Autoselection of Cytoplasmic Yeast Virus Like Elements Encoding Toxin/Antitoxin Systems Involves a Nuclear Barrier for Immunity Gene Expression

Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 11; no. 5; p. e1005005
Main Authors Kast, Alene, Voges, Raphael, Schroth, Michael, Schaffrath, Raffael, Klassen, Roland, Meinhardt, Friedhelm
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.05.2015
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle.
AbstractList Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KIORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle.
  Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle.
Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle.
Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle.Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle.
Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene ( PaORF4 , KlORF3 or DrORF5 ) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle. The rather wide-spread and extremely A/T rich yeast virus like elements (VLEs, also termed linear plasmids) which encode toxic anticodon nucleases (ACNases) ensure autoselection in the cytoplasm by preventing functional nuclear capture of the cognate immunity genes, but how? When expressed in the nucleus, the mRNA of the VLE immunity genes is split into fragments to which poly(A) tails are added. Consistently, lowering the A/T content by gene synthesis prevented transcript cleavage and permitted functional nuclear expression providing full immunity against the respective ACNase toxin. Thus, internal poly(A) cleavage is likely to prevent functional nuclear immunity gene expression.
Audience Academic
Author Kast, Alene
Meinhardt, Friedhelm
Schroth, Michael
Klassen, Roland
Voges, Raphael
Schaffrath, Raffael
AuthorAffiliation 2 Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
Fred Hutchinson Cancer Research Center, UNITED STATES
1 Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
AuthorAffiliation_xml – name: 1 Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
– name: Fred Hutchinson Cancer Research Center, UNITED STATES
– name: 2 Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
Author_xml – sequence: 1
  givenname: Alene
  surname: Kast
  fullname: Kast, Alene
– sequence: 2
  givenname: Raphael
  surname: Voges
  fullname: Voges, Raphael
– sequence: 3
  givenname: Michael
  surname: Schroth
  fullname: Schroth, Michael
– sequence: 4
  givenname: Raffael
  surname: Schaffrath
  fullname: Schaffrath, Raffael
– sequence: 5
  givenname: Roland
  surname: Klassen
  fullname: Klassen, Roland
– sequence: 6
  givenname: Friedhelm
  surname: Meinhardt
  fullname: Meinhardt, Friedhelm
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25973601$$D View this record in MEDLINE/PubMed
BookMark eNqVk99qFDEUxgep2D_6BqIBQfRit8lMJjPTC2EttS6UFmwteBWymZNtaiZZk0zpPoWvbKa7LV0RUTKQkPzOl5NvztnNtqyzkGUvCR6ToiL71673VpjxYg52TDAu0_ck2yFlWYwqiunWo_V2thvCNcZFWTfVs2w7L5uqYJjsZD8nfXQBDMionUVOocNldAsjQqcl-gYiRHSpfR_Qif4O6MhABzYGdGSla7Wdowt3q-3-xEYdhxU6X4YIXUBTe-PMDQQk0GkvDQiPPgrvNXiknEfTruutjkt0DDbJ3i48hJAyeJ49VcIEeLGe97Kvn44uDj-PTs6Op4eTk5FkTR1HLasKhetG5WxW1EBY06iyyVlT0hklJCekVUDIrMQttBJUnlDVirwSLJ0pVuxlr1e6C-MCX3sZOGF1SWiVbErEdEW0Tlzzhded8EvuhOZ3G87PufBRp6dxhTGuSF00FSZ0xtpGkkKWtWwUmVGK26T1YX1bP-uGhGz0wmyIbp5YfcXn7oZTWpCKkCTwbi3g3Y8eQuSdDhKMERZcf5c3yRnLaZnQNyt0LlJq2iqXFOWA8wklNWVVRYf3j_9ApdFC-vGp0pRO-xsB7zcCEhPhNs5FHwKfnn_5D_b039mzy0327SP2CoSJV8GZfijdsAm-euz3g9H3dZ8AugKkdyF4UA8IwXxor_uS4EN78XV7pbCD38KkjmK4Prmnzd-DfwHVlywm
CitedBy_id crossref_primary_10_1016_j_fgb_2024_103957
crossref_primary_10_3390_toxins9040112
crossref_primary_10_1371_journal_ppat_1007377
crossref_primary_10_1371_journal_pone_0157611
crossref_primary_10_3390_v10100564
crossref_primary_10_1098_rspb_2023_1108
crossref_primary_10_1016_j_funeco_2025_101418
crossref_primary_10_3390_ijms23137441
crossref_primary_10_1002_ece3_7515
crossref_primary_10_1111_cmi_12496
crossref_primary_10_3390_toxins13090615
crossref_primary_10_1073_pnas_2217194120
crossref_primary_10_1002_yea_3234
crossref_primary_10_3390_microorganisms8111680
crossref_primary_10_1002_yea_3398
crossref_primary_10_1007_s12268_016_0649_4
crossref_primary_10_1038_s42003_022_03793_z
crossref_primary_10_1371_journal_ppat_1005172
Cites_doi 10.1002/yea.728
10.1002/yea.776
10.1007/s00253-012-4349-9
10.1073/pnas.96.24.14055
10.1128/AEM.00271-07
10.1261/rna.034132.112
10.1038/nprot.2006.481
10.1006/plas.1998.1367
10.1007/BF02174386
10.1002/yea.2893
10.1111/j.1462-5822.2004.00383.x
10.1128/EC.4.5.879-889.2005
10.1002/yea.320110408
10.1006/plas.1994.1071
10.1093/nar/15.3.1031
10.1007/s00294-014-0426-1
10.1016/j.dnarep.2007.07.010
10.1128/JB.145.1.382-390.1981
10.1093/nar/24.10.1879
10.1534/g3.111.000745
10.1128/EC.00110-09
10.1111/j.1365-2958.2004.04119.x
10.1111/j.1365-2958.2005.04972.x
10.1093/nar/gkq831
10.1007/BF00321119
10.1016/j.molcel.2008.05.019
10.1101/gad.17268411
10.4161/mge.18477
10.1261/rna.2172105
10.1002/yea.1367
10.1128/JB.147.1.155-160.1981
10.1128/MMBR.00036-06
10.1016/j.celrep.2014.03.034
10.1002/yea.320070610
10.1111/j.1365-2958.2008.06319.x
10.1111/mmi.12481
ContentType Journal Article
Copyright COPYRIGHT 2015 Public Library of Science
2015 Kast et al 2015 Kast et al
2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kast A, Voges R, Schroth M, Schaffrath R, Klassen R, Meinhardt F (2015) Autoselection of Cytoplasmic Yeast Virus Like Elements Encoding Toxin/Antitoxin Systems Involves a Nuclear Barrier for Immunity Gene Expression. PLoS Genet 11(5): e1005005. doi:10.1371/journal.pgen.1005005
Copyright_xml – notice: COPYRIGHT 2015 Public Library of Science
– notice: 2015 Kast et al 2015 Kast et al
– notice: 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kast A, Voges R, Schroth M, Schaffrath R, Klassen R, Meinhardt F (2015) Autoselection of Cytoplasmic Yeast Virus Like Elements Encoding Toxin/Antitoxin Systems Involves a Nuclear Barrier for Immunity Gene Expression. PLoS Genet 11(5): e1005005. doi:10.1371/journal.pgen.1005005
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1005005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale in Context: Opposing Viewpoints
Gale In Context: Canada
Gale in Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Cytoplasmic Virus Like Elements Hijack the Poly(A) Machinery
EISSN 1553-7404
ExternalDocumentID 1685147589
oai_doaj_org_article_f000718397014b6d9c13c58c9f1b440d
PMC4431711
A418467746
25973601
10_1371_journal_pgen_1005005
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M~E
NPM
RIG
WOQ
PMFND
7X8
PPXIY
PQGLB
5PM
PJZUB
PUEGO
-
AAPBV
ABPTK
ADACO
BBAFP
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c698t-d673f089f26b38e1699f5926954b411211dfe11b50dedcef289ffda27a6211f63
IEDL.DBID M48
ISSN 1553-7404
1553-7390
IngestDate Fri Nov 26 17:13:28 EST 2021
Wed Aug 27 01:27:40 EDT 2025
Thu Aug 21 13:51:16 EDT 2025
Thu Jul 10 16:54:41 EDT 2025
Tue Jun 17 20:44:02 EDT 2025
Tue Jun 10 20:39:55 EDT 2025
Fri Jun 27 04:51:58 EDT 2025
Fri Jun 27 03:56:20 EDT 2025
Fri Jun 27 03:44:45 EDT 2025
Thu May 22 21:22:13 EDT 2025
Wed Feb 19 02:00:33 EST 2025
Thu Apr 24 22:50:18 EDT 2025
Tue Jul 01 04:31:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c698t-d673f089f26b38e1699f5926954b411211dfe11b50dedcef289ffda27a6211f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: AK RV RS RK FM. Performed the experiments: AK RV MS RK. Analyzed the data: AK RV MS RS RK FM. Contributed reagents/materials/analysis tools: RS FM. Wrote the paper: AK RS RK FM.
The authors have declared that no competing interests exist.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1005005
PMID 25973601
PQID 1681266245
PQPubID 23479
ParticipantIDs plos_journals_1685147589
doaj_primary_oai_doaj_org_article_f000718397014b6d9c13c58c9f1b440d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4431711
proquest_miscellaneous_1681266245
gale_infotracmisc_A418467746
gale_infotracacademiconefile_A418467746
gale_incontextgauss_ISR_A418467746
gale_incontextgauss_ISN_A418467746
gale_incontextgauss_IOV_A418467746
gale_healthsolutions_A418467746
pubmed_primary_25973601
crossref_primary_10_1371_journal_pgen_1005005
crossref_citationtrail_10_1371_journal_pgen_1005005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05-01
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2015
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References J Schickel (ref28) 1996; 24
JH Graber (ref31) 1999; 96
R Klassen (ref35) 2004; 53
R Klassen (ref21) 2007
RD Gietz (ref38) 1995; 11
B Meineke (ref13) 2011; 39
S Jeske (ref3) 2006; 23
N Gunge (ref2) 1981; 145
DW Wilson (ref24) 1988; 16
D Jablonowski (ref11) 2006; 59
M Tokunaga (ref17) 1987; 15
A Kast (ref19) 2014; 91
J Nandakumar (ref12) 2008; 31
B Meineke (ref14) 2012; 18
M Larsen (ref25) 1998; 40
JP Paluszynski (ref16) 2007; 73
R Schaffrath (ref29) 1996; 250
E Scotto-Lavino (ref40) 2006; 1
AK Chakravarty (ref8) 2014; 7
C Mehlgarten (ref6) 2004; 6
VL Louis (ref37) 2012; 2
D Jablonowski (ref5) 2001; 18
R Klassen (ref39) 2007; 6
R Klassen (ref15) 2013; 30
F Meinhardt (ref27) 1994; 32
J Lu (ref10) 2005; 11
AC Frank (ref32) 2009; 8
R Schaffrath (ref4) 2005
D Satwika (ref33) 2012; 29
R Klassen (ref20) 2014; 60
D Satwika (ref18) 2012; 96
E Cascales (ref30) 2007; 71
R Klassen (ref9) 2008; 69
S Zink (ref7) 2005; 4
NJ Proudfoot (ref23) 2011; 25
N Gunge (ref22) 1981; 147
PL Worsham (ref1) 1990; 18
J Guglielmini (ref36) 2011; 1
M Tiggemann (ref26) 2001; 18
AR Butler (ref34) 1991; 7
22545240 - Mob Genet Elements. 2011 Nov 1;1(4):283-290
22384408 - G3 (Bethesda). 2012 Feb;2(2):299-311
15104597 - Cell Microbiol. 2004 Jun;6(6):569-80
7016841 - J Bacteriol. 1981 Jul;147(1):155-60
24726365 - Cell Rep. 2014 Apr 24;7(2):339-47
20855293 - Nucleic Acids Res. 2011 Jan;39(2):687-700
25973796 - PLoS Genet. 2015 May;11(5):e1005139
17406530 - Nat Protoc. 2006;1(6):2742-5
16652393 - Yeast. 2006 Apr 30;23(6):479-86
8602143 - Mol Gen Genet. 1996 Feb 25;250(3):286-94
6257636 - J Bacteriol. 1981 Jan;145(1):382-90
17347522 - Microbiol Mol Biol Rev. 2007 Mar;71(1):158-229
16244131 - RNA. 2005 Nov;11(11):1648-54
17483256 - Appl Environ Microbiol. 2007 Jul;73(13):4373-8
18532979 - Mol Microbiol. 2008 Aug;69(3):681-97
22434608 - Yeast. 2012 Mar;29(3-4):145-54
16390459 - Mol Microbiol. 2006 Jan;59(2):677-88
24308908 - Mol Microbiol. 2014 Feb;91(3):606-17
2245477 - Curr Genet. 1990 Jul;18(1):77-80
3029695 - Nucleic Acids Res. 1987 Feb 11;15(3):1031-46
9806862 - Plasmid. 1998 Nov;40(3):243-6
7785336 - Yeast. 1995 Apr 15;11(4):355-60
17765020 - DNA Repair (Amst). 2007 Dec 1;6(12):1864-75
8657569 - Nucleic Acids Res. 1996 May 15;24(10):1879-86
19666779 - Eukaryot Cell. 2009 Oct;8(10):1521-31
10570197 - Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14055-60
21896654 - Genes Dev. 2011 Sep 1;25(17):1770-82
22899498 - Appl Microbiol Biotechnol. 2012 Oct;96(2):345-56
24719080 - Curr Genet. 2014 Aug;60(3):213-22
7899517 - Plasmid. 1994 Nov;32(3):318-27
18657509 - Mol Cell. 2008 Jul 25;31(2):278-86
1767590 - Yeast. 1991 Aug-Sep;7(6):617-25
15879522 - Eukaryot Cell. 2005 May;4(5):879-89
22836353 - RNA. 2012 Sep;18(9):1716-24
11427964 - Yeast. 2001 Jun 30;18(9):815-25
3138657 - Nucleic Acids Res. 1988 Aug 25;16(16):8097-112
15225320 - Mol Microbiol. 2004 Jul;53(1):263-73
11571753 - Yeast. 2001 Oct;18(14):1285-99
References_xml – volume: 18
  start-page: 815
  year: 2001
  ident: ref26
  article-title: Kluyveromyces lactis cytoplasmic plasmid pGKL2: heterologous expression of Orf3p and proof of guanylyltransferase and mRNA-triphosphatase activities
  publication-title: Yeast
  doi: 10.1002/yea.728
– volume: 18
  start-page: 1285
  year: 2001
  ident: ref5
  article-title: Saccharomyces cerevisiae cell wall chitin, the Kluyveromyces lactis zymocin receptor
  publication-title: Yeast
  doi: 10.1002/yea.776
– volume: 96
  start-page: 345
  year: 2012
  ident: ref18
  article-title: Anticodon nuclease encoding virus-like elements in yeast
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-012-4349-9
– volume: 96
  start-page: 14055
  year: 1999
  ident: ref31
  article-title: In silico detection of control signals: mRNA 3'-end-processing sequences in diverse species
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.96.24.14055
– volume: 73
  start-page: 4373
  year: 2007
  ident: ref16
  article-title: Pichia acaciae killer system: genetic analysis of toxin immunity
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00271-07
– year: 2005
  ident: ref4
– volume: 18
  start-page: 1716
  year: 2012
  ident: ref14
  article-title: A fungal anticodon nuclease ribotoxin exploits a secondary cleavage site to evade tRNA repair
  publication-title: RNA
  doi: 10.1261/rna.034132.112
– volume: 1
  start-page: 2742
  year: 2006
  ident: ref40
  article-title: 3' end cDNA amplification using classic RACE
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2006.481
– volume: 16
  start-page: 8097
  year: 1988
  ident: ref24
  article-title: Extranuclear gene expression in yeast: evidence for a plasmid-encoded RNA polymerase of unique structure
  publication-title: Nucleic Acids Res
– volume: 40
  start-page: 243
  year: 1998
  ident: ref25
  article-title: Kluyveromyces lactis killer plasmid pGKL2: evidence for a viral-like capping enzyme encoded by ORF3
  publication-title: Plasmid
  doi: 10.1006/plas.1998.1367
– volume: 250
  start-page: 286
  year: 1996
  ident: ref29
  article-title: Yeast killer plasmid pGKL2: molecular analysis of UCS5, a cytoplasmic promoter element essential for ORF5 gene function
  publication-title: Mol Gen Genet
  doi: 10.1007/BF02174386
– volume: 29
  start-page: 145
  year: 2012
  ident: ref33
  article-title: Repeated capture of a cytoplasmic linear plasmid by the host nucleus in Debaryomyces hansenii
  publication-title: Yeast
  doi: 10.1002/yea.2893
– volume: 6
  start-page: 569
  year: 2004
  ident: ref6
  article-title: After chitin docking, toxicity of Kluyveromyces lactis zymocin requires Saccharomyces cerevisiae plasma membrane H+-ATPase
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2004.00383.x
– volume: 30
  start-page: 230
  year: 2013
  ident: ref15
  article-title: A secondary cleavage site in tRNA prevents anticodon nuclease toxin resistance via RNA repair
  publication-title: Yeast
– volume: 4
  start-page: 879
  year: 2005
  ident: ref7
  article-title: Mannosyl-diinositolphospho-ceramide, the major yeast plasma membrane sphingolipid, governs toxicity of Kluyveromyces lactis zymocin
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.4.5.879-889.2005
– start-page: 187
  year: 2007
  ident: ref21
  article-title: Microbiology monographs Microbial linear plasmids
– volume: 11
  start-page: 355
  year: 1995
  ident: ref38
  article-title: Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure
  publication-title: Yeast
  doi: 10.1002/yea.320110408
– volume: 32
  start-page: 318
  year: 1994
  ident: ref27
  article-title: A novel approach to express a heterologous gene on Kluyveromyces lactis linear killer plasmids: expression of the bacterial aph gene from a cytoplasmic promoter fragment without in-phase fusion to the plasmid open reading frame
  publication-title: Plasmid
  doi: 10.1006/plas.1994.1071
– volume: 15
  start-page: 1031
  year: 1987
  ident: ref17
  article-title: Expression and identification of immunity determinants on linear DNA killer plasmids pGKL1 and pGKL2 in Kluyveromyces lactis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/15.3.1031
– volume: 60
  start-page: 213
  year: 2014
  ident: ref20
  article-title: Immunity factors for two related tRNAGln targeting killer toxins distinguish cognate and non-cognate toxic subunits
  publication-title: Curr Genet
  doi: 10.1007/s00294-014-0426-1
– volume: 6
  start-page: 1864
  year: 2007
  ident: ref39
  article-title: Homologous recombination and the yKu70/80 complex exert opposite roles in resistance against the killer toxin from Pichia acaciae
  publication-title: DNA Repair (Amst)
  doi: 10.1016/j.dnarep.2007.07.010
– volume: 145
  start-page: 382
  year: 1981
  ident: ref2
  article-title: Isolation and characterization of linear deoxyribonucleic acid plasmids from Kluyveromyces lactis and the plasmid-associated killer character
  publication-title: J Bacteriol
  doi: 10.1128/JB.145.1.382-390.1981
– volume: 24
  start-page: 1879
  year: 1996
  ident: ref28
  article-title: Kluyveromyces lactis killer system: analysis of cytoplasmic promoters of the linear plasmids
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/24.10.1879
– volume: 2
  start-page: 299
  year: 2012
  ident: ref37
  article-title: Pichia sorbitophila, an interspecies yeast hybrid, reveals early steps of genome resolution after polyploidization
  publication-title: G3 (Bethesda)
  doi: 10.1534/g3.111.000745
– volume: 8
  start-page: 1521
  year: 2009
  ident: ref32
  article-title: Evolutionary capture of viral and plasmid DNA by yeast nuclear chromosomes
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.00110-09
– volume: 53
  start-page: 263
  year: 2004
  ident: ref35
  article-title: Novel yeast killer toxins provoke S-phase arrest and DNA damage checkpoint activation
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2004.04119.x
– volume: 59
  start-page: 677
  year: 2006
  ident: ref11
  article-title: tRNAGlu wobble uridine methylation by Trm9 identifies Elongator's key role for zymocin-induced cell death in yeast
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2005.04972.x
– volume: 39
  start-page: 687
  year: 2011
  ident: ref13
  article-title: Determinants of eukaryal cell killing by the bacterial ribotoxin PrrC
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq831
– volume: 18
  start-page: 77
  year: 1990
  ident: ref1
  article-title: Killer toxin production in Pichia acaciae is associated with linear DNA plasmids
  publication-title: Curr Genet
  doi: 10.1007/BF00321119
– volume: 31
  start-page: 278
  year: 2008
  ident: ref12
  article-title: RNA repair: an antidote to cytotoxic eukaryal RNA damage
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2008.05.019
– volume: 25
  start-page: 1770
  year: 2011
  ident: ref23
  article-title: Ending the message: poly(A) signals then and now
  publication-title: Genes Dev
  doi: 10.1101/gad.17268411
– volume: 1
  start-page: 283
  year: 2011
  ident: ref36
  article-title: Bacterial toxin-antitoxin systems: Translation inhibitors everywhere
  publication-title: Mob Genet Elements
  doi: 10.4161/mge.18477
– volume: 11
  start-page: 1648
  year: 2005
  ident: ref10
  article-title: The Kluyveromyces lactis gamma-toxin targets tRNA anticodons
  publication-title: Rna
  doi: 10.1261/rna.2172105
– volume: 23
  start-page: 479
  year: 2006
  ident: ref3
  article-title: Autonomous cytoplasmic linear plasmid pPac1-1 of Pichia acaciae: molecular structure and expression studies
  publication-title: Yeast
  doi: 10.1002/yea.1367
– volume: 147
  start-page: 155
  year: 1981
  ident: ref22
  article-title: Intergeneric transfer of deoxyribonucleic acid killer plasmids, pGKl1 and pGKl2, from Kluyveromyces lactis into Saccharomyces cerevisiae by cell fusion
  publication-title: J Bacteriol
  doi: 10.1128/JB.147.1.155-160.1981
– volume: 71
  start-page: 158
  year: 2007
  ident: ref30
  article-title: Colicin biology
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.00036-06
– volume: 7
  start-page: 339
  year: 2014
  ident: ref8
  article-title: Structure, mechanism, and specificity of a eukaryal tRNA restriction enzyme involved in self-nonself discrimination
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.03.034
– volume: 7
  start-page: 617
  year: 1991
  ident: ref34
  article-title: Intracellular expression of Kluyveromyces lactis toxin gamma subunit mimics treatment with exogenous toxin and distinguishes two classes of toxin-resistant mutant
  publication-title: Yeast
  doi: 10.1002/yea.320070610
– volume: 69
  start-page: 681
  year: 2008
  ident: ref9
  article-title: The primary target of the killer toxin from Pichia acaciae is tRNA(Gln)
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2008.06319.x
– volume: 91
  start-page: 606
  year: 2014
  ident: ref19
  article-title: rRNA fragmentation induced by a yeast killer toxin
  publication-title: Mol Microbiol
  doi: 10.1111/mmi.12481
– reference: 15104597 - Cell Microbiol. 2004 Jun;6(6):569-80
– reference: 3138657 - Nucleic Acids Res. 1988 Aug 25;16(16):8097-112
– reference: 15225320 - Mol Microbiol. 2004 Jul;53(1):263-73
– reference: 22545240 - Mob Genet Elements. 2011 Nov 1;1(4):283-290
– reference: 11571753 - Yeast. 2001 Oct;18(14):1285-99
– reference: 24719080 - Curr Genet. 2014 Aug;60(3):213-22
– reference: 20855293 - Nucleic Acids Res. 2011 Jan;39(2):687-700
– reference: 18657509 - Mol Cell. 2008 Jul 25;31(2):278-86
– reference: 19666779 - Eukaryot Cell. 2009 Oct;8(10):1521-31
– reference: 3029695 - Nucleic Acids Res. 1987 Feb 11;15(3):1031-46
– reference: 17483256 - Appl Environ Microbiol. 2007 Jul;73(13):4373-8
– reference: 16244131 - RNA. 2005 Nov;11(11):1648-54
– reference: 7899517 - Plasmid. 1994 Nov;32(3):318-27
– reference: 6257636 - J Bacteriol. 1981 Jan;145(1):382-90
– reference: 22899498 - Appl Microbiol Biotechnol. 2012 Oct;96(2):345-56
– reference: 22434608 - Yeast. 2012 Mar;29(3-4):145-54
– reference: 2245477 - Curr Genet. 1990 Jul;18(1):77-80
– reference: 16652393 - Yeast. 2006 Apr 30;23(6):479-86
– reference: 10570197 - Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14055-60
– reference: 7785336 - Yeast. 1995 Apr 15;11(4):355-60
– reference: 18532979 - Mol Microbiol. 2008 Aug;69(3):681-97
– reference: 1767590 - Yeast. 1991 Aug-Sep;7(6):617-25
– reference: 21896654 - Genes Dev. 2011 Sep 1;25(17):1770-82
– reference: 17406530 - Nat Protoc. 2006;1(6):2742-5
– reference: 25973796 - PLoS Genet. 2015 May;11(5):e1005139
– reference: 17765020 - DNA Repair (Amst). 2007 Dec 1;6(12):1864-75
– reference: 24726365 - Cell Rep. 2014 Apr 24;7(2):339-47
– reference: 9806862 - Plasmid. 1998 Nov;40(3):243-6
– reference: 16390459 - Mol Microbiol. 2006 Jan;59(2):677-88
– reference: 17347522 - Microbiol Mol Biol Rev. 2007 Mar;71(1):158-229
– reference: 7016841 - J Bacteriol. 1981 Jul;147(1):155-60
– reference: 8657569 - Nucleic Acids Res. 1996 May 15;24(10):1879-86
– reference: 22836353 - RNA. 2012 Sep;18(9):1716-24
– reference: 22384408 - G3 (Bethesda). 2012 Feb;2(2):299-311
– reference: 8602143 - Mol Gen Genet. 1996 Feb 25;250(3):286-94
– reference: 15879522 - Eukaryot Cell. 2005 May;4(5):879-89
– reference: 11427964 - Yeast. 2001 Jun 30;18(9):815-25
– reference: 24308908 - Mol Microbiol. 2014 Feb;91(3):606-17
SSID ssj0035897
Score 2.2665918
Snippet Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and...
Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and...
  Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1005005
SubjectTerms Amino Acid Sequence
Cloning
Cloning, Molecular
Crystal structure
Cytoplasm - metabolism
Escherichia coli - genetics
Experiments
Gene expression
Gene Expression Regulation, Fungal
Genetic aspects
Identification and classification
Killer Factors, Yeast - genetics
Killer Factors, Yeast - metabolism
Kluyveromyces - genetics
Kluyveromyces - metabolism
Molecular Sequence Data
Open access publishing
Pichia - genetics
Pichia - metabolism
Plasmids
Proteins
Ribonucleases - genetics
Ribonucleases - metabolism
RNA, Fungal - genetics
Saccharomyces
Saccharomycetales - genetics
Saccharomycetales - metabolism
Yeast
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_kQPBFrF-NrbqK4FPsbfYj2cdTLFWwglrp27KbZGvwTI5LrvT-Cv9lZ7K54yJC--BbuJ0EMrM785vczG8IeSUzriQrdZzkPolF5mzsIG-IE8_g6DmbCIsf9D-dqpMz8fFcnu-M-sKasEAPHBR35PsoCGE8BTDvVKFzxnOZ5dozJ8S0QO8LMW-TTAUfzGUWxqpIyeMU0vqhaY6n7Giw0ZsFGAhrBOQUR9ftBKWeu3_roSeLedP-C37-XUW5E5aO75G7A56ks_Aee-RWWd8nt8OEyfUD8nu26pq2n3UDBqCNp_m6axYAmX9VOV3j4B56WS1XLZ1XP0tahmLyliK9JUY12jVXkDpbbObFKxqYn1ta1eDXLsuWWlojJbJdUmeXOP6OAgymVd920q0pvD489moot60fkrPj99_encTDDIY4Vzrr4kKl3E8z7RPleFYypbWXOlFaCicY8sMVvmTMyWmBmvCQv3lf2CS1Cta84o_IpG7qcp_QQhUc_Il2TKTCY8MrL1jJpXZOQ07sIsI3RjD5QFCOczLmpv_XLYVEJejUoOnMYLqIxNu7FoGg4xr5t2jfrSzSa_c_wKYzw6Yz1226iDzH3WFCr-rWSZiZYIjnUqEi8rKXQIqNGmt4Luyqbc2Hz99vIPT19CZCX0ZCrwch34DOcjs0V4Dmkd9rJHk4kgRvko-W93HDb1TXGqYAkwvIKnVEXmwOgcG7sDqvLptVL8MA6CUCtPs4HIqtfiG9Tjlk_RFJR8dlZIDxSl396HnOBYJbxp78D4sdkDsAdWUoVT0kk265Kp8CnOzcs95z_AFjCHKo
  priority: 102
  providerName: Directory of Open Access Journals
Title Autoselection of Cytoplasmic Yeast Virus Like Elements Encoding Toxin/Antitoxin Systems Involves a Nuclear Barrier for Immunity Gene Expression
URI https://www.ncbi.nlm.nih.gov/pubmed/25973601
https://www.proquest.com/docview/1681266245
https://pubmed.ncbi.nlm.nih.gov/PMC4431711
https://doaj.org/article/f000718397014b6d9c13c58c9f1b440d
http://dx.doi.org/10.1371/journal.pgen.1005005
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJyReEN8rjGIQEk-Z6sQf8QNCHdo0kFbQoGhvUZzEI6IkpUmn9q_gX-bOSSOCBuytqs9Re-ezfxff_Y6QlyIMpGCZ9vzE-h4PTewZiBs83zJwPRP7PMYX-qdTeTLj78_F-Q7Z9mxtFVhdGdphP6nZcn6w_rF5Aw7_2nVtUGw76WABKsdbf-FITXfhbFLY0-CUd_cKgQibditCBJ6CcL8tpvvbU3qHleP073buwWJeVlfB0j-zK387ro7vkNstzqSTZmHcJTtZcY_cbDpPbu6Tn5NVXVauBw4YhpaWJpu6XACU_p4ndIMNfehlvlxVdJ5_y2jWJJlXFGkv8bSjdbmGkDrGIl_8RBtG6IrmBex3l1lFY1ogVXK8pCZeYls8CvCY5q4cpd5Q-Pvw2HWbhls8ILPjo89vT7y2N4OXSB3WXipVYMehtr40QZgxqbUV2pdacMMZ8salNmPMiHGKmrAQ11mbxr6KJYxZGTwkg6Issj1CU5kGsM9ow7jiFgthg5RlgdDGaIiVzZAEWyNESUtcjv0z5pG7jVMQwDQ6jdB0UWu6IfG6WYuGuOM_8odo304WabfdF-XyImq9OLIOkgGmVBBZGpnqhAWJCBNtmeF8nA7JM1wdUVPD2m0e0YQzxHmKyyF54SSQeqPA3J6LeFVV0bsPX64h9Gl6HaGzntCrVsiWoLMkbosuQPPI-9WT3O9Jwi6T9Ib3cMFvVVdFTAJW5xBt6iF5vnWCCGdh1l6RlSsnwwAA-hy0-6hxik6_EHarQI7ZkKieu_QM0B8p8q-O_5wj6GXs8b9_8RNyC8CtaJJT98mgXq6ypwAgazMiN9S5GpHdw6Ppx7ORew0zcvvEL0G8dDI
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autoselection+of+cytoplasmic+yeast+virus+like+elements+encoding+toxin%2Fantitoxin+systems+involves+a+nuclear+barrier+for+immunity+gene+expression&rft.jtitle=PLoS+genetics&rft.au=Kast%2C+Alene&rft.au=Voges%2C+Raphael&rft.au=Schroth%2C+Michael&rft.au=Schaffrath%2C+Raffael&rft.date=2015-05-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=11&rft.issue=5&rft_id=info:doi/10.1371%2Fjournal.pgen.1005005&rft.externalDocID=A418467746
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon