ABI4 Regulates Primary Seed Dormancy by Regulating the Biogenesis of Abscisic Acid and Gibberellins in Arabidopsis

Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstal...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 9; no. 6; p. e1003577
Main Authors Shu, Kai, Zhang, Huawei, Wang, Shengfu, Chen, Mingluan, Wu, Yaorong, Tang, Sanyuan, Liu, Chunyan, Feng, Yuqi, Cao, Xiaofeng, Xie, Qi
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.06.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstalk between ABA and GA, which underlies seed dormancy, requires further elucidation. Here, we report that ABI4 positively regulates primary seed dormancy, while negatively regulating cotyledon greening, by mediating the biogenesis of ABA and GA. Seeds of the Arabidopsis abi4 mutant that were subjected to short-term storage (one or two weeks) germinated significantly more quickly than Wild-Type (WT), and abi4 cotyledons greened markedly more quickly than WT, while the rates of germination and greening were comparable when the seeds were subjected to longer-term storage (six months). The ABA content of dry abi4 seeds was remarkably lower than that of WT, but the amounts were comparable after stratification. Consistently, the GA level of abi4 seeds was increased compared to WT. Further analysis showed that abi4 was resistant to treatment with paclobutrazol (PAC), a GA biosynthesis inhibitor, during germination, while OE-ABI4 was sensitive to PAC, and exogenous GA rescued the delayed germination phenotype of OE-ABI4. Analysis by qRT-PCR showed that the expression of genes involved in ABA and GA metabolism in dry and germinating seeds corresponded to hormonal measurements. Moreover, chromatin immunoprecipitation qPCR (ChIP-qPCR) and transient expression analysis showed that ABI4 repressed CYP707A1 and CYP707A2 expression by directly binding to those promoters, and the ABI4 binding elements are essential for this repression. Accordingly, further genetic analysis showed that abi4 recovered the delayed germination phenotype of cyp707a1 and cyp707a2 and further, rescued the non-germinating phenotype of ga1-t. Taken together, this study suggests that ABI4 is a key factor that regulates primary seed dormancy by mediating the balance between ABA and GA biogenesis.
AbstractList Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstalk between ABA and GA, which underlies seed dormancy, requires further elucidation. Here, we report that ABI4 positively regulates primary seed dormancy, while negatively regulating cotyledon greening, by mediating the biogenesis of ABA and GA. Seeds of the Arabidopsis abi4 mutant that were subjected to short-term storage (one or two weeks) germinated significantly more quickly than Wild-Type (WT), and abi4 cotyledons greened markedly more quickly than WT, while the rates of germination and greening were comparable when the seeds were subjected to longer-term storage (six months). The ABA content of dry abi4 seeds was remarkably lower than that of WT, but the amounts were comparable after stratification. Consistently, the GA level of abi4 seeds was increased compared to WT. Further analysis showed that abi4 was resistant to treatment with paclobutrazol (PAC), a GA biosynthesis inhibitor, during germination, while OE-ABI4 was sensitive to PAC, and exogenous GA rescued the delayed germination phenotype of OE-ABI4. Analysis by qRT-PCR showed that the expression of genes involved in ABA and GA metabolism in dry and germinating seeds corresponded to hormonal measurements. Moreover, chromatin immunoprecipitation qPCR (ChIP-qPCR) and transient expression analysis showed that ABI4 repressed CYP707A1 and CYP707A2 expression by directly binding to those promoters, and the ABI4 binding elements are essential for this repression. Accordingly, further genetic analysis showed that abi4 recovered the delayed germination phenotype of cyp707a1 and cyp707a2 and further, rescued the nongerminating phenotype of ga1-t. Taken together, this study suggests that ABI4 is a key factor that regulates primary seed dormancy by mediating the balance between ABA and GA biogenesis.
Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstalk between ABA and GA, which underlies seed dormancy, requires further elucidation. Here, we report that ABI4 positively regulates primary seed dormancy, while negatively regulating cotyledon greening, by mediating the biogenesis of ABA and GA. Seeds of the Arabidopsis abi4 mutant that were subjected to short-term storage (one or two weeks) germinated significantly more quickly than Wild-Type (WT), and abi4 cotyledons greened markedly more quickly than WT, while the rates of germination and greening were comparable when the seeds were subjected to longer-term storage (six months). The ABA content of dry abi4 seeds was remarkably lower than that of WT, but the amounts were comparable after stratification. Consistently, the GA level of abi4 seeds was increased compared to WT. Further analysis showed that abi4 was resistant to treatment with paclobutrazol (PAC), a GA biosynthesis inhibitor, during germination, while OE-ABI4 was sensitive to PAC, and exogenous GA rescued the delayed germination phenotype of OE-ABI4. Analysis by qRT-PCR showed that the expression of genes involved in ABA and GA metabolism in dry and germinating seeds corresponded to hormonal measurements. Moreover, chromatin immunoprecipitation qPCR (ChIP-qPCR) and transient expression analysis showed that ABI4 repressed CYP707A1 and CYP707A2 expression by directly binding to those promoters, and the ABI4 binding elements are essential for this repression. Accordingly, further genetic analysis showed that abi4 recovered the delayed germination phenotype of cyp707a1 and cyp707a2 and further, rescued the non-germinating phenotype of ga1-t. Taken together, this study suggests that ABI4 is a key factor that regulates primary seed dormancy by mediating the balance between ABA and GA biogenesis.
  Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstalk between ABA and GA, which underlies seed dormancy, requires further elucidation. Here, we report that ABI4 positively regulates primary seed dormancy, while negatively regulating cotyledon greening, by mediating the biogenesis of ABA and GA. Seeds of the Arabidopsis abi4 mutant that were subjected to short-term storage (one or two weeks) germinated significantly more quickly than Wild-Type (WT), and abi4 cotyledons greened markedly more quickly than WT, while the rates of germination and greening were comparable when the seeds were subjected to longer-term storage (six months). The ABA content of dry abi4 seeds was remarkably lower than that of WT, but the amounts were comparable after stratification. Consistently, the GA level of abi4 seeds was increased compared to WT. Further analysis showed that abi4 was resistant to treatment with paclobutrazol (PAC), a GA biosynthesis inhibitor, during germination, while OE-ABI4 was sensitive to PAC, and exogenous GA rescued the delayed germination phenotype of OE-ABI4. Analysis by qRT-PCR showed that the expression of genes involved in ABA and GA metabolism in dry and germinating seeds corresponded to hormonal measurements. Moreover, chromatin immunoprecipitation qPCR (ChIP-qPCR) and transient expression analysis showed that ABI4 repressed CYP707A1 and CYP707A2 expression by directly binding to those promoters, and the ABI4 binding elements are essential for this repression. Accordingly, further genetic analysis showed that abi4 recovered the delayed germination phenotype of cyp707a1 and cyp707a2 and further, rescued the non-germinating phenotype of ga1-t. Taken together, this study suggests that ABI4 is a key factor that regulates primary seed dormancy by mediating the balance between ABA and GA biogenesis.
Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstalk between ABA and GA, which underlies seed dormancy, requires further elucidation. Here, we report that ABI4 positively regulates primary seed dormancy, while negatively regulating cotyledon greening, by mediating the biogenesis of ABA and GA. Seeds of the Arabidopsis abi4 mutant that were subjected to short-term storage (one or two weeks) germinated significantly more quickly than Wild-Type (WT), and abi4 cotyledons greened markedly more quickly than WT, while the rates of germination and greening were comparable when the seeds were subjected to longer-term storage (six months). The ABA content of dry abi4 seeds was remarkably lower than that of WT, but the amounts were comparable after stratification. Consistently, the GA level of abi4 seeds was increased compared to WT. Further analysis showed that abi4 was resistant to treatment with paclobutrazol (PAC), a GA biosynthesis inhibitor, during germination, while OE-ABI4 was sensitive to PAC, and exogenous GA rescued the delayed germination phenotype of OE-ABI4. Analysis by qRT-PCR showed that the expression of genes involved in ABA and GA metabolism in dry and germinating seeds corresponded to hormonal measurements. Moreover, chromatin immunoprecipitation qPCR (ChIP-qPCR) and transient expression analysis showed that ABI4 repressed CYP707A1 and CYP707A2 expression by directly binding to those promoters, and the ABI4 binding elements are essential for this repression. Accordingly, further genetic analysis showed that abi4 recovered the delayed germination phenotype of cyp707a1 and cyp707a2 and further, rescued the non-germinating phenotype of ga1-t. Taken together, this study suggests that ABI4 is a key factor that regulates primary seed dormancy by mediating the balance between ABA and GA biogenesis.Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstalk between ABA and GA, which underlies seed dormancy, requires further elucidation. Here, we report that ABI4 positively regulates primary seed dormancy, while negatively regulating cotyledon greening, by mediating the biogenesis of ABA and GA. Seeds of the Arabidopsis abi4 mutant that were subjected to short-term storage (one or two weeks) germinated significantly more quickly than Wild-Type (WT), and abi4 cotyledons greened markedly more quickly than WT, while the rates of germination and greening were comparable when the seeds were subjected to longer-term storage (six months). The ABA content of dry abi4 seeds was remarkably lower than that of WT, but the amounts were comparable after stratification. Consistently, the GA level of abi4 seeds was increased compared to WT. Further analysis showed that abi4 was resistant to treatment with paclobutrazol (PAC), a GA biosynthesis inhibitor, during germination, while OE-ABI4 was sensitive to PAC, and exogenous GA rescued the delayed germination phenotype of OE-ABI4. Analysis by qRT-PCR showed that the expression of genes involved in ABA and GA metabolism in dry and germinating seeds corresponded to hormonal measurements. Moreover, chromatin immunoprecipitation qPCR (ChIP-qPCR) and transient expression analysis showed that ABI4 repressed CYP707A1 and CYP707A2 expression by directly binding to those promoters, and the ABI4 binding elements are essential for this repression. Accordingly, further genetic analysis showed that abi4 recovered the delayed germination phenotype of cyp707a1 and cyp707a2 and further, rescued the non-germinating phenotype of ga1-t. Taken together, this study suggests that ABI4 is a key factor that regulates primary seed dormancy by mediating the balance between ABA and GA biogenesis.
Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstalk between ABA and GA, which underlies seed dormancy, requires further elucidation. Here, we report that ABI4 positively regulates primary seed dormancy, while negatively regulating cotyledon greening, by mediating the biogenesis of ABA and GA. Seeds of the Arabidopsis abi4 mutant that were subjected to short-term storage (one or two weeks) germinated significantly more quickly than Wild-Type (WT), and abi4 cotyledons greened markedly more quickly than WT, while the rates of germination and greening were comparable when the seeds were subjected to longer-term storage (six months). The ABA content of dry abi4 seeds was remarkably lower than that of WT, but the amounts were comparable after stratification. Consistently, the GA level of abi4 seeds was increased compared to WT. Further analysis showed that abi4 was resistant to treatment with paclobutrazol (PAC), a GA biosynthesis inhibitor, during germination, while OE-ABI4 was sensitive to PAC, and exogenous GA rescued the delayed germination phenotype of OE-ABI4 . Analysis by qRT-PCR showed that the expression of genes involved in ABA and GA metabolism in dry and germinating seeds corresponded to hormonal measurements. Moreover, chromatin immunoprecipitation qPCR (ChIP-qPCR) and transient expression analysis showed that ABI4 repressed CYP707A1 and CYP707A2 expression by directly binding to those promoters, and the ABI4 binding elements are essential for this repression. Accordingly, further genetic analysis showed that abi4 recovered the delayed germination phenotype of cyp707a1 and cyp707a2 and further, rescued the non-germinating phenotype of ga1-t . Taken together, this study suggests that ABI4 is a key factor that regulates primary seed dormancy by mediating the balance between ABA and GA biogenesis. Seed dormancy prevents or delays germination in maturated seeds. The optimal level of seed dormancy is a valuable trait for agricultural production and post-harvest management. High ABA and low GA content in seeds promote seed dormancy. However, the precise molecular mechanisms controlling seed dormancy and germination remain unclear. We found that ABI4, the key transcription factor in the ABA signaling pathway, indeed controls primary seed dormancy. This result contradicts the previous conclusion that ABI4 is not involved in the control of seed dormancy. Several lines of evidence support our conclusion. For example, detailed physiological analysis of the germination of abi4 seeds that were harvested immediately and stored for various periods of time and subjected to various treatments allowed us to conclude that ABI4 negatively regulates primary seed dormancy. The molecular mechanism responsible for this control is as follows: ABI4 directly or indirectly regulates the key genes of the ABA and GA biogenesis pathways, which then regulates the ABA and GA contents in seeds. Importantly, further genetic interactions between CYP707A1 , CYP707A2 , GA1 , and ABI4 also support our conclusion.
Audience Academic
Author Wang, Shengfu
Shu, Kai
Cao, Xiaofeng
Xie, Qi
Zhang, Huawei
Tang, Sanyuan
Chen, Mingluan
Feng, Yuqi
Liu, Chunyan
Wu, Yaorong
AuthorAffiliation 1 State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P. R. China
2 University of Chinese Academy of Sciences, Beijing, P. R. China
National University of Singapore and Temasek Life Sciences Laboratory, Singapore
3 Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, P. R. China
AuthorAffiliation_xml – name: 2 University of Chinese Academy of Sciences, Beijing, P. R. China
– name: 3 Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, P. R. China
– name: National University of Singapore and Temasek Life Sciences Laboratory, Singapore
– name: 1 State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P. R. China
Author_xml – sequence: 1
  givenname: Kai
  surname: Shu
  fullname: Shu, Kai
– sequence: 2
  givenname: Huawei
  surname: Zhang
  fullname: Zhang, Huawei
– sequence: 3
  givenname: Shengfu
  surname: Wang
  fullname: Wang, Shengfu
– sequence: 4
  givenname: Mingluan
  surname: Chen
  fullname: Chen, Mingluan
– sequence: 5
  givenname: Yaorong
  surname: Wu
  fullname: Wu, Yaorong
– sequence: 6
  givenname: Sanyuan
  surname: Tang
  fullname: Tang, Sanyuan
– sequence: 7
  givenname: Chunyan
  surname: Liu
  fullname: Liu, Chunyan
– sequence: 8
  givenname: Yuqi
  surname: Feng
  fullname: Feng, Yuqi
– sequence: 9
  givenname: Xiaofeng
  surname: Cao
  fullname: Cao, Xiaofeng
– sequence: 10
  givenname: Qi
  surname: Xie
  fullname: Xie, Qi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23818868$$D View this record in MEDLINE/PubMed
BookMark eNqVk1-L1DAUxYusuH_0G4gGBNGHGdtJ0qb7IHRXXQcWV3YXX0Oa3HQydJIxacX59qbOjExFROlDS_I7Jzen954mR9ZZSJKnWTrNcJG9WbreW9FO1w3YaZammBbFg-QkoxRPCpKSo4Pv4-Q0hOXAsLJ4lBzPMMsYy9lJ4quLOUG30PSt6CCgz96shN-gOwCF3jm_ElZuUL3ZI8Y2qFsAujAungvBBOQ0quogTTASVdIoJKxCV6auwUPbGhuQsajyojbKraPgcfJQizbAk937LLn_8P7-8uPk-uZqflldT2Resm6ihFa0VlIzzVINighCKS1yAkIRTOpUM5rpVEUEaIaVwqDzlOaqJnUZibPk-dZ23brAd2kFnpFZgSnOcxqJ-ZZQTiz5entz7oThPxecb7jwnZEtcKElA5wxUlJFiFT1TGOR1qIUOWOzMo1eb3en9fUKYkm286IdmY53rFnwxn3jOBoQlkeDVzsD7772EDq-MkHGAIUF18e6cRl_Gs3JUPeLLdqIWJqx2kVHOeC8wriYRcPZcP_pH6j4KFgZGXtJm7g-ErweCSLTwfeuEX0IfH53-x_sp39nb76M2ZcH7AJE2y2Ca_vOOBvG4LPDvH8Fve_sCJxvAeldCB40l6YTg0-MwbQ8S_kwRvvG4MMY8d0YRTH5Tbz3_6vsB5t1IgQ
CitedBy_id crossref_primary_10_1093_jxb_ery247
crossref_primary_10_1111_nph_12694
crossref_primary_10_1007_s00299_023_03096_5
crossref_primary_10_1016_j_plantsci_2023_111717
crossref_primary_10_1007_s10725_023_01094_x
crossref_primary_10_3390_plants11131686
crossref_primary_10_1016_j_scienta_2024_113096
crossref_primary_10_1186_s12864_023_09202_x
crossref_primary_10_3389_fpls_2021_748760
crossref_primary_10_3389_fpls_2018_00970
crossref_primary_10_3389_fpls_2018_00721
crossref_primary_10_3390_ijms151017541
crossref_primary_10_1016_j_plantsci_2021_110983
crossref_primary_10_1007_s11033_018_4290_9
crossref_primary_10_1080_15592324_2020_1729537
crossref_primary_10_1007_s00299_017_2238_5
crossref_primary_10_1093_plcell_koad276
crossref_primary_10_1371_journal_pone_0219413
crossref_primary_10_1016_j_rsci_2020_05_006
crossref_primary_10_1111_nph_16363
crossref_primary_10_1111_jipb_13769
crossref_primary_10_15407_frg2019_03_187
crossref_primary_10_1007_s10725_022_00894_x
crossref_primary_10_1111_tpj_14909
crossref_primary_10_3390_ijms24087393
crossref_primary_10_1016_j_cub_2024_07_010
crossref_primary_10_3390_plants11040556
crossref_primary_10_1080_00380768_2024_2405834
crossref_primary_10_4161_15592324_2014_976489
crossref_primary_10_1111_tpj_13389
crossref_primary_10_3389_fpls_2018_00954
crossref_primary_10_1016_j_plgene_2017_04_007
crossref_primary_10_3389_fgene_2023_1111318
crossref_primary_10_3389_fpls_2018_00838
crossref_primary_10_3389_fpls_2020_00832
crossref_primary_10_1007_s00425_020_03469_0
crossref_primary_10_1017_S0960258522000265
crossref_primary_10_1093_pcp_pcad029
crossref_primary_10_1111_tpj_16091
crossref_primary_10_1111_nph_16921
crossref_primary_10_1007_s00425_021_03672_7
crossref_primary_10_1038_s41598_017_13093_w
crossref_primary_10_1080_15592324_2015_1056423
crossref_primary_10_1093_plcell_koae211
crossref_primary_10_1093_pcp_pcab097
crossref_primary_10_1186_s12951_022_01423_8
crossref_primary_10_1016_j_plaphy_2020_08_045
crossref_primary_10_1093_jxb_erz553
crossref_primary_10_3390_agronomy13071929
crossref_primary_10_1016_j_plaphy_2021_02_021
crossref_primary_10_3390_plants9060703
crossref_primary_10_1016_j_plantsci_2021_110847
crossref_primary_10_1007_s11103_020_00967_3
crossref_primary_10_1111_jpi_13004
crossref_primary_10_1111_tpj_13118
crossref_primary_10_3389_fpls_2020_00143
crossref_primary_10_1093_jxb_erab306
crossref_primary_10_3390_ijms24108994
crossref_primary_10_1094_PDIS_07_22_1726_RE
crossref_primary_10_1186_s12870_018_1416_0
crossref_primary_10_3389_fpls_2022_1035750
crossref_primary_10_1016_j_plaphy_2025_109493
crossref_primary_10_1080_15592324_2020_1803568
crossref_primary_10_1093_pcp_pcu118
crossref_primary_10_1104_pp_114_251298
crossref_primary_10_3390_ijms22041621
crossref_primary_10_7554_eLife_59485
crossref_primary_10_1093_treephys_tpaa162
crossref_primary_10_1038_s41467_024_46082_5
crossref_primary_10_1007_s11240_021_02145_9
crossref_primary_10_1111_ppl_13864
crossref_primary_10_1073_pnas_1304651110
crossref_primary_10_1093_pcp_pcx071
crossref_primary_10_1080_14620316_2022_2077241
crossref_primary_10_3390_ijms23031389
crossref_primary_10_1186_s12870_021_02889_8
crossref_primary_10_3389_fpls_2016_02021
crossref_primary_10_1038_s41598_018_23108_9
crossref_primary_10_1111_jipb_13615
crossref_primary_10_1007_s00299_014_1571_1
crossref_primary_10_3389_fpls_2020_598654
crossref_primary_10_1111_jpi_12736
crossref_primary_10_1007_s11103_016_0568_2
crossref_primary_10_3390_ijms23042186
crossref_primary_10_1093_jxb_erv459
crossref_primary_10_1007_s10265_017_0924_6
crossref_primary_10_1038_s41437_022_00497_2
crossref_primary_10_3390_ijms25158164
crossref_primary_10_3389_fpls_2018_00405
crossref_primary_10_3389_fpls_2023_1054736
crossref_primary_10_1111_tpj_14542
crossref_primary_10_1016_j_xplc_2023_100597
crossref_primary_10_1017_S096025852200006X
crossref_primary_10_1016_j_molp_2021_03_007
crossref_primary_10_3390_plants8040104
crossref_primary_10_1104_pp_20_00485
crossref_primary_10_1111_tpj_15881
crossref_primary_10_1016_j_molp_2017_12_013
crossref_primary_10_1093_jxb_erz146
crossref_primary_10_3389_fpls_2022_931454
crossref_primary_10_1093_jxb_erab433
crossref_primary_10_1016_j_envexpbot_2021_104491
crossref_primary_10_1017_S0960258519000047
crossref_primary_10_1016_j_plantsci_2020_110435
crossref_primary_10_1016_j_plaphy_2022_02_016
crossref_primary_10_1111_pbi_13637
crossref_primary_10_1007_s12229_020_09220_4
crossref_primary_10_1111_tpj_13109
crossref_primary_10_1016_j_plantsci_2022_111369
crossref_primary_10_1016_j_plantsci_2024_112215
crossref_primary_10_3390_ijms222212220
crossref_primary_10_1371_journal_pgen_1006416
crossref_primary_10_1016_j_xplc_2024_101178
crossref_primary_10_1016_j_plaphy_2023_107854
crossref_primary_10_3390_ijms23137379
crossref_primary_10_1038_srep22073
crossref_primary_10_1042_bse0580151
crossref_primary_10_1093_pcp_pcy007
crossref_primary_10_1111_tpj_17112
crossref_primary_10_1038_s41598_018_28413_x
crossref_primary_10_3389_fgene_2019_00980
crossref_primary_10_3390_ijms20235882
crossref_primary_10_1007_s00425_019_03125_2
crossref_primary_10_1093_plphys_kiac407
crossref_primary_10_1007_s12374_022_09357_2
crossref_primary_10_1111_pce_14298
crossref_primary_10_3389_fpls_2018_00668
crossref_primary_10_1016_j_envexpbot_2022_105188
crossref_primary_10_1111_nph_16713
crossref_primary_10_1186_s12864_019_5897_5
crossref_primary_10_3389_fpls_2014_00233
crossref_primary_10_1111_nph_14880
crossref_primary_10_1038_s41598_019_54898_1
crossref_primary_10_1007_s11103_015_0283_4
crossref_primary_10_1111_nph_19533
crossref_primary_10_1016_j_jare_2021_03_011
crossref_primary_10_5937_AASer2050105M
crossref_primary_10_1093_treephys_tpaa122
crossref_primary_10_1371_journal_pgen_1004213
crossref_primary_10_3390_ijms23158502
crossref_primary_10_1016_j_jgg_2014_09_003
crossref_primary_10_1038_s41467_023_36903_4
crossref_primary_10_1007_s00344_023_11035_7
crossref_primary_10_1016_j_plantsci_2021_111167
crossref_primary_10_3390_ijms242015202
crossref_primary_10_1016_j_cj_2024_01_017
crossref_primary_10_3389_fpls_2017_00553
crossref_primary_10_3389_fpls_2018_00416
crossref_primary_10_3389_fpls_2018_00658
crossref_primary_10_1111_tpj_12597
crossref_primary_10_3390_plants13020206
crossref_primary_10_1111_nph_16149
crossref_primary_10_1111_tpj_12472
crossref_primary_10_1016_j_plantsci_2015_06_012
crossref_primary_10_1111_nph_13436
crossref_primary_10_1002_csc2_20825
crossref_primary_10_1016_j_jksus_2024_103412
crossref_primary_10_1038_srep09998
crossref_primary_10_3390_ijms20102538
crossref_primary_10_1016_j_tplants_2013_10_010
crossref_primary_10_3390_plants13091247
crossref_primary_10_3390_plants10091884
crossref_primary_10_3390_horticulturae8030241
crossref_primary_10_1007_s00344_022_10659_5
crossref_primary_10_1016_j_molp_2022_12_008
crossref_primary_10_1007_s00299_016_2060_5
crossref_primary_10_1007_s00468_023_02419_z
crossref_primary_10_1016_S2095_3119_16_61429_6
crossref_primary_10_1038_s41438_019_0147_1
crossref_primary_10_3390_ijms19113643
crossref_primary_10_3390_ijms23031876
crossref_primary_10_1093_jxb_erab237
crossref_primary_10_1016_j_scienta_2024_113702
crossref_primary_10_1016_j_xplc_2020_100040
crossref_primary_10_14258_jcprm_2021049196
crossref_primary_10_1371_journal_pone_0231117
crossref_primary_10_1007_s11240_016_1002_9
crossref_primary_10_1016_j_postharvbio_2020_111254
crossref_primary_10_1111_jipb_13360
crossref_primary_10_32604_phyton_2023_026305
crossref_primary_10_1007_s00299_024_03363_z
crossref_primary_10_3390_ijms23158715
crossref_primary_10_1111_nph_15437
crossref_primary_10_1104_pp_114_245324
crossref_primary_10_1016_j_molp_2015_08_010
crossref_primary_10_1016_j_plantsci_2019_04_001
crossref_primary_10_1111_jipb_13001
crossref_primary_10_1093_jxb_erab024
crossref_primary_10_1093_jxb_erv356
crossref_primary_10_1111_tpj_16102
crossref_primary_10_1186_s12284_024_00734_8
crossref_primary_10_1186_s12870_016_0890_5
crossref_primary_10_3390_plants11192650
crossref_primary_10_1016_j_tplants_2024_09_007
crossref_primary_10_3389_fpls_2021_712713
crossref_primary_10_3389_fpls_2021_707127
crossref_primary_10_1016_j_cj_2020_09_004
crossref_primary_10_1371_journal_pone_0167389
crossref_primary_10_1038_ncomms11431
crossref_primary_10_1093_plphys_kiae625
crossref_primary_10_1111_jipb_12619
crossref_primary_10_1093_jxb_erw458
crossref_primary_10_1016_j_molp_2020_07_002
crossref_primary_10_1002_advs_202400995
crossref_primary_10_3389_fpls_2014_00433
crossref_primary_10_1007_s10725_023_01026_9
crossref_primary_10_1111_ppl_14433
crossref_primary_10_1017_S0960258521000015
crossref_primary_10_3389_fpls_2021_642979
crossref_primary_10_1016_j_molp_2017_09_004
crossref_primary_10_3390_genes11020151
crossref_primary_10_3390_agronomy10091323
crossref_primary_10_1111_nph_17300
crossref_primary_10_3389_fpls_2018_00251
crossref_primary_10_3389_fpls_2021_742504
crossref_primary_10_3389_fpls_2023_1228902
crossref_primary_10_1016_j_jfca_2022_104717
crossref_primary_10_1111_tpj_14942
crossref_primary_10_1155_2017_8027626
crossref_primary_10_3389_fpls_2017_01372
crossref_primary_10_1080_15592324_2024_2329487
crossref_primary_10_1093_pcp_pcy070
crossref_primary_10_1111_tpj_13970
crossref_primary_10_1007_s00425_018_2950_6
crossref_primary_10_1186_s12864_022_08871_4
crossref_primary_10_1038_s41598_024_77972_9
crossref_primary_10_1371_journal_pgen_1011052
crossref_primary_10_13080_z_a_2020_107_043
crossref_primary_10_3390_biology2041311
crossref_primary_10_1016_j_plaphy_2020_03_050
crossref_primary_10_1093_jxb_erz302
crossref_primary_10_46909_cerce_2020_013
crossref_primary_10_1371_journal_pone_0292855
crossref_primary_10_1093_treephys_tpaa065
crossref_primary_10_3390_ijms221910314
crossref_primary_10_3390_life12071021
crossref_primary_10_1111_plb_12356
crossref_primary_10_1007_s11033_025_10285_w
crossref_primary_10_1007_s00122_022_04215_8
crossref_primary_10_1111_pce_13394
crossref_primary_10_1016_j_plaphy_2020_01_020
crossref_primary_10_1080_07352689_2022_2031728
crossref_primary_10_3389_fpls_2021_622201
crossref_primary_10_3389_fpls_2015_01248
crossref_primary_10_1093_pcp_pcaa120
crossref_primary_10_3389_fpls_2021_701538
crossref_primary_10_1093_jxb_erw363
crossref_primary_10_1016_j_molp_2017_04_004
crossref_primary_10_1016_j_plaphy_2020_12_027
crossref_primary_10_1007_s11032_018_0830_1
crossref_primary_10_1186_s12870_019_1765_3
crossref_primary_10_1016_j_plaphy_2023_107923
crossref_primary_10_3390_agronomy10010057
crossref_primary_10_3390_ijms242417171
crossref_primary_10_1007_s11032_016_0492_9
crossref_primary_10_1038_s42003_023_05307_x
crossref_primary_10_3389_fpls_2020_00623
crossref_primary_10_1007_s00425_022_03870_x
crossref_primary_10_1111_jipb_13234
crossref_primary_10_1042_BCJ20200934
crossref_primary_10_1111_pbi_13812
crossref_primary_10_1093_jxb_erab298
crossref_primary_10_1111_nph_18287
crossref_primary_10_1007_s10725_018_0454_9
crossref_primary_10_3390_ijms252212024
crossref_primary_10_3389_fpls_2024_1336689
crossref_primary_10_1101_cshperspect_a039990
crossref_primary_10_1038_s41598_025_91039_3
crossref_primary_10_1016_j_indcrop_2024_120138
crossref_primary_10_1007_s42976_024_00540_4
crossref_primary_10_1007_s11032_019_1060_x
crossref_primary_10_3390_ijms22105069
crossref_primary_10_1093_plcell_koad328
Cites_doi 10.1111/j.1469-8137.2011.04040.x
10.1111/j.1365-313X.2009.03877.x
10.1105/tpc.6.10.1509
10.1104/pp.109.145987
10.1007/s00425-004-1251-4
10.1111/j.1365-313X.2008.03411.x
10.1105/tpc.106.048488
10.1146/annurev.ecolsys.31.1.107
10.1038/ncomms1486
10.1371/journal.pgen.1001098
10.1105/tpc.13.7.1555
10.1073/pnas.1112151108
10.1016/j.jchromb.2011.03.003
10.1105/tpc.5.8.887
10.1111/j.1365-313X.2006.02881.x
10.1007/s11103-011-9733-9
10.1007/BF02706542
10.1126/science. 1140516
10.1046/j.1365-313X.1994.5060765.x
10.1105/tpc.108.061515
10.1093/jxb/erp329
10.1016/j.pbi.2005.01.011
10.1023/A:1006145025631
10.1263/jbb.104.34
10.4161/psb.4.1.7331
10.1111/j.1469-8137.2008.02437.x
10.1105/tpc.110.074641
10.1017/S0960258500003974
10.1104/pp.108.126938
10.1073/pnas.1012232108
10.1079/SSR2005218
10.1104/pp.90.2.463
10.1101/gad.969002
10.1046/j.1365-313x.2000.00833.x
10.1093/genetics/154.1.421
10.1093/pcp/pcm023
10.1104/pp.111.175950
10.1007/BF00265176
10.1093/pcp/pcr154
10.1111/j.1399-3054.1984.tb06343.x
10.1104/pp.109.139782
10.1104/pp.106.079475
10.1038/sj.emboj.7600121
10.1093/jxb/err093
10.1105/tpc.9.7.1055
10.1101/gad.14.16.2085
10.1111/j.1365-313X.1992.00435.x
10.1371/journal.pgen.1002594
10.1038/ng.854
10.1093/pcp/pcn201
10.1105/tpc.106.041277
10.1104/pp.109.142018
10.1105/tpc.4.2.119
10.1111/j.1469-8137.2006.01787.x
10.1126/science.1173041
10.1105/tpc.111.090100
10.1016/j.cub.2005.11.010
10.1105/tpc.10.6.1043
10.1199/tab.0119
10.1146/annurev.arplant.59.032607.092740
10.1111/j.1365-313X.2011.04887.x
10.1105/tpc.111.093062
10.1105/tpc.106.048538
10.1104/pp.124.4.1752
ContentType Journal Article
Copyright COPYRIGHT 2013 Public Library of Science
2013 Shu et al 2013 Shu et al
2013 Shu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Shu K, Zhang H, Wang S, Chen M, Wu Y, et al. (2013) ABI4 Regulates Primary Seed Dormancy by Regulating the Biogenesis of Abscisic Acid and Gibberellins in Arabidopsis. PLoS Genet 9(6): e1003577. doi:10.1371/journal.pgen.1003577
Copyright_xml – notice: COPYRIGHT 2013 Public Library of Science
– notice: 2013 Shu et al 2013 Shu et al
– notice: 2013 Shu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Shu K, Zhang H, Wang S, Chen M, Wu Y, et al. (2013) ABI4 Regulates Primary Seed Dormancy by Regulating the Biogenesis of Abscisic Acid and Gibberellins in Arabidopsis. PLoS Genet 9(6): e1003577. doi:10.1371/journal.pgen.1003577
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1003577
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale in Context: Opposing Viewpoints
Gale In Context: Canada
Gale in Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate ABI4 Positively Regulates Primary Seed Dormancy
EISSN 1553-7404
ExternalDocumentID 1427353665
oai_doaj_org_article_afc8e318495d44cdb2f3a0ba9a688290
PMC3688486
A337288424
23818868
10_1371_journal_pgen_1003577
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
QF4
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PV9
RIG
RZL
WOQ
PMFND
7X8
PJZUB
PPXIY
PQGLB
5PM
PUEGO
3V.
AAPBV
ABPTK
M~E
ID FETCH-LOGICAL-c698t-dafd5bdcf8f80fed4a4555764ead434b0f851f0dbdce513dd3ef6056db4b9d43
IEDL.DBID M48
ISSN 1553-7404
1553-7390
IngestDate Sun Oct 01 00:20:34 EDT 2023
Wed Aug 27 01:25:58 EDT 2025
Thu Aug 21 13:52:47 EDT 2025
Mon Jul 21 11:38:28 EDT 2025
Tue Jun 17 21:18:36 EDT 2025
Tue Jun 10 20:36:34 EDT 2025
Fri Jun 27 04:15:11 EDT 2025
Fri Jun 27 05:03:27 EDT 2025
Fri Jun 27 04:58:55 EDT 2025
Thu May 22 21:22:10 EDT 2025
Thu Apr 03 07:03:27 EDT 2025
Thu Apr 24 23:09:46 EDT 2025
Tue Jul 01 01:41:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c698t-dafd5bdcf8f80fed4a4555764ead434b0f851f0dbdce513dd3ef6056db4b9d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors have declared that no competing interests exist.
Conceived and designed the experiments: KS QX. Performed the experiments: KS HZ SW MC YW ST CL YF. Analyzed the data: KS HZ XC QX. Wrote the paper: KS QX.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1003577
PMID 23818868
PQID 1393815645
PQPubID 23479
ParticipantIDs plos_journals_1427353665
doaj_primary_oai_doaj_org_article_afc8e318495d44cdb2f3a0ba9a688290
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3688486
proquest_miscellaneous_1393815645
gale_infotracmisc_A337288424
gale_infotracacademiconefile_A337288424
gale_incontextgauss_ISR_A337288424
gale_incontextgauss_ISN_A337288424
gale_incontextgauss_IOV_A337288424
gale_healthsolutions_A337288424
pubmed_primary_23818868
crossref_citationtrail_10_1371_journal_pgen_1003577
crossref_primary_10_1371_journal_pgen_1003577
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-01
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2013
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References R Finkelstein (ref3) 2008; 59
AL Silverstone (ref59) 2001; 13
S Penfield (ref32) 2006; 18
C Martinez-Andujar (ref14) 2011; 108
JD Bewley (ref1) 1997; 9
M Seo (ref9) 2006; 48
E Farnsworth (ref4) 2000; 31
MJ Holdsworth (ref8) 2008; 179
J Fang (ref6) 2008; 54
M Kanai (ref25) 2010; 62
MW Yaish (ref11) 2010; 6
YY Zhang (ref63) 2007; 19
F Cui (ref62) 2012; 24
B Kucera (ref57) 2005; 15
RR Finkelstein (ref23) 1994; 5
A Frey (ref13) 1999; 39
T Matakiadis (ref16) 2009; 149
Y Ma (ref20) 2009; 324
PI Kerchev (ref40) 2011; 23
Y Yang (ref41) 2011; 156
U Piskurewicz (ref52) 2009; 4
RR Finkelstein (ref30) 1998; 10
N Bechtold (ref61) 1998; 82
E Nambara (ref22) 1992; 2
B Renata (ref7) 2006; 28
U Piskurewicz (ref24) 2008; 20
S Penfield (ref45) 2005; 15
ZL Zhang (ref51) 2011; 108
SE Jacobsen (ref29) 1993; 5
WM Reeves (ref60) 2011; 75
J Sun (ref65) 2012; 8
F Bossi (ref50) 2009; 59
SY Park (ref19) 2009; 324
S Koussevitzky (ref38) 2007; 316
R Finkelstein (ref42) 2011; 62
HWM Hilhorst (ref56) 1998; 8
M Okamoto (ref15) 2006; 141
XW Sun (ref37) 2011; 2
T Kushiro (ref17) 2004; 23
EM Soderman (ref31) 2000; 124
TP Sun (ref53) 1992; 4
F Gubler (ref2) 2005; 8
M Koornneef (ref21) 1989; 90
V Quesada (ref35) 2000; 154
F Arenas-Huertero (ref33) 2000; 14
R Yano (ref10) 2009; 151
MV Rodriguez (ref58) 2012; 53
TP Sun (ref54) 1994; 6
D Shkolnik-Inbar (ref39) 2010; 22
Y Yamauchi (ref27) 2007; 48
ML Chen (ref67) 2011; 879
SC Lee (ref28) 2002; 16
E Giraud (ref36) 2009; 150
T Kakizaki (ref47) 2009; 151
A Frey (ref12) 2011; 70
T Nakagawa (ref66) 2007; 104
TP Howard (ref5) 2012; 194
M Koornneef (ref26) 1980; 58
S Ali-Rachedi (ref49) 2004; 219
FL Lu (ref64) 2011; 43
WE Finch-Savage (ref55) 2006; 171
RJ Laby (ref34) 2000; 23
M Koornneef (ref18) 1984; 61
H Fujii (ref48) 2007; 19
T Gerjets (ref46) 2010; 61
L Bentsink (ref43) 2008; 6
K Yamagishi (ref44) 2009; 50
21097710 - Plant Cell. 2010 Nov;22(11):3560-73
24301503 - Theor Appl Genet. 1980 Nov;58(6):257-63
20838584 - PLoS Genet. 2010 Sep;6(9):e1001098
20345608 - Plant J. 2010 Jun 1;62(6):936-47
21926335 - Plant Cell. 2011 Sep;23(9):3319-34
18941053 - Plant Cell. 2008 Oct;20(10):2729-45
17307925 - Plant Cell. 2007 Feb;19(2):485-94
15752999 - Curr Opin Plant Biol. 2005 Apr;8(2):183-7
9634591 - Plant Cell. 1998 Jun;10(6):1043-54
10950871 - Genes Dev. 2000 Aug 15;14(16):2085-96
21444253 - J Chromatogr B Analyt Technol Biomed Life Sci. 2011 Apr 15;879(13-14):938-44
22171989 - Plant J. 2012 May;70(3):501-12
19726569 - Plant Physiol. 2009 Nov;151(3):1339-53
11877383 - Genes Dev. 2002 Mar 1;16(5):646-58
21504878 - J Exp Bot. 2011 Jul;62(11):3971-9
10972885 - Plant J. 2000 Sep;23(5):587-96
22300545 - New Phytol. 2012 Apr;194(1):158-67
11449051 - Plant Cell. 2001 Jul;13(7):1555-66
21642989 - Nat Genet. 2011 Jul;43(7):715-9
19074630 - Plant Physiol. 2009 Feb;149(2):949-60
22214659 - Plant Cell. 2012 Jan;24(1):233-44
19407143 - Science. 2009 May 22;324(5930):1064-8
19109301 - Plant Cell Physiol. 2009 Feb;50(2):330-40
22479194 - PLoS Genet. 2012;8(3):e1002594
12297643 - Plant Cell. 1992 Feb;4(2):119-128
19704711 - Plant Signal Behav. 2009 Jan;4(1):63-5
17573536 - Plant Cell. 2007 Jun;19(6):1912-29
22303244 - Arabidopsis Book. 2008;6:e0119
10629000 - Genetics. 2000 Jan;154(1):421-36
11115891 - Plant Physiol. 2000 Dec;124(4):1752-65
17697981 - J Biosci Bioeng. 2007 Jul;104(1):34-41
16303558 - Curr Biol. 2005 Nov 22;15(22):1998-2006
21934661 - Nat Commun. 2011;2:477
17010113 - Plant J. 2006 Nov;48(3):354-66
15060827 - Planta. 2004 Jul;219(3):479-88
21245327 - Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2160-5
21243515 - Plant Mol Biol. 2011 Mar;75(4-5):347-63
16543410 - Plant Physiol. 2006 May;141(1):97-107
12237375 - Plant Cell. 1997 Jul;9(7):1055-1066
16666794 - Plant Physiol. 1989 Jun;90(2):463-9
19407142 - Science. 2009 May 22;324(5930):1068-71
21969557 - Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):17225-9
22076590 - Plant Cell Physiol. 2012 Jan;53(1):64-80
8400871 - Plant Cell. 1993 Aug;5(8):887-96
15044947 - EMBO J. 2004 Apr 7;23(7):1647-56
18422904 - New Phytol. 2008;179(1):33-54
17289793 - Plant Cell Physiol. 2007 Mar;48(3):555-61
10380812 - Plant Mol Biol. 1999 Apr;39(6):1267-74
19482916 - Plant Physiol. 2009 Jul;150(3):1286-96
17395793 - Science. 2007 May 4;316(5825):715-9
21515696 - Plant Physiol. 2011 Jun;156(2):873-83
19392689 - Plant J. 2009 Aug;59(3):359-74
9664431 - Methods Mol Biol. 1998;82:259-66
7994182 - Plant Cell. 1994 Oct;6(10):1509-18
16866955 - New Phytol. 2006;171(3):501-23
18257711 - Annu Rev Plant Biol. 2008;59:387-415
18208525 - Plant J. 2008 Apr;54(2):177-89
19923197 - J Exp Bot. 2010;61(2):597-607
16844907 - Plant Cell. 2006 Aug;18(8):1887-99
19648230 - Plant Physiol. 2009 Oct;151(2):641-54
References_xml – volume: 194
  start-page: 158
  year: 2012
  ident: ref5
  article-title: Barley mutants with low rates of endosperm starch synthesis have low grain dormancy and high susceptibility to preharvest sprouting
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2011.04040.x
– volume: 59
  start-page: 359
  year: 2009
  ident: ref50
  article-title: The Arabidopsis ABA-INSENSITIVE (ABI) 4 factor acts as a central transcription activator of the expression of its own gene, and for the induction of ABI5 and SBE2.2 genes during sugar signaling
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2009.03877.x
– volume: 6
  start-page: 1509
  year: 1994
  ident: ref54
  article-title: The Arabidopsis Ga1 Locus Encodes the Cyclase Ent-Kaurene Synthetase-a of Gibberellin Biosynthesis
  publication-title: Plant Cell
  doi: 10.1105/tpc.6.10.1509
– volume: 151
  start-page: 1339
  year: 2009
  ident: ref47
  article-title: Coordination of Plastid Protein Import and Nuclear Gene Expression by Plastid-to-Nucleus Retrograde Signaling
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.145987
– volume: 219
  start-page: 479
  year: 2004
  ident: ref49
  article-title: Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana
  publication-title: Planta
  doi: 10.1007/s00425-004-1251-4
– volume: 54
  start-page: 177
  year: 2008
  ident: ref6
  article-title: Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2008.03411.x
– volume: 19
  start-page: 1912
  year: 2007
  ident: ref63
  article-title: SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.048488
– volume: 31
  start-page: 107
  year: 2000
  ident: ref4
  article-title: The ecology and physiology of viviparous and recalcitrant seeds
  publication-title: Annu Rev Ecol Syst
  doi: 10.1146/annurev.ecolsys.31.1.107
– volume: 2
  start-page: 477
  year: 2011
  ident: ref37
  article-title: A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus
  publication-title: Nat Commun
  doi: 10.1038/ncomms1486
– volume: 6
  start-page: e1001098
  year: 2010
  ident: ref11
  article-title: The APETALA-2-Like Transcription Factor OsAP2-39 Controls Key Interactions between Abscisic Acid and Gibberellin in Rice
  publication-title: Plos Genet
  doi: 10.1371/journal.pgen.1001098
– volume: 13
  start-page: 1555
  year: 2001
  ident: ref59
  article-title: Repressing a repressor: Gibberellin-induced rapid reduction of the RGA protein in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.13.7.1555
– volume: 108
  start-page: 17225
  year: 2011
  ident: ref14
  article-title: Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1112151108
– volume: 879
  start-page: 938
  year: 2011
  ident: ref67
  article-title: Highly sensitive profiling assay of acidic plant hormones using a novel mass probe by capillary electrophoresis-time of flight-mass spectrometry
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
  doi: 10.1016/j.jchromb.2011.03.003
– volume: 324
  start-page: 1266
  year: 2009
  ident: ref20
  article-title: Regulators of PP2C phosphatase activity function as abscisic acid sensors
  publication-title: Science
– volume: 5
  start-page: 887
  year: 1993
  ident: ref29
  article-title: Mutations at the Spindly Locus of Arabidopsis Alter Gibberellin Signal-Transduction
  publication-title: Plant Cell
  doi: 10.1105/tpc.5.8.887
– volume: 48
  start-page: 354
  year: 2006
  ident: ref9
  article-title: Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2006.02881.x
– volume: 75
  start-page: 347
  year: 2011
  ident: ref60
  article-title: Direct targets of the transcription factors ABA-Insensitive(ABI)4 and ABI5 reveal synergistic action by ABI4 and several bZIP ABA response factors
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-011-9733-9
– volume: 28
  start-page: 281
  year: 2006
  ident: ref7
  article-title: Nitric oxide and HCN reduce deep dormancy of apple seeds
  publication-title: Acta Physiol Plant
  doi: 10.1007/BF02706542
– volume: 316
  start-page: 715
  year: 2007
  ident: ref38
  article-title: Signals from chloroplasts converge to regulate nuclear gene expression
  publication-title: Science
  doi: 10.1126/science. 1140516
– volume: 5
  start-page: 765
  year: 1994
  ident: ref23
  article-title: Mutations at 2 New Arabidopsis Aba Response Loci Are Similar to the Abi3 Mutations
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1994.5060765.x
– volume: 20
  start-page: 2729
  year: 2008
  ident: ref24
  article-title: The Gibberellic Acid Signaling Repressor RGL2 Inhibits Arabidopsis Seed Germination by Stimulating Abscisic Acid Synthesis and ABI5 Activity
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.061515
– volume: 61
  start-page: 597
  year: 2010
  ident: ref46
  article-title: An analysis of dormancy, ABA responsiveness, after-ripening and pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.) caryopses
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erp329
– volume: 8
  start-page: 183
  year: 2005
  ident: ref2
  article-title: Dormancy release, ABA and pre-harvest sprouting
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2005.01.011
– volume: 39
  start-page: 1267
  year: 1999
  ident: ref13
  article-title: Engineering seed dormancy by the modification of zeaxanthin epoxidase gene expression
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1006145025631
– volume: 104
  start-page: 34
  year: 2007
  ident: ref66
  article-title: Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation
  publication-title: J Biosci Bioeng
  doi: 10.1263/jbb.104.34
– volume: 4
  start-page: 63
  year: 2009
  ident: ref52
  article-title: The GA-signaling repressor RGL3 represses testa rupture in response to changes in GA and ABA levels
  publication-title: Plant Signal Behav
  doi: 10.4161/psb.4.1.7331
– volume: 82
  start-page: 259
  year: 1998
  ident: ref61
  article-title: In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration
  publication-title: Methods Mol Biol
– volume: 179
  start-page: 33
  year: 2008
  ident: ref8
  article-title: Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2008.02437.x
– volume: 22
  start-page: 3560
  year: 2010
  ident: ref39
  article-title: ABI4 Mediates Abscisic Acid and Cytokinin Inhibition of Lateral Root Formation by Reducing Polar Auxin Transport in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.074641
– volume: 8
  start-page: 77
  year: 1998
  ident: ref56
  article-title: The regulation of secondary dormancy. The membrane hypothesis revisited
  publication-title: Seed Sci Res
  doi: 10.1017/S0960258500003974
– volume: 149
  start-page: 949
  year: 2009
  ident: ref16
  article-title: The Arabidopsis Abscisic Acid Catabolic Gene CYP707A2 Plays a Key Role in Nitrate Control of Seed Dormancy
  publication-title: Plant Physiol
  doi: 10.1104/pp.108.126938
– volume: 108
  start-page: 2160
  year: 2011
  ident: ref51
  article-title: SCARECROW-LIKE 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1012232108
– volume: 15
  start-page: 281
  year: 2005
  ident: ref57
  article-title: Plant hormone interactions during seed dormancy release and germination
  publication-title: Seed Sci Res
  doi: 10.1079/SSR2005218
– volume: 90
  start-page: 463
  year: 1989
  ident: ref21
  article-title: In Vivo Inhibition of Seed Development and Reserve Protein Accumulation in Recombinants of Abscisic Acid Biosynthesis and Responsiveness Mutants in Arabidopsis thaliana
  publication-title: Plant Physiol
  doi: 10.1104/pp.90.2.463
– volume: 16
  start-page: 646
  year: 2002
  ident: ref28
  article-title: Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition
  publication-title: Gene Dev
  doi: 10.1101/gad.969002
– volume: 23
  start-page: 587
  year: 2000
  ident: ref34
  article-title: The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.2000.00833.x
– volume: 154
  start-page: 421
  year: 2000
  ident: ref35
  article-title: Genetic analysis of salt-tolerant mutants in Arabidopsis thaliana
  publication-title: Genetics
  doi: 10.1093/genetics/154.1.421
– volume: 48
  start-page: 555
  year: 2007
  ident: ref27
  article-title: Contribution of gibberellin deactivation by AtGA2ox2 to the suppression of germination of dark-imbibed Arabidopsis thaliana seeds
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcm023
– volume: 156
  start-page: 873
  year: 2011
  ident: ref41
  article-title: ABI4 Activates DGAT1 Expression in Arabidopsis Seedlings during Nitrogen Deficiency
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175950
– volume: 58
  start-page: 257
  year: 1980
  ident: ref26
  article-title: Induction and Analysis of Gibberellin Sensitive Mutants in Arabidopsis-Thaliana (L) Heynh
  publication-title: Theor Appl Genet
  doi: 10.1007/BF00265176
– volume: 53
  start-page: 64
  year: 2012
  ident: ref58
  article-title: Expression of Seed Dormancy in Grain Sorghum Lines with Contrasting Pre-Harvest Sprouting Behavior Involves Differential Regulation of Gibberellin Metabolism Genes
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcr154
– volume: 61
  start-page: 377
  year: 1984
  ident: ref18
  article-title: The Isolation and Characterization of Abscisic-Acid Insensitive Mutants of Arabidopsis-Thaliana
  publication-title: Physiol Plantarum
  doi: 10.1111/j.1399-3054.1984.tb06343.x
– volume: 150
  start-page: 1286
  year: 2009
  ident: ref36
  article-title: The Transcription Factor ABI4 Is a Regulator of Mitochondrial Retrograde Expression of ALTERNATIVE OXIDASE1a
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.139782
– volume: 141
  start-page: 97
  year: 2006
  ident: ref15
  article-title: CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.079475
– volume: 23
  start-page: 1647
  year: 2004
  ident: ref17
  article-title: The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600121
– volume: 62
  start-page: 3971
  year: 2011
  ident: ref42
  article-title: Accumulation of the transcription factor ABA-insensitive (ABI)4 is tightly regulated post-transcriptionally
  publication-title: J Exp Bot
  doi: 10.1093/jxb/err093
– volume: 9
  start-page: 1055
  year: 1997
  ident: ref1
  article-title: Seed germination and dormancy
  publication-title: Plant Cell
  doi: 10.1105/tpc.9.7.1055
– volume: 14
  start-page: 2085
  year: 2000
  ident: ref33
  article-title: Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar
  publication-title: Gene Dev
  doi: 10.1101/gad.14.16.2085
– volume: 2
  start-page: 435
  year: 1992
  ident: ref22
  article-title: A Mutant of Arabidopsis Which Is Defective in Seed Development and Storage Protein Accumulation Is a New Abi3 Allele
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.1992.00435.x
– volume: 8
  start-page: e1002594
  year: 2012
  ident: ref65
  article-title: PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating arabidopsis hypocotyl growth
  publication-title: PLOS Genet
  doi: 10.1371/journal.pgen.1002594
– volume: 43
  start-page: 715
  year: 2011
  ident: ref64
  article-title: Arabidopsis REF6 is a histone H3 lysine 27 demethylase
  publication-title: Nat Genet
  doi: 10.1038/ng.854
– volume: 50
  start-page: 330
  year: 2009
  ident: ref44
  article-title: CHOTTO1, a Double AP2 Domain Protein of Arabidopsis thaliana, Regulates Germination and Seedling Growth Under Excess Supply of Glucose and Nitrate
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcn201
– volume: 18
  start-page: 1887
  year: 2006
  ident: ref32
  article-title: Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.041277
– volume: 151
  start-page: 641
  year: 2009
  ident: ref10
  article-title: CHOTTO1, a Putative Double APETALA2 Repeat Transcription Factor, Is Involved in Abscisic Acid-Mediated Repression of Gibberellin Biosynthesis during Seed Germination in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.142018
– volume: 4
  start-page: 119
  year: 1992
  ident: ref53
  article-title: Cloning the Arabidopsis Ga1 Locus by Genomic Subtraction
  publication-title: Plant Cell
  doi: 10.1105/tpc.4.2.119
– volume: 171
  start-page: 501
  year: 2006
  ident: ref55
  article-title: Seed dormancy and the control of germination
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2006.01787.x
– volume: 324
  start-page: 1068
  year: 2009
  ident: ref19
  article-title: Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins
  publication-title: Science
  doi: 10.1126/science.1173041
– volume: 23
  start-page: 3319
  year: 2011
  ident: ref40
  article-title: The Transcription Factor ABI4 Is Required for the Ascorbic Acid-Dependent Regulation of Growth and Regulation of Jasmonate-Dependent Defense Signaling Pathways in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.090100
– volume: 15
  start-page: 1998
  year: 2005
  ident: ref45
  article-title: Cold and light control seed germination through the bHLH transcription factor SPATULA
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2005.11.010
– volume: 10
  start-page: 1043
  year: 1998
  ident: ref30
  article-title: The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA2 domain protein
  publication-title: Plant Cell
  doi: 10.1105/tpc.10.6.1043
– volume: 6
  start-page: e0119
  year: 2008
  ident: ref43
  article-title: Seed dormancy and germination
  publication-title: Arabidopsis Book
  doi: 10.1199/tab.0119
– volume: 59
  start-page: 387
  year: 2008
  ident: ref3
  article-title: Molecular aspects of seed dormancy
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.59.032607.092740
– volume: 70
  start-page: 501
  year: 2011
  ident: ref12
  article-title: Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2011.04887.x
– volume: 24
  start-page: 233
  year: 2012
  ident: ref62
  article-title: Arabidopsis Ubiquitin Conjugase UBC32 Is an ERAD Component That Functions in Brassinosteroid-Mediated Salt Stress Tolerance
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.093062
– volume: 19
  start-page: 485
  year: 2007
  ident: ref48
  article-title: Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.048538
– volume: 62
  start-page: 936
  year: 2010
  ident: ref25
  article-title: A peroxisomal ABC transporter promotes seed germination by inducing pectin degradation under the control of ABI5
  publication-title: Plant J
– volume: 124
  start-page: 1752
  year: 2000
  ident: ref31
  article-title: Regulation and function of the arabidopsis ABA-insensitive4 gene in seed and abscisic acid response signaling networks
  publication-title: Plant Physiol
  doi: 10.1104/pp.124.4.1752
– reference: 17307925 - Plant Cell. 2007 Feb;19(2):485-94
– reference: 11449051 - Plant Cell. 2001 Jul;13(7):1555-66
– reference: 21243515 - Plant Mol Biol. 2011 Mar;75(4-5):347-63
– reference: 21969557 - Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):17225-9
– reference: 15044947 - EMBO J. 2004 Apr 7;23(7):1647-56
– reference: 16866955 - New Phytol. 2006;171(3):501-23
– reference: 9634591 - Plant Cell. 1998 Jun;10(6):1043-54
– reference: 10629000 - Genetics. 2000 Jan;154(1):421-36
– reference: 21642989 - Nat Genet. 2011 Jul;43(7):715-9
– reference: 22479194 - PLoS Genet. 2012;8(3):e1002594
– reference: 15752999 - Curr Opin Plant Biol. 2005 Apr;8(2):183-7
– reference: 22214659 - Plant Cell. 2012 Jan;24(1):233-44
– reference: 22171989 - Plant J. 2012 May;70(3):501-12
– reference: 19726569 - Plant Physiol. 2009 Nov;151(3):1339-53
– reference: 10380812 - Plant Mol Biol. 1999 Apr;39(6):1267-74
– reference: 7994182 - Plant Cell. 1994 Oct;6(10):1509-18
– reference: 18422904 - New Phytol. 2008;179(1):33-54
– reference: 17289793 - Plant Cell Physiol. 2007 Mar;48(3):555-61
– reference: 22303244 - Arabidopsis Book. 2008;6:e0119
– reference: 22076590 - Plant Cell Physiol. 2012 Jan;53(1):64-80
– reference: 24301503 - Theor Appl Genet. 1980 Nov;58(6):257-63
– reference: 17395793 - Science. 2007 May 4;316(5825):715-9
– reference: 21097710 - Plant Cell. 2010 Nov;22(11):3560-73
– reference: 11877383 - Genes Dev. 2002 Mar 1;16(5):646-58
– reference: 19704711 - Plant Signal Behav. 2009 Jan;4(1):63-5
– reference: 21444253 - J Chromatogr B Analyt Technol Biomed Life Sci. 2011 Apr 15;879(13-14):938-44
– reference: 21926335 - Plant Cell. 2011 Sep;23(9):3319-34
– reference: 12237375 - Plant Cell. 1997 Jul;9(7):1055-1066
– reference: 19482916 - Plant Physiol. 2009 Jul;150(3):1286-96
– reference: 22300545 - New Phytol. 2012 Apr;194(1):158-67
– reference: 21934661 - Nat Commun. 2011;2:477
– reference: 8400871 - Plant Cell. 1993 Aug;5(8):887-96
– reference: 17010113 - Plant J. 2006 Nov;48(3):354-66
– reference: 18208525 - Plant J. 2008 Apr;54(2):177-89
– reference: 16666794 - Plant Physiol. 1989 Jun;90(2):463-9
– reference: 21245327 - Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2160-5
– reference: 20345608 - Plant J. 2010 Jun 1;62(6):936-47
– reference: 16543410 - Plant Physiol. 2006 May;141(1):97-107
– reference: 19407143 - Science. 2009 May 22;324(5930):1064-8
– reference: 10972885 - Plant J. 2000 Sep;23(5):587-96
– reference: 10950871 - Genes Dev. 2000 Aug 15;14(16):2085-96
– reference: 17697981 - J Biosci Bioeng. 2007 Jul;104(1):34-41
– reference: 15060827 - Planta. 2004 Jul;219(3):479-88
– reference: 21504878 - J Exp Bot. 2011 Jul;62(11):3971-9
– reference: 16844907 - Plant Cell. 2006 Aug;18(8):1887-99
– reference: 21515696 - Plant Physiol. 2011 Jun;156(2):873-83
– reference: 11115891 - Plant Physiol. 2000 Dec;124(4):1752-65
– reference: 19109301 - Plant Cell Physiol. 2009 Feb;50(2):330-40
– reference: 19392689 - Plant J. 2009 Aug;59(3):359-74
– reference: 20838584 - PLoS Genet. 2010 Sep;6(9):e1001098
– reference: 18257711 - Annu Rev Plant Biol. 2008;59:387-415
– reference: 12297643 - Plant Cell. 1992 Feb;4(2):119-128
– reference: 9664431 - Methods Mol Biol. 1998;82:259-66
– reference: 16303558 - Curr Biol. 2005 Nov 22;15(22):1998-2006
– reference: 19407142 - Science. 2009 May 22;324(5930):1068-71
– reference: 17573536 - Plant Cell. 2007 Jun;19(6):1912-29
– reference: 19648230 - Plant Physiol. 2009 Oct;151(2):641-54
– reference: 18941053 - Plant Cell. 2008 Oct;20(10):2729-45
– reference: 19923197 - J Exp Bot. 2010;61(2):597-607
– reference: 19074630 - Plant Physiol. 2009 Feb;149(2):949-60
SSID ssj0035897
Score 2.5488956
Snippet Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the...
  Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA) and Gibberellins (GA) are the primary factors that regulate the...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1003577
SubjectTerms Abscisic acid
Abscisic Acid - biosynthesis
Abscisic Acid - metabolism
Agricultural production
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Biology
Biosynthesis
Deoxyribonucleic acid
Developmental biology
DNA
Experiments
Gene expression
Gene Expression Regulation, Plant
Genetic aspects
Genotype & phenotype
Germination
Germination - genetics
Gibberellins
Gibberellins - biosynthesis
Gibberellins - metabolism
Grasses
Mutation
Phenotype
Physiological aspects
Plant Dormancy - genetics
Regulatory Sequences, Nucleic Acid
Rice
Seeds
Tobacco
Transcription Factors - genetics
Transcription Factors - metabolism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFB5kQfBFvDdadRTBp9hsZiYzedyKpRWsoFX6Fua6DZRkSXYf9t97JjMJjQjtg6_JN7A539lzSc4FoQ_KWmed7-iRXKdg_UxaEsbTApxrYZXTZlgH9O28OP1Fv16yyxurvnxNWBgPHAR3JJ0W_j0dBPKGUm1U7ojMlCxlIfxHQG99weeNyVSwwYSJsFaFMZJySOtj0xzhy6PI0acNEORrBOCX8ZlTGmb3TxZ6sblu-3-Fn39XUd5wSyeP0MMYT-JVeI7H6J5tnqD7YcPk_inqVsdnFHdh4bzt8SYMl8A9OC1sQsfAHqv9CAFHhiEkxKpu194K1j1uHZZgXGqgE0tdGywbg9e1UrbzwzybHtcNlp1UtWk3cOAZujj5cvH5NI1rFlJdlGKbGukMU0Y74UTmrKGSMgZpCAUlo4SqzEFU5jIDEMuWxBgC5ELcZBRVJSCeo0XTNvYAYSGoZFwJToilCkhQS5_f2FyXuRGUJYiMYq50HEHuN2FcV8N3NQ6pSJBa5cmpIjkJSqdTUUq34I89gxPWD9AeLoBaVVGtqtvUKkFvPf9V6EadzEC1IoTn8Jw5TdD7AeGHaDS-Smctd31fnX3_fQfQz_O7gH7MQB8jyLUgMy1j-wRI3k_wmiEPZ0iwF3p2-8Cr9Ci6HpI_CGEZKQrg592o5pU_5evvGtvuAENKMswVAsyLoPaTfIegTxQiQXz2h5gRML_T1FfDJHMCwqaiePk_GHuFHuRhVUmaLQ_RYtvt7GsIGLfqzWAb_gDo-2ot
  priority: 102
  providerName: Directory of Open Access Journals
Title ABI4 Regulates Primary Seed Dormancy by Regulating the Biogenesis of Abscisic Acid and Gibberellins in Arabidopsis
URI https://www.ncbi.nlm.nih.gov/pubmed/23818868
https://www.proquest.com/docview/1393815645
https://pubmed.ncbi.nlm.nih.gov/PMC3688486
https://doaj.org/article/afc8e318495d44cdb2f3a0ba9a688290
http://dx.doi.org/10.1371/journal.pgen.1003577
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF61qZC4IN4NlLAgJE6uEu-ud31AKEGtWqQGVFqUm7XP1FJkBzuRyL9n1i9hVEQPXONvE2Vmdh7enfkQeqesddb5jh7JdQDezwQxYTyIILhGVjltKjqgi3l0dk0_L9hiD7WcrY0Ay1tLO88ndV2sjn_-2H2EDf-hYm3gk3bR8RpE7k_94bf4PjqA2MQ9p8EF7c4VCBM13QpjJOBQ7jfNdH_7ll6wqmb6d557sF7l5W1p6Z-3K38LV6cP0YMmz8TT2jAeoT2bPUb3aubJ3RNUTGfnFBc1Eb0t8boeOoFLCGbY1J0EO6x2LQQCHIZUEas0X3rvmJY4d1iC00lBzVjq1GCZGbxMlbKFH_KZlTjNsCykSk2-hgVP0dXpydWns6ChXwh0FItNYKQzTBnthBNjZw2VlDEoTygYHyVUjR1ka25sAGLZhBhDQOmQTxlFVQyIZ2iQ5Zk9RFgIKhlXghNiqQIlqImve2yo49AIyoaItGJOdDOa3DNkrJLqvI1DiVJLLfHKSRrlDFHQrWqk9A_8zGuww_rB2tUHebFMmn2aSKeFfy0MdaOhVBsVOiLHSsYyEv7MeYhee_0ndZdq5x6SKSE8hP8Z0iF6WyH8cI3M395Zym1ZJudfvt8B9G1-F9BlD_S-AbkcZKZl01YBkveTvXrIox4S_IjuPT70Jt2KroSiEFJbRqII9POmNfPEr_L38jKbbwFDYlLNGwLM89rsO_lWyaCIxBDx3oboKaD_JEtvqgnnBIRNRfTif2jsJbof1hQmwXhyhAabYmtfQSK5USO0zxd8hA5mJ_Ovl6Pqdcyo8he_AFAUd7E
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ABI4+regulates+primary+seed+dormancy+by+regulating+the+biogenesis+of+abscisic+acid+and+gibberellins+in+arabidopsis&rft.jtitle=PLoS+genetics&rft.au=Kai+Shu&rft.au=Huawei+Zhang&rft.au=Shengfu+Wang&rft.au=Mingluan+Chen&rft.date=2013-06-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-7390&rft.eissn=1553-7404&rft.volume=9&rft.issue=6&rft.spage=e1003577&rft_id=info:doi/10.1371%2Fjournal.pgen.1003577&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_afc8e318495d44cdb2f3a0ba9a688290
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon