Autoselection of Cytoplasmic Yeast Virus Like Elements Encoding Toxin/Antitoxin Systems Involves a Nuclear Barrier for Immunity Gene Expression
Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of...
Saved in:
Published in | PLoS genetics Vol. 11; no. 5; p. e1005005 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.05.2015
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle. |
---|---|
AbstractList | Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KIORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle. Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle. Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle. Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle.Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle. Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene ( PaORF4 , KlORF3 or DrORF5 ) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle. The rather wide-spread and extremely A/T rich yeast virus like elements (VLEs, also termed linear plasmids) which encode toxic anticodon nucleases (ACNases) ensure autoselection in the cytoplasm by preventing functional nuclear capture of the cognate immunity genes, but how? When expressed in the nucleus, the mRNA of the VLE immunity genes is split into fragments to which poly(A) tails are added. Consistently, lowering the A/T content by gene synthesis prevented transcript cleavage and permitted functional nuclear expression providing full immunity against the respective ACNase toxin. Thus, internal poly(A) cleavage is likely to prevent functional nuclear immunity gene expression. |
Audience | Academic |
Author | Kast, Alene Meinhardt, Friedhelm Schroth, Michael Klassen, Roland Voges, Raphael Schaffrath, Raffael |
AuthorAffiliation | 2 Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany Fred Hutchinson Cancer Research Center, UNITED STATES 1 Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany |
AuthorAffiliation_xml | – name: 1 Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany – name: Fred Hutchinson Cancer Research Center, UNITED STATES – name: 2 Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany |
Author_xml | – sequence: 1 givenname: Alene surname: Kast fullname: Kast, Alene – sequence: 2 givenname: Raphael surname: Voges fullname: Voges, Raphael – sequence: 3 givenname: Michael surname: Schroth fullname: Schroth, Michael – sequence: 4 givenname: Raffael surname: Schaffrath fullname: Schaffrath, Raffael – sequence: 5 givenname: Roland surname: Klassen fullname: Klassen, Roland – sequence: 6 givenname: Friedhelm surname: Meinhardt fullname: Meinhardt, Friedhelm |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25973601$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk99qFDEUxgep2D_6BqIBQfRit8lMJjPTC2EttS6UFmwteBWymZNtaiZZk0zpPoWvbKa7LV0RUTKQkPzOl5NvztnNtqyzkGUvCR6ToiL71673VpjxYg52TDAu0_ck2yFlWYwqiunWo_V2thvCNcZFWTfVs2w7L5uqYJjsZD8nfXQBDMionUVOocNldAsjQqcl-gYiRHSpfR_Qif4O6MhABzYGdGSla7Wdowt3q-3-xEYdhxU6X4YIXUBTe-PMDQQk0GkvDQiPPgrvNXiknEfTruutjkt0DDbJ3i48hJAyeJ49VcIEeLGe97Kvn44uDj-PTs6Op4eTk5FkTR1HLasKhetG5WxW1EBY06iyyVlT0hklJCekVUDIrMQttBJUnlDVirwSLJ0pVuxlr1e6C-MCX3sZOGF1SWiVbErEdEW0Tlzzhded8EvuhOZ3G87PufBRp6dxhTGuSF00FSZ0xtpGkkKWtWwUmVGK26T1YX1bP-uGhGz0wmyIbp5YfcXn7oZTWpCKkCTwbi3g3Y8eQuSdDhKMERZcf5c3yRnLaZnQNyt0LlJq2iqXFOWA8wklNWVVRYf3j_9ApdFC-vGp0pRO-xsB7zcCEhPhNs5FHwKfnn_5D_b039mzy0327SP2CoSJV8GZfijdsAm-euz3g9H3dZ8AugKkdyF4UA8IwXxor_uS4EN78XV7pbCD38KkjmK4Prmnzd-DfwHVlywm |
CitedBy_id | crossref_primary_10_1016_j_fgb_2024_103957 crossref_primary_10_3390_toxins9040112 crossref_primary_10_1371_journal_ppat_1007377 crossref_primary_10_1371_journal_pone_0157611 crossref_primary_10_3390_v10100564 crossref_primary_10_1098_rspb_2023_1108 crossref_primary_10_1016_j_funeco_2025_101418 crossref_primary_10_3390_ijms23137441 crossref_primary_10_1002_ece3_7515 crossref_primary_10_1111_cmi_12496 crossref_primary_10_3390_toxins13090615 crossref_primary_10_1073_pnas_2217194120 crossref_primary_10_1002_yea_3234 crossref_primary_10_3390_microorganisms8111680 crossref_primary_10_1002_yea_3398 crossref_primary_10_1007_s12268_016_0649_4 crossref_primary_10_1038_s42003_022_03793_z crossref_primary_10_1371_journal_ppat_1005172 |
Cites_doi | 10.1002/yea.728 10.1002/yea.776 10.1007/s00253-012-4349-9 10.1073/pnas.96.24.14055 10.1128/AEM.00271-07 10.1261/rna.034132.112 10.1038/nprot.2006.481 10.1006/plas.1998.1367 10.1007/BF02174386 10.1002/yea.2893 10.1111/j.1462-5822.2004.00383.x 10.1128/EC.4.5.879-889.2005 10.1002/yea.320110408 10.1006/plas.1994.1071 10.1093/nar/15.3.1031 10.1007/s00294-014-0426-1 10.1016/j.dnarep.2007.07.010 10.1128/JB.145.1.382-390.1981 10.1093/nar/24.10.1879 10.1534/g3.111.000745 10.1128/EC.00110-09 10.1111/j.1365-2958.2004.04119.x 10.1111/j.1365-2958.2005.04972.x 10.1093/nar/gkq831 10.1007/BF00321119 10.1016/j.molcel.2008.05.019 10.1101/gad.17268411 10.4161/mge.18477 10.1261/rna.2172105 10.1002/yea.1367 10.1128/JB.147.1.155-160.1981 10.1128/MMBR.00036-06 10.1016/j.celrep.2014.03.034 10.1002/yea.320070610 10.1111/j.1365-2958.2008.06319.x 10.1111/mmi.12481 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2015 Public Library of Science 2015 Kast et al 2015 Kast et al 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kast A, Voges R, Schroth M, Schaffrath R, Klassen R, Meinhardt F (2015) Autoselection of Cytoplasmic Yeast Virus Like Elements Encoding Toxin/Antitoxin Systems Involves a Nuclear Barrier for Immunity Gene Expression. PLoS Genet 11(5): e1005005. doi:10.1371/journal.pgen.1005005 |
Copyright_xml | – notice: COPYRIGHT 2015 Public Library of Science – notice: 2015 Kast et al 2015 Kast et al – notice: 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kast A, Voges R, Schroth M, Schaffrath R, Klassen R, Meinhardt F (2015) Autoselection of Cytoplasmic Yeast Virus Like Elements Encoding Toxin/Antitoxin Systems Involves a Nuclear Barrier for Immunity Gene Expression. PLoS Genet 11(5): e1005005. doi:10.1371/journal.pgen.1005005 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 7X8 5PM DOA |
DOI | 10.1371/journal.pgen.1005005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale in Context: Opposing Viewpoints Gale In Context: Canada Gale in Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Cytoplasmic Virus Like Elements Hijack the Poly(A) Machinery |
EISSN | 1553-7404 |
ExternalDocumentID | 1685147589 oai_doaj_org_article_f000718397014b6d9c13c58c9f1b440d PMC4431711 A418467746 25973601 10_1371_journal_pgen_1005005 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 QF4 QN7 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M 3V. C1A CGR CUY CVF ECM EIF H13 IPNFZ M~E NPM RIG WOQ PMFND 7X8 PPXIY PQGLB 5PM PJZUB PUEGO - AAPBV ABPTK ADACO BBAFP PQEST PQUKI PRINS |
ID | FETCH-LOGICAL-c698t-d673f089f26b38e1699f5926954b411211dfe11b50dedcef289ffda27a6211f63 |
IEDL.DBID | M48 |
ISSN | 1553-7404 1553-7390 |
IngestDate | Fri Nov 26 17:13:28 EST 2021 Wed Aug 27 01:27:40 EDT 2025 Thu Aug 21 13:51:16 EDT 2025 Thu Jul 10 16:54:41 EDT 2025 Tue Jun 17 20:44:02 EDT 2025 Tue Jun 10 20:39:55 EDT 2025 Fri Jun 27 04:51:58 EDT 2025 Fri Jun 27 03:56:20 EDT 2025 Fri Jun 27 03:44:45 EDT 2025 Thu May 22 21:22:13 EDT 2025 Wed Feb 19 02:00:33 EST 2025 Thu Apr 24 22:50:18 EDT 2025 Tue Jul 01 04:31:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c698t-d673f089f26b38e1699f5926954b411211dfe11b50dedcef289ffda27a6211f63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: AK RV RS RK FM. Performed the experiments: AK RV MS RK. Analyzed the data: AK RV MS RS RK FM. Contributed reagents/materials/analysis tools: RS FM. Wrote the paper: AK RS RK FM. The authors have declared that no competing interests exist. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1005005 |
PMID | 25973601 |
PQID | 1681266245 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1685147589 doaj_primary_oai_doaj_org_article_f000718397014b6d9c13c58c9f1b440d pubmedcentral_primary_oai_pubmedcentral_nih_gov_4431711 proquest_miscellaneous_1681266245 gale_infotracmisc_A418467746 gale_infotracacademiconefile_A418467746 gale_incontextgauss_ISR_A418467746 gale_incontextgauss_ISN_A418467746 gale_incontextgauss_IOV_A418467746 gale_healthsolutions_A418467746 pubmed_primary_25973601 crossref_primary_10_1371_journal_pgen_1005005 crossref_citationtrail_10_1371_journal_pgen_1005005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-05-01 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
PublicationTitle | PLoS genetics |
PublicationTitleAlternate | PLoS Genet |
PublicationYear | 2015 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | J Schickel (ref28) 1996; 24 JH Graber (ref31) 1999; 96 R Klassen (ref35) 2004; 53 R Klassen (ref21) 2007 RD Gietz (ref38) 1995; 11 B Meineke (ref13) 2011; 39 S Jeske (ref3) 2006; 23 N Gunge (ref2) 1981; 145 DW Wilson (ref24) 1988; 16 D Jablonowski (ref11) 2006; 59 M Tokunaga (ref17) 1987; 15 A Kast (ref19) 2014; 91 J Nandakumar (ref12) 2008; 31 B Meineke (ref14) 2012; 18 M Larsen (ref25) 1998; 40 JP Paluszynski (ref16) 2007; 73 R Schaffrath (ref29) 1996; 250 E Scotto-Lavino (ref40) 2006; 1 AK Chakravarty (ref8) 2014; 7 C Mehlgarten (ref6) 2004; 6 VL Louis (ref37) 2012; 2 D Jablonowski (ref5) 2001; 18 R Klassen (ref39) 2007; 6 R Klassen (ref15) 2013; 30 F Meinhardt (ref27) 1994; 32 J Lu (ref10) 2005; 11 AC Frank (ref32) 2009; 8 R Schaffrath (ref4) 2005 D Satwika (ref33) 2012; 29 R Klassen (ref20) 2014; 60 D Satwika (ref18) 2012; 96 E Cascales (ref30) 2007; 71 R Klassen (ref9) 2008; 69 S Zink (ref7) 2005; 4 NJ Proudfoot (ref23) 2011; 25 N Gunge (ref22) 1981; 147 PL Worsham (ref1) 1990; 18 J Guglielmini (ref36) 2011; 1 M Tiggemann (ref26) 2001; 18 AR Butler (ref34) 1991; 7 22545240 - Mob Genet Elements. 2011 Nov 1;1(4):283-290 22384408 - G3 (Bethesda). 2012 Feb;2(2):299-311 15104597 - Cell Microbiol. 2004 Jun;6(6):569-80 7016841 - J Bacteriol. 1981 Jul;147(1):155-60 24726365 - Cell Rep. 2014 Apr 24;7(2):339-47 20855293 - Nucleic Acids Res. 2011 Jan;39(2):687-700 25973796 - PLoS Genet. 2015 May;11(5):e1005139 17406530 - Nat Protoc. 2006;1(6):2742-5 16652393 - Yeast. 2006 Apr 30;23(6):479-86 8602143 - Mol Gen Genet. 1996 Feb 25;250(3):286-94 6257636 - J Bacteriol. 1981 Jan;145(1):382-90 17347522 - Microbiol Mol Biol Rev. 2007 Mar;71(1):158-229 16244131 - RNA. 2005 Nov;11(11):1648-54 17483256 - Appl Environ Microbiol. 2007 Jul;73(13):4373-8 18532979 - Mol Microbiol. 2008 Aug;69(3):681-97 22434608 - Yeast. 2012 Mar;29(3-4):145-54 16390459 - Mol Microbiol. 2006 Jan;59(2):677-88 24308908 - Mol Microbiol. 2014 Feb;91(3):606-17 2245477 - Curr Genet. 1990 Jul;18(1):77-80 3029695 - Nucleic Acids Res. 1987 Feb 11;15(3):1031-46 9806862 - Plasmid. 1998 Nov;40(3):243-6 7785336 - Yeast. 1995 Apr 15;11(4):355-60 17765020 - DNA Repair (Amst). 2007 Dec 1;6(12):1864-75 8657569 - Nucleic Acids Res. 1996 May 15;24(10):1879-86 19666779 - Eukaryot Cell. 2009 Oct;8(10):1521-31 10570197 - Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14055-60 21896654 - Genes Dev. 2011 Sep 1;25(17):1770-82 22899498 - Appl Microbiol Biotechnol. 2012 Oct;96(2):345-56 24719080 - Curr Genet. 2014 Aug;60(3):213-22 7899517 - Plasmid. 1994 Nov;32(3):318-27 18657509 - Mol Cell. 2008 Jul 25;31(2):278-86 1767590 - Yeast. 1991 Aug-Sep;7(6):617-25 15879522 - Eukaryot Cell. 2005 May;4(5):879-89 22836353 - RNA. 2012 Sep;18(9):1716-24 11427964 - Yeast. 2001 Jun 30;18(9):815-25 3138657 - Nucleic Acids Res. 1988 Aug 25;16(16):8097-112 15225320 - Mol Microbiol. 2004 Jul;53(1):263-73 11571753 - Yeast. 2001 Oct;18(14):1285-99 |
References_xml | – volume: 18 start-page: 815 year: 2001 ident: ref26 article-title: Kluyveromyces lactis cytoplasmic plasmid pGKL2: heterologous expression of Orf3p and proof of guanylyltransferase and mRNA-triphosphatase activities publication-title: Yeast doi: 10.1002/yea.728 – volume: 18 start-page: 1285 year: 2001 ident: ref5 article-title: Saccharomyces cerevisiae cell wall chitin, the Kluyveromyces lactis zymocin receptor publication-title: Yeast doi: 10.1002/yea.776 – volume: 96 start-page: 345 year: 2012 ident: ref18 article-title: Anticodon nuclease encoding virus-like elements in yeast publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-012-4349-9 – volume: 96 start-page: 14055 year: 1999 ident: ref31 article-title: In silico detection of control signals: mRNA 3'-end-processing sequences in diverse species publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.24.14055 – volume: 73 start-page: 4373 year: 2007 ident: ref16 article-title: Pichia acaciae killer system: genetic analysis of toxin immunity publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00271-07 – year: 2005 ident: ref4 – volume: 18 start-page: 1716 year: 2012 ident: ref14 article-title: A fungal anticodon nuclease ribotoxin exploits a secondary cleavage site to evade tRNA repair publication-title: RNA doi: 10.1261/rna.034132.112 – volume: 1 start-page: 2742 year: 2006 ident: ref40 article-title: 3' end cDNA amplification using classic RACE publication-title: Nat Protoc doi: 10.1038/nprot.2006.481 – volume: 16 start-page: 8097 year: 1988 ident: ref24 article-title: Extranuclear gene expression in yeast: evidence for a plasmid-encoded RNA polymerase of unique structure publication-title: Nucleic Acids Res – volume: 40 start-page: 243 year: 1998 ident: ref25 article-title: Kluyveromyces lactis killer plasmid pGKL2: evidence for a viral-like capping enzyme encoded by ORF3 publication-title: Plasmid doi: 10.1006/plas.1998.1367 – volume: 250 start-page: 286 year: 1996 ident: ref29 article-title: Yeast killer plasmid pGKL2: molecular analysis of UCS5, a cytoplasmic promoter element essential for ORF5 gene function publication-title: Mol Gen Genet doi: 10.1007/BF02174386 – volume: 29 start-page: 145 year: 2012 ident: ref33 article-title: Repeated capture of a cytoplasmic linear plasmid by the host nucleus in Debaryomyces hansenii publication-title: Yeast doi: 10.1002/yea.2893 – volume: 6 start-page: 569 year: 2004 ident: ref6 article-title: After chitin docking, toxicity of Kluyveromyces lactis zymocin requires Saccharomyces cerevisiae plasma membrane H+-ATPase publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2004.00383.x – volume: 30 start-page: 230 year: 2013 ident: ref15 article-title: A secondary cleavage site in tRNA prevents anticodon nuclease toxin resistance via RNA repair publication-title: Yeast – volume: 4 start-page: 879 year: 2005 ident: ref7 article-title: Mannosyl-diinositolphospho-ceramide, the major yeast plasma membrane sphingolipid, governs toxicity of Kluyveromyces lactis zymocin publication-title: Eukaryot Cell doi: 10.1128/EC.4.5.879-889.2005 – start-page: 187 year: 2007 ident: ref21 article-title: Microbiology monographs Microbial linear plasmids – volume: 11 start-page: 355 year: 1995 ident: ref38 article-title: Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure publication-title: Yeast doi: 10.1002/yea.320110408 – volume: 32 start-page: 318 year: 1994 ident: ref27 article-title: A novel approach to express a heterologous gene on Kluyveromyces lactis linear killer plasmids: expression of the bacterial aph gene from a cytoplasmic promoter fragment without in-phase fusion to the plasmid open reading frame publication-title: Plasmid doi: 10.1006/plas.1994.1071 – volume: 15 start-page: 1031 year: 1987 ident: ref17 article-title: Expression and identification of immunity determinants on linear DNA killer plasmids pGKL1 and pGKL2 in Kluyveromyces lactis publication-title: Nucleic Acids Res doi: 10.1093/nar/15.3.1031 – volume: 60 start-page: 213 year: 2014 ident: ref20 article-title: Immunity factors for two related tRNAGln targeting killer toxins distinguish cognate and non-cognate toxic subunits publication-title: Curr Genet doi: 10.1007/s00294-014-0426-1 – volume: 6 start-page: 1864 year: 2007 ident: ref39 article-title: Homologous recombination and the yKu70/80 complex exert opposite roles in resistance against the killer toxin from Pichia acaciae publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2007.07.010 – volume: 145 start-page: 382 year: 1981 ident: ref2 article-title: Isolation and characterization of linear deoxyribonucleic acid plasmids from Kluyveromyces lactis and the plasmid-associated killer character publication-title: J Bacteriol doi: 10.1128/JB.145.1.382-390.1981 – volume: 24 start-page: 1879 year: 1996 ident: ref28 article-title: Kluyveromyces lactis killer system: analysis of cytoplasmic promoters of the linear plasmids publication-title: Nucleic Acids Res doi: 10.1093/nar/24.10.1879 – volume: 2 start-page: 299 year: 2012 ident: ref37 article-title: Pichia sorbitophila, an interspecies yeast hybrid, reveals early steps of genome resolution after polyploidization publication-title: G3 (Bethesda) doi: 10.1534/g3.111.000745 – volume: 8 start-page: 1521 year: 2009 ident: ref32 article-title: Evolutionary capture of viral and plasmid DNA by yeast nuclear chromosomes publication-title: Eukaryot Cell doi: 10.1128/EC.00110-09 – volume: 53 start-page: 263 year: 2004 ident: ref35 article-title: Novel yeast killer toxins provoke S-phase arrest and DNA damage checkpoint activation publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2004.04119.x – volume: 59 start-page: 677 year: 2006 ident: ref11 article-title: tRNAGlu wobble uridine methylation by Trm9 identifies Elongator's key role for zymocin-induced cell death in yeast publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2005.04972.x – volume: 39 start-page: 687 year: 2011 ident: ref13 article-title: Determinants of eukaryal cell killing by the bacterial ribotoxin PrrC publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq831 – volume: 18 start-page: 77 year: 1990 ident: ref1 article-title: Killer toxin production in Pichia acaciae is associated with linear DNA plasmids publication-title: Curr Genet doi: 10.1007/BF00321119 – volume: 31 start-page: 278 year: 2008 ident: ref12 article-title: RNA repair: an antidote to cytotoxic eukaryal RNA damage publication-title: Mol Cell doi: 10.1016/j.molcel.2008.05.019 – volume: 25 start-page: 1770 year: 2011 ident: ref23 article-title: Ending the message: poly(A) signals then and now publication-title: Genes Dev doi: 10.1101/gad.17268411 – volume: 1 start-page: 283 year: 2011 ident: ref36 article-title: Bacterial toxin-antitoxin systems: Translation inhibitors everywhere publication-title: Mob Genet Elements doi: 10.4161/mge.18477 – volume: 11 start-page: 1648 year: 2005 ident: ref10 article-title: The Kluyveromyces lactis gamma-toxin targets tRNA anticodons publication-title: Rna doi: 10.1261/rna.2172105 – volume: 23 start-page: 479 year: 2006 ident: ref3 article-title: Autonomous cytoplasmic linear plasmid pPac1-1 of Pichia acaciae: molecular structure and expression studies publication-title: Yeast doi: 10.1002/yea.1367 – volume: 147 start-page: 155 year: 1981 ident: ref22 article-title: Intergeneric transfer of deoxyribonucleic acid killer plasmids, pGKl1 and pGKl2, from Kluyveromyces lactis into Saccharomyces cerevisiae by cell fusion publication-title: J Bacteriol doi: 10.1128/JB.147.1.155-160.1981 – volume: 71 start-page: 158 year: 2007 ident: ref30 article-title: Colicin biology publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.00036-06 – volume: 7 start-page: 339 year: 2014 ident: ref8 article-title: Structure, mechanism, and specificity of a eukaryal tRNA restriction enzyme involved in self-nonself discrimination publication-title: Cell Rep doi: 10.1016/j.celrep.2014.03.034 – volume: 7 start-page: 617 year: 1991 ident: ref34 article-title: Intracellular expression of Kluyveromyces lactis toxin gamma subunit mimics treatment with exogenous toxin and distinguishes two classes of toxin-resistant mutant publication-title: Yeast doi: 10.1002/yea.320070610 – volume: 69 start-page: 681 year: 2008 ident: ref9 article-title: The primary target of the killer toxin from Pichia acaciae is tRNA(Gln) publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2008.06319.x – volume: 91 start-page: 606 year: 2014 ident: ref19 article-title: rRNA fragmentation induced by a yeast killer toxin publication-title: Mol Microbiol doi: 10.1111/mmi.12481 – reference: 15104597 - Cell Microbiol. 2004 Jun;6(6):569-80 – reference: 3138657 - Nucleic Acids Res. 1988 Aug 25;16(16):8097-112 – reference: 15225320 - Mol Microbiol. 2004 Jul;53(1):263-73 – reference: 22545240 - Mob Genet Elements. 2011 Nov 1;1(4):283-290 – reference: 11571753 - Yeast. 2001 Oct;18(14):1285-99 – reference: 24719080 - Curr Genet. 2014 Aug;60(3):213-22 – reference: 20855293 - Nucleic Acids Res. 2011 Jan;39(2):687-700 – reference: 18657509 - Mol Cell. 2008 Jul 25;31(2):278-86 – reference: 19666779 - Eukaryot Cell. 2009 Oct;8(10):1521-31 – reference: 3029695 - Nucleic Acids Res. 1987 Feb 11;15(3):1031-46 – reference: 17483256 - Appl Environ Microbiol. 2007 Jul;73(13):4373-8 – reference: 16244131 - RNA. 2005 Nov;11(11):1648-54 – reference: 7899517 - Plasmid. 1994 Nov;32(3):318-27 – reference: 6257636 - J Bacteriol. 1981 Jan;145(1):382-90 – reference: 22899498 - Appl Microbiol Biotechnol. 2012 Oct;96(2):345-56 – reference: 22434608 - Yeast. 2012 Mar;29(3-4):145-54 – reference: 2245477 - Curr Genet. 1990 Jul;18(1):77-80 – reference: 16652393 - Yeast. 2006 Apr 30;23(6):479-86 – reference: 10570197 - Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14055-60 – reference: 7785336 - Yeast. 1995 Apr 15;11(4):355-60 – reference: 18532979 - Mol Microbiol. 2008 Aug;69(3):681-97 – reference: 1767590 - Yeast. 1991 Aug-Sep;7(6):617-25 – reference: 21896654 - Genes Dev. 2011 Sep 1;25(17):1770-82 – reference: 17406530 - Nat Protoc. 2006;1(6):2742-5 – reference: 25973796 - PLoS Genet. 2015 May;11(5):e1005139 – reference: 17765020 - DNA Repair (Amst). 2007 Dec 1;6(12):1864-75 – reference: 24726365 - Cell Rep. 2014 Apr 24;7(2):339-47 – reference: 9806862 - Plasmid. 1998 Nov;40(3):243-6 – reference: 16390459 - Mol Microbiol. 2006 Jan;59(2):677-88 – reference: 17347522 - Microbiol Mol Biol Rev. 2007 Mar;71(1):158-229 – reference: 7016841 - J Bacteriol. 1981 Jul;147(1):155-60 – reference: 8657569 - Nucleic Acids Res. 1996 May 15;24(10):1879-86 – reference: 22836353 - RNA. 2012 Sep;18(9):1716-24 – reference: 22384408 - G3 (Bethesda). 2012 Feb;2(2):299-311 – reference: 8602143 - Mol Gen Genet. 1996 Feb 25;250(3):286-94 – reference: 15879522 - Eukaryot Cell. 2005 May;4(5):879-89 – reference: 11427964 - Yeast. 2001 Jun 30;18(9):815-25 – reference: 24308908 - Mol Microbiol. 2014 Feb;91(3):606-17 |
SSID | ssj0035897 |
Score | 2.2665918 |
Snippet | Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and... Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and... Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1005005 |
SubjectTerms | Amino Acid Sequence Cloning Cloning, Molecular Crystal structure Cytoplasm - metabolism Escherichia coli - genetics Experiments Gene expression Gene Expression Regulation, Fungal Genetic aspects Identification and classification Killer Factors, Yeast - genetics Killer Factors, Yeast - metabolism Kluyveromyces - genetics Kluyveromyces - metabolism Molecular Sequence Data Open access publishing Pichia - genetics Pichia - metabolism Plasmids Proteins Ribonucleases - genetics Ribonucleases - metabolism RNA, Fungal - genetics Saccharomyces Saccharomycetales - genetics Saccharomycetales - metabolism Yeast |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_kQPBFrF-NrbqK4FPsbfYj2cdTLFWwglrp27KbZGvwTI5LrvT-Cv9lZ7K54yJC--BbuJ0EMrM785vczG8IeSUzriQrdZzkPolF5mzsIG-IE8_g6DmbCIsf9D-dqpMz8fFcnu-M-sKasEAPHBR35PsoCGE8BTDvVKFzxnOZ5dozJ8S0QO8LMW-TTAUfzGUWxqpIyeMU0vqhaY6n7Giw0ZsFGAhrBOQUR9ftBKWeu3_roSeLedP-C37-XUW5E5aO75G7A56ks_Aee-RWWd8nt8OEyfUD8nu26pq2n3UDBqCNp_m6axYAmX9VOV3j4B56WS1XLZ1XP0tahmLyliK9JUY12jVXkDpbbObFKxqYn1ta1eDXLsuWWlojJbJdUmeXOP6OAgymVd920q0pvD489moot60fkrPj99_encTDDIY4Vzrr4kKl3E8z7RPleFYypbWXOlFaCicY8sMVvmTMyWmBmvCQv3lf2CS1Cta84o_IpG7qcp_QQhUc_Il2TKTCY8MrL1jJpXZOQ07sIsI3RjD5QFCOczLmpv_XLYVEJejUoOnMYLqIxNu7FoGg4xr5t2jfrSzSa_c_wKYzw6Yz1226iDzH3WFCr-rWSZiZYIjnUqEi8rKXQIqNGmt4Luyqbc2Hz99vIPT19CZCX0ZCrwch34DOcjs0V4Dmkd9rJHk4kgRvko-W93HDb1TXGqYAkwvIKnVEXmwOgcG7sDqvLptVL8MA6CUCtPs4HIqtfiG9Tjlk_RFJR8dlZIDxSl396HnOBYJbxp78D4sdkDsAdWUoVT0kk265Kp8CnOzcs95z_AFjCHKo priority: 102 providerName: Directory of Open Access Journals |
Title | Autoselection of Cytoplasmic Yeast Virus Like Elements Encoding Toxin/Antitoxin Systems Involves a Nuclear Barrier for Immunity Gene Expression |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25973601 https://www.proquest.com/docview/1681266245 https://pubmed.ncbi.nlm.nih.gov/PMC4431711 https://doaj.org/article/f000718397014b6d9c13c58c9f1b440d http://dx.doi.org/10.1371/journal.pgen.1005005 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJyReEN8rjGIQEk-Z6sQf8QNCHdo0kFbQoGhvUZzEI6IkpUmn9q_gX-bOSSOCBuytqs9Re-ezfxff_Y6QlyIMpGCZ9vzE-h4PTewZiBs83zJwPRP7PMYX-qdTeTLj78_F-Q7Z9mxtFVhdGdphP6nZcn6w_rF5Aw7_2nVtUGw76WABKsdbf-FITXfhbFLY0-CUd_cKgQibditCBJ6CcL8tpvvbU3qHleP073buwWJeVlfB0j-zK387ro7vkNstzqSTZmHcJTtZcY_cbDpPbu6Tn5NVXVauBw4YhpaWJpu6XACU_p4ndIMNfehlvlxVdJ5_y2jWJJlXFGkv8bSjdbmGkDrGIl_8RBtG6IrmBex3l1lFY1ogVXK8pCZeYls8CvCY5q4cpd5Q-Pvw2HWbhls8ILPjo89vT7y2N4OXSB3WXipVYMehtr40QZgxqbUV2pdacMMZ8salNmPMiHGKmrAQ11mbxr6KJYxZGTwkg6Issj1CU5kGsM9ow7jiFgthg5RlgdDGaIiVzZAEWyNESUtcjv0z5pG7jVMQwDQ6jdB0UWu6IfG6WYuGuOM_8odo304WabfdF-XyImq9OLIOkgGmVBBZGpnqhAWJCBNtmeF8nA7JM1wdUVPD2m0e0YQzxHmKyyF54SSQeqPA3J6LeFVV0bsPX64h9Gl6HaGzntCrVsiWoLMkbosuQPPI-9WT3O9Jwi6T9Ib3cMFvVVdFTAJW5xBt6iF5vnWCCGdh1l6RlSsnwwAA-hy0-6hxik6_EHarQI7ZkKieu_QM0B8p8q-O_5wj6GXs8b9_8RNyC8CtaJJT98mgXq6ypwAgazMiN9S5GpHdw6Ppx7ORew0zcvvEL0G8dDI |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autoselection+of+cytoplasmic+yeast+virus+like+elements+encoding+toxin%2Fantitoxin+systems+involves+a+nuclear+barrier+for+immunity+gene+expression&rft.jtitle=PLoS+genetics&rft.au=Kast%2C+Alene&rft.au=Voges%2C+Raphael&rft.au=Schroth%2C+Michael&rft.au=Schaffrath%2C+Raffael&rft.date=2015-05-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=11&rft.issue=5&rft_id=info:doi/10.1371%2Fjournal.pgen.1005005&rft.externalDocID=A418467746 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |