ABI4 Regulates Primary Seed Dormancy by Regulating the Biogenesis of Abscisic Acid and Gibberellins in Arabidopsis
Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstal...
Saved in:
Published in | PLoS genetics Vol. 9; no. 6; p. e1003577 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.06.2013
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstalk between ABA and GA, which underlies seed dormancy, requires further elucidation. Here, we report that ABI4 positively regulates primary seed dormancy, while negatively regulating cotyledon greening, by mediating the biogenesis of ABA and GA. Seeds of the Arabidopsis abi4 mutant that were subjected to short-term storage (one or two weeks) germinated significantly more quickly than Wild-Type (WT), and abi4 cotyledons greened markedly more quickly than WT, while the rates of germination and greening were comparable when the seeds were subjected to longer-term storage (six months). The ABA content of dry abi4 seeds was remarkably lower than that of WT, but the amounts were comparable after stratification. Consistently, the GA level of abi4 seeds was increased compared to WT. Further analysis showed that abi4 was resistant to treatment with paclobutrazol (PAC), a GA biosynthesis inhibitor, during germination, while OE-ABI4 was sensitive to PAC, and exogenous GA rescued the delayed germination phenotype of OE-ABI4. Analysis by qRT-PCR showed that the expression of genes involved in ABA and GA metabolism in dry and germinating seeds corresponded to hormonal measurements. Moreover, chromatin immunoprecipitation qPCR (ChIP-qPCR) and transient expression analysis showed that ABI4 repressed CYP707A1 and CYP707A2 expression by directly binding to those promoters, and the ABI4 binding elements are essential for this repression. Accordingly, further genetic analysis showed that abi4 recovered the delayed germination phenotype of cyp707a1 and cyp707a2 and further, rescued the non-germinating phenotype of ga1-t. Taken together, this study suggests that ABI4 is a key factor that regulates primary seed dormancy by mediating the balance between ABA and GA biogenesis. |
---|---|
AbstractList | Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstalk between ABA and GA, which underlies seed dormancy, requires further elucidation. Here, we report that ABI4 positively regulates primary seed dormancy, while negatively regulating cotyledon greening, by mediating the biogenesis of ABA and GA. Seeds of the Arabidopsis abi4 mutant that were subjected to short-term storage (one or two weeks) germinated significantly more quickly than Wild-Type (WT), and abi4 cotyledons greened markedly more quickly than WT, while the rates of germination and greening were comparable when the seeds were subjected to longer-term storage (six months). The ABA content of dry abi4 seeds was remarkably lower than that of WT, but the amounts were comparable after stratification. Consistently, the GA level of abi4 seeds was increased compared to WT. Further analysis showed that abi4 was resistant to treatment with paclobutrazol (PAC), a GA biosynthesis inhibitor, during germination, while OE-ABI4 was sensitive to PAC, and exogenous GA rescued the delayed germination phenotype of OE-ABI4. Analysis by qRT-PCR showed that the expression of genes involved in ABA and GA metabolism in dry and germinating seeds corresponded to hormonal measurements. Moreover, chromatin immunoprecipitation qPCR (ChIP-qPCR) and transient expression analysis showed that ABI4 repressed CYP707A1 and CYP707A2 expression by directly binding to those promoters, and the ABI4 binding elements are essential for this repression. Accordingly, further genetic analysis showed that abi4 recovered the delayed germination phenotype of cyp707a1 and cyp707a2 and further, rescued the nongerminating phenotype of ga1-t. Taken together, this study suggests that ABI4 is a key factor that regulates primary seed dormancy by mediating the balance between ABA and GA biogenesis. Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstalk between ABA and GA, which underlies seed dormancy, requires further elucidation. Here, we report that ABI4 positively regulates primary seed dormancy, while negatively regulating cotyledon greening, by mediating the biogenesis of ABA and GA. Seeds of the Arabidopsis abi4 mutant that were subjected to short-term storage (one or two weeks) germinated significantly more quickly than Wild-Type (WT), and abi4 cotyledons greened markedly more quickly than WT, while the rates of germination and greening were comparable when the seeds were subjected to longer-term storage (six months). The ABA content of dry abi4 seeds was remarkably lower than that of WT, but the amounts were comparable after stratification. Consistently, the GA level of abi4 seeds was increased compared to WT. Further analysis showed that abi4 was resistant to treatment with paclobutrazol (PAC), a GA biosynthesis inhibitor, during germination, while OE-ABI4 was sensitive to PAC, and exogenous GA rescued the delayed germination phenotype of OE-ABI4. Analysis by qRT-PCR showed that the expression of genes involved in ABA and GA metabolism in dry and germinating seeds corresponded to hormonal measurements. Moreover, chromatin immunoprecipitation qPCR (ChIP-qPCR) and transient expression analysis showed that ABI4 repressed CYP707A1 and CYP707A2 expression by directly binding to those promoters, and the ABI4 binding elements are essential for this repression. Accordingly, further genetic analysis showed that abi4 recovered the delayed germination phenotype of cyp707a1 and cyp707a2 and further, rescued the non-germinating phenotype of ga1-t. Taken together, this study suggests that ABI4 is a key factor that regulates primary seed dormancy by mediating the balance between ABA and GA biogenesis. Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstalk between ABA and GA, which underlies seed dormancy, requires further elucidation. Here, we report that ABI4 positively regulates primary seed dormancy, while negatively regulating cotyledon greening, by mediating the biogenesis of ABA and GA. Seeds of the Arabidopsis abi4 mutant that were subjected to short-term storage (one or two weeks) germinated significantly more quickly than Wild-Type (WT), and abi4 cotyledons greened markedly more quickly than WT, while the rates of germination and greening were comparable when the seeds were subjected to longer-term storage (six months). The ABA content of dry abi4 seeds was remarkably lower than that of WT, but the amounts were comparable after stratification. Consistently, the GA level of abi4 seeds was increased compared to WT. Further analysis showed that abi4 was resistant to treatment with paclobutrazol (PAC), a GA biosynthesis inhibitor, during germination, while OE-ABI4 was sensitive to PAC, and exogenous GA rescued the delayed germination phenotype of OE-ABI4. Analysis by qRT-PCR showed that the expression of genes involved in ABA and GA metabolism in dry and germinating seeds corresponded to hormonal measurements. Moreover, chromatin immunoprecipitation qPCR (ChIP-qPCR) and transient expression analysis showed that ABI4 repressed CYP707A1 and CYP707A2 expression by directly binding to those promoters, and the ABI4 binding elements are essential for this repression. Accordingly, further genetic analysis showed that abi4 recovered the delayed germination phenotype of cyp707a1 and cyp707a2 and further, rescued the non-germinating phenotype of ga1-t. Taken together, this study suggests that ABI4 is a key factor that regulates primary seed dormancy by mediating the balance between ABA and GA biogenesis. Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstalk between ABA and GA, which underlies seed dormancy, requires further elucidation. Here, we report that ABI4 positively regulates primary seed dormancy, while negatively regulating cotyledon greening, by mediating the biogenesis of ABA and GA. Seeds of the Arabidopsis abi4 mutant that were subjected to short-term storage (one or two weeks) germinated significantly more quickly than Wild-Type (WT), and abi4 cotyledons greened markedly more quickly than WT, while the rates of germination and greening were comparable when the seeds were subjected to longer-term storage (six months). The ABA content of dry abi4 seeds was remarkably lower than that of WT, but the amounts were comparable after stratification. Consistently, the GA level of abi4 seeds was increased compared to WT. Further analysis showed that abi4 was resistant to treatment with paclobutrazol (PAC), a GA biosynthesis inhibitor, during germination, while OE-ABI4 was sensitive to PAC, and exogenous GA rescued the delayed germination phenotype of OE-ABI4. Analysis by qRT-PCR showed that the expression of genes involved in ABA and GA metabolism in dry and germinating seeds corresponded to hormonal measurements. Moreover, chromatin immunoprecipitation qPCR (ChIP-qPCR) and transient expression analysis showed that ABI4 repressed CYP707A1 and CYP707A2 expression by directly binding to those promoters, and the ABI4 binding elements are essential for this repression. Accordingly, further genetic analysis showed that abi4 recovered the delayed germination phenotype of cyp707a1 and cyp707a2 and further, rescued the non-germinating phenotype of ga1-t. Taken together, this study suggests that ABI4 is a key factor that regulates primary seed dormancy by mediating the balance between ABA and GA biogenesis.Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstalk between ABA and GA, which underlies seed dormancy, requires further elucidation. Here, we report that ABI4 positively regulates primary seed dormancy, while negatively regulating cotyledon greening, by mediating the biogenesis of ABA and GA. Seeds of the Arabidopsis abi4 mutant that were subjected to short-term storage (one or two weeks) germinated significantly more quickly than Wild-Type (WT), and abi4 cotyledons greened markedly more quickly than WT, while the rates of germination and greening were comparable when the seeds were subjected to longer-term storage (six months). The ABA content of dry abi4 seeds was remarkably lower than that of WT, but the amounts were comparable after stratification. Consistently, the GA level of abi4 seeds was increased compared to WT. Further analysis showed that abi4 was resistant to treatment with paclobutrazol (PAC), a GA biosynthesis inhibitor, during germination, while OE-ABI4 was sensitive to PAC, and exogenous GA rescued the delayed germination phenotype of OE-ABI4. Analysis by qRT-PCR showed that the expression of genes involved in ABA and GA metabolism in dry and germinating seeds corresponded to hormonal measurements. Moreover, chromatin immunoprecipitation qPCR (ChIP-qPCR) and transient expression analysis showed that ABI4 repressed CYP707A1 and CYP707A2 expression by directly binding to those promoters, and the ABI4 binding elements are essential for this repression. Accordingly, further genetic analysis showed that abi4 recovered the delayed germination phenotype of cyp707a1 and cyp707a2 and further, rescued the non-germinating phenotype of ga1-t. Taken together, this study suggests that ABI4 is a key factor that regulates primary seed dormancy by mediating the balance between ABA and GA biogenesis. Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstalk between ABA and GA, which underlies seed dormancy, requires further elucidation. Here, we report that ABI4 positively regulates primary seed dormancy, while negatively regulating cotyledon greening, by mediating the biogenesis of ABA and GA. Seeds of the Arabidopsis abi4 mutant that were subjected to short-term storage (one or two weeks) germinated significantly more quickly than Wild-Type (WT), and abi4 cotyledons greened markedly more quickly than WT, while the rates of germination and greening were comparable when the seeds were subjected to longer-term storage (six months). The ABA content of dry abi4 seeds was remarkably lower than that of WT, but the amounts were comparable after stratification. Consistently, the GA level of abi4 seeds was increased compared to WT. Further analysis showed that abi4 was resistant to treatment with paclobutrazol (PAC), a GA biosynthesis inhibitor, during germination, while OE-ABI4 was sensitive to PAC, and exogenous GA rescued the delayed germination phenotype of OE-ABI4 . Analysis by qRT-PCR showed that the expression of genes involved in ABA and GA metabolism in dry and germinating seeds corresponded to hormonal measurements. Moreover, chromatin immunoprecipitation qPCR (ChIP-qPCR) and transient expression analysis showed that ABI4 repressed CYP707A1 and CYP707A2 expression by directly binding to those promoters, and the ABI4 binding elements are essential for this repression. Accordingly, further genetic analysis showed that abi4 recovered the delayed germination phenotype of cyp707a1 and cyp707a2 and further, rescued the non-germinating phenotype of ga1-t . Taken together, this study suggests that ABI4 is a key factor that regulates primary seed dormancy by mediating the balance between ABA and GA biogenesis. Seed dormancy prevents or delays germination in maturated seeds. The optimal level of seed dormancy is a valuable trait for agricultural production and post-harvest management. High ABA and low GA content in seeds promote seed dormancy. However, the precise molecular mechanisms controlling seed dormancy and germination remain unclear. We found that ABI4, the key transcription factor in the ABA signaling pathway, indeed controls primary seed dormancy. This result contradicts the previous conclusion that ABI4 is not involved in the control of seed dormancy. Several lines of evidence support our conclusion. For example, detailed physiological analysis of the germination of abi4 seeds that were harvested immediately and stored for various periods of time and subjected to various treatments allowed us to conclude that ABI4 negatively regulates primary seed dormancy. The molecular mechanism responsible for this control is as follows: ABI4 directly or indirectly regulates the key genes of the ABA and GA biogenesis pathways, which then regulates the ABA and GA contents in seeds. Importantly, further genetic interactions between CYP707A1 , CYP707A2 , GA1 , and ABI4 also support our conclusion. |
Audience | Academic |
Author | Wang, Shengfu Shu, Kai Cao, Xiaofeng Xie, Qi Zhang, Huawei Tang, Sanyuan Chen, Mingluan Feng, Yuqi Liu, Chunyan Wu, Yaorong |
AuthorAffiliation | 1 State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P. R. China 2 University of Chinese Academy of Sciences, Beijing, P. R. China National University of Singapore and Temasek Life Sciences Laboratory, Singapore 3 Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, P. R. China |
AuthorAffiliation_xml | – name: 2 University of Chinese Academy of Sciences, Beijing, P. R. China – name: 3 Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, P. R. China – name: National University of Singapore and Temasek Life Sciences Laboratory, Singapore – name: 1 State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P. R. China |
Author_xml | – sequence: 1 givenname: Kai surname: Shu fullname: Shu, Kai – sequence: 2 givenname: Huawei surname: Zhang fullname: Zhang, Huawei – sequence: 3 givenname: Shengfu surname: Wang fullname: Wang, Shengfu – sequence: 4 givenname: Mingluan surname: Chen fullname: Chen, Mingluan – sequence: 5 givenname: Yaorong surname: Wu fullname: Wu, Yaorong – sequence: 6 givenname: Sanyuan surname: Tang fullname: Tang, Sanyuan – sequence: 7 givenname: Chunyan surname: Liu fullname: Liu, Chunyan – sequence: 8 givenname: Yuqi surname: Feng fullname: Feng, Yuqi – sequence: 9 givenname: Xiaofeng surname: Cao fullname: Cao, Xiaofeng – sequence: 10 givenname: Qi surname: Xie fullname: Xie, Qi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23818868$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk1-L1DAUxYusuH_0G4gGBNGHGdtJ0qb7IHRXXQcWV3YXX0Oa3HQydJIxacX59qbOjExFROlDS_I7Jzen954mR9ZZSJKnWTrNcJG9WbreW9FO1w3YaZammBbFg-QkoxRPCpKSo4Pv4-Q0hOXAsLJ4lBzPMMsYy9lJ4quLOUG30PSt6CCgz96shN-gOwCF3jm_ElZuUL3ZI8Y2qFsAujAungvBBOQ0quogTTASVdIoJKxCV6auwUPbGhuQsajyojbKraPgcfJQizbAk937LLn_8P7-8uPk-uZqflldT2Resm6ihFa0VlIzzVINighCKS1yAkIRTOpUM5rpVEUEaIaVwqDzlOaqJnUZibPk-dZ23brAd2kFnpFZgSnOcxqJ-ZZQTiz5entz7oThPxecb7jwnZEtcKElA5wxUlJFiFT1TGOR1qIUOWOzMo1eb3en9fUKYkm286IdmY53rFnwxn3jOBoQlkeDVzsD7772EDq-MkHGAIUF18e6cRl_Gs3JUPeLLdqIWJqx2kVHOeC8wriYRcPZcP_pH6j4KFgZGXtJm7g-ErweCSLTwfeuEX0IfH53-x_sp39nb76M2ZcH7AJE2y2Ca_vOOBvG4LPDvH8Fve_sCJxvAeldCB40l6YTg0-MwbQ8S_kwRvvG4MMY8d0YRTH5Tbz3_6vsB5t1IgQ |
CitedBy_id | crossref_primary_10_1093_jxb_ery247 crossref_primary_10_1111_nph_12694 crossref_primary_10_1007_s00299_023_03096_5 crossref_primary_10_1016_j_plantsci_2023_111717 crossref_primary_10_1007_s10725_023_01094_x crossref_primary_10_3390_plants11131686 crossref_primary_10_1016_j_scienta_2024_113096 crossref_primary_10_1186_s12864_023_09202_x crossref_primary_10_3389_fpls_2021_748760 crossref_primary_10_3389_fpls_2018_00970 crossref_primary_10_3389_fpls_2018_00721 crossref_primary_10_3390_ijms151017541 crossref_primary_10_1016_j_plantsci_2021_110983 crossref_primary_10_1007_s11033_018_4290_9 crossref_primary_10_1080_15592324_2020_1729537 crossref_primary_10_1007_s00299_017_2238_5 crossref_primary_10_1093_plcell_koad276 crossref_primary_10_1371_journal_pone_0219413 crossref_primary_10_1016_j_rsci_2020_05_006 crossref_primary_10_1111_nph_16363 crossref_primary_10_1111_jipb_13769 crossref_primary_10_15407_frg2019_03_187 crossref_primary_10_1007_s10725_022_00894_x crossref_primary_10_1111_tpj_14909 crossref_primary_10_3390_ijms24087393 crossref_primary_10_1016_j_cub_2024_07_010 crossref_primary_10_3390_plants11040556 crossref_primary_10_1080_00380768_2024_2405834 crossref_primary_10_4161_15592324_2014_976489 crossref_primary_10_1111_tpj_13389 crossref_primary_10_3389_fpls_2018_00954 crossref_primary_10_1016_j_plgene_2017_04_007 crossref_primary_10_3389_fgene_2023_1111318 crossref_primary_10_3389_fpls_2018_00838 crossref_primary_10_3389_fpls_2020_00832 crossref_primary_10_1007_s00425_020_03469_0 crossref_primary_10_1017_S0960258522000265 crossref_primary_10_1093_pcp_pcad029 crossref_primary_10_1111_tpj_16091 crossref_primary_10_1111_nph_16921 crossref_primary_10_1007_s00425_021_03672_7 crossref_primary_10_1038_s41598_017_13093_w crossref_primary_10_1080_15592324_2015_1056423 crossref_primary_10_1093_plcell_koae211 crossref_primary_10_1093_pcp_pcab097 crossref_primary_10_1186_s12951_022_01423_8 crossref_primary_10_1016_j_plaphy_2020_08_045 crossref_primary_10_1093_jxb_erz553 crossref_primary_10_3390_agronomy13071929 crossref_primary_10_1016_j_plaphy_2021_02_021 crossref_primary_10_3390_plants9060703 crossref_primary_10_1016_j_plantsci_2021_110847 crossref_primary_10_1007_s11103_020_00967_3 crossref_primary_10_1111_jpi_13004 crossref_primary_10_1111_tpj_13118 crossref_primary_10_3389_fpls_2020_00143 crossref_primary_10_1093_jxb_erab306 crossref_primary_10_3390_ijms24108994 crossref_primary_10_1094_PDIS_07_22_1726_RE crossref_primary_10_1186_s12870_018_1416_0 crossref_primary_10_3389_fpls_2022_1035750 crossref_primary_10_1016_j_plaphy_2025_109493 crossref_primary_10_1080_15592324_2020_1803568 crossref_primary_10_1093_pcp_pcu118 crossref_primary_10_1104_pp_114_251298 crossref_primary_10_3390_ijms22041621 crossref_primary_10_7554_eLife_59485 crossref_primary_10_1093_treephys_tpaa162 crossref_primary_10_1038_s41467_024_46082_5 crossref_primary_10_1007_s11240_021_02145_9 crossref_primary_10_1111_ppl_13864 crossref_primary_10_1073_pnas_1304651110 crossref_primary_10_1093_pcp_pcx071 crossref_primary_10_1080_14620316_2022_2077241 crossref_primary_10_3390_ijms23031389 crossref_primary_10_1186_s12870_021_02889_8 crossref_primary_10_3389_fpls_2016_02021 crossref_primary_10_1038_s41598_018_23108_9 crossref_primary_10_1111_jipb_13615 crossref_primary_10_1007_s00299_014_1571_1 crossref_primary_10_3389_fpls_2020_598654 crossref_primary_10_1111_jpi_12736 crossref_primary_10_1007_s11103_016_0568_2 crossref_primary_10_3390_ijms23042186 crossref_primary_10_1093_jxb_erv459 crossref_primary_10_1007_s10265_017_0924_6 crossref_primary_10_1038_s41437_022_00497_2 crossref_primary_10_3390_ijms25158164 crossref_primary_10_3389_fpls_2018_00405 crossref_primary_10_3389_fpls_2023_1054736 crossref_primary_10_1111_tpj_14542 crossref_primary_10_1016_j_xplc_2023_100597 crossref_primary_10_1017_S096025852200006X crossref_primary_10_1016_j_molp_2021_03_007 crossref_primary_10_3390_plants8040104 crossref_primary_10_1104_pp_20_00485 crossref_primary_10_1111_tpj_15881 crossref_primary_10_1016_j_molp_2017_12_013 crossref_primary_10_1093_jxb_erz146 crossref_primary_10_3389_fpls_2022_931454 crossref_primary_10_1093_jxb_erab433 crossref_primary_10_1016_j_envexpbot_2021_104491 crossref_primary_10_1017_S0960258519000047 crossref_primary_10_1016_j_plantsci_2020_110435 crossref_primary_10_1016_j_plaphy_2022_02_016 crossref_primary_10_1111_pbi_13637 crossref_primary_10_1007_s12229_020_09220_4 crossref_primary_10_1111_tpj_13109 crossref_primary_10_1016_j_plantsci_2022_111369 crossref_primary_10_1016_j_plantsci_2024_112215 crossref_primary_10_3390_ijms222212220 crossref_primary_10_1371_journal_pgen_1006416 crossref_primary_10_1016_j_xplc_2024_101178 crossref_primary_10_1016_j_plaphy_2023_107854 crossref_primary_10_3390_ijms23137379 crossref_primary_10_1038_srep22073 crossref_primary_10_1042_bse0580151 crossref_primary_10_1093_pcp_pcy007 crossref_primary_10_1111_tpj_17112 crossref_primary_10_1038_s41598_018_28413_x crossref_primary_10_3389_fgene_2019_00980 crossref_primary_10_3390_ijms20235882 crossref_primary_10_1007_s00425_019_03125_2 crossref_primary_10_1093_plphys_kiac407 crossref_primary_10_1007_s12374_022_09357_2 crossref_primary_10_1111_pce_14298 crossref_primary_10_3389_fpls_2018_00668 crossref_primary_10_1016_j_envexpbot_2022_105188 crossref_primary_10_1111_nph_16713 crossref_primary_10_1186_s12864_019_5897_5 crossref_primary_10_3389_fpls_2014_00233 crossref_primary_10_1111_nph_14880 crossref_primary_10_1038_s41598_019_54898_1 crossref_primary_10_1007_s11103_015_0283_4 crossref_primary_10_1111_nph_19533 crossref_primary_10_1016_j_jare_2021_03_011 crossref_primary_10_5937_AASer2050105M crossref_primary_10_1093_treephys_tpaa122 crossref_primary_10_1371_journal_pgen_1004213 crossref_primary_10_3390_ijms23158502 crossref_primary_10_1016_j_jgg_2014_09_003 crossref_primary_10_1038_s41467_023_36903_4 crossref_primary_10_1007_s00344_023_11035_7 crossref_primary_10_1016_j_plantsci_2021_111167 crossref_primary_10_3390_ijms242015202 crossref_primary_10_1016_j_cj_2024_01_017 crossref_primary_10_3389_fpls_2017_00553 crossref_primary_10_3389_fpls_2018_00416 crossref_primary_10_3389_fpls_2018_00658 crossref_primary_10_1111_tpj_12597 crossref_primary_10_3390_plants13020206 crossref_primary_10_1111_nph_16149 crossref_primary_10_1111_tpj_12472 crossref_primary_10_1016_j_plantsci_2015_06_012 crossref_primary_10_1111_nph_13436 crossref_primary_10_1002_csc2_20825 crossref_primary_10_1016_j_jksus_2024_103412 crossref_primary_10_1038_srep09998 crossref_primary_10_3390_ijms20102538 crossref_primary_10_1016_j_tplants_2013_10_010 crossref_primary_10_3390_plants13091247 crossref_primary_10_3390_plants10091884 crossref_primary_10_3390_horticulturae8030241 crossref_primary_10_1007_s00344_022_10659_5 crossref_primary_10_1016_j_molp_2022_12_008 crossref_primary_10_1007_s00299_016_2060_5 crossref_primary_10_1007_s00468_023_02419_z crossref_primary_10_1016_S2095_3119_16_61429_6 crossref_primary_10_1038_s41438_019_0147_1 crossref_primary_10_3390_ijms19113643 crossref_primary_10_3390_ijms23031876 crossref_primary_10_1093_jxb_erab237 crossref_primary_10_1016_j_scienta_2024_113702 crossref_primary_10_1016_j_xplc_2020_100040 crossref_primary_10_14258_jcprm_2021049196 crossref_primary_10_1371_journal_pone_0231117 crossref_primary_10_1007_s11240_016_1002_9 crossref_primary_10_1016_j_postharvbio_2020_111254 crossref_primary_10_1111_jipb_13360 crossref_primary_10_32604_phyton_2023_026305 crossref_primary_10_1007_s00299_024_03363_z crossref_primary_10_3390_ijms23158715 crossref_primary_10_1111_nph_15437 crossref_primary_10_1104_pp_114_245324 crossref_primary_10_1016_j_molp_2015_08_010 crossref_primary_10_1016_j_plantsci_2019_04_001 crossref_primary_10_1111_jipb_13001 crossref_primary_10_1093_jxb_erab024 crossref_primary_10_1093_jxb_erv356 crossref_primary_10_1111_tpj_16102 crossref_primary_10_1186_s12284_024_00734_8 crossref_primary_10_1186_s12870_016_0890_5 crossref_primary_10_3390_plants11192650 crossref_primary_10_1016_j_tplants_2024_09_007 crossref_primary_10_3389_fpls_2021_712713 crossref_primary_10_3389_fpls_2021_707127 crossref_primary_10_1016_j_cj_2020_09_004 crossref_primary_10_1371_journal_pone_0167389 crossref_primary_10_1038_ncomms11431 crossref_primary_10_1093_plphys_kiae625 crossref_primary_10_1111_jipb_12619 crossref_primary_10_1093_jxb_erw458 crossref_primary_10_1016_j_molp_2020_07_002 crossref_primary_10_1002_advs_202400995 crossref_primary_10_3389_fpls_2014_00433 crossref_primary_10_1007_s10725_023_01026_9 crossref_primary_10_1111_ppl_14433 crossref_primary_10_1017_S0960258521000015 crossref_primary_10_3389_fpls_2021_642979 crossref_primary_10_1016_j_molp_2017_09_004 crossref_primary_10_3390_genes11020151 crossref_primary_10_3390_agronomy10091323 crossref_primary_10_1111_nph_17300 crossref_primary_10_3389_fpls_2018_00251 crossref_primary_10_3389_fpls_2021_742504 crossref_primary_10_3389_fpls_2023_1228902 crossref_primary_10_1016_j_jfca_2022_104717 crossref_primary_10_1111_tpj_14942 crossref_primary_10_1155_2017_8027626 crossref_primary_10_3389_fpls_2017_01372 crossref_primary_10_1080_15592324_2024_2329487 crossref_primary_10_1093_pcp_pcy070 crossref_primary_10_1111_tpj_13970 crossref_primary_10_1007_s00425_018_2950_6 crossref_primary_10_1186_s12864_022_08871_4 crossref_primary_10_1038_s41598_024_77972_9 crossref_primary_10_1371_journal_pgen_1011052 crossref_primary_10_13080_z_a_2020_107_043 crossref_primary_10_3390_biology2041311 crossref_primary_10_1016_j_plaphy_2020_03_050 crossref_primary_10_1093_jxb_erz302 crossref_primary_10_46909_cerce_2020_013 crossref_primary_10_1371_journal_pone_0292855 crossref_primary_10_1093_treephys_tpaa065 crossref_primary_10_3390_ijms221910314 crossref_primary_10_3390_life12071021 crossref_primary_10_1111_plb_12356 crossref_primary_10_1007_s11033_025_10285_w crossref_primary_10_1007_s00122_022_04215_8 crossref_primary_10_1111_pce_13394 crossref_primary_10_1016_j_plaphy_2020_01_020 crossref_primary_10_1080_07352689_2022_2031728 crossref_primary_10_3389_fpls_2021_622201 crossref_primary_10_3389_fpls_2015_01248 crossref_primary_10_1093_pcp_pcaa120 crossref_primary_10_3389_fpls_2021_701538 crossref_primary_10_1093_jxb_erw363 crossref_primary_10_1016_j_molp_2017_04_004 crossref_primary_10_1016_j_plaphy_2020_12_027 crossref_primary_10_1007_s11032_018_0830_1 crossref_primary_10_1186_s12870_019_1765_3 crossref_primary_10_1016_j_plaphy_2023_107923 crossref_primary_10_3390_agronomy10010057 crossref_primary_10_3390_ijms242417171 crossref_primary_10_1007_s11032_016_0492_9 crossref_primary_10_1038_s42003_023_05307_x crossref_primary_10_3389_fpls_2020_00623 crossref_primary_10_1007_s00425_022_03870_x crossref_primary_10_1111_jipb_13234 crossref_primary_10_1042_BCJ20200934 crossref_primary_10_1111_pbi_13812 crossref_primary_10_1093_jxb_erab298 crossref_primary_10_1111_nph_18287 crossref_primary_10_1007_s10725_018_0454_9 crossref_primary_10_3390_ijms252212024 crossref_primary_10_3389_fpls_2024_1336689 crossref_primary_10_1101_cshperspect_a039990 crossref_primary_10_1038_s41598_025_91039_3 crossref_primary_10_1016_j_indcrop_2024_120138 crossref_primary_10_1007_s42976_024_00540_4 crossref_primary_10_1007_s11032_019_1060_x crossref_primary_10_3390_ijms22105069 crossref_primary_10_1093_plcell_koad328 |
Cites_doi | 10.1111/j.1469-8137.2011.04040.x 10.1111/j.1365-313X.2009.03877.x 10.1105/tpc.6.10.1509 10.1104/pp.109.145987 10.1007/s00425-004-1251-4 10.1111/j.1365-313X.2008.03411.x 10.1105/tpc.106.048488 10.1146/annurev.ecolsys.31.1.107 10.1038/ncomms1486 10.1371/journal.pgen.1001098 10.1105/tpc.13.7.1555 10.1073/pnas.1112151108 10.1016/j.jchromb.2011.03.003 10.1105/tpc.5.8.887 10.1111/j.1365-313X.2006.02881.x 10.1007/s11103-011-9733-9 10.1007/BF02706542 10.1126/science. 1140516 10.1046/j.1365-313X.1994.5060765.x 10.1105/tpc.108.061515 10.1093/jxb/erp329 10.1016/j.pbi.2005.01.011 10.1023/A:1006145025631 10.1263/jbb.104.34 10.4161/psb.4.1.7331 10.1111/j.1469-8137.2008.02437.x 10.1105/tpc.110.074641 10.1017/S0960258500003974 10.1104/pp.108.126938 10.1073/pnas.1012232108 10.1079/SSR2005218 10.1104/pp.90.2.463 10.1101/gad.969002 10.1046/j.1365-313x.2000.00833.x 10.1093/genetics/154.1.421 10.1093/pcp/pcm023 10.1104/pp.111.175950 10.1007/BF00265176 10.1093/pcp/pcr154 10.1111/j.1399-3054.1984.tb06343.x 10.1104/pp.109.139782 10.1104/pp.106.079475 10.1038/sj.emboj.7600121 10.1093/jxb/err093 10.1105/tpc.9.7.1055 10.1101/gad.14.16.2085 10.1111/j.1365-313X.1992.00435.x 10.1371/journal.pgen.1002594 10.1038/ng.854 10.1093/pcp/pcn201 10.1105/tpc.106.041277 10.1104/pp.109.142018 10.1105/tpc.4.2.119 10.1111/j.1469-8137.2006.01787.x 10.1126/science.1173041 10.1105/tpc.111.090100 10.1016/j.cub.2005.11.010 10.1105/tpc.10.6.1043 10.1199/tab.0119 10.1146/annurev.arplant.59.032607.092740 10.1111/j.1365-313X.2011.04887.x 10.1105/tpc.111.093062 10.1105/tpc.106.048538 10.1104/pp.124.4.1752 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2013 Public Library of Science 2013 Shu et al 2013 Shu et al 2013 Shu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Shu K, Zhang H, Wang S, Chen M, Wu Y, et al. (2013) ABI4 Regulates Primary Seed Dormancy by Regulating the Biogenesis of Abscisic Acid and Gibberellins in Arabidopsis. PLoS Genet 9(6): e1003577. doi:10.1371/journal.pgen.1003577 |
Copyright_xml | – notice: COPYRIGHT 2013 Public Library of Science – notice: 2013 Shu et al 2013 Shu et al – notice: 2013 Shu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Shu K, Zhang H, Wang S, Chen M, Wu Y, et al. (2013) ABI4 Regulates Primary Seed Dormancy by Regulating the Biogenesis of Abscisic Acid and Gibberellins in Arabidopsis. PLoS Genet 9(6): e1003577. doi:10.1371/journal.pgen.1003577 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 7X8 5PM DOA |
DOI | 10.1371/journal.pgen.1003577 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale in Context: Opposing Viewpoints Gale In Context: Canada Gale in Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | ABI4 Positively Regulates Primary Seed Dormancy |
EISSN | 1553-7404 |
ExternalDocumentID | 1427353665 oai_doaj_org_article_afc8e318495d44cdb2f3a0ba9a688290 PMC3688486 A337288424 23818868 10_1371_journal_pgen_1003577 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO QF4 QN7 RNS RPM SV3 TR2 TUS UKHRP WOW XSB ~8M C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM PV9 RIG RZL WOQ PMFND 7X8 PJZUB PPXIY PQGLB 5PM PUEGO 3V. AAPBV ABPTK M~E |
ID | FETCH-LOGICAL-c698t-dafd5bdcf8f80fed4a4555764ead434b0f851f0dbdce513dd3ef6056db4b9d43 |
IEDL.DBID | M48 |
ISSN | 1553-7404 1553-7390 |
IngestDate | Sun Oct 01 00:20:34 EDT 2023 Wed Aug 27 01:25:58 EDT 2025 Thu Aug 21 13:52:47 EDT 2025 Mon Jul 21 11:38:28 EDT 2025 Tue Jun 17 21:18:36 EDT 2025 Tue Jun 10 20:36:34 EDT 2025 Fri Jun 27 04:15:11 EDT 2025 Fri Jun 27 05:03:27 EDT 2025 Fri Jun 27 04:58:55 EDT 2025 Thu May 22 21:22:10 EDT 2025 Thu Apr 03 07:03:27 EDT 2025 Thu Apr 24 23:09:46 EDT 2025 Tue Jul 01 01:41:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c698t-dafd5bdcf8f80fed4a4555764ead434b0f851f0dbdce513dd3ef6056db4b9d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors have declared that no competing interests exist. Conceived and designed the experiments: KS QX. Performed the experiments: KS HZ SW MC YW ST CL YF. Analyzed the data: KS HZ XC QX. Wrote the paper: KS QX. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1003577 |
PMID | 23818868 |
PQID | 1393815645 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1427353665 doaj_primary_oai_doaj_org_article_afc8e318495d44cdb2f3a0ba9a688290 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3688486 proquest_miscellaneous_1393815645 gale_infotracmisc_A337288424 gale_infotracacademiconefile_A337288424 gale_incontextgauss_ISR_A337288424 gale_incontextgauss_ISN_A337288424 gale_incontextgauss_IOV_A337288424 gale_healthsolutions_A337288424 pubmed_primary_23818868 crossref_citationtrail_10_1371_journal_pgen_1003577 crossref_primary_10_1371_journal_pgen_1003577 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-06-01 |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS genetics |
PublicationTitleAlternate | PLoS Genet |
PublicationYear | 2013 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | R Finkelstein (ref3) 2008; 59 AL Silverstone (ref59) 2001; 13 S Penfield (ref32) 2006; 18 C Martinez-Andujar (ref14) 2011; 108 JD Bewley (ref1) 1997; 9 M Seo (ref9) 2006; 48 E Farnsworth (ref4) 2000; 31 MJ Holdsworth (ref8) 2008; 179 J Fang (ref6) 2008; 54 M Kanai (ref25) 2010; 62 MW Yaish (ref11) 2010; 6 YY Zhang (ref63) 2007; 19 F Cui (ref62) 2012; 24 B Kucera (ref57) 2005; 15 RR Finkelstein (ref23) 1994; 5 A Frey (ref13) 1999; 39 T Matakiadis (ref16) 2009; 149 Y Ma (ref20) 2009; 324 PI Kerchev (ref40) 2011; 23 Y Yang (ref41) 2011; 156 U Piskurewicz (ref52) 2009; 4 RR Finkelstein (ref30) 1998; 10 N Bechtold (ref61) 1998; 82 E Nambara (ref22) 1992; 2 B Renata (ref7) 2006; 28 U Piskurewicz (ref24) 2008; 20 S Penfield (ref45) 2005; 15 ZL Zhang (ref51) 2011; 108 SE Jacobsen (ref29) 1993; 5 WM Reeves (ref60) 2011; 75 J Sun (ref65) 2012; 8 F Bossi (ref50) 2009; 59 SY Park (ref19) 2009; 324 S Koussevitzky (ref38) 2007; 316 R Finkelstein (ref42) 2011; 62 HWM Hilhorst (ref56) 1998; 8 M Okamoto (ref15) 2006; 141 XW Sun (ref37) 2011; 2 T Kushiro (ref17) 2004; 23 EM Soderman (ref31) 2000; 124 TP Sun (ref53) 1992; 4 F Gubler (ref2) 2005; 8 M Koornneef (ref21) 1989; 90 V Quesada (ref35) 2000; 154 F Arenas-Huertero (ref33) 2000; 14 R Yano (ref10) 2009; 151 MV Rodriguez (ref58) 2012; 53 TP Sun (ref54) 1994; 6 D Shkolnik-Inbar (ref39) 2010; 22 Y Yamauchi (ref27) 2007; 48 ML Chen (ref67) 2011; 879 SC Lee (ref28) 2002; 16 E Giraud (ref36) 2009; 150 T Kakizaki (ref47) 2009; 151 A Frey (ref12) 2011; 70 T Nakagawa (ref66) 2007; 104 TP Howard (ref5) 2012; 194 M Koornneef (ref26) 1980; 58 S Ali-Rachedi (ref49) 2004; 219 FL Lu (ref64) 2011; 43 WE Finch-Savage (ref55) 2006; 171 RJ Laby (ref34) 2000; 23 M Koornneef (ref18) 1984; 61 H Fujii (ref48) 2007; 19 T Gerjets (ref46) 2010; 61 L Bentsink (ref43) 2008; 6 K Yamagishi (ref44) 2009; 50 21097710 - Plant Cell. 2010 Nov;22(11):3560-73 24301503 - Theor Appl Genet. 1980 Nov;58(6):257-63 20838584 - PLoS Genet. 2010 Sep;6(9):e1001098 20345608 - Plant J. 2010 Jun 1;62(6):936-47 21926335 - Plant Cell. 2011 Sep;23(9):3319-34 18941053 - Plant Cell. 2008 Oct;20(10):2729-45 17307925 - Plant Cell. 2007 Feb;19(2):485-94 15752999 - Curr Opin Plant Biol. 2005 Apr;8(2):183-7 9634591 - Plant Cell. 1998 Jun;10(6):1043-54 10950871 - Genes Dev. 2000 Aug 15;14(16):2085-96 21444253 - J Chromatogr B Analyt Technol Biomed Life Sci. 2011 Apr 15;879(13-14):938-44 22171989 - Plant J. 2012 May;70(3):501-12 19726569 - Plant Physiol. 2009 Nov;151(3):1339-53 11877383 - Genes Dev. 2002 Mar 1;16(5):646-58 21504878 - J Exp Bot. 2011 Jul;62(11):3971-9 10972885 - Plant J. 2000 Sep;23(5):587-96 22300545 - New Phytol. 2012 Apr;194(1):158-67 11449051 - Plant Cell. 2001 Jul;13(7):1555-66 21642989 - Nat Genet. 2011 Jul;43(7):715-9 19074630 - Plant Physiol. 2009 Feb;149(2):949-60 22214659 - Plant Cell. 2012 Jan;24(1):233-44 19407143 - Science. 2009 May 22;324(5930):1064-8 19109301 - Plant Cell Physiol. 2009 Feb;50(2):330-40 22479194 - PLoS Genet. 2012;8(3):e1002594 12297643 - Plant Cell. 1992 Feb;4(2):119-128 19704711 - Plant Signal Behav. 2009 Jan;4(1):63-5 17573536 - Plant Cell. 2007 Jun;19(6):1912-29 22303244 - Arabidopsis Book. 2008;6:e0119 10629000 - Genetics. 2000 Jan;154(1):421-36 11115891 - Plant Physiol. 2000 Dec;124(4):1752-65 17697981 - J Biosci Bioeng. 2007 Jul;104(1):34-41 16303558 - Curr Biol. 2005 Nov 22;15(22):1998-2006 21934661 - Nat Commun. 2011;2:477 17010113 - Plant J. 2006 Nov;48(3):354-66 15060827 - Planta. 2004 Jul;219(3):479-88 21245327 - Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2160-5 21243515 - Plant Mol Biol. 2011 Mar;75(4-5):347-63 16543410 - Plant Physiol. 2006 May;141(1):97-107 12237375 - Plant Cell. 1997 Jul;9(7):1055-1066 16666794 - Plant Physiol. 1989 Jun;90(2):463-9 19407142 - Science. 2009 May 22;324(5930):1068-71 21969557 - Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):17225-9 22076590 - Plant Cell Physiol. 2012 Jan;53(1):64-80 8400871 - Plant Cell. 1993 Aug;5(8):887-96 15044947 - EMBO J. 2004 Apr 7;23(7):1647-56 18422904 - New Phytol. 2008;179(1):33-54 17289793 - Plant Cell Physiol. 2007 Mar;48(3):555-61 10380812 - Plant Mol Biol. 1999 Apr;39(6):1267-74 19482916 - Plant Physiol. 2009 Jul;150(3):1286-96 17395793 - Science. 2007 May 4;316(5825):715-9 21515696 - Plant Physiol. 2011 Jun;156(2):873-83 19392689 - Plant J. 2009 Aug;59(3):359-74 9664431 - Methods Mol Biol. 1998;82:259-66 7994182 - Plant Cell. 1994 Oct;6(10):1509-18 16866955 - New Phytol. 2006;171(3):501-23 18257711 - Annu Rev Plant Biol. 2008;59:387-415 18208525 - Plant J. 2008 Apr;54(2):177-89 19923197 - J Exp Bot. 2010;61(2):597-607 16844907 - Plant Cell. 2006 Aug;18(8):1887-99 19648230 - Plant Physiol. 2009 Oct;151(2):641-54 |
References_xml | – volume: 194 start-page: 158 year: 2012 ident: ref5 article-title: Barley mutants with low rates of endosperm starch synthesis have low grain dormancy and high susceptibility to preharvest sprouting publication-title: New Phytol doi: 10.1111/j.1469-8137.2011.04040.x – volume: 59 start-page: 359 year: 2009 ident: ref50 article-title: The Arabidopsis ABA-INSENSITIVE (ABI) 4 factor acts as a central transcription activator of the expression of its own gene, and for the induction of ABI5 and SBE2.2 genes during sugar signaling publication-title: Plant J doi: 10.1111/j.1365-313X.2009.03877.x – volume: 6 start-page: 1509 year: 1994 ident: ref54 article-title: The Arabidopsis Ga1 Locus Encodes the Cyclase Ent-Kaurene Synthetase-a of Gibberellin Biosynthesis publication-title: Plant Cell doi: 10.1105/tpc.6.10.1509 – volume: 151 start-page: 1339 year: 2009 ident: ref47 article-title: Coordination of Plastid Protein Import and Nuclear Gene Expression by Plastid-to-Nucleus Retrograde Signaling publication-title: Plant Physiol doi: 10.1104/pp.109.145987 – volume: 219 start-page: 479 year: 2004 ident: ref49 article-title: Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana publication-title: Planta doi: 10.1007/s00425-004-1251-4 – volume: 54 start-page: 177 year: 2008 ident: ref6 article-title: Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice publication-title: Plant J doi: 10.1111/j.1365-313X.2008.03411.x – volume: 19 start-page: 1912 year: 2007 ident: ref63 article-title: SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.106.048488 – volume: 31 start-page: 107 year: 2000 ident: ref4 article-title: The ecology and physiology of viviparous and recalcitrant seeds publication-title: Annu Rev Ecol Syst doi: 10.1146/annurev.ecolsys.31.1.107 – volume: 2 start-page: 477 year: 2011 ident: ref37 article-title: A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus publication-title: Nat Commun doi: 10.1038/ncomms1486 – volume: 6 start-page: e1001098 year: 2010 ident: ref11 article-title: The APETALA-2-Like Transcription Factor OsAP2-39 Controls Key Interactions between Abscisic Acid and Gibberellin in Rice publication-title: Plos Genet doi: 10.1371/journal.pgen.1001098 – volume: 13 start-page: 1555 year: 2001 ident: ref59 article-title: Repressing a repressor: Gibberellin-induced rapid reduction of the RGA protein in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.13.7.1555 – volume: 108 start-page: 17225 year: 2011 ident: ref14 article-title: Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1112151108 – volume: 879 start-page: 938 year: 2011 ident: ref67 article-title: Highly sensitive profiling assay of acidic plant hormones using a novel mass probe by capillary electrophoresis-time of flight-mass spectrometry publication-title: J Chromatogr B Analyt Technol Biomed Life Sci doi: 10.1016/j.jchromb.2011.03.003 – volume: 324 start-page: 1266 year: 2009 ident: ref20 article-title: Regulators of PP2C phosphatase activity function as abscisic acid sensors publication-title: Science – volume: 5 start-page: 887 year: 1993 ident: ref29 article-title: Mutations at the Spindly Locus of Arabidopsis Alter Gibberellin Signal-Transduction publication-title: Plant Cell doi: 10.1105/tpc.5.8.887 – volume: 48 start-page: 354 year: 2006 ident: ref9 article-title: Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism publication-title: Plant J doi: 10.1111/j.1365-313X.2006.02881.x – volume: 75 start-page: 347 year: 2011 ident: ref60 article-title: Direct targets of the transcription factors ABA-Insensitive(ABI)4 and ABI5 reveal synergistic action by ABI4 and several bZIP ABA response factors publication-title: Plant Mol Biol doi: 10.1007/s11103-011-9733-9 – volume: 28 start-page: 281 year: 2006 ident: ref7 article-title: Nitric oxide and HCN reduce deep dormancy of apple seeds publication-title: Acta Physiol Plant doi: 10.1007/BF02706542 – volume: 316 start-page: 715 year: 2007 ident: ref38 article-title: Signals from chloroplasts converge to regulate nuclear gene expression publication-title: Science doi: 10.1126/science. 1140516 – volume: 5 start-page: 765 year: 1994 ident: ref23 article-title: Mutations at 2 New Arabidopsis Aba Response Loci Are Similar to the Abi3 Mutations publication-title: Plant J doi: 10.1046/j.1365-313X.1994.5060765.x – volume: 20 start-page: 2729 year: 2008 ident: ref24 article-title: The Gibberellic Acid Signaling Repressor RGL2 Inhibits Arabidopsis Seed Germination by Stimulating Abscisic Acid Synthesis and ABI5 Activity publication-title: Plant Cell doi: 10.1105/tpc.108.061515 – volume: 61 start-page: 597 year: 2010 ident: ref46 article-title: An analysis of dormancy, ABA responsiveness, after-ripening and pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.) caryopses publication-title: J Exp Bot doi: 10.1093/jxb/erp329 – volume: 8 start-page: 183 year: 2005 ident: ref2 article-title: Dormancy release, ABA and pre-harvest sprouting publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2005.01.011 – volume: 39 start-page: 1267 year: 1999 ident: ref13 article-title: Engineering seed dormancy by the modification of zeaxanthin epoxidase gene expression publication-title: Plant Mol Biol doi: 10.1023/A:1006145025631 – volume: 104 start-page: 34 year: 2007 ident: ref66 article-title: Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation publication-title: J Biosci Bioeng doi: 10.1263/jbb.104.34 – volume: 4 start-page: 63 year: 2009 ident: ref52 article-title: The GA-signaling repressor RGL3 represses testa rupture in response to changes in GA and ABA levels publication-title: Plant Signal Behav doi: 10.4161/psb.4.1.7331 – volume: 82 start-page: 259 year: 1998 ident: ref61 article-title: In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration publication-title: Methods Mol Biol – volume: 179 start-page: 33 year: 2008 ident: ref8 article-title: Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination publication-title: New Phytol doi: 10.1111/j.1469-8137.2008.02437.x – volume: 22 start-page: 3560 year: 2010 ident: ref39 article-title: ABI4 Mediates Abscisic Acid and Cytokinin Inhibition of Lateral Root Formation by Reducing Polar Auxin Transport in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.110.074641 – volume: 8 start-page: 77 year: 1998 ident: ref56 article-title: The regulation of secondary dormancy. The membrane hypothesis revisited publication-title: Seed Sci Res doi: 10.1017/S0960258500003974 – volume: 149 start-page: 949 year: 2009 ident: ref16 article-title: The Arabidopsis Abscisic Acid Catabolic Gene CYP707A2 Plays a Key Role in Nitrate Control of Seed Dormancy publication-title: Plant Physiol doi: 10.1104/pp.108.126938 – volume: 108 start-page: 2160 year: 2011 ident: ref51 article-title: SCARECROW-LIKE 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1012232108 – volume: 15 start-page: 281 year: 2005 ident: ref57 article-title: Plant hormone interactions during seed dormancy release and germination publication-title: Seed Sci Res doi: 10.1079/SSR2005218 – volume: 90 start-page: 463 year: 1989 ident: ref21 article-title: In Vivo Inhibition of Seed Development and Reserve Protein Accumulation in Recombinants of Abscisic Acid Biosynthesis and Responsiveness Mutants in Arabidopsis thaliana publication-title: Plant Physiol doi: 10.1104/pp.90.2.463 – volume: 16 start-page: 646 year: 2002 ident: ref28 article-title: Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition publication-title: Gene Dev doi: 10.1101/gad.969002 – volume: 23 start-page: 587 year: 2000 ident: ref34 article-title: The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response publication-title: Plant J doi: 10.1046/j.1365-313x.2000.00833.x – volume: 154 start-page: 421 year: 2000 ident: ref35 article-title: Genetic analysis of salt-tolerant mutants in Arabidopsis thaliana publication-title: Genetics doi: 10.1093/genetics/154.1.421 – volume: 48 start-page: 555 year: 2007 ident: ref27 article-title: Contribution of gibberellin deactivation by AtGA2ox2 to the suppression of germination of dark-imbibed Arabidopsis thaliana seeds publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcm023 – volume: 156 start-page: 873 year: 2011 ident: ref41 article-title: ABI4 Activates DGAT1 Expression in Arabidopsis Seedlings during Nitrogen Deficiency publication-title: Plant Physiol doi: 10.1104/pp.111.175950 – volume: 58 start-page: 257 year: 1980 ident: ref26 article-title: Induction and Analysis of Gibberellin Sensitive Mutants in Arabidopsis-Thaliana (L) Heynh publication-title: Theor Appl Genet doi: 10.1007/BF00265176 – volume: 53 start-page: 64 year: 2012 ident: ref58 article-title: Expression of Seed Dormancy in Grain Sorghum Lines with Contrasting Pre-Harvest Sprouting Behavior Involves Differential Regulation of Gibberellin Metabolism Genes publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcr154 – volume: 61 start-page: 377 year: 1984 ident: ref18 article-title: The Isolation and Characterization of Abscisic-Acid Insensitive Mutants of Arabidopsis-Thaliana publication-title: Physiol Plantarum doi: 10.1111/j.1399-3054.1984.tb06343.x – volume: 150 start-page: 1286 year: 2009 ident: ref36 article-title: The Transcription Factor ABI4 Is a Regulator of Mitochondrial Retrograde Expression of ALTERNATIVE OXIDASE1a publication-title: Plant Physiol doi: 10.1104/pp.109.139782 – volume: 141 start-page: 97 year: 2006 ident: ref15 article-title: CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.106.079475 – volume: 23 start-page: 1647 year: 2004 ident: ref17 article-title: The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism publication-title: EMBO J doi: 10.1038/sj.emboj.7600121 – volume: 62 start-page: 3971 year: 2011 ident: ref42 article-title: Accumulation of the transcription factor ABA-insensitive (ABI)4 is tightly regulated post-transcriptionally publication-title: J Exp Bot doi: 10.1093/jxb/err093 – volume: 9 start-page: 1055 year: 1997 ident: ref1 article-title: Seed germination and dormancy publication-title: Plant Cell doi: 10.1105/tpc.9.7.1055 – volume: 14 start-page: 2085 year: 2000 ident: ref33 article-title: Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar publication-title: Gene Dev doi: 10.1101/gad.14.16.2085 – volume: 2 start-page: 435 year: 1992 ident: ref22 article-title: A Mutant of Arabidopsis Which Is Defective in Seed Development and Storage Protein Accumulation Is a New Abi3 Allele publication-title: Plant J doi: 10.1111/j.1365-313X.1992.00435.x – volume: 8 start-page: e1002594 year: 2012 ident: ref65 article-title: PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating arabidopsis hypocotyl growth publication-title: PLOS Genet doi: 10.1371/journal.pgen.1002594 – volume: 43 start-page: 715 year: 2011 ident: ref64 article-title: Arabidopsis REF6 is a histone H3 lysine 27 demethylase publication-title: Nat Genet doi: 10.1038/ng.854 – volume: 50 start-page: 330 year: 2009 ident: ref44 article-title: CHOTTO1, a Double AP2 Domain Protein of Arabidopsis thaliana, Regulates Germination and Seedling Growth Under Excess Supply of Glucose and Nitrate publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcn201 – volume: 18 start-page: 1887 year: 2006 ident: ref32 article-title: Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm publication-title: Plant Cell doi: 10.1105/tpc.106.041277 – volume: 151 start-page: 641 year: 2009 ident: ref10 article-title: CHOTTO1, a Putative Double APETALA2 Repeat Transcription Factor, Is Involved in Abscisic Acid-Mediated Repression of Gibberellin Biosynthesis during Seed Germination in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.109.142018 – volume: 4 start-page: 119 year: 1992 ident: ref53 article-title: Cloning the Arabidopsis Ga1 Locus by Genomic Subtraction publication-title: Plant Cell doi: 10.1105/tpc.4.2.119 – volume: 171 start-page: 501 year: 2006 ident: ref55 article-title: Seed dormancy and the control of germination publication-title: New Phytol doi: 10.1111/j.1469-8137.2006.01787.x – volume: 324 start-page: 1068 year: 2009 ident: ref19 article-title: Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins publication-title: Science doi: 10.1126/science.1173041 – volume: 23 start-page: 3319 year: 2011 ident: ref40 article-title: The Transcription Factor ABI4 Is Required for the Ascorbic Acid-Dependent Regulation of Growth and Regulation of Jasmonate-Dependent Defense Signaling Pathways in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.111.090100 – volume: 15 start-page: 1998 year: 2005 ident: ref45 article-title: Cold and light control seed germination through the bHLH transcription factor SPATULA publication-title: Curr Biol doi: 10.1016/j.cub.2005.11.010 – volume: 10 start-page: 1043 year: 1998 ident: ref30 article-title: The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA2 domain protein publication-title: Plant Cell doi: 10.1105/tpc.10.6.1043 – volume: 6 start-page: e0119 year: 2008 ident: ref43 article-title: Seed dormancy and germination publication-title: Arabidopsis Book doi: 10.1199/tab.0119 – volume: 59 start-page: 387 year: 2008 ident: ref3 article-title: Molecular aspects of seed dormancy publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.59.032607.092740 – volume: 70 start-page: 501 year: 2011 ident: ref12 article-title: Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members publication-title: Plant J doi: 10.1111/j.1365-313X.2011.04887.x – volume: 24 start-page: 233 year: 2012 ident: ref62 article-title: Arabidopsis Ubiquitin Conjugase UBC32 Is an ERAD Component That Functions in Brassinosteroid-Mediated Salt Stress Tolerance publication-title: Plant Cell doi: 10.1105/tpc.111.093062 – volume: 19 start-page: 485 year: 2007 ident: ref48 article-title: Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.106.048538 – volume: 62 start-page: 936 year: 2010 ident: ref25 article-title: A peroxisomal ABC transporter promotes seed germination by inducing pectin degradation under the control of ABI5 publication-title: Plant J – volume: 124 start-page: 1752 year: 2000 ident: ref31 article-title: Regulation and function of the arabidopsis ABA-insensitive4 gene in seed and abscisic acid response signaling networks publication-title: Plant Physiol doi: 10.1104/pp.124.4.1752 – reference: 17307925 - Plant Cell. 2007 Feb;19(2):485-94 – reference: 11449051 - Plant Cell. 2001 Jul;13(7):1555-66 – reference: 21243515 - Plant Mol Biol. 2011 Mar;75(4-5):347-63 – reference: 21969557 - Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):17225-9 – reference: 15044947 - EMBO J. 2004 Apr 7;23(7):1647-56 – reference: 16866955 - New Phytol. 2006;171(3):501-23 – reference: 9634591 - Plant Cell. 1998 Jun;10(6):1043-54 – reference: 10629000 - Genetics. 2000 Jan;154(1):421-36 – reference: 21642989 - Nat Genet. 2011 Jul;43(7):715-9 – reference: 22479194 - PLoS Genet. 2012;8(3):e1002594 – reference: 15752999 - Curr Opin Plant Biol. 2005 Apr;8(2):183-7 – reference: 22214659 - Plant Cell. 2012 Jan;24(1):233-44 – reference: 22171989 - Plant J. 2012 May;70(3):501-12 – reference: 19726569 - Plant Physiol. 2009 Nov;151(3):1339-53 – reference: 10380812 - Plant Mol Biol. 1999 Apr;39(6):1267-74 – reference: 7994182 - Plant Cell. 1994 Oct;6(10):1509-18 – reference: 18422904 - New Phytol. 2008;179(1):33-54 – reference: 17289793 - Plant Cell Physiol. 2007 Mar;48(3):555-61 – reference: 22303244 - Arabidopsis Book. 2008;6:e0119 – reference: 22076590 - Plant Cell Physiol. 2012 Jan;53(1):64-80 – reference: 24301503 - Theor Appl Genet. 1980 Nov;58(6):257-63 – reference: 17395793 - Science. 2007 May 4;316(5825):715-9 – reference: 21097710 - Plant Cell. 2010 Nov;22(11):3560-73 – reference: 11877383 - Genes Dev. 2002 Mar 1;16(5):646-58 – reference: 19704711 - Plant Signal Behav. 2009 Jan;4(1):63-5 – reference: 21444253 - J Chromatogr B Analyt Technol Biomed Life Sci. 2011 Apr 15;879(13-14):938-44 – reference: 21926335 - Plant Cell. 2011 Sep;23(9):3319-34 – reference: 12237375 - Plant Cell. 1997 Jul;9(7):1055-1066 – reference: 19482916 - Plant Physiol. 2009 Jul;150(3):1286-96 – reference: 22300545 - New Phytol. 2012 Apr;194(1):158-67 – reference: 21934661 - Nat Commun. 2011;2:477 – reference: 8400871 - Plant Cell. 1993 Aug;5(8):887-96 – reference: 17010113 - Plant J. 2006 Nov;48(3):354-66 – reference: 18208525 - Plant J. 2008 Apr;54(2):177-89 – reference: 16666794 - Plant Physiol. 1989 Jun;90(2):463-9 – reference: 21245327 - Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2160-5 – reference: 20345608 - Plant J. 2010 Jun 1;62(6):936-47 – reference: 16543410 - Plant Physiol. 2006 May;141(1):97-107 – reference: 19407143 - Science. 2009 May 22;324(5930):1064-8 – reference: 10972885 - Plant J. 2000 Sep;23(5):587-96 – reference: 10950871 - Genes Dev. 2000 Aug 15;14(16):2085-96 – reference: 17697981 - J Biosci Bioeng. 2007 Jul;104(1):34-41 – reference: 15060827 - Planta. 2004 Jul;219(3):479-88 – reference: 21504878 - J Exp Bot. 2011 Jul;62(11):3971-9 – reference: 16844907 - Plant Cell. 2006 Aug;18(8):1887-99 – reference: 21515696 - Plant Physiol. 2011 Jun;156(2):873-83 – reference: 11115891 - Plant Physiol. 2000 Dec;124(4):1752-65 – reference: 19109301 - Plant Cell Physiol. 2009 Feb;50(2):330-40 – reference: 19392689 - Plant J. 2009 Aug;59(3):359-74 – reference: 20838584 - PLoS Genet. 2010 Sep;6(9):e1001098 – reference: 18257711 - Annu Rev Plant Biol. 2008;59:387-415 – reference: 12297643 - Plant Cell. 1992 Feb;4(2):119-128 – reference: 9664431 - Methods Mol Biol. 1998;82:259-66 – reference: 16303558 - Curr Biol. 2005 Nov 22;15(22):1998-2006 – reference: 19407142 - Science. 2009 May 22;324(5930):1068-71 – reference: 17573536 - Plant Cell. 2007 Jun;19(6):1912-29 – reference: 19648230 - Plant Physiol. 2009 Oct;151(2):641-54 – reference: 18941053 - Plant Cell. 2008 Oct;20(10):2729-45 – reference: 19923197 - J Exp Bot. 2010;61(2):597-607 – reference: 19074630 - Plant Physiol. 2009 Feb;149(2):949-60 |
SSID | ssj0035897 |
Score | 2.5488956 |
Snippet | Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the... Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1003577 |
SubjectTerms | Abscisic acid Abscisic Acid - biosynthesis Abscisic Acid - metabolism Agricultural production Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Biology Biosynthesis Deoxyribonucleic acid Developmental biology DNA Experiments Gene expression Gene Expression Regulation, Plant Genetic aspects Genotype & phenotype Germination Germination - genetics Gibberellins Gibberellins - biosynthesis Gibberellins - metabolism Grasses Mutation Phenotype Physiological aspects Plant Dormancy - genetics Regulatory Sequences, Nucleic Acid Rice Seeds Tobacco Transcription Factors - genetics Transcription Factors - metabolism |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFB5kQfBFvDdadRTBp9hsZiYzedyKpRWsoFX6Fua6DZRkSXYf9t97JjMJjQjtg6_JN7A539lzSc4FoQ_KWmed7-iRXKdg_UxaEsbTApxrYZXTZlgH9O28OP1Fv16yyxurvnxNWBgPHAR3JJ0W_j0dBPKGUm1U7ojMlCxlIfxHQG99weeNyVSwwYSJsFaFMZJySOtj0xzhy6PI0acNEORrBOCX8ZlTGmb3TxZ6sblu-3-Fn39XUd5wSyeP0MMYT-JVeI7H6J5tnqD7YcPk_inqVsdnFHdh4bzt8SYMl8A9OC1sQsfAHqv9CAFHhiEkxKpu194K1j1uHZZgXGqgE0tdGywbg9e1UrbzwzybHtcNlp1UtWk3cOAZujj5cvH5NI1rFlJdlGKbGukMU0Y74UTmrKGSMgZpCAUlo4SqzEFU5jIDEMuWxBgC5ELcZBRVJSCeo0XTNvYAYSGoZFwJToilCkhQS5_f2FyXuRGUJYiMYq50HEHuN2FcV8N3NQ6pSJBa5cmpIjkJSqdTUUq34I89gxPWD9AeLoBaVVGtqtvUKkFvPf9V6EadzEC1IoTn8Jw5TdD7AeGHaDS-Smctd31fnX3_fQfQz_O7gH7MQB8jyLUgMy1j-wRI3k_wmiEPZ0iwF3p2-8Cr9Ci6HpI_CGEZKQrg592o5pU_5evvGtvuAENKMswVAsyLoPaTfIegTxQiQXz2h5gRML_T1FfDJHMCwqaiePk_GHuFHuRhVUmaLQ_RYtvt7GsIGLfqzWAb_gDo-2ot priority: 102 providerName: Directory of Open Access Journals |
Title | ABI4 Regulates Primary Seed Dormancy by Regulating the Biogenesis of Abscisic Acid and Gibberellins in Arabidopsis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23818868 https://www.proquest.com/docview/1393815645 https://pubmed.ncbi.nlm.nih.gov/PMC3688486 https://doaj.org/article/afc8e318495d44cdb2f3a0ba9a688290 http://dx.doi.org/10.1371/journal.pgen.1003577 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF61qZC4IN4NlLAgJE6uEu-ud31AKEGtWqQGVFqUm7XP1FJkBzuRyL9n1i9hVEQPXONvE2Vmdh7enfkQeqesddb5jh7JdQDezwQxYTyIILhGVjltKjqgi3l0dk0_L9hiD7WcrY0Ay1tLO88ndV2sjn_-2H2EDf-hYm3gk3bR8RpE7k_94bf4PjqA2MQ9p8EF7c4VCBM13QpjJOBQ7jfNdH_7ll6wqmb6d557sF7l5W1p6Z-3K38LV6cP0YMmz8TT2jAeoT2bPUb3aubJ3RNUTGfnFBc1Eb0t8boeOoFLCGbY1J0EO6x2LQQCHIZUEas0X3rvmJY4d1iC00lBzVjq1GCZGbxMlbKFH_KZlTjNsCykSk2-hgVP0dXpydWns6ChXwh0FItNYKQzTBnthBNjZw2VlDEoTygYHyVUjR1ka25sAGLZhBhDQOmQTxlFVQyIZ2iQ5Zk9RFgIKhlXghNiqQIlqImve2yo49AIyoaItGJOdDOa3DNkrJLqvI1DiVJLLfHKSRrlDFHQrWqk9A_8zGuww_rB2tUHebFMmn2aSKeFfy0MdaOhVBsVOiLHSsYyEv7MeYhee_0ndZdq5x6SKSE8hP8Z0iF6WyH8cI3M395Zym1ZJudfvt8B9G1-F9BlD_S-AbkcZKZl01YBkveTvXrIox4S_IjuPT70Jt2KroSiEFJbRqII9POmNfPEr_L38jKbbwFDYlLNGwLM89rsO_lWyaCIxBDx3oboKaD_JEtvqgnnBIRNRfTif2jsJbof1hQmwXhyhAabYmtfQSK5USO0zxd8hA5mJ_Ovl6Pqdcyo8he_AFAUd7E |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ABI4+regulates+primary+seed+dormancy+by+regulating+the+biogenesis+of+abscisic+acid+and+gibberellins+in+arabidopsis&rft.jtitle=PLoS+genetics&rft.au=Kai+Shu&rft.au=Huawei+Zhang&rft.au=Shengfu+Wang&rft.au=Mingluan+Chen&rft.date=2013-06-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-7390&rft.eissn=1553-7404&rft.volume=9&rft.issue=6&rft.spage=e1003577&rft_id=info:doi/10.1371%2Fjournal.pgen.1003577&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_afc8e318495d44cdb2f3a0ba9a688290 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |