G3BP1, G3BP2 and CAPRIN1 Are Required for Translation of Interferon Stimulated mRNAs and Are Targeted by a Dengue Virus Non-coding RNA
Viral RNA-host protein interactions are critical for replication of flaviviruses, a genus of positive-strand RNA viruses comprising major vector-borne human pathogens including dengue viruses (DENV). We examined three conserved host RNA-binding proteins (RBPs) G3BP1, G3BP2 and CAPRIN1 in dengue viru...
Saved in:
Published in | PLoS pathogens Vol. 10; no. 7; p. e1004242 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.07.2014
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Viral RNA-host protein interactions are critical for replication of flaviviruses, a genus of positive-strand RNA viruses comprising major vector-borne human pathogens including dengue viruses (DENV). We examined three conserved host RNA-binding proteins (RBPs) G3BP1, G3BP2 and CAPRIN1 in dengue virus (DENV-2) infection and found them to be novel regulators of the interferon (IFN) response against DENV-2. The three RBPs were required for the accumulation of the protein products of several interferon stimulated genes (ISGs), and for efficient translation of PKR and IFITM2 mRNAs. This identifies G3BP1, G3BP2 and CAPRIN1 as novel regulators of the antiviral state. Their antiviral activity was antagonized by the abundant DENV-2 non-coding subgenomic flaviviral RNA (sfRNA), which bound to G3BP1, G3BP2 and CAPRIN1, inhibited their activity and lead to profound inhibition of ISG mRNA translation. This work describes a new and unexpected level of regulation for interferon stimulated gene expression and presents the first mechanism of action for an sfRNA as a molecular sponge of anti-viral effectors in human cells. |
---|---|
AbstractList | Viral RNA-host protein interactions are critical for replication of flaviviruses, a genus of positive-strand RNA viruses comprising major vector-borne human pathogens including dengue viruses (DENV). We examined three conserved host RNA-binding proteins (RBPs) G3BP1, G3BP2 and CAPRIN1 in dengue virus (DENV-2) infection and found them to be novel regulators of the interferon (IFN) response against DENV-2. The three RBPs were required for the accumulation of the protein products of several interferon stimulated genes (ISGs), and for efficient translation of PKR and IFITM2 mRNAs. This identifies G3BP1, G3BP2 and CAPRIN1 as novel regulators of the antiviral state. Their antiviral activity was antagonized by the abundant DENV-2 non-coding subgenomic flaviviral RNA (sfRNA), which bound to G3BP1, G3BP2 and CAPRIN1, inhibited their activity and lead to profound inhibition of ISG mRNA translation. This work describes a new and unexpected level of regulation for interferon stimulated gene expression and presents the first mechanism of action for an sfRNA as a molecular sponge of anti-viral effectors in human cells.Viral RNA-host protein interactions are critical for replication of flaviviruses, a genus of positive-strand RNA viruses comprising major vector-borne human pathogens including dengue viruses (DENV). We examined three conserved host RNA-binding proteins (RBPs) G3BP1, G3BP2 and CAPRIN1 in dengue virus (DENV-2) infection and found them to be novel regulators of the interferon (IFN) response against DENV-2. The three RBPs were required for the accumulation of the protein products of several interferon stimulated genes (ISGs), and for efficient translation of PKR and IFITM2 mRNAs. This identifies G3BP1, G3BP2 and CAPRIN1 as novel regulators of the antiviral state. Their antiviral activity was antagonized by the abundant DENV-2 non-coding subgenomic flaviviral RNA (sfRNA), which bound to G3BP1, G3BP2 and CAPRIN1, inhibited their activity and lead to profound inhibition of ISG mRNA translation. This work describes a new and unexpected level of regulation for interferon stimulated gene expression and presents the first mechanism of action for an sfRNA as a molecular sponge of anti-viral effectors in human cells. Viral RNA-host protein interactions are critical for replication of flaviviruses, a genus of positive-strand RNA viruses comprising major vector-borne human pathogens including dengue viruses (DENV). We examined three conserved host RNA-binding proteins (RBPs) G3BP1, G3BP2 and CAPRIN1 in dengue virus (DENV-2) infection and found them to be novel regulators of the interferon (IFN) response against DENV-2. The three RBPs were required for the accumulation of the protein products of several interferon stimulated genes (ISGs), and for efficient translation of PKR and IFITM2 mRNAs. This identifies G3BP1, G3BP2 and CAPRIN1 as novel regulators of the antiviral state. Their antiviral activity was antagonized by the abundant DENV-2 non-coding subgenomic flaviviral RNA (sfRNA), which bound to G3BP1, G3BP2 and CAPRIN1, inhibited their activity and lead to profound inhibition of ISG mRNA translation. This work describes a new and unexpected level of regulation for interferon stimulated gene expression and presents the first mechanism of action for an sfRNA as a molecular sponge of anti-viral effectors in human cells. Viral RNA-host protein interactions are critical for replication of flaviviruses, a genus of positive-strand RNA viruses comprising major vector-borne human pathogens including dengue viruses (DENV). We examined three conserved host RNA-binding proteins (RBPs) G3BP1, G3BP2 and CAPRIN1 in dengue virus (DENV-2) infection and found them to be novel regulators of the interferon (IFN) response against DENV-2. The three RBPs were required for the accumulation of the protein products of several interferon stimulated genes (ISGs), and for efficient translation of PKR and IFITM2 mRNAs. This identifies G3BP1, G3BP2 and CAPRIN1 as novel regulators of the antiviral state. Their antiviral activity was antagonized by the abundant DENV-2 non-coding subgenomic flaviviral RNA (sfRNA), which bound to G3BP1, G3BP2 and CAPRIN1, inhibited their activity and lead to profound inhibition of ISG mRNA translation. This work describes a new and unexpected level of regulation for interferon stimulated gene expression and presents the first mechanism of action for an sfRNA as a molecular sponge of anti-viral effectors in human cells. Viral RNA-host protein interactions are critical for replication of flaviviruses, a genus of positive-strand RNA viruses comprising major vector-borne human pathogens including dengue viruses (DENV). We examined three conserved host RNA-binding proteins (RBPs) G3BP1, G3BP2 and CAPRIN1 in dengue virus (DENV-2) infection and found them to be novel regulators of the interferon (IFN) response against DENV-2. The three RBPs were required for the accumulation of the protein products of several interferon stimulated genes (ISGs), and for efficient translation of PKR and IFITM2 mRNAs. This identifies G3BP1, G3BP2 and CAPRIN1 as novel regulators of the antiviral state. Their antiviral activity was antagonized by the abundant DENV-2 non-coding subgenomic flaviviral RNA (sfRNA), which bound to G3BP1, G3BP2 and CAPRIN1, inhibited their activity and lead to profound inhibition of ISG mRNA translation. This work describes a new and unexpected level of regulation for interferon stimulated gene expression and presents the first mechanism of action for an sfRNA as a molecular sponge of anti-viral effectors in human cells. Dengue virus is the most prevalent arbovirus in the world and an increasingly significant public health problem. Development of vaccines and therapeutics has been slowed by poor understanding of viral pathogenesis. Especially, how the virus subverts the host interferon response, a powerful branch of the innate immune system remains the subject of debate and great interest. Dengue virus produces large quantities of a non-coding, highly structured viral RNA, termed sfRNA, whose function in viral replication is elusive but has been linked in related viruses to inhibition of the interferon response. Nonetheless the mechanisms involved are yet to be characterized. Here, we show that dengue virus 2 sfRNA targets and antagonizes a set of host RNA-binding proteins G3BP1, G3BP2 and CAPRIN1, to interfere with translation of antiviral interferon-stimulated mRNAs. This activity impairs establishment of the antiviral state, allowing the virus to replicate and evade the interferon response. While this particular mechanism was not conserved among other flaviviruses, we believe it is highly relevant for dengue virus 2 replication and pathogenesis. Taken together, our results highlight both new layers of complexity in the regulation of the innate immune response, as well as the diversity of strategies flaviviruses employ to counteract it. |
Audience | Academic |
Author | Garcia-Blanco, Mariano A. Bidet, Katell Dadlani, Dhivya |
AuthorAffiliation | 4 Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America Harvard Medical School, United States of America 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 3 Center for RNA Biology, Duke University Medical Center, Durham, North Carolina, United States of America 5 Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America 1 Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore |
AuthorAffiliation_xml | – name: 5 Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America – name: 1 Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore – name: 4 Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America – name: 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore – name: 3 Center for RNA Biology, Duke University Medical Center, Durham, North Carolina, United States of America – name: Harvard Medical School, United States of America |
Author_xml | – sequence: 1 givenname: Katell surname: Bidet fullname: Bidet, Katell – sequence: 2 givenname: Dhivya surname: Dadlani fullname: Dadlani, Dhivya – sequence: 3 givenname: Mariano A. surname: Garcia-Blanco fullname: Garcia-Blanco, Mariano A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24992036$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk9uO0zAQhiO0iD3AGyCwxA1ItPiUxNkLpFJgqbQqq27h1nKcSfAqtbt2gtgX4LlxekBbhJBQLpyMv__PeDxzmhxZZyFJnhI8Jiwnb25c761qx-u16sYEY045fZCckDRlo5zl_Oje-3FyGsJNZAgj2aPkmPKioJhlJ8nPC_buirxGw0KRshWaTq4WszlBEw9oAbe98VCh2nm09MqGVnXGWeRqNLMd-Bp8_LruzKqPOxFcLeaTsPEZ9EvlGxjC5R1S6D3Ypgf01fg-oLmzI-0qYxsUJY-Th7VqAzzZrWfJl48fltNPo8vPF7Pp5HKks6LoRjQtsopqVmtRsRyXUGLOc4YBF6rQONcsy6ASZVrVXItU5TQlRBMqMq2yigM7S55vfdetC3JXwiBJJlLCBREsErMtUTl1I9ferJS_k04ZuQk430jlO6NbkMBSkteFLmuecw1cQMk1U6IChWuqdPR6u_tbX66g0mA7r9oD08Mda77Jxn2XHMdc6JDMy52Bd7c9hE6uTNDQtsqC62PeKWdUpIzjiL7Yoo2KqRlbu-ioB1xOWDwXFSKnkRr_hYpPBSujY4PVJsYPBK8OBJHp4EfXqD4EObte_Ac7P2Sf3S_N75rsOzMC51tAexeCh1pq022aL2ZsWkmwHMZgf4dyGAO5G4Mo5n-I9_7_lP0Ctx8K3g |
CitedBy_id | crossref_primary_10_3390_v13060952 crossref_primary_10_1016_j_tibs_2021_08_002 crossref_primary_10_1080_15476286_2019_1703069 crossref_primary_10_3390_vaccines7040145 crossref_primary_10_1016_j_tim_2016_01_002 crossref_primary_10_1038_s41467_017_02604_y crossref_primary_10_3390_v13112129 crossref_primary_10_1016_j_heliyon_2024_e28794 crossref_primary_10_1261_rna_064006_117 crossref_primary_10_3390_v15020449 crossref_primary_10_3389_fmicb_2022_845625 crossref_primary_10_1002_bies_201900003 crossref_primary_10_1128_JVI_00474_17 crossref_primary_10_3389_fcimb_2022_890750 crossref_primary_10_1007_s00705_015_2578_9 crossref_primary_10_3390_ncrna5010007 crossref_primary_10_1371_journal_ppat_1007842 crossref_primary_10_1016_j_antiviral_2017_09_017 crossref_primary_10_1016_j_antiviral_2021_105186 crossref_primary_10_1371_journal_ppat_1006879 crossref_primary_10_3389_fcimb_2018_00398 crossref_primary_10_1128_mBio_02150_16 crossref_primary_10_1080_22221751_2021_2016354 crossref_primary_10_1016_j_coviro_2015_02_006 crossref_primary_10_1109_TCBB_2021_3066597 crossref_primary_10_3390_v15122333 crossref_primary_10_1038_s41598_024_69391_7 crossref_primary_10_1126_scisignal_adi9844 crossref_primary_10_1111_febs_14184 crossref_primary_10_1038_s41564_020_00846_z crossref_primary_10_1016_j_bbagrm_2020_194655 crossref_primary_10_1002_rmv_2046 crossref_primary_10_1128_JVI_00520_19 crossref_primary_10_1107_S2053230X15002642 crossref_primary_10_1111_febs_15821 crossref_primary_10_1016_j_virusres_2017_08_015 crossref_primary_10_1016_j_virol_2015_08_009 crossref_primary_10_1126_science_aah3963 crossref_primary_10_1016_j_virol_2018_09_013 crossref_primary_10_3389_fvets_2020_594438 crossref_primary_10_1371_journal_pgen_1011620 crossref_primary_10_3389_fimmu_2018_03138 crossref_primary_10_1146_annurev_virology_092818_015811 crossref_primary_10_1371_journal_ppat_1010427 crossref_primary_10_1021_acs_chemrev_7b00719 crossref_primary_10_1371_journal_ppat_1006295 crossref_primary_10_1128_jvi_00095_24 crossref_primary_10_1021_acs_biochem_4c00536 crossref_primary_10_1016_j_stem_2016_11_014 crossref_primary_10_1016_j_isci_2019_05_019 crossref_primary_10_1016_j_bbrc_2017_02_006 crossref_primary_10_3390_v12101177 crossref_primary_10_1016_j_ymeth_2015_08_008 crossref_primary_10_1128_JVI_00343_20 crossref_primary_10_1146_annurev_immunol_042617_053142 crossref_primary_10_1016_j_vetmic_2023_109977 crossref_primary_10_1007_s11010_019_03562_3 crossref_primary_10_1016_j_molcel_2024_03_012 crossref_primary_10_1099_jgv_0_001660 crossref_primary_10_3389_fgene_2023_1216890 crossref_primary_10_3390_genes11070760 crossref_primary_10_3390_v12090984 crossref_primary_10_3390_v7122922 crossref_primary_10_1016_j_arcmed_2020_10_002 crossref_primary_10_1261_rna_079016_121 crossref_primary_10_1111_liv_13541 crossref_primary_10_1038_s41590_019_0542_7 crossref_primary_10_1073_pnas_1802429115 crossref_primary_10_1089_cmb_2019_0171 crossref_primary_10_1146_annurev_virology_092818_015559 crossref_primary_10_1016_j_sbi_2015_12_006 crossref_primary_10_3389_fcimb_2019_00336 crossref_primary_10_3390_v14122744 crossref_primary_10_1128_jvi_01815_21 crossref_primary_10_1128_mBio_02461_18 crossref_primary_10_1007_s00018_015_1875_5 crossref_primary_10_1038_srep34379 crossref_primary_10_3389_fcimb_2017_00205 crossref_primary_10_2174_0115701646319572240805103747 crossref_primary_10_3748_wjg_v28_i34_4973 crossref_primary_10_1016_j_molcel_2024_08_027 crossref_primary_10_3390_v11030298 crossref_primary_10_1038_s41579_018_0134_9 crossref_primary_10_1016_j_virusres_2015_01_026 crossref_primary_10_3390_v9060137 crossref_primary_10_1371_journal_ppat_1006265 crossref_primary_10_3390_v13081479 crossref_primary_10_3390_v8060166 crossref_primary_10_1128_jvi_01954_23 crossref_primary_10_1042_BJ20140456 crossref_primary_10_1101_gad_349276_121 crossref_primary_10_1007_s00018_020_03671_z crossref_primary_10_1101_gad_350518_123 crossref_primary_10_1098_rsob_180155 crossref_primary_10_1016_j_phrs_2022_106548 crossref_primary_10_1016_j_jhep_2020_01_028 crossref_primary_10_1016_j_virol_2018_12_019 crossref_primary_10_3389_fimmu_2023_1145346 crossref_primary_10_3390_v11050448 crossref_primary_10_1099_jgv_0_001855 crossref_primary_10_1126_sciadv_add8095 crossref_primary_10_1371_journal_pgen_1005252 crossref_primary_10_7554_eLife_39023 crossref_primary_10_1016_j_neuron_2023_05_033 crossref_primary_10_1002_wrna_1321 crossref_primary_10_1016_j_coviro_2014_09_001 crossref_primary_10_3390_v8040093 crossref_primary_10_1016_j_antiviral_2018_09_006 crossref_primary_10_1261_rna_074963_120 crossref_primary_10_3390_v8070180 crossref_primary_10_3390_v16020242 crossref_primary_10_1016_j_virol_2015_09_007 crossref_primary_10_1016_j_virusres_2015_09_009 crossref_primary_10_1016_j_jbc_2024_107694 crossref_primary_10_3390_v10060294 crossref_primary_10_1002_rmv_2092 crossref_primary_10_1016_j_jmb_2023_167976 crossref_primary_10_1080_20477724_2020_1845005 crossref_primary_10_1016_j_chom_2015_07_009 crossref_primary_10_1186_s13059_016_0907_2 crossref_primary_10_1016_j_jtbi_2020_110529 crossref_primary_10_3389_fmicb_2016_01233 crossref_primary_10_1073_pnas_1905617116 crossref_primary_10_3390_v6114479 crossref_primary_10_1186_s13287_022_02851_x crossref_primary_10_1016_j_celrep_2024_114694 crossref_primary_10_1016_j_bbagrm_2024_195023 crossref_primary_10_1371_journal_ppat_1010163 crossref_primary_10_1080_15476286_2020_1868150 crossref_primary_10_1126_sciadv_abe5708 crossref_primary_10_1080_07391102_2018_1532817 crossref_primary_10_1111_nph_19346 crossref_primary_10_1016_j_ymeth_2015_11_002 crossref_primary_10_1016_j_jmb_2022_167801 crossref_primary_10_3389_fmicb_2021_789605 crossref_primary_10_52586_S552 crossref_primary_10_1128_JVI_02791_14 crossref_primary_10_1038_s41598_022_16252_w crossref_primary_10_1371_journal_ppat_1004604 crossref_primary_10_1126_science_aab3369 crossref_primary_10_1080_15476286_2015_1094599 crossref_primary_10_1371_journal_ppat_1004708 crossref_primary_10_3389_fcimb_2020_00453 crossref_primary_10_1016_j_virusres_2015_09_023 crossref_primary_10_3390_v16050812 crossref_primary_10_1186_s12985_020_01329_7 crossref_primary_10_1128_mbio_01108_23 crossref_primary_10_1038_cmi_2017_86 crossref_primary_10_1016_j_virusres_2019_02_016 crossref_primary_10_1128_JVI_00922_18 crossref_primary_10_1186_s12985_016_0541_3 crossref_primary_10_3389_fimmu_2024_1358036 crossref_primary_10_3389_fmicb_2018_01621 crossref_primary_10_1007_s11033_018_4498_8 crossref_primary_10_1128_mBio_01865_15 crossref_primary_10_1073_pnas_2110491119 crossref_primary_10_1073_pnas_2201169119 crossref_primary_10_1016_j_chom_2017_01_015 crossref_primary_10_1094_MPMI_10_15_0226_FI crossref_primary_10_3390_v15122306 crossref_primary_10_1128_mBio_02486_14 crossref_primary_10_1007_s11033_022_07268_6 crossref_primary_10_1371_journal_ppat_1005357 crossref_primary_10_3389_fmicb_2020_00473 crossref_primary_10_1128_JVI_02344_20 crossref_primary_10_1016_j_virol_2015_03_001 crossref_primary_10_1021_acs_biochem_7b01228 crossref_primary_10_1002_wrna_1536 crossref_primary_10_1111_cmi_12737 crossref_primary_10_1038_s41598_024_69654_3 crossref_primary_10_1002_wrna_1770 crossref_primary_10_1093_cid_ciz084 crossref_primary_10_1002_JLB_3MIR0918_354R crossref_primary_10_1039_C5MB00627A crossref_primary_10_1089_jir_2014_0129 crossref_primary_10_3390_v6114314 crossref_primary_10_1128_JVI_00829_18 crossref_primary_10_1016_j_virusres_2018_03_006 crossref_primary_10_1089_vim_2019_0082 crossref_primary_10_1016_j_semcdb_2020_06_009 crossref_primary_10_1073_pnas_1919287117 crossref_primary_10_1002_prot_25987 crossref_primary_10_1016_j_virol_2018_08_018 crossref_primary_10_1093_nar_gkae507 crossref_primary_10_1016_j_mib_2020_08_007 crossref_primary_10_1073_pnas_2101161118 crossref_primary_10_1038_s41467_022_28977_3 crossref_primary_10_1002_rmv_2360 crossref_primary_10_1242_jcs_246744 crossref_primary_10_1016_j_vaccine_2018_04_087 crossref_primary_10_1261_rna_077065_120 crossref_primary_10_1007_s12275_017_7063_6 crossref_primary_10_1074_jbc_M117_805796 crossref_primary_10_1128_mbio_00172_23 crossref_primary_10_1158_2767_9764_CRC_22_0310 crossref_primary_10_1016_j_bbamcr_2018_09_001 crossref_primary_10_1038_s41541_019_0119_3 crossref_primary_10_1002_rmv_2470 crossref_primary_10_1016_j_jprot_2016_11_001 crossref_primary_10_1101_gad_259077_115 crossref_primary_10_1128_mBio_02506_18 crossref_primary_10_1016_j_isci_2021_103562 crossref_primary_10_1371_journal_ppat_1006535 crossref_primary_10_3389_fgene_2018_00595 crossref_primary_10_1089_jir_2018_0086 crossref_primary_10_1371_journal_pntd_0005048 |
Cites_doi | 10.1128/JVI.79.13.8004-8013.2005 10.1128/JVI.00207-12 10.1093/emboj/cdf513 10.1099/vir.0.2008/001594-0 10.1128/JVI.02842-12 10.1371/journal.ppat.1002934 10.1128/JVI.01506-12 10.1006/viro.2001.1114 10.4269/ajtmh.1993.48.222 10.1128/JVI.05886-11 10.7554/eLife.01892 10.1128/MCB.05073-11 10.1128/MCB.02300-06 10.1128/JVI.76.24.13001-13014.2002 10.4161/rna.8.6.17836 10.1074/jbc.M411033200 10.1016/j.jhep.2011.07.026 10.1093/emboj/21.5.954 10.1073/pnas.0611551104 10.1038/nature09489 10.1371/journal.ppat.1002300 10.1242/jcs.084046 10.1016/j.virol.2013.09.016 10.1016/j.virusres.2011.11.020 10.4049/jimmunol.1300225 10.1371/journal.pone.0025419 10.1089/jir.2009.0069 10.1128/JVI.65.11.5657-5662.1991 10.1126/science.1125676 10.1186/1471-2199-9-60 10.1242/jcs.100933 10.1128/JVI.02199-09 10.1128/JVI.02186-12 10.1371/journal.pntd.0000926 10.1371/journal.ppat.1002780 10.1016/j.vetmic.2013.04.026 10.1128/JVI.01051-10 10.1128/JVI.02188-08 10.1371/journal.pntd.0000086 10.1016/j.chom.2007.08.006 10.1038/sj.onc.1204553 10.1128/MCB.25.6.2227-2241.2005 10.1128/JVI.00260-10 10.1111/gtc.12023 10.1073/pnas.0900562106 10.1101/gad.1402306 10.1073/pnas.0710907105 10.1016/j.cyto.2010.03.019 10.1016/j.chom.2012.05.013 10.1074/jbc.M111.222703 10.1016/j.virol.2005.08.034 10.1073/pnas.1212379109 10.1128/JVI.01047-10 10.1016/j.cell.2009.12.017 10.1016/j.chom.2008.10.007 10.1093/nar/21.19.4483 10.1016/j.bbrc.2009.12.030 10.1038/sj.onc.1210212 10.1242/jcs.065920 10.1128/JVI.01159-10 10.1016/j.chom.2013.09.002 10.1038/nature09907 10.1128/JVI.01983-09 10.1128/JVI.00991-08 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2014 Public Library of Science 2014 Bidet et al 2014 Bidet et al 2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Bidet K, Dadlani D, Garcia-Blanco MA (2014) G3BP1, G3BP2 and CAPRIN1 Are Required for Translation of Interferon Stimulated mRNAs and Are Targeted by a Dengue Virus Non-coding RNA. PLoS Pathog 10(7): e1004242. doi:10.1371/journal.ppat.1004242 |
Copyright_xml | – notice: COPYRIGHT 2014 Public Library of Science – notice: 2014 Bidet et al 2014 Bidet et al – notice: 2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Bidet K, Dadlani D, Garcia-Blanco MA (2014) G3BP1, G3BP2 and CAPRIN1 Are Required for Translation of Interferon Stimulated mRNAs and Are Targeted by a Dengue Virus Non-coding RNA. PLoS Pathog 10(7): e1004242. doi:10.1371/journal.ppat.1004242 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 7X8 5PM DOA |
DOI | 10.1371/journal.ppat.1004242 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale in Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | DENV-2 sfRNA Blocks Translation of ISG mRNAs |
EISSN | 1553-7374 |
ExternalDocumentID | 1685148183 oai_doaj_org_article_e3517f9cbf474ce48eb4c3a8dea0f2ac PMC4081823 A383328872 24992036 10_1371_journal_ppat_1004242 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Singapore |
GeographicLocations_xml | – name: Singapore |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO QF4 QN7 RNS RPM SV3 TR2 TUS UKHRP WOW ~8M CGR CUY CVF ECM EIF H13 IPNFZ NPM PJZUB PPXIY PQGLB PV9 RIG RZL WOQ PMFND 7X8 5PM PUEGO - 3V. AAPBV ABPTK ADACO BBAFP M~E PQEST PQUKI PRINS |
ID | FETCH-LOGICAL-c699t-2596d2c3fc8d370beb044730e09a9c07c366ed8b5df4c85a72511c1286ca6d4e3 |
IEDL.DBID | M48 |
ISSN | 1553-7374 1553-7366 |
IngestDate | Fri Nov 26 17:14:13 EST 2021 Wed Aug 27 01:28:16 EDT 2025 Thu Aug 21 13:39:52 EDT 2025 Thu Jul 10 19:10:42 EDT 2025 Tue Jun 17 21:32:28 EDT 2025 Tue Jun 10 20:50:19 EDT 2025 Fri Jun 27 05:02:22 EDT 2025 Fri Jun 27 04:18:58 EDT 2025 Mon Jul 21 05:29:40 EDT 2025 Thu Apr 24 23:03:07 EDT 2025 Tue Jul 01 02:41:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c699t-2596d2c3fc8d370beb044730e09a9c07c366ed8b5df4c85a72511c1286ca6d4e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Current address: SMART (Singapore-MIT Alliance for Research and Technology), Singapore Conceived and designed the experiments: KB MAGB. Performed the experiments: KB DD. Analyzed the data: KB DD MAGB. Wrote the paper: KB MAGB. The authors have declared that no competing interests exist. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.ppat.1004242 |
PMID | 24992036 |
PQID | 1543285340 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1685148183 doaj_primary_oai_doaj_org_article_e3517f9cbf474ce48eb4c3a8dea0f2ac pubmedcentral_primary_oai_pubmedcentral_nih_gov_4081823 proquest_miscellaneous_1543285340 gale_infotracmisc_A383328872 gale_infotracacademiconefile_A383328872 gale_incontextgauss_ISR_A383328872 gale_incontextgauss_ISN_A383328872 pubmed_primary_24992036 crossref_citationtrail_10_1371_journal_ppat_1004242 crossref_primary_10_1371_journal_ppat_1004242 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-01 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS pathogens |
PublicationTitleAlternate | PLoS Pathog |
PublicationYear | 2014 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | D Jiang (ref37) 2010; 84 J Pena (ref38) 2011; 286 A Ruggieri (ref33) 2012; 12 K Arimoto (ref7) 2007; 104 GJ Seo (ref53) 2013; 14 S Rahmouni (ref23) 2005; 25 RK Bikkavilli (ref26) 2011; 124 AL Brass (ref35) 2009; 139 JL Munoz-Jordan (ref41) 2005; 79 GP Pijlman (ref14) 2008; 4 EG Chapman (ref45) 2014; 3 S Borah (ref60) 2011; 7 S Solomon (ref22) 2007; 27 A Funk (ref46) 2010; 84 RY Chang (ref16) 2013; 166 H Matsuki (ref32) 2013; 18 A Nanbo (ref57) 2002; 21 AD Ortega (ref24) 2010; 123 MS Diamond (ref29) 2001; 289 SV Scherbik (ref28) 2013; 87 JR Rodriguez-Madoz (ref42) 2010; 84 TV Sharp (ref55) 1993; 21 CC Rossetto (ref59) 2011; 85 S Aguirre (ref12) 2012; 8 A Schuessler (ref15) 2012; 86 JP White (ref20) 2007; 2 J Ashour (ref13) 2009; 83 JW Schoggins (ref34) 2011; 472 RK Bikkavilli (ref40) 2012; 125 I Umareddy (ref61) 2008; 89 L Miorin (ref9) 2012; 163 J Fink (ref43) 2007; 1 A Garcia-Sastre (ref1) 2006; 312 CY Yu (ref11) 2012; 8 IM Cristea (ref21) 2010; 84 YC Bor (ref62) 2006; 20 MB Mathews (ref56) 1991; 65 AM Nasirudeen (ref31) 2011; 5 JJ Fros (ref51) 2012; 86 MM Kim (ref25) 2007; 26 C Tschuch (ref27) 2008; 9 Z Xin (ref2) 2011; 6 S Kaur (ref4) 2008; 105 S Joshi (ref5) 2010; 52 H Katoh (ref50) 2013; 87 F Iseni (ref58) 2002; 21 KJ Blight (ref49) 2002; 76 AM Ward (ref17) 2011; 8 MM Emara (ref64) 2008; 82 ME Lindquist (ref19) 2010; 84 MS Diamond (ref8) 2009; 29 KL Holden (ref47) 2006; 344 Y Liu (ref48) 2014; 448 HM Yeh (ref6) 2013; 191 H Zhao (ref52) 2012; 56 S Joshi (ref54) 2009; 106 I Kurane (ref30) 1993; 48 PA Silva (ref63) 2010; 84 JW Schoggins (ref36) 2012; 109 GC Katsafanas (ref18) 2004; 279 C Soncini (ref39) 2001; 20 S Daffis (ref10) 2010; 468 WJ Lin (ref3) 2011; 31 R Liu (ref44) 2010; 391 18005751 - Cell Host Microbe. 2007 Nov 15;2(5):295-305 20005199 - Biochem Biophys Res Commun. 2010 Jan 1;391(1):1099-103 23940278 - J Immunol. 2013 Sep 15;191(6):3328-36 20409730 - Cytokine. 2010 Oct-Nov;52(1-2):123-7 18060089 - PLoS Negl Trop Dis. 2007;1(2):e86 21957289 - J Virol. 2011 Dec;85(24):13290-7 22022268 - PLoS Pathog. 2011 Oct;7(10):e1002300 19008393 - J Gen Virol. 2008 Dec;89(Pt 12):3052-62 22817989 - Cell Host Microbe. 2012 Jul 19;12(1):71-85 18339807 - Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4808-13 22761576 - PLoS Pathog. 2012;8(6):e1002780 15956546 - J Virol. 2005 Jul;79(13):8004-13 22908290 - Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14610-5 23279204 - Genes Cells. 2013 Feb;18(2):135-46 16690858 - Science. 2006 May 12;312(5775):879-82 17297477 - Oncogene. 2007 Jun 21;26(29):4209-15 23755934 - Vet Microbiol. 2013 Sep 27;166(1-2):11-21 21888876 - J Hepatol. 2012 Feb;56(2):326-33 22155022 - Virus Res. 2012 Feb;163(2):660-6 16214197 - Virology. 2006 Jan 20;344(2):439-52 21957497 - RNA Biol. 2011 Nov-Dec;8(6):1173-86 21085181 - Nature. 2010 Nov 18;468(7322):452-6 16738405 - Genes Dev. 2006 Jun 15;20(12):1597-608 11867523 - EMBO J. 2002 Mar 1;21(5):954-65 22837213 - J Virol. 2012 Oct;86(19):10873-9 18768985 - J Virol. 2008 Nov;82(21):10657-70 7901835 - Nucleic Acids Res. 1993 Sep 25;21(19):4483-90 22379089 - J Virol. 2012 May;86(10):5708-18 20392851 - J Virol. 2010 Jul;84(13):6720-32 19279106 - J Virol. 2009 Jun;83(11):5408-18 19694536 - J Interferon Cytokine Res. 2009 Sep;29(9):521-30 1920611 - J Virol. 1991 Nov;65(11):5657-62 20064371 - Cell. 2009 Dec 24;139(7):1243-54 20663914 - J Cell Sci. 2010 Aug 15;123(Pt 16):2685-96 15743820 - Mol Cell Biol. 2005 Mar;25(6):2227-41 17460044 - Proc Natl Acad Sci U S A. 2007 May 1;104(18):7500-5 20739539 - J Virol. 2010 Nov;84(21):11395-406 21652632 - J Cell Sci. 2011 Jul 1;124(Pt 13):2310-20 28350882 - PLoS Pathog. 2017 Mar 28;13(3):e1006295 24314632 - Virology. 2014 Jan 5;448:15-25 20719943 - J Virol. 2010 Nov;84(21):11407-17 19574459 - Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):12097-102 20660196 - J Virol. 2010 Oct;84(19):9760-74 15471883 - J Biol Chem. 2004 Dec 10;279(50):52210-7 21690298 - Mol Cell Biol. 2011 Aug;31(16):3196-207 12438626 - J Virol. 2002 Dec;76(24):13001-14 21478870 - Nature. 2011 Apr 28;472(7344):481-5 20534863 - J Virol. 2010 Aug;84(16):8332-41 21385877 - J Biol Chem. 2011 Apr 22;286(16):14226-36 23097442 - J Virol. 2013 Jan;87(1):489-502 21245912 - PLoS Negl Trop Dis. 2011;5(1):e926 11439350 - Oncogene. 2001 Jun 28;20(29):3869-79 18577207 - BMC Mol Biol. 2008;9:60 20844027 - J Virol. 2010 Dec;84(23):12274-84 11689052 - Virology. 2001 Oct 25;289(2):297-311 19064258 - Cell Host Microbe. 2008 Dec 11;4(6):579-91 22357953 - J Cell Sci. 2012 May 15;125(Pt 10):2446-56 23678179 - J Virol. 2013 Jul;87(14):7952-65 8447527 - Am J Trop Med Hyg. 1993 Feb;48(2):222-9 23055924 - PLoS Pathog. 2012;8(10):e1002934 24692447 - Elife. 2014;3:e01892 22022391 - PLoS One. 2011;6(10):e25419 24075860 - Cell Host Microbe. 2013 Oct 16;14(4):435-45 12356730 - EMBO J. 2002 Oct 1;21(19):5141-50 17210633 - Mol Cell Biol. 2007 Mar;27(6):2324-42 |
References_xml | – volume: 79 start-page: 8004 year: 2005 ident: ref41 article-title: Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses publication-title: Journal of virology doi: 10.1128/JVI.79.13.8004-8013.2005 – volume: 86 start-page: 5708 year: 2012 ident: ref15 article-title: West Nile virus non-coding subgenomic RNA contributes to viral evasion of type I interferon-mediated antiviral response publication-title: Journal of virology doi: 10.1128/JVI.00207-12 – volume: 21 start-page: 5141 year: 2002 ident: ref58 article-title: Sendai virus trailer RNA binds TIAR, a cellular protein involved in virus-induced apoptosis publication-title: The EMBO journal doi: 10.1093/emboj/cdf513 – volume: 89 start-page: 3052 year: 2008 ident: ref61 article-title: Dengue virus regulates type I interferon signalling in a strain-dependent manner in human cell lines publication-title: The Journal of general virology doi: 10.1099/vir.0.2008/001594-0 – volume: 87 start-page: 7952 year: 2013 ident: ref28 article-title: Increased early RNA replication by chimeric West Nile virus W956IC leads to IPS-1-mediated activation of NF-kappaB and insufficient virus-mediated counteraction of the resulting canonical type I interferon signaling publication-title: Journal of virology doi: 10.1128/JVI.02842-12 – volume: 8 start-page: e1002934 year: 2012 ident: ref12 article-title: DENV inhibits type I IFN production in infected cells by cleaving human STING publication-title: PLoS pathogens doi: 10.1371/journal.ppat.1002934 – volume: 86 start-page: 10873 year: 2012 ident: ref51 article-title: Chikungunya virus nsP3 blocks stress granule assembly by recruitment of G3BP into cytoplasmic foci publication-title: Journal of virology doi: 10.1128/JVI.01506-12 – volume: 289 start-page: 297 year: 2001 ident: ref29 article-title: Interferon inhibits dengue virus infection by preventing translation of viral RNA through a PKR-independent mechanism publication-title: Virology doi: 10.1006/viro.2001.1114 – volume: 48 start-page: 222 year: 1993 ident: ref30 article-title: High levels of interferon alpha in the sera of children with dengue virus infection publication-title: The American journal of tropical medicine and hygiene doi: 10.4269/ajtmh.1993.48.222 – volume: 85 start-page: 13290 year: 2011 ident: ref59 article-title: Kaposi's sarcoma-associated herpesvirus noncoding polyadenylated nuclear RNA interacts with virus- and host cell-encoded proteins and suppresses expression of genes involved in immune modulation publication-title: Journal of virology doi: 10.1128/JVI.05886-11 – volume: 3 start-page: e01892 year: 2014 ident: ref45 article-title: RNA structures that resist degradation by Xrn1 produce a pathogenic Dengue virus RNA publication-title: Elife doi: 10.7554/eLife.01892 – volume: 31 start-page: 3196 year: 2011 ident: ref3 article-title: Posttranscriptional control of type I interferon genes by KSRP in the innate immune response against viral infection publication-title: Molecular and cellular biology doi: 10.1128/MCB.05073-11 – volume: 27 start-page: 2324 year: 2007 ident: ref22 article-title: Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2alpha, entry to cytoplasmic stress granules, and selective interaction with a subset of mRNAs publication-title: Molecular and cellular biology doi: 10.1128/MCB.02300-06 – volume: 76 start-page: 13001 year: 2002 ident: ref49 article-title: Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication publication-title: Journal of virology doi: 10.1128/JVI.76.24.13001-13014.2002 – volume: 8 start-page: 1173 year: 2011 ident: ref17 article-title: Quantitative mass spectrometry of DENV-2 RNA-interacting proteins reveals that the DEAD-box RNA helicase DDX6 binds the DB1 and DB2 3′ UTR structures publication-title: RNA biology doi: 10.4161/rna.8.6.17836 – volume: 279 start-page: 52210 year: 2004 ident: ref18 article-title: Vaccinia virus intermediate stage transcription is complemented by Ras-GTPase-activating protein SH3 domain-binding protein (G3BP) and cytoplasmic activation/proliferation-associated protein (p137) individually or as a heterodimer publication-title: The Journal of biological chemistry doi: 10.1074/jbc.M411033200 – volume: 56 start-page: 326 year: 2012 ident: ref52 article-title: A functional genomic screen reveals novel host genes that mediate interferon-alpha's effects against hepatitis C virus publication-title: Journal of hepatology doi: 10.1016/j.jhep.2011.07.026 – volume: 21 start-page: 954 year: 2002 ident: ref57 article-title: Epstein-Barr virus RNA confers resistance to interferon-alpha-induced apoptosis in Burkitt's lymphoma publication-title: The EMBO journal doi: 10.1093/emboj/21.5.954 – volume: 104 start-page: 7500 year: 2007 ident: ref7 article-title: Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0611551104 – volume: 468 start-page: 452 year: 2010 ident: ref10 article-title: 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members publication-title: Nature doi: 10.1038/nature09489 – volume: 7 start-page: e1002300 year: 2011 ident: ref60 article-title: A viral nuclear noncoding RNA binds re-localized poly(A) binding protein and is required for late KSHV gene expression publication-title: PLoS pathogens doi: 10.1371/journal.ppat.1002300 – volume: 124 start-page: 2310 year: 2011 ident: ref26 article-title: Arginine methylation of G3BP1 in response to Wnt3a regulates beta-catenin mRNA publication-title: Journal of cell science doi: 10.1242/jcs.084046 – volume: 448 start-page: 15 year: 2014 ident: ref48 article-title: Dengue virus subgenomic RNA induces apoptosis through the Bcl-2-mediated PI3k/Akt signaling pathway publication-title: Virology doi: 10.1016/j.virol.2013.09.016 – volume: 163 start-page: 660 year: 2012 ident: ref9 article-title: Formation of membrane-defined compartments by tick-borne encephalitis virus contributes to the early delay in interferon signaling publication-title: Virus research doi: 10.1016/j.virusres.2011.11.020 – volume: 191 start-page: 3328 year: 2013 ident: ref6 article-title: Ubiquitin-Specific Protease 13 Regulates IFN Signaling by Stabilizing STAT1 publication-title: Journal of immunology doi: 10.4049/jimmunol.1300225 – volume: 6 start-page: e25419 year: 2011 ident: ref2 article-title: PCBP2 enhances the antiviral activity of IFN-alpha against HCV by stabilizing the mRNA of STAT1 and STAT2 publication-title: PloS one doi: 10.1371/journal.pone.0025419 – volume: 29 start-page: 521 year: 2009 ident: ref8 article-title: Mechanisms of evasion of the type I interferon antiviral response by flaviviruses publication-title: Journal of interferon & cytokine research: the official journal of the International Society for Interferon and Cytokine Research doi: 10.1089/jir.2009.0069 – volume: 65 start-page: 5657 year: 1991 ident: ref56 article-title: Adenovirus virus-associated RNA and translation control publication-title: Journal of virology doi: 10.1128/JVI.65.11.5657-5662.1991 – volume: 312 start-page: 879 year: 2006 ident: ref1 article-title: Type 1 interferons and the virus-host relationship: a lesson in detente publication-title: Science doi: 10.1126/science.1125676 – volume: 9 start-page: 60 year: 2008 ident: ref27 article-title: Off-target effects of siRNA specific for GFP publication-title: BMC molecular biology doi: 10.1186/1471-2199-9-60 – volume: 125 start-page: 2446 year: 2012 ident: ref40 article-title: Wnt3a-stimulated LRP6 phosphorylation is dependent upon arginine methylation of G3BP2 publication-title: Journal of cell science doi: 10.1242/jcs.100933 – volume: 84 start-page: 8332 year: 2010 ident: ref37 article-title: Identification of five interferon-induced cellular proteins that inhibit west nile virus and dengue virus infections publication-title: Journal of virology doi: 10.1128/JVI.02199-09 – volume: 87 start-page: 489 year: 2013 ident: ref50 article-title: Japanese encephalitis virus core protein inhibits stress granule formation through an interaction with Caprin-1 and facilitates viral propagation publication-title: Journal of virology doi: 10.1128/JVI.02186-12 – volume: 5 start-page: e926 year: 2011 ident: ref31 article-title: RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection publication-title: PLoS neglected tropical diseases doi: 10.1371/journal.pntd.0000926 – volume: 8 start-page: e1002780 year: 2012 ident: ref11 article-title: Dengue Virus Targets the Adaptor Protein MITA to Subvert Host Innate Immunity publication-title: PLoS pathogens doi: 10.1371/journal.ppat.1002780 – volume: 166 start-page: 11 year: 2013 ident: ref16 article-title: Japanese encephalitis virus non-coding RNA inhibits activation of interferon by blocking nuclear translocation of interferon regulatory factor 3 publication-title: Vet Microbiol doi: 10.1016/j.vetmic.2013.04.026 – volume: 84 start-page: 9760 year: 2010 ident: ref42 article-title: Inhibition of the type I interferon response in human dendritic cells by dengue virus infection requires a catalytically active NS2B3 complex publication-title: Journal of virology doi: 10.1128/JVI.01051-10 – volume: 83 start-page: 5408 year: 2009 ident: ref13 article-title: NS5 of dengue virus mediates STAT2 binding and degradation publication-title: Journal of virology doi: 10.1128/JVI.02188-08 – volume: 1 start-page: e86 year: 2007 ident: ref43 article-title: Host gene expression profiling of dengue virus infection in cell lines and patients publication-title: PLoS neglected tropical diseases doi: 10.1371/journal.pntd.0000086 – volume: 2 start-page: 295 year: 2007 ident: ref20 article-title: Inhibition of cytoplasmic mRNA stress granule formation by a viral proteinase publication-title: Cell host & microbe doi: 10.1016/j.chom.2007.08.006 – volume: 20 start-page: 3869 year: 2001 ident: ref39 article-title: Ras-GAP SH3 domain binding protein (G3BP) is a modulator of USP10, a novel human ubiquitin specific protease publication-title: Oncogene doi: 10.1038/sj.onc.1204553 – volume: 25 start-page: 2227 year: 2005 ident: ref23 article-title: Removal of C-terminal SRC kinase from the immune synapse by a new binding protein publication-title: Molecular and cellular biology doi: 10.1128/MCB.25.6.2227-2241.2005 – volume: 84 start-page: 12274 year: 2010 ident: ref19 article-title: Respiratory syncytial virus induces host RNA stress granules to facilitate viral replication publication-title: Journal of virology doi: 10.1128/JVI.00260-10 – volume: 18 start-page: 135 year: 2013 ident: ref32 article-title: Both G3BP1 and G3BP2 contribute to stress granule formation publication-title: Genes to cells: devoted to molecular & cellular mechanisms doi: 10.1111/gtc.12023 – volume: 106 start-page: 12097 year: 2009 ident: ref54 article-title: Type I interferon (IFN)-dependent activation of Mnk1 and its role in the generation of growth inhibitory responses publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0900562106 – volume: 20 start-page: 1597 year: 2006 ident: ref62 article-title: The Wilms' tumor 1 (WT1) gene (+KTS isoform) functions with a CTE to enhance translation from an unspliced RNA with a retained intron publication-title: Genes & development doi: 10.1101/gad.1402306 – volume: 105 start-page: 4808 year: 2008 ident: ref4 article-title: Role of the Akt pathway in mRNA translation of interferon-stimulated genes publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0710907105 – volume: 52 start-page: 123 year: 2010 ident: ref5 article-title: Mechanisms of mRNA translation of interferon stimulated genes publication-title: Cytokine doi: 10.1016/j.cyto.2010.03.019 – volume: 12 start-page: 71 year: 2012 ident: ref33 article-title: Dynamic oscillation of translation and stress granule formation mark the cellular response to virus infection publication-title: Cell host & microbe doi: 10.1016/j.chom.2012.05.013 – volume: 286 start-page: 14226 year: 2011 ident: ref38 article-title: Dengue virus modulates the unfolded protein response in a time-dependent manner publication-title: The Journal of biological chemistry doi: 10.1074/jbc.M111.222703 – volume: 344 start-page: 439 year: 2006 ident: ref47 article-title: Inhibition of dengue virus translation and RNA synthesis by a morpholino oligomer targeted to the top of the terminal 3′ stem-loop structure publication-title: Virology doi: 10.1016/j.virol.2005.08.034 – volume: 109 start-page: 14610 year: 2012 ident: ref36 article-title: Dengue reporter viruses reveal viral dynamics in interferon receptor-deficient mice and sensitivity to interferon effectors in vitro publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1212379109 – volume: 84 start-page: 11395 year: 2010 ident: ref63 article-title: An RNA pseudoknot is required for production of yellow fever virus subgenomic RNA by the host nuclease XRN1 publication-title: Journal of virology doi: 10.1128/JVI.01047-10 – volume: 139 start-page: 1243 year: 2009 ident: ref35 article-title: The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus publication-title: Cell doi: 10.1016/j.cell.2009.12.017 – volume: 4 start-page: 579 year: 2008 ident: ref14 article-title: A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity publication-title: Cell host & microbe doi: 10.1016/j.chom.2008.10.007 – volume: 21 start-page: 4483 year: 1993 ident: ref55 article-title: Comparative analysis of the regulation of the interferon-inducible protein kinase PKR by Epstein-Barr virus RNAs EBER-1 and EBER-2 and adenovirus VAI RNA publication-title: Nucleic acids research doi: 10.1093/nar/21.19.4483 – volume: 391 start-page: 1099 year: 2010 ident: ref44 article-title: Identification and characterization of small sub-genomic RNAs in dengue 1–4 virus-infected cell cultures and tissues publication-title: Biochemical and biophysical research communications doi: 10.1016/j.bbrc.2009.12.030 – volume: 26 start-page: 4209 year: 2007 ident: ref25 article-title: Modulation of p53 and MDM2 activity by novel interaction with Ras-GAP binding proteins (G3BP) publication-title: Oncogene doi: 10.1038/sj.onc.1210212 – volume: 123 start-page: 2685 year: 2010 ident: ref24 article-title: Human G3BP1 interacts with beta-F1-ATPase mRNA and inhibits its translation publication-title: Journal of cell science doi: 10.1242/jcs.065920 – volume: 84 start-page: 11407 year: 2010 ident: ref46 article-title: RNA structures required for production of subgenomic flavivirus RNA publication-title: Journal of virology doi: 10.1128/JVI.01159-10 – volume: 14 start-page: 435 year: 2013 ident: ref53 article-title: Reciprocal Inhibition between Intracellular Antiviral Signaling and the RNAi Machinery in Mammalian Cells publication-title: Cell host & microbe doi: 10.1016/j.chom.2013.09.002 – volume: 472 start-page: 481 year: 2011 ident: ref34 article-title: A diverse range of gene products are effectors of the type I interferon antiviral response publication-title: Nature doi: 10.1038/nature09907 – volume: 84 start-page: 6720 year: 2010 ident: ref21 article-title: Host factors associated with the Sindbis virus RNA-dependent RNA polymerase: role for G3BP1 and G3BP2 in virus replication publication-title: Journal of virology doi: 10.1128/JVI.01983-09 – volume: 82 start-page: 10657 year: 2008 ident: ref64 article-title: Mutation of mapped TIA-1/TIAR binding sites in the 3′ terminal stem-loop of West Nile virus minus-strand RNA in an infectious clone negatively affects genomic RNA amplification publication-title: Journal of virology doi: 10.1128/JVI.00991-08 – reference: 20739539 - J Virol. 2010 Nov;84(21):11395-406 – reference: 22357953 - J Cell Sci. 2012 May 15;125(Pt 10):2446-56 – reference: 17210633 - Mol Cell Biol. 2007 Mar;27(6):2324-42 – reference: 22022268 - PLoS Pathog. 2011 Oct;7(10):e1002300 – reference: 22022391 - PLoS One. 2011;6(10):e25419 – reference: 19694536 - J Interferon Cytokine Res. 2009 Sep;29(9):521-30 – reference: 22908290 - Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14610-5 – reference: 24075860 - Cell Host Microbe. 2013 Oct 16;14(4):435-45 – reference: 22155022 - Virus Res. 2012 Feb;163(2):660-6 – reference: 21478870 - Nature. 2011 Apr 28;472(7344):481-5 – reference: 18577207 - BMC Mol Biol. 2008;9:60 – reference: 19574459 - Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):12097-102 – reference: 20534863 - J Virol. 2010 Aug;84(16):8332-41 – reference: 22817989 - Cell Host Microbe. 2012 Jul 19;12(1):71-85 – reference: 23755934 - Vet Microbiol. 2013 Sep 27;166(1-2):11-21 – reference: 22761576 - PLoS Pathog. 2012;8(6):e1002780 – reference: 23097442 - J Virol. 2013 Jan;87(1):489-502 – reference: 11867523 - EMBO J. 2002 Mar 1;21(5):954-65 – reference: 21085181 - Nature. 2010 Nov 18;468(7322):452-6 – reference: 16690858 - Science. 2006 May 12;312(5775):879-82 – reference: 11439350 - Oncogene. 2001 Jun 28;20(29):3869-79 – reference: 17297477 - Oncogene. 2007 Jun 21;26(29):4209-15 – reference: 8447527 - Am J Trop Med Hyg. 1993 Feb;48(2):222-9 – reference: 20005199 - Biochem Biophys Res Commun. 2010 Jan 1;391(1):1099-103 – reference: 12438626 - J Virol. 2002 Dec;76(24):13001-14 – reference: 15471883 - J Biol Chem. 2004 Dec 10;279(50):52210-7 – reference: 17460044 - Proc Natl Acad Sci U S A. 2007 May 1;104(18):7500-5 – reference: 21385877 - J Biol Chem. 2011 Apr 22;286(16):14226-36 – reference: 24692447 - Elife. 2014;3:e01892 – reference: 21888876 - J Hepatol. 2012 Feb;56(2):326-33 – reference: 24314632 - Virology. 2014 Jan 5;448:15-25 – reference: 22379089 - J Virol. 2012 May;86(10):5708-18 – reference: 15743820 - Mol Cell Biol. 2005 Mar;25(6):2227-41 – reference: 18768985 - J Virol. 2008 Nov;82(21):10657-70 – reference: 20660196 - J Virol. 2010 Oct;84(19):9760-74 – reference: 12356730 - EMBO J. 2002 Oct 1;21(19):5141-50 – reference: 19008393 - J Gen Virol. 2008 Dec;89(Pt 12):3052-62 – reference: 21245912 - PLoS Negl Trop Dis. 2011;5(1):e926 – reference: 22837213 - J Virol. 2012 Oct;86(19):10873-9 – reference: 1920611 - J Virol. 1991 Nov;65(11):5657-62 – reference: 15956546 - J Virol. 2005 Jul;79(13):8004-13 – reference: 28350882 - PLoS Pathog. 2017 Mar 28;13(3):e1006295 – reference: 21957497 - RNA Biol. 2011 Nov-Dec;8(6):1173-86 – reference: 18005751 - Cell Host Microbe. 2007 Nov 15;2(5):295-305 – reference: 21957289 - J Virol. 2011 Dec;85(24):13290-7 – reference: 23940278 - J Immunol. 2013 Sep 15;191(6):3328-36 – reference: 23055924 - PLoS Pathog. 2012;8(10):e1002934 – reference: 19279106 - J Virol. 2009 Jun;83(11):5408-18 – reference: 20663914 - J Cell Sci. 2010 Aug 15;123(Pt 16):2685-96 – reference: 20844027 - J Virol. 2010 Dec;84(23):12274-84 – reference: 20719943 - J Virol. 2010 Nov;84(21):11407-17 – reference: 21652632 - J Cell Sci. 2011 Jul 1;124(Pt 13):2310-20 – reference: 18339807 - Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4808-13 – reference: 23279204 - Genes Cells. 2013 Feb;18(2):135-46 – reference: 16214197 - Virology. 2006 Jan 20;344(2):439-52 – reference: 19064258 - Cell Host Microbe. 2008 Dec 11;4(6):579-91 – reference: 20392851 - J Virol. 2010 Jul;84(13):6720-32 – reference: 20064371 - Cell. 2009 Dec 24;139(7):1243-54 – reference: 23678179 - J Virol. 2013 Jul;87(14):7952-65 – reference: 18060089 - PLoS Negl Trop Dis. 2007;1(2):e86 – reference: 7901835 - Nucleic Acids Res. 1993 Sep 25;21(19):4483-90 – reference: 20409730 - Cytokine. 2010 Oct-Nov;52(1-2):123-7 – reference: 16738405 - Genes Dev. 2006 Jun 15;20(12):1597-608 – reference: 21690298 - Mol Cell Biol. 2011 Aug;31(16):3196-207 – reference: 11689052 - Virology. 2001 Oct 25;289(2):297-311 |
SSID | ssj0041316 |
Score | 2.5430322 |
Snippet | Viral RNA-host protein interactions are critical for replication of flaviviruses, a genus of positive-strand RNA viruses comprising major vector-borne human... Viral RNA-host protein interactions are critical for replication of flaviviruses, a genus of positive-strand RNA viruses comprising major vector-borne human... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1004242 |
SubjectTerms | Animals Base Sequence Biology and Life Sciences Carrier Proteins - genetics Carrier Proteins - immunology Cell Cycle Proteins - genetics Cell Cycle Proteins - immunology Cricetinae Dengue Dengue fever Dengue Virus - immunology DNA Helicases eIF-2 Kinase - genetics eIF-2 Kinase - immunology Experiments Gene expression Health aspects Humans Immune system Interferon Medical research Medical schools Medicine and Health Sciences Membrane Proteins - genetics Membrane Proteins - immunology Molecular Sequence Data Pathogenesis Physiological aspects Poly-ADP-Ribose Binding Proteins Protein Biosynthesis - immunology Proteins RNA RNA Helicases RNA Recognition Motif Proteins RNA, Messenger - genetics RNA, Messenger - immunology RNA, Untranslated - genetics RNA, Untranslated - immunology RNA, Viral - genetics RNA, Viral - immunology Viral infections Viruses West Nile virus |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_kQPBF_G60yiqCL65Nspts8ngt1ip4SLXQt2Uz2W0LbXIkd0L_Af9uZ7K5oxGlLz6FJDMJOzOZD3byG8beDpC9EkqhrQWhAHJRFVCJPNYAmfdeD1Mivi7yoxP15TQ7vTHqi3rCAjxwENyek1mifQmVV1qBU4WrFEhb1M7GPrVA3hdj3qaYCj4YPfMw9JSG4ggt83z8aU7qZG_U0Yfl0hJ8NG39pZOgNGD3bz30bHnZ9n9LP__sorwRlg4fsPtjPsnnYR0P2R3XPGJ3w4TJ68fs1ye5_y15z-mQctvU_GBODRAJt53jnaM-YFdzzFz5iqJW6IzjreeEI9F51-EZeoErmvKFhFfHi3k_PIf4Qxs5Xq6uueXowc7Wjv-86NY9b9pGQEuBkSPLE3Zy-PHHwZEYRy8IyMtyJbAoyusUpIeiljquXBUrhc7AxaUtAfWIMnV1UWW1V1BkVlOlAhjrcrB5rZx8ymb4IrfDeCqVtom0sZOoQJnY0qqsiGuNlZbXkEVMbmRvYMQlp_EYl2bYbNNYnwRRGtKYGTUWMbHlWgZcjlvo90mtW1pC1R4uoK2Z0dbMbbYWsTdkFIZwMxpqzDmz6743n78vzBwrfZmix07_SXQ8IXo3EvkWFwt2_BkCRUZ4XBPK3Qklfv0wub1DBrpZc2-SHHNohWmYjNjrjdEa4qJuusa1a6TJFHJnUsURexaMeCsYLMdL2pyOmJ6Y90Ry0zvNxfmAS64IHjGVz_-HqF-we5iaqtAYvctmq27tXmL6t6peDV_6b3P7WLQ priority: 102 providerName: Directory of Open Access Journals |
Title | G3BP1, G3BP2 and CAPRIN1 Are Required for Translation of Interferon Stimulated mRNAs and Are Targeted by a Dengue Virus Non-coding RNA |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24992036 https://www.proquest.com/docview/1543285340 https://pubmed.ncbi.nlm.nih.gov/PMC4081823 https://doaj.org/article/e3517f9cbf474ce48eb4c3a8dea0f2ac http://dx.doi.org/10.1371/journal.ppat.1004242 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJyReEN8LjMogJF7IlMROnDwg1E4bA2nVVKi0N8tx7DKpS0rSIvoP8Hdz56QVQZvgKUpyl8bn833Ul98R8sZB9jKd-UIp7XOtEz9Pde4ngdA6ttYK1yXifJKczfjny_hyj2x7tnYCbG5M7bCf1KxeHP38vvkAC_6969ogwi3T0XKpEBAaN_PAKO-DbxK4VM_5bl8BLLZrhorNcnzBkqT7mO62p_SclcP031nuwXJRNTeFpX9XV_7hrk4fkPtdnElHrWI8JHumfETutp0nN4_Jr49sfBG-o3iIqCoLejzCwoiQqtrQ2mB9sCkoRLR0hd6srZijlaWIL1FbU8MZWIdr7P4FhNfTyahxz0H-trwcLucbqihYtvna0B9X9bqhZVX6ukKHSYHlCZmdnnw9PvO7lgy-TrJs5UOylBSRZlanBRNBbvKAczASJshUpmF-QaamSPO4sFynsRKYwWjwgYlWScENe0oG8EPmgNCIcaFCpgLDBNcsVJnicRoUAjIwK3TsEbaVvdQdXjm2zVhItwknIG9pRSlxxmQ3Yx7xd1zLFq_jH_RjnNYdLaJtuwtVPZfd4pWGxaGwmc4th1c1PDU5vLFKC6MCGyntkdeoFBLxNEos2JmrddPIT18mcsRSxiKw5NGtRNMe0duOyFYwWK26jyRAZIjT1aM87FGCVdC92weooNsxNzJMILbmEJ4xj7zaKq1ELqyyK021BpqYA3fMeOCRZ60S7wQDaXqGm9YeET317kmuf6e8-ubwyjnCJkbs-X-P7QW5B3Epb6uiD8lgVa_NS4j9VvmQ3BGXYkj2xyeTi-nQ_YMydEv8NzusW6E |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=G3BP1%2C+G3BP2+and+CAPRIN1+are+required+for+translation+of+interferon+stimulated+mRNAs+and+are+targeted+by+a+dengue+virus+non-coding+RNA&rft.jtitle=PLoS+pathogens&rft.au=Bidet%2C+Katell&rft.au=Dadlani%2C+Dhivya&rft.au=Garcia-Blanco%2C+Mariano+A&rft.date=2014-07-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft.volume=10&rft.issue=7&rft_id=info:doi/10.1371%2Fjournal.ppat.1004242&rft.externalDocID=A383328872 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |