Accounting for Experimental Noise Reveals That mRNA Levels, Amplified by Post-Transcriptional Processes, Largely Determine Steady-State Protein Levels in Yeast

Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variatio...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 11; no. 5; p. e1005206
Main Authors Csárdi, Gábor, Franks, Alexander, Choi, David S., Airoldi, Edoardo M., Drummond, D. Allan
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.05.2015
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions, such as correlation and regression, yield biased results when data are noisy, missing systematically, and collinear---properties of mRNA and protein measurements---which motivated us to revisit this subject. Noise-robust analyses of 24 studies of budding yeast reveal that mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional to mRNA levels, but rise much more rapidly. Regulation of translation suffices to explain this nonlinear effect, revealing post-transcriptional amplification of, rather than competition with, transcriptional signals. These results substantially revise widely credited models of protein-level regulation, and introduce multiple noise-aware approaches essential for proper analysis of many biological phenomena.
AbstractList   Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions, such as correlation and regression, yield biased results when data are noisy, missing systematically, and collinear---properties of mRNA and protein measurements---which motivated us to revisit this subject. Noise-robust analyses of 24 studies of budding yeast reveal that mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional to mRNA levels, but rise much more rapidly. Regulation of translation suffices to explain this nonlinear effect, revealing post-transcriptional amplification of, rather than competition with, transcriptional signals. These results substantially revise widely credited models of protein-level regulation, and introduce multiple noise-aware approaches essential for proper analysis of many biological phenomena.
Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions, such as correlation and regression, yield biased results when data are noisy, missing systematically, and collinear---properties of mRNA and protein measurements---which motivated us to revisit this subject. Noise-robust analyses of 24 studies of budding yeast reveal that mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional to mRNA levels, but rise much more rapidly. Regulation of translation suffices to explain this nonlinear effect, revealing post-transcriptional amplification of, rather than competition with, transcriptional signals. These results substantially revise widely credited models of protein-level regulation, and introduce multiple noise-aware approaches essential for proper analysis of many biological phenomena.Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions, such as correlation and regression, yield biased results when data are noisy, missing systematically, and collinear---properties of mRNA and protein measurements---which motivated us to revisit this subject. Noise-robust analyses of 24 studies of budding yeast reveal that mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional to mRNA levels, but rise much more rapidly. Regulation of translation suffices to explain this nonlinear effect, revealing post-transcriptional amplification of, rather than competition with, transcriptional signals. These results substantially revise widely credited models of protein-level regulation, and introduce multiple noise-aware approaches essential for proper analysis of many biological phenomena.
Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions, such as correlation and regression, yield biased results when data are noisy, missing systematically, and collinear---properties of mRNA and protein measurements---which motivated us to revisit this subject. Noise-robust analyses of 24 studies of budding yeast reveal that mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional to mRNA levels, but rise much more rapidly. Regulation of translation suffices to explain this nonlinear effect, revealing post-transcriptional amplification of, rather than competition with, transcriptional signals. These results substantially revise widely credited models of protein-level regulation, and introduce multiple noise-aware approaches essential for proper analysis of many biological phenomena. Cells respond to their environment by making proteins using transcription and translation of mRNA. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions, such as correlation and regression, yield biased results when data are noisy and contain missing values. Here we show that when methods that account for noise are used to analyze much of the same data, mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional to mRNA levels as commonly assumed, but rise much more rapidly. Regulation of translation achieves amplification of, rather than competition with, transcriptional signals. Our results suggest that for this set of conditions, mRNA sets protein-level regulation, and introduce multiple noise-aware approaches essential for proper analysis of many biological phenomena.
Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions, such as correlation and regression, yield biased results when data are noisy, missing systematically, and collinear---properties of mRNA and protein measurements---which motivated us to revisit this subject. Noise-robust analyses of 24 studies of budding yeast reveal that mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional to mRNA levels, but rise much more rapidly. Regulation of translation suffices to explain this nonlinear effect, revealing post-transcriptional amplification of, rather than competition with, transcriptional signals. These results substantially revise widely credited models of protein-level regulation, and introduce multiple noise-aware approaches essential for proper analysis of many biological phenomena.
Audience Academic
Author Csárdi, Gábor
Franks, Alexander
Drummond, D. Allan
Airoldi, Edoardo M.
Choi, David S.
AuthorAffiliation 3 Dept. of Biochemistry & Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
2 The Broad Institute of Harvard & MIT, Cambridge, Massachusetts, United States of America
Stanford University School of Medicine, UNITED STATES
4 Dept. of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
1 Dept. of Statistics, Harvard University, Cambridge, Massachusetts, United States of America
AuthorAffiliation_xml – name: 3 Dept. of Biochemistry & Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
– name: 1 Dept. of Statistics, Harvard University, Cambridge, Massachusetts, United States of America
– name: 4 Dept. of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
– name: Stanford University School of Medicine, UNITED STATES
– name: 2 The Broad Institute of Harvard & MIT, Cambridge, Massachusetts, United States of America
Author_xml – sequence: 1
  givenname: Gábor
  surname: Csárdi
  fullname: Csárdi, Gábor
– sequence: 2
  givenname: Alexander
  surname: Franks
  fullname: Franks, Alexander
– sequence: 3
  givenname: David S.
  surname: Choi
  fullname: Choi, David S.
– sequence: 4
  givenname: Edoardo M.
  surname: Airoldi
  fullname: Airoldi, Edoardo M.
– sequence: 5
  givenname: D. Allan
  surname: Drummond
  fullname: Drummond, D. Allan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25950722$$D View this record in MEDLINE/PubMed
BookMark eNqVk99qFDEUxgep2D_6BqKBgii4azJJZjJeCEutWlja0lbBq5DJnJnNMjNZk0zpPo2vara7LV0RUeZiQvI73zl8fGc_2eltD0nynOAxoTl5N7eD61U7XjTQjwnGPMXZo2SPcE5HOcNs58F5N9n3fo4x5aLInyS7KS84ztN0L_k50doOfTB9g2rr0PHNApzpoA-qRafWeEAXcA2q9ehqpgLqLk4naBpvWv8WTbpFa2oDFSqX6Nz6MLpyqvfamUUwNg6Hzp3V4D1EeKpcA-0SfYQArjM9oMsAqlqOLoMKsCIDmH6jjeLpOygfniaP69gcnm3-B8nXT8dXR19G07PPJ0eT6UhnhQgjwLTAuahplvKS8OgPpXWVYkazQrG8JnmRlQUXtNJ1yQFEJYguoaxEXWKqGT1IXq51F631cuOtlyQTnLCc5zQSJ2uismouF9Ek5ZbSKiNvL6xrpHLB6BYkY1lK6zgRMMF4xoRSNc7KtGJMYF6mUevDpttQdlDpaLdT7Zbo9ktvZrKx11E5pUKQKPB6I-DsjwF8kJ3xGtpW9WCH27kxEYLHABwkh2u0UXE009c2KuoVLieMCJbleVZEavwHKn4VdEbH5NUm3m8VvNkqiEyAm9CowXt5cnnxH-zpv7Nn37bZVw_YWUxpmHnbDqvw-W3wxUO_742-24MIsDWgnfXeQX2PECxX63YXCblaN7lZt1j2_rcybWKaY_vonmn_XvwL8cYxDQ
CitedBy_id crossref_primary_10_1016_j_biopsych_2021_06_022
crossref_primary_10_1073_pnas_2026362118
crossref_primary_10_2139_ssrn_3155852
crossref_primary_10_7554_eLife_08527
crossref_primary_10_1016_j_crmeth_2022_100288
crossref_primary_10_1016_j_ijpara_2018_03_008
crossref_primary_10_3389_fnins_2021_803107
crossref_primary_10_1091_mbc_E19_12_0708
crossref_primary_10_1186_s12859_018_2175_5
crossref_primary_10_1016_j_tips_2019_04_001
crossref_primary_10_1021_acs_jproteome_9b00704
crossref_primary_10_1139_cjas_2019_0024
crossref_primary_10_1016_j_cels_2017_08_008
crossref_primary_10_1093_nar_gkx430
crossref_primary_10_3390_cells8080791
crossref_primary_10_1038_s41565_024_01672_8
crossref_primary_10_1016_j_heliyon_2023_e13101
crossref_primary_10_1016_j_isci_2024_110659
crossref_primary_10_1038_s41586_023_06228_9
crossref_primary_10_1261_rna_060830_117
crossref_primary_10_1016_j_jmb_2023_168382
crossref_primary_10_1016_j_pathol_2021_02_013
crossref_primary_10_1103_PhysRevE_103_062412
crossref_primary_10_7717_peerj_12358
crossref_primary_10_1371_journal_pbio_3000434
crossref_primary_10_1093_femsyr_foz070
crossref_primary_10_1038_s41586_020_3037_7
crossref_primary_10_1371_journal_pcbi_1004400
crossref_primary_10_1093_bib_bbab483
crossref_primary_10_1096_fj_202201738R
crossref_primary_10_1073_pnas_1815563117
crossref_primary_10_1242_dev_161430
crossref_primary_10_1016_j_celrep_2016_05_043
crossref_primary_10_3390_ijerph191912878
crossref_primary_10_7554_eLife_37412
crossref_primary_10_1016_j_cub_2018_06_044
crossref_primary_10_1371_journal_pone_0159235
crossref_primary_10_1146_annurev_biophys_062215_010838
crossref_primary_10_1371_journal_pone_0210371
crossref_primary_10_1098_rsob_160239
crossref_primary_10_1093_nar_gkx898
crossref_primary_10_1038_s41467_017_02467_3
crossref_primary_10_1074_mcp_M115_054288
crossref_primary_10_3389_fmolb_2021_730006
crossref_primary_10_7554_eLife_60645
crossref_primary_10_7554_eLife_62548
crossref_primary_10_3389_fmolb_2021_673363
crossref_primary_10_1016_j_biotechadv_2023_108305
crossref_primary_10_3389_fmicb_2018_02161
crossref_primary_10_1126_science_aag1125
crossref_primary_10_1093_molbev_msz309
crossref_primary_10_15698_mic2024_08_835
crossref_primary_10_1002_mas_21540
crossref_primary_10_1016_j_btre_2021_e00697
crossref_primary_10_1016_j_cels_2017_12_007
crossref_primary_10_1016_j_cels_2017_12_004
crossref_primary_10_1038_s41467_020_15749_0
crossref_primary_10_1242_dev_200715
crossref_primary_10_1186_s12859_016_1054_1
crossref_primary_10_15252_msb_20188513
crossref_primary_10_1016_j_xplc_2022_100457
crossref_primary_10_1186_s12859_017_1873_8
crossref_primary_10_3389_fnmol_2023_1115685
crossref_primary_10_1038_s41598_017_00651_5
crossref_primary_10_1016_j_cell_2017_02_027
crossref_primary_10_1016_j_mcpro_2021_100179
crossref_primary_10_1038_nsmb_3442
crossref_primary_10_1146_annurev_biophys_070816_033719
crossref_primary_10_1016_j_celrep_2016_01_043
crossref_primary_10_1007_s12668_018_0563_y
crossref_primary_10_1042_BST20190295
crossref_primary_10_1186_s13578_023_01168_3
crossref_primary_10_1002_fsn3_4615
crossref_primary_10_15252_msb_20188503
crossref_primary_10_3389_fgene_2018_00154
crossref_primary_10_1016_j_mrrev_2017_01_001
crossref_primary_10_1016_j_cels_2018_09_001
crossref_primary_10_1093_jxb_eraf005
crossref_primary_10_1016_j_bbamcr_2021_119209
crossref_primary_10_7554_eLife_59351
crossref_primary_10_15252_msb_20156423
crossref_primary_10_1016_j_compbiomed_2022_106314
crossref_primary_10_1074_jbc_M116_729970
crossref_primary_10_1016_j_softx_2017_06_006
crossref_primary_10_1093_database_baaa076
crossref_primary_10_1186_s12859_019_3150_5
crossref_primary_10_1093_molbev_msw131
crossref_primary_10_1093_molbev_msad169
crossref_primary_10_1093_jxb_erz149
crossref_primary_10_1371_journal_pcbi_1005535
crossref_primary_10_1016_j_cell_2025_02_021
crossref_primary_10_1016_j_celrep_2017_05_018
crossref_primary_10_1038_srep15147
crossref_primary_10_1371_journal_pgen_1006132
crossref_primary_10_1111_febs_13694
crossref_primary_10_1186_s12864_017_3683_9
crossref_primary_10_1093_nar_gkaa060
crossref_primary_10_1002_adbi_202300494
crossref_primary_10_1177_0748730415607321
crossref_primary_10_1016_j_advms_2022_05_001
crossref_primary_10_1016_j_xpro_2022_101409
crossref_primary_10_15252_msb_20167325
crossref_primary_10_1038_s41467_022_30513_2
crossref_primary_10_1007_s11033_019_04793_9
crossref_primary_10_1038_s41580_022_00541_3
crossref_primary_10_1007_s00294_016_0594_2
crossref_primary_10_1073_pnas_2219885120
crossref_primary_10_1038_s41586_020_2899_z
crossref_primary_10_1016_j_exer_2018_01_005
crossref_primary_10_1038_s41592_022_01526_y
crossref_primary_10_1371_journal_pgen_1010744
crossref_primary_10_3389_fgene_2022_1030415
crossref_primary_10_1016_j_micinf_2016_03_015
crossref_primary_10_1016_j_jtbi_2017_07_006
crossref_primary_10_1371_journal_pgen_1005554
crossref_primary_10_26508_lsa_202101223
crossref_primary_10_3389_fnmol_2018_00332
crossref_primary_10_1126_science_ads2658
crossref_primary_10_1371_journal_pcbi_1007070
crossref_primary_10_1007_s00294_017_0698_3
crossref_primary_10_1016_j_cels_2017_03_003
crossref_primary_10_1126_sciadv_abb1005
crossref_primary_10_1080_21541264_2019_1575159
crossref_primary_10_7554_eLife_65722
crossref_primary_10_3390_cells10020334
crossref_primary_10_1016_j_bbagrm_2017_04_003
crossref_primary_10_1016_j_cels_2020_05_001
crossref_primary_10_1016_j_tibs_2023_08_005
Cites_doi 10.1093/nar/gkr1029
10.1038/nsmb.1514
10.1038/nature02046
10.1177/01466216970213005
10.1038/msb.2010.59
10.1016/j.febslet.2009.10.036
10.1046/j.1365-2958.2002.03172.x
10.1038/msb.2011.48
10.1016/0014-4827(77)90154-9
10.1038/nature07341
10.1016/S0076-6879(10)70006-9
10.1186/1471-2105-8-447
10.1186/1471-2105-8-309
10.1016/S0160-2896(99)00024-0
10.1038/msb.2010.63
10.1111/j.1365-2435.2006.01209.x
10.1152/jn.90727.2008
10.1002/pmic.201300135
10.1136/bmj.c2289
10.1126/science.aaa8332
10.1091/mbc.12.2.323
10.1016/j.molcel.2004.06.004
10.1073/pnas.0605420103
10.1038/msb4100117
10.1016/j.cell.2012.09.019
10.1038/nbt1270
10.1016/j.bbrc.2005.11.055
10.1186/gb-2003-4-9-117
10.1073/pnas.112683499
10.1074/mcp.M110.003699
10.1128/MCB.19.3.1720
10.1038/nature04785
10.1074/mcp.M300129-MCP200
10.1002/sim.2984
10.1093/genetics/164.4.1291
10.1007/s00284-008-9145-5
10.1186/1471-2164-9-574
10.1007/BF00275119
10.1101/gr.079558.108
10.1016/j.cell.2009.05.051
10.1021/pr025556v
10.1016/S0092-8674(00)81845-0
10.1074/mcp.M111.013722
10.1038/nbt1098-939
10.1126/science.1259038
10.1038/85686
10.1128/MCB.19.11.7357
10.1201/9780429258480
10.1126/science.1170160
10.1016/S0092-8674(00)81641-4
10.1093/molbev/mst051
10.1177/014662168500900310
10.1074/mcp.M400099-MCP200
10.1074/mcp.O111.014704
10.1038/nbt.1551
10.1073/pnas.0812841106
10.1073/pnas.0504070102
10.1073/pnas.1120799109
10.1038/nature10098
10.1038/nrg2825
10.7717/peerj.270
10.1371/journal.pcbi.1000865
10.1177/0013164496056001004
10.1038/nrg3185
10.1002/0471704091
10.1126/science.1241934
10.1101/gr.164996.113
10.1371/journal.pcbi.0030057
10.1126/science.1158441
10.1098/rsta.1903.0001
10.1093/nar/gku671
10.1186/jbiol54
10.1371/journal.pcbi.1000664
10.1214/08-AOAS191
10.2307/1412159
10.1016/S0968-0004(99)01460-7
10.1038/nature13007
10.1002/yea.1768
10.1126/science.1168978
ContentType Journal Article
Copyright COPYRIGHT 2015 Public Library of Science
2015 Csárdi et al 2015 Csárdi et al
2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Csárdi G, Franks A, Choi DS, Airoldi EM, Drummond DA (2015) Accounting for Experimental Noise Reveals That mRNA Levels, Amplified by Post-Transcriptional Processes, Largely Determine Steady-State Protein Levels in Yeast. PLoS Genet 11(5): e1005206. doi:10.1371/journal.pgen.1005206
Copyright_xml – notice: COPYRIGHT 2015 Public Library of Science
– notice: 2015 Csárdi et al 2015 Csárdi et al
– notice: 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Csárdi G, Franks A, Choi DS, Airoldi EM, Drummond DA (2015) Accounting for Experimental Noise Reveals That mRNA Levels, Amplified by Post-Transcriptional Processes, Largely Determine Steady-State Protein Levels in Yeast. PLoS Genet 11(5): e1005206. doi:10.1371/journal.pgen.1005206
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1005206
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Opposing Viewpoints (Gale in Context)
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate mRNA Levels Amplified by Translation Determine Protein Levels
EISSN 1553-7404
ExternalDocumentID 1685147573
oai_doaj_org_article_44623f390e4845648aaf06b2d44805b2
PMC4423881
A418467769
25950722
10_1371_journal_pgen_1005206
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM088344
– fundername: NIGMS NIH HHS
  grantid: GM096193
– fundername: NIGMS NIH HHS
  grantid: R01 GM096193
– fundername: NIGMS NIH HHS
  grantid: R01 GM088344
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
WOQ
PMFND
7X8
5PM
PUEGO
-
3V.
AAPBV
ABPTK
ADACO
BBAFP
M~E
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c698t-e039078f3625b1537133fd204369a47f1796b9583dcfb5ee8d81cbebd8fb03c43
IEDL.DBID M48
ISSN 1553-7404
1553-7390
IngestDate Fri Nov 26 17:13:30 EST 2021
Wed Aug 27 01:21:31 EDT 2025
Thu Aug 21 18:27:14 EDT 2025
Tue Aug 05 09:49:14 EDT 2025
Tue Jun 17 20:44:03 EDT 2025
Tue Jun 10 20:39:55 EDT 2025
Fri Jun 27 04:51:59 EDT 2025
Fri Jun 27 03:56:20 EDT 2025
Fri Jun 27 03:44:45 EDT 2025
Thu May 22 21:22:13 EDT 2025
Mon Jul 21 06:05:44 EDT 2025
Thu Apr 24 22:53:45 EDT 2025
Tue Jul 01 04:31:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c698t-e039078f3625b1537133fd204369a47f1796b9583dcfb5ee8d81cbebd8fb03c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
The authors have declared that no competing interests exist.
Conceived and designed the experiments: DAD EMA. Performed the experiments: GC AF DSC DAD. Analyzed the data: GC AF DSC DAD. Contributed reagents/materials/analysis tools: GC AF DSC EMA DAD. Wrote the paper: DAD GC AF EMA.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1005206
PMID 25950722
PQID 1680188555
PQPubID 23479
ParticipantIDs plos_journals_1685147573
doaj_primary_oai_doaj_org_article_44623f390e4845648aaf06b2d44805b2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4423881
proquest_miscellaneous_1680188555
gale_infotracmisc_A418467769
gale_infotracacademiconefile_A418467769
gale_incontextgauss_ISR_A418467769
gale_incontextgauss_ISN_A418467769
gale_incontextgauss_IOV_A418467769
gale_healthsolutions_A418467769
pubmed_primary_25950722
crossref_primary_10_1371_journal_pgen_1005206
crossref_citationtrail_10_1371_journal_pgen_1005206
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05-01
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2015
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References GC Johnston (ref55) 1977; 105
E Ahrné (ref62) 2013; 13
J Plotkin (ref28) 2010; 6
S Behseta (ref52) 2009; 101
V Pelechano (ref81) 2010; 27
S Ghaemmaghami (ref30) 2003; 425
V Velculescu (ref35) 1997; 88
S Gygi (ref6) 1999; 19
G Kudla (ref69) 2009; 324
EZ Yu (ref5) 2007; 8
L de Godoy (ref40) 2008; 455
JJ Li (ref23) 2015; 347
A Beyer (ref4) 2004; 3
N Ingolia (ref18) 2009; 324
B Futcher (ref20) 1999; 19
R Sokal (ref34) 1995
K Pearson (ref25) 1903; 200
KR Frank (ref70) 1978; 160
J Barnard (ref73) 2000; 10
J Garcia-Martinez (ref78) 2004; 15
RA Alexander (ref26) 1985; 9
T von der Haar (ref56) 2002; 46
M Siwiak (ref8) 2010; 6
NT Ingolia (ref79) 2010; 470
M Lee (ref41) 2011; 7
P Lu (ref17) 2007; 25
AO Subtelny (ref61) 2014; 508
F Miura (ref54) 2008; 9
(ref71) 2014
J Li (ref21) 2014; 2
F Schmidt (ref46) 1999; 27
B Schwanhausser (ref3) 2011; 473
R Brockmann (ref11) 2007; 3
MW Schmidt (ref12) 2007; 3
D Greenbaum (ref19) 2003; 4
N Nagaraj (ref83) 2012; 11
DA Drummond (ref49) 2005; 102
S Marguerat (ref64) 2012; 151
J Peng (ref75) 2003; 2
H Causton (ref76) 2001; 12
MV Gerashchenko (ref59) 2014; 42
C Vogel (ref9) 2012; 13
J Castrillo (ref13) 2007; 6
C Vogel (ref15) 2010; 6
J Marioni (ref44) 2008; 18
D Zimmerman (ref48) 1997; 21
A Gelman (ref72) 2008; 2
A Belle (ref2) 2006; 103
M Wang (ref16) 2012; 11
DB Goodman (ref68) 2013; 342
F Roth (ref82) 1998; 16
J Cherry (ref42) 2012; 40
D Zenklusen (ref53) 2008; 15
M Gerashchenko (ref58) 2012; 109
S Weisberg (ref32) 2005
J Leek (ref22) 2010; 11
CJ McManus (ref60) 2014; 24
V MacKay (ref80) 2004; 3
L Nie (ref10) 2006; 339
S Adolph (ref50) 2007; 21
K Archer (ref51) 2007; 8
A Dudley (ref77) 2002; 99
K Archer (ref45) 2008; 27
M Yassour (ref43) 2009; 106
C Spearman (ref24) 1904; 15
P Legendre (ref33) 1998
U Nagalakshmi (ref37) 2008; 320
D Lipson (ref38) 2009; 27
S Thakur (ref84) 2011; 10
J Newman (ref39) 2006; 441
JR Warner (ref63) 1999; 24
F Holstege (ref36) 1998; 95
W Gu (ref67) 2010; 6
AM Franks (ref27) 2014
G Wu (ref14) 2008; 57
R de Sousa Abreu (ref1) 2009; 5
EW Wallace (ref66) 2013; 30
M Jovanovic (ref29) 2015; 347
A Gelman (ref74) 2003
P Muchinsky (ref47) 1996; 56
T Maier (ref7) 2009; 583
H Akashi (ref65) 2003; 164
M Washburn (ref85) 2001; 19
J Hutcheon (ref31) 2010; 340
P Picotti (ref57) 2009; 138
References_xml – volume: 40
  start-page: D700
  year: 2012
  ident: ref42
  article-title: Saccharomyces genome database: the genomics resource of budding yeast
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr1029
– volume: 15
  start-page: 1263
  year: 2008
  ident: ref53
  article-title: Single-RNA counting reveals alternative modes of gene expression in yeast
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1514
– volume: 425
  start-page: 737
  year: 2003
  ident: ref30
  article-title: Global analysis of protein expression in yeast
  publication-title: Nature
  doi: 10.1038/nature02046
– volume: 21
  start-page: 253270
  year: 1997
  ident: ref48
  article-title: Properties of the spearman correction for attenuation for normal and realistic non-normal distributions
  publication-title: Applied Psychological Measurement
  doi: 10.1177/01466216970213005
– volume: 6
  start-page: 400
  year: 2010
  ident: ref15
  article-title: Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2010.59
– volume: 583
  start-page: 3966
  year: 2009
  ident: ref7
  article-title: Correlation of mRNA and protein in complex biological samples
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2009.10.036
– volume: 46
  start-page: 531
  year: 2002
  ident: ref56
  article-title: Intracellular translation initiation factor levels in Saccharomyces cerevisiae and their role in cap-complex function
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2002.03172.x
– volume: 7
  start-page: 514
  year: 2011
  ident: ref41
  article-title: A dynamic model of proteome changes reveals new roles for transcript alteration in yeast
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2011.48
– volume: 105
  start-page: 79
  year: 1977
  ident: ref55
  article-title: Coordination of growth with cell division in the yeast Saccharomyces cerevisiae
  publication-title: Experimental cell research
  doi: 10.1016/0014-4827(77)90154-9
– volume: 455
  start-page: 1251
  year: 2008
  ident: ref40
  article-title: Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast
  publication-title: Nature
  doi: 10.1038/nature07341
– volume: 470
  start-page: 119
  year: 2010
  ident: ref79
  article-title: Genome-wide translational profiling by ribosome footprinting
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(10)70006-9
– volume: 8
  start-page: 447
  year: 2007
  ident: ref51
  article-title: Application of a correlation correction factor in a microarray crossplatform reproducibility study
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-447
– volume: 8
  start-page: 309
  year: 2007
  ident: ref5
  article-title: PARE: a tool for comparing protein abundance and mRNA expression data
  publication-title: BMC bioinformatics
  doi: 10.1186/1471-2105-8-309
– volume: 27
  start-page: 183198
  year: 1999
  ident: ref46
  article-title: Theory testing and measurement error
  publication-title: Intelligence
  doi: 10.1016/S0160-2896(99)00024-0
– volume: 6
  start-page: 406
  year: 2010
  ident: ref28
  article-title: Transcriptional regulation is only half the story
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2010.63
– volume: 21
  start-page: 178
  year: 2007
  ident: ref50
  article-title: Estimating phenotypic correlations: correcting for bias due to intrain-dividual variability
  publication-title: Functional Ecology
  doi: 10.1111/j.1365-2435.2006.01209.x
– volume: 101
  start-page: 2186
  year: 2009
  ident: ref52
  article-title: Bayesian correction for attenuation of correlation in multi-trial spike count data
  publication-title: J neurophysiol
  doi: 10.1152/jn.90727.2008
– volume: 13
  start-page: 2567
  year: 2013
  ident: ref62
  article-title: Critical assessment of proteome-wide label-free absolute abundance estimation strategies
  publication-title: Proteomics
  doi: 10.1002/pmic.201300135
– volume: 340
  start-page: c2289
  year: 2010
  ident: ref31
  article-title: Random measurement error and regression dilution bias
  publication-title: BMJ
  doi: 10.1136/bmj.c2289
– volume: 347
  start-page: 1066
  year: 2015
  ident: ref23
  article-title: Statistics requantitates the central dogma
  publication-title: Science
  doi: 10.1126/science.aaa8332
– volume: 12
  start-page: 323
  year: 2001
  ident: ref76
  article-title: Remodeling of yeast genome expression in response to environmental changes
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.12.2.323
– volume: 15
  start-page: 303
  year: 2004
  ident: ref78
  article-title: Genomic run-on evaluates transcription rates for all yeast genes and identifies gene regulatory mechanisms
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2004.06.004
– volume: 103
  start-page: 13004
  year: 2006
  ident: ref2
  article-title: Quantification of protein half-lives in the budding yeast proteome
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0605420103
– volume: 3
  start-page: 79
  year: 2007
  ident: ref12
  article-title: Comparative proteomic and transcriptomic profiling of the fission yeast Schizosaccharomyces pombe
  publication-title: Molecular systems biology
  doi: 10.1038/msb4100117
– volume: 151
  start-page: 671
  year: 2012
  ident: ref64
  article-title: Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells
  publication-title: CELL
  doi: 10.1016/j.cell.2012.09.019
– volume: 25
  start-page: 117
  year: 2007
  ident: ref17
  article-title: Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1270
– volume: 339
  start-page: 603
  year: 2006
  ident: ref10
  article-title: Correlation between mRNA and protein abundance in Desulfovib-rio vulgaris: a multiple regression to identify sources of variations
  publication-title: Biochemical and biophysical research communications
  doi: 10.1016/j.bbrc.2005.11.055
– volume: 4
  start-page: 117
  year: 2003
  ident: ref19
  article-title: Comparing protein abundance and mRNA expression levels on a genomic scale
  publication-title: Genome Biol
  doi: 10.1186/gb-2003-4-9-117
– volume: 99
  start-page: 7554
  year: 2002
  ident: ref77
  article-title: Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.112683499
– volume: 10
  year: 2011
  ident: ref84
  article-title: Deep and highly sensitive proteome coverage by LC-MS/MS without prefractionation
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M110.003699
– volume: 19
  start-page: 1720
  year: 1999
  ident: ref6
  article-title: Correlation between protein and mRNA abundance in yeast
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.19.3.1720
– volume: 441
  start-page: 840
  year: 2006
  ident: ref39
  article-title: Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise
  publication-title: Nature
  doi: 10.1038/nature04785
– volume: 3
  start-page: 478
  year: 2004
  ident: ref80
  article-title: Gene expression analyzed by high-resolution state array analysis and quantitative proteomics: response of yeast to mating pheromone
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M300129-MCP200
– volume: 27
  start-page: 1026
  year: 2008
  ident: ref45
  article-title: A disattenuated correlation estimate when variables are measured with error: illustration estimating cross-platform correlations
  publication-title: Stat med
  doi: 10.1002/sim.2984
– volume: 164
  start-page: 1291
  year: 2003
  ident: ref65
  article-title: Translational selection and yeast proteome evolution
  publication-title: Genetics
  doi: 10.1093/genetics/164.4.1291
– volume: 57
  start-page: 18
  year: 2008
  ident: ref14
  article-title: Integrative analyses of posttranscriptional regulation in the yeast Saccharomyces cerevisiae using transcriptomic and proteomic data
  publication-title: Current microbiology
  doi: 10.1007/s00284-008-9145-5
– volume: 9
  start-page: 574
  year: 2008
  ident: ref54
  article-title: Absolute quantification of the budding yeast transcriptome by means of competitive PCR between genomic and complementary DNAs
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-9-574
– volume: 160
  start-page: 59
  year: 1978
  ident: ref70
  article-title: Ribosome activity and degradation in meiotic cells of Saccharomyces cerevisiae
  publication-title: Molecular & General Genetics
  doi: 10.1007/BF00275119
– volume: 18
  start-page: 1509
  year: 2008
  ident: ref44
  article-title: Rna-seq: An assessment of technical reproducibility and comparison with gene expression arrays
  publication-title: Genome Research
  doi: 10.1101/gr.079558.108
– volume: 5
  start-page: 1512
  year: 2009
  ident: ref1
  article-title: Global signatures of protein and mRNA expression levels
  publication-title: Mol Biosyst
– volume: 138
  start-page: 795
  year: 2009
  ident: ref57
  article-title: Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics
  publication-title: Cell
  doi: 10.1016/j.cell.2009.05.051
– volume: 2
  start-page: 43
  year: 2003
  ident: ref75
  article-title: Evaluation of multidimensional chromatog-raphy coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome
  publication-title: J Proteome Res
  doi: 10.1021/pr025556v
– volume: 88
  start-page: 243
  year: 1997
  ident: ref35
  article-title: Characterization of the yeast transcriptome
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81845-0
– volume: 11
  year: 2012
  ident: ref83
  article-title: System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M111.013722
– volume: 16
  start-page: 939
  year: 1998
  ident: ref82
  article-title: Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1098-939
– volume: 347
  start-page: 1259038
  year: 2015
  ident: ref29
  article-title: Dynamic profiling of the protein life cycle in response to pathogens
  publication-title: Science
  doi: 10.1126/science.1259038
– volume: 19
  start-page: 242
  year: 2001
  ident: ref85
  article-title: Large-scale analysis of the yeast proteome by multidimensional protein identification technology
  publication-title: Nat Biotechnol
  doi: 10.1038/85686
– volume: 19
  start-page: 7357
  year: 1999
  ident: ref20
  article-title: A sampling of the yeast proteome
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.19.11.7357
– year: 2003
  ident: ref74
  article-title: Bayesian data analysis
  doi: 10.1201/9780429258480
– volume: 324
  start-page: 255
  year: 2009
  ident: ref69
  article-title: Coding-sequence determinants of gene expression in Escherichia coli
  publication-title: Science
  doi: 10.1126/science.1170160
– volume: 95
  start-page: 717
  year: 1998
  ident: ref36
  article-title: Dissecting the regulatory circuitry of a eukaryotic genome
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81641-4
– volume: 30
  start-page: 1438
  year: 2013
  ident: ref66
  article-title: Estimating selection on synonymous codon usage from noisy experimental data
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst051
– volume: 9
  start-page: 317
  year: 1985
  ident: ref26
  article-title: Correcting for Restriction of Range in Both X and Y When the Unrestricted Variances are Unknown
  publication-title: Applied Psychological Measurement
  doi: 10.1177/014662168500900310
– volume: 3
  start-page: 1083
  year: 2004
  ident: ref4
  article-title: Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M400099-MCP200
– year: 1998
  ident: ref33
  article-title: Numerical ecology
– volume: 11
  start-page: 492
  year: 2012
  ident: ref16
  article-title: Paxdb, a database of protein abundance averages across all three domains of life
  publication-title: Molecular & Cellular Proteomics
  doi: 10.1074/mcp.O111.014704
– volume: 27
  start-page: 652
  year: 2009
  ident: ref38
  article-title: Quantification of the yeast transcriptome by single-molecule sequencing
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1551
– volume: 106
  start-page: 3264
  year: 2009
  ident: ref43
  article-title: Ab initio construction of a eukaryotic transcriptome by massively parallel mRNA sequencing
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0812841106
– volume: 102
  start-page: 14338
  year: 2005
  ident: ref49
  article-title: Why highly expressed proteins evolve slowly
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0504070102
– volume: 109
  start-page: 17394
  year: 2012
  ident: ref58
  article-title: Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1120799109
– volume: 473
  start-page: 337
  year: 2011
  ident: ref3
  article-title: Global quantification of mammalian gene expression control
  publication-title: Nature
  doi: 10.1038/nature10098
– volume: 11
  start-page: 733
  year: 2010
  ident: ref22
  article-title: Tackling the widespread and critical impact of batch effects in highthroughput data
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2825
– volume: 10
  start-page: 1281
  year: 2000
  ident: ref73
  article-title: Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage
  publication-title: Statistica Sinica
– volume: 2
  start-page: e270
  year: 2014
  ident: ref21
  article-title: System wide analyses have underestimated protein abundances and the importance of transcription in mammals
  publication-title: PeerJ
  doi: 10.7717/peerj.270
– volume: 6
  start-page: e1000865
  year: 2010
  ident: ref8
  article-title: A comprehensive, quantitative, and genome-wide model of translation
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000865
– start-page: 00
  year: 2014
  ident: ref27
  article-title: Estimating a structured covariance matrix from multi-lab measurements in high-throughput biology
  publication-title: Journal of the American Statistical Association
– volume: 56
  start-page: 63
  year: 1996
  ident: ref47
  article-title: The correction for attenuation
  publication-title: Educational and psychological measurement
  doi: 10.1177/0013164496056001004
– volume: 13
  start-page: 227
  year: 2012
  ident: ref9
  article-title: Insights into the regulation of protein abundance from proteomic and transcriptomic analyses
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3185
– year: 2005
  ident: ref32
  article-title: Applied Linear Regression
  doi: 10.1002/0471704091
– volume: 342
  start-page: 475
  year: 2013
  ident: ref68
  article-title: Causes and effects of N-terminal codon bias in bacterial genes
  publication-title: Science
  doi: 10.1126/science.1241934
– volume: 24
  start-page: 422
  year: 2014
  ident: ref60
  article-title: Ribosome profiling reveals post-transcriptional buffering of divergent gene expression in yeast
  publication-title: Genome research
  doi: 10.1101/gr.164996.113
– volume: 3
  start-page: e57
  year: 2007
  ident: ref11
  article-title: Posttranscriptional expression regulation: what determines translation rates?
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0030057
– volume: 320
  start-page: 1344
  year: 2008
  ident: ref37
  article-title: The transcriptional landscape of the yeast genome defined by RNA sequencing
  publication-title: Science
  doi: 10.1126/science.1158441
– volume: 200
  start-page: 1
  year: 1903
  ident: ref25
  article-title: I. Mathematical Contributions to the Theory of Evolution.XI On the Influence of Natural Selection on the Variability and Correlation of Organs
  publication-title: Philosophical Transactions of the Royal Society of London Series A
  doi: 10.1098/rsta.1903.0001
– volume: 42
  start-page: e134
  year: 2014
  ident: ref59
  article-title: Translation inhibitors cause abnormalities in ribosome profiling experiments
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gku671
– year: 2014
  ident: ref71
  article-title: R: A Language and Environment for Statistical Computing
– volume: 6
  start-page: 4
  year: 2007
  ident: ref13
  article-title: Growth control of the eukaryote cell: a systems biology study in yeast
  publication-title: J Biol
  doi: 10.1186/jbiol54
– volume: 6
  start-page: e1000664
  year: 2010
  ident: ref67
  article-title: A universal trend of reduced mrna stability near the translation-initiation site in prokaryotes and eukaryotes
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1000664
– volume: 2
  start-page: 1360
  year: 2008
  ident: ref72
  article-title: A weakly informative default prior distribution for logistic and other regression models
  publication-title: Annals of Applied Statistics
  doi: 10.1214/08-AOAS191
– volume: 15
  start-page: 72
  year: 1904
  ident: ref24
  article-title: The proof and measurement of association between two things
  publication-title: Am J Psychol
  doi: 10.2307/1412159
– year: 1995
  ident: ref34
  article-title: Biometry
– volume: 24
  start-page: 437
  year: 1999
  ident: ref63
  article-title: The economics of ribosome biosynthesis in yeast
  publication-title: Trends Biochem Sci
  doi: 10.1016/S0968-0004(99)01460-7
– volume: 508
  start-page: 66
  year: 2014
  ident: ref61
  article-title: Poly(A)-tail profiling reveals an embryonic switch in translational control
  publication-title: Nature
  doi: 10.1038/nature13007
– volume: 27
  start-page: 413
  year: 2010
  ident: ref81
  article-title: There is a steady-state transcriptome in exponentially growing yeast cells
  publication-title: Yeast
  doi: 10.1002/yea.1768
– volume: 324
  start-page: 218
  year: 2009
  ident: ref18
  article-title: Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling
  publication-title: Science
  doi: 10.1126/science.1168978
SSID ssj0035897
Score 2.5228114
Snippet Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations...
  Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1005206
SubjectTerms Competition
Datasets
Gene Expression Regulation, Fungal
Genes
Genetic aspects
Identification and classification
Messenger RNA
Methods
Models, Genetic
Noise
Physiological aspects
Proteins
Reproducibility of Results
RNA Processing, Post-Transcriptional
RNA, Messenger - genetics
RNA, Messenger - metabolism
Rodents
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Studies
Transcription (Genetics)
Transcription, Genetic
Yeast
Yeasts (Fungi)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQJSQuiPcGFjAIiQthkziOnWNBrBYkirSwaG-Wk9i7lUJSkfTQX8NfZcZ2S4OQdg_cqnYctfPyjPrNN4S8SqWoEyZNrJnGFWYQitKWLK5FZk1Zl0Xj0O6fF8XJWf7pnJ_vrfpCTJinB_aKO4J2JWMWOnOTS6Q-kVrbpKiyBvqKhFcu-8Kdt22mfA5mXPq1KpyzWMDhMDTHRHoUbPR2BQZCjADPcNvR3qXkuPt3GXq2avvhX-Xn3yjKvWvp-A65HepJOve_4y65Ybp75KbfMLm5T3792QZBoTyl-4T-tOuXg6HI4QQ-SMdLPdIfp4s5bRFINLyhGtHmFmpUWm3oqh_GeMSbbZtn4AkrP2ZgQLhFSHm7oU3A1xjq_GcTu5El6vggll14NoVXG9wa9ICcHX_49v4kDjsZ4roo5RibBLQppIV7j1eQLbHHtQ0O2BalzoWF-C6qkkvW1LbixshGpnVlqkbaKmF1zh6SWdd35oDQzEICMbnmcDYvEvhKhcwgf2gtuNAyjQjbGkXVgbAc92a0yv0LJ6Bx8TpWaEoVTBmReHdq5Qk7rpB_h_beySLdtnsDnFAFJ1RXOWFEnqO3KD-7uksaap6nWN-JoozISyeBlBsdYnou9HoY1Mcv368h9HVxHaHTidDrIGR70Fmtw7AFaB75viaShxNJyC715OMDDICt6gaVFlCj52AhFpEX26BQeArRep3p104mSaXknEfkkQ-SnX6h3YYWJAOViUn4TAww_aRbXjre8xxKfynTx__DYk_ILSh9uYeuHpLZ-HNtnkJ5OVbPXCb5DYAid5I
  priority: 102
  providerName: Directory of Open Access Journals
Title Accounting for Experimental Noise Reveals That mRNA Levels, Amplified by Post-Transcriptional Processes, Largely Determine Steady-State Protein Levels in Yeast
URI https://www.ncbi.nlm.nih.gov/pubmed/25950722
https://www.proquest.com/docview/1680188555
https://pubmed.ncbi.nlm.nih.gov/PMC4423881
https://doaj.org/article/44623f390e4845648aaf06b2d44805b2
http://dx.doi.org/10.1371/journal.pgen.1005206
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6VVEhcEO8aSlgQEhdc-bXe9QGhFLUqSA0oENSbtbZ320jGDrEj4V_DX2Vm_aBGRfTALYpnV8nMzss78w0hL13BU8cXypa-xBFmoIpCR76dck-rKI3CzFS7n87Dk2Xw4Yyd7ZB-ZmvHwOrK1A7nSS03-cGP781bUPg3ZmoDd_tFB2tgOd76Mw8xuHfBN3GcaXAaDPcKPhPtuBXGfJtDut810_1tl5GzMpj-g-WerPOyuios_bO68pK7Or5DbndxJp21B-Mu2VHFPXKznTzZ3Cc_f0-JoBC20stA_7QoV5WiiO0EPKL1hazpt8V8RnMsMKpeU4lV6BpiV5o0dF1WtV2jx-vtD-ywbtsPFBDnWGqeNzTr6m4UNeeqsU0rEzU4Eaui25vCpwanCT0gy-OjL-9O7G5Wg52Gkaht5QA3udDgD1kCVhRzX51h420YyYBr0PswiZjws1QnTCmRCTdNVJIJnTh-GvgPyaQoC7VHqKfBsKhAMlgbhA78pFB4YFek5IxL4VrE74USpx2QOc7TyGNzO8choWl5HKMo406UFrGHVesWyOMf9Ico74EWYbjNF-XmPO60OoZc2vM1_HMVCMTlEVJqJ0y8DJJehyWeRZ7haYnbntbBmMSzwMW4j4eRRV4YCoTiKLDW51xuqyp-__HrNYg-z69DtBgRveqIdAk8S2XXhAGcRxywEeX-iBKsTjp6vIcK0LOuit0QYvcAJORb5HmvFDGuwiq-QpVbQ-O4QjDGLPKoVZKBv5CGQ2riAcv4SH1GAhg_KVYXBg89gJRACPfx_5DYE3ILQmLWlrTuk0m92aqnEHbWyZTc4Gd8SnYPj-afFlPz8mZqrMsv3WmGAQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accounting+for+experimental+noise+reveals+that+mRNA+levels%2C+amplified+by+post-transcriptional+processes%2C+largely+determine+steady-state+protein+levels+in+yeast&rft.jtitle=PLoS+genetics&rft.au=G%C3%A1bor+Cs%C3%A1rdi&rft.au=Alexander+Franks&rft.au=David+S+Choi&rft.au=Edoardo+M+Airoldi&rft.date=2015-05-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-7390&rft.eissn=1553-7404&rft.volume=11&rft.issue=5&rft.spage=e1005206&rft_id=info:doi/10.1371%2Fjournal.pgen.1005206&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_44623f390e4845648aaf06b2d44805b2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon