Accounting for Experimental Noise Reveals That mRNA Levels, Amplified by Post-Transcriptional Processes, Largely Determine Steady-State Protein Levels in Yeast
Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variatio...
Saved in:
Published in | PLoS genetics Vol. 11; no. 5; p. e1005206 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.05.2015
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions, such as correlation and regression, yield biased results when data are noisy, missing systematically, and collinear---properties of mRNA and protein measurements---which motivated us to revisit this subject. Noise-robust analyses of 24 studies of budding yeast reveal that mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional to mRNA levels, but rise much more rapidly. Regulation of translation suffices to explain this nonlinear effect, revealing post-transcriptional amplification of, rather than competition with, transcriptional signals. These results substantially revise widely credited models of protein-level regulation, and introduce multiple noise-aware approaches essential for proper analysis of many biological phenomena. |
---|---|
AbstractList |
Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions, such as correlation and regression, yield biased results when data are noisy, missing systematically, and collinear---properties of mRNA and protein measurements---which motivated us to revisit this subject. Noise-robust analyses of 24 studies of budding yeast reveal that mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional to mRNA levels, but rise much more rapidly. Regulation of translation suffices to explain this nonlinear effect, revealing post-transcriptional amplification of, rather than competition with, transcriptional signals. These results substantially revise widely credited models of protein-level regulation, and introduce multiple noise-aware approaches essential for proper analysis of many biological phenomena. Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions, such as correlation and regression, yield biased results when data are noisy, missing systematically, and collinear---properties of mRNA and protein measurements---which motivated us to revisit this subject. Noise-robust analyses of 24 studies of budding yeast reveal that mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional to mRNA levels, but rise much more rapidly. Regulation of translation suffices to explain this nonlinear effect, revealing post-transcriptional amplification of, rather than competition with, transcriptional signals. These results substantially revise widely credited models of protein-level regulation, and introduce multiple noise-aware approaches essential for proper analysis of many biological phenomena.Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions, such as correlation and regression, yield biased results when data are noisy, missing systematically, and collinear---properties of mRNA and protein measurements---which motivated us to revisit this subject. Noise-robust analyses of 24 studies of budding yeast reveal that mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional to mRNA levels, but rise much more rapidly. Regulation of translation suffices to explain this nonlinear effect, revealing post-transcriptional amplification of, rather than competition with, transcriptional signals. These results substantially revise widely credited models of protein-level regulation, and introduce multiple noise-aware approaches essential for proper analysis of many biological phenomena. Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions, such as correlation and regression, yield biased results when data are noisy, missing systematically, and collinear---properties of mRNA and protein measurements---which motivated us to revisit this subject. Noise-robust analyses of 24 studies of budding yeast reveal that mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional to mRNA levels, but rise much more rapidly. Regulation of translation suffices to explain this nonlinear effect, revealing post-transcriptional amplification of, rather than competition with, transcriptional signals. These results substantially revise widely credited models of protein-level regulation, and introduce multiple noise-aware approaches essential for proper analysis of many biological phenomena. Cells respond to their environment by making proteins using transcription and translation of mRNA. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions, such as correlation and regression, yield biased results when data are noisy and contain missing values. Here we show that when methods that account for noise are used to analyze much of the same data, mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional to mRNA levels as commonly assumed, but rise much more rapidly. Regulation of translation achieves amplification of, rather than competition with, transcriptional signals. Our results suggest that for this set of conditions, mRNA sets protein-level regulation, and introduce multiple noise-aware approaches essential for proper analysis of many biological phenomena. Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions, such as correlation and regression, yield biased results when data are noisy, missing systematically, and collinear---properties of mRNA and protein measurements---which motivated us to revisit this subject. Noise-robust analyses of 24 studies of budding yeast reveal that mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional to mRNA levels, but rise much more rapidly. Regulation of translation suffices to explain this nonlinear effect, revealing post-transcriptional amplification of, rather than competition with, transcriptional signals. These results substantially revise widely credited models of protein-level regulation, and introduce multiple noise-aware approaches essential for proper analysis of many biological phenomena. |
Audience | Academic |
Author | Csárdi, Gábor Franks, Alexander Drummond, D. Allan Airoldi, Edoardo M. Choi, David S. |
AuthorAffiliation | 3 Dept. of Biochemistry & Molecular Biology, University of Chicago, Chicago, Illinois, United States of America 2 The Broad Institute of Harvard & MIT, Cambridge, Massachusetts, United States of America Stanford University School of Medicine, UNITED STATES 4 Dept. of Human Genetics, University of Chicago, Chicago, Illinois, United States of America 1 Dept. of Statistics, Harvard University, Cambridge, Massachusetts, United States of America |
AuthorAffiliation_xml | – name: 3 Dept. of Biochemistry & Molecular Biology, University of Chicago, Chicago, Illinois, United States of America – name: 1 Dept. of Statistics, Harvard University, Cambridge, Massachusetts, United States of America – name: 4 Dept. of Human Genetics, University of Chicago, Chicago, Illinois, United States of America – name: Stanford University School of Medicine, UNITED STATES – name: 2 The Broad Institute of Harvard & MIT, Cambridge, Massachusetts, United States of America |
Author_xml | – sequence: 1 givenname: Gábor surname: Csárdi fullname: Csárdi, Gábor – sequence: 2 givenname: Alexander surname: Franks fullname: Franks, Alexander – sequence: 3 givenname: David S. surname: Choi fullname: Choi, David S. – sequence: 4 givenname: Edoardo M. surname: Airoldi fullname: Airoldi, Edoardo M. – sequence: 5 givenname: D. Allan surname: Drummond fullname: Drummond, D. Allan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25950722$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk99qFDEUxgep2D_6BqKBgii4azJJZjJeCEutWlja0lbBq5DJnJnNMjNZk0zpPo2vara7LV0RUeZiQvI73zl8fGc_2eltD0nynOAxoTl5N7eD61U7XjTQjwnGPMXZo2SPcE5HOcNs58F5N9n3fo4x5aLInyS7KS84ztN0L_k50doOfTB9g2rr0PHNApzpoA-qRafWeEAXcA2q9ehqpgLqLk4naBpvWv8WTbpFa2oDFSqX6Nz6MLpyqvfamUUwNg6Hzp3V4D1EeKpcA-0SfYQArjM9oMsAqlqOLoMKsCIDmH6jjeLpOygfniaP69gcnm3-B8nXT8dXR19G07PPJ0eT6UhnhQgjwLTAuahplvKS8OgPpXWVYkazQrG8JnmRlQUXtNJ1yQFEJYguoaxEXWKqGT1IXq51F631cuOtlyQTnLCc5zQSJ2uismouF9Ek5ZbSKiNvL6xrpHLB6BYkY1lK6zgRMMF4xoRSNc7KtGJMYF6mUevDpttQdlDpaLdT7Zbo9ktvZrKx11E5pUKQKPB6I-DsjwF8kJ3xGtpW9WCH27kxEYLHABwkh2u0UXE009c2KuoVLieMCJbleVZEavwHKn4VdEbH5NUm3m8VvNkqiEyAm9CowXt5cnnxH-zpv7Nn37bZVw_YWUxpmHnbDqvw-W3wxUO_742-24MIsDWgnfXeQX2PECxX63YXCblaN7lZt1j2_rcybWKaY_vonmn_XvwL8cYxDQ |
CitedBy_id | crossref_primary_10_1016_j_biopsych_2021_06_022 crossref_primary_10_1073_pnas_2026362118 crossref_primary_10_2139_ssrn_3155852 crossref_primary_10_7554_eLife_08527 crossref_primary_10_1016_j_crmeth_2022_100288 crossref_primary_10_1016_j_ijpara_2018_03_008 crossref_primary_10_3389_fnins_2021_803107 crossref_primary_10_1091_mbc_E19_12_0708 crossref_primary_10_1186_s12859_018_2175_5 crossref_primary_10_1016_j_tips_2019_04_001 crossref_primary_10_1021_acs_jproteome_9b00704 crossref_primary_10_1139_cjas_2019_0024 crossref_primary_10_1016_j_cels_2017_08_008 crossref_primary_10_1093_nar_gkx430 crossref_primary_10_3390_cells8080791 crossref_primary_10_1038_s41565_024_01672_8 crossref_primary_10_1016_j_heliyon_2023_e13101 crossref_primary_10_1016_j_isci_2024_110659 crossref_primary_10_1038_s41586_023_06228_9 crossref_primary_10_1261_rna_060830_117 crossref_primary_10_1016_j_jmb_2023_168382 crossref_primary_10_1016_j_pathol_2021_02_013 crossref_primary_10_1103_PhysRevE_103_062412 crossref_primary_10_7717_peerj_12358 crossref_primary_10_1371_journal_pbio_3000434 crossref_primary_10_1093_femsyr_foz070 crossref_primary_10_1038_s41586_020_3037_7 crossref_primary_10_1371_journal_pcbi_1004400 crossref_primary_10_1093_bib_bbab483 crossref_primary_10_1096_fj_202201738R crossref_primary_10_1073_pnas_1815563117 crossref_primary_10_1242_dev_161430 crossref_primary_10_1016_j_celrep_2016_05_043 crossref_primary_10_3390_ijerph191912878 crossref_primary_10_7554_eLife_37412 crossref_primary_10_1016_j_cub_2018_06_044 crossref_primary_10_1371_journal_pone_0159235 crossref_primary_10_1146_annurev_biophys_062215_010838 crossref_primary_10_1371_journal_pone_0210371 crossref_primary_10_1098_rsob_160239 crossref_primary_10_1093_nar_gkx898 crossref_primary_10_1038_s41467_017_02467_3 crossref_primary_10_1074_mcp_M115_054288 crossref_primary_10_3389_fmolb_2021_730006 crossref_primary_10_7554_eLife_60645 crossref_primary_10_7554_eLife_62548 crossref_primary_10_3389_fmolb_2021_673363 crossref_primary_10_1016_j_biotechadv_2023_108305 crossref_primary_10_3389_fmicb_2018_02161 crossref_primary_10_1126_science_aag1125 crossref_primary_10_1093_molbev_msz309 crossref_primary_10_15698_mic2024_08_835 crossref_primary_10_1002_mas_21540 crossref_primary_10_1016_j_btre_2021_e00697 crossref_primary_10_1016_j_cels_2017_12_007 crossref_primary_10_1016_j_cels_2017_12_004 crossref_primary_10_1038_s41467_020_15749_0 crossref_primary_10_1242_dev_200715 crossref_primary_10_1186_s12859_016_1054_1 crossref_primary_10_15252_msb_20188513 crossref_primary_10_1016_j_xplc_2022_100457 crossref_primary_10_1186_s12859_017_1873_8 crossref_primary_10_3389_fnmol_2023_1115685 crossref_primary_10_1038_s41598_017_00651_5 crossref_primary_10_1016_j_cell_2017_02_027 crossref_primary_10_1016_j_mcpro_2021_100179 crossref_primary_10_1038_nsmb_3442 crossref_primary_10_1146_annurev_biophys_070816_033719 crossref_primary_10_1016_j_celrep_2016_01_043 crossref_primary_10_1007_s12668_018_0563_y crossref_primary_10_1042_BST20190295 crossref_primary_10_1186_s13578_023_01168_3 crossref_primary_10_1002_fsn3_4615 crossref_primary_10_15252_msb_20188503 crossref_primary_10_3389_fgene_2018_00154 crossref_primary_10_1016_j_mrrev_2017_01_001 crossref_primary_10_1016_j_cels_2018_09_001 crossref_primary_10_1093_jxb_eraf005 crossref_primary_10_1016_j_bbamcr_2021_119209 crossref_primary_10_7554_eLife_59351 crossref_primary_10_15252_msb_20156423 crossref_primary_10_1016_j_compbiomed_2022_106314 crossref_primary_10_1074_jbc_M116_729970 crossref_primary_10_1016_j_softx_2017_06_006 crossref_primary_10_1093_database_baaa076 crossref_primary_10_1186_s12859_019_3150_5 crossref_primary_10_1093_molbev_msw131 crossref_primary_10_1093_molbev_msad169 crossref_primary_10_1093_jxb_erz149 crossref_primary_10_1371_journal_pcbi_1005535 crossref_primary_10_1016_j_cell_2025_02_021 crossref_primary_10_1016_j_celrep_2017_05_018 crossref_primary_10_1038_srep15147 crossref_primary_10_1371_journal_pgen_1006132 crossref_primary_10_1111_febs_13694 crossref_primary_10_1186_s12864_017_3683_9 crossref_primary_10_1093_nar_gkaa060 crossref_primary_10_1002_adbi_202300494 crossref_primary_10_1177_0748730415607321 crossref_primary_10_1016_j_advms_2022_05_001 crossref_primary_10_1016_j_xpro_2022_101409 crossref_primary_10_15252_msb_20167325 crossref_primary_10_1038_s41467_022_30513_2 crossref_primary_10_1007_s11033_019_04793_9 crossref_primary_10_1038_s41580_022_00541_3 crossref_primary_10_1007_s00294_016_0594_2 crossref_primary_10_1073_pnas_2219885120 crossref_primary_10_1038_s41586_020_2899_z crossref_primary_10_1016_j_exer_2018_01_005 crossref_primary_10_1038_s41592_022_01526_y crossref_primary_10_1371_journal_pgen_1010744 crossref_primary_10_3389_fgene_2022_1030415 crossref_primary_10_1016_j_micinf_2016_03_015 crossref_primary_10_1016_j_jtbi_2017_07_006 crossref_primary_10_1371_journal_pgen_1005554 crossref_primary_10_26508_lsa_202101223 crossref_primary_10_3389_fnmol_2018_00332 crossref_primary_10_1126_science_ads2658 crossref_primary_10_1371_journal_pcbi_1007070 crossref_primary_10_1007_s00294_017_0698_3 crossref_primary_10_1016_j_cels_2017_03_003 crossref_primary_10_1126_sciadv_abb1005 crossref_primary_10_1080_21541264_2019_1575159 crossref_primary_10_7554_eLife_65722 crossref_primary_10_3390_cells10020334 crossref_primary_10_1016_j_bbagrm_2017_04_003 crossref_primary_10_1016_j_cels_2020_05_001 crossref_primary_10_1016_j_tibs_2023_08_005 |
Cites_doi | 10.1093/nar/gkr1029 10.1038/nsmb.1514 10.1038/nature02046 10.1177/01466216970213005 10.1038/msb.2010.59 10.1016/j.febslet.2009.10.036 10.1046/j.1365-2958.2002.03172.x 10.1038/msb.2011.48 10.1016/0014-4827(77)90154-9 10.1038/nature07341 10.1016/S0076-6879(10)70006-9 10.1186/1471-2105-8-447 10.1186/1471-2105-8-309 10.1016/S0160-2896(99)00024-0 10.1038/msb.2010.63 10.1111/j.1365-2435.2006.01209.x 10.1152/jn.90727.2008 10.1002/pmic.201300135 10.1136/bmj.c2289 10.1126/science.aaa8332 10.1091/mbc.12.2.323 10.1016/j.molcel.2004.06.004 10.1073/pnas.0605420103 10.1038/msb4100117 10.1016/j.cell.2012.09.019 10.1038/nbt1270 10.1016/j.bbrc.2005.11.055 10.1186/gb-2003-4-9-117 10.1073/pnas.112683499 10.1074/mcp.M110.003699 10.1128/MCB.19.3.1720 10.1038/nature04785 10.1074/mcp.M300129-MCP200 10.1002/sim.2984 10.1093/genetics/164.4.1291 10.1007/s00284-008-9145-5 10.1186/1471-2164-9-574 10.1007/BF00275119 10.1101/gr.079558.108 10.1016/j.cell.2009.05.051 10.1021/pr025556v 10.1016/S0092-8674(00)81845-0 10.1074/mcp.M111.013722 10.1038/nbt1098-939 10.1126/science.1259038 10.1038/85686 10.1128/MCB.19.11.7357 10.1201/9780429258480 10.1126/science.1170160 10.1016/S0092-8674(00)81641-4 10.1093/molbev/mst051 10.1177/014662168500900310 10.1074/mcp.M400099-MCP200 10.1074/mcp.O111.014704 10.1038/nbt.1551 10.1073/pnas.0812841106 10.1073/pnas.0504070102 10.1073/pnas.1120799109 10.1038/nature10098 10.1038/nrg2825 10.7717/peerj.270 10.1371/journal.pcbi.1000865 10.1177/0013164496056001004 10.1038/nrg3185 10.1002/0471704091 10.1126/science.1241934 10.1101/gr.164996.113 10.1371/journal.pcbi.0030057 10.1126/science.1158441 10.1098/rsta.1903.0001 10.1093/nar/gku671 10.1186/jbiol54 10.1371/journal.pcbi.1000664 10.1214/08-AOAS191 10.2307/1412159 10.1016/S0968-0004(99)01460-7 10.1038/nature13007 10.1002/yea.1768 10.1126/science.1168978 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2015 Public Library of Science 2015 Csárdi et al 2015 Csárdi et al 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Csárdi G, Franks A, Choi DS, Airoldi EM, Drummond DA (2015) Accounting for Experimental Noise Reveals That mRNA Levels, Amplified by Post-Transcriptional Processes, Largely Determine Steady-State Protein Levels in Yeast. PLoS Genet 11(5): e1005206. doi:10.1371/journal.pgen.1005206 |
Copyright_xml | – notice: COPYRIGHT 2015 Public Library of Science – notice: 2015 Csárdi et al 2015 Csárdi et al – notice: 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Csárdi G, Franks A, Choi DS, Airoldi EM, Drummond DA (2015) Accounting for Experimental Noise Reveals That mRNA Levels, Amplified by Post-Transcriptional Processes, Largely Determine Steady-State Protein Levels in Yeast. PLoS Genet 11(5): e1005206. doi:10.1371/journal.pgen.1005206 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 7X8 5PM DOA |
DOI | 10.1371/journal.pgen.1005206 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Opposing Viewpoints (Gale in Context) Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | mRNA Levels Amplified by Translation Determine Protein Levels |
EISSN | 1553-7404 |
ExternalDocumentID | 1685147573 oai_doaj_org_article_44623f390e4845648aaf06b2d44805b2 PMC4423881 A418467769 25950722 10_1371_journal_pgen_1005206 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM088344 – fundername: NIGMS NIH HHS grantid: GM096193 – fundername: NIGMS NIH HHS grantid: R01 GM096193 – fundername: NIGMS NIH HHS grantid: R01 GM088344 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 QF4 QN7 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM PJZUB PPXIY PQGLB RIG WOQ PMFND 7X8 5PM PUEGO - 3V. AAPBV ABPTK ADACO BBAFP M~E PQEST PQUKI PRINS |
ID | FETCH-LOGICAL-c698t-e039078f3625b1537133fd204369a47f1796b9583dcfb5ee8d81cbebd8fb03c43 |
IEDL.DBID | M48 |
ISSN | 1553-7404 1553-7390 |
IngestDate | Fri Nov 26 17:13:30 EST 2021 Wed Aug 27 01:21:31 EDT 2025 Thu Aug 21 18:27:14 EDT 2025 Tue Aug 05 09:49:14 EDT 2025 Tue Jun 17 20:44:03 EDT 2025 Tue Jun 10 20:39:55 EDT 2025 Fri Jun 27 04:51:59 EDT 2025 Fri Jun 27 03:56:20 EDT 2025 Fri Jun 27 03:44:45 EDT 2025 Thu May 22 21:22:13 EDT 2025 Mon Jul 21 06:05:44 EDT 2025 Thu Apr 24 22:53:45 EDT 2025 Tue Jul 01 04:31:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c698t-e039078f3625b1537133fd204369a47f1796b9583dcfb5ee8d81cbebd8fb03c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. The authors have declared that no competing interests exist. Conceived and designed the experiments: DAD EMA. Performed the experiments: GC AF DSC DAD. Analyzed the data: GC AF DSC DAD. Contributed reagents/materials/analysis tools: GC AF DSC EMA DAD. Wrote the paper: DAD GC AF EMA. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1005206 |
PMID | 25950722 |
PQID | 1680188555 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1685147573 doaj_primary_oai_doaj_org_article_44623f390e4845648aaf06b2d44805b2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4423881 proquest_miscellaneous_1680188555 gale_infotracmisc_A418467769 gale_infotracacademiconefile_A418467769 gale_incontextgauss_ISR_A418467769 gale_incontextgauss_ISN_A418467769 gale_incontextgauss_IOV_A418467769 gale_healthsolutions_A418467769 pubmed_primary_25950722 crossref_primary_10_1371_journal_pgen_1005206 crossref_citationtrail_10_1371_journal_pgen_1005206 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-05-01 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
PublicationTitle | PLoS genetics |
PublicationTitleAlternate | PLoS Genet |
PublicationYear | 2015 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | GC Johnston (ref55) 1977; 105 E Ahrné (ref62) 2013; 13 J Plotkin (ref28) 2010; 6 S Behseta (ref52) 2009; 101 V Pelechano (ref81) 2010; 27 S Ghaemmaghami (ref30) 2003; 425 V Velculescu (ref35) 1997; 88 S Gygi (ref6) 1999; 19 G Kudla (ref69) 2009; 324 EZ Yu (ref5) 2007; 8 L de Godoy (ref40) 2008; 455 JJ Li (ref23) 2015; 347 A Beyer (ref4) 2004; 3 N Ingolia (ref18) 2009; 324 B Futcher (ref20) 1999; 19 R Sokal (ref34) 1995 K Pearson (ref25) 1903; 200 KR Frank (ref70) 1978; 160 J Barnard (ref73) 2000; 10 J Garcia-Martinez (ref78) 2004; 15 RA Alexander (ref26) 1985; 9 T von der Haar (ref56) 2002; 46 M Siwiak (ref8) 2010; 6 NT Ingolia (ref79) 2010; 470 M Lee (ref41) 2011; 7 P Lu (ref17) 2007; 25 AO Subtelny (ref61) 2014; 508 F Miura (ref54) 2008; 9 (ref71) 2014 J Li (ref21) 2014; 2 F Schmidt (ref46) 1999; 27 B Schwanhausser (ref3) 2011; 473 R Brockmann (ref11) 2007; 3 MW Schmidt (ref12) 2007; 3 D Greenbaum (ref19) 2003; 4 N Nagaraj (ref83) 2012; 11 DA Drummond (ref49) 2005; 102 S Marguerat (ref64) 2012; 151 J Peng (ref75) 2003; 2 H Causton (ref76) 2001; 12 MV Gerashchenko (ref59) 2014; 42 C Vogel (ref9) 2012; 13 J Castrillo (ref13) 2007; 6 C Vogel (ref15) 2010; 6 J Marioni (ref44) 2008; 18 D Zimmerman (ref48) 1997; 21 A Gelman (ref72) 2008; 2 A Belle (ref2) 2006; 103 M Wang (ref16) 2012; 11 DB Goodman (ref68) 2013; 342 F Roth (ref82) 1998; 16 J Cherry (ref42) 2012; 40 D Zenklusen (ref53) 2008; 15 M Gerashchenko (ref58) 2012; 109 S Weisberg (ref32) 2005 J Leek (ref22) 2010; 11 CJ McManus (ref60) 2014; 24 V MacKay (ref80) 2004; 3 L Nie (ref10) 2006; 339 S Adolph (ref50) 2007; 21 K Archer (ref51) 2007; 8 A Dudley (ref77) 2002; 99 K Archer (ref45) 2008; 27 M Yassour (ref43) 2009; 106 C Spearman (ref24) 1904; 15 P Legendre (ref33) 1998 U Nagalakshmi (ref37) 2008; 320 D Lipson (ref38) 2009; 27 S Thakur (ref84) 2011; 10 J Newman (ref39) 2006; 441 JR Warner (ref63) 1999; 24 F Holstege (ref36) 1998; 95 W Gu (ref67) 2010; 6 AM Franks (ref27) 2014 G Wu (ref14) 2008; 57 R de Sousa Abreu (ref1) 2009; 5 EW Wallace (ref66) 2013; 30 M Jovanovic (ref29) 2015; 347 A Gelman (ref74) 2003 P Muchinsky (ref47) 1996; 56 T Maier (ref7) 2009; 583 H Akashi (ref65) 2003; 164 M Washburn (ref85) 2001; 19 J Hutcheon (ref31) 2010; 340 P Picotti (ref57) 2009; 138 |
References_xml | – volume: 40 start-page: D700 year: 2012 ident: ref42 article-title: Saccharomyces genome database: the genomics resource of budding yeast publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr1029 – volume: 15 start-page: 1263 year: 2008 ident: ref53 article-title: Single-RNA counting reveals alternative modes of gene expression in yeast publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1514 – volume: 425 start-page: 737 year: 2003 ident: ref30 article-title: Global analysis of protein expression in yeast publication-title: Nature doi: 10.1038/nature02046 – volume: 21 start-page: 253270 year: 1997 ident: ref48 article-title: Properties of the spearman correction for attenuation for normal and realistic non-normal distributions publication-title: Applied Psychological Measurement doi: 10.1177/01466216970213005 – volume: 6 start-page: 400 year: 2010 ident: ref15 article-title: Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line publication-title: Mol Syst Biol doi: 10.1038/msb.2010.59 – volume: 583 start-page: 3966 year: 2009 ident: ref7 article-title: Correlation of mRNA and protein in complex biological samples publication-title: FEBS Lett doi: 10.1016/j.febslet.2009.10.036 – volume: 46 start-page: 531 year: 2002 ident: ref56 article-title: Intracellular translation initiation factor levels in Saccharomyces cerevisiae and their role in cap-complex function publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2002.03172.x – volume: 7 start-page: 514 year: 2011 ident: ref41 article-title: A dynamic model of proteome changes reveals new roles for transcript alteration in yeast publication-title: Mol Syst Biol doi: 10.1038/msb.2011.48 – volume: 105 start-page: 79 year: 1977 ident: ref55 article-title: Coordination of growth with cell division in the yeast Saccharomyces cerevisiae publication-title: Experimental cell research doi: 10.1016/0014-4827(77)90154-9 – volume: 455 start-page: 1251 year: 2008 ident: ref40 article-title: Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast publication-title: Nature doi: 10.1038/nature07341 – volume: 470 start-page: 119 year: 2010 ident: ref79 article-title: Genome-wide translational profiling by ribosome footprinting publication-title: Methods Enzymol doi: 10.1016/S0076-6879(10)70006-9 – volume: 8 start-page: 447 year: 2007 ident: ref51 article-title: Application of a correlation correction factor in a microarray crossplatform reproducibility study publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-447 – volume: 8 start-page: 309 year: 2007 ident: ref5 article-title: PARE: a tool for comparing protein abundance and mRNA expression data publication-title: BMC bioinformatics doi: 10.1186/1471-2105-8-309 – volume: 27 start-page: 183198 year: 1999 ident: ref46 article-title: Theory testing and measurement error publication-title: Intelligence doi: 10.1016/S0160-2896(99)00024-0 – volume: 6 start-page: 406 year: 2010 ident: ref28 article-title: Transcriptional regulation is only half the story publication-title: Mol Syst Biol doi: 10.1038/msb.2010.63 – volume: 21 start-page: 178 year: 2007 ident: ref50 article-title: Estimating phenotypic correlations: correcting for bias due to intrain-dividual variability publication-title: Functional Ecology doi: 10.1111/j.1365-2435.2006.01209.x – volume: 101 start-page: 2186 year: 2009 ident: ref52 article-title: Bayesian correction for attenuation of correlation in multi-trial spike count data publication-title: J neurophysiol doi: 10.1152/jn.90727.2008 – volume: 13 start-page: 2567 year: 2013 ident: ref62 article-title: Critical assessment of proteome-wide label-free absolute abundance estimation strategies publication-title: Proteomics doi: 10.1002/pmic.201300135 – volume: 340 start-page: c2289 year: 2010 ident: ref31 article-title: Random measurement error and regression dilution bias publication-title: BMJ doi: 10.1136/bmj.c2289 – volume: 347 start-page: 1066 year: 2015 ident: ref23 article-title: Statistics requantitates the central dogma publication-title: Science doi: 10.1126/science.aaa8332 – volume: 12 start-page: 323 year: 2001 ident: ref76 article-title: Remodeling of yeast genome expression in response to environmental changes publication-title: Mol Biol Cell doi: 10.1091/mbc.12.2.323 – volume: 15 start-page: 303 year: 2004 ident: ref78 article-title: Genomic run-on evaluates transcription rates for all yeast genes and identifies gene regulatory mechanisms publication-title: Mol Cell doi: 10.1016/j.molcel.2004.06.004 – volume: 103 start-page: 13004 year: 2006 ident: ref2 article-title: Quantification of protein half-lives in the budding yeast proteome publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0605420103 – volume: 3 start-page: 79 year: 2007 ident: ref12 article-title: Comparative proteomic and transcriptomic profiling of the fission yeast Schizosaccharomyces pombe publication-title: Molecular systems biology doi: 10.1038/msb4100117 – volume: 151 start-page: 671 year: 2012 ident: ref64 article-title: Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells publication-title: CELL doi: 10.1016/j.cell.2012.09.019 – volume: 25 start-page: 117 year: 2007 ident: ref17 article-title: Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation publication-title: Nat Biotechnol doi: 10.1038/nbt1270 – volume: 339 start-page: 603 year: 2006 ident: ref10 article-title: Correlation between mRNA and protein abundance in Desulfovib-rio vulgaris: a multiple regression to identify sources of variations publication-title: Biochemical and biophysical research communications doi: 10.1016/j.bbrc.2005.11.055 – volume: 4 start-page: 117 year: 2003 ident: ref19 article-title: Comparing protein abundance and mRNA expression levels on a genomic scale publication-title: Genome Biol doi: 10.1186/gb-2003-4-9-117 – volume: 99 start-page: 7554 year: 2002 ident: ref77 article-title: Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.112683499 – volume: 10 year: 2011 ident: ref84 article-title: Deep and highly sensitive proteome coverage by LC-MS/MS without prefractionation publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M110.003699 – volume: 19 start-page: 1720 year: 1999 ident: ref6 article-title: Correlation between protein and mRNA abundance in yeast publication-title: Mol Cell Biol doi: 10.1128/MCB.19.3.1720 – volume: 441 start-page: 840 year: 2006 ident: ref39 article-title: Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise publication-title: Nature doi: 10.1038/nature04785 – volume: 3 start-page: 478 year: 2004 ident: ref80 article-title: Gene expression analyzed by high-resolution state array analysis and quantitative proteomics: response of yeast to mating pheromone publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M300129-MCP200 – volume: 27 start-page: 1026 year: 2008 ident: ref45 article-title: A disattenuated correlation estimate when variables are measured with error: illustration estimating cross-platform correlations publication-title: Stat med doi: 10.1002/sim.2984 – volume: 164 start-page: 1291 year: 2003 ident: ref65 article-title: Translational selection and yeast proteome evolution publication-title: Genetics doi: 10.1093/genetics/164.4.1291 – volume: 57 start-page: 18 year: 2008 ident: ref14 article-title: Integrative analyses of posttranscriptional regulation in the yeast Saccharomyces cerevisiae using transcriptomic and proteomic data publication-title: Current microbiology doi: 10.1007/s00284-008-9145-5 – volume: 9 start-page: 574 year: 2008 ident: ref54 article-title: Absolute quantification of the budding yeast transcriptome by means of competitive PCR between genomic and complementary DNAs publication-title: BMC Genomics doi: 10.1186/1471-2164-9-574 – volume: 160 start-page: 59 year: 1978 ident: ref70 article-title: Ribosome activity and degradation in meiotic cells of Saccharomyces cerevisiae publication-title: Molecular & General Genetics doi: 10.1007/BF00275119 – volume: 18 start-page: 1509 year: 2008 ident: ref44 article-title: Rna-seq: An assessment of technical reproducibility and comparison with gene expression arrays publication-title: Genome Research doi: 10.1101/gr.079558.108 – volume: 5 start-page: 1512 year: 2009 ident: ref1 article-title: Global signatures of protein and mRNA expression levels publication-title: Mol Biosyst – volume: 138 start-page: 795 year: 2009 ident: ref57 article-title: Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics publication-title: Cell doi: 10.1016/j.cell.2009.05.051 – volume: 2 start-page: 43 year: 2003 ident: ref75 article-title: Evaluation of multidimensional chromatog-raphy coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome publication-title: J Proteome Res doi: 10.1021/pr025556v – volume: 88 start-page: 243 year: 1997 ident: ref35 article-title: Characterization of the yeast transcriptome publication-title: Cell doi: 10.1016/S0092-8674(00)81845-0 – volume: 11 year: 2012 ident: ref83 article-title: System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M111.013722 – volume: 16 start-page: 939 year: 1998 ident: ref82 article-title: Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation publication-title: Nat Biotechnol doi: 10.1038/nbt1098-939 – volume: 347 start-page: 1259038 year: 2015 ident: ref29 article-title: Dynamic profiling of the protein life cycle in response to pathogens publication-title: Science doi: 10.1126/science.1259038 – volume: 19 start-page: 242 year: 2001 ident: ref85 article-title: Large-scale analysis of the yeast proteome by multidimensional protein identification technology publication-title: Nat Biotechnol doi: 10.1038/85686 – volume: 19 start-page: 7357 year: 1999 ident: ref20 article-title: A sampling of the yeast proteome publication-title: Mol Cell Biol doi: 10.1128/MCB.19.11.7357 – year: 2003 ident: ref74 article-title: Bayesian data analysis doi: 10.1201/9780429258480 – volume: 324 start-page: 255 year: 2009 ident: ref69 article-title: Coding-sequence determinants of gene expression in Escherichia coli publication-title: Science doi: 10.1126/science.1170160 – volume: 95 start-page: 717 year: 1998 ident: ref36 article-title: Dissecting the regulatory circuitry of a eukaryotic genome publication-title: Cell doi: 10.1016/S0092-8674(00)81641-4 – volume: 30 start-page: 1438 year: 2013 ident: ref66 article-title: Estimating selection on synonymous codon usage from noisy experimental data publication-title: Mol Biol Evol doi: 10.1093/molbev/mst051 – volume: 9 start-page: 317 year: 1985 ident: ref26 article-title: Correcting for Restriction of Range in Both X and Y When the Unrestricted Variances are Unknown publication-title: Applied Psychological Measurement doi: 10.1177/014662168500900310 – volume: 3 start-page: 1083 year: 2004 ident: ref4 article-title: Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M400099-MCP200 – year: 1998 ident: ref33 article-title: Numerical ecology – volume: 11 start-page: 492 year: 2012 ident: ref16 article-title: Paxdb, a database of protein abundance averages across all three domains of life publication-title: Molecular & Cellular Proteomics doi: 10.1074/mcp.O111.014704 – volume: 27 start-page: 652 year: 2009 ident: ref38 article-title: Quantification of the yeast transcriptome by single-molecule sequencing publication-title: Nat Biotechnol doi: 10.1038/nbt.1551 – volume: 106 start-page: 3264 year: 2009 ident: ref43 article-title: Ab initio construction of a eukaryotic transcriptome by massively parallel mRNA sequencing publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0812841106 – volume: 102 start-page: 14338 year: 2005 ident: ref49 article-title: Why highly expressed proteins evolve slowly publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0504070102 – volume: 109 start-page: 17394 year: 2012 ident: ref58 article-title: Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1120799109 – volume: 473 start-page: 337 year: 2011 ident: ref3 article-title: Global quantification of mammalian gene expression control publication-title: Nature doi: 10.1038/nature10098 – volume: 11 start-page: 733 year: 2010 ident: ref22 article-title: Tackling the widespread and critical impact of batch effects in highthroughput data publication-title: Nat Rev Genet doi: 10.1038/nrg2825 – volume: 10 start-page: 1281 year: 2000 ident: ref73 article-title: Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage publication-title: Statistica Sinica – volume: 2 start-page: e270 year: 2014 ident: ref21 article-title: System wide analyses have underestimated protein abundances and the importance of transcription in mammals publication-title: PeerJ doi: 10.7717/peerj.270 – volume: 6 start-page: e1000865 year: 2010 ident: ref8 article-title: A comprehensive, quantitative, and genome-wide model of translation publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000865 – start-page: 00 year: 2014 ident: ref27 article-title: Estimating a structured covariance matrix from multi-lab measurements in high-throughput biology publication-title: Journal of the American Statistical Association – volume: 56 start-page: 63 year: 1996 ident: ref47 article-title: The correction for attenuation publication-title: Educational and psychological measurement doi: 10.1177/0013164496056001004 – volume: 13 start-page: 227 year: 2012 ident: ref9 article-title: Insights into the regulation of protein abundance from proteomic and transcriptomic analyses publication-title: Nat Rev Genet doi: 10.1038/nrg3185 – year: 2005 ident: ref32 article-title: Applied Linear Regression doi: 10.1002/0471704091 – volume: 342 start-page: 475 year: 2013 ident: ref68 article-title: Causes and effects of N-terminal codon bias in bacterial genes publication-title: Science doi: 10.1126/science.1241934 – volume: 24 start-page: 422 year: 2014 ident: ref60 article-title: Ribosome profiling reveals post-transcriptional buffering of divergent gene expression in yeast publication-title: Genome research doi: 10.1101/gr.164996.113 – volume: 3 start-page: e57 year: 2007 ident: ref11 article-title: Posttranscriptional expression regulation: what determines translation rates? publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0030057 – volume: 320 start-page: 1344 year: 2008 ident: ref37 article-title: The transcriptional landscape of the yeast genome defined by RNA sequencing publication-title: Science doi: 10.1126/science.1158441 – volume: 200 start-page: 1 year: 1903 ident: ref25 article-title: I. Mathematical Contributions to the Theory of Evolution.XI On the Influence of Natural Selection on the Variability and Correlation of Organs publication-title: Philosophical Transactions of the Royal Society of London Series A doi: 10.1098/rsta.1903.0001 – volume: 42 start-page: e134 year: 2014 ident: ref59 article-title: Translation inhibitors cause abnormalities in ribosome profiling experiments publication-title: Nucleic acids research doi: 10.1093/nar/gku671 – year: 2014 ident: ref71 article-title: R: A Language and Environment for Statistical Computing – volume: 6 start-page: 4 year: 2007 ident: ref13 article-title: Growth control of the eukaryote cell: a systems biology study in yeast publication-title: J Biol doi: 10.1186/jbiol54 – volume: 6 start-page: e1000664 year: 2010 ident: ref67 article-title: A universal trend of reduced mrna stability near the translation-initiation site in prokaryotes and eukaryotes publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1000664 – volume: 2 start-page: 1360 year: 2008 ident: ref72 article-title: A weakly informative default prior distribution for logistic and other regression models publication-title: Annals of Applied Statistics doi: 10.1214/08-AOAS191 – volume: 15 start-page: 72 year: 1904 ident: ref24 article-title: The proof and measurement of association between two things publication-title: Am J Psychol doi: 10.2307/1412159 – year: 1995 ident: ref34 article-title: Biometry – volume: 24 start-page: 437 year: 1999 ident: ref63 article-title: The economics of ribosome biosynthesis in yeast publication-title: Trends Biochem Sci doi: 10.1016/S0968-0004(99)01460-7 – volume: 508 start-page: 66 year: 2014 ident: ref61 article-title: Poly(A)-tail profiling reveals an embryonic switch in translational control publication-title: Nature doi: 10.1038/nature13007 – volume: 27 start-page: 413 year: 2010 ident: ref81 article-title: There is a steady-state transcriptome in exponentially growing yeast cells publication-title: Yeast doi: 10.1002/yea.1768 – volume: 324 start-page: 218 year: 2009 ident: ref18 article-title: Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling publication-title: Science doi: 10.1126/science.1168978 |
SSID | ssj0035897 |
Score | 2.5228114 |
Snippet | Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations... Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1005206 |
SubjectTerms | Competition Datasets Gene Expression Regulation, Fungal Genes Genetic aspects Identification and classification Messenger RNA Methods Models, Genetic Noise Physiological aspects Proteins Reproducibility of Results RNA Processing, Post-Transcriptional RNA, Messenger - genetics RNA, Messenger - metabolism Rodents Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Studies Transcription (Genetics) Transcription, Genetic Yeast Yeasts (Fungi) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQJSQuiPcGFjAIiQthkziOnWNBrBYkirSwaG-Wk9i7lUJSkfTQX8NfZcZ2S4OQdg_cqnYctfPyjPrNN4S8SqWoEyZNrJnGFWYQitKWLK5FZk1Zl0Xj0O6fF8XJWf7pnJ_vrfpCTJinB_aKO4J2JWMWOnOTS6Q-kVrbpKiyBvqKhFcu-8Kdt22mfA5mXPq1KpyzWMDhMDTHRHoUbPR2BQZCjADPcNvR3qXkuPt3GXq2avvhX-Xn3yjKvWvp-A65HepJOve_4y65Ybp75KbfMLm5T3792QZBoTyl-4T-tOuXg6HI4QQ-SMdLPdIfp4s5bRFINLyhGtHmFmpUWm3oqh_GeMSbbZtn4AkrP2ZgQLhFSHm7oU3A1xjq_GcTu5El6vggll14NoVXG9wa9ICcHX_49v4kDjsZ4roo5RibBLQppIV7j1eQLbHHtQ0O2BalzoWF-C6qkkvW1LbixshGpnVlqkbaKmF1zh6SWdd35oDQzEICMbnmcDYvEvhKhcwgf2gtuNAyjQjbGkXVgbAc92a0yv0LJ6Bx8TpWaEoVTBmReHdq5Qk7rpB_h_beySLdtnsDnFAFJ1RXOWFEnqO3KD-7uksaap6nWN-JoozISyeBlBsdYnou9HoY1Mcv368h9HVxHaHTidDrIGR70Fmtw7AFaB75viaShxNJyC715OMDDICt6gaVFlCj52AhFpEX26BQeArRep3p104mSaXknEfkkQ-SnX6h3YYWJAOViUn4TAww_aRbXjre8xxKfynTx__DYk_ILSh9uYeuHpLZ-HNtnkJ5OVbPXCb5DYAid5I priority: 102 providerName: Directory of Open Access Journals |
Title | Accounting for Experimental Noise Reveals That mRNA Levels, Amplified by Post-Transcriptional Processes, Largely Determine Steady-State Protein Levels in Yeast |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25950722 https://www.proquest.com/docview/1680188555 https://pubmed.ncbi.nlm.nih.gov/PMC4423881 https://doaj.org/article/44623f390e4845648aaf06b2d44805b2 http://dx.doi.org/10.1371/journal.pgen.1005206 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6VVEhcEO8aSlgQEhdc-bXe9QGhFLUqSA0oENSbtbZ320jGDrEj4V_DX2Vm_aBGRfTALYpnV8nMzss78w0hL13BU8cXypa-xBFmoIpCR76dck-rKI3CzFS7n87Dk2Xw4Yyd7ZB-ZmvHwOrK1A7nSS03-cGP781bUPg3ZmoDd_tFB2tgOd76Mw8xuHfBN3GcaXAaDPcKPhPtuBXGfJtDut810_1tl5GzMpj-g-WerPOyuios_bO68pK7Or5DbndxJp21B-Mu2VHFPXKznTzZ3Cc_f0-JoBC20stA_7QoV5WiiO0EPKL1hazpt8V8RnMsMKpeU4lV6BpiV5o0dF1WtV2jx-vtD-ywbtsPFBDnWGqeNzTr6m4UNeeqsU0rEzU4Eaui25vCpwanCT0gy-OjL-9O7G5Wg52Gkaht5QA3udDgD1kCVhRzX51h420YyYBr0PswiZjws1QnTCmRCTdNVJIJnTh-GvgPyaQoC7VHqKfBsKhAMlgbhA78pFB4YFek5IxL4VrE74USpx2QOc7TyGNzO8choWl5HKMo406UFrGHVesWyOMf9Ico74EWYbjNF-XmPO60OoZc2vM1_HMVCMTlEVJqJ0y8DJJehyWeRZ7haYnbntbBmMSzwMW4j4eRRV4YCoTiKLDW51xuqyp-__HrNYg-z69DtBgRveqIdAk8S2XXhAGcRxywEeX-iBKsTjp6vIcK0LOuit0QYvcAJORb5HmvFDGuwiq-QpVbQ-O4QjDGLPKoVZKBv5CGQ2riAcv4SH1GAhg_KVYXBg89gJRACPfx_5DYE3ILQmLWlrTuk0m92aqnEHbWyZTc4Gd8SnYPj-afFlPz8mZqrMsv3WmGAQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accounting+for+experimental+noise+reveals+that+mRNA+levels%2C+amplified+by+post-transcriptional+processes%2C+largely+determine+steady-state+protein+levels+in+yeast&rft.jtitle=PLoS+genetics&rft.au=G%C3%A1bor+Cs%C3%A1rdi&rft.au=Alexander+Franks&rft.au=David+S+Choi&rft.au=Edoardo+M+Airoldi&rft.date=2015-05-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-7390&rft.eissn=1553-7404&rft.volume=11&rft.issue=5&rft.spage=e1005206&rft_id=info:doi/10.1371%2Fjournal.pgen.1005206&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_44623f390e4845648aaf06b2d44805b2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |