 4. Castellanos FX, Sonuga-Barke EJ, Milham MP, Tannock R: Characterizing cognition in ADHD: beyond executive dysfunction. Trends Cogn Sci 2006; 10: 117-123. 1. Tarver J, Daley D, Sayal K: Attention-deficit hyperactivity disorder (ADHD): an updated review of the essential facts. Child Care Health Dev 2014; 40: 762-774. 25. Knutson B, Fong GW, Adams CM, Varner JL, Hommer D: Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 2001; 12: 3683-3687. 41. Knutson B, Greer SM: Anticipatory affect: neural correlates and consequences for choice. Philos Trans R Soc Lond B Biol Sci 2008; 363: 3771-3786. 36. Hägele C, Schlagenhauf F, Rapp M, Sterzer P, Beck A, Bermpohl F, Stoy M, Ströhle A, Wittchen HU, Dolan RJ, Heinz A: Dimensional psychiatry: reward dysfunction and depressive mood across psychiatric disorders. Psychopharmacology (Berl) 2015; 232: 331-341. 45. Snircova E, Marcincakova-Husarova V, Hrtanek I, Kulhan T, Ondrejka I, Nosalova G: Anxiety reduction on atomoxetine and methylphenidate medication in children with ADHD. Pediatr Int 2016; 58: 476-481. 46. Pozzi M, Carnovale C, Peeters G, Gentili M, Antoniazzi S, Radice S, Clementi E, Nobile M: Adverse drug events related to mood and emotion in paediatric patients treated for ADHD: a meta-analysis. J Affect Disord 2018; 238: 161-178. 47. Sonuga-Barke EJ, Taylor E, Sembi S, Smith J: Hyperactivity and delay aversion--I. The effect of delay on choice. J Child Psychol Psychiatry 1992; 33: 387-398. 6. Sonuga-Barke EJ: The dual pathway model of AD/HD: an elaboration of neuro-developmental characteristics. Neurosci Biobehav Rev 2003; 27: 593-604. 31. Ossewaarde L, van Wingen GA, Kooijman SC, Backstrom T, Fernandez G, Hermans EJ: Changes in functioning of mesolimbic incentive processing circuits during the premenstrual phase. Soc Cogn Affect Neurosci 2011; 6: 612-620. 30. Montoya ER, Bos PA, Terburg D, Rosenberger LA, van Honk J: Cortisol administration induces global down-regulation of the brain's reward circuitry. Psychoneuroendocrinology 2014; 47: 31-42. 22. Warren CM, Wilson RC, van der Wee NJ, Giltay EJ, van Noorden MS, Cohen JD, Nieuwenhuis S: The effect of atomoxetine on random and directed exploration in humans. PLoS One 2017; 12: e0176034. 54. Upadhyaya HP, Desaiah D, Schuh KJ, Bymaster FP, Kallman MJ, Clarke DO, Durell TM, Trzepacz PT, Calligaro DO, Nisenbaum ES, Emmerson PJ, Schuh LM, Bickel WK, Allen AJ: A review of the abuse potential assessment of atomoxetine: a nonstimulant medication for attention-deficit/hyperactivity disorder. Psychopharmacology (Berl) 2013; 226: 189-200. 3. Cortese S, Kelly C, Chabernaud C, Proal E, Di Martino A, Milham MP, Castellanos FX: Towards systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. Am J Psychiatry 2012; 169: 1038-1055. 20. Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW: Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 2002; 27: 699-711. 43. Knutson B, Bhanji JP, Cooney RE, Atlas LY, Gotlib IH: Neural responses to monetary incentives in major depression. Biol Psychiatry 2008; 63: 686-692. 51. Nestler EJ: Is there a common molecular pathway for addiction? Nat Neurosci 2005; 8: 1445-1449. 32. Beck AT, Steer RA, Brown GK: Manual for the Beck Depression Inventory, second ed. 1996, Pearson, Texas, USA. 53. Kollins SH, MacDonald EK, Rush CR: Assessing the abuse potential of methylphenidate in nonhuman and human subjects: a review. Pharmacol Biochem Behav 2001; 68: 611-627. 5. Castellanos FX, Tannock R: Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 2002; 3: 617-628. 2. Barkley RA: Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 1997; 121: 65-94. 14. Silvetti M, Wiersema JR, Sonuga-Barke E, Verguts T: Deficient reinforcement learning in medial frontal cortex as a model of dopamine-related motivational deficits in ADHD. Neural Netw 2013; 46: 199-209. 23. Chamberlain SR, Hampshire A, Muller U, Rubia K, Del Campo N, Craig K, Regenthal R, Suckling J, Roiser JP, Grant JE, Bullmore ET, Robbins TW, Sahakian BJ: Atomoxetine modulates right inferior frontal activation during inhibitory control: a pharmacological functional magnetic resonance imaging study. Biol Psychiatry 2009; 65: 550-555. 42. Saji K, Ikeda Y, Kim W, Shingai Y, Tateno A, Takahashi H, Fukayama H, Suzuki H: Acute NK1 receptor antagonist administration affects reward incentive anticipation processing in healthy volunteers. Int J Neuropsychopharmacol 2013; 16: 1461-1471. 28. Oldfield RC: The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971; 9: 97-113. 56. Chamberlain SR, Muller U, Blackwell AD, Clark L, Robbins TW, Sahakian BJ: Neurochemical modulation of response inhibition and probabilistic learning in humans. Science 2006; 311: 861-863. 26. Knutson B, Fong GW, Bennett SM, Adams CM, Hommer D: A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related fMRI. Neuroimage 2003; 18: 263-272. 27. Oldham S, Murawski C, Fornito A, Youssef G, Yucel M, Lorenzetti V: The anticipation and outcome phases of reward and loss processing: a neuroimaging meta-analysis of the monetary incentive delay task. Hum Brain Mapp 2018; 39: 3398-3418. 21. Swanson CJ, Perry KW, Koch-Krueger S, Katner J, Svensson KA, Bymaster FP: Effect of the attention deficit/hyperactivity disorder drug atomoxetine on extracellular concentrations of norepinephrine and dopamine in several brain regions of the rat. Neuropharmacology 2006; 50: 755-760. 19. Cubillo A, Smith AB, Barrett N, Giampietro V, Brammer M, Simmons A, Rubia K: Drug-specific laterality effects on frontal lobe activation of atomoxetine and methylphenidate in attention deficit hyperactivity disorder boys during working memory. Psychol Med 2014; 44: 633-646. 33. Kojima M, Furukawa TA: In Japanese Manual of the Beck Depression Inventory, second ed. 2003; Nihon Bunka Kagakusha, Tokyo, Japan. 11. Plichta MM, Scheres A: Ventral-striatal responsiveness during reward anticipation in ADHD and its relation to trait impulsivity in the healthy population: a meta-analytic review of the fMRI literature. Neurosci Biobehav Rev 2014; 38: 125-134. 48. Knutson B, Taylor J, Kaufman M, Peterson R, Glover G: Distributed neural representation of expected value. J Neurosci 2005; 25: 4806-4812. 10. Sethi A, Voon V, Critchley HD, Cercignani M, Harrison NA: A neurocomputational account of reward and novelty processing and effects of psychostimulants in attention deficit hyperactivity disorder. Brain 2018; 141: 1545-1557. 52. Heil SH, Holmes HW, Bickel WK, Higgins ST, Badger GJ, Laws HF, Faries DE: Comparison of the subjective, physiological, and psychomotor effects of atomoxetine and methylphenidate in light drug users. Drug Alcohol Depend 2002; 67: 149-156. 7. Tripp G, Alsop B: Sensitivity to reward delay in children with attention deficit hyperactivity disorder (ADHD). J Child Psychol Psychiatry 2001; 42: 691-698. 40. Funayama T, Ikeda Y, Tateno A, Takahashi H, Okubo Y, Fukayama H, Suzuki H: Modafinil augments brain activation associated with reward anticipation in the nucleus accumbens. Psychopharmacology (Berl) 2014; 231: 3217-3228. 34. Hidano T, Fukuhara M, Iwawaki M, Soga S, Spielberger CD: In State-Trait Anxiety Inventory - form J 44 45 46 47 48 49 50 51 52 53 10 RC Oldfield (28) 1971; 9 54 11 55 12 56 13 57 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – ident: 24 doi: 10.1016/j.biopsych.2010.10.018 – ident: 35 doi: 10.1111/j.2044-8341.1974.tb02285.x – ident: 52 doi: 10.1016/S0376-8716(02)00053-4 – ident: 14 doi: 10.1016/j.neunet.2013.05.008 – ident: 56 doi: 10.1126/science.1121218 – ident: 20 doi: 10.1016/S0893-133X(02)00346-9 – ident: 21 doi: 10.1016/j.neuropharm.2005.11.022 – ident: 30 doi: 10.1016/j.psyneuen.2014.04.022 – ident: 2 doi: 10.1037/0033-2909.121.1.65 – ident: 49 doi: 10.1038/npp.2009.129 – ident: 29 doi: 10.1016/j.neubiorev.2016.09.001 – ident: 55 doi: 10.1016/j.biopsych.2004.08.019 – ident: 8 doi: 10.1152/physrev.00023.2014 – ident: 6 doi: 10.1016/j.neubiorev.2003.08.005 – ident: 11 doi: 10.1016/j.neubiorev.2013.07.012 – ident: 18 doi: 10.1016/j.euroneuro.2015.08.024 – ident: 34 – ident: 47 doi: 10.1111/j.1469-7610.1992.tb00874.x – ident: 32 doi: 10.1037/t00742-000 – ident: 54 doi: 10.1007/s00213-013-2986-z – ident: 26 doi: 10.1016/S1053-8119(02)00057-5 – ident: 27 doi: 10.1002/hbm.24184 – ident: 13 doi: 10.1016/j.jaac.2015.02.012 – ident: 46 doi: 10.1016/j.jad.2018.05.021 – ident: 50 doi: 10.1038/sj.npp.1301164 – ident: 44 – ident: 16 doi: 10.1017/S1461145709990836 – ident: 22 doi: 10.1371/journal.pone.0176034 – ident: 31 doi: 10.1093/scan/nsq071 – ident: 36 doi: 10.1007/s00213-014-3662-7 – ident: 43 doi: 10.1016/j.biopsych.2007.07.023 – ident: 51 doi: 10.1038/nn1578 – ident: 1 doi: 10.1111/cch.12139 – ident: 10 doi: 10.1093/brain/awy048 – ident: 33 – ident: 40 doi: 10.1007/s00213-014-3499-0 – ident: 9 doi: 10.1007/s11920-004-0026-8 – ident: 39 doi: 10.1089/cap.2015.0137 – ident: 7 doi: 10.1111/1469-7610.00764 – ident: 4 doi: 10.1016/j.tics.2006.01.011 – ident: 12 doi: 10.1016/j.biopsych.2006.04.042 – volume: 9 start-page: 97 issn: 0028-3932 year: 1971 ident: 28 publication-title: Neuropsychologia doi: 10.1016/0028-3932(71)90067-4 contributor: fullname: RC Oldfield – ident: 57 doi: 10.1016/j.biopsych.2011.03.028 – ident: 45 doi: 10.1111/ped.12847 – ident: 23 doi: 10.1016/j.biopsych.2008.10.014 – ident: 19 doi: 10.1017/S0033291713000676 – ident: 42 doi: 10.1017/S1461145712001678 – ident: 53 doi: 10.1016/S0091-3057(01)00464-6 – ident: 41 doi: 10.1098/rstb.2008.0155 – ident: 3 doi: 10.1176/appi.ajp.2012.11101521 – ident: 15 – ident: 17 doi: 10.1017/S1461145713000357 – ident: 48 doi: 10.1523/JNEUROSCI.0642-05.2005 – ident: 38 doi: 10.1089/104454603321666199 – ident: 5 doi: 10.1038/nrn896 – ident: 37 doi: 10.1016/j.biopsycho.2007.11.010 – ident: 25 doi: 10.1097/00001756-200112040-00016 |
SSID | ssj0033556 |
Score | 2.2372248 |
Snippet | Background: A recent neurocognitive model of attention-deficit hyperactivity disorder (ADHD) has proposed a primary deficit in reward function as well as in... A recent neurocognitive model of attention-deficit hyperactivity disorder (ADHD) has proposed a primary deficit in reward function as well as in executive... BACKGROUNDA recent neurocognitive model of attention-deficit hyperactivity disorder (ADHD) has proposed a primary deficit in reward function as well as in... |
SourceID | proquest crossref pubmed jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 98 |
SubjectTerms | atomoxetine functional MRI monetary incentive delay task reward value encoding ventral medial prefrontal cortex |
Title | Acute Atomoxetine Selectively Modulates Encoding of Reward Value in Ventral Medial Prefrontal Cortex |
URI | https://www.jstage.jst.go.jp/article/jnms/86/2/86_JNMS.2019_86-205/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/31130571 https://search.proquest.com/docview/2232116051 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Nippon Medical School, 2019/04/26, Vol.86(2), pp.98-107 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKQNNeEN-ULxkJnqqU5sNJ_FhtgzGpBUE3dU9R7Dhr1iap2kQa_SP4mznHThrGKgEvTmW7tuL75Xx3Pt8h9M7ihHDHHRiMyBRmsR0ZoeWbBnG4iCkHkbmy6Y7G7smZczol007nZ8trqSxYn29uvVfyP1SFOqCrvCX7D5RtBoUK-A30hRIoDOVf0XjI5Sn_sMjT_FpeXRbw6S8UB1v8kGnOZG4use4dZzyPtHvzNyH9ZHvn4aKs4oWcK_NudWIDj6-wY8qYBpVNYVWI6x3S6zhZLvPtOY8O5vnePqpbPs9DgFRyGc7L3gYk9FmyPX_alCpZ9uEsmSWrvIHnXESVLHtRpsm8qZ7AO2TqNk4abr0AvsxLVtVe5OtmFG2_0PxRKG5rO8DhnAFts2MdGTtpacWKt6ps1X-wfMuTIWSvsnTdPx2PvktvPRr4LgCFtPsD5ZZphQPbhH2bqMQvN2Jt10130F0LGJd0Ef00bVyGbJDNXH0LDGb9cOucB2i_HuU3UefeFUj7l2K3IlMJNJMH6L6mJR4qWD1EHZE9Qvsj7WvxGEUVunALXbiFLtygC9fownmMFbpwhS6cZFijCyt04S26sELXE3T28XhyeGLonBwGdyktDOqAAhEz7jAvpA5jkTeIPJObnrR0kIgxEAh9wkNhEWaD8EwjYsYWi1wZBUh4wn6K9rI8E88R9uMQdOdYUMp9x_YZaLY0YtRmMqcDaNpd1K-XL1iq0CuBVFlh6QO59IFc-kAvPTxJFx2pRW666y9TdZedZHHzb00vec8R2EoXva1JFACvlQdoAO68XAcgSlum6cI-1kXPFO2aqWqiv9jZ8hIdyFmV_e4V2itWpXgNEm3B3lQw-wWE-6Oo |
link.rule.ids | 315,783,787,4031,27935,27936,27937 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acute+Atomoxetine+Selectively+Modulates+Encoding+of+Reward+Value+in+Ventral+Medial+Prefrontal+Cortex&rft.jtitle=Journal+of+Nippon+Medical+School+%3D+Nippon+Ika+Daigaku+zasshi&rft.au=Suzuki%2C+Chihiro&rft.au=Ikeda%2C+Yumiko&rft.au=Tateno%2C+Amane&rft.au=Okubo%2C+Yoshiro&rft.date=2019&rft.eissn=1347-3409&rft.volume=86&rft.issue=2&rft.spage=98&rft_id=info:doi/10.1272%2Fjnms.JNMS.2019_86-205&rft_id=info%3Apmid%2F31130571&rft.externalDocID=31130571 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-4676&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-4676&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-4676&client=summon |