A Reaction-Diffusion Model of Human Brain Development

Cortical folding exhibits both reproducibility and variability in the geometry and topology of its patterns. These two properties are obviously the result of the brain development that goes through local cellular and molecular interactions which have important consequences on the global shape of the...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 6; no. 4; p. e1000749
Main Authors Lefèvre, Julien, Mangin, Jean-François
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.04.2010
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cortical folding exhibits both reproducibility and variability in the geometry and topology of its patterns. These two properties are obviously the result of the brain development that goes through local cellular and molecular interactions which have important consequences on the global shape of the cortex. Hypotheses to explain the convoluted aspect of the brain are still intensively debated and do not focus necessarily on the variability of folds. Here we propose a phenomenological model based on reaction-diffusion mechanisms involving Turing morphogens that are responsible for the differential growth of two types of areas, sulci (bottom of folds) and gyri (top of folds). We use a finite element approach of our model that is able to compute the evolution of morphogens on any kind of surface and to deform it through an iterative process. Our model mimics the progressive folding of the cortical surface along foetal development. Moreover it reveals patterns of reproducibility when we look at several realizations of the model from a noisy initial condition. However this reproducibility must be tempered by the fact that a same fold engendered by the model can have different topological properties, in one or several parts. These two results on the reproducibility and variability of the model echo the sulcal roots theory that postulates the existence of anatomical entities around which the folding organizes itself. These sulcal roots would correspond to initial conditions in our model. Last but not least, the parameters of our model are able to produce different kinds of patterns that can be linked to developmental pathologies such as polymicrogyria and lissencephaly. The main significance of our model is that it proposes a first approach to the issue of reproducibility and variability of the cortical folding.
AbstractList Cortical folding exhibits both reproducibility and variability in the geometry and topology of its patterns. These two properties are obviously the result of the brain development that goes through local cellular and molecular interactions which have important consequences on the global shape of the cortex. Hypotheses to explain the convoluted aspect of the brain are still intensively debated and do not focus necessarily on the variability of folds. Here we propose a phenomenological model based on reaction-diffusion mechanisms involving Turing morphogens that are responsible for the differential growth of two types of areas, sulci (bottom of folds) and gyri (top of folds). We use a finite element approach of our model that is able to compute the evolution of morphogens on any kind of surface and to deform it through an iterative process. Our model mimics the progressive folding of the cortical surface along foetal development. Moreover it reveals patterns of reproducibility when we look at several realizations of the model from a noisy initial condition. However this reproducibility must be tempered by the fact that a same fold engendered by the model can have different topological properties, in one or several parts. These two results on the reproducibility and variability of the model echo the sulcal roots theory that postulates the existence of anatomical entities around which the folding organizes itself. These sulcal roots would correspond to initial conditions in our model. Last but not least, the parameters of our model are able to produce different kinds of patterns that can be linked to developmental pathologies such as polymicrogyria and lissencephaly. The main significance of our model is that it proposes a first approach to the issue of reproducibility and variability of the cortical folding.
  Cortical folding exhibits both reproducibility and variability in the geometry and topology of its patterns. These two properties are obviously the result of the brain development that goes through local cellular and molecular interactions which have important consequences on the global shape of the cortex. Hypotheses to explain the convoluted aspect of the brain are still intensively debated and do not focus necessarily on the variability of folds. Here we propose a phenomenological model based on reaction-diffusion mechanisms involving Turing morphogens that are responsible for the differential growth of two types of areas, sulci (bottom of folds) and gyri (top of folds). We use a finite element approach of our model that is able to compute the evolution of morphogens on any kind of surface and to deform it through an iterative process. Our model mimics the progressive folding of the cortical surface along foetal development. Moreover it reveals patterns of reproducibility when we look at several realizations of the model from a noisy initial condition. However this reproducibility must be tempered by the fact that a same fold engendered by the model can have different topological properties, in one or several parts. These two results on the reproducibility and variability of the model echo the sulcal roots theory that postulates the existence of anatomical entities around which the folding organizes itself. These sulcal roots would correspond to initial conditions in our model. Last but not least, the parameters of our model are able to produce different kinds of patterns that can be linked to developmental pathologies such as polymicrogyria and lissencephaly. The main significance of our model is that it proposes a first approach to the issue of reproducibility and variability of the cortical folding.
Cortical folding exhibits both reproducibility and variability in the geometry and topology of its patterns. These two properties are obviously the result of the brain development that goes through local cellular and molecular interactions which have important consequences on the global shape of the cortex. Hypotheses to explain the convoluted aspect of the brain are still intensively debated and do not focus necessarily on the variability of folds. Here we propose a phenomenological model based on reaction-diffusion mechanisms involving Turing morphogens that are responsible for the differential growth of two types of areas, sulci (bottom of folds) and gyri (top of folds). We use a finite element approach of our model that is able to compute the evolution of morphogens on any kind of surface and to deform it through an iterative process. Our model mimics the progressive folding of the cortical surface along foetal development. Moreover it reveals patterns of reproducibility when we look at several realizations of the model from a noisy initial condition. However this reproducibility must be tempered by the fact that a same fold engendered by the model can have different topological properties, in one or several parts. These two results on the reproducibility and variability of the model echo the sulcal roots theory that postulates the existence of anatomical entities around which the folding organizes itself. These sulcal roots would correspond to initial conditions in our model. Last but not least, the parameters of our model are able to produce different kinds of patterns that can be linked to developmental pathologies such as polymicrogyria and lissencephaly. The main significance of our model is that it proposes a first approach to the issue of reproducibility and variability of the cortical folding. The anatomical variability of the human brain folds remains an unclear and challenging issue. However it is clear that this variability is the product of the brain development. Several hypotheses coexist for explaining the rapid development of cortical sulci and it is of the highest interest that understanding their variability would improve the comparison of anatomical and functional data across cohorts of subjects. In this article we propose to extend a model of cortical folding based on interactions between growth factors that shape the cortical surface. First the originality of our approach lies in the fact that the surface on which these mechanisms take place is deformed iteratively and engenders geometric patterns that can be linked to cortical sulci. Secondly we show that some statistical properties of our model can reflect the reproducibility and the variability of sulcal structures. At the end we compare different patterns produced by the model to different pathologies of brain development.
Cortical folding exhibits both reproducibility and variability in the geometry and topology of its patterns. These two properties are obviously the result of the brain development that goes through local cellular and molecular interactions which have important consequences on the global shape of the cortex. Hypotheses to explain the convoluted aspect of the brain are still intensively debated and do not focus necessarily on the variability of folds. Here we propose a phenomenological model based on reaction-diffusion mechanisms involving Turing morphogens that are responsible for the differential growth of two types of areas, sulci (bottom of folds) and gyri (top of folds). We use a finite element approach of our model that is able to compute the evolution of morphogens on any kind of surface and to deform it through an iterative process. Our model mimics the progressive folding of the cortical surface along foetal development. Moreover it reveals patterns of reproducibility when we look at several realizations of the model from a noisy initial condition. However this reproducibility must be tempered by the fact that a same fold engendered by the model can have different topological properties, in one or several parts. These two results on the reproducibility and variability of the model echo the sulcal roots theory that postulates the existence of anatomical entities around which the folding organizes itself. These sulcal roots would correspond to initial conditions in our model. Last but not least, the parameters of our model are able to produce different kinds of patterns that can be linked to developmental pathologies such as polymicrogyria and lissencephaly. The main significance of our model is that it proposes a first approach to the issue of reproducibility and variability of the cortical folding.Cortical folding exhibits both reproducibility and variability in the geometry and topology of its patterns. These two properties are obviously the result of the brain development that goes through local cellular and molecular interactions which have important consequences on the global shape of the cortex. Hypotheses to explain the convoluted aspect of the brain are still intensively debated and do not focus necessarily on the variability of folds. Here we propose a phenomenological model based on reaction-diffusion mechanisms involving Turing morphogens that are responsible for the differential growth of two types of areas, sulci (bottom of folds) and gyri (top of folds). We use a finite element approach of our model that is able to compute the evolution of morphogens on any kind of surface and to deform it through an iterative process. Our model mimics the progressive folding of the cortical surface along foetal development. Moreover it reveals patterns of reproducibility when we look at several realizations of the model from a noisy initial condition. However this reproducibility must be tempered by the fact that a same fold engendered by the model can have different topological properties, in one or several parts. These two results on the reproducibility and variability of the model echo the sulcal roots theory that postulates the existence of anatomical entities around which the folding organizes itself. These sulcal roots would correspond to initial conditions in our model. Last but not least, the parameters of our model are able to produce different kinds of patterns that can be linked to developmental pathologies such as polymicrogyria and lissencephaly. The main significance of our model is that it proposes a first approach to the issue of reproducibility and variability of the cortical folding.
Audience Academic
Author Lefèvre, Julien
Mangin, Jean-François
AuthorAffiliation University College London, United Kingdom
1 LSIS, UMR CNRS 6168, Université Aix-Marseille II, Marseille, France
2 LNAO, Neurospin, I2BM, CEA Saclay, Gif-sur-Yvette, France
AuthorAffiliation_xml – name: University College London, United Kingdom
– name: 2 LNAO, Neurospin, I2BM, CEA Saclay, Gif-sur-Yvette, France
– name: 1 LSIS, UMR CNRS 6168, Université Aix-Marseille II, Marseille, France
Author_xml – sequence: 1
  givenname: Julien
  surname: Lefèvre
  fullname: Lefèvre, Julien
– sequence: 2
  givenname: Jean-François
  surname: Mangin
  fullname: Mangin, Jean-François
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20421989$$D View this record in MEDLINE/PubMed
BookMark eNqVkktv1DAUhSNURB_wDxBEYoFYZPAjD5sF0tACHamAVGBt3fgxeOTEg51U7b_Hw6RVgxAS8sJXzndO7rXPcXbQ-15n2VOMFpg2-PXGj6EHt9jK1i4wQqgp-YPsCFcVLRpasYN79WF2HOMGoVTy-lF2SFBJMGf8KKuW-aUGOVjfF2fWmDGmKv_klXa5N_n52EGfvwtg-_xMX2nnt53uh8fZQwMu6ifTfpJ9__D-2-l5cfHl4-p0eVHImrOhUISDJIrzFtWKSsyMaUEyWmpDJGkJACEKIywJVtBKhmskKeVcKUMaUtX0JHu-9906H8U0cRSYptVQzGkiVntCediIbbAdhBvhwYrfBz6sBYTBSqcFQCnb1IpKXZRUtcBaqEslKSolqjROXm-nv41tp5VMgwZwM9P5l97-EGt_JQirWN2gZPByMgj-56jjIDobpXYOeu3HKBpK6xKRkiTyxZ5cQ-rM9sYnQ7mjxZKQitOmYSxRi79QaSndWZniYGw6nwlezQSJGfT1sIYxRrH6evkf7Oc5--z-zdxdyW2OElDuARl8jEGbOwQjsYvr7eOJXVzFFNcke_OHTNoBdmFMg1r3b_EvBbfxIA
CitedBy_id crossref_primary_10_1007_s00429_015_1106_8
crossref_primary_10_1016_j_cortex_2018_03_005
crossref_primary_10_1007_s11075_024_01995_6
crossref_primary_10_1016_j_cmpb_2011_07_001
crossref_primary_10_2217_iim_12_59
crossref_primary_10_1111_nyas_13036
crossref_primary_10_1007_s40314_014_0112_4
crossref_primary_10_1007_s11692_012_9201_8
crossref_primary_10_1016_j_neuroimage_2017_10_010
crossref_primary_10_1038_srep37272
crossref_primary_10_1038_s41598_025_86854_7
crossref_primary_10_1371_journal_pone_0122252
crossref_primary_10_1007_s00285_011_0401_0
crossref_primary_10_1016_j_neuroimage_2018_03_057
crossref_primary_10_1016_j_neuroimage_2011_12_050
crossref_primary_10_4208_cicp_OA_2016_0029
crossref_primary_10_1002_biot_201100159
crossref_primary_10_1007_s40819_024_01705_9
crossref_primary_10_1515_jnma_2022_0025
crossref_primary_10_1587_nolta_7_226
crossref_primary_10_1016_j_mcm_2011_09_013
crossref_primary_10_1155_2022_1637071
crossref_primary_10_1016_j_brain_2022_100045
crossref_primary_10_3390_fractalfract7040289
crossref_primary_10_1016_j_biopsych_2010_12_012
crossref_primary_10_1155_2014_278479
crossref_primary_10_1016_j_neuroimage_2013_06_058
crossref_primary_10_1016_j_neuroimage_2018_03_005
crossref_primary_10_1073_pnas_1406015111
crossref_primary_10_1093_cercor_bhr053
crossref_primary_10_1039_c0sm00401d
crossref_primary_10_1016_j_jtbi_2020_110319
crossref_primary_10_1097_RMR_0b013e3182416f78
crossref_primary_10_1007_s11682_022_00713_x
crossref_primary_10_3389_fnins_2018_00354
crossref_primary_10_1007_s10915_018_0741_7
crossref_primary_10_1007_s10543_014_0484_2
crossref_primary_10_1007_s00247_012_2515_y
crossref_primary_10_1016_j_dcn_2023_101249
crossref_primary_10_3389_fnins_2022_1054509
crossref_primary_10_1038_s41598_021_89116_4
crossref_primary_10_1080_15384101_2019_1595873
crossref_primary_10_1063_5_0099753
crossref_primary_10_1016_j_neuroimage_2022_119776
crossref_primary_10_1073_pnas_2025717118
crossref_primary_10_1016_j_copbio_2021_10_016
crossref_primary_10_1093_cercor_bhv123
crossref_primary_10_1038_s41598_023_37604_0
crossref_primary_10_1016_j_jneumeth_2019_108386
crossref_primary_10_1371_journal_pcbi_1010190
crossref_primary_10_1093_cercor_bhs327
crossref_primary_10_3390_biomimetics8020154
crossref_primary_10_3390_fractalfract7010080
crossref_primary_10_1103_PhysRevE_100_052217
crossref_primary_10_1038_s41580_020_00318_6
crossref_primary_10_1126_science_1235381
crossref_primary_10_1007_s00220_023_04857_9
crossref_primary_10_1142_S021951941250090X
crossref_primary_10_3902_jnns_20_23
crossref_primary_10_1016_j_rimni_2012_07_003
crossref_primary_10_3390_e23121631
crossref_primary_10_1016_j_apnum_2014_12_012
Cites_doi 10.1038/385313a0
10.1109/TMI.2003.814781
10.1016/j.neuroimage.2006.10.041
10.2176/nmc.45.1
10.1039/b103246c
10.1007/s10884-004-7834-8
10.1109/ISBI.2004.1398567
10.1126/science.274.5290.1123
10.1093/cercor/bhm174
10.1093/aob/mcm295
10.1016/S0377-0427(01)00535-0
10.1093/imanum/drl023
10.1371/journal.pcbi.1000524
10.1126/science.1135626
10.1109/ICCV.2009.5459174
10.1007/978-1-4615-3824-0_1
10.1006/bulm.2002.0295
10.1145/127719.122750
10.1242/dev.121.7.2005
10.1006/jtbi.1997.0450
10.1145/122718.122749
10.1006/jtbi.2002.3012
10.1093/cercor/bhi068
10.1006/bulm.1998.0093
10.1016/j.media.2008.12.005
10.1038/nrn2008
10.1016/S1468-1218(03)00020-8
10.1126/science.261.5118.189
10.1002/jez.1401130304
10.1002/ana.10576
10.1093/cercor/bhm225
10.1007/s11538-006-9106-8
10.1126/science.3291116
10.1016/j.neuroimage.2004.01.023
10.1504/IJDSDE.2008.023002
ContentType Journal Article
Copyright COPYRIGHT 2010 Public Library of Science
Lefèvre, Mangin. 2010
2010 Lefèvre, Mangin. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Lefèvre J, Mangin J-F (2010) A Reaction-Diffusion Model of Human Brain Development. PLoS Comput Biol 6(4): e1000749. doi:10.1371/journal.pcbi.1000749
Copyright_xml – notice: COPYRIGHT 2010 Public Library of Science
– notice: Lefèvre, Mangin. 2010
– notice: 2010 Lefèvre, Mangin. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Lefèvre J, Mangin J-F (2010) A Reaction-Diffusion Model of Human Brain Development. PLoS Comput Biol 6(4): e1000749. doi:10.1371/journal.pcbi.1000749
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1000749
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
DocumentTitleAlternate A Model of Human Brain Development
EISSN 1553-7358
ExternalDocumentID 1313173193
oai_doaj_org_article_aa4cb9b0dffb43dba8ba64dc304c05e1
PMC2858670
A225937788
20421989
10_1371_journal_pcbi_1000749
Genre Journal Article
GeographicLocations France
GeographicLocations_xml – name: France
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
IPNFZ
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
7X8
5PM
PUEGO
3V.
AAPBV
ABPTK
M0N
M~E
ID FETCH-LOGICAL-c698t-d29ac2d99b06d3c18ffbac834ef2c2b2aa22d101c21dabc8160c3399ddf272563
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Sun Oct 01 00:20:31 EDT 2023
Wed Aug 27 01:33:56 EDT 2025
Thu Aug 21 18:08:34 EDT 2025
Fri Jul 11 00:45:27 EDT 2025
Tue Jun 17 21:50:07 EDT 2025
Tue Jun 10 20:35:00 EDT 2025
Fri Jun 27 04:53:04 EDT 2025
Fri Jun 27 05:02:42 EDT 2025
Mon Jul 21 06:03:01 EDT 2025
Tue Jul 01 04:23:42 EDT 2025
Thu Apr 24 22:52:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Reproducibility of Results
Algorithms
Computer Simulation
Humans
Cerebral Cortex
Models, Neurological
Models, Statistical
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c698t-d29ac2d99b06d3c18ffbac834ef2c2b2aa22d101c21dabc8160c3399ddf272563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: JL JFM. Performed the experiments: JL. Analyzed the data: JL JFM. Contributed reagents/materials/analysis tools: JL. Wrote the paper: JL JFM.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1000749
PMID 20421989
PQID 733640242
PQPubID 23479
ParticipantIDs plos_journals_1313173193
doaj_primary_oai_doaj_org_article_aa4cb9b0dffb43dba8ba64dc304c05e1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2858670
proquest_miscellaneous_733640242
gale_infotracmisc_A225937788
gale_infotracacademiconefile_A225937788
gale_incontextgauss_ISR_A225937788
gale_incontextgauss_ISN_A225937788
pubmed_primary_20421989
crossref_primary_10_1371_journal_pcbi_1000749
crossref_citationtrail_10_1371_journal_pcbi_1000749
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-04-01
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2010
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References J Cartwright (ref14) 2002; 217
A Delaunoy (ref31) 2009
ref35
R Raghavan (ref10) 1997; 187
D Van Essen (ref7) 1997; 385
P Maini (ref41) 2003
I Barrass (ref42) 2006; 68
W Welker (ref1) 1990; 8
A Biondi (ref3) 1998; 19
M Ono (ref39) 1990
P Rakic (ref13) 1988; 241
R Barrio (ref20) 1999; 61
A Cachia (ref33) 2003; 22
J Pearson (ref25) 1993; 261
D Richman (ref9) 1975; 189
D Striegel (ref15) 2009; 5
G Turk (ref23) 1991
D Barron (ref6) 1950; 113
M Pennacchio (ref30) 2002; 145
L Davidson (ref4) 1995; 121
R Plaza (ref28) 2004; 16
O Lyttelton (ref34) 2007; 34
T Ochiai (ref40) 2004; 22
G Dziuk (ref32) 2007; 27
D Holloway (ref22) 2008; 101
P Rakic (ref12) 2004; 303
M Chung (ref29) 2004
G Lohmann (ref16) 2008; 18
E Crampin (ref27) 2002; 64
W Le Gros Clark (ref5) 1945
A Madzvamuse (ref38) 2009
M Tessier-Lavigne (ref18) 1996; 274
A Madzvamuse (ref43) 2008; 1
K Im (ref17) 2009
A Kriegstein (ref19) 2006; 7
J McGough (ref26) 2004; 5
B Fischl (ref36) 2007; 18
L Harrison (ref21) 2002; 120
J Régis (ref2) 2005; 45
A Witkin (ref24) 1991; 25
G Geng (ref8) 2009; 13
R Toro (ref11) 2005; 15
T Mitchell (ref37) 2003; 53
7635048 - Development. 1995 Jul;121(7):2005-18
3291116 - Science. 1988 Jul 8;241(4862):170-6
17829274 - Science. 1993 Jul 9;261(5118):189-92
1135626 - Science. 1975 Jul 4;189(4196):18-21
11901681 - Faraday Discuss. 2001;(120):277-94; discussion 325-51
19727733 - J Math Biol. 2010 Jul;61(1):133-64
19561060 - Cereb Cortex. 2010 Mar;20(3):602-11
19779554 - PLoS Comput Biol. 2009 Sep;5(9):e1000524
9002514 - Nature. 1997 Jan 23;385(6614):313-8
12183134 - J Theor Biol. 2002 Jul 7;217(1):97-103
15044793 - Science. 2004 Mar 26;303(5666):1983-4
9726483 - AJNR Am J Neuroradiol. 1998 Aug;19(7):1361-7
18079129 - Cereb Cortex. 2008 Aug;18(8):1973-80
18045793 - Ann Bot. 2008 Feb;101(3):361-74
15193599 - Neuroimage. 2004 Jun;22(2):706-19
12731001 - Ann Neurol. 2003 May;53(5):658-63
15758198 - Cereb Cortex. 2005 Dec;15(12):1900-13
17188895 - Neuroimage. 2007 Feb 15;34(4):1535-44
17921455 - Cereb Cortex. 2008 Jun;18(6):1415-20
8895455 - Science. 1996 Nov 15;274(5290):1123-33
15699615 - Neurol Med Chir (Tokyo). 2005 Jan;45(1):1-17
17033683 - Nat Rev Neurosci. 2006 Nov;7(11):883-90
19181561 - Med Image Anal. 2009 Dec;13(6):920-30
12216419 - Bull Math Biol. 2002 Jul;64(4):747-69
17883228 - Bull Math Biol. 1999 May;61(3):483-505
16832735 - Bull Math Biol. 2006 Jul;68(5):981-95
12872951 - IEEE Trans Med Imaging. 2003 Jun;22(6):754-65
References_xml – volume: 385
  start-page: 313
  year: 1997
  ident: ref7
  article-title: A tension-based theory of morphogenesis and compact wiring in the central nervous system.
  publication-title: Nature
  doi: 10.1038/385313a0
– volume: 22
  start-page: 754
  year: 2003
  ident: ref33
  article-title: A primal sketch of the cortex mean curvature: a morphogenesis based approach to study the variability of the folding patterns.
  publication-title: IEEE transactions on medical imaging
  doi: 10.1109/TMI.2003.814781
– volume: 34
  start-page: 1535
  year: 2007
  ident: ref34
  article-title: An unbiased iterative group registration template for cortical surface analysis.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.10.041
– start-page: 67
  year: 2003
  ident: ref41
  article-title: Implications of domain growth in morphogenesis.
  publication-title: Mathematical modelling & computing in biology and medicine
– volume: 45
  start-page: 1
  year: 2005
  ident: ref2
  article-title: “Sulcal Root” Generic Model: a Hypothesis to Overcome the Variability of the Human Cortex Folding Patterns.
  publication-title: Neurologia medico-chirurgica
  doi: 10.2176/nmc.45.1
– volume: 120
  start-page: 277
  year: 2002
  ident: ref21
  article-title: Complex morphogenesis of surfaces: theory and experiment on coupling of reaction-diffusion patterning to growth.
  publication-title: Faraday Discussions
  doi: 10.1039/b103246c
– volume: 16
  start-page: 1093
  year: 2004
  ident: ref28
  article-title: The Effect of Growth and Curvature on Pattern Formation.
  publication-title: Journal of Dynamics and Differential Equations
  doi: 10.1007/s10884-004-7834-8
– year: 2004
  ident: ref29
  article-title: Diffusion smoothing on brain surface via finite element method.
  doi: 10.1109/ISBI.2004.1398567
– volume: 274
  start-page: 1123
  year: 1996
  ident: ref18
  article-title: The molecular biology of axon guidance.
  publication-title: Science
  doi: 10.1126/science.274.5290.1123
– volume: 18
  start-page: 1415
  year: 2008
  ident: ref16
  article-title: Deep sulcal landmarks provide an organizing framework for human cortical folding.
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhm174
– volume: 101
  start-page: 361
  year: 2008
  ident: ref22
  article-title: Pattern selection in plants: Coupling chemical dynamics to surface growth in three dimensions.
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcm295
– volume: 145
  start-page: 49
  year: 2002
  ident: ref30
  article-title: Efficient algebraic solution of reaction-diffusion systems for the cardiac excitation process.
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/S0377-0427(01)00535-0
– volume: 27
  start-page: 262
  year: 2007
  ident: ref32
  article-title: Finite elements on evolving surfaces.
  publication-title: IMA Journal of Numerical Analysis
  doi: 10.1093/imanum/drl023
– volume: 5
  year: 2009
  ident: ref15
  article-title: Chemically Based Mathematical Model for Development of Cerebral Cortical Folding Patterns.
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000524
– volume: 189
  start-page: 18
  year: 1975
  ident: ref9
  article-title: Mechanical Model of Brain Convolutional Development.
  publication-title: Science
  doi: 10.1126/science.1135626
– year: 2009
  ident: ref17
  article-title: Spatial distribution of deep sulcal landmarks and hemispherical asymmetry on the cortical surface.
  publication-title: Cerebral Cortex
– year: 2009
  ident: ref31
  article-title: Convex multi-region segmentation on manifolds.
  doi: 10.1109/ICCV.2009.5459174
– volume: 8
  start-page: 3
  year: 1990
  ident: ref1
  article-title: Why does cerebral cortex fissure and fold? A review of determinants of gyri and sulci.
  publication-title: Cerebral Cortex
  doi: 10.1007/978-1-4615-3824-0_1
– volume: 64
  start-page: 747
  year: 2002
  ident: ref27
  article-title: Pattern formation in reaction-diffusion models with nonuniform domain growth.
  publication-title: Bulletin of Mathematical Biology
  doi: 10.1006/bulm.2002.0295
– volume: 25
  start-page: 299
  year: 1991
  ident: ref24
  article-title: Reaction-diffusion textures.
  publication-title: ACM SIGGRAPH Computer Graphics
  doi: 10.1145/127719.122750
– volume: 121
  start-page: 2005
  year: 1995
  ident: ref4
  article-title: How do sea urchins invaginate? Using biomechanics to distinguish between mechanisms of primary invagination.
  publication-title: Development
  doi: 10.1242/dev.121.7.2005
– volume: 187
  start-page: 285
  year: 1997
  ident: ref10
  article-title: A continuum mechanics-based model for cortical growth.
  publication-title: Journal of Theoretical Biology
  doi: 10.1006/jtbi.1997.0450
– start-page: 289
  year: 1991
  ident: ref23
  article-title: Generating textures on arbitrary surfaces using reaction-diffusion.
  publication-title: Proceedings of the 18th annual conference on Computer graphics and interactive techniques
  doi: 10.1145/122718.122749
– volume: 303
  start-page: 1983
  year: 2004
  ident: ref12
  article-title: Neuroscience: genetic control of cortical convolutions.
  publication-title: Science Signaling
– volume: 217
  start-page: 97
  year: 2002
  ident: ref14
  article-title: Labyrinthine Turing Pattern Formation in the Cerebral Cortex.
  publication-title: Journal of Theoretical Biology
  doi: 10.1006/jtbi.2002.3012
– volume: 15
  start-page: 1900
  year: 2005
  ident: ref11
  article-title: A Morphogenetic Model for the Development of Cortical Convolutions.
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhi068
– year: 1990
  ident: ref39
  article-title: Atlas of the cerebral sulci.
  publication-title: Georg Thieme Verlag
– start-page: 1
  year: 1945
  ident: ref5
  article-title: Deformation patterns in the cerebral cortex.
  publication-title: Essays on Growth and Form
– volume: 61
  start-page: 483
  year: 1999
  ident: ref20
  article-title: A two-dimensional numerical study of spatial pattern formation in interacting Turing systems.
  publication-title: Bulletin of mathematical biology
  doi: 10.1006/bulm.1998.0093
– volume: 13
  start-page: 920
  year: 2009
  ident: ref8
  article-title: Biomechanisms for modelling cerebral cortical folding.
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2008.12.005
– volume: 7
  start-page: 883
  year: 2006
  ident: ref19
  article-title: Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion.
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn2008
– volume: 5
  start-page: 105
  year: 2004
  ident: ref26
  article-title: Pattern formation in the gray-scott model.
  publication-title: Nonlinear Analysis: Real world Applications
  doi: 10.1016/S1468-1218(03)00020-8
– volume: 261
  start-page: 189
  year: 1993
  ident: ref25
  article-title: Complex Patterns in a Simple System.
  publication-title: Science
  doi: 10.1126/science.261.5118.189
– volume: 113
  start-page: 553
  year: 1950
  ident: ref6
  article-title: An experimental analysis of some factors involved in the development of the fissure pattern of the cerebral cortex.
  publication-title: J Exp Zool
  doi: 10.1002/jez.1401130304
– volume: 53
  start-page: 658
  year: 2003
  ident: ref37
  article-title: Polymicrogyria and absence of pineal gland due to PAX6 mutation.
  publication-title: Annals of neurology
  doi: 10.1002/ana.10576
– volume: 19
  start-page: 1361
  year: 1998
  ident: ref3
  article-title: Are the brains of monozygotic twins similar? A three-dimensional MR study.
  publication-title: American Journal of Neuroradiology
– volume: 18
  start-page: 1973
  year: 2007
  ident: ref36
  article-title: Cortical folding patterns and predicting cytoarchitecture.
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhm225
– volume: 68
  start-page: 981
  year: 2006
  ident: ref42
  article-title: Mode Transitions in a Model Reaction–Diffusion System Driven by Domain Growth and Noise.
  publication-title: Bulletin of mathematical biology
  doi: 10.1007/s11538-006-9106-8
– volume: 241
  start-page: 170
  year: 1988
  ident: ref13
  article-title: Specification of cerebral cortical areas.
  publication-title: Science
  doi: 10.1126/science.3291116
– start-page: 1
  year: 2009
  ident: ref38
  article-title: Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains.
  publication-title: Journal of Mathematical Biology
– volume: 22
  start-page: 706
  year: 2004
  ident: ref40
  article-title: Sulcal pattern and morphology of the superior temporal sulcus.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.01.023
– volume: 1
  start-page: 250
  year: 2008
  ident: ref43
  article-title: Stability analysis of Reaction-Diffusion Systems with constant coefficients on growing domains.
  publication-title: International Journal of Dynamical Systems and Differential Equations
  doi: 10.1504/IJDSDE.2008.023002
– ident: ref35
– reference: 15758198 - Cereb Cortex. 2005 Dec;15(12):1900-13
– reference: 17883228 - Bull Math Biol. 1999 May;61(3):483-505
– reference: 12872951 - IEEE Trans Med Imaging. 2003 Jun;22(6):754-65
– reference: 12183134 - J Theor Biol. 2002 Jul 7;217(1):97-103
– reference: 12216419 - Bull Math Biol. 2002 Jul;64(4):747-69
– reference: 16832735 - Bull Math Biol. 2006 Jul;68(5):981-95
– reference: 19561060 - Cereb Cortex. 2010 Mar;20(3):602-11
– reference: 18045793 - Ann Bot. 2008 Feb;101(3):361-74
– reference: 18079129 - Cereb Cortex. 2008 Aug;18(8):1973-80
– reference: 17921455 - Cereb Cortex. 2008 Jun;18(6):1415-20
– reference: 1135626 - Science. 1975 Jul 4;189(4196):18-21
– reference: 15044793 - Science. 2004 Mar 26;303(5666):1983-4
– reference: 8895455 - Science. 1996 Nov 15;274(5290):1123-33
– reference: 17033683 - Nat Rev Neurosci. 2006 Nov;7(11):883-90
– reference: 19727733 - J Math Biol. 2010 Jul;61(1):133-64
– reference: 12731001 - Ann Neurol. 2003 May;53(5):658-63
– reference: 17829274 - Science. 1993 Jul 9;261(5118):189-92
– reference: 9002514 - Nature. 1997 Jan 23;385(6614):313-8
– reference: 3291116 - Science. 1988 Jul 8;241(4862):170-6
– reference: 11901681 - Faraday Discuss. 2001;(120):277-94; discussion 325-51
– reference: 9726483 - AJNR Am J Neuroradiol. 1998 Aug;19(7):1361-7
– reference: 19779554 - PLoS Comput Biol. 2009 Sep;5(9):e1000524
– reference: 15699615 - Neurol Med Chir (Tokyo). 2005 Jan;45(1):1-17
– reference: 7635048 - Development. 1995 Jul;121(7):2005-18
– reference: 17188895 - Neuroimage. 2007 Feb 15;34(4):1535-44
– reference: 15193599 - Neuroimage. 2004 Jun;22(2):706-19
– reference: 19181561 - Med Image Anal. 2009 Dec;13(6):920-30
SSID ssj0035896
Score 2.251038
Snippet Cortical folding exhibits both reproducibility and variability in the geometry and topology of its patterns. These two properties are obviously the result of...
  Cortical folding exhibits both reproducibility and variability in the geometry and topology of its patterns. These two properties are obviously the result of...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1000749
SubjectTerms Algorithms
Brain
Cerebral Cortex - growth & development
Computer Simulation
Developmental Biology/Pattern Formation
Experiments
Gene expression
Genetic aspects
Growth
Humans
Hypotheses
Mathematics
Models, Neurological
Models, Statistical
Neuroscience/Neurodevelopment
Physiological aspects
Protein folding
Reproducibility of Results
Studies
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA4yIHgRf291lSKCp7qdJG3T4yguq-Ae1IW5heQl0YWlHezMwf_e95LMuBVlL1KYQ_t6yJeXvO91Xt7H2CvvgwqB9xWYWlUSlqoytcEfJMcCAKNGQwecP523Zxfy47pZX5P6opqw1B44AXdijATb29qFYKVw1ihrWukA03CoGx8TH4x5-2Qq7cGiUVGZi0Rxqk7IdT40J7rlSZ6jNxuwl1QjgDG0nwWl2Lv_sEMvNlfj9Df6-WcV5bWwdHqP3c18slylcdxnt_zwgN1OCpM_H7JmVSIrjGcXKtJC2dHHsTLK35RjKKNCX2lJJqJ0v8uHHrGL0_df351VWSmhgrZX28rx3gB3PeLUOoGAI1gGlJA-cOCWG8O5w8UHfOmMBbVsaxBITZwLvEPSIx6zxTAO_oiVzqgakLQ0QXlp696Y1jrXW8cDeAVtwcQeKg25jTipWVzp-N9Yh-lEGrkmgHUGuGDV4a1NaqNxg_1bmoWDLTXBjjfQNXR2DX2TaxTsJc2hpjYXA9XRfDO7adIfvpzrFfogEjPM__9p9Hlm9DobhREHCyafXUDIqH3WzPJ4ZomLFWaPj8if9mOeEAG8OtwHRcHKvY9peouK3wY_7iZNHSslcamCPUkud8CF455LVW8F62bOOANu_mS4_B67iHPVqLarn_4PpJ-xO6mqgiqajtli-2PnnyNZ29oXcV3-AvDsP7g
  priority: 102
  providerName: Directory of Open Access Journals
Title A Reaction-Diffusion Model of Human Brain Development
URI https://www.ncbi.nlm.nih.gov/pubmed/20421989
https://www.proquest.com/docview/733640242
https://pubmed.ncbi.nlm.nih.gov/PMC2858670
https://doaj.org/article/aa4cb9b0dffb43dba8ba64dc304c05e1
http://dx.doi.org/10.1371/journal.pcbi.1000749
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdtymAvY9_11gUzBntycSTZkh_GSLZm3aBhdCvkTejDagvBzuIE1v9-d7KTzaNlLyPgQHwK3OlO97N1uh8hb8rSS-9pkVidyoTbkUx0quEC4JhZC1kjwwPOZ7P89IJ_mWfzPbLlbO0M2Nz6aId8UherxfHPHzfvIeDfBdYGMdoOOl5ac427_pAVi31yALlJIKfBGd_tK7BMBsYuJMtJBOPz7jDdXf_SS1ahp_9u5R4sF3VzGyz9u7ryj3Q1fUgedDgzHreO8YjsldVjcq9lnrx5QrJxDGgxnGlIkCNlgy_N4kCLE9c-Dsx9sUH6iNj9Lit6Si6mJ98_nCYdg0Ji80KuE0cLbakrCpPmjsFEeG-0lYyXnlpqqNaUOghKS0dOGytHeWoZQBbnPBUAhtgzMqjqqjwksdMytQBmMi9LbtJC69w4VxhHvS2lzSPCtqZStmsvjiwXCxX2zAQ8ZrSaKzSw6gwckWQ3atm21_iH_ARnYSeLzbHDD_XqUnWxprTm1oDKDrTlzBktjc65syzlNs3KUURe4xwqbH9RYX3Npd40jfr8babG4JsA2ISUdwqd94TedkK-BmWt7s40gMmwrVZP8qgnCUFse7cP0Z-2OjdgAfgIWB9ZROKtjykchUVxVVlvGoWdLDlirIg8b11uZxcKazFWw0VE9JyxZ7j-ner6KnQXpzKTuUhf_A9LvyT322oLrHQ6IoP1alO-AhC3NkOyL-YCrnL6aUgOxpOPkyl8T05mX8-H4cXIMETuL6urTrM
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+reaction-diffusion+model+of+human+brain+development&rft.jtitle=PLoS+computational+biology&rft.au=Julien+Lef%C3%A8vre&rft.au=Jean-Fran%C3%A7ois+Mangin&rft.date=2010-04-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=6&rft.issue=4&rft.spage=e1000749&rft_id=info:doi/10.1371%2Fjournal.pcbi.1000749&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_aa4cb9b0dffb43dba8ba64dc304c05e1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon